WorldWideScience

Sample records for carbonation

  1. Carbon Carbon Composites: An Overview .

    Directory of Open Access Journals (Sweden)

    G. Rohini Devi

    1993-10-01

    Full Text Available Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several industrial and biomedical applications. The multidirectional carbon-carbon product technology is versatile and offers design flexibility. This paper describes the multidirectional preform and carbon-carbon process technology and research and development activities within the country. Carbon-carbon product experience at DRDL has also been discussed. Development of carbon-carbon brake discs process technology using the liquid impregnation process is described. Further the test results on material characterisation, thermal, mechanical and tribological properties are presented.

  2. Carbonized asphaltene-based carbon-carbon fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George; Lula, James; Bowen, III, Daniel E.

    2016-12-27

    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  3. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  4. Carbon classified?

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2012-01-01

    How does a corporation know it emits carbon? Acquiring such knowledge starts with the classification of environmentally relevant consumption information. This paper visits the corporate location at which this underlying element for their knowledge is assembled to give rise to carbon emissions. Us...

  5. Porous carbons

    Indian Academy of Sciences (India)

    Satish M Manocha

    2003-02-01

    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5–0.8 cm3 /gm and surface areas of 700–1800 m2 /gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.

  6. Carbon photonics

    Energy Technology Data Exchange (ETDEWEB)

    Konov, V I [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-11-30

    The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)

  7. Carbon-Carbon Piston Architectures

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  8. Carbon cyclist

    Science.gov (United States)

    Showstack, Randy

    A satellite launched in early August as part of NASA's Mission to Planet Earth could dramatically increase understanding of how carbon cycles through the Earth's biosphere and living organisms and how this process influences global climate. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) will measure the color of the oceans with a radiometer to determine the concentration of chlorophyll found in oceanic phytoplankton. The single-celled plants, at the base of food chains around the world, remove carbon dioxide from seawater through photosynthesis, which allows oceans to absorb more carbon dioxide from the atmosphere.

  9. Carbon Stars

    Indian Academy of Sciences (India)

    T. Lloyd Evans

    2010-12-01

    In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  10. Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2014-01-01

    Full Text Available Initiated by the first single-walled carbon nanotube (SWCNT transistors [1,2], and reinvigorated with the isolation of graphene [3], the field of carbon-based nanoscale electronic devices and components (Carbon Nanoelectronics for short has developed at a blistering pace [4]. Comprising a vast number of scientists and engineers that span materials science, physics, chemistry, and electronics, this field seeks to provide an evolutionary transition path to address the fundamental scaling limitations of silicon CMOS [5]. Concurrently, researchers are actively investigating the use of carbon nanomaterials in applications including back-end interconnects, high-speed optoelectronic applications [6], spin-transport [7], spin tunnel barrier [8], flexible electronics, and many more.

  11. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  12. Calcium Carbonate

    Science.gov (United States)

    ... doctor if you have or have ever had kidney disease or stomach conditions.tell your doctor if you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking calcium carbonate, call your doctor.

  13. Carbonic inclusions

    Science.gov (United States)

    Van den Kerkhof, Alfons; Thiéry, Régis

    2001-01-01

    The paper gives an overview of the phase relations in carbonic fluid inclusions with pure, binary and ternary mixtures of the system CO 2-CH 4-N 2, compositions, which are frequently found in geological materials. Phase transitions involving liquid, gas and solid phases in the temperature range between -192°C and 31°C are discussed and presented in phase diagrams ( PT, TX and VX projections). These diagrams can be applied for the interpretation of microthermometry data in order to determine fluid composition and molar volume (or density).

  14. Carbon Farming as a Carbon Negative Technology

    Science.gov (United States)

    Anderson, C.; Laird, D.; Hayes, D. J.

    2015-12-01

    Carbon farms have a pivotal role in national and international efforts to mitigate and adapt to climate change. A carbon farm in its broadest sense is one that reduces greenhouse gas (GHG) emissions or captures and holds carbon in vegetation and soils. Their capacity to remove carbon from the air and store it safely and permanently, while providing additional human and ecosystem benefits, means they could contribute significantly to national efforts to stabilize or reduce GHGs. We examine carbon farms in the context of corn and soybean production agriculture. We illustrate, using Iowa data but with relevance across United States corn and soybean production, the potential for carbon farms to reduce human GHG emissions and sequester carbon permanently at a rate that has meaningful impact on global greenhouse gas concentration. Carbon has been viewed as a next generation cash crop in Iowa for over a decade. The carbon farm perspective, however, goes beyond carbon as cash crop to make carbon the center of an entire farm enterprise. The transformation is possible through slight adjustment crop practices mixed with advances in technology to sequester carbon through biochar. We examine carbon balance of Iowa agriculture given only the combination of slight reduction in fertilizer and sequestration by biochar. We find the following. Iowa carbon farms could turn Iowa agriculture into a carbon sink. The estimated range of GHG reduction by statewide implementation of carbon farms is 19.46 to 90.27 MMt CO2-equivalent (CO2-e), while the current agricultural CO2-e emission estimate is 35.38 MMt CO2-e. Iowa carbon farm GHG reduction would exceed Iowa GHG reduction by wind energy (8.7 MMt CO2-e) and could exceed combined reductions from wind energy and corn grain ethanol (10.7 MMt CO2-e; 19.4 MMt CO2-e combined). In fact, Iowa carbon farms alone could exceed GHG reduction from national corn grain ethanol production (39.6 MMt CO2-e). A carbon price accessible to agricultural

  15. Carbon Monoxide Safety

    Science.gov (United States)

    ... Materials Working with the Media Fire Protection Technology Carbon monoxide safety outreach materials Help inform residents in ... with these messages and free materials. What is carbon monoxide? Carbon monoxide, also known as CO, is ...

  16. Carbon monoxide poisoning

    Science.gov (United States)

    ... and smokers. Carbon monoxide can harm a fetus (unborn baby still in the womb). Symptoms of carbon ... symptoms Outlook (Prognosis) Carbon monoxide poisoning can cause death. For those who survive, recovery is slow. How ...

  17. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  18. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  19. Carbon Residence Times in Pedogenic Carbonate Pools

    Science.gov (United States)

    Monger, H.; Feng, Y.; Karnjanapiboonwang, A.

    2013-12-01

    Soil carbonate is a huge pool of terrestrial carbon that contains at least 930 to 940 Pg C and has influx rates on the order of 1 to 12 g CaCO3/m2/yr. Such large mass to flux ratios yield long mean residence times for carbon (e.g., 85,000 years)--assuming steady state. Like other global carbon pools, the soil carbonate pool has smaller sub-pools with higher influx rates and shorter mean residence times. For example, pedogenic carbonate in coppice dunes known to have formed since 1858 and carbonate formed on lithic artifacts in soils at archaeology sites suggests mean residence times can be as short as 120 years--again assuming steady state. Harder to assess are efflux rates as CO2 emissions or bicarbonate leaching. Some Bowen-ratio studies have nevertheless found evidence for CO2 emissions resulting from carbonate dissolution, and other studies have found evidence for bicarbonate leaching based on dissolution pipes through calcic horizons using soil morphology studies. Since an understanding of mean residence times are prerequisite for a better understanding of soil carbonate in the global carbon cycle, especially in a scenario of an expanding Aridosphere, more influx and efflux measurements are needed to evaluate the possibility of carbon sequestration by soil carbonate in hyperarid, arid, semiarid, or subhumid soils.

  20. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  1. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  2. Carbon Nanomembranes

    Science.gov (United States)

    Angelova, Polina; Gölzhäuser, Armin

    2017-03-01

    This chapter describes the formation and properties of one nanometer thick carbon nanomembranes (CNMs), made by electron induced cross-linking of aromatic self-assembled monolayers (SAMs). The cross-linked SAMs are robust enough to be released from the surface and placed on solid support or over holes as free-standing membranes. Annealing at 1000K transforms CNMs into graphene accompanied by a change of mechanical stiffness and electrical resistance. The developed fabrication approach is scalable and provides molecular level control over thickness and homogeneity of the produced CNMs. The mechanisms of electron-induced cross-linking process are discussed in details. A variety of polyaromatic thiols: oligophenyls as well as small and extended condensed polycyclic hydrocarbons have been successfully employed, demonstrating that the structural and functional properties of the resulting nanomembranes are strongly determined by the structure of molecular monolayers. The mechanical properties of CNMs (Young's modulus, tensile strength and prestress) are characterized by bulge testing. The interpretation of the bulge test data relates the Young's modulus to the properties of single molecules and to the structure of the pristine SAMs. The gas transport through the CNM is measured onto polydimethylsiloxane (PDMS) - thin film composite membrane. The established relationship of permeance and molecular size determines the molecular sieving mechanism of permeation through this ultrathin sheet.

  3. From carbon nanotubes to carbon atomic chains

    Science.gov (United States)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  4. Carbon nanotube composite materials

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  5. Mutagenicity of carbon nanomaterials

    DEFF Research Database (Denmark)

    Wallin, Håkan; Jacobsen, Nicklas Raun; White, Paul A;

    2011-01-01

    Carbon nanomaterials such carbon nanotubes, graphene and fullerenes are some the most promising nanomaterials. Although carbon nanomaterials have been reported to possess genotoxic potential, it is imperitive to analyse the data on the genotoxicity of carbon nanomaterials in vivo and in vitro...

  6. Electroanalysis with carbon paste electrodes

    CERN Document Server

    Svancara, Ivan; Walcarius, Alain; Vytras, Karel

    2011-01-01

    Introduction to Electrochemistry and Electroanalysis with Carbon Paste-Based ElectrodesHistorical Survey and GlossaryField in Publication Activities and LiteratureCarbon Pastes and Carbon Paste ElectrodesCarbon Paste as the Binary MixtureClassification of Carbon Pastes and Carbon Paste ElectrodesConstruction of Carbon Paste HoldersCarbon Paste as the Electrode MaterialPhysicochemical Properties of Carbon PastesElectrochemical Characteristics of Carbon PastesTesting of Unmodified CPEsIntera

  7. Mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  8. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  9. Adsorption of Carbon Dioxide on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Bo Guo; Liping Chang; Kechang Xie

    2006-01-01

    The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Freundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.

  10. Carbon fuel cells with carbon corrosion suppression

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  11. Metallic carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.L.; Crespi, V.H.; Louie, S.G.S.; Zettl, A.K.

    1999-11-30

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  12. Synthesis of carbon nanotubes.

    Science.gov (United States)

    Awasthi, Kalpana; Srivastava, Anchal; Srivastava, O N

    2005-10-01

    Carbon nanotubes play a fundamental role in the rapidly developing field of nanoscience and nanotechnology because of their unique properties and high potential for applications. In this article, the different synthesis methods of carbon nanotubes (both multi-walled and single-walled) are reviewed. From the industrial point of view, the chemical vapor deposition method has shown advantages over laser vaporization and electric arc discharge methods. This article also presents recent work in the controlled synthesis of carbon nanotubes with ordered architectures. Special carbon nanotube configurations, such as nanocoils, nanohorns, bamboo-shaped and carbon cylinder made up from carbon nanotubes are also discussed.

  13. Substantial global carbon uptake by cement carbonation

    Science.gov (United States)

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn; Galan, Isabel; Andrade, Carmen; Zhang, Ying; Liu, Zhu

    2016-12-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 2013. Considerable attention has been paid to quantifying these industrial process emissions from cement production, but the natural reversal of the process--carbonation--has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondary use of concrete waste to estimate regional and global CO2 uptake between 1930 and 2013 using an analytical model describing carbonation chemistry. We find that carbonation of cement materials over their life cycle represents a large and growing net sink of CO2, increasing from 0.10 GtC yr-1 in 1998 to 0.25 GtC yr-1 in 2013. In total, we estimate that a cumulative amount of 4.5 GtC has been sequestered in carbonating cement materials from 1930 to 2013, offsetting 43% of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil use during cement production. We conclude that carbonation of cement products represents a substantial carbon sink that is not currently considered in emissions inventories.

  14. Potassium carbonate poisoning

    Science.gov (United States)

    Potassium carbonate is a white powder used to make soap, glass, and other items. This article discusses poisoning from swallowing or breathing in potassium carbonate. This article is for information only. Do ...

  15. Sodium carbonate poisoning

    Science.gov (United States)

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and ... products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do ...

  16. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  17. Carbon Monoxide (CO)

    Science.gov (United States)

    ... IAQ) Share Facebook Twitter Google+ Pinterest Contact Us Carbon Monoxide's Impact on Indoor Air Quality On this ... length of exposure. Top of Page Sources of Carbon Monoxide Sources of CO include: unvented kerosene and ...

  18. Soil Organic Carbon Stock

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Soil organic carbon (SOC) is the carbon held within soil organic constituents (i.e., products produced as dead plants and animals decompose and the soil microbial...

  19. Biomass Carbon Stock

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Biomass carbon includes carbon stored in above- and below-ground live plant components (such as leaf, branch, stem and root) as well as in standing and down dead...

  20. Trading forest carbon - OSU

    Science.gov (United States)

    Issues associate with trading carbon sequestered in forests are discussed. Scientific uncertainties associated with carbon measurement are discussed with respect to proposed accounting procedures. Major issues include: (1) Establishing baselines. (2) Determining additivity from f...

  1. SILICA SURFACED CARBON FIBERS.

    Science.gov (United States)

    carbon fibers . Several economical and simple processes were developed for obtaining research quantities of silica surfaced carbon filaments. Vat dipping processes were utilized to deposit an oxide such as silica onto the surface and into the micropores of available carbon or graphite base fibers. High performance composite materials were prepared with the surface treated carbon fibers and various resin matrices. The ablative characteristics of these composites were very promising and exhibited fewer limitations than either silica or...treated

  2. Protolytic carbon film technology

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  3. Carbon Goes To…

    Science.gov (United States)

    Savasci, Funda

    2014-01-01

    The purposes of this activity are to help middle school students understand the carbon cycle and realize how human activities affect the carbon cycle. This activity consists of two parts. The first part of the activity focuses on the carbon cycle, especially before the Industrial Revolution, while the second part of the activity focuses on how…

  4. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small si

  5. Carbon sequestration on Mars

    OpenAIRE

    Edwards, Christopher S.; Ehlmann, Bethany L.

    2015-01-01

    On Earth, carbon sequestration in geologic units plays an important role in the carbon cycle, scrubbing CO_2 from the atmosphere for long-term storage. While carbonate is identified in low abundances within the dust and soils of Mars, at

  6. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Quéré, Le Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M.S.; Munro, David R.; Nabel, Julia E.M.S.; Nakaoka, S.; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Laan-Luijkx, van der Ingrid T.; Werf, van der Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project futur

  7. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud;

    2012-01-01

    exothermic than that of amorphous calcium carbonate (ACC). This suggests that enthalpy of crystallization in carbonate systems is ionic-size controlled, which may have significant implications in a wide variety of conditions, including geological sequestration of anthropogenic carbon dioxide.......Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  8. Catalysts in syntheses of carbon and carbon precursors

    OpenAIRE

    Mochida, Isao; Yoon, Seong-Ho; Qiao, Wenming

    2006-01-01

    Carbon materials have been applied in different fields because of their unique performances. Naturally, the physical and chemical structures of carbon precursors and carbon materials decide their properties and applications. Catalysts play a very important role in the synthesis of carbon precursors and carbon materials by controlling the molecular and compositional chemistry at the transformation of organic substrates into carbon through carbonaceous intermediates. Carbon materials of high pe...

  9. Carbon dioxide sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  10. Graphitic Carbons and Biosignatures

    OpenAIRE

    Bernard, S.; Papineau, D

    2014-01-01

    The unambiguous identification of graphitic carbons as remains of life in ancient rocks is challenging because fossilized biogenic molecules are inevitably altered and degraded during diagenesis and metamorphism of the host rocks. Yet, recent studies have highlighted the possible preservation of biosignatures carried by some of the oldest graphitic carbons. Laboratory simulations are increasingly being used to better constrain the transformations of organic molecules into graphitic carbons in...

  11. Carbon Dioxide Absorbents

    Science.gov (United States)

    1950-05-17

    carbondioxide content of the solution was then determined. A gas mixture containing 2.6% carbon dioxide and 97.4% nitrogen was prepared in the...which carbon dioxide is removed by heat0 Since this step is usually carried out by "steam stripping ", that is, contacting the solution at its boiling...required to produce the steam required for stripping the carbon dioxide from the s olution. The method ueed in this investigation for determining the

  12. Carbon emissions Inventory Games

    OpenAIRE

    Al-Emadi, Eiman Ali

    2016-01-01

    Carbon emissions reduction has been the center of attention in many organizations during the past few decades. Many international entities developed rules and regulations to monitor and control carbon emissions especially under supply chain context. Furthermore, researchers investigated techniques and methods on how reduce carbon emissions under operational adjustment which can be done by cooperation or coordination. The main contribution of this thesis is to measure to what extend cooperatio...

  13. Animating the Carbon Cycle

    OpenAIRE

    2014-01-01

    Understanding the biogeochemical processes reg- ulating carbon cycling is central to mitigating atmospheric CO2 emissions. The role of living organisms has been accounted for, but the focus has traditionally been on contributions of plants and microbes. We develop the case that fully ‘‘animating’’ the carbon cycle requires broader consideration of the functional role of animals in mediating biogeochemical processes and quanti- fication of their effects on carbon storage and exchange among ter...

  14. Nanographene reinforced carbon/carbon composites

    Science.gov (United States)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic

  15. CARBON DIOXIDE REDUCTION SYSTEM.

    Science.gov (United States)

    CARBON DIOXIDE , *SPACE FLIGHT, RESPIRATION, REDUCTION(CHEMISTRY), RESPIRATION, AEROSPACE MEDICINE, ELECTROLYSIS, INSTRUMENTATION, ELECTROLYTES, VOLTAGE, MANNED, YTTRIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, NICKEL.

  16. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  17. Carbon Dioxide Fountain

    Science.gov (United States)

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  18. De-carbonizingChina

    Institute of Scientific and Technical Information of China (English)

    zhou; Xiaoyan

    2013-01-01

    Innovation in the energy sector will pave the way for the country’slow-carbon future Although its per-capita emission is roughly on par with the world’s average, China is the world’s largest carbon dioxide emitter,

  19. Carbon for sensing devices

    CERN Document Server

    Tagliaferro, Alberto

    2015-01-01

    This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.  The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nanosized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes.  Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in th...

  20. China's carbon conundrum

    Science.gov (United States)

    Qi, Ye; Wu, Tong; He, Jiankun; King, David A.

    2013-07-01

    China's carbon dioxide emissions are rising fast. Yet, per capita, gross domestic product and energy use are only a fraction of their United States equivalents. With a growing urban middle class, the trend will continue, but there is progress on the path to a low-carbon economy.

  1. Global carbon budget 2014

    NARCIS (Netherlands)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2014-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we descr

  2. Global Carbon Budget 2015

    NARCIS (Netherlands)

    Quéré, Le C.; Moriarty, R.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Friedlingstein, P.; Peters, G.P.; Andres, R.J.; Boden, T.A.; Houghton, R.A.; House, J.I.; Keeling, R.F.; Tans, P.; Arneth, A.; Bakker, D.C.E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L.P.; Ciais, P.; Fader, M.; Feely, R.A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A.K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landschützer, P.; Lauvset, S.K.; Lefèvre, N.; Lenton, A.; Lima, I.D.; Metzl, N.; Millero, F.; Munro, D.R.; Murata, A.; Nabel, J.E.M.S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F.F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B.D.; Sutton, A.J.; Takahashi, T.; Tilbrook, B.; Laan-Luijkx, Van Der I.T.; Werf, Van Der G.R.; Heuven, Van S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we de

  3. Global carbon budget 2013

    NARCIS (Netherlands)

    Le Quéré, C.; Peters, G. P.; Andres, R. J.; Andrew, R. M.; Boden, T. A.; Ciais, P.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Moriarty, R.; Sitch, S.; Tans, P.; Arneth, A.; Arvanitis, A.; Bakker, D. C E; Bopp, L.; Canadell, J. G.; Chini, L. P.; Doney, S. C.; Harper, A.; Harris, I.; House, J. I.; Jain, A. K.; Jones, S. D.; Kato, E.; Keeling, R. F.; Klein Goldewijk, Kees; Körtzinger, A.; Koven, C.; Lefèvre, N.; Maignan, F.; Omar, A.; Ono, T.; Park, G. H.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, Piere; Rödenbeck, C.; Saito, S.; Schwinger, J.; Segschneider, J.; Stocker, B. D.; Takahashi, T.; Tilbrook, B.; Van Heuven, S.; Viovy, N.; Wanninkhof, R.; Wiltshire, A.; Zaehle, S.

    2014-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we descr

  4. Global Carbon Budget 2015

    NARCIS (Netherlands)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Feely, R. A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we descr

  5. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  6. Carbon Dioxide and Climate.

    Science.gov (United States)

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  7. COMMITTED TO CARBON REDUCTION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Chinese efforts to lower carbon emissions through environmentally friendly means begin gaining momentum Efforts to curb carbon emissions continue to take shape as China adheres to its pledge for a brighter, greener future. More importantly, as environmental measures take hold and develop

  8. Global carbon budget 2014

    NARCIS (Netherlands)

    Quéré, Le C.; Peters, W.; Moriarty, R.; Friedlingstein, P.

    2015-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we descr

  9. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  10. Synthesis of hydrated lutetium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Song Liu [South China Univ. of Technology, Dept. of Applied Chemistry, Guangdong (China); Rong-jun Ma [Changsha Research Institute of Minig and Metallurgy, Hunan (China)

    1997-09-01

    Crystalline lutetium carbonate was synthesized for the corresponding chloride using ammonium bicarbonate as precipitant. The chemical analyses suggest that the synthesized lutetium carbonate is a hydrated basic carbonate or oxycarbonate. The X-ray powder diffraction data are presented. The IR data for the compound show the presence of two different carbonate groups. There is no stable intermediate carbonate in the process of thermal decomposition of the lutetium carbonate. (au) 15 refs.

  11. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  12. Small diameter carbon nanopipettes

    Science.gov (United States)

    Singhal, Riju; Bhattacharyya, Sayan; Orynbayeva, Zulfiya; Vitol, Elina; Friedman, Gary; Gogotsi, Yury

    2010-01-01

    Nanoscale multifunctional carbon probes facilitate cellular studies due to their small size, which makes it possible to interrogate organelles within living cells in a minimally invasive fashion. However, connecting nanotubes to macroscopic devices and constructing an integrated system for the purpose of fluid and electrical signal transfer is challenging, as is often the case with nanoscale components. We describe a non-catalytic chemical vapor deposition based method for batch fabrication of integrated multifunctional carbon nanopipettes (CNPs) with tip diameters much smaller (10-30 nm) than previously reported (200 nm and above) and approaching those observed for multiwalled carbon nanotubes. This eliminates the need for complicated attachment/assembly of nanotubes into nanofluidic devices. Variable tip geometries and structures were obtained by controlled deposition of carbon inside and outside quartz pipettes. We have shown that the capillary length and gas flow rate have a marked effect on the carbon deposition. This gives us a flexible protocol, useful for growing carbon layers of different thicknesses at selective locations on a glass pipette to yield a large variety of cellular probes in bulk quantities. The CNPs possess an open channel for fluid transfer with the carbon deposited inside at 875 °C behaving like an amorphous semiconductor. Vacuum annealing of the CNP tips at temperatures up to 2000 °C yields graphitic carbon structures with an increase in conductivity of two orders of magnitude. Penetration of the integrated carbon nanoprobes into cells was shown to produce minimal Ca2+ signals, fast recovery of basal Ca2+ levels and no adverse activation of the cellular metabolism during interrogation times as long as 0.5-1 h.

  13. Carbon Superatom Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Canning, A. [Cray Research, PSE, EPFL, 1015 Lausanne (Switzerland); Canning, A.; Galli, G. [Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA), IN-Ecublens, 1015 Lausanne (Switzerland); Kim, J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    1997-06-01

    We report on quantum molecular dynamics simulations of C{sub 28} deposition on a semiconducting surface. Our results show that under certain deposition conditions C{sub 28} {close_quote}s act as building blocks on a nanometer scale to form a thin film of nearly defect-free molecules. The C{sub 28} {close_quote}s behave as carbon superatoms, with the majority of them being threefold or fourfold coordinated, similar to carbon atoms in amorphous systems. The microscopic structure of the deposited film supports recent suggestions about the stability of a new form of carbon, the hyperdiamond solid. {copyright} {ital 1997} {ital The American Physical Society}

  14. Production of carbon nanotubes

    Science.gov (United States)

    Journet, C.; Bernier, P.

    Carbon nanostructures such as single-walled and multi-walled nanotubes (SWNTs and MWNTs) or graphitic polyhedral nanoparticles can be produced using various methods. Most of them are based on the sublimation of carbon under an inert atmosphere, such as the electric arc discharge process, the laser ablation method, or the solar technique. But chemical methods can also be used to synthesize these kinds of carbon materials: the catalytic decomposition of hydrocarbons, the production by electrolysis, the heat treatment of a polymer, the low temperature solid pyrolysis, or the in situ catalysis.

  15. Authigenic Carbonate and the History of the Global Carbon Cycle

    Science.gov (United States)

    Schrag, Daniel P.; Higgins, John. A.; Macdonald, Francis A.; Johnston, David T.

    2013-02-01

    We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O2 or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic.

  16. Carbon Stock and Carbon Cycle of Wetland Ecosystem

    Institute of Scientific and Technical Information of China (English)

    Zhangquan; ZENG; Canming; ZHANG; Jiao; LI; Nan; YANG; Xihao; LI; Yandong; NIU; Zijian; WU

    2014-01-01

    Wetland ecosystem is an essential ecosystem in the world. Its organic carbon stock and carbon cycle are important basis of global carbon cycle researches and also major contents of global climate change researches. Researches have shown that wetland protection and restoration can promote carbon accumulation and reduce emission of greenhouse gases. This paper discussed influence of carbon stock and carbon balance of wetland ecosystem and emission of greenhouse gases,as well as the relationship between wetland and global climate changes. Finally,it made prospect on researches about carbon cycle of Dongting Lake.

  17. A novel carbon fiber based porous carbon monolith

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-06-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described. A novel adsorbent carbon composite material has been developed comprising carbon fibers and a binder. The material, called carbon fiber composite molecular sieve (CFCMS), was developed through a joint research program between Oak Ridge National Laboratory (ORNL) and the University of Kentucky, Center for Applied Energy Research (UKCAER).

  18. High performance carbon-carbon composites

    Indian Academy of Sciences (India)

    Lalit M Manocha

    2003-02-01

    Carbon-carbon composites rank first among ceramic composite materials with a spectrum of properties and applications in various sectors. These composites are made of fibres in various directions and carbonaceous polymers and hydrocarbons as matrix precursors. Their density and properties depend on the type and volume fraction of reinforcement, matrix precursor used and end heat treatment temperature. Composites made with thermosetting resins as matrix precursors possess low densities (1.55–1.75 g/cm3) and well-distributed microporosity whereas those made with pitch as the matrix precursor, after densification exhibit densities of 1.8–2.0 g/cm3 with some mesopores, and those made by the CVD technique with hydrocarbon gases, possess intermediate densities and matrices with close porosities. The former (resin-based) composites exhibit high flexural strength, low toughness and low thermal conductivity, whereas the latter (pitch- and CVD-based) can be made with very high thermal conductivity (400–700 W/MK) in the fibre direction. Carbon-carbon composites are used in a variety of sectors requiring high mechanical properties at elevated temperatures, good frictional properties for brake pads in high speed vehicles or high thermal conductivity for thermal management applications. However, for extended life applications, these composites need to be protected against oxidation either through matrix modification with Si, Zr, Hf etc. or by multilayer oxidation protection coatings consisting of SiC, silica, zircon etc.

  19. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 Annual Estimates OCTOBER 13, 2015 Incidents, Deaths, and In-Depth Investigations Associated with Non-Fire ...

  20. [Particle therapy: carbon ions].

    Science.gov (United States)

    Pommier, Pascal; Hu, Yi; Baron, Marie-Hélène; Chapet, Olivier; Balosso, Jacques

    2010-07-01

    Carbon ion therapy is an innovative radiation therapy. It has been first proposed in the forties by Robert Wilson, however the first dedicated centres for human care have been build up only recently in Japan and Germany. The interest of carbon ion is twofold: 1) the very sharp targeting of the tumour with the so called spread out Bragg peak that delivers most of the beam energy in the tumour and nothing beyond it, sparing very efficiently the healthy tissues; 2) the higher relative biological efficiency compared to X rays or protons, able to kill radioresistant tumour cells. Both properties make carbon ions the elective therapy for non resectable radioresistant tumours loco-regionally threatening. The technical and clinical experience accumulated during the recent decades is summarized in this paper along with a detailed presentation of the elective indications. A short comparison between conventional radiotherapy and hadrontherapy is proposed for the indications which are considered as priority for carbon ions.

  1. Global carbon budget 2014

    NARCIS (Netherlands)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2)emissions and their redistribution among the atmosphere, ocean, andterrestrial biosphere is important to better understand the globalcarbon cycle, support the development of climate policies, and projectfuture climate change. Here we describe

  2. Total Ecosystem Carbon Stock

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Total ecosystem carbon includes above- and below-ground live plant components (such as leaf, branch, stem and root), dead biomass (such as standing dead wood, down...

  3. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Community Outreach Resource Center Toy Recall Statistics CO Poster Contest Pool Safely Business & Manufacturing Business & Manufacturing Business ... Featured Resources CPSC announces winners of carbon monoxide poster contest Video View the blog Clues You Can ...

  4. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Unites States die every year from accidental non-fire related CO poisoning associated with consumer products, including ... CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of ...

  5. Carbon Monoxide Information Center

    Science.gov (United States)

    ... and Criminal Penalties Federal Court Orders & Decisions Research & Statistics Research & Statistics Technical Reports Injury Statistics NEISS Injury Data ... On Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths ...

  6. Carbon partitioning in photosynthesis.

    Science.gov (United States)

    Melis, Anastasios

    2013-06-01

    The work seeks to raise awareness of a fundamental problem that impacts the renewable generation of fuels and chemicals via (photo)synthetic biology. At issue is regulation of the endogenous cellular carbon partitioning between different biosynthetic pathways, over which the living cell exerts stringent control. The regulation of carbon partitioning in photosynthesis is not understood. In plants, microalgae and cyanobacteria, methods need be devised to alter photosynthetic carbon partitioning between the sugar, terpenoid, and fatty acid biosynthetic pathways, to lower the prevalence of sugar biosynthesis and correspondingly upregulate terpenoid and fatty acid hydrocarbons production in the cell. Insight from unusual but naturally occurring carbon-partitioning processes can help in the design of blueprints for improved photosynthetic fuels and chemicals production.

  7. Carbon Monoxide Nonattainment Areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Carbon Monoxide and have...

  8. Applications for alliform carbon

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury; Mochalin, Vadym; McDonough, IV, John Kenneth; Simon, Patrice; Taberna, Pierre Louis

    2017-02-21

    This invention relates to novel applications for alliform carbon, useful in conductors and energy storage devices, including electrical double layer capacitor devices and articles incorporating such conductors and devices. Said alliform carbon particles are in the range of 2 to about 20 percent by weight, relative to the weight of the entire electrode. Said novel applications include supercapacitors and associated electrode devices, batteries, bandages and wound healing, and thin-film devices, including display devices.

  9. Carbon footprint of thermowood

    OpenAIRE

    Nordlund, Teemu

    2013-01-01

    Purpose of this Bachelor’s Thesis was to evaluate the carbon footprint of thermally modified wood and its manufacturing process and transportation cycle for several different ThermoWood producer. Research included the whole production cycle from harvesting raw wood to ThermoWood transportation in destination area. Carbon dioxide emissions from these areas were determined and calculated for every ThermoWood producer at first hand. Calculations were based on the PAS 2050:2011, which is ...

  10. Method for synthesizing carbon nanotubes

    Science.gov (United States)

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  11. Nano-Carbons as Theranostics

    Directory of Open Access Journals (Sweden)

    Zhuang Liu, Xing-Jie Liang

    2012-01-01

    Full Text Available Nano-carbons, including fullerenes, carbon nanoparticles, carbon nanotubes, graphene, and nano-diamonds, are an important class of nanostructures attracting tremendous interests in the past two decades. In this special issue, seven review articles and research reports are collected, to summarize and present the latest progress in the exploration of various nano-carbons for theranostic applications.

  12. Carbon based prosthetic devices

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  13. Aspects of carbon dioxide utilization

    Energy Technology Data Exchange (ETDEWEB)

    Omae, Iwao [Omae Research Laboratories, 335-23 Mizuno, Sayama, Saitama 350-1317 (Japan)

    2006-06-30

    Carbon dioxide reacts with hydrogen, alcohols, acetals, epoxides, amines, carbon-carbon unsaturated compounds, etc. in supercritical carbon dioxide or in other solvents in the presence of metal compounds as catalysts. The products of these reactions are formic acid, formic acid esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, polycarbonate (bisphenol-based engineering polymer), aliphatic polycarbonates, etc. Especially, the productions of formic acid, formic acid methyl ester and dimethylformamide with a ruthenium catalyst; dimethyl carbonate and urethanes with a dialkyltin catalyst; 2-pyrone with a nickel-phosphine catalyst; diphenyl carbonate with a lead phenoxide catalyst; the alternating copolymerization of carbon dioxide and epoxides with a zinc catalyst has attracted attentions as the industrial utilizations of carbon dioxide. The further development of these production processes is expected. (author)

  14. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  15. Implications of carbon dust emission for terrestrail carbon cycling and carbon accounting

    Science.gov (United States)

    Wind erosion preferentially removes the finest carbon- and nutrient-rich soil fractions, and consequently its role may be significant within terrestrial carbon (C) cycles. However, the impacts of wind erosion on soil organic carbon (SOC) redistribution are not considered in most carbon cycle models,...

  16. Measurement of carbon capture efficiency and stored carbon leakage

    Science.gov (United States)

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  17. Microbially mediated carbon mineralization: Geoengineering a carbon-neutral mine

    Science.gov (United States)

    Power, I. M.; McCutcheon, J.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2013-12-01

    Ultramafic and mafic mine tailings are a potentially valuable feedstock for carbon mineralization, affording the mining industry an opportunity to completely offset their carbon emissions. Passive carbon mineralization has previously been documented at the abandoned Clinton Creek asbestos mine, and the active Diavik diamond mine and Mount Keith nickel mine, yet the majority of tailings remain unreacted. Examples of microbe-carbonate interactions at each mine suggest that biological pathways could be harnessed to promote carbon mineralization. In suitable environmental conditions, microbes can mediate geochemical processes to accelerate mineral dissolution, increase the supply of carbon dioxide (CO2), and induce carbonate precipitation, all of which may accelerate carbon mineralization. Tailings mineralogy and the availability of a CO2 point source are key considerations in designing tailings storage facilities (TSF) for optimizing carbon mineralization. We evaluate the efficacy of acceleration strategies including bioleaching, biologically induced carbonate precipitation, and heterotrophic oxidation of waste organics, as well as abiotic strategies including enhancing passive carbonation through modifying tailings management practices and use of CO2 point sources (Fig. 1). With the aim of developing carbon-neutral mines, implementation of carbon mineralization strategies into TSF design will be driven by economic incentives and public pressure for environmental sustainability in the mining industry. Figure 1. Schematic illustrating geoengineered scenarios for carbon mineralization of ultramafic mine tailings. Scenarios A and B are based on non-point and point sources of CO2, respectively.

  18. Terrestrial Carbon Cycle Variability

    Science.gov (United States)

    Baldocchi, Dennis; Ryu, Youngryel; Keenan, Trevor

    2016-01-01

    A growing literature is reporting on how the terrestrial carbon cycle is experiencing year-to-year variability because of climate anomalies and trends caused by global change. As CO 2 concentration records in the atmosphere exceed 50 years and as satellite records reach over 30 years in length, we are becoming better able to address carbon cycle variability and trends. Here we review how variable the carbon cycle is, how large the trends in its gross and net fluxes are, and how well the signal can be separated from noise. We explore mechanisms that explain year-to-year variability and trends by deconstructing the global carbon budget. The CO 2 concentration record is detecting a significant increase in the seasonal amplitude between 1958 and now. Inferential methods provide a variety of explanations for this result, but a conclusive attribution remains elusive. Scientists have reported that this trend is a consequence of the greening of the biosphere, stronger northern latitude photosynthesis, more photosynthesis by semi-arid ecosystems, agriculture and the green revolution, tropical temperature anomalies, or increased winter respiration. At the global scale, variability in the terrestrial carbon cycle can be due to changes in constituent fluxes, gross primary productivity, plant respiration and heterotrophic (microbial) respiration, and losses due to fire, land use change, soil erosion, or harvesting. It remains controversial whether or not there is a significant trend in global primary productivity (due to rising CO 2, temperature, nitrogen deposition, changing land use, and preponderance of wet and dry regions). The degree to which year-to-year variability in temperature and precipitation anomalies affect global primary productivity also remains uncertain. For perspective, interannual variability in global gross primary productivity is relatively small (on the order of 2 Pg-C y -1) with respect to a large and uncertain background (123 +/- 4 Pg-C y -1), and

  19. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  20. Carbon Concentration of Austenite

    Directory of Open Access Journals (Sweden)

    Z. Ławrynowicz

    2007-07-01

    Full Text Available The investigation was carried out to examine the influence of temperature and times of austempering process on the maximum extend towhich the bainite reaction can proceed and the carbon content in retained austenite. It should be noted that a small percentage change in theaustenite carbon content can have a significant effect on the subsequent austempering reaction changing the volume fraction of the phasespresent and hence, the resulting mechanical properties. Specimens were prepared from an unalloyed ductile cast iron, austenitised at 950oCfor 60 minutes and austempered by the conventional single-step austempering process at four temperatures between BS and MS, eg., 250,300, 350 and 400oC. The samples were austempered at these temperatures for 15, 30, 60, 120 and 240 minutes and finally quenched toambient temperature. Volume fractions of retained austenite and carbon concentration in the residual austenite have been observed byusing X-ray diffraction. Additionally, carbon concentration in the residual austenite was calculated using volume fraction data of austeniteand a model developed by Bhadeshia based on the McLellan and Dunn quasi-chemical thermodynamic model. The comparison ofexperimental data with the T0, T0' and Ae3' phase boundaries suggests the likely mechanism of bainite reaction in cast iron is displacive rather than diffusional. The carbon concentration in retained austenite demonstrates that at the end of bainite reaction the microstructure must consist of not only ausferrite but additionally precipitated carbides.

  1. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  2. Carbon nanotubes for supercapacitor.

    Science.gov (United States)

    Pan, Hui; Li, Jianyi; Feng, Yuanping

    2010-01-05

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  3. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  4. Superconductivity in carbon nanomaterials

    Science.gov (United States)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  5. Porosity destruction in carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Ehrenberg, S.N. [Statoil, Stavanger (Norway)

    2006-01-15

    The important thing to understand about carbonate diagenesis is not how porosity is created, but how it is destroyed. Detailed core observations from two deeply-buried carbonate platform successions (the Finnmark platform, offshore north Norway; and the Khuff Formation, offshore Iran) show that in both cases most vertical porosity variation can be accounted for by only two or three factors, namely: (1) stylolite frequency, (2) proportion of argillaceous beds, and (3) anhydrite cement. The spatial distribution of these factors is determined by the depositional distribution of clay minerals (important for localizing chemical compaction) and the occurrence of hypersaline depositional conditions and associated brine reflux (important for localizing anhydrite precipitation and dolomitisation). However, the intensity of chemical compaction and consequent porosity loss in adjacent beds by carbonate cementation also depend upon thermal exposure (temperature as a function of time). Evidence from the Finnmark platform and other examples indicate that the stratigraphic distribution of early-formed dolomite is also important for porosity preservation during burial, but this factor is not apparent in the Khuff dataset. Insofar as the Finnmark and Khuff platforms can be regarded as representative of carbonate reservoirs in general, recognition of the above porosity-controlling factors may provide the basis for general models predicting carbonate reservoir potential both locally (reservoir-model scale) and regionally (exploration-scale). Distributions of clay, anhydrite, and dolomitization should be predictable from stratigraphic architecture, whereas variations in thermal exposure can be mapped from basin analysis. In the present examples at least, factors that do not need to be considered include eogenetic carbonate cementation and dissolution, depositional facies (other than aspects related to clay and anhydrite content), and mesogenetic leaching to create late secondary

  6. Inkjet Printing of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryan P. Tortorich

    2013-07-01

    Full Text Available In an attempt to give a brief introduction to carbon nanotube inkjet printing, this review paper discusses the issues that come along with preparing and printing carbon nanotube ink. Carbon nanotube inkjet printing is relatively new, but it has great potential for broad applications in flexible and printable electronics, transparent electrodes, electronic sensors, and so on due to its low cost and the extraordinary properties of carbon nanotubes. In addition to the formulation of carbon nanotube ink and its printing technologies, recent progress and achievements of carbon nanotube inkjet printing are reviewed in detail with brief discussion on the future outlook of the technology.

  7. Nanomechanics of carbon nanotubes.

    Science.gov (United States)

    Kis, Andras; Zettl, Alex

    2008-05-13

    Some of the most important potential applications of carbon nanotubes are related to their mechanical properties. Stiff sp2 bonds result in a Young's modulus close to that of diamond, while the relatively weak van der Waals interaction between the graphitic shells acts as a form of lubrication. Previous characterization of the mechanical properties of nanotubes includes a rich variety of experiments involving mechanical deformation of nanotubes using scanning probe microscopes. These results have led to promising prototypes of nanoelectromechanical devices such as high-performance nanomotors, switches and oscillators based on carbon nanotubes.

  8. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  9. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Martinez-Miranda, L. J. [Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2000-05-22

    Modest thermal annealing to 600 degree sign C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5%-10%. We report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approx}15% due to the development of the nanocomposite structure. (c) 2000 American Institute of Physics.

  10. Carbon-carbon mirrors for exoatmospheric and space applications

    Science.gov (United States)

    Krumweide, Duane E.; Wonacott, Gary D.; Woida, Patrick M.; Woida, Rigel Q.; Shih, Wei

    2007-09-01

    The cost and leadtime associated with beryllium has forced the MDA and other defense agencies to look for alternative materials with similar structural and thermal properties. The use of carbon-carbon material, specifically in optical components has been demonstrated analytically in prior SBIR work at San Diego Composites. Carbon-carbon material was chosen for its low in-plane and through-thickness CTE (athermal design), high specific stiffness, near-zero coefficient of moisture expansion, availability of material (specifically c-c honeycomb for lightweight substrates), and compatibility with silicon monoxide (SiO) and silicon dioxide (SiO II) coatings. Subsequent development work has produced shaped carbon-carbon sandwich substrates which have been ground, polished, coated and figured using traditional optical processing. Further development has also been done on machined monolithic carbon-carbon mirror substrates which have also been processed using standard optical finishing techniques.

  11. Simulations of phenol adsorption on activated carbon and carbon black

    OpenAIRE

    Prosenjak, Claudia; Valente Nabais, Joao; Laginhas, Carlos; Carrott, Peter; Carrott, Manuela

    2010-01-01

    We use grand canonical Monte Carlo and molecular dynamics simulations to study the adsorption of phenol on carbon materials. Activated carbon is modelled by pore size distributions based on DFT methods; carbon black is represented by a single carbon slab with varying percentages of surface atoms removed. GCMC results for the adsorption from the corresponding gas phase gave reasonable agreement with experimental adsorption results. MD simulations, that studied the influence of the presence of ...

  12. Method for production of carbon nanofiber mat or carbon paper

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  13. Catalytic graphitization of carbon/carbon composites by lanthanum oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Can; LU Guimin; SUN Ze; YU Jianguo

    2012-01-01

    Graphitized carbon/carbon composites were prepared by the process of catalytic graphitization with the rare-earth catalyst,lanthanum oxide (La2O3),in order to increase the degree of graphitization and reduce the electrical resistivity.The modified coal tar pitch and coal-based needle coke were used as carbon source,and a small amount of La2O3 was added to catalyze the graphitization of the disordered carbon materials.The effects of La2O3 catalyst on the graphitization degree and microstructure oftbe carbon/carbon composites were investigated by X-ray diffraction,scanning electron microscopy,and Raman spectroscopy.The results showed that La2O3 promoted the formation of more perfect and larger crystallites,and improved the electrical/mechanical properties of carbon/carbon composites.Carbon/carbon composites with a lower electrical resistivity (7.0 μΩ·m) could be prepared when adding 5 wt.% La2O3 powder with heating treatment at 2800 ℃.The catalytic effect of La2O3 for the graphitization of carbon/carbon composites was analyzed.

  14. Australian carbon dust emission: a carbon accounting omission?

    Science.gov (United States)

    Erosion preferentially removes the finest carbon- and nutrient-rich soil fractions, and consequently its role may be significant within terrestrial carbon (C) cycles. However, the impacts of wind erosion on soil organic carbon redistribution are not considered in most SOC models, or within the Austr...

  15. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  16. Closing carbon cycles

    NARCIS (Netherlands)

    Patel, Martin

    2001-01-01

    Fossil fuels are used as raw materials for the manufacture of synthetic organic materials, e.g. plastics, fibres, synthetic rubber, paints, solvents, fertilisers, surfactants, lubricants and bitumen. Since fossil carbon is embodied in these products they may be particularly relevant to climate ch

  17. City Carbon Footprint Networks

    Directory of Open Access Journals (Sweden)

    Guangwu Chen

    2016-07-01

    Full Text Available Progressive cities worldwide have demonstrated political leadership by initiating meaningful strategies and actions to tackle climate change. However, the lack of knowledge concerning embodied greenhouse gas (GHG emissions of cities has hampered effective mitigation. We analyse trans-boundary GHG emission transfers between five Australian cities and their trading partners, with embodied emission flows broken down into major economic sectors. We examine intercity carbon footprint (CF networks and disclose a hierarchy of responsibility for emissions between cities and regions. Allocations of emissions to households, businesses and government and the carbon efficiency of expenditure have been analysed to inform mitigation policies. Our findings indicate that final demand in the five largest cities in Australia accounts for more than half of the nation’s CF. City households are responsible for about two thirds of the cities’ CFs; the rest can be attributed to government and business consumption and investment. The city network flows highlight that over half of emissions embodied in imports (EEI to the five cities occur overseas. However, a hierarchy of GHG emissions reveals that overseas regions also outsource emissions to Australian cities such as Perth. We finally discuss the implications of our findings on carbon neutrality, low-carbon city concepts and strategies and allocation of subnational GHG responsibility.

  18. Calcium carbonate overdose

    Science.gov (United States)

    Calcium carbonate is not very poisonous. Recovery is quite likely. But, long-term overuse is more serious than a single overdose, because it can cause kidney damage. Few people die from an antacid overdose. Keep all medicines in child-proof bottles and out ...

  19. Carbon nanotubes for microelectronics?

    Science.gov (United States)

    Graham, Andrew P; Duesberg, Georg S; Seidel, Robert V; Liebau, Maik; Unger, Eugen; Pamler, Werner; Kreupl, Franz; Hoenlein, Wolfgang

    2005-04-01

    Despite all prophecies of its end, silicon-based microelectronics still follows Moore's Law and continues to develop rapidly. However, the inherent physical limits will eventually be reached. Carbon nanotubes offer the potential for further miniaturization as long as it is possible to selectively deposit them with defined properties.

  20. From Carbon to Buckypaper

    Indian Academy of Sciences (India)

    Surabhi Potnis

    2017-03-01

    This article aims to highlight the amazing properties and potentialuses of the more recently developed allotropes of carbonsuch as carbon nanotubes, graphene, fullerene, and buckypaper.This is an area offering wide opportunity for research,especially due to the multidisciplinary nature of applications.

  1. Carbon sinks in temperate forests

    NARCIS (Netherlands)

    Martin, P.H.; Nabuurs, G.J.; Aubinet, M.; Karjalainen, T.; Vine, E.L.; Kinsman, J.; Heath, L.S.

    2001-01-01

    In addition to being scientifically exciting, commercially important, and environmentally essential, temperate forests have also become a key diplomatic item in international climate negotiations as potential sinks for carbon. This review presents the methods used to estimate carbon sequestration, i

  2. ROE Carbon Storage - Percent Change

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset depicts the percentage change in the amount of carbon stored in forests in counties across the United States, based on the difference in carbon...

  3. Where is mantle's carbon?

    Science.gov (United States)

    Oganov, A. R.; Ono, S.; Ma, Y.

    2008-12-01

    Due to the strongly reducing conditions (the presence of metallic iron was suggested both by experiments [1] and theory [2]), diamond was believed to be the main host of carbon through most of the lower mantle [3]. We showed [4] that cementite Fe3C is another good candidate to be the main host of "reduced" carbon in the mantle, reinforcing an earlier hypothesis [5]. The fate of "oxidised" carbon (in subducted slabs) is of particular importance - if carbonates decompose producing fluid CO2, this would have important implications for the chemistry and rheology of the mantle. Knowledge of crystal structures and phase diagrams of carbonates is crucial here. The high-pressure structures of CaCO3 were predicted [6] and subsequently verified by experiments. For MgCO3, Isshiki et al. [7] found a new phase above 110 GPa, and several attempts were made to solve it [8,9]. Here [4], using an evolutionary algorithm for crystal structure prediction [10], we show that there are two post-magnesite phases at mantle-relevant pressure range, one stable at 82-138 GPa, and the other from 138 GPa to ~160 GPa. Both are based on threefold rings of CO4-tetrahedra and are more favourable than all previously proposed structures. We show that through most of the P-T conditions of the mantle, MgCO3 is the major host of oxidized carbon in the Earth. We predict the possibility of CO2 release at the very bottom of the mantle (in SiO2-rich basaltic part of subducted slabs), which could enhance partial melting of rocks and be related to the geodynamical differences between the Earth and Venus. 1.Frost D.J., Liebske C., Langenhorst F., McCammon C.A., Tronnes R.G., Rubie D.C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409-412. 2.Zhang F., Oganov A.R. (2006). Valence and spin states of iron impurities in mantle-forming silicates. Earth Planet. Sci. Lett. 249, 436-443. 3.Luth R.W. (1999). Carbon and carbonates in the mantle. In: Mantle

  4. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  5. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  6. Managing woody bamboos for carbon farming and carbon trading

    Directory of Open Access Journals (Sweden)

    Arun Jyoti Nath

    2015-01-01

    Full Text Available Research on identifying cost-effective managed ecosystems that can substantially remove atmospheric carbon-dioxide (CO2 while providing essential societal benefits has gained momentum since the Kyoto Protocol of 1997. Carbon farming allows farmers and investors to generate tradable carbon offsets from farmlands and forestry projects through carbon trading. Carbon trading is pertinent to climate negotiations by decelerating the climate change phenomenon. Thus, the objective of this article is to describe the potential of woody bamboos in biomass carbon storage and as an option for carbon farming and carbon trading. Bamboo is an important agroforestry and forest plant managed and used by the rural communities in several countries of the Asia-Pacific region for generating diverse economic and socio-environmental needs. Mean carbon storage and sequestration rate in woody bamboos range from 30–121 Mg ha−1 and 6–13 Mg ha−1  yr−1, respectively. Bamboo has vigorous growth, with completion of the growth cycle between 120 and 150 days. Because of its rapid biomass accumulation and effective fixation of CO2, it has a high carbon sequestration capacity. Over and above the high biomass carbon storage, bamboo also has a high net primary productivity (12–26 Mg ha−1  yr−1 even with regular selective harvesting, thus making it a standing carbon stock and a living ecosystem that continues to grow. Despite its high potential in carbon storage and sequestration and its important role in livelihood of millions of rural poor’s worldwide, prospects of bamboo ecosystems in CDM (Clean Development Mechanism and REDD (Reduced Emission from Deforestation and Forest Degradation schemes remain to be explored. Thus, there is an urgent need to recognize ecosystem services that woody bamboo provides for well-being of rural communities and nature conservancy. Present synthesis suggests that bamboo offers tremendous opportunity for carbon farming and

  7. Carbon nanotube junctions and devices

    NARCIS (Netherlands)

    Postma, H.W.Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconduct

  8. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  9. Graphene oxide assisted hydrothermal carbonization of carbon hydrates.

    Science.gov (United States)

    Krishnan, Deepti; Raidongia, Kalyan; Shao, Jiaojing; Huang, Jiaxing

    2014-01-28

    Hydrothermal carbonization (HTC) of biomass such as glucose and cellulose typically produces micrometer-sized carbon spheres that are insulating. Adding a very small amount of Graphene oxide (GO) to glucose (e.g., 1:800 weight ratio) can significantly alter the morphology of its HTC product, resulting in more conductive carbon materials with higher degree of carbonization. At low mass loading level of GO, HTC treatment results in dispersed carbon platelets of tens of nanometers in thickness, while at high mass loading levels, free-standing carbon monoliths are obtained. Control experiments with other carbon materials such as graphite, carbon nanotubes, carbon black, and reduced GO show that only GO has significant effect in promoting HTC conversion, likely due to its good water processability, amphiphilicity, and two-dimensional structure that may help to template the initially carbonized materials. GO offers an additional advantage in that its graphene product can act as an in situ heating element to enable further carbonization of the HTC products very rapidly upon microwave irradiation. Similar effect of GO is also observed for the HTC treatment of cellulose.

  10. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  11. CARBON DIOXIDE SEPARATION BY SELECTIVE PERMEATION.

    Science.gov (United States)

    CARBON DIOXIDE , SEPARATION), (*PERMEABILITY, CARBON DIOXIDE ), POROUS MATERIALS, SILICON COMPOUNDS, RUBBER, SELECTION, ADSORPTION, TEMPERATURE, PRESSURE, POLYMERS, FILMS, PLASTICS, MEMBRANES, HUMIDITY.

  12. Carbon Nanotube Biosensors

    Directory of Open Access Journals (Sweden)

    Carmen-Mihaela eTilmaciu

    2015-10-01

    Full Text Available Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  13. Growing carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yoshinori Ando

    2004-10-01

    Full Text Available The discovery of ‘fullerenes’ added a new dimension to the knowledge of carbon science1; and the subsequent discovery of ‘carbon nanotubes’ (CNTs, the elongated fullerene added a new dimension to the knowledge of technology2;. Today, ‘nanotechnology’ is a hot topic attracting scientists, industrialists, journalists, governments, and even the general public. Nanotechnology is the creation of functional materials, devices, and systems through control of matter on the nanometer scale and the exploitation of novel phenomena and properties of matter (physical, chemical, biological, electrical, etc. at that length scale. CNTs are supposed to be a key component of nanotechnology. Almost every week a new potential application of CNTs is identified, stimulating scientists to peep into this tiny tube with ever increasing curiosity.

  14. Carbon materials for supercapacitors

    Science.gov (United States)

    Gao, Yang

    As an important energy storage device, electrochemical supercapacitors or ultracapacitors fill the gap between conventional dielectric capacitors and batteries in terms of specific energy and power. Although supercapacitors have been used in electric vehicles, digital communication instruments, and pulsed lasers, further improvement of supercapacitor performance is highly needed to enhance the energy density without significantly losing the power density. Additionally, the conventional supercapacitors use rigid packages and liquid electrolytes, which limit applications in transparent and flexible electronics. To address these challenges, the research efforts in this dissertation mainly focused on: 1) improvement of the energy density of carbon nanoonions by chemical activation; 2) laser-assisted activation of carbon nanotubes for improved energy density; 3) fabrication of flexible solid-state supercapacitors based on nanocarbon and manganese dioxide (MnO2) hybrid electrodes; and 4) investigation of the electrochemical performance of graphene as transparent and flexible supercapacitor electrodes.

  15. Carbon Lorenz Curves

    Energy Technology Data Exchange (ETDEWEB)

    Groot, L. [Utrecht University, Utrecht School of Economics, Janskerkhof 12, 3512 BL Utrecht (Netherlands)

    2008-11-15

    The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across countries. These tools allow policy-makers and the general public to grasp at a single glance the impact of conventional distribution rules such as equal caps or grandfathering, or more sophisticated ones, on the distribution of greenhouse gas emissions. Second, using the Samuelson rule for the optimal provision of a public good, the Pareto-optimal distribution of carbon emissions is compared with the distribution that follows if countries follow Nash-Cournot abatement strategies. It is shown that the Pareto-optimal distribution under the Samuelson rule can be approximated by the equal cap division, represented by the diagonal in the Lorenz curve diagram.

  16. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  17. Properties of amorphous carbon

    CERN Document Server

    2003-01-01

    Amorphous carbon has a wide range of properties that are primarily controlled by the different bond hydridisations possible in such materials. This allows for the growth of an extensive range of thin films that can be tailored for specific applications. Films can range from those with high transparency and are hard diamond-like, through to those which are opaque, soft and graphitic-like. Films with a high degree of sp3 bonding giving the diamond-like properties are used widely by industry for hard coatings. Application areas including field emission cathodes, MEMS, electronic devices, medical and optical coatings are now close to market. Experts in amorphous carbon have been drawn together to produce this comprehensive commentary on the current state and future prospects of this highly functional material.

  18. Carbon nanotube biosensors

    Science.gov (United States)

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  19. Increasing the Tensile Property of Unidirectional Carbon/Carbon Composites by Grafting Carbon Nanotubes onto Carbon Fibers by Electrophoretic Deposition

    Institute of Scientific and Technical Information of China (English)

    Qiang Song; Kezhi Li; Hejun Li; Qiangang Fu

    2013-01-01

    Although in-situ growing carbon nanotubes (CNTs) on carbon fibers could greatly increase the matrix-dominated mechanical properties of carbon/carbon composites (C/Cs),it always decreased the tensile strength of carbon fibers.In this work,CNTs were introduced into unidirectional carbon fiber (CF) preforms by electrophoretic deposition (EPD) and they were used to reinforce C/Cs.Effects of the content of CNTs introduced by EPD on tensile property of unidirectional C/Cs were investigated.Results demonstrated that EPD could be used as a simple and efficient method to fabricate carbon nanotube reinforced C/Cs (CNT-C/Cs) with excellent tensile strength,which pays a meaningful way to maximize the global performance of CNT-C/Cs.

  20. Digital carbonate rock physics

    Science.gov (United States)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  1. Carbon Materials Research

    Science.gov (United States)

    2006-08-01

    electrodes, high temperature molds, rocket nozzles and exit cones, tires , ink, nuclear reactors and fuel particles, filters, prosthetics, batteries and...carbon would be highly oriented pyrolytic graphite (HOPG), which is formed by depositing one atom at a time on a surface utilizing the pyrolysis of a...Moreover, it is well known that during pyrolysis , mesophase converts into a matrix that is very anisotropic. The formation of onion-like “sheaths

  2. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  3. Carbon Nanotube Thermoelectric Coolers

    Science.gov (United States)

    2015-02-06

    conductance. Inside thecentral section of the carbon nanotube, we obtained an impressive Peltier cooling 57 K down from the liquid nitrogentemperature. 15... trapped charges or dipoles) that occur either at the interface between the CNT and the gate dielectric (interface defects) or at some position within... liquid nitrogen temperature 77T  K up to hot 134 8T  K, or decreases from 77T  K down to about cold 20 6T  K, thus evidencing a strong

  4. Carbon nanotube biosensors

    OpenAIRE

    Tîlmaciu, Carmen-Mihaela; Morris, May C

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we pr...

  5. Improving Carbon Fixation Pathways

    OpenAIRE

    Ducat, Daniel C.; Silver, Pamela A

    2012-01-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing...

  6. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  7. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  8. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison;

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  9. Carbon taxes and India

    Energy Technology Data Exchange (ETDEWEB)

    Fisher-Vanden, K.A.; Pitcher, H.M.; Edmonds, J.A.; Kim, S.H. [Pacific Northwest Lab., Richland, WA (United States); Shukla, P.R. [Indian Institute of Management, Ahmedabad (India)

    1994-07-01

    Using the Indian module of the Second Generation Model 9SGM, we explore a reference case and three scenarios in which greenhouse gas emissions were controlled. Two alternative policy instruments (carbon taxes and tradable permits) were analyzed to determine comparative costs of stabilizing emissions at (1) 1990 levels (the 1 X case), (2) two times the 1990 levels (the 2X case), and (3) three times the 1990 levels (the 3X case). The analysis takes into account India`s rapidly growing population and the abundance of coal and biomass relative to other fuels. We also explore the impacts of a global tradable permits market to stabilize global carbon emissions on the Indian economy under the following two emissions allowance allocation methods: (1) {open_quotes}Grandfathered emissions{close_quotes}: emissions allowances are allocated based on 1990 emissions. (2) {open_quotes}Equal per capita emissions{close_quotes}: emissions allowances are allocated based on share of global population. Tradable permits represent a lower cost method to stabilize Indian emissions than carbon taxes, i.e., global action would benefit India more than independent actions.

  10. A carbon sink pathway increases carbon productivity in cyanobacteria.

    Science.gov (United States)

    Oliver, John W K; Atsumi, Shota

    2015-05-01

    The burning of fossil reserves, and subsequent release of carbon into the atmosphere is depleting the supply of carbon-based molecules used for synthetic materials including plastics, oils, medicines, and glues. To provide for future society, innovations are needed for the conversion of waste carbon (CO2) into organic carbon useful for materials. Chemical production directly from photosynthesis is a nascent technology, with great promise for capture of CO2 using sunlight. To improve low yields, it has been proposed that photosynthetic capacity can be increased by a relaxation of bottlenecks inherent to growth. The limits of carbon partitioning away from growth within the cell and the effect of partitioning on carbon fixation are not well known. Here we show that expressing genes in a pathway between carbon fixation and pyruvate increases partitioning to 2,3-butanediol (23BD) and leads to a 1.8-fold increase in total carbon yield in the cyanobacterium Synechococcus elongatus PCC 7942. Specific 2,3-butanediol production increases 2.4-fold. As partitioning increases beyond 30%, it leads to a steep decline in total carbon yield. The data suggests a local maximum for carbon partitioning from the Calvin Benson cycle that is scalable with light intensity.

  11. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Directory of Open Access Journals (Sweden)

    Mehran Tehrani

    2014-05-01

    Full Text Available Carbon nanofilament and nanotubes (CNTs have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD, in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD technique was also utilized to grow multiwall CNTs (MWCNTs on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  12. Homogeneous Carbon Nanotube/Carbon Composites Prepared by Catalyzed Carbonization Approach at Low Temperature

    Directory of Open Access Journals (Sweden)

    Hongjiang Li

    2011-01-01

    Full Text Available We synthesize carbon nanotube (CNT/carbon composite using catalyzed carbonization of CNT/Epoxy Resin composite at a fairly low temperature of about 400∘C. The microstructure of the composite is characterized by scanning electron microscope (SEM, transmission electron microscope (TEM, and X-ray diffraction (XRD. The results indicate that CNTs and pyrolytic carbon blend well with each other. Pyrolytic carbon mainly stays in an amorphous state, with some of it forming crystalline structures. The catalyst has the effect of eliminating the interstices in the composites. Remarkable increases in thermal and electrical conductivity are also reported.

  13. Carbon footprinting : a classroom exercise

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, H.; Grimm, M. [Arizona State Univ., Tempe (United States). School of Architecture and Landscape Architecture, College of Design

    2009-07-01

    This paper reported on an ongoing initiative at Arizona State University (ASU) to reduce the carbon footprint of buildings on campus. The College of Design and the Global Institute of Sustainability created a graduate level class where students in the fields of architecture, building design, urban planning, and sustainability applied a methodology to determine and improve a building's carbon footprint. Launched in 2008, the project currently has 13 buildings and will be expanded up to 50 buildings by the end of 2009. ASU is initially committing to carbon reduction and eventual carbon neutrality. The project offers students an opportunity to view the impact of their daily behaviours in terms of energy consumption and carbon emissions. The carbon footprinting methodology was used in a classroom setting by graduate students at ASU College of Design and School of Sustainability to determine the carbon footprint of 3 campus buildings. The methodology included an energy consumption analysis of the existing building, the creation of an as-built energy model, and the study of carbon footprint improvement scenarios with the ultimate goal of achieving carbon neutrality. Each improvement scenario was analyzed to determine its effect on overall carbon footprint and annual energy consumption, including electricity and natural gas use. 6 refs., 10 tabs., 4 figs.

  14. The Toxicology of Carbon Nanotubes

    Science.gov (United States)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  15. Black carbon and organic carbon emissions from wildfires in Mexico

    OpenAIRE

    XÓCHITL CRUZ NÚÑEZ; LOURDES VILLERS RUIZ; CARLOS GAY GARCÍA

    2014-01-01

    In Mexico, approximately 7650 wildfires occur annually, affecting 263 115 hectares of land. In addition to their impact on land degradation, wildfires cause deforestation, damage to ecosystems and promote land use change; apart from being the source of emissions of toxic substances to the environment (i.e., hydrogen cya - nide, black carbon and organic carbon). Black carbon is a short-lived greenhouse pollutant that also promotes snow and ice melting and decreased rainfall; it has an estimate...

  16. Carbon isotope anomalies in carbonates of the Karelian series

    Science.gov (United States)

    Iudovich, Ia. E.; Makarikhin, V. V.; Medvedev, P. V.; Sukhanov, N. V.

    1990-07-01

    Results are presented on carbon isotope distributions in carbonates of the Karelian complex. A highly anomalous isotopic composition was found in carbonate rocks aged from 2.6 to 1.9 b.y. In the stromatolitic carbonates of the Onega water table, delta-(C-13) reaches a value of +18 percent, while the shungite layer of the Zaonega horizon is characterized by a wide dispersion (from +7.9 to -11.8 percent). These data are in good agreement with the known geochemical boundary (about 2.2 b.y. ago) in the history of the earth.

  17. Multiporous carbon allotropes transformed from symmetry-matched carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yingxiang Cai

    2016-06-01

    Full Text Available Carbon nanotubes (CNTs with homogeneous diameters have been proven to transform into new carbon allotropes under pressure but no studies on the compression of inhomogeneous CNTs have been reported. In this study, we propose to build new carbon allotropes from the bottom-up by applying pressure on symmetry-matched inhomogeneous CNTs. We find that the (3,0 CNT with point group C3v and the (6,0 CNT with point group C6v form an all sp3 hybridized hexagonal 3060-Carbon crystal, but the (4,0 CNT with point group D4h and the (8,0 CNT with point group D8h polymerize into a sp2+sp3 hybridized tetragonal 4080-Carbon structure. Their thermodynamic, mechanical and dynamic stabilities show that they are potential carbon allotropes to be experimentally synthesized. The multiporous structures, excellently mechanical properties and special electronic structures (semiconductive 3060-Carbon and semimetallic 4080-Carbon imply their many potential applications, such as gases purification, hydrogen storage and lightweight semiconductor devices. In addition, we simulate their feature XRD patterns which are helpful for identifying the two carbon crystals in future experimental studies.

  18. Carbon Micronymphaea: Graphene on Vertically Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Jong Won Choi

    2013-01-01

    Full Text Available This paper describes the morphology of carbon nanomaterials such as carbon nanotube (CNT, graphene, and their hybrid structure under various operating conditions during a one-step synthesis via plasma-enhanced chemical vapor deposition (PECVD. We focus on the synthetic aspects of carbon hybrid material composed of heteroepitaxially grown graphene on top of a vertical array of carbon nanotubes, called carbon micronymphaea. We characterize the structural features of this unique nanocomposite by uses of electron microscopy and micro-Raman spectroscopy. We observe carbon nanofibers, poorly aligned and well-aligned vertical arrays of CNT sequentially as the growth temperature increases, while we always discover the carbon hybrids, called carbon micronymphaea, at specific cooling rate of 15°C/s, which is optimal for the carbon precipitation from the Ni nanoparticles in this study. We expect one-pot synthesized graphene-on-nanotube hybrid structure poses great potential for applications that demand ultrahigh surface-to-volume ratios with intact graphitic nature and directional electronic and thermal transports.

  19. Development of improved coating for advanced carbon-carbon components

    Science.gov (United States)

    Yamaki, Y. R.; Brown, J. J.

    1984-01-01

    Reaction sintered silicon nitride (RSSN) was studied as a substitute coating material on the carbon-carbon material (RCC) presently used as a heat shield on the space shuttle, and on advanced carbon-carbon (ACC), a later development. On RCC, RSSN showed potential in a 538 C (1000 F) screening test in which silicon carbide coated material exhibits its highest oxidation rate; RSSN afforded less protection to ACC because of a larger thermal expansion mismatch. Organosilicon densification and metallic silicon sealing methods were studied as means of further increasing the oxidation resistance of the coating, and some improvement was noted when these methods were employed.

  20. Multiporous carbon allotropes transformed from symmetry-matched carbon nanotubes

    Science.gov (United States)

    Cai, Yingxiang; Wang, Hao; Xu, Shengliang; Hu, Yujie; Liu, Ning; Xu, Xuechun

    2016-06-01

    Carbon nanotubes (CNTs) with homogeneous diameters have been proven to transform into new carbon allotropes under pressure but no studies on the compression of inhomogeneous CNTs have been reported. In this study, we propose to build new carbon allotropes from the bottom-up by applying pressure on symmetry-matched inhomogeneous CNTs. We find that the (3,0) CNT with point group C3v and the (6,0) CNT with point group C6v form an all sp3 hybridized hexagonal 3060-Carbon crystal, but the (4,0) CNT with point group D4h and the (8,0) CNT with point group D8h polymerize into a sp2+sp3 hybridized tetragonal 4080-Carbon structure. Their thermodynamic, mechanical and dynamic stabilities show that they are potential carbon allotropes to be experimentally synthesized. The multiporous structures, excellently mechanical properties and special electronic structures (semiconductive 3060-Carbon and semimetallic 4080-Carbon) imply their many potential applications, such as gases purification, hydrogen storage and lightweight semiconductor devices. In addition, we simulate their feature XRD patterns which are helpful for identifying the two carbon crystals in future experimental studies.

  1. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  2. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  3. Radiocarbon dating of terrestrial carbonates

    Science.gov (United States)

    Pigati, Jeffrey S.; Rink, W. Jack; Thompson, Jeroen

    2014-01-01

    Terrestrial carbonates encompass a wide range of materials that potentially could be used for radiocarbon (14C) dating. Biogenic carbonates, including shells and tests of terrestrial and aquatic gastropods, bivalves, ostracodes, and foraminifera, are preserved in a variety of late Quaternary deposits and may be suitable for 14C dating. Primary calcareous deposits (marls, tufa, speleothems) and secondary carbonates (rhizoliths, fracture fill, soil carbonate) may also be targeted for dating when conditions are favorable. This chapter discusses issues that are commonly encountered in 14C dating of terrestrial carbonates, including isotopic disequilibrium and open-system behavior, as well as methods used to determine the reliability of ages derived from these materials. Recent methodological advancements that may improve the accuracy and precision of 14C ages of terrestrial carbonates are also highlighted.

  4. Carbon storage in US wetlands

    Science.gov (United States)

    Nahlik, A. M.; Fennessy, M. S.

    2016-12-01

    Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in our remaining wetlands or of the potential effects of human disturbance on these stocks. Here we use field data from the 2011 National Wetland Condition Assessment to provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales. We find that wetlands in the conterminous United States store a total of 11.52 PgC, much of which is within soils deeper than 30 cm. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fold more carbon than tidal saltwater sites--indicating their importance in regional carbon storage. Our data suggest a possible relationship between carbon stocks and anthropogenic disturbance. These data highlight the need to protect wetlands to mitigate the risk of avoidable contributions to climate change.

  5. Carbon cycle makeover

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Kump, Lee R.

    2013-01-01

    remaining in sediments after respiration leave a residual of oxygen in the atmosphere. The source of oxygen to the atmosphere represented by organic matter burial is balanced by oxygen sinks associated with rock weathering and chemical reaction with volcanic gases. This is the long-term carbon and oxygen......In 1845, the French chemist and mining engineer Jacques-Joseph Ebelman figured out why Earth's atmosphere contains oxygen (1). Oxygen is produced by plants during photosynthesis, but almost all of this oxygen is used again in respiration. Ebelman reasoned that small amounts of organic matter...

  6. Global Carbon Budget 2015

    Science.gov (United States)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Feely, R. A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global

  7. Carbon Ion Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus;

    On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... size and PTV position. Methods: Several treatment plans are produced with TRiP, using a 256x256x256 mm3 water phantom and SOBP optimization on physical dose. Box formed PTV volumes between 0.15 - 1010 cm3, and PTV positions ranging from 3 cm to 200 cm depth (relative...

  8. Global Carbon Budget 2016

    Science.gov (United States)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-11-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  9. Ultrahigh Carbon Steels

    Science.gov (United States)

    Sherby, O. D.; Oyama, T.; Kum, D. W.; Walser, B.; Wadsworth, J.

    1985-06-01

    Recent studies and results on ultrahigh carbon (UHC) steels suggest that major development efforts on these steels are timely and that programs to evaluate prototype structural components should be initiated. These recent results include: the development of economical processing techniques incorporating a divorced eutectoid transformation, the improvement of room temperature strength and ductility by heat treatment, the enhancement of superplastic properties through dilute alloying with silicon, and the attainment of exceptional notch impact strength in laminated UHC steel composites manufactured through solid state bonding. The unique mechanical properties achieved in UHC steels are due to the presence of micron-size fer-rite grains and ultrafine spheroidized carbides.

  10. Carbon Mineral Ecology: Predicting the Undiscovered Minerals of Carbon

    Science.gov (United States)

    Hazen, R. M.; Hummer, D. R.; Downs, R. T.; Hystad, G.; Golden, J.

    2015-12-01

    The diversity and distribution of Earth's minerals through deep time reflects key events in our planet's crustal evolution. Studies in mineral ecology exploit mineralogical databases to document diversity-distribution relationships of minerals, which reveal that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to Large Number of Rare Events (LNRE) distributions. LNRE models facilitate prediction of total mineral diversity, and thus point to minerals that exist on Earth but have not yet been discovered and described. Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium. The majority of these as yet undescribed minerals are predicted to be hydrous carbonates, many of which may have been overlooked because they are colorless, poorly crystalized, and/or water-soluble. We propose the identities of plausible as yet undescribed carbon minerals, as well as search strategies for their discovery. Some of these minerals will be natural examples of known synthetic compounds, including carbides such as calcium carbide (CaC2), crystalline hydrocarbons such as pyrene (C16H10), and numerous oxalates, anhydrous carbonates, and hydrous carbonates. Many other missing carbon minerals will be isomorphs of known carbon minerals, notably of the more than 100 different hydrous carbonate structures. An understanding of Earth's "missing" minerals provides a more complete picture of geochemical processes that influence crustal evolution.

  11. Multimetallic Electrodeposition on Carbon Fibers

    Science.gov (United States)

    Böttger-Hiller, F.; Kleiber, J.; Böttger, T.; Lampke, T.

    2016-03-01

    Efficient lightweight design requires intelligent materials that meet versatile functions. One approach is to extend the range of properties of carbon fiber reinforced plastics (CFRP) by plating the fiber component. Electroplating leads to metalized layers on carbon fibers. Herein only cyanide-free electrolytes where used. Until now dendrite-free layers were only obtained using current densities below 1.0 A dm-2. In this work, dendrite-free tin and copper coatings were achieved by pre-metalizing the carbon fiber substrates. Furthermore, applying a combination of two metals with different sized thermal expansion coefficient lead to a bimetallic coating on carbon fiber rovings, which show an actuatory effect.

  12. Carbon. Examples of Property Realization

    Directory of Open Access Journals (Sweden)

    I.A. Kossko

    2013-11-01

    Full Text Available Examples of realization of carbon properties in formation of section near-surface boundaries defining the mechanism of oxidizing (normal wear are presented. Synthesis of strengt hening diamond- lonsdaleite -carbene «frame» and graphite with function of solid lubricant on a friction surface in high-desperse carbon environment is reviewed. Prospects of carbon ap placation in implementation of the concept of electronics on one element, and also use of thin-film structures of amorphous carbon – metal for data recording are discussed.

  13. Properties of Carbon Nanotubes

    Science.gov (United States)

    Masood, Samina; Bullmore, Daniel; Duran, Michael; Jacobs, Michael

    2012-10-01

    Different synthesizing methods are used to create various nanostructures of carbon; we are mainly interested in single and multi-wall carbon nanotubes, (SWCNTs) and (MWCNTs) respectively. The properties of these tubes are related to their synthetic methods, chirality, and diameter. The extremely sturdy structure of CNTs, with their distinct thermal and electromagnetic properties, suggests a tremendous use of these tubes in electronics and medicines. Here, we analyze various physical properties of SWCNTs with a special emphasis on electromagnetic and chemical properties. By examining their electrical properties, we demonstrate the viability of discrete CNT based components. After considering the advantages of using CNTs over microstructures, we make a case for the advancement and development of nanostructures based electronics. As for current CNT applications, it's hard to overlook their use and functionality in the development of cancer treatment. Whether the tubes are involved in chemotherapeutic drug delivery, molecular imaging and targeting, or photodynamic therapy, we show that the remarkable properties of SWCNTs can be used in advantageous ways by many different industries.

  14. Carbon nanotube computer.

    Science.gov (United States)

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  15. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  16. Carbon Nanotube Purification

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Delzeit, Clement J. (Inventor)

    2005-01-01

    A method for cleaning or otherwise removing amorphous carbon and other residues that arise in growth of a carbon nanotube (CNT) array. The CNT array is exposed to a plurality of hydroxyls or hydrogen, produced from a selected vapor or liquid source such as H2O or H2O2. and the hydroxyls or hydrogen (neutral or electrically charged) react with the residues to produce partly or fully dissolved or hydrogenated or hydroxylizated products that can be removed or separated from the CNT array. The hydroxyls or hydrogen can be produced by heating the CNT array, residue and selected vapor or liquid source or by application of an electromagnetic excitation signal with a selected frequency or range of frequencies to dissociate the selected vapor or liquid. The excitation frequency can be chirped to cover a selected range of frequencies corresponding to dissociation of the selected vapor or liquid. Sonication may be uscd to supplement dissociation of the H2O and/or H2O2.

  17. Seeking a geochemical identifier for authigenic carbonate.

    Science.gov (United States)

    Zhao, Ming-Yu; Zheng, Yong-Fei; Zhao, Yan-Yan

    2016-03-07

    Authigenic carbonate was recently invoked as a third major global carbon sink in addition to primary marine carbonate and organic carbon. Distinguishing the two carbonate sinks is fundamental to our understanding of Earth's carbon cycle and its role in regulating the evolution of atmospheric oxygen. Here, using microscale geochemical measurements of carbonates in Early Triassic strata, we show that the growth of authigenic carbonate follows a different trajectory from primary marine carbonate in a cross-plot of uranium concentration and carbon isotope composition. Thus, a combination of the two geochemical variables is able to distinguish between the two carbonate sinks. The temporal distribution of authigenic carbonates in the Early Triassic strata suggests that the increase in the extent of carbonate authigenesis acted as a negative feedback to the elevated atmospheric CO2 concentration.

  18. Carbon-Carbon High Melt Coating for Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Melt Coating system is applied to a carbon-carbon structure and embeds HfC, ZrB2 in the outer layers. ACC High Melt builds on the time tested base material...

  19. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    Science.gov (United States)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  20. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  1. Three-dimensional helical carbon materials: Microcoiled carbon fibers, carbon nanocoils, carbon nanotubes: Synthesis, properties and applications

    Science.gov (United States)

    Xie, Jining

    Materials with a 3D-helical/spiral-structure in micron size have recently aroused a great deal of interests because of their helical morphology and unique properties. However, materials with a 3D helical structure are not commonly observed among industrially available materials. Researchers have been trying to synthesize various micro- and nano-sized 3D helical materials and are exploring the mechanisms, nature, and properties of these materials. Yet a systematic study on 3D helical carbon materials in micro- and nano-size has been missing. This research work is intended as a first step to fill this gap. Among various 3D helical materials, carbon element has stimulated great interests. Micro coiled carbon fibers, carbon nanocoils, and carbon nanotubes are major types of 3D helical carbon materials ranging from micron to nano size. Synthesis of these 3D helical carbon materials by a catalytic chemical vapor deposition method is presented in this thesis. It involves a pyrolysis of hydrocarbon gas (e.g. acetylene) over transition metals, such as Ni, Fe, and Co, at high reaction temperature (500--1000°C). Besides the conventional thermal filament chemical vapor deposition method, a novel microwave chemical vapor deposition (MWCVD) method has been developed to synthesize micro- and nano-sized 3D helical carbon materials economically. The faster heating and cooling processes associated with microwave CVD have potential for large-scale production in the near future. Compared with previously reported microwave plasma enhanced chemical vapor deposition (MWPECVD) method, this method does not require high vacuum and much higher deposition rate is another major advantage. It has been found in this work that microwave plays an important role on coil morphology formation for micro coiled carbon fibers and carbon nanocoils. The large temperature gradient around the catalytic particles could be the reason. Different reaction factors have been checked to optimize the deposition

  2. Carbon-Carbon High Melt Coating for Nozzle and Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — C-CAT, which has proven carbon-carbon fabrication capabilities, will investigate use of ACC-6 High Melt oxidation protective system on carbon-carbon for use on the...

  3. The kinetics of binding carbon dioxide in magnesium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M. [Los Alamos National Lab., NM (United States); Nomura, Koji [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.]|[Chichibu Onada Cement Co., Tokyo (Japan)

    1998-08-01

    Humans currently consume about 6 Gigatons of carbon annually as fossil fuel. In some sense, the coal industry has a unique advantage over many other anthropogenic and natural emitters of CO{sub 2} in that it owns large point sources of CO{sub 2} from which this gas could be isolated and disposed of. If the increased energy demands of a growing world population are to be satisfied from coal, the implementation of sequestration technologies will likely be unavoidable. The authors` method of sequestration involves binding carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, with minimal environmental impact. The technology is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Realization of a cost effective method requires development of optimal technologies for efficient extraction and thermal carbonation.

  4. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  5. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  6. Methods of analyzing carbon nanostructures, methods of preparation of analytes from carbon nanostructures, and systems for analyzing carbon nanostructures

    KAUST Repository

    Da Costa, Pedro Miquel Ferreira Joaquim

    2016-09-09

    Provided herein is a method determining the concentration of impurities in a carbon material, comprising: mixing a flux and a carbon material to form a mixture, wherein the carbon material is selected from the group consisting of graphene, carbon nanotubes, fullerene, carbon onions, graphite, carbon fibers, and a combination thereof; heating the mixture using microwave energy to form fused materials; dissolution of the fused materials in an acid mixture; and measuring the concentration of one or more impurities.

  7. Assimilation of Unusual Carbon Compounds

    NARCIS (Netherlands)

    Middelhoven, W.J.

    2009-01-01

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indica

  8. Encephalopathy caused by lanthanum carbonate.

    Science.gov (United States)

    Fraile, Pilar; Cacharro, Luis Maria; Garcia-Cosmes, Pedro; Rosado, Consolacion; Tabernero, Jose Matias

    2011-06-01

    Lanthanum carbonate is a nonaluminum, noncalcium phosphate-binding agent, which is widely used in patients with end-stage chronic kidney disease. Until now, no significant side-effects have been described for the clinical use of lanthanum carbonate, and there are no available clinical data regarding its tissue stores. Here we report the case of a 59-year-old patient who was admitted with confusional syndrome. The patient received 3750 mg of lanthanum carbonate daily. Examinations were carried out, and the etiology of the encephalopathy of the patient could not be singled out. The lanthanum carbonate levels in serum and cerebrospinal fluid were high, and the syndrome eased after the drug was removed. The results of our study confirm that, in our case, the lanthanum carbonate did cross the blood-brain barrier (BBB). Although lanthanum carbonate seems a safe drug with minimal absorption, this work reveals the problem derived from the increase of serum levels of lanthanum carbonate, and the possibility that it may cross the BBB. Further research is required on the possible pathologies that increase serum levels of lanthanum carbonate, as well as the risks and side-effects derived from its absorption.

  9. Psychological effectiveness of carbon labelling

    Science.gov (United States)

    Beattie, Geoffrey

    2012-04-01

    Despite the decision by supermarket-giant Tesco to delay its plan to add carbon-footprint information onto all of its 70,000 products, carbon labelling, if carefully designed, could yet change consumer behaviour. However, it requires a new type of thinking about consumers and much additional work.

  10. Radiation Effects in Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  11. Breaking Carbon Lock-in

    DEFF Research Database (Denmark)

    Driscoll, Patrick Arthur

    2014-01-01

    This central focus of this paper is to highlight the ways in which path dependencies and increasing returns (network effects) serve to reinforce carbon lock-in in large-scale road transportation infrastructure projects. Breaking carbon lock-in requires drastic changes in the way we plan future...

  12. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Jarillo-Herrero, P.D.

    2005-01-01

    Electronic transport through nanostructures can be very different from trans- port in macroscopic conductors, especially at low temperatures. Carbon na- notubes are tiny cylinders made of carbon atoms. Their remarkable electronic and mechanical properties, together with their small size (a few nm in

  13. Forests as carbon sinks

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R.A.; Woodwell, R.M. [Woods Hole Research Center, Woods Hole, MA (United States)

    1995-11-01

    When the nations of the world signed and later ratified the United Nations Framework Convention on Climate Change (FCCC), they accepted the difficult challenge of stabilizing the composition of the atmosphere with respect to the greenhouse gases (GHGs). Success will require a reduction in both use of fossil fuels and rates of deforestation. Forests have a large enough influence on the atmosphere that one of the options for stabilizing the concentrations of GHGs in the atmosphere includes the use of forests as a carbon sink through reforestation of large areas. We identify in this paper the potential and the limitations of such projects. We discuss the implications of four approaches in management of forests globally: (i) continued deforestation, (ii) halting deforestation, (iii) net reforestation including agroforestry, and (iv) substituting the use of wood fuels for fossil fuels.

  14. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  15. Allyl 4-hydroxyphenyl carbonate

    Directory of Open Access Journals (Sweden)

    Víctor Hugo Flores Ahuactzin

    2009-07-01

    Full Text Available The title molecule, C10H10O4, is a functionalized carbonate used in the synthetic route to organic glasses. The central CH fragment of the allyl group is disordered over two positions, with occupancies in a 0.758 (10:0.242 (10ratio. This disorder reflects the torsional flexibility of the oxygen–allyl group, although both disordered parts present the expected anticlinal conformation, with O—CH2—CH=CH2 torsion angles of −111 (2 and 119.1 (4°. The crystal structure is based on chains parallel to [010], formed by O...H—O hydrogen bonds involving hydroxyl and carbonyl groups as donors and acceptors, respectively. The molecular packing is further stabilized by two weak C—H...π contacts from the benzene ring of the asymmetric unit with two benzene rings of neighboring molecules.

  16. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  17. Helium diffusion in carbonates

    Science.gov (United States)

    Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.

    2013-12-01

    The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion

  18. Carbon nanotube Archimedes screws.

    Science.gov (United States)

    Oroszlány, László; Zólyomi, Viktor; Lambert, Colin J

    2010-12-28

    Recently, nanomechanical devices composed of a long stationary inner carbon nanotube and a shorter, slowly rotating outer tube have been fabricated. In this paper, we study the possibility of using such devices as nanoscale transducers of motion into electricity. When the outer tube is chiral, we show that such devices act like quantum Archimedes screws, which utilize mechanical energy to pump electrons between reservoirs. We calculate the pumped charge from one end of the inner tube to the other, driven by the rotation of a chiral outer nanotube. We show that the pumped charge can be greater than one electron per 360° rotation, and consequently, such a device operating with a rotational frequency of 10 MHz, for example, would deliver a current of ≈1 pAmp.

  19. The Carbon Star Phenomenon

    Science.gov (United States)

    Wing, Robert F.

    2000-06-01

    The atmospheres of many stars have chemical compositions that are significantly different from that of the interstellar medium from which they are formed. This symposium considered all kinds of late-type stars showing altered compositions, the carbon stars being simply the best-known of these. All stages of stellar evolution from the main sequence to the ejection of a planetary nebula were considered, with emphasis on the changes that occur on the asymptotic giant branch. The spectroscopic properties of the photospheres and circumstellar envelopes of chemically-peculiar red giant stars, their origins via single-star evolution or mass transfer in binary systems, and the methods currently used to study them were all discussed in detail. This volume includes the full texts of papers given orally at the symposium and abstracts of the posters. Link: http://www.wkap.nl/book.htm/0-7923-6347-7

  20. Carbon nanotube biconvex microcavities

    Science.gov (United States)

    Butt, Haider; Yetisen, Ali K.; Ahmed, Rajib; Yun, Seok Hyun; Dai, Qing

    2015-03-01

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2-3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  1. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy.

  2. Total organic carbon analyzer

    Science.gov (United States)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  3. Carbon nanotubes: engineering biomedical applications.

    Science.gov (United States)

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges.

  4. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  5. Natural materials for carbon capture.

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  6. A better carbon footprint label

    DEFF Research Database (Denmark)

    Thøgersen, John; Nielsen, Kristian S.

    2016-01-01

    Based on insights from behavioral economics, it is suggested to extend carbon footprint labeling with information about relative performance, using the well-known “traffic light” color scheme to communicate relative performance. To test this proposition, the impact of a carbon footprint label...... on Danish consumers’ choice of ground coffee was tested in a 3 price levels x 3 levels of carbon emission x 3 certifying organizations x 2 organic labeling conditions discrete choice experiment. Participants were randomly assigned to two slightly different variants of the experiment: In one condition......, participants saw the original Carbon Trust label and in the other condition they saw the same label, but with traffic light colors added to communicate the product’s relative performance in terms of carbon footprint. All included attributes were found to have a significant impact on consumer choices...

  7. Carbon Nanostructures Containing Polyhedral Oligomeric Silsesquioxanes (POSS)

    NARCIS (Netherlands)

    Potsi, Georgia; Rossos, Andreas; Kouloumpis, Antonios; Antoniou, Myrsini K.; Spyrou, Konstantinos; Karakassides, Michael A.; Gournis, Dimitrios; Rudolf, Petra

    2015-01-01

    This mini review describes the synthesis and properties of carbon nanostructures containing organic-inorganic cage-like polyhedral oligomeric silsesquioxane (POSS). The physical and chemical functionalization of carbon nanomaterials such as graphene, graphene oxide, carbon nanotubes, and fullerenes

  8. Carbon cycle: Global warming then and now

    Science.gov (United States)

    Stassen, Peter

    2016-04-01

    A rapid warming event 55.8 million years ago was caused by extensive carbon emissions. The rate of change of carbon and oxygen isotopes in marine shelf sediments suggests that carbon emission rates were much slower than anthropogenic emissions.

  9. Carbon Nanotubes and Modern Nanoagriculture

    KAUST Repository

    Bayoumi, Maged Fouad

    2015-01-27

    Since their discovery, carbon nanotubes have been prominent members of the nanomaterial family. Owing to their extraordinary physical, chemical, and mechanical properties, carbon nanotubes have been proven to be a useful tool in the field of plant science. They were frequently perceived to bring about valuable biotechnological and agricultural applications that still remain beyond experimental realization. An increasing number of studies have demonstrated the ability of carbon nanotubes to traverse different plant cell barriers. These studies, also, assessed the toxicity and environmental impacts of these nanomaterials. The knowledge provided by these studies is of practical and fundamental importance for diverse applications including intracellular labeling and imaging, genetic transformation, and for enhancing our knowledge of plant cell biology. Although different types of nanoparticles have been found to activate physiological processes in plants, carbon nanotubes received particular interest. Following addition to germination medium, carbon nanotubes enhanced root growth and elongation of some plants such as onion, cucumber and rye-grass. They, also, modulated the expression of some genes that are essential for cell division and plant development. In addition, multi-walled carbon nanotubes were evidenced to penetrate thick seed coats, stimulate germination, and to enhance growth of young tomato seedlings. Multi-walled carbon nanotubes can penetrate deeply into the root system and further distribute into the leaves and the fruits. In recent studies, carbon nanotubes were reported to be chemically entrapped into the structure of plant tracheary elements. This should activate studies in the fields of plant defense and wood engineering. Although, all of these effects on plant physiology and plant developmental biology have not been fully understood, the valuable findings promises more research activity in the near future toward complete scientific understanding of

  10. Microstructure of carbon fiber preform and distribution of pyrolytic carbon by chemical vapor infiltration

    Institute of Scientific and Technical Information of China (English)

    陈建勋; 黄伯云

    2004-01-01

    The carbon/carbon composites were made by chemical vapor infiltration(CVI) with needled felt preform. The distribution of the pyrolytic carbon in the carbon fiber preform was studied by polarized light microscope(PLM) and scanning electronic microscope(SEM). The experimental results indicate that the amount of pyrolytic carbon deposited on the surface of chopped carbon fiber is more than that on the surface of long carbon fiber. The reason is the different porosity between the layer of chopped carbon fiber and long carbon fiber. The carbon precursor gas which passes through the part of chopped carbon fibers decomposes and deposits on the surface of chopped carbon fiber. The pyrolytic carbon on the surface of long carbon fibers is produced by the carbon precursor gas diffusing from the chopped fiber and the Z-d fiber. Uniform pore distribution and porosity in preform are necessary for producing C/C composites with high properties.

  11. Predators help protect carbon stocks in blue carbon ecosystems

    Science.gov (United States)

    Atwood, Trisha B.; Connolly, Rod M.; Ritchie, Euan G.; Lovelock, Catherine E.; Heithaus, Michael R.; Hays, Graeme C.; Fourqurean, James W.; Macreadie, Peter I.

    2015-12-01

    Predators continue to be harvested unsustainably throughout most of the Earth's ecosystems. Recent research demonstrates that the functional loss of predators could have far-reaching consequences on carbon cycling and, by implication, our ability to ameliorate climate change impacts. Yet the influence of predators on carbon accumulation and preservation in vegetated coastal habitats (that is, salt marshes, seagrass meadows and mangroves) is poorly understood, despite these being some of the Earth's most vulnerable and carbon-rich ecosystems. Here we discuss potential pathways by which trophic downgrading affects carbon capture, accumulation and preservation in vegetated coastal habitats. We identify an urgent need for further research on the influence of predators on carbon cycling in vegetated coastal habitats, and ultimately the role that these systems play in climate change mitigation. There is, however, sufficient evidence to suggest that intact predator populations are critical to maintaining or growing reserves of 'blue carbon' (carbon stored in coastal or marine ecosystems), and policy and management need to be improved to reflect these realities.

  12. Optimal decisions of countries with carbon tax and carbon tariff

    Directory of Open Access Journals (Sweden)

    Yumei Hou

    2015-05-01

    Full Text Available Purpose: Reducing carbon emission has been the core problem of controlling global warming and climate deterioration recently. This paper focuses on the optimal carbon taxation policy levied by countries and the impact on firms’ optimal production decisions. Design/methodology/approach: This paper uses a two-stage game theory model to analyze the impact of carbon tariff and tax. Numerical simulation is used to supplement the theoretical analysis. Findings: Results derived from the paper indicate that the demand in an unstable market is significantly affected by environmental damage level. Carbon tariff is a policy-oriented tax while the carbon tax is a market-oriented one. Comprehensive carbon taxation policy benefit developed countries and basic policy is more suitable for developing countries. Research limitations/implications: In this research, we do not consider random demand and asymmetric information, which may not well suited the reality. Originality/value: This work provides a different perspective in analyzing the impact of carbon tax and tariff. It is the first study to consider two consuming market and the strategic game between two countries. Different international status of countries considered in the paper is also a unique point.

  13. Hydrogen isotherms in palladium loaded carbon nanotubes and activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M. T.; Anson, A.; Lafuente, E.; Urriolabeitia, E.; Navarro, R.; Benito, A. M.; Maser, W. K.

    2005-07-01

    Session 5a In order to increase the hydrogen sorption capacity of carbon materials, a sample of single-wall carbon nanotubes (SWNTs) and the activated carbon MAXSORB have been loaded with palladium nanoparticles. While carbon materials adsorb hydrogen due to physical interactions, palladium can capture hydrogen into the bulk structure or chemically react to form hydrides. Experiental SWNTs have been synthesized in an electric arc reactor, using Ni and Y as catalysts in a 660 mbar He atmosphere. MAXSORB is a commercial activated carbon obtained from petroleum coke through a chemical treatment with KOH. Palladium has been deposited over the carbon support by means of a reflux method in a solution of an organometallic complex. Different samples have been prepared depending on the weight ratio (Carbon material / Pd) in the original reactants. The effectiveness of the deposition method has been examined by means of X-ray diffraction (XRD), induction coupled plasma spectrometry (ICPS) and transmission electron microscopy (TEM). The volumetric system Autosorb-1 from Quantachrome Instruments has been used to obtain the nitrogen adsorption isotherms at 77 K for all the materials. The hydrogen isotherms at 77 K and room temperature and up to 800 torr have also been obtained in the Autosorb-1. The BET specific surface area and the micropore volume have been calculated from the nitrogen adsorption data. High pressure hydrogen isotherms up to 90 bar have been carried out at room temperature in a VTI system provided with a Rubotherm microbalance. (Author)

  14. Counting the cost of carbon. Low carbon economy index 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    Achieving the rates of decarbonisation needed to stay within the 2 degrees target agreed by governments in Cancun in 20101 requires a revolution in the way the world produces and uses energy. A transformation in financing will also be necessary to achieve the transition at the scale and speed needed. PwC published the first Low Carbon Economy Index ahead of the COP15 in Copenhagen, 2009. This looked at the progress of the G20 economies against a 2000-based carbon budget estimated by PwC. Carbon intensity is our preferred metric for analysing countries' movements towards a low carbon economy, as it accounts for expected economic growth, and can generate comparable targets. The carbon intensity of an economy is the emissions per unit of GDP and is affected by a country's fuel mix, energy efficiency and the proportion of industrial versus service sectors. Since COP 16 in Cancun, there has been an increasing focus on the cost of meeting the low carbon challenge and raising the capital required to finance it. This year's Low Carbon Economy Index focuses on this global financing gap and the reforms that might help to fill it. In section one we present our analysis of economic and emissions growth and ask whether we are decarbonising fast enough. The second section asks how much it will cost and can we afford it. We highlight the global financing gap, and focus on efforts to increase low carbon generation in the UK and South Africa. The report concludes by outlining some steps that could be taken to help meet the low carbon challenge.

  15. Preparation of PAN/phenolic-based carbon/carbon composites with flexible towpreg carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)], E-mail: liwei5168@hnu.cn; Chen Zhenhua; Li Jin; Chen Xianhong; Xuan Hao; Wang Xiaoyi [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2008-06-25

    Carbon/carbon composites made with flexible towpreg carbon fiber as reinforcement and phenolic resins as matrix precursor were impregnated with pitch during re-carbonization process. The structural characteristics of the composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), three-point bending tests, Archimedes' method and water adsorption. Results showed that the density of the carbon/carbon composites increases from 1.45 to 1.54 g/cm{sup 3} with the cycles of pitch impregnated and re-carbonization. Open porosity measurement indicated that the increase of porosity resulted from the decomposition of phenolic resin matrix, and the open porosity of the composite gradually decreased after the impregnation and re-carbonization process. These composites also exhibited an improvement in flexural strength with increasing number of densification cycles. From SEM morphological observation, it was concluded that few cracks appeared in the surfaces and a few smaller pores with a diameter <1 {mu}m could be observed.

  16. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil

    DEFF Research Database (Denmark)

    Edmondson, Jill L.; Stott, Iain; Potter, Jonathan;

    2015-01-01

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical...... increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas....

  17. Sulfur(IV)-mediated carbon-carbon bond formation

    OpenAIRE

    Dean, William Michael

    2016-01-01

    This thesis details the development of methods for and application of the synthesis of carbon carbon bonds using organic sulfur(IV) chemistry. More specifically, the formation of C(sp2) C(sp3) and C(sp3) C(sp3) bonds is explored in detail. The necessity for this research stems from a correlation between a high proportion of sp3 centres in drug candidates, and their success in clinical trials. By facilitating the synthesis of drug candidates with higher fractions of sp3 hybridised carbon atoms...

  18. Lignin-Derived Advanced Carbon Materials.

    Science.gov (United States)

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-07

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed.

  19. Separating proteins with activated carbon.

    Science.gov (United States)

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  20. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. C.; Nugent, P. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94611 (United States); Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, 75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622 Lyon (France); and others

    2011-12-10

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II {lambda}6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s{sup -1}) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22{sup +10}{sub -6%} of SNe Ia exhibit spectroscopic C II signatures as late as -5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II {lambda}6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  1. The NASA Carbon Monitoring System

    Science.gov (United States)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  2. Carbon budgets and carbon sequestration potential of Indian forests

    NARCIS (Netherlands)

    Kaul, M.

    2010-01-01

    Keywords: Carbon uptake, Forest biomass, Bioenergy, Land use change, Indian forests, Deforestation, Afforestation, Rotation length, Trees outside forests. Global climate change is a widespread and growing concern that has led to extensive international discussions and negotiations. Responses to thi

  3. Carbon films produced from ionic liquid carbon precursors

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  4. Atmospheric carbon dioxide and the global carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Trabalka, J R [ed.

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  5. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  6. Modern carbonate mound systems

    Science.gov (United States)

    Henriet, J. P.; Dullo, C.

    2003-04-01

    Carbonate mounds are prominent features throughout the geological record. In many hydrocarbon provinces, they form prime reservoir structures. But recent investigations have increasingly reported occurrences of large mound clusters at the surface of the seabed, or buried at shallow depth on modern ocean margins, and in particular in basins rich in hydrocarbons. Such exciting new observations along the West-European margin are promising for elucidating the setting and environment of modern carbonate mounds, but at the same time they confront us with puzzling or sometimes contradictory observations in the quest for their genesis. Spectacular cold-water coral communities have colonized such mounds, but convincing arguments for recognizing them as prime builders are still lacking. The geological record provides ample evidence of microbial mediation in mound build-up and stabilisation, but as long as mound drilling is lacking, we have no opportunity to verify the role of such processes and identify the key actors in the earliest stage of onset and development of modern mounds. Some evidence from the past record and from present very-high resolution observations in the shallow seabed suggest an initial control by fluid venting, and fluid migration pathways have been imaged or are tentatively reconstructed by modelling in the concerned basins, but the ultimate link in the shallow subsurface seems still to elude a large part of our efforts. Surface sampling and analyses of both corals and surface sediments have largely failed in giving any conclusive evidence of present-day or recent venting in the considered basins. But on the other hand, applying rigourously the interpretational keys derived from e.g. Porcupine Seabight settings off NW Ireland on brand new prospective settings e.g. on the Moroccan margin have resulted in the discovery of totally new mound settings, in the middle of a field of giant, active mud volcanoes. Keys are apparently working, but we still do not

  7. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  8. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  9. Method for fabricating composite carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  10. Developing a Carbon Observing System

    Science.gov (United States)

    Moore, B., III

    2015-12-01

    There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community

  11. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  12. Carbon Fiber Biocompatibility for Implants

    OpenAIRE

    Richard Petersen

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-rein...

  13. Carbon isotope geochemistry and geobiology

    Science.gov (United States)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  14. Carbon Nanotube Purification and Functionalization

    Science.gov (United States)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  15. AASPT Carbon/Carbon Aircraft Brake Disk Granted MPA

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Xi'an Chaoma Technology Co. Ltd. was issued Parts Manufacturer Approval (PMA) for Carbon/Carbon aircraft brake disk for Airbus 320 series by Civil Aviation Administration of China (CAAC). The company is held by Academy of Aerospace Solid Propulsion Technology (AASPT), a subsidiary of China Aerospace Science and Technology Corporation (CASC). It is the first approval given to a Chinese company to design and produce brakes for main civilian aircraft.

  16. As-Fabricated Reinforced Carbon/Carbon Characterized

    Science.gov (United States)

    Jacobson, Nathan S.; Calomino, Anthony M.; Webster, Neal

    2004-01-01

    Reinforced carbon/carbon (RCC) is a critical material for the space shuttle orbiter. It is used on the wing leading edge and the nose cap, where maximum temperatures are reached on reentry. The existing leading-edge system is a single-plate RCC composite construction with a wall thickness of approximately 1/4 in., making it a prime reliant protection scheme for vehicle operation.

  17. Carbon 14 dating; La datation par le carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Laj, C.; Mazaud, A.; Duplessy, J.C. [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France)

    2004-03-01

    In this article time dating based on carbon 14 method is reviewed, its limits are explained and recent improvements are presented. Carbon 14 is a by-product of the interactions of cosmic protons with air molecules. The fluctuations of the quantity of carbon 14 present in the atmosphere are responsible for the shift observed between the result given by the method and the real age. This shift appears for ages greater than 2000 years and is estimated to 1000 years for an age of 10.000 years. As a consequence carbon 14 dating method requires calibration by comparing with other methods like dendrochronology (till 11.000 years) and time dating of fossil corals (till 26.000 years and soon till 50.000 years). It is assumed that the fluctuations of carbon 14 in the atmosphere are due to: - the changes in the intensity and composition of cosmic radiations itself (due to the motion of the sun system through the galaxy or due to the explosion of a super-novae in the surroundings of the sun system); - the changes of the earth magnetic field that diverts cosmic rays; and - the changes in the interactions between the atmosphere and the oceans knowing that 40 tons of carbon 14 are dissolved in seas while only 1 ton belongs to the atmosphere. (A.C.)

  18. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  19. Engineering carbon materials from the hydrothermal carbonization process of biomass.

    Science.gov (United States)

    Hu, Bo; Wang, Kan; Wu, Liheng; Yu, Shu-Hong; Antonietti, Markus; Titirici, Maria-Magdalena

    2010-02-16

    Energy shortage, environmental crisis, and developing customer demands have driven people to find facile, low-cost, environmentally friendly, and nontoxic routes to produce novel functional materials that can be commercialized in the near future. Amongst various techniques, the hydrothermal carbonization (HTC) process of biomass (either of isolated carbohydrates or crude plants) is a promising candidate for the synthesis of novel carbon-based materials with a wide variety of potential applications. In this Review, we will discuss various synthetic routes towards such novel carbon-based materials or composites via the HTC process of biomass. Furthermore, factors that influence the carbonization process will be analyzed and the special chemical/physical properties of the final products will be discussed. Despite the lack of a clear mechanism, these novel carbonaceous materials have already shown promising applications in many fields such as carbon fixation, water purification, fuel cell catalysis, energy storage, CO(2) sequestration, bioimaging, drug delivery, and gas sensors. Some of the most promising examples will also be discussed here, demonstrating that the HTC process can rationally design a rich family of carbonaceous and hybrid functional carbon materials with important applications in a sustainable fashion.

  20. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  1. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  2. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  3. Voltammetric Response of Epinephrine at Carbon Nanotube Modified Glassy Carbon Electrode and Activated Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; TANG Ping; ZHAO Fa-qiong; ZENG Bai-zhao

    2005-01-01

    The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small.However, when the electrode was activated at certain potential (i. e. 1.9V) or modified with carbon nanotube, the peak became more sensitive,resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3 × 10-7-1.1 × 10-5mol/L at activated glassy carbon electrode and in the range of 1.0 × 10-6-5.0 × 10-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0. 998 and 0. 997, respectively. The determination limit was 1.0 × 10-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.

  4. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Loring, John S.; Chen, Jeffrey; Benezeth Ep Gisquet, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-07-14

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  5. Reducing carbon dioxide to products

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  6. Carbon Dioxide Flux Measurement Systems

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The...

  7. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  8. Carbon xerogels for catalytic applications

    Directory of Open Access Journals (Sweden)

    J. L. Figueiredo

    2012-12-01

    Full Text Available The synthesis and properties of carbon xerogels arebriefly described, emphasizing the methods usedfor tuning of their surface chemistry and texturalproperties, in order to design catalysts suitable forspecific applications.

  9. Assimilation of Unusual Carbon Compounds

    Science.gov (United States)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  10. Permafrost carbon: Catalyst for deglaciation

    Science.gov (United States)

    MacDougall, Andrew H.

    2016-09-01

    The sources contributing to the deglacial rise in atmospheric CO2 concentrations are unclear. Climate model simulations suggest thawing permafrost soils were the initial source, highlighting the vulnerability of modern permafrost carbon stores.

  11. High capacity carbon dioxide sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  12. Nitrogen doping in carbon nanotubes.

    Science.gov (United States)

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  13. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  14. Carbon Monoxide (CO) Poisoning Prevention

    Science.gov (United States)

    ... Recommend on Facebook Tweet Share Compartir When power outages occur after severe weather (such as winter storms, hurricanes or tornadoes), using alternative sources of power can cause carbon monoxide (CO) to build up in a ...

  15. Carbon Monoxide Mixing Ratio System

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) Carbon Monoxide (CO) system provides high-precision atmospheric concentration measurements of CO mixing ratio (ppbv dry air) every 10...

  16. ROE Carbon Storage - Forest Biomass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset depicts the density of forest biomass in counties across the United States, in terms of metric tons of carbon per square mile of land area....

  17. Mirador - Carbon Cycle and Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. This Focus Area deals with the cycling of carbon in reservoirs and ecosystems as it changes naturally, is changed by humans,...

  18. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  19. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individua...

  20. The process of carbon creation

    CERN Multimedia

    El-Eid, M F

    2005-01-01

    In the Universe, the element carbon is created only in stars, in a remarkable reaction called the triple-α process. Fresh insights into the reaction now come from the latest experiments carried out on Earth

  1. Nitrogen-doped hydrothermal carbons

    Energy Technology Data Exchange (ETDEWEB)

    Titirici, Maria-Magdalena; White, Robin J. [Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany). Dept. of Colloid Chemistry; Zhao, Li [Max-Planck-Institute of Colloids and Interfaces, Potsdam (Germany). Dept. of Colloid Chemistry; National Center for Nanoscience and Technology, Beijing (China)

    2012-07-01

    Nitrogen doped carbon materials are now playing an important role in cutting edge innovations for energy conversion and storage technologies such as supercapacitors and proton exchange membrane fuel cells as well as in catalytic applications, adsorption and CO{sub 2} capture. The production of such materials using benign aqueous based processes, mild temperatures and renewable precursors is of great promise in addressing growing environmental concerns for cleaner power sources at a time of increasing global demand for energy. In this perspective, we show that nitrogen doped carbons prepared using sustainable processes such as ''Hydrothermal Carbonisation'' has advantages in many applications over the conventional carbons. We also summarize an array of synthetic strategies used to create such nitrogen doped carbons, and discuss the application of these novel materials. (orig.)

  2. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  3. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  4. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  5. Legislators Urge Carbon Emissions Cuts

    Science.gov (United States)

    Kumar, Mohi

    2007-02-01

    Legislators from the world's largest carbon dioxide (CO2) emitting countries met on 14-15 February in Washington, D.C., to discuss the future of the global climate and strategies to mitigate temperature increases resulting from global warming. The world faces a ``double challenge-how to reduce damaging carbon emissions while still meeting the energy demand that the world's poor need to escape poverty,'' said World Bank President Paul Wolfowitz during a keynote talk.

  6. Toward transformational carbon capture systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Litynski, John T. [Office of Fossil Energy, U.S. Dept. of Energy, Washington DC (United States); Brickett, Lynn A. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Morreale, Bryan D. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States)

    2015-10-28

    This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.

  7. Lithium interaction with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nalimova, V.A. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul`tet; Sklovsky, D.E. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul`tet; Bondarenko, G.N. [Topcheiv Institute of Petrochemical Synthesis, Leninsky Prospekt, 29, Moscow (Russian Federation); Alvergnat-Gaucher, H. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France); Bonnamy, S. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France); Beguin, F. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France)

    1997-05-01

    Lithium interaction with catalytic carbon nanotubes under high-pressure conditions was studied. A large amount of Li (2Li/C) reacted with the carbon nanotubes forming an intercalation compound (I{sub c}{proportional_to}4.1 A) which follows from X-ray diffraction and IR spectroscopy data. We cannot exclude also the possibility of insertion of a part of Li into the channel of the nanotubes. (orig.)

  8. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  9. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  10. Permafrost soils and carbon cycling

    OpenAIRE

    Ping, C. L.; J. D. Jastrow; Jorgenson, M. T.; G. J. Michaelson; Y. L. Shur

    2015-01-01

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This...

  11. Hydrogen adsorption in carbon nanostructures compared

    NARCIS (Netherlands)

    Schimmel, H.G.; Nijkamp, M.G.; Kearley, G.J.; Rivera, A.; de Jong, K.P.; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam ‘opened’

  12. Rhodium-catalyzed restructuring of carbon frameworks.

    Science.gov (United States)

    Murakami, Masahiro

    2010-10-01

    Metal-catalyzed reactions involving an elementary step which cleaves a carbon-carbon bond provide unique organic transformations. Restructuring reactions recently developed in our laboratory, through which the carbon framework of a starting substance is restructured into a totally different carbon framework, are discussed, with the possibility of applying such methods to the synthesis of natural products.

  13. Adsorption characteristics of activated carbon hollow fibers

    OpenAIRE

    2009-01-01

    Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  14. Capturing Gases in Carbon Honeycomb

    Science.gov (United States)

    Krainyukova, Nina V.

    2016-12-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2 -bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  15. Capturing Gases in Carbon Honeycomb

    Science.gov (United States)

    Krainyukova, Nina V.

    2017-04-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  16. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  17. An Alaska Soil Carbon Database

    Science.gov (United States)

    Johnson, Kristofer; Harden, Jennifer

    2009-05-01

    Database Collaborator's Meeting; Fairbanks, Alaska, 4 March 2009; Soil carbon pools in northern high-latitude regions and their response to climate changes are highly uncertain, and collaboration is required from field scientists and modelers to establish baseline data for carbon cycle studies. The Global Change Program at the U.S. Geological Survey has funded a 2-year effort to establish a soil carbon network and database for Alaska based on collaborations from numerous institutions. To initiate a community effort, a workshop for the development of an Alaska soil carbon database was held at the University of Alaska Fairbanks. The database will be a resource for spatial and biogeochemical models of Alaska ecosystems and will serve as a prototype for a nationwide community project: the National Soil Carbon Network (http://www.soilcarb.net). Studies will benefit from the combination of multiple academic and government data sets. This collaborative effort is expected to identify data gaps and uncertainties more comprehensively. Future applications of information contained in the database will identify specific vulnerabilities of soil carbon in Alaska to climate change, disturbance, and vegetation change.

  18. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    Science.gov (United States)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  19. The role of carbon in the photocatalytic reaction of carbon/TiO{sub 2} photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Feng; Zhang, Guozhi; Wang, Youqing; Gao, Caitian; Chen, Lulu; Zhang, Peng; Zhang, Zhenxing, E-mail: zhangzx@lzu.edu.cn; Xie, Erqing, E-mail: xieeq@lzu.edu.cn

    2014-11-30

    Graphical abstract: - Highlights: • Carbon/TiO{sub 2} composites were fabricated by one-step carbonization method. • Carbon was generated by the dehydration carbonation effect of polymers. • Carbon was formed inside and outside of the TiO{sub 2} nanoparticles. • The photocatalytic activities of the composites depend on the coating carbon. - Abstract: The carbon/TiO{sub 2} nanocomposites were fabricated by a simple one-step carbonization method with different polymers as precursors. Due to the dehydration carbonation effect of polymers, carbon was formed inside and outside of the TiO{sub 2} nanoparticles. The photo-degradation study of rhodamine B was carried out under UV–vis light irradiation, and the photocatalytic activities of carbon/TiO{sub 2} nanocomposites are affected severely by the state of carbon, including dopants and coatings. The results show that the carbon on the surface plays more important role in the photocatalytic process.

  20. Scale-up of Carbon/Carbon Bipolar Plates

    Energy Technology Data Exchange (ETDEWEB)

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  1. Yeast Carbon Catabolite Repression†

    Science.gov (United States)

    Gancedo, Juana M.

    1998-01-01

    Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated. PMID:9618445

  2. Carbon Fiber from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Booth, Samuel [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  3. FTIR Spectroscopy for Carbon Family Study.

    Science.gov (United States)

    Ţucureanu, Vasilica; Matei, Alina; Avram, Andrei Marius

    2016-11-01

    Fourier transform Infrared (FTIR) spectroscopy is a versatile technique for the characterization of materials belonging to the carbon family. Based on the interaction of the IR radiation with matter this technique may be used for the identification and characterization of chemical structures. Most important features of this method are: non-destructive, real-time measurement and relatively easy to use. Carbon basis for all living systems has found numerous industrial applications from carbon coatings (i.e. amorphous and nanocrystalline carbon films: diamond-like carbon (DLC) films) to nanostructured materials (fullerenes, nanotubes, graphene) and carbon materials at nanoscale or carbon dots (CDots). In this paper, we present the FTIR vibrational spectroscopy for the characterization of diamond, amorphous carbon, graphite, graphene, carbon nanotubes (CNTs), fullerene and carbon quantum dots (CQDs), without claiming to cover entire field.

  4. The significance of carbon-enriched dust for global carbon accounting

    Science.gov (United States)

    Soil carbon stores amount to 54% of the terrestrial carbon pool and twice the atmospheric carbon pool, but soil organic carbon (SOC) can be transient. There is an ongoing debate about whether soils are a net source or sink of carbon, and understanding the role of aeolian processes in SOC erosion, tr...

  5. Gravimetric Determination of Inorganic Carbon in Calcareous Soils Using the Carbonate-Meter

    Science.gov (United States)

    Organic carbon affects many important physical, chemical and microbiological soil properties. In calcareous soils, the inorganic carbon has to be measured and subtracted from the total carbon to obtain organic carbon. Our objective was to develop a gravimetric technique to quantify inorganic carbon ...

  6. Characterization and Damage Evaluation of Coal Tar Pitch Carbon Matrix Used in Carbon/Carbon Composites

    Science.gov (United States)

    Bhagat, Atul Ramesh; Mahajan, Puneet

    2016-09-01

    Flexure, compressive, and shear properties of the carbon matrix in carbon/carbon (C/C) composites made via a pitch impregnation method have been determined. The pitch carbon matrix was made using the same densification cycle used in making the C/C composite. Cyclic compression tests were performed on the matrix specimens. While unloading, a reduction in modulus was observed and residual strains were observed on complete unloading. These features were attributed to the presence of damage and plasticity in the densified matrix. A J 2 plasticity model with damage was used to simulate this behavior numerically. The parameters required for plasticity and damage model were evaluated iteratively by comparing the results in experiments with simulation.

  7. Carbonic Acid Pretreatment of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  8. Carbonic Acid Retreatment of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  9. Sustainable carbon materials from hydrothermal processes

    CERN Document Server

    Titirici, Maria-Magdalena

    2013-01-01

    The production of low cost and environmentally friendly high performing carbon materials is crucial for a sustainable future. Sustainable Carbon Materials from Hydrothermal Processes describes a sustainable and alternative technique to produce carbon from biomass in water at low temperatures, a process known as Hydrothermal Carbonization (HTC). Sustainable Carbon Materials from Hydrothermal Processes presents an overview of this new and rapidly developing field, discussing various synthetic approaches, characterization of the final products, and modern fields of application fo

  10. Mechanism design problems in carbon economics

    OpenAIRE

    Arava, Radhika; Narahari, Y.; Bagchi, Deepak; Suresh, P.; Subrahmanya, SV

    2010-01-01

    Reduction of carbon emissions is of paramount importance in the context of global warming and climate change. Countries and global companies are now engaged in understanding systematic ways of solving carbon economics problems, aimed ultimately at achieving well defined emission targets. This paper proposes mechanism design as an approach to solving carbon economics problems. The paper first introduces carbon economics issues in the world today and next focuses on carbon economics problems...

  11. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Loring, John S.; Chen, Jeffrey; Benezeth, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-06-16

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, the implication of these results is that mineral trapping in scCO2 dominated fluids will be insignificant and limited to surface complexation unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  12. Rangelands: a closing carbon sink?

    Science.gov (United States)

    Kuhn, Nikolaus J.

    2016-04-01

    Two thirds of the world's agricultural land is suitable for grazing only. Much of this land has experienced severe erosion due to mismanagement, massive redistribution of soil and sediment, and significant degradation of vegetation. As a consequence, geochemical cycles have changed. Unlike croplands, the impact of degradation on nutrient fluxes is hardly compensated on rangelands, potentially disturbing the carbon cycle because of the declining biomass production and the subsequent conversion of litter into soil organic matter. Over time, the degradation leads to a decline in soil C stocks and, if associated with soil erosion, also to a decline in carbon transfer from soil into sediment sinks. A priory reasoning suggests that during the degradation process, with soil productivity not yet massively affected, the Carbon transfer initially increases because soil erosion rates are also greater than in the non-disturbed system. With most soil degradation in rangelands occurring during the past 200 years, this mechanism on a large part of the global land area could have generated an unintentional terrestrial carbon sink during a time period with increasing industrial CO2 emissions. Using global data on soil degradation, soil erosion, soil carbon stocks and dynamics to simulate their interaction and potential role for rangeland carbon cycles supports the assumption that rangelands may have functioned as a carbon sink, but reveals major uncertainties with regards to the size. This highlights the need to improve our knowledge and understanding of rangeland erosion, landscape change and soil formation, both with regards to the recent past, but also the impacts of their future use and climate.

  13. Novel method for carbon nanofilament growth on carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Johathan [Los Alamos National Laboratory; Luhrs, Claudia [UNM MECH.ENG.; Terani, Mehran [UNM MECH.ENG.; Al - Haik, Marwan [UNM MECH.ENG.; Garcia, Daniel [UNM MECH.ENG.; Taha, Mahmoud R [UNM MECH.ENG.

    2009-01-01

    Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs

  14. PREPARATION OF MESOPOROUS CARBON BY CARBON DIOXIDE ACTIVATION WITH CATALYST

    Institute of Scientific and Technical Information of China (English)

    W.Z.Shen; A.H.Lu; J.T.Zheng

    2002-01-01

    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  15. Eikonal phase shift analyses of carbon-carbon scattering

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.

    1983-01-01

    A high-energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series is used in determining eikonal phase shifts for carbon-carbon scattering at 204.2, 242.7, and 288.6 MeV. The double-folding potentials are derived by folding the energy-dependent free nucleon-nucleon interaction with densities for the projectile and target; these latter are obtained by unfolding the finite nucleon charge density from harmonic-well carbon charge distributions. The charge parameters for these distributions are taken from the results of electron scattering experiments. Predictions are made for total, reaction, and elastic differential cross sections using standard partial wave analysis for the scattering of identical particles and are then compared with recent experimental results. Excellent agreement is obtained despite the absence of arbitrarily adjusted parameters in the theory.

  16. Carbon fiber-reinforced carbon as a potential implant material.

    Science.gov (United States)

    Adams, D; Williams, D F; Hill, J

    1978-01-01

    A carbon fiber-reinforced carbon is being evaluated as a promising implant material. In a unidirectional composite, high strengths (1200 MN/m2 longitudinal flexural strength) and high modulus (140 GN/m2 flexural modulus) may be obtained with an interlaminar shear strength of 18 MN/m2. Alternatively, layers of fibers may be laid in two directions to give more isotopic properties. The compatibility of the material with bone has been studied by implanting specimens in holes drilled in rat femora. For a period of up to 8 weeks, a thin layer of fibrous tissue bridged the gap between bone and implant; but this tissue mineralizes and by 10 weeks, bone can be observed adjacent to the implant, giving firm fixation. Potential applications include endosseous dental implants where a greater strength in the neck than that provided by unreinforced carbon would be advantageous.

  17. Yeast-based microporous carbon materials for carbon dioxide capture.

    Science.gov (United States)

    Shen, Wenzhong; He, Yue; Zhang, Shouchun; Li, Junfen; Fan, Weibin

    2012-07-01

    A hierarchical microporous carbon material with a Brunauer-Emmett-Teller surface area of 1348 m(2) g(-1) and a pore volume of 0.67 cm(3) g(-1) was prepared from yeast through chemical activation with potassium hydroxide. This type of material contains large numbers of nitrogen-containing groups (nitrogen content >5.3 wt%), and, consequently, basic sites. As a result, this material shows a faster adsorption rate and a higher adsorption capacity of CO(2) than the material obtained by directly carbonizing yeast under the same conditions. The difference is more pronounced in the presence of N(2) or H(2)O, showing that chemical activation of discarded yeast with potassium hydroxide could afford high-performance microporous carbon materials for the capture of CO(2).

  18. Analysis of Carbon/Carbon Fragments From the Columbia Tragedy

    Science.gov (United States)

    Tallant, David R.; Simpson, Regina L.; Jacobson, Nathan S.

    2005-01-01

    The extensive investigation following the Space Shuttle Orbiter Columbia accident of February 1, 2003 determined that hot gases entered the wing through a breach in the protective reinforced carbon/carbon (RCC) leading edge. In the current study, the exposed edges of the recovered RCC from the vicinity of the breach are examined with scanning electron microscopy and Raman spectroscopy. Electron microscopy of the exposed edges revealed regions of pointed carbon fibers, characteristic of exposure to high temperature oxidizing gases. The Raman technique relates the observed 1350 and 1580 to 1600 cm(-1) bands to graphitic dom ains and their corresponding temperatures of formation. Some of the regions showed evidence of exposure temperatures beyond 2700 ?C during the accident.

  19. Carbonate Looping for De-Carbonization of Cement Plants

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Andersen, Maria Friberg; Lin, Weigang

    2011-01-01

    Cement industry is one of the largest emitter of CO2 other than power generation plants, which includes the emissions from combustion of fuel and also from calcination of limestone for clinker production. In order to reduce CO2 emissions from the cement industry an effective an economically...... feasible technology is to be developed. The carbonate looping process is a promising technology, which is particularly suitable for the cement industry as limestone could be used for capture and release of CO2. Integration of carbonate looping process into cement pyroprocess has two advantages: 1...... integrated into cement pyro-process. The energy required for regeneration in the calciner increases with increase in average conversion of calcined limestone and energy that can be extracted from carbonator decreases with increasing average conversion. Further the influence of type of limestone...

  20. Carbon dioxide sequestration by direct aqueous mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    Carbon dioxide sequestration by an ex-situ, direct aqueous mineral carbonation process has been investigated over the past two years. This process was conceived to minimize the steps in the conversion of gaseous CO2 to a stable solid. This meant combining two separate reactions, mineral dissolution and carbonate precipitation, into a single unit operation. It was recognized that the conditions favorable for one of these reactions could be detrimental to the other. However, the benefits for a combined aqueous process, in process efficiency and ultimately economics, justified the investigation. The process utilizes a slurry of water, dissolved CO2, and a magnesium silicate mineral, such as olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. These minerals were selected as the reactants of choice for two reasons: (1) significant abundance in nature; and (2) high molar ratio of the alkaline earth oxides (CaO, MgO) within the minerals. Because it is the alkaline earth oxide that combines with CO2 to form the solid carbonate, those minerals with the highest ratio of these oxides are most favored. Optimum results have been achieved using heat pretreated serpentine feed material, sodium bicarbonate and sodium chloride additions to the solution, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was achieved in 30 minutes. Future studies are intended to investigate various mineral pretreatment options, the carbonation solution characteristics, alternative reactants, scale-up to a continuous process, geochemical modeling, and process economics.

  1. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization.

    Science.gov (United States)

    Zhang, Weixin; Hendrix, Paul F; Dame, Lauren E; Burke, Roger A; Wu, Jianping; Neher, Deborah A; Li, Jianxiong; Shao, Yuanhu; Fu, Shenglei

    2013-01-01

    A recent review concluded that earthworm presence increases CO₂ emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO₂ emission nor in stabilized carbon would entirely reflect the earthworms' contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon mineralization and carbon stabilization. Earthworms accelerate carbon activation and induce unequal amplification of carbon stabilization compared with carbon mineralization, which generates an earthworm-mediated 'carbon trap'. We introduce the new concept of sequestration quotient to quantify the unequal processes. The patterns of CO₂ emission and net carbon sequestration are predictable by comparing sequestration quotient values between treatments with and without earthworms. This study clarifies an ecological mechanism by which earthworms may regulate the terrestrial carbon sink.

  2. INCCA: Integrated Climate and Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, S L

    2001-03-13

    The INCCA (Integrated Climate and Carbon) initiative will develop and apply the ability to simulate the fate and climate impact of fossil fuel-derived carbon dioxide (CO{sub 2}) and aerosols on a global scale. Coupled climate and carbon cycle modeling like that proposed for INCCA is required to understand and predict the future environmental impacts of fossil fuel burning. At present, atmospheric CO{sub 2} concentrations are prescribed, not simulated, in large climate models. Credible simulations of the entire climate system, however, need to predict time-evolving atmospheric greenhouse forcing using anthropogenic emissions as the fundamental input. Predicting atmospheric COS concentrations represents a substantial scientific advance because there are large natural sources and sinks of carbon that are likely to change as a result of climate change. Both terrestrial (e.g., vegetation on land) and oceanic components of the carbon cycle are known to be sensitive to climate change. Estimates of the amount of man-made CO{sub 2} that will accumulate in the atmosphere depend on understanding the carbon cycle. For this reason, models that use CO{sub 2} emissions, not prescribed atmospheric concentrations, as fundamental inputs are required to directly address greenhouse-related questions of interest to policymakers. INCCA is uniquely positioned to make rapid progress in this high-priority area of global change modeling and prediction because we can leverage previous and ongoing LLNL developments, and use existing component models that are well-developed and published. The need for a vastly improved carbon dioxide prediction capability is appreciated by the DOE. As the US Accelerated Climate Prediction Initiative (ACPI) progresses, we expect the DOE will emphasize the carbon cycle as the next major department-level earth science focus. INCCA will position LLNL for substantial additional funding as this new focus is realized. In the limited time since our LDRD funding was

  3. Controllable fabrication of carbon aerogels

    Institute of Scientific and Technical Information of China (English)

    FENG Ya'ning; MIAO Lei; TANEMURA Sakae; TANEMURA Masaki; SUZUKI Kenzi

    2006-01-01

    Nano-pore carbon aerogels were prepared by the sol-gel polymerization of resorcinol (1,3-dihydroxybenzene)(C6H4(OH)2) with formaldehyde (HCHO) in a slightly basic aqueous solution, followed by super-critical drying under liquid carbon dioxide as super-critical media and carbonization at 700 ℃ under N2 gas atmosphere. The key of the work is to fabricate carbon aerogels with controllable nano-pore structure, which means extremely high surface area and sharp pore size distribution. Aiming to investigate the effects of preparation conditions on the gelation process, the bulk density, and the physical and chemical structure of the resultant carbon aerogels, the molar ratio of R/C (resorcinol to catalyst) and the amount of distilled water were varied, consequently two different sets of samples, with series of R/C ratio and RF/W (Resorcinol-Formaldehyde to water, or the content of reactant) ratio, were prepared. The result of N2 adsorption/desorption experiment at 77 K shows that the pore sizes decreasing from 11.4 down tO2.2 nm with the increasing of the molar ratio of R/C from 100 to 400, and/or, the pore sizes decreasing from 3.8 down to 1.6 nm with the increasing of reactant content from 0.4 to 0.6.

  4. History of ultrahigh carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  5. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  6. Deciphering Carbon Isotope Excursions in Separated Biogenic and Diagenetic Carbonates

    Science.gov (United States)

    Hermoso, M.; Minoletti, F.; Hesselbo, S.; Jenkyns, H.; Rickaby, R.; Diester-Haass, L.; Delsate, D.

    2008-12-01

    The long-term evolution of the carbon-isotope ratio in the sedimentary archive is classically linked with changes in primary productivity and organic matter burial. There have been sudden and pronounced shifts, so-called Carbon Isotope Excursions (CIEs) in the long-term trends as evidenced by synchronous shifts from various basins. These geochemical perturbations may have various explanations such as changes of the efficiency of the carbon sink; sudden infusion of isotopically-light carbon into the Ocean-Atmosphere system; or advection of 12C-rich source from bottom water in a stratified water column. Beside the record of primary changes in seawater chemistry, a possible diagenetic overprint may also mime such CIEs in the sedimentary record. The aim of this contribution is to illustrate through three critical intervals (the Early Toarcian, the K-P boundary and the Mid-Miocene Montery Event) how the various micron-sized sedimentary particles specifically record these CIEs, which are respectively associated with major paleoceanographical events. New techniques for getting monotaxic calcareous nannofossil assemblages from the sediment (Minoletti et al., accepted) enable the isotopic measurement at various depths within the surface water and from bottom water by analyzing early diagenetic precipitations (rhombs and micarbs). The integration of these high-resolution isotopic signals in terms of amplitudes affords to recognize diagenetic artifacts in some sections displaying coeval decrease in the carbonate content. For both Early Toarcian and K-P events, corroborative records of CIE records in both primary calcite and bottom water carbonate indicate a global C-isotope perturbation of the water column. For the Monterey event, the evolution of calcareous nannoplankton and the foraminifera isotopic records are in overall agreement, but in detail, the coccolith-discoaster and foraminifer ratio in the sediment, related to environmental changes, is likely to produce isotopic

  7. Aerobic dehydrogenative α-diarylation of benzyl ketones with aromatics through carbon-carbon bond cleavage.

    Science.gov (United States)

    More, Nagnath Yadav; Jeganmohan, Masilamani

    2014-02-01

    Substituted benzyl ketones reacted with aromatics in the presence of K2S2O8 in CF3COOH at room temperature, yielding α-diaryl benzyl ketones through a carbon-carbon bond cleavage. In the reaction, two new carbon-carbon bonds were formed and one carbon-carbon bond was cleaved. It is very interesting that two different nucleophiles such as benzyl ketones and aromatics were coupled together without metal, which is unusual in organic synthesis.

  8. Processing and Structure of Carbon Nanofiber Paper

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhao

    2009-01-01

    Full Text Available A unique concept of making nanocomposites from carbon nanofiber paper was explored in this study. The essential element of this method was to design and manufacture carbon nanofiber paper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under various processing conditions, including different types of carbon nanofibers, solvents, dispersants, and acid treatment. The morphologies of carbon nanofibers within the nanofiber paper were characterized with scanning electron microscopy (SEM. In addition, the bulk densities of carbon nanofiber papers were measured. It was found that the densities and network structures of carbon nanofiber paper correlated to the dispersion quality of carbon nanofibers within the paper, which was significantly affected by papermaking process conditions.

  9. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Among the...

  10. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Included among...

  11. Carbon Budget of Russian Forests

    Directory of Open Access Journals (Sweden)

    A. Z. Shvidenko

    2014-02-01

    Full Text Available Net Ecosystem Carbon Balance (NECB of Russian forests for 2007–2009 is presented based on consistent application of applied systems analysis and modern information technologies. Use of landscape-ecosystem approach resulted in the NECB at 546±120 Tg C year–1, or 66±15 g C m–2 year–1. There is a substantial difference between the NECB of European and Asian parts, as well as the clear zonal gradients within these geographical regions. While the total carbon sink is high, large forest areas, particularly on permafrost, serve as a carbon source. The ratio between net primary production and soil heterotrophic respiration, together with natural and human-induced disturbances are major drivers of the magnitude and spatial distribution of the NECB of forest ecosystems. Using the Bayesian approach, mutual constraints of results that are obtained by independent methods enable to decrease uncertainties of the final result.

  12. Hydrodynamic properties of carbon nanotubes.

    Science.gov (United States)

    Walther, J H; Werder, T; Jaffe, R L; Koumoutsakos, P

    2004-06-01

    We study water flowing past an array of single walled carbon nanotubes using nonequilibrium molecular dynamics simulations. For carbon nanotubes mounted with a tube spacing of 16.4 x 16.4 nm and diameters of 1.25 and 2.50 nm, respectively, we find drag coefficients in reasonable agreement with the macroscopic, Stokes-Oseen solution. The slip length is -0.11 nm for the 1.25 nm carbon nanotube, and 0.49 for the 2.50 nm tube for a flow speed of 50 m/s, respectively, and 0.28 nm for the 2.50 nm tube at 200 m/s. A slanted flow configuration with a stream- and spanwise velocity component of 100 ms(-1) recovers the two-dimensional results, but exhibits a significant 88 nm slip along the axis of the tube. These results indicate that slip depends on the particular flow configuration.

  13. Method for carbon dioxide splitting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    2017-02-28

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0carbon dioxide, and heating to a temperature less than approximately 1400 C, thereby producing carbon monoxide gas and the original metal oxide compound.

  14. Raman Studies of Carbon Nanostructures

    Science.gov (United States)

    Jorio, Ado; Souza Filho, Antonio G.

    2016-07-01

    This article reviews recent advances on the use of Raman spectroscopy to study and characterize carbon nanostructures. It starts with a brief survey of Raman spectroscopy of graphene and carbon nanotubes, followed by recent developments in the field. Various novel topics, including Stokes-anti-Stokes correlation, tip-enhanced Raman spectroscopy in two dimensions, phonon coherence, and high-pressure and shielding effects, are presented. Some consequences for other fields—quantum optics, near-field electromagnetism, archeology, materials and soil sciences—are discussed. The review ends with a discussion of new perspectives on Raman spectroscopy of carbon nanostructures, including how this technique can contribute to the development of biotechnological applications and nanotoxicology.

  15. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  16. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  17. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  18. Carbon sequestration research and development

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  19. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide.

    Science.gov (United States)

    Loring, John S; Chen, Jeffrey; Bénézeth, Pascale; Qafoku, Odeta; Ilton, Eugene S; Washton, Nancy M; Thompson, Christopher J; Martin, Paul F; McGrail, B Peter; Rosso, Kevin M; Felmy, Andrew R; Schaef, Herbert T

    2015-07-14

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 μmol/m(2). Above this concentration and up to 76 μmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 μmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O

  20. Method for Extracting and Sequestering Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  1. Black carbon in deep-Sea sediments

    Science.gov (United States)

    Masiello; Druffel

    1998-06-19

    Black carbon (BC) enters the ocean through aerosol and river deposition. BC makes up 12 to 31 percent of the sedimentary organic carbon (SOC) at two deep ocean sites, and it is 2400 to 13,900 carbon-14 years older than non-BC SOC deposited concurrently. BC is likely older because it is stored in an intermediate reservoir before sedimentary deposition. Possible intermediate pools are oceanic dissolved organic carbon (DOC) and terrestrial soils. If DOC is the intermediate reservoir, then BC is 4 to 22 percent of the DOC pool. If soils are the intermediate reservoir, then the importance of riverine carbon in the ocean carbon cycle has been underestimated.

  2. Smart Waterflooding in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel

    During the last decade, smart waterflooding has been developed into an emerging EOR technology both for carbonate and sandstone reservoirs that does not require toxic or expensive chemicals. Although it is widely accepted that different salinity brines may increase the oil recovery for carbonate...... reservoirs, understanding of the mechanism of this increase is still developing. To understand this smart waterflooding process, an extensive research has been carried out covering a broad range of disciplines within surface chemistry, thermodynamics of crude oil and brine, as well as their behavior...

  3. Carbon Nanotubes for Space Applications

    Science.gov (United States)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  4. Carbon Nanotubes Based Quantum Devices

    Science.gov (United States)

    Lu, Jian-Ping

    1999-01-01

    This document represents the final report for the NASA cooperative agreement which studied the application of carbon nanotubes. The accomplishments are reviewed: (1) Wrote a review article on carbon nanotubes and its potentials for applications in nanoscale quantum devices. (2) Extensive studies on the effects of structure deformation on nanotube electronic structure and energy band gaps. (3) Calculated the vibrational spectrum of nanotube rope and the effect of pressure. and (4) Investigate the properties of Li intercalated nanotube ropes and explore their potential for energy storage materials and battery applications. These studies have lead to four publications and seven abstracts in international conferences.

  5. PROGRESS ON ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Activated carbon fiber is one kind of important adsorption materials. These novel fibrousadsorbents have high specific surface areas or abundant functional groups, which make them havegreater adsorption/desorption rates and larger adsorption capacities than other adsorbents. They canbe prepared as bundle, paper, cloth and felt to meet various technical requirement. They also showreduction property. In this paper the latest progress on the studies of the preparation and adsorptionproperties of activated carbon fibers is reviewed. The application of these materials in drinking waterpurification, environmental control, resource recovery, chemical industry, and in medicine and healthcare is also presented.

  6. Climate, Carbon, Conservation and Communities

    Energy Technology Data Exchange (ETDEWEB)

    Vaugn, Kit; Brickell, Emily [WWF-UK (United Kingdom); Roe, Dilys; Reid, Hannah; Elliot, Jo

    2007-07-01

    The growing market for carbon offers great opportunities for linking greenhouse gas mitigation with conservation of forests and biodiversity, and the generation of local livelihoods. For these combined objectives to be achieved, strong governance is needed along with institutions that ensure poor people win, rather than lose out, from the new challenges posed by climate change. This briefing paper explores the opportunities from and limitations to carbon-based funds for conservation and development. It highlights mechanisms that may help secure benefits for climate, conservation and communities.

  7. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  8. Covalent crosslinking of carbon nanostructures

    Indian Academy of Sciences (India)

    Urmimala Maitra; M Pandeeswar; T Govindaraju

    2012-05-01

    Covalent crosslinking of carbon nanostructures of different dimensionalities such as nanodiamond, single walled carbon nanotubes (SWNTs) and graphene can yield useful homo- and hetero-binary conjugates. Binary conjugation of the nanocarbons has been achieved by introducing symmetrical amide-linkages between acid (-COOH) functionalized nanocarbons and a diamine-linker. The binary conjugates have been characterized by using transmission electron microscopy as well as infrared, Raman and photoluminescence spectroscopies. Dispersions of covalently crosslinked binary conjugates of nanocarbons could be obtained in dimethyl formamide (DMF). Composites of the binary conjugates with polymer can be readily prepared by using the DMF suspensions.

  9. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  10. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  11. Materials for carbon dioxide separation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingqing

    2014-10-01

    The CO{sub 2} adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO{sub 2} adsorption ability. Another promising class of materials for CO{sub 2} capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO{sub 3} and the relationship between physisorption and chemisorption properties of CaO-based materials.

  12. Thermal diffusivity mapping of 4D carbon-carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Dinwiddie, R.B.

    1997-03-01

    High resolution, 2-D thermal diffusivity maps of carbon-carbon composites were obtained by a state-of-the-art infrared thermal imaging system. Unlike the traditional single-point IR detector used for thermal diffusivity measurements, the IR camera is capable of capturing images in its 256 x 256 pixel Focal Plane Array detector in a snap-shot mode. The camera takes up to 200 images at a rate of 120 frames/second. The temperature resolution of the Ir camera is 0.015 C and the spatial resolution is 20 {micro}m. Thermal diffusivity was calculated for each pixel. Four-direction carbon-carbon composites were used for the thermal diffusivity mapping study. The fiber bundles along the heat flow direction were found to have 25% higher diffusivity values than the surrounding matrix. The diffusivity map also showed detailed local variations in diffusivity which were impossible to measure using a single-point detector. Accurate diffusivity maps are very important to the design of composite materials.

  13. Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite

    DEFF Research Database (Denmark)

    Bang, L T; Long, B D; Othman, R

    2014-01-01

    transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, and inductively coupled plasma (ICP) techniques were used to characterize the formation of CO3Ap and Si-CO3Ap. The results revealed that the silicate (SiO4(4-)) and carbonate (CO3(2-)) ions competed to occupy the phosphate (PO4...

  14. Oxidation Microstructure Studies of Reinforced Carbon/Carbon

    Science.gov (United States)

    Jacobson, Nathan S.; Curry, Donald M.

    2006-01-01

    Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 C deg) and arc-jet exposures (1538 C deg) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 C deg exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 C deg. However samples oxidized at 900, 1100, and 1300 C deg show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 C deg show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through matrix cracks, creating denuded fibers on the edges of the cracks. Even at 1538 C deg, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing in preference to the bulk fiber and matrix.

  15. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  16. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments

    Science.gov (United States)

    Keil, Richard

    2017-01-01

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers—including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments—all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  17. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.

    Science.gov (United States)

    Duan, Haiming; Rosén, Arne; Harutyunyan, Avetik; Curtarolo, Stefano; Bolton, Kim

    2008-11-01

    Density functional theory (DFT) calculations show that dimers and longer carbon strings are more stable than individual atoms on Fe(111) surfaces. It is therefore necessary to consider the formation of these species on the metal surfaces and their effect on the mechanism of single-walled nanotube (SWNT) growth. The good agreement between the trends (energies and structures) obtained using DFT and those based on the Brenner and AIREBO models indicate that these analytic models provide adequate descriptions of the supported carbon systems needed for valid molecular dynamics simulations of SWNT growth. In contrast, the AIREBO model provides a better description of the relative energies for isolated carbon species, and this model is preferred over the Brenner potential when simulating SWNT growth in the absence of metal particles. However, the PM3 semiempirical model appears to provide an even better description for these systems and, given sufficient computer resources, direct dynamics methods based on this model may be preferred.

  18. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  19. Palladium-Catalyzed Addition of Carbon Monoxide and Carbon Tetrachloride to 1-Octene in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    张群健; 孙均华; 江焕峰; 欧阳小月; 程金生

    2003-01-01

    The Pd-catalyzed addition of carbon monoxide and carbon tetrachloride to 1-octene gave coadduct [alkyl 2-( 2, 2, 2-trichloroethyl)octanoate] as the major product in supercritical carbon dioxide by using pyridine as the base. It was found that the selectivity and the yield of coadduct were greatly affected by the pressure of carbon dioxide, the reaction temperature and the amounts of alcohol and base used.

  20. Carbon pricing in the EU

    NARCIS (Netherlands)

    Brink, Corjan; Vollebergh, Herman R.J.; Werf, van der Edwin

    2016-01-01

    This paper studies various options to support allowance prices in the EU Emissions Trading System (ETS), such as adjusting the cap, an auction reserve price, and fixed and variable carbon taxes in addition to the EU ETS. We use a dynamic computable general equilibrium model that explicitly allows

  1. Putting a Price On Carbon

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Australian Government unveils its new climate change plan amid controversy The Australian Government made public its long awaited new climate change plan on July 10. Based on the plan,the government will collect a carbon tax from Australia’s major

  2. Hydrogen Storage in Carbon Nanotubes

    Science.gov (United States)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  3. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  4. Carbon Nanotube Field Emission Arrays

    Science.gov (United States)

    2011-06-01

    together in hexagons and pentagons forming a sphere like a soccer ball. Fullerenes of all sizes are single molecules, which is uniquely different from the...10] Bhushan, B. Springer Handbook of Nanotechnology. Springer - Verlag. 2007 [11] Pierson, H. Handbook of Carbon, Graphite, Diamond and Fullerenes

  5. Drought and ecosystem carbon cycling

    NARCIS (Netherlands)

    Molen, van der M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Philips, O.L.; Hurk, van den B.J.J.M.; Jeu, M.; Kruijt, B.; Teuling, A.J.; Werf, van der G.R.; Wang, G.

    2011-01-01

    Drought as an intermittent disturbance of the water cycle interacts with the carbon cycle differently than the ‘gradual’ climate change. During drought plants respond physiologically and structurally to prevent excessive water loss according to species-specific water use strategies. This has consequ

  6. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  7. Ongoing transients in carbonate compensation

    NARCIS (Netherlands)

    Boudreau, B.P.; Middelburg, J.J.; Hofmann, A.F.; Meysman, F.J.R.

    2010-01-01

    Uptake of anthropogenic CO2 is acidifying the oceans. Over the next 2000 years, this will modify the dissolution and preservation of sedimentary carbonate. By coupling new formulas for the positions of the calcite saturation horizon, zsat, the compensation depth, zcc, and the snowline, zsnow, to a b

  8. Carbon monoxide formation in tomatoes

    Energy Technology Data Exchange (ETDEWEB)

    Gladon, R.J.; Staby, G.L.

    1979-01-01

    Carbon monoxide (CO) is not emanated to any large extent from tomato fruits (Lycopersicon esculentum, Mill. cvs. Rutgers and Ohio MR-13), but is retained within the internal atmosphere. CO is found during all stages of fruit development, but no set pattern of CO concentration is evident.

  9. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2012-01-10

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  10. MOPITT Carbon Monoxide Over India

    Science.gov (United States)

    2002-01-01

    MOPITT observed high levels of carbon monoxide (red and yellow pixels) over the Indian sub-continent during March. These values are associated with industrial activity in the region just south of the Himalayan Mountains. Notice that to the north, the Himalayas are characterized by low values (blue pixels).

  11. Desalination with carbon aerogel electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  12. GEOLOGICAL STORAGE OF CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    Iva Kolenković

    2014-07-01

    Full Text Available Carbon dioxide geological storage represents a key segment of the carbon capture and storage system (CCS expected to significantly contribute to the reduction of its emissions, primarily in the developed countries and in those that are currently being industrialised. This approach to make use of the subsurface is entirely new meaning that several aspects are still in research phase. The paper gives a summary of the most important recent results with a short overview the possibilities in the Republic of Croatia. One option is to construct underground carbon dioxide storage facilities in deep coal seams or salt caverns. Another would be to use the CO2 in enhanced oil and gas recovery projects relying on the retention of the carbon dioxide in the deep reservoir because a portion of the injected gas is not going be produced together with hydrocarbons. Finally, the greatest potential estimated lies in depleted hydrocarbon reservoirs with significantly reduced reservoir pressure, as well as in the large regional units - layers of deep saline aquifers that extend through almost all sedimentary basins (the paper is published in Croatian.

  13. What Is My Carbon Footprint?

    Science.gov (United States)

    Galluzzo, Benjamin J.; McGivney-Burelle, Jean; Wagstrom, Rikki B.

    2016-01-01

    Human beings are having a profound impact on the environment. The opportunity to investigate this timely issue during one or two class periods gives algebra and precalculus students insight into a sustainability topic of great international concern--carbon footprints. Students use mathematical thinking in matters that are pertinent to their…

  14. Maldives Low Carbon Development Strategy

    DEFF Research Database (Denmark)

    Fenhann, Jørgen Villy; Ramlau, Marianne

    This report presents the findings of a study for low carbon development strategy for Maldives. The study was implemented under the Memorandum of Understanding between the Ministry of Environment and Energy (MEE), Maldives and URC and was financed by Danida, Denmark’s development aid agency under...

  15. Photoconductivity of Activated Carbon Fibers

    Science.gov (United States)

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  16. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal

    2013-01-03

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  17. Carbon Nanomaterials as Reinforcements for Composites

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.

  18. Carbon Monoxide Silicate Reduction System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is an innovative method that for the first time uses the strong reductant carbon monoxide to both reduce iron...

  19. Methods of making carbon fiber from asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George; Bowen, III, Daniel E.

    2017-02-28

    Making carbon fiber from asphaltenes obtained through heavy oil upgrading. In more detail, carbon fiber is made from asphaltenes obtained from heavy oil feedstocks undergoing upgrading in a continuous coking reactor.

  20. Carbon cycle: Ocean dissolved organics matter

    Science.gov (United States)

    Amon, Rainer M. W.

    2016-12-01

    Large quantities of organic carbon are stored in the ocean, but its biogeochemical behaviour is elusive. Size-age-composition relations now quantify the production of tiny organic molecules as a major pathway for carbon sequestration.

  1. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  2. Carbon cycle: New pathways in the sand

    Science.gov (United States)

    Rao, Alexandra

    2017-01-01

    Organic carbon decomposition in anoxic marine sediments was thought to be dominated by bacteria, but experimental data and microbial culture studies now show that microalgae buried in coastal sands may also play an important role in carbon turnover.

  3. (Carbon monoxide metabolism by photosynthetic bacteria)

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Research continued on the metabolism of carbon monoxide by Rhodospirillum rubrum. This report discusses progress on the activity, induction, inhibition, and spectroscopic analysis of the enzyme Carbon Monoxide Dehydrogenase. (CBS)

  4. Climate change: Carbon losses in the Alps

    Science.gov (United States)

    Kirk, Guy

    2016-07-01

    Soil carbon stocks depend on inputs from decomposing vegetation and return to the atmosphere as CO2. Monitoring of carbon stocks in German alpine soils has shown large losses linked to climate change and a possible positive feedback loop.

  5. Advanced Carbon Fiber Nears Broad Automotive Use

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    General Motors and Teijin Limited, a leader in the carbon fiber and composites industry, will co-develop advanced carbon fiber composite technologies for potential high-volume use globally in GM cars, trucks and crossovers.

  6. Moessbauer Spectroscopy of Martian and Sverrefjell Carbonates

    Science.gov (United States)

    Agresti, David G.; Morris, Richard V.

    2011-01-01

    Mars, in its putative "warmer, wetter: early history, could have had a CO2 atmosphere much denser than its current value of Chocolate Pots in Yellowstone National Park (YNP) are shown; they are the same within error. For Comanche carbonate summed over 210-270 K, (CS, QS) = (1.23, 1.95) mm/s. The value of QS for Sverrefjell carbonate at 295 K, (CS, QS) = (1.25, 1.87) mm/s, is also plotted, and the plot shows that the QS for the Sverrefjell carbonate agrees within error with the Comanche data extrapolated to 295 K. This agreement is additional evidence that the Sverrefjell carbonates are Mossbauer analogues for the Comanche carbonates, and that both carbonates might have precipitated from solutions that became carbonate rich by passing through buried carbonate deposits.

  7. Diagnostic Evaluation of Carbon Sources in CMAQ

    Science.gov (United States)

    Traditional monitoring networks measure only total elemental carbon (EC) and organic carbon (OC) routinely. Diagnosing model biases with such limited information is difficult. Measurements of organic tracer compounds have recently become available and allow for more detailed di...

  8. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  9. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth [Wheeling, WV; Plucinski, Janusz Wladyslaw [Glen Dale, WV

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  10. Robust optical carbon dioxide isotope analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  11. Urban warming reduces aboveground carbon storage

    DEFF Research Database (Denmark)

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert Roberdeau

    2016-01-01

    A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon...... photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future....... sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because...

  12. Small carbon chains in circumstellar envelopes

    CERN Document Server

    Hargreaves, R J; Bernath, P F

    2014-01-01

    Observations were made for a number of carbon-rich circumstellar envelopes using the Phoenix spectrograph on the Gemini South telescope to determine the abundance of small carbon chain molecules. Vibration-rotation lines of the $\

  13. Chapter 4: Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, J; Herzog, H

    2006-06-14

    Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) from 600 large pulverized coal plants ({approx}1000 MW each) or 3600 injection projects at the scale of Statoil's Sleipner project. At present, global carbon emissions from coal approximate 2.5 Gt C. However, given reasonable economic and demand growth projections in a business-as-usual context, global coal emissions could account for 9 Gt C. These volumes highlight the need to develop rapidly an understanding of typical crustal response to such large projects, and the magnitude of the effort prompts certain concerns regarding implementation, efficiency, and risk of the enterprise. The key questions of subsurface engineering and surface safety associated with carbon sequestration are: (1) Subsurface issues: (a) Is there enough capacity to store CO{sub 2} where needed? (b) Do we understand storage mechanisms well enough? (c) Could we establish a process to certify injection sites with our current level of understanding? (d) Once injected, can we monitor and verify the movement of subsurface CO{sub 2}? (2) Near surface issues: (a) How might the siting of new coal plants be influenced by the distribution of storage sites? (b) What is the probability of CO{sub 2} escaping from injection sites? What are the attendant risks? Can we detect leakage if it occurs? (3) Will surface leakage negate or

  14. The Australian terrestrial carbon budget

    Directory of Open Access Journals (Sweden)

    V. Haverd

    2013-02-01

    Full Text Available This paper reports a study of the full carbon (C-CO2 budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP; net ecosystem production (NEP; fire; land use change (LUC; riverine export; dust export; harvest (wood, crop and livestock and fossil fuel emissions (both territorial and non-territorial. Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012, a fine-spatial-resolution (0.05° offline modelling environment in which predictions of CABLE (Wang et al., 2011, a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 24 (1σ error on mean and 68 ± 15 TgC yr−1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes, which caused net losses of 26 ± 4 TgC yr−1 and 18 ± 7 TgC yr−1, respectively. The resultant net biome production (NBP is 36 ± 29 TgC yr−1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 ± 6 TgC yr−1 by 38 ± 30%. The interannual variability (IAV in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.

  15. Coating Carbon Fibers With Platinum

    Science.gov (United States)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  16. Carbon Footprint of Beef Cattle

    Directory of Open Access Journals (Sweden)

    Jim Dyer

    2012-12-01

    Full Text Available The carbon footprint of beef cattle is presented for Canada, The United States, The European Union, Australia and Brazil. The values ranged between 8 and 22 kg CO2e per kg of live weight (LW depending on the type of farming system, the location, the year, the type of management practices, the allocation, as well as the boundaries of the study. Substantial reductions have been observed for most of these countries in the last thirty years. For instance, in Canada the mean carbon footprint of beef cattle at the exit gate of the farm decreased from 18.2 kg CO2e per kg LW in 1981 to 9.5 kg CO2e per kg LW in 2006 mainly because of improved genetics, better diets, and more sustainable land management practices. Cattle production results in products other than meat, such as hides, offal and products for rendering plants; hence the environmental burden must be distributed between these useful products. In order to do this, the cattle carbon footprint needs to be reported in kg of CO2e per kg of product. For example, in Canada in 2006, on a mass basis, the carbon footprint of cattle by-products at the exit gate of the slaughterhouse was 12.9 kg CO2e per kg of product. Based on an economic allocation, the carbon footprints of meat (primal cuts, hide, offal and fat, bones and other products for rendering were 19.6, 12.3, 7 and 2 kg CO2e per kg of product, respectively.

  17. Carbon Nanomaterials for Road Construction

    Directory of Open Access Journals (Sweden)

    Zaporotskova Irina Vladimirovna

    2015-05-01

    Full Text Available The requirement of developing and modernizing the roads in Russia and in the Volgograd region in particular, is based on need of expanding the directions of scientific research on road and transport complexes. They have to be aimed at the development of the theory of transport streams, traffic safety increase, and, first of all, at the application of original methods of road development and modernization, introduction of modern technologies and road-building materials.On the basis of the analysis of the plans for transportation sphere development in the Volgograd region assuming the need to apply the new technologies allowing to create qualitative paving, the authors propose the technology of creating a heavy-duty paving with the use of carbon nanomaterial. The knowledge on strengthening the characteristics of carbon nanotubes is a unique material for nanotechnology development which allowed to assume the analysis of general information about asphalt concrete. The analysis showed that carbon nanotubes can be used for improvement of operational characteristics of asphalt concrete, and it is possible to carry out additives of nanotubes in hot as well as in cold bitumen. The article contains the basic principles of creation of the new road material received by means of bitumen reinforcing by carbon nanotubes. The structures received by the offered technique binding on the basis of the bitumens modified by carbon nanomaterial can be used for coverings and bases on highways of all categories in all road and climatic zones of Russia. The technical result consists in increasing the durability and elasticity of the received asphalt covering, and also the increase of water resistance, heat resistance and frost resistance, the expansion of temperature range of its laying in the field of negative temperatures.

  18. Issues behind Competitiveness and Carbon Leakage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report explores the vulnerability of heavy industry to carbon leakage and competitiveness loss. It reviews the existing literature on competitiveness and carbon leakage under uneven climate policies. It also suggests a statistical method to track carbon leakage, and applies this methodology to Phase I of the EU emissions trading scheme, for various industrial activities: iron and steel, cement, aluminium and refineries. Finally, it reviews measures to mitigate carbon leakage, as discussed in Australia, Canada, Europe, New Zealand and the US.

  19. Enabling food security by verifying agricultural carbon

    DEFF Research Database (Denmark)

    Kahiluoto, H; Smith, P; Moran, D;

    2014-01-01

    Rewarding smallholders for sequestering carbon in agricultural land can improve food security while mitigating climate change. Verification of carbon offsets in food-insecure regions is possible and achievable through rigorously controlled monitoring......Rewarding smallholders for sequestering carbon in agricultural land can improve food security while mitigating climate change. Verification of carbon offsets in food-insecure regions is possible and achievable through rigorously controlled monitoring...

  20. Selective Oxidation of Soft Grade Carbon

    OpenAIRE

    Zecevic, N

    2007-01-01

    Oil-furnace carbon black is produced by pyrolysis of gaseous or liquid hydrocarbons or their mixtures. The oil feedstock for the production of oil-furnace carbon black is mainly composed of high-boiling aromatic hydrocarbons, which are residues of petroleum cracking, while the gaseous raw material is commonly natural gas. Most of the oil-furnace carbon black production (> 99 %) is used as a reinforcing agent in rubber compounds. Occasionally, oil-furnace carbon blacks are used in contact with...

  1. Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection

    Science.gov (United States)

    2009-02-01

    Carbon Nanotube Functionalization /Doping Polyvinylpyrrolidone (PVP) A) p-Doping C) Polymer Wrapping Model B) n-Doping Polyethyleneimine ( PEI ) SWCNT Paint...fluorine-containing) groups functions as the barrier layer Multilayer Smart Carbon Nanotube Coating Insoluble polymer layer top coating -PMMA Substrate...Thin Coatings of Polymeric Carbon and Carbon Nanotubes for Corrosion Protection Zafar Iqbal Department of Chemistry and Environmental Science New

  2. Directed graph based carbon flow tracing for demand side carbon obligation allocation

    DEFF Research Database (Denmark)

    Sun, Tao; Feng, Donghan; Ding, Teng

    2016-01-01

    In order to achieve carbon emission abatement, some researchers and policy makers have cast their focus on demand side carbon abatement potentials. This paper addresses the problem of carbon flow calculation in power systems and carbon obligation allocation at demand side. A directed graph based...

  3. Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance

    NARCIS (Netherlands)

    Kindler, R.; Siemens, J.; Kaiser, K.; Moors, E.J.

    2011-01-01

    Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and

  4. Shungite carbon catalytic effect on coal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Grigorieva, E.N.; Rozhkova, N.N. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperature

    1999-07-01

    The catalytic ability of shungite carbon in reactions of coal organic matter models appeared to be due to its fullerene structure only. Transition metal sulphides present in shungite carbon are not active in the conditions of coal treatment. Shungite carbon was shown to exhibit an acceleration of thermolysis of coal and organic matter models, mainly dehydrogenation. 5 refs., 1 tabs.

  5. 21 CFR 582.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  6. Lithographically defined microporous carbon-composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Washburn, Cody M.; Lambert, Timothy N.; Finnegan, Patrick Sean; Wheeler, David R.

    2016-12-06

    A microporous carbon scaffold is produced by lithographically patterning a carbon-containing photoresist, followed by pyrolysis of the developed resist structure. Prior to exposure, the photoresist is loaded with a nanoparticulate material. After pyrolysis, the nanonparticulate material is dispersed in, and intimately mixed with, the carbonaceous material of the scaffold, thereby yielding a carbon composite structure.

  7. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  8. Advances in carbonate exploration and reservoir analysis

    Science.gov (United States)

    Garland, J.; Neilson, J.E.; Laubach, S.E.; Whidden, K.J.

    2012-01-01

    Carbonate reservoirs contain an increasingly important percentage of the world’s hydrocarbon reserves. This volume presents key recent advances in carbonate exploration and reservoir analysis. As well as a comprehensive overview of the trends in carbonate over the years, the volume focuses on four key areas:

  9. Filling of carbon nanotubes and nanofibres

    Directory of Open Access Journals (Sweden)

    Reece D. Gately

    2015-02-01

    Full Text Available The reliable production of carbon nanotubes and nanofibres is a relatively new development, and due to their unique structure, there has been much interest in filling their hollow interiors. In this review, we provide an overview of the most common approaches for filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applications.

  10. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  11. RIVERINE INORGANIC CARBON DYNAMICS: OVERVIEW AND PERSPECTIVE

    Institute of Scientific and Technical Information of China (English)

    YAO Guan-rong; GAO Quan-zhou

    2006-01-01

    Inorganic carbon, the great part of the riverine carbon exported to the ocean, plays an important role in the global carbon cycle and ultimately impacts the coupled carbon-climate system. An overview was made on both methods and results of the riverine inorganic carbon researches. In addition to routine in situ survey, measurement and calculation,the direct precipitation method and the gas evolution technique were commonly used to analyze dissolved inorganic carbon in natural water samples. Soil CO2, carbonate minerals and atmospheric CO2 incorporated into riverine inorganic carbon pool via different means, with bicarbonate ion being the dominant component. The concentration of inorganic carbon, the composition of carbon isotopes (δ13C and △14C), and their temporal or spatial variations in the streams were controlled by carbon input, output and changes of carbon biogeochemistry within the riverine system. More accurate flux estimation, better understanding of different influential processes, and quantitative determination of various inputs or outputs need to be well researched in future.

  12. Membrane analysis with amphiphilic carbon dots.

    Science.gov (United States)

    Nandi, Sukhendu; Malishev, Ravit; Parambath Kootery, Kaviya; Mirsky, Yelena; Kolusheva, Sofiya; Jelinek, Raz

    2014-09-14

    Newly-synthesized amphiphilic carbon dots were used for spectroscopic analysis and multicolour microscopic imaging of membranes and live cells. We show that Förster resonance energy transfer (FRET) occurred from the amphiphilic carbon dots to different membrane-associated fluorescence acceptors. The amphiphilic carbon dots enabled imaging of membrane disruption by the beta-amyloid peptide.

  13. Microbial carbon sequestration - an IRCCM research project

    Energy Technology Data Exchange (ETDEWEB)

    Boetius, A.; Wolf-Gladrow, D. [Alfred-Wegener-Institute fuer Polar- und Meeresforschung, Bremerhaven (Germany)

    2003-07-01

    The paper examines two major processes representing a sink for carbon in the ocean: (1) sedimentation of biogenic carbonate from productive surface waters and (2) carbon sequestration by methane oxidation above gas hydrate and other sites of methane seepage. The importance of understanding the submarine environments at the interface between the geo- and biosphere is stressed. 3 figs.

  14. Some Considerations about Low-Carbon Logistics

    Institute of Scientific and Technical Information of China (English)

    LI Yifan

    2013-01-01

    More and more People have paid attention to low-carbon logistics.This article,based on the characteristics of low-carbon logistics,proposes the effective ways to achieve low-carbon logistics,including logistics information,effective supply chain management,establishing environmental logistics and reverse logistics.

  15. Carbon sp chains in graphene nanoholes

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Ferri, Nicola; Onida, Giovanni

    2012-01-01

    Nowadays sp carbon chains terminated by graphene or graphitic-like carbon are synthesized routinely in several nanotech labs. We propose an ab initio study of such carbon-only materials, by computing their structure and stability, as well as their electronic, vibrational and magnetic properties. We...

  16. Preparation of flat carbon support films

    NARCIS (Netherlands)

    Koning, RI; Oostergetel, GT; Brisson, A

    2003-01-01

    Wrinkling of carbon support films is known to limit the resolution of electron microscopy images of protein two-dimensional crystals. The origin of carbon wrinkling during preparation of the support films was investigated by reflected light microscopy. We observed that carbon films go through severa

  17. Oxygen electrode in molten carbonate fuel cells

    Science.gov (United States)

    Dave, B. B.; White, R. E.; Srinivasan, S.; Appleby, A. J.

    1990-12-01

    During this quarter, impedance data were analyzed for an oxygen reduction process in molten carbonate electrolyte and a manuscript, Impedance Analysis for Oxygen Reduction in a Lithium Carbonate Melt: Effects of Partial Pressure of Carbon Dioxide and Temperature, was prepared to be submitted to Journal of the Electrochemical Society for publication.

  18. Cast Iron With High Carbon Content

    Science.gov (United States)

    Curreri, P. A.; Hendrix, J. C.; Stefanescu, D. M.

    1986-01-01

    Method proposed for solidifying high-carbon cast iron without carbon particles segregating at upper surface. Solidification carried out in low gravity, for example on airplane flying free-fall parabolic trajectory. Many different microstructures obtained by proposed technique, and percentage by weight of carbon retained in melt much higher than at present.

  19. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  20. High surface area silicon carbide-coated carbon aerogel

    Science.gov (United States)

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  1. A Cenozoic record of the equatorial Pacific carbonate compensation depth

    Digital Repository Service at National Institute of Oceanography (India)

    Palike, H.; Lyle, M.W.; Nishi, H.; Raffi, I.; Ridgwell, A; Gamage, K.; Klaus, A; Acton, G.; Anderson, L.; Backman, J.; Baldauf, J.; Beltran, C.; Bohaty, S.M.; Bown, P.; Busch, W.; Channell, J.E.T.; Chun, C.O.J.; Delaney, M.; Dewangan, P.; et al.

    of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation...

  2. Quantification of carbon nanomaterials in vivo.

    Science.gov (United States)

    Wang, Haifang; Yang, Sheng-Tao; Cao, Aoneng; Liu, Yuanfang

    2013-03-19

    A diverse array of carbon nanomaterials (NMs), including fullerene, carbon nanotubes (CNTs), graphene, nanodiamonds, and carbon nanoparticles, have been discovered and widely applied in a variety of industries. Carbon NMs have been detected in the environment and have a strong possibility of entering the human body. The safety of carbon NMs has thus become a serious concern in academia and society. To achieve strict biosafety assessments, researchers need to fully understand the effects and fates of NMs in the human body, including information about absorption, distribution, metabolism, excretion, and toxicity (ADME/T). To acquire the ADME data, researchers must quantify NMs, but carbon NMs are very difficult to quantify in vivo. The carbon background in a typical biological system is high, particularly compared with the much lower concentration of carbon NMs. Moreover, carbon NMs lack a specific detection signal. Therefore, isotopic labeling, with its high sensitivity and specificity, is the first choice to quantify carbon NMs in vivo. Previously, researchers have used many isotopes, including ¹³C, ¹⁴C, ¹²⁵I, ¹³¹I, ³H, ⁶⁴Cu, ¹¹¹In, ⁸⁶Y, 99mTc, and ⁶⁷Ga, to label carbon NMs. We used these isotopic labeling methods to study the ADME of carbon NMs via different exposure pathways in animal models. Except for the metabolism of carbon NMs, which has seldom been investigated, significant amounts of data have been reported on the in vivo absorption, distribution, excretion, and toxicity of carbon NMs, which have revealed characteristic behaviors of carbon NMs, such as reticuloendothelial system (RES) capture. However, the complexity of the biological systems and diverse preparation and functionalization of the same carbon NMs have led to inconsistent results across different studies. Therefore, the data obtained so far have not provided a compatible and systematic profile of biosafety. Further efforts are needed to address these problems. In

  3. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Science.gov (United States)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  4. Poly(urethane–carbonate)s from Carbon Dioxide

    KAUST Repository

    Chen, Zuliang

    2017-03-09

    A one-pot, two-step protocol for the direct synthesis of polyurethanes containing few carbonate linkages through polycondensation of diamines, dihalides, and CO2 in the presence of Cs2CO3 and tetrabutylammonium bromide is described. The conditions were optimized by studying the polycondensation of CO2 with 1,6-hexanediamine and 1,4-dibromobutane as model monomers. Then, various diamines and dihalides were tested under optimal conditions. Miscellaneous samples of such carbonate-containing polyurethanes exhibiting molar masses from 6000 to 22 000 g/mol (GPC) and yields higher than 85% were obtained. The thermal properties of such polyurethanes were unveiled by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA): they were found very similar to those of traditional polyurethanes obtained by diisocyanates + diols polycondensation.

  5. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  6. Synthesis pf dimethyl carbonate in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ballivet-Tkatchenko, D.; Plasseraud, L. [Universite de Bourgogne-UFR Sciences et Techniques, Dijon (France). Lab. de Synthese et Electrosynthese Organometalliques]. E-mail: ballivet@u-bourgogne.fr; Ligabue, R.A. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Dept. de Quimica Pura

    2006-01-15

    The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu{sub 3}SnOCH{sub 3}, n-Bu{sub 2}Sn(OCH{sub 3}){sub 2}, and [n-Bu{sub 2}(CH{sub 3}O)Sn]{sub 2}O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO{sub 2} pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO{sub 2} pressure higher than 16 MPa. Under these conditions, CO{sub 2} acted as a reactant and a solvent. (author)

  7. Synthesis of dimethyl carbonate in supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    D. Ballivet-Tkatchenko

    2006-03-01

    Full Text Available The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH32 , and [n-Bu2(CH3OSn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.

  8. Mathematical models of carbon-carbon composite deformation

    Science.gov (United States)

    Golovin, N. N.; Kuvyrkin, G. N.

    2016-09-01

    Mathematical models of carbon-carbon composites (CCC) intended for describing the processes of deformation of structures produced by using CCC under high-temperature loading are considered. A phenomenological theory of CCC inelastic deformation is proposed, where such materials are considered as homogeneous ones with effective characteristics and where their high anisotropy of mechanical characteristics and different ways of resistance to extension and compression are taken into account. Micromechanical models are proposed for spatially reinforced CCC, where the difference between mechanical characteristics of components and the reinforcement scheme are taken into account. Themodel parameters are determined from the results of experiments of composite macrospecimens in the directions typical of the material. A version of endochronictype theory with several internal times "launched" for each composite component and related to some damage accumulation mechanisms is proposed for describing the inelastic deformation. Some practical examples are considered.

  9. Carbonate Looping for De-Carbonization of Cement Plants

    OpenAIRE

    2011-01-01

    Cement industry is one of the largest emitter of CO2 other than power generation plants, which includes the emissions from combustion of fuel and also from calcination of limestone for clinker production. In order to reduce CO2 emissions from the cement industry an effective an economically feasible technology is to be developed. The carbonate looping process is a promising technology, which is particularly suitable for the cement industry as limestone could be used for capture and release of...

  10. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  11. Evolution of Sustainable Carbon Cycling Processes in China

    Institute of Scientific and Technical Information of China (English)

    Zhuang Yahui; Zhang Hongxun; Wang Xiaoke; Fang Jinyun

    2004-01-01

    This report summarizes the surveys on carbon inventories and initiatives on sustainable carbon cycling taken by RCEES. The first part of this report deals with the concept of sustainable carbon cycling, the historical evolution of carbon cycling processes in China, carbon pool enhancement, value addition, carbon sequestration and carbon balance.The second part covers the modeling of carbon dynamics, emission inventories of various carboncontaining greenhouse gases and their potential abatement measures.

  12. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  13. Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.

  14. Catalytic removal of carbon monoxide over carbon supported palladium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Avanish Kumar [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Saxena, Amit [Centre for Fire Explosive and Environmental Safety, Timarpur, Delhi-110054 (India); Shah, Dilip; Mahato, T.H. [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Singh, Beer, E-mail: beerbs5@rediffmail.com [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Shrivastava, A.R.; Gutch, P.K. [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Shinde, C.P. [School of Studies in Chemistry, Jiwaji University, Gwalior-474002 (MP) (India)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Carbon supported palladium (Pd/C) catalyst was prepared. Black-Right-Pointing-Pointer Catalytic removal of CO over Pd/C catalyst was studied under dynamic conditions. Black-Right-Pointing-Pointer Effects of Pd %, CO conc., humidity, GHSV and reaction environment were studied. - Abstract: Carbon supported palladium (Pd/C) catalyst was prepared by impregnation of palladium chloride using incipient wetness technique, which was followed by liquid phase reduction with formaldehyde. Thereafter, Pd/C catalyst was characterized using X-ray diffractometery, scanning electron microscopy, atomic absorption spectroscopy, thermo gravimetry, differential scanning calorimetry and surface characterization techniques. Catalytic removal of carbon monoxide (CO) over Pd/C catalyst was studied under dynamic conditions. Pd/C catalyst was found to be continuously converting CO to CO{sub 2} through the catalyzed reaction, i.e., CO + 1/2O{sub 2} {yields} CO{sub 2}. Pd/C catalyst provided excellent protection against CO. Effects of palladium wt%, CO concentration, humidity, space velocity and reaction environment were also studied on the breakthrough behavior of CO.

  15. CO2 Capture by Carbon Aerogel–Potassium Carbonate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2016-01-01

    Full Text Available Recently, various composites for reducing CO2 emissions have been extensively studied. Because of their high sorption capacity and low cost, alkali metal carbonates are recognized as a potential candidate to capture CO2 from flue gas under moist conditions. However, undesirable effects and characteristics such as high regeneration temperatures or the formation of byproducts lead to high energy costs associated with the desorption process and impede the application of these materials. In this study, we focused on the regeneration temperature of carbon aerogel–potassium carbonate (CA–KC nanocomposites, where KC nanocrystals were formed in the mesopores of the CAs. We observed that the nanopore size of the original CA plays an important role in decreasing the regeneration temperature and in enhancing the CO2 capture capacity. In particular, 7CA–KC, which was prepared from a CA with 7 nm pores, exhibited excellent performance, reducing the desorption temperature to 380 K and exhibiting a high CO2 capture capacity of 13.0 mmol/g-K2CO3, which is higher than the theoretical value for K2CO3 under moist conditions.

  16. Oscillation of carbon molecules inside carbon nanotube bundles

    Science.gov (United States)

    Thamwattana, Ngamta; Cox, Barry J.; Hill, James M.

    2009-04-01

    In this paper, we investigate the mechanics of a nanoscaled gigahertz oscillator comprising a carbon molecule oscillating within the centre of a uniform concentric ring or bundle of carbon nanotubes. Two kinds of oscillating molecules are considered, which are a carbon nanotube and a C60 fullerene. Using the Lennard-Jones potential and the continuum approach, we obtain a relation between the bundle radius and the radii of the nanotubes forming the bundle, as well as the optimum bundle size which gives rise to the maximum oscillatory frequency for both the nanotube-bundle and the C60-bundle oscillators. While previous studies in this area have been undertaken through molecular dynamics simulations, this paper emphasizes the use of applied mathematical modelling techniques, which provides considerable insight into the underlying mechanisms of the nanoscaled oscillators. The paper presents a synopsis of the major results derived in detail by the present authors (Cox et al 2007 Proc. R. Soc. A 464 691-710 and Cox et al 2007 J. Phys. A: Math. Theor. 40 13197-208).

  17. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    Science.gov (United States)

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  18. Carbon petrology in cometary dust

    Science.gov (United States)

    Rietmeijer, Frans J. M.

    1992-01-01

    Chondritic porous (CP) interplanetary dust particles (IDP's) are collected in the Earth's stratosphere. There exists an extensive database on major and minor element chemistry, stable isotopes, noble gas abundances and mineralogy of many CP IDP's, as well as infrared and Raman spectroscopic properties. For details on the mineralogy, chemistry and physical properties of IDP's, I refer to the reviews by Mackinnon and Rietmeijer (1987), Bradley et al. (1988) and Sandford (1987). Texture, mineralogy (Mackinnon and Rietmeijer, 1987) and chemistry (Schramm et al., 1989; Flynn and Sutton, 1991) support the notion that CP IDP's are a unique group of ultrafine-grained extraterrestiral materials that are distinct from any known meteorite class. Their fluffy, or porous, morphology suggests that CP IDP's probably endured minimal alteration by protoplanetary processes since their formation. It is generally accepted that CP IDP's are solid debris from short-period comets. The evidence is mostly circumstantial but this notion gained significant support based on the comet Halley dust data (Brownlee, 1990). In this paper, I will accept that CP IDP's are indeed cometary dust. The C/Si ratio in CP IDP's is 3.3 times higher than in CI carbonaceous chondrites (Schramm et al. 1989). The intraparticle carbon distribution is heteorogeneous (Rietmeijer and McKay, 1986). Carbon occurs both in oxidized and reduced forms. Analytical electron microscope (AEM) and Raman spectroscopic analyses have shown the presence of several carbon forms in CP IDP's but the data are scattered in the literature. Carbons in cometary CP IDP's are among the most pristine Solar System carbons available for laboratory study. Similar to a recently developed petrological model for the diversity of layer silicates in CP IDP's (Zolensky, 1991) that is useful to constrain in situ aqueous alteration in comets (Rietmeijer and Mackinnon, 1987a), I here present the first effort to develop a petrological concept of carbons

  19. Carbon sequestration via wood burial.

    Science.gov (United States)

    Zeng, Ning

    2008-01-03

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink.It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 +/- 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized.Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  20. Carbon sequestration and eruption hazards

    Science.gov (United States)

    Zhang, Y.

    2007-12-01

    In order to reduce the buildup of carbon dioxide in the atmosphere, proposals have been made to sequestrate carbon in ocean, or in coal mines and other underground formations. High gas concentration in ocean or underground formations has to potential to power gas-driven eruptions. In this presentation, possible eruption hazards are explored. Whenever carbon dioxide is sequestrated in the form of carbon dioxide gas, or dissolved and/or absorbed carbon dioxide, it is necessary to exercise caution to avoid gas-driven eruption hazard. It is long known that explosive volcanic eruptions are driven by H2O gas in magma. Lake eruptions powered by dissolved CO2 in lake bottom water were discovered in the 1980's (Kling et al., 1987; Zhang, 1996). Gas-driven ocean eruptions with mechanism similar to lake eruptions have been hypothesized (Zhang, 2003; Zhang and Kling, 2006) although not confirmed. Mud volcanos are commonly thought to be driven by methane-rich fluids in sediment (Milkov, 2000). Recently, Zhang et al. (2007) have proposed that coal outbursts in underground coal mines are driven by dissolved high CO2 concentration in coal, causing coal fragmentation and outburst. That is, coal outbursts may be regarded as a new type of gas-driven eruptions. Therefore, high concentrations of free gas or dissolved/absorbed gas may power eruptions of magma, lake water, ocean water, sediment, and coal. Gas- driven volcanic, lake and ocean eruptions are due to volume expansion from bubble growth, whereas gas-driven coal and sediment eruptions are due to high gas-pressure, leading to fragmentation of coal and sediment. (In explosive volcanism, magma fragmentation is also a critical point.) The threshold conditions for many of these eruptions are not known yet. In planning large (industrial) scale injection of CO2 into a natural reservoir, it is important to know the eruption threshold and design the injection scheme accordingly. More safe sequestration in terms of eruption hazards would

  1. Carbon sequestration via wood burial

    Directory of Open Access Journals (Sweden)

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  2. Effects of freeze drying and silver staining on carbonization of cellulose: carbon nano-materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Young; Im, Hyun Sik [Dongguk University, Seoul (Korea, Republic of)

    2012-05-15

    We investigated the effects of sulfuric acid and silver particles on the carbonization of natural cellulose from Halocynthia. We carried out thermogravimetry and used transmission electron microscopy measurements to study the yield of carbon and the structure of the carbonized nano-fiber. We found that the addition of sulfuric acid and silver particles to the cellulose fiber enhanced the yield of carbon while keeping the original structure of the carbon nano-fiber.

  3. On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols

    OpenAIRE

    A. Karanasiou; Diapouli, E; Viana, M; Alastuey, A.; Querol, X.; C. Reche; Eleftheriadis, K.

    2010-01-01

    Carbonaceous species, usually classified into two categories, organic carbon (OC) and elemental carbon (EC), constitute an important component of the atmospheric aerosol. Carbonate carbon (CC), or inorganic carbon, another constituent of carbonaceous material, is often not considered in many atmospheric chemistry studies. The reason for this may be its low contribution to fine particle mass in most areas studied, along with the difficulties in its analytical determination in atmospheric aeros...

  4. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  5. Low Carbon: Do the Green Thing

    Institute of Scientific and Technical Information of China (English)

    Wang Ting

    2010-01-01

    @@ Apparently,till the end of the year 2009,the words related with climate change,Copenhagen,as well as low-carbon almost spread all over the world.Just click the web,only 0.14 seconds,nearly 27,600,000 low-carbon related results were showcasing obviously.Low carbon economy,low carbon life...the things that related with the 'low-carbon' has become a trend or a focus,gradually changing our daily life;or,the whole world cares more about their living condition and makes effort to avoid suffering the crack of doom that the '2012' told us.

  6. Liberating energy from carbon introduction to decarbonization

    CERN Document Server

    Muradov, Nazim

    2014-01-01

    Liberating Energy from Carbon analyzes energy options in a carbon-constrained world. Major strategies and pathways to decarbonizing the carbon-intensive economy are laid out with a special emphasis on the prospects of achieving low-risk atmospheric CO2 levels. The opportunities and challenges in developing and bringing to market novel low and zero-carbon technologies are highlighted from technical, economic and environmental viewpoints. This book takes a unique approach by treating carbon in a holistic manner?tracking its complete transformation chain from fossil fuel sources to the unique pro

  7. Physical cleaning of high carbon fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Killmeyer, Richard P. [National Energy Technology Laboratory, US Department of Energy, P.O. Box 10940, Cochran Mills Roads, 15236 Pittsburgh, PA (United States); Maroto-Valer, M. Mercedes; Andresen, John M. [The Energy Institute, The Pennsylvania State University, 405 Academic Activities Building, 16802-2308 University Park, PA (United States); Ciocco, Michael V.; Zandhuis, Paul H. [Parson Project Services Inc, National Energy Technology Laboratory, P.O. Box 618, 15129 Library, Pittsburgh, PA (United States)

    2002-04-20

    An industrial fly ash sample was cleaned by three different processes, which were triboelectrostatic separation, ultrasonic column agglomeration, and column flotation. The unburned carbon concentrates were collected at purities ranging up to 62% at recoveries of 62%. In addition, optical microscopy studies were conducted on the final carbon concentrates to determine the carbon forms (inertinite, isotropic coke and anisotropic coke) collected from these various physical-cleaning processes. The effects of the various cleaning processes on the production of different carbon forms from high carbon fly ashes will be discussed.

  8. Perspectives in the use of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Aresta Michele

    1999-01-01

    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  9. Tropical forestry practices for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Costa, P. [Innoprise-Face Foundation Rainforest Rehabilitation Project, Lahad Datu, Sabah (Malaysia)

    1996-12-31

    Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of greenhouse gases and climate change. This chapter provides an overview of various aspects related to carbon sequestration through forestry. It describes the main concepts of carbon fixation; the trends in global environmental policy are discussed; different forestry practices are listed; and examples of existing projects are given. The paper also discusses issues related to the quantification of carbon sequestration potential of different forestry options. This section was included with the intention of specifically highlighting some problems related to commercial transactions for carbon sequestration. 92 refs., 6 figs., 2 tabs.

  10. Characterization of electrospun lignin based carbon fibers

    Science.gov (United States)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 - 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  11. Chromium isotope uptake in carbonates

    DEFF Research Database (Denmark)

    Rodler, Alexandra

    composition of contemporaneous seawater. Marine carbonates are ubiquitous throughout Earth’s rock record rendering them a particularly interesting archive for constraining past changes in ocean chemistry. This thesis includes an investigation of the fractionation behavior of Cr isotopesduring coprecipitation......Chromium (Cr) is a redox sensitive element potentially capable of tracing fine-scale fluctuations of the oxygenation of Earth’s early surface environments and seawater. The Cr isotope composition of carbonates could perhaps be used as paleo-redox proxy to elucidate changes in the geological past...... related to the rise of oxygen and the evolution of the biosphere. However, before the Cr isotopesystem can be applied to faithfully delineate paleo-environmental changes, careful assessment of the signal robustness and a thorough understanding of the Cr cycle in Earth system processes is necessary...

  12. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  13. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  14. Afforestation effects on soil carbon

    DEFF Research Database (Denmark)

    Bárcena, Teresa G

    Understanding carbon (C) dynamics has become increasingly important due to the major role of C in global warming. Soils store the largest amount of organic C in the biosphere; therefore, changes in this compartment can have a large impact on the C storage of an ecosystem. Land-use change is a main...... respiration. In Denmark chronosequences (i.e. space-for-time substitution) of oak and Norway spruce stands at the Vestskoven site were the tool used to explore these changes. Soil OC dynamics predicted by the chronosequence approach have often been used, however they never been validated by resampling before...... driver of changes in soil organic carbon (SOC) pools worldwide. In Europe, afforestation (i.e. the establishment of new forest on non-forested land), is a major land-use change driven by economic and environmental interests due to its role as a C sequestration tool following the ratification of the Kyoto...

  15. Carbon Nanotubes and Related Structures

    Directory of Open Access Journals (Sweden)

    Kingsuk Mukhopadhyay

    2008-07-01

    Full Text Available Carbon nanotubes have attracted the fancy of many scientists world wide. The small dimensions,strength, and the remarkable physical properties of these structures make them a unique material with a whole range of promising applications. In this review, the structural aspects, the advantages and disadvantages of different for their procedures synthesis, the qualitative and quantitative estimation of carbon nanotubes by different analytical techniques, the present status on their applications as well as the current challenges faced in the application field, national, in particular DRDO, DMSRDE status, and interest in this field, have been discussed.Defence Science Journal, 2008, 58(4, pp.437-450, DOI:http://dx.doi.org/10.14429/dsj.58.1666

  16. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  17. Graphene: carbon in two dimensions

    Directory of Open Access Journals (Sweden)

    Mikhail I. Katsnelson

    2007-01-01

    Full Text Available Carbon is one of the most intriguing elements in the Periodic Table. It forms many allotropes, some known from ancient times (diamond and graphite and some discovered 10-20 years ago (fullerenes and nanotubes. Interestingly, the two-dimensional form (graphene was only obtained very recently, immediately attracting a great deal of attention. Electrons in graphene, obeying a linear dispersion relation, behave like massless relativistic particles. This results in the observation of a number of very peculiar electronic properties – from an anomalous quantum Hall effect to the absence of localization – in this, the first two-dimensional material. It also provides a bridge between condensed matter physics and quantum electrodynamics, and opens new perspectives for carbon-based electronics.

  18. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  19. Green Logistics: the Carbon Agenda

    Directory of Open Access Journals (Sweden)

    2010-09-01

    Full Text Available Over the next few decades European companies will come under intense pressure to cut their greenhouse gas (GHG emissions in an effort to achieve very ambitious carbon reduction targets at national, EU and global levels by 2050. This paper presents a framework for the decarbonisation of their logistical activities based on five key freight transport parameters: freight transport intensity, modal split, vehicle utilization, energy efficiency and the carbon intensity of the energy used in logistics. It examines the potential to cut GHG emissions by altering each of these parameters. Consideration is also given to the decarbonisation of warehousing operations. It is concluded that many of the GHG-reduction measures will also yield financial benefit. The decarbonisation of other sectors of the economy may, however, generate greater demand for logistics services.

  20. Ballistic Fracturing of Carbon Nanotubes.

    Science.gov (United States)

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  1. Carbon Nanotubes: Molecular Electronic Components

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  2. Torsional Carbon Nanotube Artificial Muscles

    Science.gov (United States)

    Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.

    2011-10-01

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  3. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    Science.gov (United States)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  4. Understanding user needs for carbon monitoring information

    Science.gov (United States)

    Duren, R. M.; Macauley, M.; Gurney, K. R.; Saatchi, S. S.; Woodall, C. W.; Larsen, K.; Reidmiller, D.; Hockstad, L.; Weitz, M.; Croes, B.; Down, A.; West, T.; Mercury, M.

    2015-12-01

    The objectives of the Understanding User Needs project for NASA's Carbon Monitoring System (CMS) program are to: 1) engage the user community and identify needs for policy-relevant carbon monitoring information, 2) evaluate current and planned CMS data products with regard to their value for decision making, and 3) explore alternative methods for visualizing and communicating carbon monitoring information and associated uncertainties to decision makers and other stakeholders. To meet these objectives and help establish a sustained link between science and decision-making we have established a multi-disciplinary team that combines expertise in carbon-cycle science, engineering, economics, and carbon management and policy. We will present preliminary findings regarding emerging themes and needs for carbon information that may warrant increased attention by the science community. We will also demonstrate a new web-based tool that offers a common framework for facilitating user evaluation of carbon data products from multiple CMS projects.

  5. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA.

  6. Integrating plant carbon dynamics with mutualism ecology.

    Science.gov (United States)

    Pringle, Elizabeth G

    2016-04-01

    Plants reward microbial and animal mutualists with carbohydrates to obtain nutrients, defense, pollination, and dispersal. Under a fixed carbon budget, plants must allocate carbon to their mutualists at the expense of allocation to growth, reproduction, or storage. Such carbon trade-offs are indirectly expressed when a plant exhibits reduced growth or fecundity in the presence of its mutualist. Because carbon regulates the costs of all plant mutualisms, carbon dynamics are a common platform for integrating these costs in the face of ecological complexity and context dependence. The ecophysiology of whole-plant carbon allocation could thus elucidate the ecology and evolution of plant mutualisms. If mutualisms are costly to plants, then they must be important but frequently underestimated sinks in the terrestrial carbon cycle.

  7. Structure and growth thermodynamics of carbon tubes

    Institute of Scientific and Technical Information of China (English)

    李文治; 钱露茜; 钱生法; 周维亚; 王刚; 付春生; 赵日安; 解思深

    1996-01-01

    Carbon tubes were prepared by Ni (or Ti) catalytic pyrolysis of acetylene. The catalytic effect of nanometer nickel powders is related to the reduction temperature in H2 atmosphere. Nanometer nickel powders reduced at high temperature have a distinguished catalytic effect, and the yield of the carbon tubes is relatively high; but for the nickel powders reduced at low temperature, the yield of carbon tubes is low, and no tube can be formed. Carbon tubes can only be grown along the edges or on the tips of the Ni (or Ti) sheets reduced at about 770C. But if Ni (or Ti) sheets are etched in acid, at lot of carbon tubes with various forms can be formed on their surface. The structure and morphology of the carbon tubes is studied, and the growth thermodynamics for the straight, curved and helical carbon tubes are systematically investigated for the first time.

  8. Controlling the Morphology of Carbon Gels

    Directory of Open Access Journals (Sweden)

    S. R. Mukai

    2012-12-01

    Full Text Available Carbon gels are unique porous carbons, which aretypically obtained through the carbonization ofresorcinol-formaldehyde gels. This material ispractically an aggregate of nanometer-sized carbonparticles. Nanopores, mostly in the size range ofmesopores, exist between the particles. Smallerpores, micropores being the majority, also exist withinthe particles. Therefore, this material has ahierarchical pore system in which short microporesare directly connected to mesopores.The precursor of carbon gels can be obtained throughsol-gel transition. Therefore there is a high possibilitythat the morphology of the resulting carbon can beeasily controlled using various molding methods.We have actually challenged the controlling of themorphology of carbon gels, and have succeeded inobtaining them in the form of disks, microspheresand microhoneycombs. Details of such carbon gelswill be reported.

  9. Carbon Nanomaterials: Efficacy and Safety for Nanomedicine

    Directory of Open Access Journals (Sweden)

    Yasuo Tsutsumi

    2012-02-01

    Full Text Available Carbon nanomaterials, including fullerenes, carbon nanohorns, and carbon nanotubes, are increasingly being used in various fields owing to these materials’ unique, size-dependent functions and physicochemical properties. Recently, because of their high variability and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic molecules including peptide and nucleic acid cancer drugs. However, insufficient information is available regarding the safety of carbon nanomaterials for human health, even though such information is vital for the development of safe and effective nanomedicine technologies. In this review, we discuss currently available information regarding the safety of carbon nanomaterials in nanomedicine applications, including information obtained from our own studies; and we discuss types of carbon nanomaterials that demonstrate particular promise for safe nanomedicine technologies.

  10. Encapsulated liquid sorbents for carbon dioxide capture.

    Science.gov (United States)

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  11. Fabricating solid carbon porous electrodes from powders

    Energy Technology Data Exchange (ETDEWEB)

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  12. Fabricating solid carbon porous electrodes from powders

    Energy Technology Data Exchange (ETDEWEB)

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  13. Electrical Properties of Carbon Fiber Support Systems

    CERN Document Server

    Cooper, W; Demarteau, M; Fast, J; Hanagaki, K; Johnson, M; Kuykendall, W; Lubatti, H; Matulik, M; Nomerotski, A; Quinn, B; Wang, J

    2005-01-01

    Carbon fiber support structures have become common elements of detector designs for high energy physics experiments. Carbon fiber has many mechanical advantages but it is also characterized by high conductivity, particularly at high frequency, with associated design issues. This paper discusses the elements required for sound electrical performance of silicon detectors employing carbon fiber support elements. Tests on carbon fiber structures are presented indicating that carbon fiber must be regarded as a conductor for the frequency region of 10 to 100 MHz. The general principles of grounding configurations involving carbon fiber structures will be discussed. To illustrate the design requirements, measurements performed with a silicon detector on a carbon fiber support structure at small radius are presented. A grounding scheme employing copper-kapton mesh circuits is described and shown to provide adequate and robust detector performance.

  14. Atomic transportation via carbon nanotubes.

    Science.gov (United States)

    Wang, Quan

    2009-01-01

    The transportation of helium atoms in a single-walled carbon nanotube is reported via molecular dynamics simulations. The efficiency of the atomic transportation is found to be dependent on the type of the applied loading and the loading rate as well as the temperature in the process. Simulations show the transportation is a result of the van der Waals force between the nanotube and the helium atoms through a kink propagation initiated in the nanotube.

  15. Primary nucleation of lithium carbonate

    Institute of Scientific and Technical Information of China (English)

    Yuzhu SUN; Xingfu SONG; Jin WANG; Yan LUO; Jianguo YU

    2009-01-01

    A set of laser apparatus was used to explore the induction period and the primary nucleation of lithium carbonate. Results show that the induction period increases with the decrease of supersaturation, temperature and stirring speed. Through the classical theory of primary nucleation, many important properties involved in primary nucleation under different conditions were obtained quantitatively, including the interfacial tension between solid and liquid, contact angle, critical nucleus size, critical nuleation free energy etc.

  16. Molten carbonate fuel cell matrices

    Science.gov (United States)

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  17. Material Flows and Carbon Cycles

    Science.gov (United States)

    Worrell, E.

    2003-12-01

    The industrial sector emits almost 43 percent of the global anthropogenic carbon dioxide emissions to produce materials and products. Furthermore, energy is used to move materials and products and process the waste. Hence, a large amount of energy is consumed and CO2 is emitted to sustain our materials system. Until recently, studies investigating mitigation options focused on changes in the energy system. For industrial processes most studies evaluate how the current materials system can be maintained producing fewer greenhouse gas emissions. Three elements of a strategy to improve the long-term materials productivity are the reduction of dissipative uses of non-biodegradable materials, secondly, the re-design of products to use less material or design for re-use or recycling, and thirdly, develop more efficient technologies for material conversion and recycling. This will reduce or eliminate the need to extract virgin materials from the environment, and reduce CO2 emissions from the energy-intensive production processes. To assess measures to reduce materials consumption, fossil fuels consumption and CO2 emissions, detailed understanding of the material system is needed. The lifecycle of materials has to be investigated including all branches of industry with all the inputs and outputs. We start with a discussion of materials and the carbon cycle focusing on the contribution of materials to anthropogenic carbon flows. We discuss CO2 emissions from energy use in materials extraction and production, fossil (e.g. plastics) and biomass carbon (e.g. lumber, paper) used as feedstock of materials, and mineral sources (e.g. cement). We discuss opportunities to reduce CO2 emissions by improving the efficiency with which society uses materials through product design, material substitution, product reuse and material recycling.

  18. Ozone adsorption on carbon nanoparticles

    Science.gov (United States)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles p. 967-973. [2] Smith, D. and A. Chughtai, Reaction kinetics of ozone at low concentrations with n-hexane soot. Journal of geophysical research, 1996. 101(D14): p. 19607-19,620. [3] Kamm, S., et al., The heterogeneous reaction of ozone with soot aerosol. Atmospheric Environment, 1999. 33(28): p. 4651-4661. [4] Stephens, S., M.J. Rossi, and D.M. Golden, The heterogeneous reaction of ozone on carbonaceous surfaces. International journal of chemical kinetics, 1986. 18(10): p. 1133-1149. [5] Pöschl, U., et al., Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo [a] pyrene: O3 and H2O adsorption, benzo [a] pyrene degradation, and atmospheric implications. The Journal of Physical Chemistry A, 2001. 105(16): p. 4029-4041.

  19. Carbon nanotechnology for future aerospace

    OpenAIRE

    Inam, Fawad

    2014-01-01

    Carbon nanotubes (CNTs) and graphene are being widely investigated for their addition in polymer, ceramic and metal matrices to prepare nanocomposites owing to the combination of the superlative mechanical, thermal, and electronic properties attributed to them. These materials are subject of significant research interest for their utilisation in an increasing number of applications including energy, transportation, defence, automotive, aerospace, sporting goods, and infrastructure sectors. Pa...

  20. Carbon nanotubes in tissue engineering.

    Science.gov (United States)

    Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2014-01-01

    As a result of their peculiar features, carbon nanotubes (CNTs) are emerging in many areas of nanotechnology applications. CNT-based technology has been increasingly proposed for biomedical applications, to develop biomolecule nanocarriers, bionanosensors and smart material for tissue engineering purposes. In the following chapter this latter application will be explored, describing why CNTs can be considered an ideal material able to support and boost the growth and the proliferation of many kinds of tissues.

  1. Methane adsorption on activated carbon

    OpenAIRE

    Perl, Andras; Koopman, Folkert; Jansen, Peter; Rooij, Marietta de; Gemert, Wim van

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature. This provides the suitable technology to replace bulky and expensive cylindrical compressed natural gas tanks. Activated carbons with large surface area and high porosity are particularly suitabl...

  2. Carbon storage of Mediterranean grasslands

    OpenAIRE

    Corona, Piermaria; Badalamenti, Emilio; Pasta, Salvatore; La Mantia, Tommaso

    2016-01-01

    Secondary grasslands are one of the most common vegetation types worldwide. In Europe, and in the Mediterranean basin, human activities have transformed many woodlands into secondary grasslands. Despite their recognized role in the global carbon cycle, very few data are available for estimating the biomass of Mediterranean grasslands. We developed linear regression models in order to predict the biomass of two native Mediterranean grasses (Ampelodesmos mauritanicus and Hyparrhenia hirta) and ...

  3. Peltier effects in electrode carbon

    Science.gov (United States)

    Hansen, Ellen Marie; Egner, Espen; Kjelstrup, Signe

    1998-02-01

    The thermoelectric power of a cell with platinum electrodes and a carbon conductor was determined. The electromotive force (emf) was measured as a function of the temperature difference between the electrodes at temperatures varying from 310 °C to 970 °C. From these measurements, the transported entropy of electric charge in carbon was found to vary from -1.7 to -1.9 J/(K mole) at temperatures around 300 °C, from -2.0 to -2.3 J/(K mole) at temperatures around 550 °C, and from -3.4 to -3.7 J/(K mole) at temperatures around 950 °C. This transported entropy had not before been determined for temperatures above 550 °C. Also, it is shown how the previously neglected surface properties can be taken into account to interpret the measurements. In the Hall-Héroult cell, the anode is made of a similar kind of carbon. Hence, the transported entropy found above can be used to describe the often neglected coupling between transport of heat and electric charge in this electrode. It is shown that the calculated electric potential profile through a coal sample will change significantly if the coupling is neglected, but the calculated temperature profile is independent of whether the coupling is neglected. New equations are also developed that can be used to evaluate the importance of the coupling in other systems.

  4. Minimizing activated carbons production cost

    Energy Technology Data Exchange (ETDEWEB)

    Stavropoulos, G.G.; Zabaniotou, A.A. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Univ. P. O. Box 1520, 54006, Thessaloniki (Greece)

    2009-07-15

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  5. Territorial Rights and Carbon Sinks.

    Science.gov (United States)

    Vanderheiden, Steve

    2016-11-29

    Scholars concerned with abuses of the "resource privilege" by the governments of developing states sometimes call for national sovereignty over the natural resources that lie within its borders. While such claims may resist a key driver of the "resource curse" when applied to mineral resources in the ground, and are often recognized as among a people's territorial rights, their implications differ in the context of climate change, where they are invoked on behalf of a right to extract and combust fossil fuels that is set in opposition to global climate change mitigation imperatives. Moreover, granting full national sovereignty over territorial carbon sinks may conflict with commitments to equity in the sharing of national mitigation burdens, since much of the planet's carbon sink capacity lies within territorial borders to which peoples have widely disparate access. In this paper, I shall explore this tension between a global justice principle that is often applied to mineral resources and its tension with contrary principles that are often applied to carbon sink access, developing an analysis that seeks to reconcile what would otherwise appear to be fundamentally incompatible aims.

  6. Carbon Management In the Post-Cap-and-Trade Carbon Economy

    Science.gov (United States)

    DeGroff, F. A.

    2013-12-01

    This abstract outlines an economic model that integrates carbon externalities seamlessly into the national and international economies. The model incorporates a broad carbon metric used to value all carbon in the biosphere, as well as all transnational commerce. The model minimizes the cost associated with carbon management, and allows for the variation in carbon avidity between jurisdictions. When implemented over time, the model reduces the deadweight loss while minimizing social cost, thus maximizing the marginal social benefit commonly associated with Pigouvian taxes. Once implemented, the model provides a comprehensive economic construct for governments, industry and consumers to efficiently weigh the cost of carbon, and effectively participate in helping to reduce their direct and indirect use of carbon, while allowing individual jurisdictions to decide their own carbon value, without the need for explicit, express agreement of all countries. The model uses no credits, requires no caps, and matches climate changing behavior to costs. The steps to implement the model for a particular jurisdiction are: 1) Define the Carbon Metric to value changes in Carbon Quality. 2) Apply the Carbon Metric to assess the Carbon Toll a) for all changes in Carbon Quality and b) for imports and exports. This economic model has 3 clear advantages. 1) The carbon pricing and cost scheme use existing and generally accepted accounting methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard auditing protocols. Implementing this economic model will not require any special training, tools, or systems for any entity to achieve their minimum carbon target goals within their jurisdictional framework. 2) Given the spectrum of carbon affinities worldwide, the model recognizes and provides for flexible carbon pricing regimes, but does not penalize domestic carbon-consuming producers subject to imports from exporters in

  7. Research of System Building Basing on the Low Carbon Economy About Carbon Accounting for the Enterprise

    Directory of Open Access Journals (Sweden)

    Yao Liqiong

    2016-01-01

    Full Text Available As global warming has become truth, is developing as a new economic model, The new economic development model has given rise to an important branch of environmental accounting, namely carbon accounting. At first, this paper discusses the carbon accounting theoretical foundation comprehensively, and then analyzes the environment of the construction of the carbon accounting system. The focus of the article is to build enterprise carbon accounting system, it covers the confirmation and measurement, record and information disclosure of the enterprise carbon accounting on the way of low carbon economy, its core is the processing of carbon emission rights, information disclosure mode and content, etc.; The purpose of this paper is to build enterprise carbon accounting system which is suitable for China’s national conditions, in order to provide certain reference and theoretical support for the low carbon economy development of our country.

  8. Anthropogenic perturbation of the global carbon cycle as a result of agricultural carbon erosion and burial

    Science.gov (United States)

    Wang, Zhengang; Govers, Gerard; Kaplan, Jed; Hoffmann, Thomas; Doetterl, Sebastian; Six, Johan; Van Oost, Kristof

    2016-04-01

    Changes in terrestrial carbon storage exert a strong control over atmospheric CO2 concentrations but the underlying mechanisms are not fully constrained. Anthropogenic land cover change is considered to represent an important carbon loss mechanism, but current assessments do not consider the associated acceleration of carbon erosion and burial in sediments. We evaluated the role of anthropogenic soil erosion and the resulting carbon fluxes between land and atmosphere from the onset of agriculture to the present day. We show, here, that agricultural erosion induced a significant cumulative net uptake of 198±57 Pg carbon on terrestrial ecosystems. This erosion-induced soil carbon sink is estimated to have offset 74±21% of carbon emissions. Since 1850, erosion fluxes have increased 3-fold. As a result, the erosion and lateral transfer of organic carbon in relation to human activities is an important driver of the global carbon cycle at millennial timescales.

  9. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water

    CERN Document Server

    Heng, Kevin

    2015-01-01

    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres. We construct analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the mixing ratio of methane. By examining the abundances of these molecules across a broad range of temperatures (spanning equilibrium temperatures from 600 to 2500 K), pressures (via temperature-pressure profiles that explore albedo and opacity variations) and carbon-to-oxygen ratios (from 0.1 to 100), we conclude that carbon dioxide is subdominant compared to carbon monoxide and water. Atmospheric mixing does not alter this conclusion if carbon dioxide is subdominant everywhere in the atmosphere. Carbon dioxide and carbon monoxide may attain comparable abundances if th...

  10. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    Science.gov (United States)

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity.

  11. The differences of electrochemical performance between the purchased lead carbonate and the prepared lead carbonate

    Institute of Scientific and Technical Information of China (English)

    包有富

    2005-01-01

    The differences of electrochemistry performance between the purchased lead carbonate and the prepared lead carbonate were studied by the methods of cycle voltammogram, electrochemical impedance spectroscope (EIS), constant current discharge, thermal gravimetric analysis, and scan electron microscope (SEM) etc. in the paper. It was showed that the reacting activity of the prepared lead carbonate was higher than that of the purchased lead carbonate. And several points of view were concluded as follows. (1) The prepared lead carbonate contains chemical structure water, but the purchased lead carbonate doesn't contain chemical structure water. (2) The main chemical substance in the purchased lead carbonate powder is PbCO3, while the one in the prepared lead carbonate is smaller than that of the pur-chased lead carbonate.

  12. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  13. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  14. Dynamic simulation of the carbon-in-pulp and carbon-in-leach processes

    Directory of Open Access Journals (Sweden)

    L. R. P. de Andrade Lima

    2007-12-01

    Full Text Available Carbon-in-leach and carbon-in-pulp are continuous processes that use activated carbon in a cascade of large agitated tanks, which have been widely used to recover or concentrate precious metals in gold extraction plants. In the carbon-in-pulp process adsorption occurs after the leaching cascade section of the plant, and in the carbon-in-leach process leaching and adsorption occur simultaneously. In both processes the activated carbon is moved from one tank to another in countercurrent with the ore pulp until the recovery of the loaded carbon in the first tank. This paper presents a dynamic model that describes, with minor changes, the carbon-in-leach, the carbon-in-pulp, and the gold leaching processes. The model is numerically solved and calibrated with experimental data from a plant and used to perform a study of the effect of the activated carbon transfer strategy on the performance of the adsorption section of the plant. Based on the calculated values of the gold loss in the liquid and of the gold recovered in the loaded activated carbon that leaves the circuit, the results indicate that strategies in which a significant amount of activated carbon is held in the first tank and the contact time between the carbon and the pulp is longer are the best carbon transfer strategies for these processes.

  15. Mixed Carbon Policies Based on Cooperation of Carbon Emission Reduction in Supply Chain

    Directory of Open Access Journals (Sweden)

    Yongwei Cheng

    2017-01-01

    Full Text Available This paper established cooperation decision model for a mixed carbon policy of carbon trading-carbon tax (environmental tax in a two-stage S-M supply chain. For three different cooperative abatement situations, we considered the supplier driven model, the manufacturer driven model, and the equilibrium game model. We investigated the influence of mixed carbon policy with constraint of reduction targets on supply chain price, productivity, profits, carbon emissions reduction rate, and so on. The results showed that (1 high-strength carbon policies do not necessarily encourage enterprises to effectively reduce emissions, and increasing market acceptance of low carbon products or raising the price of carbon quota can promote the benign reduction; (2 perfect competitive carbon market has a higher carbon reduction efficiency than oligarch carbon market, but their optimal level of cooperation is the same and the realized reduction rate is in line with the intensity of carbon policy; (3 the policy sensitivity of the carbon trading mechanism is stronger than the carbon tax; “paid quota mechanism” can subsidize the cost of abatement and improve reduction initiative. Finally, we use a numerical example to solve the optimal decisions under different market situations, validating the effectiveness of model and the conclusions.

  16. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  17. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  18. Research of Mold Powder for Ultra-Low Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explained the mechanism of carbon pickup byultra-low-carbon steels during continuous casting and indicated that the major cause of carbon pickup is the contact of the molten steel with the enriched-carbon layer of the powder. Forming of the enriched-carbon layer is due to the existing of “carbon core”. Accordingly, the measures to reduce the carbon content and amount of the enriched-carbon layer were investigated. A kind of new powder has been developed and successfully used to minimize the carbon pickup by ultra-low carbon steels during continuous casting.

  19. Carbon Management In the Post-Cap-and-Trade Carbon Economy: An Economic Model for Limiting Climate Change by Managing Anthropogenic Carbon Flux

    Science.gov (United States)

    DeGroff, F. A.

    2013-05-01

    In this paper, we discuss an economic model for comprehensive carbon management that focuses on changes in carbon flux in the biosphere due to anthropogenic activity. The two unique features of the model include: 1. A shift in emphasis from primarily carbon emissions, toward changes in carbon flux, mainly carbon extraction, and 2. A carbon price vector (CPV) to express the value of changes in carbon flux, measured in changes in carbon sequestration, or carbon residence time. The key focus with the economic model is the degree to which carbon flux changes due to anthropogenic activity. The economic model has three steps: 1. The CPV metric is used to value all forms of carbon associated with any anthropogenic activity. In this paper, the CPV used is a logarithmic chronological scale to gauge expected carbon residence (or sequestration) time. In future economic models, the CPV may be expanded to include other factors to value carbon. 2. Whenever carbon changes form (and CPV) due to anthropogenic activity, a carbon toll is assessed as determined by the change in the CPV. The standard monetary unit for carbon tolls are carbon toll units, or CTUs. The CTUs multiplied by the quantity of carbon converted (QCC) provides the total carbon toll, or CT. For example, CT = (CTU /mole carbon) x (QCC moles carbon). 3. Whenever embodied carbon (EC) attributable to a good or service moves via trade to a jurisdiction with a different CPV metric, a carbon toll (CT) is assessed representing the CPV difference between the two jurisdictions. This economic model has three clear advantages. First, the carbon pricing and cost scheme use existing and generally accepted accounting methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard, existing auditing protocols. Implementing this economic model will not require any new, special, unique, or additional training, tools, or systems for any entity to achieve their minimum

  20. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2015-06-15

    Phase I concludes with significant progress made towards the SunShot ELEMENTS goals of high energy density, high power density, and high temperature by virtue of a SrO/SrCO3 based material. A detailed exploration of sintering inhibitors has been conducted and relatively stable materials supported by YSZ or SrZO3 have been identified as the leading candidates. In 15 cycle runs using a 3 hour carbonation duration, several materials demonstrated energy densities of roughly 1500 MJ/m3 or greater. The peak power density for the most productive materials consistently exceeded 40 MW/m3—an order of magnitude greater than the SOPO milestone. The team currently has a material demonstrating nearly 1000 MJ/m3 after 100 abbreviated (1 hour carbonation) cycles. A subsequent 8 hour carbonation after the 100 cycle test exhibited over 1500 MJ/m3, which is evidence that the material still has capacity for high storage albeit with slower kinetics. Kinetic carbonation experiments have shown three distinct periods: induction, kinetically-controlled, and finally a diffusion-controlled period. In contrast to thermodynamic equilibrium prediction, higher carbonation temperatures lead to greater conversions over a 1 hour periods, as diffusion of CO2 is more rapid at higher temperatures. A polynomial expression was fit to describe the temperature dependence of the linear kinetically-controlled regime, which does not obey a traditional Arrhenius relationship. Temperature and CO2 partial pressure effects on the induction period were also investigated. The CO2 partial pressure has a strong effect on the reaction progress at high temperatures but is insignificant at temperatures under 900°C. Tomography data for porous SrO/SrCO3 structures at initial stage and after multiple carbonation/decomposition cycles have been obtained. Both 2D slices and 3D reconstructed representations have

  1. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    Science.gov (United States)

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  2. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  3. Preparation of hollow spherical carbon nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.-K.; Kang, H. Y.; Hong, C.-I; Huang, C.-H.; Chang, F.-C.; Wang, H. Paul, E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering, Taiwan (China)

    2012-12-15

    This study presents a new and simple method for the synthesis of hollow carbon spheres possessing nanocage sizes of 7.1, 14, and 20 nm in diameter. The core-shell (i.e., Cu-C) nanoparticles prepared by carbonization of the Cu{sup 2+}-cyclodextrin (CD) complexes at 573 K for 2 h was etched with HCl (6N) to yield the hollow carbon spheres. The carbon-shell of the hollow carbon nanospheres, which consisted of mainly diamond-like and graphite carbons, is not perturbed during etching. In addition to the nanocages, the hollow carbon nanospheres also possess micropores with an opening of 0.45 nm, allowing small molecules to diffuse in and out through the carbon-shell. Many elements (such as Zn{sup 2+} or Cu{sup 2+}) can therefore be filled into the nanocages of the hollow carbon nanospheres. With these unique properties, for instance, designable active species such as Cu and ZnO encapsulated in the carbon-shell can act as Cu-ZnO-C yolk-shell nanoreactors which are found very effective in the catalytic decomposition of methanol.

  4. Overview of Low-carbon Economy Research

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The paper has a detailed literature review in low-carbon economy research of academic circle in our country from three aspects that are conception and connotation of low-carbon economy, necessity and urgency of developing low-carbon economy and path choice of realizing low-carbon economy in our country. low-carbon economy is the "green economy" that obtains the maximum output by discharging minimum greenhouse gases with the main characteristics of "three low and three high" that are low energy consumption, low pollution, low discharge and high effect, high efficiency, high benefit. To China, developing low-carbon economy is the inevitable choice in realizing peaceful rising and sustainable development as a responsible large country. It conforms to world trends and corresponds to China’s actual conditions. Finally, the paper makes a overview of the path choice in realizing low-carbon economy in our country from eight aspects-integral countermeasures and suggestions, technology innovation, consumption pattern innovation, policy innovation, environmental and financial innovation, building low-carbon city, establishing carbon trading market and developing low-carbon agriculture.

  5. All-carbon molecular tunnel junctions.

    Science.gov (United States)

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard L

    2011-11-30

    This Article explores the idea of using nonmetallic contacts for molecular electronics. Metal-free, all-carbon molecular electronic junctions were fabricated by orienting a layer of organic molecules between two carbon conductors with high yield (>90%) and good reproducibility (rsd of current density at 0.5 V carbon devices exhibit current density-voltage (J-V) behavior similar to those with metallic Cu top contacts. However, the all-carbon devices display enhanced stability to bias extremes and greatly improved thermal stability. Completed carbon/nitroazobenzene(NAB)/carbon junctions can sustain temperatures up to 300 °C in vacuum for 30 min and can be scanned at ±1 V for at least 1.2 × 10(9) cycles in air at 100 °C without a significant change in J-V characteristics. Furthermore, these all-carbon devices can withstand much higher voltages and current densities than can Cu-containing junctions, which fail upon oxidation and/or electromigration of the copper. The advantages of carbon contacts stem mainly from the strong covalent bonding in the disordered carbon materials, which resists electromigration or penetration into the molecular layer, and provides enhanced stability. These results highlight the significance of nonmetallic contacts for molecular electronics and the potential for integration of all-carbon molecular junctions with conventional microelectronics.

  6. Synthesis of carbon nanotubes using natural carbon precursor: Castor oil

    Science.gov (United States)

    Raziah, A. Z.; Junizah, A. R.; Saifuddin, N.

    2012-09-01

    Castor oil has long been an article of commerce due to its versatility as it is widely used as a starting material for many industrial chemical products because of its unique structure. In this study, carbon nanotubes has been synthesized by thermal decomposition of castor oil in nitrogen atmosphere at 300-400δC using custom-made microwave processing unit. The precursor material was catalyzed by iron clusters originating from the addition of ferrocene. The morphology and characterization of the CNTs were studied and discussed by transmission electron microscopy (TEM).

  7. Carbon Accounting for Carbon Dioxide Enhanced Oil recovery

    OpenAIRE

    Stewart, Jamie R; Haszeldine, R Stuart

    2014-01-01

    It is recognised from currently operating CO2EOR projects that the operations and processes involved in CO2EOR are energy intensive and may compromise the overall carbon footprint of a project (ARI, 2009; Dilmore, 2010). This study intends to provide a medium to high level life cycle assessment of CO2EOR operations for a theoretical offshore North Sea project. The study will focus on upstream operations involved in the CO2 EOR process and aims to quantify all significant processes and acti...

  8. Impact of Different Carbon Policies on City Logistics Network

    Directory of Open Access Journals (Sweden)

    Yang Jianhua

    2015-01-01

    Full Text Available A programming model for a four-layer urban logistics distribution network is constructed and revised based on three types of carbon emissions policies such as Carbon tax, carbon emissions Cap, Carbon Trade. Effects of different policies on logistics costs and carbon emissions are analyzed based on a spatial Logistics Infrastructure layout of Beijing. Research findings are as follows: First, based on low-carbon policies, the logistics costs and carbon emissions can be changed by different modes of transport in a certain extent; second, only when carbon taxes and carbon trading prices are higher, carbon taxes and carbon trading policies can reduce carbon emissions while not significantly increase logistics costs at the same time, and more effectively achieve carbon reduction targets than use carbon cap policy.

  9. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  10. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  11. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  12. High surface area carbon and process for its production

    Science.gov (United States)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  13. Impact of Asymmetric Carbon Information on Supply Chain Decisions under Low-Carbon Policies

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2016-01-01

    Full Text Available Through the establishment of the leading manufacturer Stackelberg game model under asymmetric carbon information, this paper investigates the misreporting behaviors of the supply chain members and their influences on supply chain performance. Based on “Benchmarking” allocation mechanism, three policies are considered: carbon emission trading, carbon tax, and a new policy which combined carbon quota and carbon tax mechanism. The results show that, in the three models, the leader in the supply chain, even if he has advantages of carbon information, will not lie about his information. That is because the manufacturer’s misreporting behavior has no effect on supply chain members’ performance. But the retailer will lie about the information when he has carbon information advantage. The high-carbon-emission retailers under the carbon trading policy, all the retailers under the carbon tax policy, and the high-carbon-emission retailers under combined quotas and tax policy would like to understate their carbon emissions. Coordination of revenue sharing contract is studied in supply chain to induce the retailer to declare his real carbon information. Optimal contractual parameters are deduced in the three models, under which the profit of the supply chain can be maximized.

  14. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S. Z., E-mail: zfisher@lanl.gov; Kovalevsky, A. Y. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Domsic, J. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Mustyakimov, M. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Silverman, D. N. [Department of Pharmacology and Therapeutics, PO Box 100267, University of Florida, Gainesville, FL 32610 (United States); McKenna, R. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Langan, P. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-11-01

    The first neutron crystal structure of carbonic anhydrase is presented. The structure reveals interesting and unexpected features of the active site that affect catalysis. Carbonic anhydrase (CA) is a ubiquitous metalloenzyme that catalyzes the reversible hydration of CO{sub 2} to form HCO{sub 3}{sup −} and H{sup +} using a Zn–hydroxide mechanism. The first part of catalysis involves CO{sub 2} hydration, while the second part deals with removing the excess proton that is formed during the first step. Proton transfer (PT) is thought to occur through a well ordered hydrogen-bonded network of waters that stretches from the metal center of CA to an internal proton shuttle, His64. These waters are oriented and ordered through a series of hydrogen-bonding interactions to hydrophilic residues that line the active site of CA. Neutron studies were conducted on wild-type human CA isoform II (HCA II) in order to better understand the nature and the orientation of the Zn-bound solvent (ZS), the charged state and conformation of His64, the hydrogen-bonding patterns and orientations of the water molecules that mediate PT and the ionization of hydrophilic residues in the active site that interact with the water network. Several interesting and unexpected features in the active site were observed which have implications for how PT proceeds in CA.

  15. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons

    Institute of Scientific and Technical Information of China (English)

    Jitong Wang; Huichao Chen; Huanhuan Zhou; Xiaojun Liu; Wenming Qiao; Donghui Long; Licheng Ling

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume.The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption,scanning electron microscopy (SEM),thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture.Factors that affected the sorption capacity of the sorbent were studied.The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%.The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75℃,owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%).Moisture had a promoting effect on the sorption separation of CO2.In addition,the developed sorbent could be regenerated easily at 100℃,and it exhibited excellent regenerability and stability.These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  16. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.

    Science.gov (United States)

    Wang, Jitong; Chen, Huichao; Zhou, Huanhuan; Liu, Xiaojun; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75 degrees C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2. In addition, the developed sorbent could be regenerated easily at 100 degrees C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  17. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  18. Green chemistry of carbon nanomaterials.

    Science.gov (United States)

    Basiuk, Elena V; Basiuk, Vladimir A

    2014-01-01

    The global trend of looking for more ecologically friendly, "green" techniques manifested itself in the chemistry of carbon nanomaterials. The main principles of green chemistry emphasize how important it is to avoid the use, or at least to reduce the consumption, of organic solvents for a chemical process. And it is precisely this aspect that was systematically addressed and emphasized by our research group since the very beginning of our work on the chemistry of carbon nanomaterials in early 2000s. The present review focuses on the results obtained to date on solvent-free techniques for (mainly covalent) functionalization of fullerene C60, single-walled and multi-walled carbon nanotubes (SWNTs and MWNTs, respectively), as well as nanodiamonds (NDs). We designed a series of simple and fast functionalization protocols based on thermally activated reactions with chemical compounds stable and volatile at 150-200 degrees C under reduced pressure, when not only the reactions take place at a high rate, but also excess reagents are spontaneously removed from the functionalized material, thus making its purification unnecessary. The main two classes of reagents are organic amines and thiols, including bifunctional ones, which can be used in conjunction with different forms of nanocarbons. The resulting chemical processes comprise nucleophilic addition of amines and thiols to fullerene C60 and to defect sites of pristine MWNTs, as well as direct amidation of carboxylic groups of oxidized nanotubes (mainly SWNTs) and ND. In the case of bifunctional amines and thiols, reactions of the second functional group can give rise to cross-linking effects, or be employed for further derivatization steps.

  19. Soil organic carbon across scales.

    Science.gov (United States)

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management.

  20. Novamene: A new class of carbon allotropes

    Directory of Open Access Journals (Sweden)

    Larry A Burchfield

    2017-02-01

    Full Text Available We announce a new class of carbon allotropes. The basis of this new classification resides on the concept of combining hexagonal diamond (sp3 bonded carbon − lonsdaleite and ring carbon (sp2 bonded carbon − graphene. Since hexagonal diamond acts as an insulator and sp2 bonded rings act as conductors, these predicted materials have potential applications for transistors and other electronic components. We describe the structure of a proposed series of carbon allotropes, novamene, and carry out a detailed computational analysis of the structural and electronic properties of the simplest compound in this class: the single-ring novamene. In addition, we suggest how hundreds of different allotropes of carbon could be constructed within this class.