WorldWideScience

Sample records for carbonate rock bench-scale

  1. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  2. Bench-scale studies on capture of mercury on mineral non-carbon based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Wendt, Jost O.L. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Zhang, Junying; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    A new high-temperature, mineral non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600 C. The sorbent is consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600 and 1,100 C and requires activation of the minerals contained within the sorbents. Mercury capture is dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1,000 C and increases monotonically with temperature. The presence of oxygen is also the required. Freshly activated sorbent is the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation is suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that are both contained within the sorbent. Deactivation occurs at temperatures higher than 1,000 C, and this is due to melting of the substrate and pore closure. The situation in packed beds is complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO{sub 2} on poor Sorbent B is much larger than sorbent A.

  3. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O' Brien, Kevin

    2014-03-31

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily

  4. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate, Richland WA; Xu, Zhijie [Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate, Richland WA; Lai, Kevin [Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate, Richland WA; Whyatt, Greg [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA; Marcy, Peter W. [Los Alamos National Laboratory, Statistical Sciences Group, Los Alamos NM; Sun, Xin [Oak Ridge National Laboratory, Energy and Transportation Science Division, Oak Ridge TN

    2017-10-24

    The first part of this paper (Part 1) presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. To generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work has the ability to account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry’s constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. The calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.

  5. Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations for solvent-based carbon capture. Part 2: Chemical absorption across a wetted wall column: Original Research Article: Hierarchical calibration and validation framework of bench-scale computational fluid dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate; Xu, Zhijie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate; Lai, Kevin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Sciences Directorate; Whyatt, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environment Directorate; Marcy, Peter W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sun, Xin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division

    2017-10-24

    Part 1 of this paper presents a numerical model for non-reactive physical mass transfer across a wetted wall column (WWC). In Part 2, we improved the existing computational fluid dynamics (CFD) model to simulate chemical absorption occurring in a WWC as a bench-scale study of solvent-based carbon dioxide (CO2) capture. In this study, to generate data for WWC model validation, CO2 mass transfer across a monoethanolamine (MEA) solvent was first measured on a WWC experimental apparatus. The numerical model developed in this work can account for both chemical absorption and desorption of CO2 in MEA. In addition, the overall mass transfer coefficient predicted using traditional/empirical correlations is conducted and compared with CFD prediction results for both steady and wavy falling films. A Bayesian statistical calibration algorithm is adopted to calibrate the reaction rate constants in chemical absorption/desorption of CO2 across a falling film of MEA. The posterior distributions of the two transport properties, i.e., Henry's constant and gas diffusivity in the non-reacting nitrous oxide (N2O)/MEA system obtained from Part 1 of this study, serves as priors for the calibration of CO2 reaction rate constants after using the N2O/CO2 analogy method. Finally, the calibrated model can be used to predict the CO2 mass transfer in a WWC for a wider range of operating conditions.

  6. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.; Hansen, E.

    2011-08-03

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall

  7. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yongqi

    2014-02-01

    This report summarizes the methodology and preliminary results of a techno-economic analysis on a hot carbonate absorption process (Hot-CAP) with crystallization-enabled high pressure stripping for post-combustion CO{sub 2} capture (PCC). This analysis was based on the Hot-CAP that is fully integrated with a sub-critical steam cycle, pulverized coal-fired power plant adopted in Case 10 of the DOE/NETL’s Cost and Performance Baseline for Fossil Energy Plants. The techno-economic analysis addressed several important aspects of the Hot-CAP for PCC application, including process design and simulation, equipment sizing, technical risk and mitigation strategy, performance evaluation, and cost analysis. Results show that the net power produced in the subcritical power plant equipped with Hot-CAP is 611 MWe, greater than that with Econoamine (550 MWe). The total capital cost for the Hot-CAP, including CO{sub 2} compression, is $399 million, less than that for the Econoamine PCC ($493 million). O&M costs for the power plant with Hot-CAP is $175 million annually, less than that with Econoamine ($178 million). The 20-year levelized cost of electricity (LCOE) for the power plant with Hot-CAP, including CO2 transportation and storage, is 119.4 mills/kWh, a 59% increase over that for the plant without CO2 capture. The LCOE increase caused by CO{sub 2} capture for the Hot-CAP is 31% lower than that for its Econoamine counterpart.

  8. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    Science.gov (United States)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  9. Carbonate rock depositional models: A microfacies approach

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  10. Application of bench-scale biocalorimetry to photoautotrophic cultures

    NARCIS (Netherlands)

    Janssen, M.; Patino, R.; Stockar, von U.

    2005-01-01

    Bench-scale biocalorimetry (=1 L) allows for the determination of the metabolic heat flow during bioprocesses under complete control of all process conditions for extended periods of time. It can be combined with a number of on-line and off-line measurement techniques. This combination can

  11. THOR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Marshall; N. R. Soelberg; K. M. Shaber

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  12. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  13. THOR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  14. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  15. THOR Bench-Scale Steam Reforming Demonstration

    International Nuclear Information System (INIS)

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful

  16. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Benjamin; Genovese, Sarah; Perry, Robert; Spiry, Irina; Farnum, Rachael; Sing, Surinder; Wilson, Paul; Buckley, Paul; Acharya, Harish; Chen, Wei; McDermott, John; Vipperia, Ravikumar; Yee, Michael; Steele, Ray; Fresia, Megan; Vogt, Kirk

    2013-12-31

    A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.

  17. Bench-scale magnetic separation of Department of Energy wastes

    International Nuclear Information System (INIS)

    Hoegler, J.M.

    1987-07-01

    Criteria were developed for selection of candidate wastes for testing magnetic separation of uranium and/or other paramagnetic materials. A survey of Department of Energy (DOE) hazardous wastes was conducted to determine good candidates for bench-scale magnetic separation tests. Representatives of 21 DOE sites were contacted, and 11 materials were identified as potential candidates for magnetic separation. To date, seven samples have been obtained and tested for separability of uranium with a bench-scale magnetic assaying device. The samples tested have been obtained from the K-1401B and K-1401C ponds in Oak Ridge, Tennessee; from waste piles in Maywood, New Jersey; from North and South Ponds in Richland, Washington; and from magnesium fluoride drums in Fernald, Ohio. The magnetic device utilized in these tests can be used in an open-gradient mode with dry particulate or liquid-suspended materials. Uranium separation from magnesium fluoride has shown exceptionally good performance in both open- and high-gradient modes and could be an important application of the technology

  18. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Gangwal, Santosh K.

    1997-01-01

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO 2 that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO 2 . The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives

  19. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  20. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    International Nuclear Information System (INIS)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-01-01

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  1. A bench-scale biotreatability methodology to evaluate field bioremediation

    International Nuclear Information System (INIS)

    Saberiyan, A.G.; MacPherson, J.R. Jr.; Moore, R.; Pruess, A.J.; Andrilenas, J.S.

    1995-01-01

    A bench-scale biotreatability methodology was designed to assess field bioremediation of petroleum contaminated soil samples. This methodology was performed successfully on soil samples from more than 40 sites. The methodology is composed of two phases, characterization and experimentation. The first phase is physical, chemical, and biological characterization of the contaminated soil sample. This phase determines soil parameters, contaminant type, presence of indigenous contaminant-degrading bacteria, and bacterial population size. The second phase, experimentation, consists of a respirometry test to measure the growth of microbes indirectly (via generation of CO 2 ) and the consumption of their food source directly (via contaminant loss). Based on a Monod kinetic analysis, the half-life of a contaminant can be calculated. Abiotic losses are accounted for based on a control test. The contaminant molecular structure is used to generate a stoichiometric equation. The stoichiometric equation yields a theoretical ratio for mg of contaminant degraded per mg of CO 2 produced. Data collected from the respirometry test are compared to theoretical values to evaluate bioremediation feasibility

  2. Destruction of chemical agent simulants in a supercritical water oxidation bench-scale reactor

    Energy Technology Data Exchange (ETDEWEB)

    Veriansyah, Bambang [Supercritical Fluid Research Laboratory, Clean Technology Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of) and Department of Green Process and System Engineering, University of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: vaveri@kist.re.kr; Kim, Jae-Duck [Supercritical Fluid Research Laboratory, Clean Technology Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of) and Department of Green Process and System Engineering, University of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: jdkim@kist.re.kr; Lee, Jong-Chol [Agency for Defense Development (ADD), P.O. Box 35-1, Yuseong-gu, Daejeon (Korea, Republic of)]. E-mail: jcleeadd@hanafos.com

    2007-08-17

    A new design of supercritical water oxidation (SCWO) bench-scale reactor has been developed to handle high-risk wastes resulting from munitions demilitarization. The reactor consists of a concentric vertical double wall in which SCWO reaction takes place inside an inner tube (titanium grade 2, non-porous) whereas pressure resistance is ensured by a Hastelloy C-276 external vessel. The performances of this reactor were investigated with two different kinds of chemical warfare agent simulants: OPA (a mixture of isopropyl amine and isopropyl alcohol) as the binary precursor for nerve agent of sarin and thiodiglycol [TDG (HOC{sub 2}H{sub 4}){sub 2}S] as the model organic sulfur heteroatom. High destruction rates based on total organic carbon (TOC) were achieved (>99.99%) without production of chars or undesired gases such as carbon monoxide and methane. The carbon-containing product was carbon dioxide whereas the nitrogen-containing products were nitrogen and nitrous oxide. Sulfur was totally recovered in the aqueous effluent as sulfuric acid. No corrosion was noticed in the reactor after a cumulative operation time of more than 250 h. The titanium tube shielded successfully the pressure vessel from corrosion.

  3. Bench-scale studies with mercury contaminated SRS soil

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1995-01-01

    Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na 2 CO 3 and 16 weight percent CaCO 3 . Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na 2 S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na 2 S, where it would be converted to Hg 2 S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na 2 S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury

  4. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  5. Bench scale demonstration and conceptual engineering for DETOXSM catalyzed wet oxidation

    International Nuclear Information System (INIS)

    Moslander, J.; Bell, R.; Robertson, D.; Dhooge, P.; Goldblatt, S.

    1994-01-01

    Laboratory and bench scale studies of the DETOX SM catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals' fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes

  6. Bench-Scale Evaluation of Hydrothermal Processing Technology for Conversion of Wastewater Solids to Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.; Hallen, Richard T.; Hart, Todd R.; Kadota, Paul; Moeller, Jeff C.; Randel, Margaaret A.; Schmidt, Andrew J.

    2018-04-01

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of hydrothermal treatment for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge, secondary sludge, and digested solids. Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. Biocrude yields ranged from 25-37%. Biocrude composition and quality were comparable to biocrudes generated from algae feeds. Subsequent hydrotreating of biocrude resulted in a product with comparable physical and chemical properties to crude oil. CHG product gas methane yields on a carbon basis ranged from 47-64%. Siloxane concentrations in the CHG product gas were below engine limits. The HTL-CHG process resulted in a chemical oxygen demand (COD) reduction of > 99.9% and a reduction in residual solids for disposal of 94-99%.

  7. Bench-scale treatability studies for simulated incinerator scrubber blowdown containing radioactive cesium and strontium

    International Nuclear Information System (INIS)

    Coroneos, A.C.; Taylor, P.A.; Arnold, W.D. Jr.; Bostick, D.A.; Perona, J.J.

    1994-12-01

    The purpose of this report is to document the results of bench-scale testing completed to remove 137 Cs and 90 Sr from the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator blowdown at the K-25 Site Central Neutralization Facility, a wastewater treatment facility designed to remove heavy metals and uranium from various wastewaters. The report presents results of bench-scale testing using chabazite and clinoptilolite zeolites to remove cesium and strontium; using potassium cobalt ferrocyanide (KCCF) to remove cesium; and using strontium chloride coprecipitation, sodium phosphate coprecipitation, and calcium sulfate coprecipitation to remove strontium. Low-range, average-range, and high-range concentration blowdown surrogates were used to complete the bench-scale testing

  8. Bench-scale and full-scale studies of nitric oxides reduction by gaseous fuel reburning

    International Nuclear Information System (INIS)

    Su, S.; Xiang, J.; Sun, L.S.; Hu, S.; Zhu, J.M.

    2008-01-01

    Nitrogen oxides (NOx) emissions from coal-fired boilers are significant contributors to atmospheric pollution. China has specified more rigorous legal limits for NOx emissions from power plants. As a result of the need to reduce NOx emissions, cost-effective NOx reduction strategies must be explored. This paper presented detailed experimental studies on a gaseous fuel reburning process that was performed in a 36 kilowatt bench-scale down-fired furnace to define the optimal reburning operating conditions when different Chinese coals were fired in the furnace. In addition, the combustion system of a 350 megawatt full-scale boiler was retrofitted according to the experimental results. Finally, the gaseous fuel reburning was applied to the retrofitted full-scale boiler. The purpose of the study was to obtain a better understanding of the influence of the key parameters on nitric oxide (NO) reduction efficiency of the reburning process and demonstrate the gaseous fuel reburning on a 350 MWe coal-fired boiler in China. The paper described the experimental procedure with particular reference to the experimental facility and measurement; a schematic diagram of the experimental system; experimental fuels; and characteristics of coals for the reburning experiments. Results that were presented included influence of reburn zone residence time; influence of gaseous reburn fuel per cent; influence of excess air coefficient; and unburned carbon in fly ash. It was concluded that both an above 50 per cent NO reduction efficiency and low carbon loss can be obtained by the gaseous fuel reburning process under the optimal operating conditions. 20 refs., 5 tabs., 10 figs

  9. Cometabolic biotreatment of TCE-contaminated groundwater: Laboratory and bench-scale development studies

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Jennings, H.L.; Lucero, A.J.; Strandberg, G.W.; Morris, M.I.; Palumbo, A.V.; Boerman, P.A.; Tyndall, R.L.

    1992-01-01

    The Oak Ridge National Laboratory is conducting a demonstration of two cometabolic technologies for biotreatment of groundwater contaminated with trichloroethylene (TCE) and other organics. Technologies based on methanotrophic (methane-utilizing) and toluene-degrading microorganisms will be compared side-by-side on the same groundwater stream. Laboratory and bench-scale bioreactor studies have been conducted to guide selection of microbial cultures and operating conditions for the field demonstration. This report presents the results of the laboratory and bench-scale studies for the methanotrophic system

  10. Cometabolic biotreatment of TCE-contaminated groundwater - Laboratory and bench-scale development studies

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T L; Palumbo, A V; Boerman, P A; Jennings, H L; Lucero, A J; Tyndall, R L; Strandberg, G W; Morris, M I [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1992-07-01

    The Oak Ridge National Laboratory is conducting a demonstration of two cometabolic technologies for biotreatment of groundwater contaminated with trichloroethylene (TCE) and other organics. Technologies based on methanotrophic (methane-utilizing) and toluene-degrading microorganisms will be compared side-by-side on the same groundwater stream. Laboratory and bench-scale bioreactor studies have been conducted to guide selection of microbial cultures and operating conditions for the field demonstration. This report presents the results of the laboratory and bench-scale studies for the methanotrophic system. (author)

  11. Bench-scale production of liquid fuel from woody biomass via gasification

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Toshiaki; Liu, Yanyong; Matsunaga, Kotetsu; Miyazawa, Tomohisa; Hirata, Satoshi; Sakanishi, Kinya [Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Suehiro 2-2-2, Hiro, Kure, Hiroshima 737-0197 (Japan)

    2010-08-15

    The bench-scale production of hydrocarbon liquid fuel was achieved from woody biomass via gasification. The daily production capacity of the biomass-to-liquid (BTL) plant used in this study was 7.8 L of hydrocarbon liquid from 48 kg of woody biomass (on a dry basis), corresponding to 0.05 barrels. The BTL process involved the following steps: oxygen-enriched air gasification of the woody biomass, wet and dry gas cleaning, gas compression, carbon dioxide removal, and the Fischer-Tropsch (FT) synthesis reaction. In the gasification step, oxygen-enriched air gasification was carried out using a downdraft fixed-bed gasifier. The content of oxygen, which acts as the gasifying agent, was increased from 21.0 to 56.7 vol%; maximum values of the conversion to gas on a carbon basis and cold gas efficiency-approximately 96 C-mol% and 87.8%, respectively-were obtained at an oxygen content of around 30 vol%. With the increased oxygen content, the concentrations of CO, H{sub 2}, and CO{sub 2} increased from 22.8 to 36.5 vol%, from 16.8 to 28.1 vol%, and from 9.8 to 14.8 vol%, respectively, while that of N{sub 2} decreased from 48.8 to 16.0 vol%. The feed gas for the FT synthesis reaction was obtained by passing the product gas from the gasification step through a scrubber, carbon dioxide removal tower, and desulfurization tower; its composition was 30.8 vol% CO, 25.2 vol% H{sub 2}, 0.9 vol% CO{sub 2}, 2.5 vol% CH{sub 4}, 40.6 vol% N{sub 2}, < 5 ppb H{sub 2}S, and < 5 ppb COS. The hydrocarbon fuel was synthesized in a slurry bed reactor using hexadecane as the solvent and a Co/SiO{sub 2} catalyst. For hydrocarbons with carbon chain lengths of more than 5 carbon atoms (collectively referred to as C{sub 5+}) in the liquid fuel, a selectivity of 87.5% was obtained along with a chain growth probability of 0.84 under the following conditions: 4 MPa, 280 to 340 C, and a ratio of catalyst weight to feed gas rate (W/F) of 9.3 g.h/mol. (author)

  12. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Fresia, Megan; Vogt, Kirk

    2013-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO{sub 2}) from the flue gas of coal-fired power plants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO{sub 2} capture solvent. GE Global Research was contracted by the Department of Energy to test a bench-scale continuous CO{sub 2} absorption/desorption system using a GAP-1m/TEG mixture as the solvent. SiVance LLC was sub-contracted to provide the GAP-1m material and conduct an Environmental, Health, and Safety (EH&S) assessment for a 550 MW coal-fired power plant. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP-1m/SOX salt, and dodecylbenzenesulfonic acid (DDBSA) were also identified for analysis. All of the solvent components and DDBSA are listed on the EPA’s TSCA Inventory allowing companies to manufacture and use the chemicals commercially. The toxicological effects of each component were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. An engineering and control system, including environmental abatement, was described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  13. Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water

    Science.gov (United States)

    Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...

  14. Genifuel Hydrothermal Processing Bench Scale Technology Evaluation Project (WE&RF Report LIFT6T14)

    Science.gov (United States)

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C ...

  15. Study on saccharification of cellulosic wastes with bench scale test plant, (5)

    International Nuclear Information System (INIS)

    Kasai, Noboru; Tamada, Masao; Kumakura, Minoru

    1989-05-01

    This report completed the results that were obtained on the studies of continuous saccharification of radiation pretreated chaff with a saccharification equipment unit of bench scale test plant for cellulosic wastes. The problem on the continuous saccharification in bench scale and its countermeasure were clarified. The glucose concentration obtained in the continuous saccharification was examined from the point of a scale up effect. It was found that there are not a scale up effect between flask scale (100 ml) and bench scale (50 l) and then the same concentration of glucose was obtained in both scales. It was clarified that the contamination of the process let decrease markedly the concentration of produced glucose solution and brings on a large trouble for the saccharification. The addition of 1 % ethyl acetate made it possible to prevent the contamination of the saccharification process in flask scale. However, in the case of continuous saccharification in bench scale, the addition of ethyl acetate in nitrogen gas atmosphere was necessary to prevent the contamination. It was found that the solution of 1.7 % glucose concentration was continuously produced in the continuous saccharification with the most longest period for 26 days. It was, also, suggested that the selection of a suitable retention time is necessary to attain a high glucose productivity in the continuous saccharification. (author)

  16. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    Science.gov (United States)

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  17. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling

  18. Bench-Scale Evaluation of the Genifuel Hydrothermal Processing Technology for Wastewater Solids

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.; Hallen, Richard T.; Hart, Todd R.; Kadota, Paul; Moeller, Jeff C.; Randel, Margaaret A.; Schmidt, Andrew J.

    2017-10-03

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbon balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. Subsequent hydrotreating (i.e., upgrading) of the biocrude produced from primary sludge and digested solids resulted in a product with comparable physical and chemical properties to petroleum crude oil. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the output of HTL tests with primary sludge, secondary sludge, and digested solids, respectively. Siloxane concentrations in the CHG product gas were below the detection limit and well below fuel input composition limits set by several engine manufacturers. Relative to that of the sludge feeds, the HTL-CHG process resulted in a reduction in chemical oxygen demand (COD) of greater than 99.9% and a reduction in residual solids for disposal of 94-99%. The test results, as a whole, support

  19. Bench Scale Process for Low Cost CO2 Capture Using a Phase-Changing Absorbent: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, Tiffany [GE Global Research, Niskayuna, New York (United States); Buddle, Stanlee [GE Global Research, Niskayuna, New York (United States); Caraher, Joel [GE Global Research, Niskayuna, New York (United States); Chen, Wei [GE Global Research, Niskayuna, New York (United States); Doherty, Mark [GE Global Research, Niskayuna, New York (United States); Farnum, Rachel [GE Global Research, Niskayuna, New York (United States); Giammattei, Mark [GE Global Research, Niskayuna, New York (United States); Hancu, Dan [GE Global Research, Niskayuna, New York (United States); Miebach, Barbara [GE Global Research, Niskayuna, New York (United States); Perry, Robert [GE Global Research, Niskayuna, New York (United States); Rubinsztajn, Gosia; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2017-05-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants. The U.S. Department of Energy’s goal for Transformational Carbon Capture Technologies is the development of technologies available for demonstration by 2025 that can capture 90% of emitted CO2 with at least 95% CO2 purity for less than $40/tonne of CO2 captured. In the first budget period of the project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance. In the second budget period of the project, individual bench-scale unit operations were tested to determine the performance of each of each unit. Solids production was demonstrated in dry simulated flue gas across a wide range of absorber operating conditions, with single stage CO2 conversion rates up to 75mol%. Desorber operation was demonstrated in batch mode, resulting in desorption performance consistent with the equilibrium isotherms for GAP-0/CO2 reaction. Important risks associated with gas humidity impact on solids consistency and desorber temperature impact on thermal degradation were explored, and adjustments to the bench-scale process were made to address those effects. Corrosion experiments were conducted to support selection of suitable materials of construction for the major

  20. Incremental fold tests of remagnetized carbonate rocks

    Science.gov (United States)

    Van Der Voo, R.; van der Pluijm, B.

    2017-12-01

    Many unmetamorphosed carbonates all over the world are demonstrably remagnetized, with the age of the secondary magnetizations typically close to that of the nearest orogeny in space and time. This observation did not become compelling until the mid-1980's, when the incremental fold test revealed the Appalachian carbonates to carry a syn-deformational remanence of likely Permian age (Scotese et al., 1982, Phys. Earth Planet. Int., v. 30, p. 385-395; Cederquist et al., 2006, Tectonophysics v. 422, p. 41-54). Since that time scores of Appalachian and Rocky Mountain carbonate rocks have added results to the growing database of paleopoles representing remagnetizations. Late Paleozoic remagnetizations form a cloud of results surrounding the reference poles of the Laurentian APWP. Remagnetizations in other locales and with inferred ages coeval with regional orogenies (e.g., Taconic, Sevier/Laramide, Variscan, Indosinian) are also ubiquitous. To be able to transform this cornucopia into valuable anchor-points on the APWP would be highly desirable. This may indeed become feasible, as will be explained next. Recent studies of faulted and folded carbonate-shale sequences have shown that this deformation enhances the illitization of smectite (Haines & van der Pluijm, 2008, Jour. Struct. Geol., v. 30, p. 525-538; Fitz-Diaz et al., 2014, International Geol. Review, v. 56, p. 734-755). 39Ar-40Ar dating of the authigenic illite (neutralizing any detrital illite contribution by taking the intercept of a mixing line) yields, therefore, the age of the deformation. We know that this date is also the age of the syndeformational remanence; thus we have the age of the corresponding paleopole. Results so far are obtained for the Canadian and U.S. Rocky Mountains and for the Spanish Cantabrian carbonates (Tohver et al., 2008, Earth Planet. Sci. Lett., v. 274, p. 524-530) and make good sense in accord with geological knowledge. Incremental fold tests are the tools used for this

  1. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  2. Data Quality Objectives For Selecting Waste Samples For Bench-Scale Reformer Treatability Studies

    International Nuclear Information System (INIS)

    Banning, D.L.

    2011-01-01

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required. The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.

  3. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1996-01-01

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take place inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho

  4. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Drira, Anis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reed, Frederick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings to support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.

  5. Hydrogeology of the carbonate rocks of the Lebanon Valley, Pennsylvania

    Science.gov (United States)

    Meisler, Harold

    1963-01-01

    The Lebanon Valley, which is part of the Great Valley in southeastern Pennsylvania, is underlain by carbonate rocks in the southern part and by shale in the northern part. The carbonate rocks consist of alternating beds of limestone and dolomite of Cambrian and Ordovician age. Although the beds generally dip to the south, progressively younger beds crop out to the north, because the rocks are overturned. The stratigraphic units, from oldest to youngest, are: the Buffalo Springs Formation, Snitz Creek, Schaefferstown, Millbach, and Richland Formations of the Conococheague Group; the Stonehenge, Rickenbach, Epler, and Ontelaunee Formations of the Beekmantown Group; and the Annville, Myerstown, and Hershey Limestones.

  6. PNNL Report on the Development of Bench-scale CFD Simulations for Gas Absorption across a Wetted Wall Column

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Xu, Zhijie; Lai, Canhai; Whyatt, Greg A.; Marcy, Peter; Gattiker, J. R.; Sun, Xin

    2016-05-01

    This report is prepared for the demonstration of hierarchical prediction of carbon capture efficiency of a solvent-based absorption column. A computational fluid dynamics (CFD) model is first developed to simulate the core phenomena of solvent-based carbon capture, i.e., the CO2 physical absorption and chemical reaction, on a simplified geometry of wetted wall column (WWC) at bench scale. Aqueous solutions of ethanolamine (MEA) are commonly selected as a CO2 stream scrubbing liquid. CO2 is captured by both physical and chemical absorption using highly CO2 soluble and reactive solvent, MEA, during the scrubbing process. In order to provide confidence bound on the computational predictions of this complex engineering system, a hierarchical calibration and validation framework is proposed. The overall goal of this effort is to provide a mechanism-based predictive framework with confidence bound for overall mass transfer coefficient of the wetted wall column (WWC) with statistical analyses of the corresponding WWC experiments with increasing physical complexity.

  7. Accumulation of uranium, cesium, and radium by microbial cells: bench-scale studies

    International Nuclear Information System (INIS)

    Strandberg, G.W.; Shumate, S.E. II.

    1982-07-01

    This report describes bench-scale studies on the utilization of microbial cells for the concentration and removal of uranium, radium, and cesium from nuclear processing waste streams. Included are studies aimed at elucidating the basic mechanism of uranium uptake, process development efforts for the use of a combined denitrification-uranium removal process to treat a specific nuclear processing waste stream, and a preliminary investigation of the applicability of microorganisms for the removal of 137 Cs and 226 Ra from existing waste solutions

  8. Coal flotation - bench-scale study. Flotacao de carvao estudo em escala de bancada

    Energy Technology Data Exchange (ETDEWEB)

    Campos, A.R. de; Almeida, S L.M. de; Santos, A.T. dos

    1979-01-01

    Run-of-mine coal and pre-washed coal from Santa Catarina, Brazil, were characterized using washability curves and by particle size analysis after crushing. Bench-scale froth flotation tests were then conducted with the pre-washed coal. Kerosene and diesel oil were used as the collectors, and pine oil as the frother. The influence of starch (as depressor) on flotation was also studied. The effects of feed particle size, pH, collector addition, frother addition, depressor addition and flotation time were investigated. A 9.5% ash content coal could be obtained with a mass recovery of about 29%. (17 refs.)

  9. Bench-scale crossflow filtration of Hanford tank C-106, C-107, B-110, and U-110 sludge slurries

    International Nuclear Information System (INIS)

    Geeting, J.G.H.; Reynolds, B.A.

    1997-09-01

    Pacific Northwest National Laboratory has a bench-scale crossflow filter installed in a shielded hot cell for testing radioactive feeds. During FY97 experiments were conducted on slurries from radioactive Hanford waste from tanks C-106, C-107, B-110, and U-110. Each tank was tested at three slurry concentrations (8, 1.5, and 0.05 wt% solids). A two-parameter central composite design which tested transmembrane pressure from 5 to 40 psig and axial velocity from 3 to 9 ft/s was used for all feeds. Crossflow filtration was found to remove solids effectively, as judged by filtrate clarity and radiochemical analysis. If the filtrates from these tests were immobilized in a glass matrix, the resulting transuranic and ( 90 Sr) activity would not breach low activity waste glass limits of 100nCi/g (TRU) and 20 μCi/ml ( 90 Sr). Two exceptions were the transuranic activity in filtrates from processing 1.5 and 8 wt% C-106 tank waste. Subsequent analyses indicated that the source of the TRU activity in the filtrate was most likely due to soluble activity, but obviously proved ineffective at removing the soluble plutonium species. Re-testing of the C-106 supported this hypothesis. These data suggest the need to control carbonate and pH when processing tank wastes for immobilization

  10. In situ remediation of hexavalent chromium with pyrite fines : bench scale demonstration

    International Nuclear Information System (INIS)

    Cathum, S.; Wong, W.P.; Brown, C.E.

    2002-01-01

    An in situ remediation technique for chromium contaminated soil with pyrite fines was presented. Past industrial activities and lack of disposal facilities have contributed to a serious problem dealing with chromium, which cannot be eliminated from the environment because it is an element. Both bench-scale and laboratory testing was conducted to confirm the efficiency of the proposed process which successfully converted Cr(VI) into Cr(III) in soil and water. Cr(III) is less toxic and immobile in the environment compared to Cr(VI) which moves freely in the soil matrix, posing a risk to the groundwater quality. pH in the range of 2.0 to 7.6 has no effect on the reactivity of pyrite towards Cr(VI). The optimization of the bench-scale treatment resulted in a large volume of chromium waste, mostly from the control experiments and column hydrology testing. These waste streams were treated according to municipal guidelines before disposal to the environment. Samples of chromium waste before and after treatment were analyzed. Cr (VI) was completely mineralized to below guideline levels. It was determined that several conditions, including contact time between pyrite and Cr(VI), are crucial for complete mineralization of Cr(VI). 13 refs., 8 tabs., 9 figs

  11. Pore Type Classification on Carbonate Reservoir in Offshore Sarawak using Rock Physics Model and Rock Digital Images

    International Nuclear Information System (INIS)

    Lubis, L A; Harith, Z Z T

    2014-01-01

    It has been recognized that carbonate reservoirs are one of the biggest sources of hydrocarbon. Clearly, the evaluation of these reservoirs is important and critical. For rigorous reservoir characterization and performance prediction from geophysical measurements, the exact interpretation of geophysical response of different carbonate pore types is crucial. Yet, the characterization of carbonate reservoir rocks is difficult due to their complex pore systems. The significant diagenesis process and complex depositional environment makes pore systems in carbonates far more complicated than in clastics. Therefore, it is difficult to establish rock physics model for carbonate rock type. In this paper, we evaluate the possible rock physics model of 20 core plugs of a Miocene carbonate platform in Central Luconia, Sarawak. The published laboratory data of this area were used as an input to create the carbonate rock physics models. The elastic properties were analyzed to examine the validity of an existing analytical carbonate rock physics model. We integrate the Xu-Payne Differential Effective Medium (DEM) Model and the elastic modulus which was simulated from a digital carbonate rock image using Finite Element Modeling. The results of this integration matched well for the separation of carbonate pore types and sonic P-wave velocity obtained from laboratory measurement. Thus, the results of this study show that the integration of rock digital image and theoretical rock physics might improve the elastic properties prediction and useful for more advance geophysical techniques (e.g. Seismic Inversion) of carbonate reservoir in Sarawak

  12. Digital Rock Simulation of Flow in Carbonate Samples

    Science.gov (United States)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  13. Chemical analysis of carbonates and carbonate rocks by atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tardon, S

    1981-01-01

    Evaluates methods of determining chemical composition of rocks surrounding black coal seams. Carbonate rock samples were collected in the Ostrava-Karvina coal mines. Sampling methods are described. Determination of the following elements and compounds in carbonate rocks is discussed: calcium, magnesium, iron, manganese, barium, silicon, aluminium, titanium, sodium, potassium, sulfur trioxide, phosphorus pentoxide, water and carbon dioxide. Proportion of compounds insoluble in water in the investigated rocks is also determined. Most of the elements are determined by means of atomic absorption analysis. Phosphorus is also determined by atomic absorption analysis. Other compounds are determined gravimetrically. The described procedure permits weight of a rock sample to be reduced to 0.5 g without reducing analysis accuracy. The results of determining carbonate rock components by X-ray analysis and by chemical analysis are compared. Equipment used for atomic absorption analysis is characterized (the 503 Perkin-Elmer and the CF-4 Optica-Milano spectrophotometers). The analyzed method for determining carbonate rock permits more accurate classification of rocks surrounding coal seams and rock impurities in run-of-mine coal. (22 refs.) (In Czech)

  14. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    Science.gov (United States)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This

  15. Final PHP bench-scale report for the DOE-ID/SAIC sole source contract

    International Nuclear Information System (INIS)

    1997-04-01

    The Plasma Hearth Process (PHP) Technology Development Project was established to develop, test, and evaluate a new concept for treating mixed waste. The new concept uses direct current (dc) transferred-arc plasma torch technology to process mixed waste into a glass-like end-product. Under the cognizance of the US Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Focus Area (MWFA), the technology is being explored for its potential to treat mixed waste. Because it is a mature technology, well-understood and commercially available, it is expected to develop rapidly in this new application. This report summarizes the radioactive bench-scale system activities funded under PHP Sole Source Contract DE-AC07-94ID13266 through the end of the contract

  16. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  17. The hot bench scale plant Ester for the vitrification of high level wastes

    International Nuclear Information System (INIS)

    Nannicini, R.; Strazzer, A.; Cantale, C; Donato, A.; Grossi, G.

    1985-01-01

    In this paper the hot bench-scale plant ESTER for the vitrification of the high-level radioactive wastes is described, and the main results of the first radioactive campaign are reported. The ESTER plant, which is placed in the ADECO-ESSOR hot cells of the C.C.R.-EURATOM-ISPRA, has been built and is operated by the ENEA, Departement of Fuel Cycle. It began operating with real radioactive wastes about 1 year ago, solidifying a total of 12 Ci of fission products into 2,02 Kg of borosilicate glass, corresponding to 757 ml of glass. During the vitrification many samples of liquid and gaseous streams have been taken and analyzed. A radioactivity balance in the plant has been calculated, as well as a mass balance of nitrates and of the 137 Cs and 106 Ru volatized in the process

  18. Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Amy, Gary L.

    2014-01-01

    The flux performance of different hydrophobic microporous flat sheet commercial membranes made of poly tetrafluoroethylene (PTFE) and poly propylene (PP) was tested for Red Sea water desalination using the direct contact membrane distillation (DCMD) process, under bench scale (high δT) and large scale module (low δT) operating conditions. Membranes were characterized for their surface morphology, water contact angle, thickness, porosity, pore size and pore size distribution. The DCMD process performance was optimized using a locally designed and fabricated module aiming to maximize the flux at different levels of operating parameters, mainly feed water and coolant inlet temperatures at different temperature differences across the membrane (δT). Water vapor flux of 88.8kg/m2h was obtained using a PTFE membrane at high δT (60°C). In addition, the flux performance was compared to the first generation of a new locally synthesized and fabricated membrane made of a different class of polymer under the same conditions. A total salt rejection of 99.99% and boron rejection of 99.41% were achieved under extreme operating conditions. On the other hand, a detailed water characterization revealed that low molecular weight non-ionic molecules (ppb level) were transported with the water vapor molecules through the membrane structure. The membrane which provided the highest flux was then tested under large scale module operating conditions. The average flux of the latter study (low δT) was found to be eight times lower than that of the bench scale (high δT) operating conditions.

  19. Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions

    KAUST Repository

    Francis, Lijo

    2014-04-01

    The flux performance of different hydrophobic microporous flat sheet commercial membranes made of poly tetrafluoroethylene (PTFE) and poly propylene (PP) was tested for Red Sea water desalination using the direct contact membrane distillation (DCMD) process, under bench scale (high δT) and large scale module (low δT) operating conditions. Membranes were characterized for their surface morphology, water contact angle, thickness, porosity, pore size and pore size distribution. The DCMD process performance was optimized using a locally designed and fabricated module aiming to maximize the flux at different levels of operating parameters, mainly feed water and coolant inlet temperatures at different temperature differences across the membrane (δT). Water vapor flux of 88.8kg/m2h was obtained using a PTFE membrane at high δT (60°C). In addition, the flux performance was compared to the first generation of a new locally synthesized and fabricated membrane made of a different class of polymer under the same conditions. A total salt rejection of 99.99% and boron rejection of 99.41% were achieved under extreme operating conditions. On the other hand, a detailed water characterization revealed that low molecular weight non-ionic molecules (ppb level) were transported with the water vapor molecules through the membrane structure. The membrane which provided the highest flux was then tested under large scale module operating conditions. The average flux of the latter study (low δT) was found to be eight times lower than that of the bench scale (high δT) operating conditions.

  20. Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized Bed Gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Shahnam, Mehrdad [National Energy Technology Lab. (NETL), Morgantown, WV (United States). Research and Innovation Center, Energy Conversion Engineering Directorate; Gel, Aytekin [ALPEMI Consulting, LLC, Phoeniz, AZ (United States); Subramaniyan, Arun K. [GE Global Research Center, Niskayuna, NY (United States); Musser, Jordan [National Energy Technology Lab. (NETL), Morgantown, WV (United States). Research and Innovation Center, Energy Conversion Engineering Directorate; Dietiker, Jean-Francois [West Virginia Univ. Research Corporation, Morgantown, WV (United States)

    2017-10-02

    Adequate assessment of the uncertainties in modeling and simulation is becoming an integral part of the simulation based engineering design. The goal of this study is to demonstrate the application of non-intrusive Bayesian uncertainty quantification (UQ) methodology in multiphase (gas-solid) flows with experimental and simulation data, as part of our research efforts to determine the most suited approach for UQ of a bench scale fluidized bed gasifier. UQ analysis was first performed on the available experimental data. Global sensitivity analysis performed as part of the UQ analysis shows that among the three operating factors, steam to oxygen ratio has the most influence on syngas composition in the bench-scale gasifier experiments. An analysis for forward propagation of uncertainties was performed and results show that an increase in steam to oxygen ratio leads to an increase in H2 mole fraction and a decrease in CO mole fraction. These findings are in agreement with the ANOVA analysis performed in the reference experimental study. Another contribution in addition to the UQ analysis is the optimization-based approach to guide to identify next best set of additional experimental samples, should the possibility arise for additional experiments. Hence, the surrogate models constructed as part of the UQ analysis is employed to improve the information gain and make incremental recommendation, should the possibility to add more experiments arise. In the second step, series of simulations were carried out with the open-source computational fluid dynamics software MFiX to reproduce the experimental conditions, where three operating factors, i.e., coal flow rate, coal particle diameter, and steam-to-oxygen ratio, were systematically varied to understand their effect on the syngas composition. Bayesian UQ analysis was performed on the numerical results. As part of Bayesian UQ analysis, a global sensitivity analysis was performed based on the simulation results, which shows

  1. Lower Paleozoic carbonate rocks of Baird Mountains Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Dumoulin, J.A.; Harris, A.G.

    1985-04-01

    Lower Paleozoic carbonate rocks in the Baird Mountains quadrangle form a relatively thin (about 550 m), chiefly shallow-water succession that has been imbricately thrust and metamorphosed to lower greenschist facies. Middle and Upper Cambrian rocks - the first reported from the western Brooks Range - occur in the northeastern quarter of the quadrangle, south of Angayukaqsraq (formerly Hub) Mountain. They consist of marble grading upward into thin-bedded marble/dolostone couplets and contain pelagiellid mollusks, acetretid brachiopods, and agnostid trilobites. Sedimentologic features and the Pelagiellas indicate a shallow-water depositional environment. Overlying these rocks are Lower and Middle Ordovician marble and phyllite containing graptolites and conodonts of midshelf to basinal aspect. Upper Ordovician rocks in this area are bioturbated to laminated dolostone containing warm, shallow-water conodonts. In the Omar and Squirrel Rivers areas to the west, the Lower Ordovician carbonate rocks show striking differences in lithofacies, biofacies, and thickness. Here they are mainly dolostone with locally well-developed fenestral fabric and evaporite molds, and bioturbated to laminated orange- and gray-weathering dolomitic marble. Upper Silurian dolostone, found near Angayukaqsraq Mountain and on the central Squirrel River, contains locally abundant corals and stronmatoporoids. Devonian carbonate rocks are widely distributed in the Baird Mountains quadrangle; at least two distinct sequences have been identified. In the Omar area, Lower and Middle Devonian dolostone and marble are locally cherty and rich in megafossils. In the north-central (Nakolik River) area, Middle and Upper Devonian marble is interlayered with planar to cross-laminated quartz-carbonate metasandstone and phyllite.

  2. Estimation of Carbon Sink in Surface Carbonate Rocks of Guangxi Province by Using Remote Sensing Images

    Science.gov (United States)

    Jia, B.; Zhou, G.; Wang, H.; Yue, T.; Huang, W.

    2018-04-01

    Studies of the imbalance of source sinks in the carbon cycle show that CO2 absorbed during rock weathering is part of the "miss carbon" of the global carbon cycle. The carbon sink contribution of carbonate rocks obviously plays a very important role in the absorption of atmospheric CO2. Estimation of carbon sinks in karst dynamic system of Guangxi province has great significance for further understanding of global karst carbon cycle and global climate research. This paper quotes the rock data from Tao Xiaodong's paper, which is obtained using RS and GIS techniques. At the same time, the dissolution rate model studied by Zhou Guoqing and others was used to estimate the dissolution rate of carbonate rocks in Guangxi Province. Finally, the CO2 content consumed by carbonate karstification in Guangxi Province was 1342910.447 t a-1. The results obtained are in the same order of magnitude as the CO2 content consumed by carbonate rock karstification in Guangxi Province calculated by Tao Xiaodong.

  3. Oil geology of carbonate rock (Part 9)

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Kazuaki [Canpex Co., Ltd., Tokyo (Japan)

    1989-04-01

    As related with the oil exploration and development, the geological and environmental situation, where coral and other biological reef forms, was explained in Mubarras shoal and Bu Tinah shoal off Abu Dhabi, and the Okinawa islands. Generally, reef-natured sediment is distributed in marine areas, high in wave energy and facing open sea, and composed of coarse sediment. While, for the formation of biological reef, life must have so strong skeleton as to stand such severe wave, current and other oceanographic conditions. In Mubarras shoal, underground upheaval is found mainly in the northern part of shoal, while, in Bu Tinah shoal, it is found at the central part of shoal. Both the shoals are mutually different in condition of coral reef and coarse particulate sediment however common in the point that coral reef is always formed from the central part of upheaval toward offshore, inside which formation coarse calcareous sediment is formed. While the existence of calcareous mud prevents coral from growing and simultaneously lower reservoir rock in form condition. 26 figs.

  4. Destruction of hazardous and mixed wastes using mediated electrochemical oxidation in a Ag(II)HNO3 bench scale system

    International Nuclear Information System (INIS)

    Balazs, B.; Chiba, Z.; Hsu, P.; Lewis, P.; Murguia, L.; Adamson, M.

    1997-01-01

    Mediated Electrochemical Oxidation (MEO) is a promising technology for the destruction of organic containing wastes and the remediation of mixed wastes containing transuranic components. The combination of a powerful oxidant and an acid solution allows the conversion of nearly all organics, whether present in hazardous or in mixed waste, to carbon dioxide. Insoluble transuranics are dissolved in this process and may be recovered by separation and precipitation.The MEO technique offers several advantages which are inherent in the system. First, the oxidation/dissolution processes are accomplished at near ambient pressures and temperatures (30-70 degrees C). Second, all waste stream components and oxidation products (with the exception of evolved gases) are contained in an aqueous environment. This electrolyte acts as an accumulator for inorganics which were present in the original waste stream, and the large volume of electrolyte provides a thermal buffer for the energy released during oxidation of the organics. Third, the generation of secondary waste is minimal, as the process needs no additional reagents. Finally, the entire process can be shut down by simply turning off the power, affording a level of control unavailable in some other techniques.Numerous groups, both in the United States and Europe, have made substantial progress in the last decade towards understanding the mechanistic pathways, kinetics, and engineering aspects of the process. At Lawrence Livermore National Laboratory, substantial contributions have been made to this knowledge base in these areas and others. Conceptual design and engineering development have been completed for a pilot plant-scale MEO system, and numerous data have been gathered on the efficacy of the process for a wide variety of anticipated waste components. This presentation will review the data collected at LLNL for a bench scale system based primarily on the use of a Ag(II) mediator in a nitric acid electrolyte; results

  5. Treatment of simulated high-level radioactive waste with formic acid: Bench-scale study on hydrogen evolution

    International Nuclear Information System (INIS)

    Hsu, C.L.W.; Ritter, J.A.

    1996-01-01

    At the Savannah River Site, the Defense Waste Processing Facility (DWPF) was constructed to vitrify high-level radioactive liquid waste in borosilicate glass for permanent storage. Formic acid, which serves as both an acid and a reducing agent, is used to treat the washed alkaline sludge during melter feed preparation primarily to improve the processability of the feed and to reduce mercury to its zero state for steam stripping. The high-level sludge is composed of many transition metal hydroxides. Among them, there are small quantities of platinum group metals. During the treatment of simulated sludge with formic acid, significant amounts of hydrogen were generated when the platinum group metals were included in the sludge. Apparently the noble metals in the sludge were reduced to their zero states and caused formic acid to decompose catalytically into hydrogen and carbon dioxide, usually with an induction period. The production of hydrogen gas presented the DWPF with a safety issue. Therefore, the objective of this research was to gain a fundamental understanding of what controlled the hydrogen evolution so that a practical solution to the safety issue could be obtained. A bench-scale parametric study revealed the following: increasing the amount of formic acid added to the sludge increased the hydrogen generation rate dramatically; once the catalysts were activated, the hydrogen generation rate decreased significantly with a lowering of the temperature of the sludge; the relative catalytic activities of the noble metals in the sludge decreased in the following order: rhodium > ruthenium much-gt palladium; ammonium ions were generated catalytically from the reaction between formic acid and nitrate; and when present, the noble metals caused higher upward drifts of the sludge pH

  6. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2013-01-01

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled...

  7. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    Science.gov (United States)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  8. The Time-Dependency of Deformation in Porous Carbonate Rocks

    Science.gov (United States)

    Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.

    2016-12-01

    Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.

  9. Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace

    International Nuclear Information System (INIS)

    Freeman, C.J.

    1997-05-01

    Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated

  10. Safety analysis of the CSTR-1 bench-scale coal liquefaction unit

    Energy Technology Data Exchange (ETDEWEB)

    Hulburt, D.A.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the CSTR-1 bench scale unit located in Building 167 at the Pittsburgh Energy Technology Center. It was apparent that considerable effort was expended in the design and construction of the unit, and in the development of operating procedures, with regard to safety. Exhaust ventilation, H/sub 2/ and H/sub 2/S monitoring, overpressure protection, overtemperature protection, and interlock systems have been provided. Present settings on the pressure and temperature safety systems are too high, however, to insure prevention of vessel deformation or damage in all cases. While the occurrence of catastrophic rupture of a system pressure vessel (e.g., reactor, high pressure separators) is unlikely, the potential consequences to personnel are severe. Feasibility of providing shielding for these components should be considered. A more probable mode of vessel failure in the event of overpressure or overtemperature and failure of the safety system is yielding of the closure bolts followed by high pressure flow across the mating surfaces. As a minimum, shielding should be designed to restrict travel of resultant spray. The requirements for personal protective equipment are presently stated in rather broad and general terms in the operating procedures. Safe practices and procedures would be more assured if specific requirements were stated and included for each operational step. Recommendations were developed for all hazards triggered by the guidelines.

  11. Rapid pyrolysis of wheat straw in a Bench-Scale circulating Fluidized-Bed downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ding, T. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Graduate School of Chinese Academy of Sciences, Beijing (China); Li, S.; Xie, J.; Song, W.; Yao, J.; Lin, W. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China)

    2012-12-15

    The effects of acid washing treatment on the pyrolysis product distribution and product properties were investigated in a bench-scale circulating fluidized-bed (CFB) downer reactor with wheat straw as feedstock. The acid treatment not only removes most of the inorganic species present in the biomass but also alters the distribution of the remaining organic constituents. It was found that the removal of the inorganic species increases the yield of liquid product and reduces char formation and gas yield. CO and CO{sub 2} are the dominant components in the gaseous product, accounting for over 90 %. The concentration of CO in the gaseous product increases after acid treatment, while the CO{sub 2} concentration decreases. The oxygen and water contents in the liquid product are decreased on acid treatment, leading to a relatively high heating value and viscosity. More volatiles can be found in the char derived from the acid-treated wheat straw than from the raw wheat straw. This may suggest that a longer residence time is needed for pyrolysis of the acid-treated wheat straw in order to obtain the maximal yield of volatile matter. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Bench-scale demonstration of treatment technologies for contaminated sediments in Sydney Tar Ponds

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Punt, M.; Wong, B.; Weimer, L.; Tsangaris, A.; Brown, C.E.

    2003-01-01

    A series of bench-scale tests were conducted to determine the capabilities of selected commercially available technologies for treating contaminated sediments from the South Pond of Sydney Tar Ponds. This study was conducted under the umbrella of a technology demonstration program aimed at evaluating technologies to be used in the remediation of such sediments. The following approach was proposed by SAIC Canada for the treatment of the sediments: (1) solvent extraction for the removal of organic contaminants, (2) acid/chelant leaching for the removal of inorganic contaminants such as heavy metals, and (3) plasma hearth process for the destruction of toxic streams resulting from the first two processes. Solvent extraction followed by plasma treatment proved effective for removing and destroying organic contaminants. The removal of metals did not achieve the expected results through leaching. An approach was proposed for treating those sediments based on the results of the study. The approach differed depending on the level of organic content. An assessment of associated process costs for both a pilot-scale field demonstration and a full-scale treatment was provided. 11 tabs., 4 figs

  13. Continuous thermal degradation of pyrolytic oil in a bench scale CSTR reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong Hwan; Nam, Ki Yun [Climate Change Technology Research Division, Korea Institute of Energy Research, 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea)

    2010-05-15

    Continuous thermal degradation of two pyrolytic oils with low (LPO) and high boiling point distribution (HPO) was conducted in a constant stirrer tank reactor (CSTR) with bench scale. Raw pyrolytic oil as a reactant was obtained from the commercial rotary kiln pyrolysis plant for municipal plastic waste. The degradation experiment was conducted by temperature programming with 10 C/min of heating rate up to 450 C and then maintained with long lapse time at 450 C. Liquid product was sampled at initial reaction time with different degradation temperatures up to 450 C and then constant interval lapse time at 450 C. The product characteristics over two pyrolytic oils were compared by using a continuous reaction system. As a reactant, heavy pyrolytic oil (HPO) showed higher boiling point distribution than that of diesel and also light pyrolytic oil (LPO) was mainly consisting of a mixture of gasoline and kerosene range components. In the continuous reaction, LPO showed higher yield of liquid product and lower residue than those of HPO. The characteristics of liquid products were influenced by the type of raw pyrolytic oil. Also, the result obtained under degradation temperature programming was described. (author)

  14. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    Energy Technology Data Exchange (ETDEWEB)

    Field, J.G.

    1994-06-10

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that {sup 137}Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of {sup 137}Cs in the gravel- and sand-size fractions.

  15. Domestic Wastewater Reuse in Concrete Using Bench-Scale Testing and Full-Scale Implementation

    Directory of Open Access Journals (Sweden)

    Ayoup M. Ghrair

    2016-08-01

    Full Text Available Demand for fresh water by the construction sector is expected to increase due to the high increase in the growth of construction activities in Jordan. This study aims to evaluate the potential of scale-up of the application of treated domestic wastewater in concrete from bench-scale to a full-scale. On the lab scale, concrete and mortar mixes using Primary and Secondary Treated Wastewater (PTW, STW and Distilled Water (DW were cast and tested after various curing ages (7, 28, 120, and 200 days. Based on wastewater quality, according to IS 456-2000, the STW is suitable for mortar and concrete production. Mortar made with STW at curing time up to 200 days has no significant negative effect on the mortar’s compressive strength. Conversely, the PTW exceeded the maximum permissible limits of total organic content and E coli. for concrete mixing-water. Using PTW results, a significant increase in the initial setting time of up to 16.7% and a decrease in the concrete workability are observed. In addition, using PTW as mixing water led to a significant reduction in the compressive strength up to 19.6%. The results that came out from scaling up to real production operation of ready-mix concrete were in harmony with the lab-scale results.

  16. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    International Nuclear Information System (INIS)

    Field, J.G.

    1994-01-01

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that 137 Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of 137 Cs in the gravel- and sand-size fractions

  17. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, R.F.; Coless, L.A.; Davis, S.M. [and others

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  18. Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C.J.

    1997-05-01

    Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated.

  19. Simulation of large scale air detritiation operations by computer modeling and bench-scale experimentation

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Land, R.H.; Maroni, V.A.; Mintz, J.M.

    1978-01-01

    Although some experience has been gained in the design and construction of 0.5 to 5 m 3 /s air-detritiation systems, little information is available on the performance of these systems under realistic conditions. Recently completed studies at ANL have attempted to provide some perspective on this subject. A time-dependent computer model was developed to study the effects of various reaction and soaking mechanisms that could occur in a typically-sized fusion reactor building (approximately 10 5 m 3 ) following a range of tritium releases (2 to 200 g). In parallel with the computer study, a small (approximately 50 liter) test chamber was set up to investigate cleanup characteristics under conditions which could also be simulated with the computer code. Whereas results of computer analyses indicated that only approximately 10 -3 percent of the tritium released to an ambient enclosure should be converted to tritiated water, the bench-scale experiments gave evidence of conversions to water greater than 1%. Furthermore, although the amounts (both calculated and observed) of soaked-in tritium are usually only a very small fraction of the total tritium release, the soaked tritium is significant, in that its continuous return to the enclosure extends the cleanup time beyond the predicted value in the absence of any soaking mechanisms

  20. Rock Magnetic Properties of Remagnetised Devonian and Carboniferous Carbonate and Clastic Rocks From The NE Rhenish Massif, Germany

    Science.gov (United States)

    Zwing, A.; Matzka, J.; Bachtadse, V.; Soffel, H. C.

    Previous studies on remagnetised carbonate rocks from the North American and Eu- ropean Variscides reported characteristic rock magnetic properties which are thought to be diagnostic for a chemical remagnetisation event. Their hysteresis properties with high ratios of Mrs/Ms and Hcr/Hc indicate the presence of a mixture of single-domain and superparamagnetic magnetite (Jackson, et al. 1990). In order to test if this fin- gerprint can be identified in remagnetised carbonate and clastic rocks from the NE Rhenish Massif, Germany, a series of rock magnetic experiments has been carried out. The hysteresis properties of the remagnetised clastic rocks indicate the domi- nance of large MD particles, as can be expected for detrital sediments. The carbon- ates yield significantly higher ratios of Mrs/Ms and Hcr/Hc than the clastic rocks, but only partly correspond to the characteristic properties of remagnetised carbon- ates described above. The latter might be attributed to detrital input into the carbonate platforms. Additional low-temperature remanence measurements show a wide vari- ety of phenomena, including Verwey transitions and indications for the presence of superparamagnetic grains. However, the low-temperature experiments do not allow a straightforward discrimination between the clastic and carbonate rocks and suggest more complex magnetomineralogies than expected from the hysteresis measurements alone.

  1. Rock fracture grouting with microbially induced carbonate precipitation

    Science.gov (United States)

    Minto, James M.; MacLachlan, Erica; El Mountassir, Gráinne; Lunn, Rebecca J.

    2016-11-01

    Microbially induced carbonate precipitation has been proposed for soil stabilization, soil strengthening, and permeability reduction as an alternative to traditional cement and chemical grouts. In this paper, we evaluate the grouting of fine aperture rock fractures with calcium carbonate, precipitated through urea hydrolysis, by the bacteria Sporosarcina pasteurii. Calcium carbonate was precipitated within a small-scale and a near field-scale (3.1 m2) artificial fracture consisting of a rough rock lower surfaces and clear polycarbonate upper surfaces. The spatial distribution of the calcium carbonate precipitation was imaged using time-lapse photography and the influence on flow pathways revealed from tracer transport imaging. In the large-scale experiment, hydraulic aperture was reduced from 276 to 22 μm, corresponding to a transmissivity reduction of 1.71 × 10-5 to 8.75 × 10-9 m2/s, over a period of 12 days under constantly flowing conditions. With a modified injection strategy a similar three orders of magnitude reduction in transmissivity was achieved over a period of 3 days. Calcium carbonate precipitated over the entire artificial fracture with strong adhesion to both upper and lower surfaces and precipitation was controlled to prevent clogging of the injection well by manipulating the injection fluid velocity. These experiments demonstrate that microbially induced carbonate precipitation can successfully be used to grout a fracture under constantly flowing conditions and may be a viable alternative to cement based grouts when a high level of hydraulic sealing is required and chemical grouts when a more durable grout is required.

  2. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-01-01

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  3. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-12-31

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  4. Bench-scale studies of reactor-based treatment of fuel-contaminated soils

    International Nuclear Information System (INIS)

    Truax, D.D.; Britto, R.; Sherrard, J.H.

    1995-01-01

    Biological treatment of hazardous wastes from accidental spills or underground storage tank leaks has generated interest in bioremediation as a natural, economical mechanism for site decontamination. Because of drawbacks of batch systems, and the successful use of continuous flow treatment of wastewater for several decades, it was felt that continuous treatment of such soils would be a feasible alternative treatment technique. Therefore, bench-scale bioreactor treatability studies were conducted and used contaminated soil made in the laboratory using No. 2 diesel fuel and sand. Contamination levels studied were from 1,335--6,675 mg (TPH) as derived from No. 2 fuel oil per kg sand. Variation in mean cell age was obtained between reactors, with sufficient nutrients and oxygen made available to ensure the fuel oil organics were the only limit to microbial growth. A theoretical biokinetic model was formulated based on Monod's theory of limiting substrate and continuous cultures. Biokinetic constants and removal efficiencies were evaluated. The off-gases, CO 2 , and volatile hydrocarbons were monitored for mass balance analysis of the process. The solids retention times for evaluating final TPH concentration of 100 mg/kg were also calculated. Removal efficiencies of up to 91% were attained at a loading of 1,335 mg TPH/kg wet sand, operated at a biological solid retention time (BSRT) of 60 days. Experiments also showed that TPH desorption and volatilization were not rate-limiting in the overall removal process. Sand-to-moisture ratios in excess of 3:1 were also shown to retard TPH removal rates very little. However, biokinetic constants were found to vary over a range of values. This was particularly true at varying diesel loading levels. Nevertheless, significant removal efficiency (up to 86%) was noted at the highest loading level tested, 6,675 mg TPH/kg wet sand

  5. Bench-scale arc melter for R ampersand D in thermal treatment of mixed wastes

    International Nuclear Information System (INIS)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800 degrees C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter's ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions

  6. Bioleaching of heavy metals from soil using fungal-organic acids : bench scale testing

    Energy Technology Data Exchange (ETDEWEB)

    Cathum, S.J.; Ousmanova, D.; Somers, A.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Brown, C.E. [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Division]|[Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre

    2006-07-01

    The ability of fungi to solubilize metals from solid materials may present new opportunities in environmental remediation. This paper presented details of a bench scale experiment that evaluated the leaching of heavy metals from contaminated soil using in situ fungal-generated organic acids. Rice was used as the growing media for organic acid production by A. foetidus. The cultivated fungus was placed on large pieces of potato-dextrose agar (PDA) plates and suspended in 5 L of sterilized water. The cooked rice was inoculated by pouring the 5 L spore suspension over the rice layer. Soil was obtained from a soil pile impacted with heavy metals at a private industrial site and augmented with Pb-contaminated soil. A polyethylene tub was used with a drain pipe leading to a leachate vessel. Crushed stone was spread over the bottom of the tub to assist leachate drainage. Approximately 45 kg of the contaminated soil was spread evenly over the stone layer to a depth of 10 cm. The concentrated spore suspension was sprinkled over the rice. Each week the leachate collection vessel was removed from the bioleaching system and the fine soil particles were allowed to settle. A control was run using the contaminated soil and solid substrate without fungus. Growth of A. foetidus was observed in both control experiment and test experiment after a period of 35 days. The pH of the leachate was measured as the fungal growth progressed. The process was assessed using ICP Mass Spectroscopy and electron spectroscopy, which showed that approximately 65 g of heavy metals were mobilized from 45 kg of soil, and that the biological leaching process resulted in greater mobilization of heavy metals relative to the control experiment. It was concluded that organic acids generated by A. foetidus were capable of leaching heavy metals from the soil. 30 refs., 4 tabs., 15 figs.

  7. Results of bench-scale plasma system testing in support of the Plasma Hearth Process

    International Nuclear Information System (INIS)

    Leatherman, G.L.; Cornelison, C.; Frank, S.

    1996-01-01

    The Plasma Hearth Process (PHP) is a high-temperature process that destroys hazardous organic components and stabilizes the radioactive components and hazardous metals in a leach-resistant vitreous slag waste form. The PHP technology development program is targeted at mixed waste that cannot be easily treated by conventional means. For example, heterogeneous debris, which may contain hazardous organics, toxic metals, and radionuclides, is difficult to characterize and cannot be treated with conventional thermal, chemical, or physical treatment methods. A major advantage of the PHP over other plasma processes is its ability to separate nonradioactive, non-hazardous metals from the non-metallic and radioactive components which are contained in the vitreous slag. The overall PHP program involves the design, fabrication, and operation of test hardware to demonstrate and certify that the PHP concept is viable for DOE waste treatment. The program involves bench-scale testing of PHP equipment in radioactive service, as well as pilot-scale demonstration of the PHP concept using nonradioactive, surrogate test materials. The fate of secondary waste streams is an important consideration for any technology considered for processing mixed waste. The main secondary waste stream generated by the PHP is flyash captured by the fabric- filter baghouse. The PHP concept is that flyash generated by the process can, to a large extent, be treated by processing this secondary waste stream in the PHP. Prior to the work presented in the paper, however, the PHP project has not quantitatively demonstrated the ability to treat PHP generated flyash. A major consideration is the quantity of radionuclides and RCRA-regulated metals in the flyash that can be retained the resultant waste form

  8. Bench-scale experimental determination of the thermal diffusivity of crushed tuff

    International Nuclear Information System (INIS)

    Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S.; Connolly, J.R.

    1996-06-01

    A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m 3 at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m 2 /s to 6.6 x 10-7 m 2 /s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed

  9. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  10. Bench-scale enhanced sludge washing and gravity settling of Hanford Tank C-106 Sludge

    International Nuclear Information System (INIS)

    Brooks, K.P.; Myers, R.L.; Rappe, K.G.

    1997-01-01

    This report summarizes the results of a bench-scale sludge pretreatment demonstration of the Hanford baseline flowsheet using liter-quantities of sludge from Hanford Site single-shell tank 241-C-106 (tank C-106). The leached and washed sludge from these tests provided Envelope D material for the contractors supporting Tank Waste Remediation System (TWRS) Privatization. Pretreatment of the sludge included enhanced sludge washing and gravity settling tests and providing scale-up data for both these unit operations. Initial and final solids as well as decanted supernatants from each step of the process were analyzed chemically and radiochemically. The results of this work were compared to those of Lumetta et al. (1996a) who performed a similar experiment with 15 grams of C-106, sludge. A summary of the results are shown in Table S.1. Of the major nonradioactive components, those that were significantly removed with enhanced sludge washing included aluminum (31%), chromium (49%), sodium (57%), and phosphorus (35%). Of the radioactive components, a significant amount of 137 Cs (49%) were removed during the enhanced sludge wash. Only a very small fraction of the remaining radionuclides were removed, including 90 Sr (0.4%) and TRU elements (1.5%). These results are consistent with those of the screening test. All of the supernatants (both individually and as a blend) removed from these washing steps, once vitrified as LLW glasses (at 20 wt% Na 2 O), would be less than NRC Class C in TRU elements and less than NRC Class B in 90 Sr

  11. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.

    Science.gov (United States)

    Lu, Yehu; Song, Guowen; Wang, Faming

    2015-03-01

    Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  12. A long-term bench-scale investigation of permanganate consumption by aquifer materials.

    Science.gov (United States)

    Xu, Xiuyuan; Thomson, Neil R

    2009-11-20

    In situ chemical oxidation (ISCO) applications using permanganate involve the injection or release of permanganate into the subsurface to destroy various target contaminants. Naturally occurring reduced components associated with aquifer materials can exert a significant oxidant demand thereby reducing the amount of permanganate available for the destruction of contaminants as well as reducing the overall rate of oxidation. Quantification of this natural oxidant demand (NOD) is a requirement for site-specific assessment and the design of cost-effective oxidant delivery systems. To further our understanding of the interaction between permanganate and aquifer materials, aerobic and anaerobic aquifer materials from eight representative sites throughout North America were tested in a series of systematic bench-scale experiments. Various permanganate to aquifer solids mass loading ratios at different initial permanganate concentrations in well-mixed batch reactors were monitored for >300 days. All NOD temporal profiles demonstrated an initial fast consumption rate followed by a persistent slower consumption rate. The data generated show that the mass loading ratio, the initial permanganate concentration, and the nature and quantity of reduced aquifer material species are the main factors controlling permanganate consumption rates. A higher initial permanganate concentration or a larger mass loading ratio produced a larger fast NOD consumption rate and generated a corresponding higher maximum NOD value. Hence, both the NOD temporal profile and the maximum NOD are not single-valued but are heavily dependent on the experimental conditions. Predictive relationships were developed to estimate the maximum NOD and the NOD at 7 days based on aquifer material properties. The concentration of manganese oxides deposited on the aquifer solids was highly correlated with the mass of permanganate consumed suggesting that passivation of NOD reaction sites occurred due to the formation

  13. Soluble Microbial Product Characterization of Biofilm Formation in Bench-Scale

    KAUST Repository

    Mines, Paul

    2012-12-01

    The biological process known as activated sludge (AS) in conjunction with membrane separation technology for the treatment of wastewater has been employed for over four decades. While, membrane biological reactors (MBR) are now widely employed, the phenomenon of membrane fouling is still the most significant factor leading to performance decline of MBRs. Although much research has been done on the subject of MBR fouling over the past two decades, many questions remain unanswered, and consensus within the scientific community is rare. However, research has led to one system parameter generally being regarded as a contributor to membrane fouling, extracellular polymeric compounds (EPS). EPS, and more specifically, the soluble fraction of EPS known as soluble microbial products (SMP), must be further investigated in order to better understand membrane fouling. The biological activity and performance of the MBR is affected by myriad operational parameters, which in turn affects the SMP generated. A commonly varied operational parameter is, depending on the specific treatment needs of a MBR, the sludge retention time (SRT). This study aims to characterize the SMP in three bench-scale MBRs as the SRT is gradually lowered. By studying how the SMP change as the operation of the system is altered, greater understanding of how SMP are related to fouling can be achieved. At the onset of the study, a steady state was established in the system with a SRT of 20 days. Upon stabilization of a 20 day SRT, the system was gradually transitioned to a five and a half day SRT, in stepwise adjustments. Initially, both the trans-membrane pressure (TMP) and the SMP concentrations were at relatively low values, indicating the presence of minimal amounts of biofilm on the membrane surfaces. As the system was altered and more activated sludge was wasted from the reactors, the SRT inherently decreased. As the lower SRT was transitioned and established, the data from TMP measurements, as well

  14. Application of magnetic resonance imaging (MRI) to determine the influence of fluid dynamics on desulfurization in Bench scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.L.; Reimert, R. [Engler-Bunte-Institut, Bereich Gas, Erdoel und Kohle, Universitaet Karlsruhe (T.H.) (Germany); Hardy, E.H. [Institut fuer Mechanische Verfahrenstechnik und Mechanik, Universitaet Karlsruhe (T.H.) (Germany)

    2006-07-15

    The influence of fluid dynamics on the hydrodesulfurization (HDS) reactions of a diesel oil in bench-scale reactors was evaluated. The porosities and liquid saturations of catalyst beds were quantified by using the MRI technique. The gas-liquid systems used in the experiments were nitrogen diesel and hydrogen diesel. An apparatus was especially constructed, allowing in situ measurements of gas and liquid distributions in packed beds at elevated pressure and temperature up to 20 bar and 200 C, respectively. The reactor itself had a length of 500 mm and an internal diameter of 19 mm. The packed beds used in this MRI study consisted of: (1) 2 mm diameter nonporous spherical glass beads and (2) 1.3 mm diameter porous Al{sub 2}O{sub 3} trilobes having the same size as the original trilobe catalyst used in HDS bench-scale experiments. The superficial gas and liquid velocities were set within the range of trickle flow, e.g., u{sub 0G} = 20-500 mm/s and u{sub 0L} = 0.1-6 mm/s. In parallel with the MRI experiments, the hydrodesulfurization of a gas oil was investigated in a bench-scale plant. Its reactor had the same dimensions of the trickle-bed column used in the MRI experiments and was filled with original trilobe catalyst. These catalytic experiments were carried out at a wide range of operating conditions (p = 30-80 bar, T = 300-380 C, LHSV = 1-4 h{sup -1}). The results of both fluid dynamic and catalytic reaction experiments were then combined for developing a simulation model to predict the HDS performance by accounting for fluid dynamic nonidealities. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  15. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  16. EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).

  17. Treatment of waste gas containing low concentration of dimethyl sulphide (DMS) in a bench-scale biofilter.

    Science.gov (United States)

    Giri, B S; Mudliar, S N; Deshmukh, S C; Banerjee, S; Pandey, R A

    2010-04-01

    Biological treatment of dimethyl sulphide (DMS) was investigated in a bench-scale biofilter, packed with compost along with wood chips, and enriched with DMS degrading microorganism Bacillus sphaericus. The biofilter could remove 62-74% of the inlet DMS, at an optimum loading of 0.484 g/m(3)/h with optimum empty bed contact time (EBCT) of 384 s and an average moisture range of 65-70%. The biodegradative products of DMS were sulphide, thiosulphate and sulphate. Evaluation of microbiological status of the biofilter indicated the presence of other bacterial cultures viz. Paenibacillus polymyxa, and Bacillus megaterium, besides B. sphaericus. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Stress path dependent hydromechanical behaviour of heterogeneous carbonate rock

    Directory of Open Access Journals (Sweden)

    Dimanov A.

    2010-06-01

    Full Text Available The influence of stress paths, representative of reservoir conditions, on the hydromechanical behavior of a moderately heterogeneous carbonate has been investigated. Multiscale structural heterogeneities, common for instance in carbonate rocks, can strongly alter the mechanical response and significantly influence the evolution of flow properties with stress. Using a triaxial cell, the permeability evolutions during compression and the effects of brittle (fracture and plastic (pore collapse deformations at yield, were measured. A strong scattering was observed on the mechanical response both in term of compressibility and failure threshold. Using the porosity scaling predicted by an adapted effective medium theory (based on crack growth under Hertzian contact, we have rescaled the critical pressures by the normalized porosity deviation. This procedure reduces efficiently the scattering, revealing in the framework of proportional stress path loading, a linear relation between the critical pressures and the stress path parameter through all the deformation regimes. It leads to a new formulation for the critical state envelope in the 'mean stress, deviatoric stress' diagram. The attractive feature of this new yield envelope formulation relies on the fact that only the two most common different mechanical tests 'Uniaxial Compression' and 'Hydrostatic Compression', are needed to define entirely the yield envelope. Volumic strains and normalized permeabilities are finally mapped in the stresses diagram and correlated.

  19. Bench scale studies: Ozonation as a potential treatment for waters contaminated with hydrocarbons or dioxins and furans

    International Nuclear Information System (INIS)

    Schaal, W.

    1995-01-01

    The objective of the bench scale studies was to examine the destruction efficiency and efficacy of ozone on chemicals of concern (COC's) commonly found in contaminated ground water and rhenoformer wash water. The ground water used in these tests contained aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits. The rhenoformer wash water used in these tests contained a variety of dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin) and furans. Summaries are presented of the bench scale studies by describing the COCs, methodologies, test reactors, observations, and results. The summaries also detail which applications hold promise with respect to ozonation and which ones do not. Bench test results for the experiments in which aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits where the COCs were relatively successful. Concentrations for the COCs ranging from 300 to 3,400 micrograms per liter (microg/L) were brought below levels specified for storm sewer discharge per the National Priority Discharge Elimination Systems (NPDES) permit requirements. Bench test results for the experiments in which dioxins and furans were the COCs were less promising and revealed that additional processes would have to be used in conjunction with ozonation to bring the concentration of COCs within the targeted ranges. It was realized, however, that the effectiveness and efficacy of ozonation were diminished by the presence of particulates, to which some of the dioxin and furan compounds adhered

  20. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  1. Treatment of Synthetic Wastewater Containing AB14 Pigment by Electrooxidation in both Pilot and Bench Scale Reactors

    Directory of Open Access Journals (Sweden)

    Jalal Basiri parsa

    2016-01-01

    Full Text Available The electrochemical oxidation process was used for the degradation of Acid Brown 14 in both bench and pilot scale reactors. The bench scale one with a working volume of 0.5 L was equipped with platinum plate used as the anode and stainless steel (SS-304 plates as the cathode. The pilot scale reactor had a volume of 9 L and was equipped with SS-304 plates used as both the anode and the cathode. Experiments were run using these reactors to investigate the two parameters of energy consumption and anode efficiency. The bench scale reactor was capable of removing 92% and 36% of the dye and COD, respectively, after 18 min of operation. The pilot scale reactor, however, was capable of removing 87% and 59% of the dye and the COD content, respectively, after 60 min of operation. The kinetic study of both the bench and pilot reactors for dye and COD removals showed that both processes followed a zero order kinetic.

  2. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  3. Full-Scale and Bench-Scale Studies on the Removal of Strontium from Water (abstract)

    Science.gov (United States)

    Strontium (Sr) is a natural and commonly occurring alkaline earth metal which has an oxidation state of +2 under normal environmental conditions. Stable strontium is suspended in water and is dissolved after water runs through rocks and soil. It behaves very similar to calcium. G...

  4. Waterproofing of porous carbonate rocks: Efficiency-controlling its properties

    Directory of Open Access Journals (Sweden)

    Esbert, R. M.

    1995-03-01

    Full Text Available The aim of this study is to establish which physical properties may be used, in a routine way, in order to know the efficacy rate of a treatment applied on a specific rocky substrate. Whit this purpose, two types of carbonated rocks, the limestone of Hontoria (Burgos and the dolomite of Laspra (Asturias have been chosen, with a very different configuration of their porosity systems. Three protection products, with silico-organic nature and widely used have been used, to wit: two siloxenes and a copolymer. Tue properties chosen (contact angle and water vapour permeability have been the proper ones in order to determine the efficacy level of the different treatments. This level was demonstrated to be conditioned by the chemical characteristics of this product, and the influence of the characteristics is practically null. Other investigations are being carried out with the same rocks and treatment products in order to establish the corelationships between the efficacy rate of these treatments and the durability of the rock-treatment systems.

    La finalidad del presente estudio es la de tratar de establecer que propiedades físicas pueden ser empleadas de una forma rutinaria para conocer el grado de eficacia de un tratamiento aplicado sobre un determinado sustrato pétreo. Con esta finalidad se han seleccionado dos tipos de rocas carbonatadas, la caliza de Hontoria (Burgos y la dolomía de Laspra (Asturias, con una configuración del sistema poroso muy diferente. Se han empleado tres productos protectores de naturaleza silicoorgánica, ampliamente utilizados, dos siloxanos y un copolímero. Las propiedades seleccionadas (ángulo de contado y permeabilidad al vapor de agua han resultado idóneas para determinar el grado de eficacia de los distintos tratamientos. Se ha comprobado que dicho grado está condicionado por las características químicas del producto, siendo prácticamente nula la influencia de las características de la roca. Se

  5. Bench-Scale Development of a Non-Aqueous Solvent (NAS) CO2 Capture Process for Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lail, Marty

    2017-09-12

    The project aimed to advance RTI’s non-aqueous amine solvent technology by improving the solvent to reduce volatility, demonstrating long-term continuous operation at lab- (0.5 liters solvent) and bench-scale (~120 liters solvent), showing low reboiler heat duty measured during bench-scale testing, evaluating degradation products, building a rate-based process model, and evaluating the techno-economic performance of the process. The project team (RTI, SINTEF, Linde Engineering) and the technology performed well in each area of advancement. The modifications incorporated throughout the project enabled the attainment of target absorber and regenerator conditions for the process. Reboiler duties below 2,000 kJt/kg CO2 were observed in a bench-scale test unit operated at RTI.

  6. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    Science.gov (United States)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  7. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    International Nuclear Information System (INIS)

    Kurucz, Charles N.; Waite, Thomas D.; Otano, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-01-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1 ) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60 Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater

  8. Geochemistry of silicate-rich rocks can curtail spreading of carbon dioxide in subsurface aquifers.

    Science.gov (United States)

    Cardoso, S S S; Andres, J T H

    2014-12-11

    Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams will transport it efficiently to depth, but this may not be so. Here, we assess theoretically and experimentally the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. These results challenge our view of carbon sequestration and dissolution rates in the subsurface, suggesting that pooled carbon dioxide may remain in the shallower regions of the formation for hundreds to thousands of years. The deeper regions of the reservoir can remain virtually carbon free.

  9. Carbonate Melt Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    Science.gov (United States)

    Osinski, G. R.; Spray, J. G.; Lee, P.

    2002-01-01

    The target rocks at the Haughton impact structure, Canada, are predominantly carbonates. The well preserved allochthonous crater-fill deposits are reinterpreted here as being carbonatitic impact melt rocks. The implications of our findings will be discussed. Additional information is contained in the original extended abstract.

  10. Experimental and modelling studies on continuous synthesis and refining of biodiesel in a dedicated bench scale unit using centrifugal contactor separator technology

    NARCIS (Netherlands)

    Abduh, Muhammad Yusuf; Martinez, Alberto Fernandez; Kloekhorst, Arjan; Manurung, Robert; Heeres, Hero J.

    Continuous synthesis and refining of biodiesel (FAME) using a laboratory scale bench scale unit was explored. The unit consists of three major parts: (i) a continuous centrifugal contactor separator (CCCS) to perform the reaction between sunflower oil and methanol; (ii) a washing unit for the crude

  11. Burial stress and elastic strain of carbonate rocks

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2014-01-01

    Burial stress on a sediment or sedimentary rock is relevant for predicting compaction or failure caused by changes in, e.g., pore pressure in the subsurface. For this purpose, the stress is conventionally expressed in terms of its effect: “the effective stress” defined as the consequent elastic...... strain multiplied by the rock frame modulus. We cannot measure the strain directly in the subsurface, but from the data on bulk density and P‐wave velocity, we can estimate the rock frame modulus and Biot's coefficient and then calculate the “effective vertical stress” as the total vertical stress minus...... the product of pore pressure and Biot's coefficient. We can now calculate the elastic strain by dividing “effective stress” with the rock frame modulus. By this procedure, the degree of elastic deformation at a given time and depth can be directly expressed. This facilitates the discussion of the deformation...

  12. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production

    International Nuclear Information System (INIS)

    Randall, Paul M.; Fimmen, Ryan; Lal, Vivek; Darlington, Ramona

    2013-01-01

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, Me

  13. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Fimmen, Ryan [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States); Lal, Vivek; Darlington, Ramona [Battelle, 505 King Ave., Columbus, OH 43201 (United States)

    2013-08-15

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, Me

  14. Experimental study on influence of carbon dioxide on porous structure and mechanical properties of shale rock

    Directory of Open Access Journals (Sweden)

    Danuta Miedzińska

    2017-12-01

    Full Text Available Shale rocks are geological formations which can be unconventional gas reservoirs. During their interaction with carbon dioxide, which can be used as a fracturing fluid in shale gas recovery process, many phenomena take place that can influence rock structure and mechanical properties. The research on changes in rock structure under super critical carbon dioxide interaction and their influence of shale properties were presented in the paper. The structural tests were carried out with the use of microscopic techniques with different resolutions of visualization. The uniaxial compression test was applied as a mechanical properties’ assessment experiment. As a result of research, some dependence was observed. The bigger decrease was in porosity after infiltration in lower zooms, the bigger increase in porosity in high zooms and mechanical properties was noticed. Keywords: geomechanics, shale rock, carbon dioxide

  15. Biodegradation of alkanolamine-related wastes in bioslurries and bench-scale landfarms

    International Nuclear Information System (INIS)

    Gallagher, J.R.; Sorensen, J.A.; Knutson, R.

    1997-01-01

    The subsurface transport and fate of monoethanolamine (MEA) and its related reaction products were studied and the effectiveness of landfarming as a technique for the remediation of MEA-sludge contaminated soil was examined. MEAs are used regularly by the natural gas industry to remove hydrogen sulfide, carbon dioxide and other acid gases from natural gas. The following critical issues were examined: (1) the biodegradability of the recalcitrant fraction observed in slurry bioreactor investigations, (2) the biodegradability of selected MEA-related thermal reaction products, and (3) the effectiveness of landfarming for the remediation of MEA-contaminated soils. Key factors that may limit biodegradation of the recalcitrant fraction of organic matter in MEA wastes included inhibition due to ammonia, nutrient limitations, and insufficient time to adapt to the material and inherent resistance to biodegradation. A land treatment alternative that collects leachate for possible treatment may be the most suitable method to deal with these wastes

  16. Bench Scale Development and Testing of Aerogel Sorbents for CO2 Capture Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Begag, Redouane [Aspen Aerogels, Northborough, MA (United States)

    2017-03-30

    The primary objective of this project was scaling up and evaluating a novel Amine Functionalized Aerogel (AFA) sorbent in a bench scale fluidized bed reactor. The project team (Aspen Aerogels, University of Akron, ADA-ES, and Longtail Consulting) has carried out numerous tests and optimization studies to demonstrate the CO2 capture performance of the AFA sorbent in all its forms: powder, pellet, and bead. The CO2 capture target performance of the AFA sorbent (all forms) were set at > 12 wt.% and > 6 wt.% for total and working CO2 capacity, respectively (@ 40 °C adsorption / 100 – 120 °C desorption). The optimized AFA powders outperformed the performance targets by more than 30%, for the total CO2 capacity (14 - 20 wt.%), and an average of 10 % more for working CO2 capacity (6.6 – 7.0 wt.%, and could be as high as 9.6 wt. % when desorbed at 120 °C). The University of Akron developed binder formulations, pellet production methods, and post treatment technology for increased resistance to attrition and flue gas contaminants. In pellet form the AFA total CO2 capacity was ~ 12 wt.% (over 85% capacity retention of that of the powder), and there was less than 13% degradation in CO2 capture capacity after 20 cycles in the presence of 40 ppm SO2. ADA-ES assessed the performance of the AFA powder, pellet, and bead by analyzing sorption isotherms, water uptake analysis, cycling stability, jet cup attrition and crush tests. At bench scale, the hydrodynamic and heat transfer properties of the AFA sorbent pellet in fluidized bed conditions were evaluated at Particulate Solid Research, Inc. (PSRI). After the process design requirements were completed, by Longtail Consulting LLC, a techno-economic analysis was achieved using guidance from The National Energy Technology Laboratory (NETL) report. This report provides the necessary framework to estimate costs for a temperature swing post

  17. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step...... to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection...

  18. Consideration of clay in rocks in discriminating carbonate reservoirs in Eastern Turkmenia

    International Nuclear Information System (INIS)

    Ehjvazov, A.M.

    1975-01-01

    A method is described for calculating the clayiness of rocks in discrimination of carbonate reservoirs of eastern Turkmenia. Carbonate deposits in eastern Turkmenia contain significant amounts of clayey material, which interferes with the collector properties of the rocks. However, in many cases the clayey limestones, when sampled, give industrial supplies of gas. Analysis of gamma-logging data with calculation of the results of sampling for layers of different porosities, as determined from the results of neutron gamma logging, showed a definite correlation between the reservoir properties of carbonate layers and the values of ΔIsub(γ) of two different gamma-logging parameters, calculated by the single ''reference'' horizon method

  19. The effects of physical separtation treatment on the removal of uranium from contaminated soils at Fernald: A bench-scale study

    International Nuclear Information System (INIS)

    Sadler, K.G.; Krstich, M.A.

    1994-01-01

    A bench-scale treatability study incorporating the use of physical separation techniques and chemical dispersants/extractants was conducted on uranium contaminated soils at the Fernald Environmental Management Project (FEMP) site. The soils contained approximately 497 and 450 milligrams per kilogram (mg/kg) of total uranium, respectively. Geotechnical characterization indicated that 77.4 and 74.6 percent of the soil was in the less that 50 micrometer (μm) size fraction for the ID-A and ID-B soils, respectively. An initial characterization effort indicated that uranium was distributed among all particle size fractions. After each soil was dispersed in water, it was noted that the uranium concentrated in the sand and clay fractions for the ID-A soil (1028 and 1475 mg kg -1 , respectively) and the clay fraction for ID-B soil (2710 mg kg -1 ). Four 1 millimolar (mM) sodium reagent solutions (sodium hydroxide, sodium carbonate, sodium bicarbonate, and a sodium citrate-bicarbonate-dithionite mixture) and potable water were evaluated for effectiveness in dispersing each soil into single grain separates and extracting total uranium from each of the resulting particle size fractions. Dilute sodium solutions were more effective than water in dispersing the soil. The use of dispersants, as compared to water, on the less than 2 mm size fraction causes a shift in the distribution of uranium out of the sand fraction and into the silt and clay fractions for ID-A soil and into the clay fraction for the ID-B soil. Attrition scrubbing tests were conducted on the less than 2 mm size fraction for the ID-A and ID-B soils using water and three alkaline extraction solutions, sodium pyrophosphate, sodium carbonate/bicarbonate, and ammonium carbonate/bicarbonate. There was little difference among the chemical extractants on their effectiveness in removing uranium from the greater than 53 μm (sand) or less than 53 μm (silt and clay) soil fraction

  20. Total porosity of carbonate reservoir rocks by X-ray microtomography in two different spatial resolutions

    International Nuclear Information System (INIS)

    Nagata, Rodrigo; Appoloni, Carlos R.; Marques, Leonardo C.; Fernandes, Celso P.

    2011-01-01

    Carbonate reservoir rocks contain more than 50% of world's petroleum. To know carbonate rocks' structural properties is quite important to petroleum extraction. One of their main structural properties is the total porosity, which shows the rock's capacity to stock petroleum. In recent years, the X-ray microtomography had been used to analyze the structural parameters of reservoir rocks. Such nondestructive technique generates images of the samples' internal structure, allowing the evaluation of its properties. The spatial resolution is a measurement parameter that indicates the smallest structure size observable in a sample. It is possible to measure one sample using two or more different spatial resolutions in order to evaluate the samples' pore scale. In this work, two samples of the same sort of carbonate rock were measured, and in each measurement a different spatial resolution (17 μm and 7 μm) was applied. The obtained results showed that with the better resolution it was possible to measure 8% more pores than with the poorer resolution. Such difference provides us with good expectations about such approach to study the pore scale of carbonate rocks. (author)

  1. Thallium and its contents in Remata carbonate rocks

    Directory of Open Access Journals (Sweden)

    Kondelová Marcela

    1996-09-01

    Full Text Available The article presents at first the list of thallium own minerals and its isomorphic content in other minerals, especially in Slovakian ore deposits. This trace element was found in numerous dolomite-rock samples from Remata massif near Handlová. An interesting level of Tl content was analyzed in nonsilicified rocks; the highest content of Tl (and Ag are along the E – W line of disturbance. The presence of thallium in some limonitic aggregates in close Kremnica-gold deposit indicate any continuous relation. Some similarities to type gold deposits Carlin ( USA are discussed, even if no gold and discrete thallium phases were in Remata determined yet.

  2. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    Science.gov (United States)

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  3. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    Science.gov (United States)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  4. Comparison of glassy slag waste forms produced in laboratory crucibles and in a bench-scale plasma furnace

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Brown, N.R.; Gong, M.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-01-01

    Vitrification is currently the best demonstrated available technology for the disposal of high-level radioactive wastes. An innovative vitrification approach known as minimum additive waste stabilization (MAWS) is being developed. Both homogeneous glass and glassy slags have been used in implementing MAWS. Glassy slags (vitro-ceramics) are glass-crystal composites, and they are composed of various metal oxide crystalline phases embedded in an aluminosilicate glass matrix. Glassy slags with compositions developed in crucible melts at Argonne National Laboratory (ANL) were successfully produced in a bench-scale Retech plasma centrifugal furnace (PCF) by MSE, Inc. Detailed examinations of these materials showed that the crucible melts and the PCF produced similar glass and crystalline phases. The two sets of glassy slags exhibited similar chemical durability in terms of normalized releases of their major components. The slags produced in the PCF furnace using metals were usually less oxidized, although this had no effect on the corrosion behavior of the major components of the slags. However, the normalized release rate of cerium was initially lower for the PCF slags. This difference diminished with time as the redox sates of the metal oxides in slags began to be controlled by exposure to air in the tests. Thus, the deference in cerium release due to the differences in slag redox state may be transitory. The cerium solubility is a complex function of redox state and solution pH and Eh

  5. Passive flux meter measurement of water and nutrient flux in saturated porous media: bench-scale laboratory tests.

    Science.gov (United States)

    Cho, Jaehyun; Annable, Michael D; Jawitz, James W; Hatfield, Kirk

    2007-01-01

    The passive nutrient flux meter (PNFM) is introduced for simultaneous measurement of both water and nutrient flux through saturated porous media. The PNFM comprises a porous sorbent pre-equilibrated with a suite of alcohol tracers, which have different partitioning coefficients. Water flux was estimated based on the loss of loaded resident tracers during deployment, while nutrient flux was quantified based on the nutrient solute mass captured on the sorbent. An anionic resin, Lewatit 6328 A, was used as a permeable sorbent and phosphate (PO4(3-)) was the nutrient studied. The phosphate sorption capacity of the resin was measured in batch equilibration tests as 56 mg PO4(3-) g(-1), which was determined to be adequate capacity to retain PO4(3-) loads intercepted over typical PNFM deployment periods in most natural systems. The PNFM design was validated with bench-scale laboratory tests for a range of 9.8 to 28.3 cm d(-1) Darcy velocities and 6 to 43 h deployment durations. Nutrient and water fluxes measured by the PNFM averaged within 6 and 12% of the applied values, respectively, indicating that the PNFM shows promise as a tool for simultaneous measurement of water and nutrient fluxes.

  6. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale.

    Science.gov (United States)

    Linville, Jessica L; Shen, Yanwen; Ignacio-de Leon, Patricia A; Schoene, Robin P; Urgun-Demirtas, Meltem

    2017-06-01

    A modified version of an in-situ CO 2 removal process was applied during anaerobic digestion of food waste with two types of walnut shell biochar at bench scale under batch operating mode. Compared with the coarse walnut shell biochar, the fine walnut shell biochar has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96-3.83 g biochar (g VS added ) -1 fine walnut shell biochar amended digesters produced biogas with 77.5%-98.1% CH 4 content by removing 40%-96% of the CO 2 compared with the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added ) -1 , the fine walnut shell biochar amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse walnut shell biochar amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO 3 from 2800 mg L -1 in the control digesters to 4800-6800 mg L -1 , providing process stability for food waste anaerobic digestion.

  7. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Bench-scale cross flow filtration of Tank S-107 sludge slurries and Tank C-107 supernatant

    International Nuclear Information System (INIS)

    Geeting, J.G.H.; Reynolds, B.A.

    1996-10-01

    Hanford tank waste filtration experiments were conducted using a bench-scale cross flow filter on 8 wt%, 1.5 wt%, and 0.05 wt% Tank S- 107 sludge slurries and on Tank C-107 supernatant. For comparison, two simulants each with solids loadings of 8 wt% and 0.05 wt% were also tested. The purpose of the tests was to determine the efficacy of cross flow filtration on slurries of various solids loadings. -In addition, filtrate flux dependency on axial velocity and transmembrane pressure was sought so that conditions for future experiments might be better selected. The data gathered are compared to the simulants and three cross flow filtration models. A two- parameter central composite design which tested. transmembrane pressure from 5 to 40 psig and axial Velocity from 3 to 9 ft/s was used for all feeds. The cross flow filter effectively removed solids from the liquid, as 19 of 20 filtrate samples had particle concentrations below the resolution limit of the photon correlation spectrometer used in the Hanford Radiocolloid Laboratory. Radiochemical analysis indicate that all filtrate samples were below Class A waste classification standards for 9OSr and transuranics

  9. Production of uranium hexafluoride by the catalysed fluorox process: pilot plant and supporting bench-scale studies

    International Nuclear Information System (INIS)

    Janov, J.; Charlton, B.G.; LePage, A.H.; Vilkaitis, V.K.

    1982-04-01

    The feasibility of producing UF 6 by the catalysed reaction of UF 4 with oxygen (the Fluorox process) was investigated in a 150 mm diameter fluidised bed reactor and in supporting bench-scale experiments. The rate of the Fluorox reaction in batch experiments was increased by an order of magnitude with 1 to 5 per cent catalyst (containing 3 to 4 per cent platinum on alumina). The maximum UF 6 production rate at 650 deg. C was 0.9 kg h -1 . However, the platinum catalyst was completely poisoned after production of only 1 and 20 kg UF 6 per kg of catalyst when using respectively French and British UF 4 . Regeneration of the catalyst was demonstrated to be technically feasible by washing with water or ammonium oxalate solution or treating with hydrogen and hydrogen fluoride at 350-650 deg. C. However, since the very fast rate of poisoning would necessitate higher catalyst concentrations and/or frequent regeneration, the catalysed Fluorox process in unlikely to be economically competitive with the direct fluorination of UF 4

  10. Hydrogen generation from bioethanol reforming: bench-scale unit performance with Cu/Nb2O5 catalyst

    International Nuclear Information System (INIS)

    Fernandes Machado, N.R.C.; Schmal, M.; Cantao, M.P.

    2003-01-01

    As an alternative route for hydrogen production, ethanol reforming was studied in a bench-scale unit using a 5%Cu/Nb 2 O 5 catalyst previously selected in a micro reactor. X-Ray Diffraction analysis has shown that this catalyst contains copper oxide in an amorphous form, or in particles smaller than 20 nm, while the Nb 2 O 5 is highly crystalline. Analysis of the calcinated catalyst by X-Ray Photoelectron Spectroscopy revealed that 35% of total copper was on the surface as Cu I (55%) or Cu II (45%). The catalyst presented a low surface area (35 m 2 /g), mainly from meso and macropores, as textural analysis revealed. Temperature Programmed Reduction showed a two-step reduction of Cu II to Cu, at 245 o C and 306 o C. It was also observed the reduction of 6% of Nb 2 O 5 . The reaction unit consisted of an integral reactor with 16 g of catalyst pellets, approximately 3 mm x 5 mm in size. Reaction temperature and feed rate were varied to optimize hydrogen production, with CO 2 as the main byproduct. Reagents (water and ethanol) in stoichiometric proportion were fed into an electric pre-heater and vaporized. An increase on reaction temperature from 300 o C to 400 o C has led to an increase in mean conversion from 17% to 35%. Ethene and ethyl ether were also detected as minor byproducts. (author)

  11. Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent.

    Science.gov (United States)

    Mackie, Allison L; Walsh, Margaret E

    2012-02-01

    The overall objective of this study was to investigate the potential impact on settled water quality of using cement kiln dust (CKD), a waste by-product, to replace quicklime in the active treatment of acidic mine water. Bench-scale experiments were conducted to evaluate the treatment performance of calcium hydroxide (Ca(OH)(2)) slurries generated using four different CKD samples compared to a control treatment with quicklime (CaO) in terms of reducing acidity and metals concentrations in acid mine drainage (AMD) samples taken from the effluent of a lead/zinc mine in Atlantic Canada. Results of the study showed that all of the CKD samples evaluated were capable of achieving greater than 97% removal of total zinc and iron. The amount of solid alkaline material required to achieve pH targets required for neutralization of the AMD was found to be higher for treatment with the CKD slurries compared to the quicklime slurry control experiments, and varied linearly with the free lime content of the CKD. The results of this study also showed that a potential benefit of treating mine water with CKD could be reduced settled sludge volumes generated in the active treatment process, and further research into the characteristics of the sludge generated from the use of CKD-generated calcium hydroxide slurries is recommended. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Bench-scale study of the effect of phosphate on an aerobic iron oxidation plant for mine water treatment.

    Science.gov (United States)

    Tischler, Judith S; Wiacek, Claudia; Janneck, Eberhard; Schlömann, Michael

    2014-01-01

    At the opencast pit Nochten acidic iron- and sulfate-rich mine waters are treated biotechnologically in a mine-water treatment plant by microbial iron oxidation. Due to the low phosphate concentration in such waters the treatment plant was simulated in bench-scale to investigate the influence of addition of potassium dihydrogen phosphate on chemical and biological parameters of the mine-water treatment. As a result of the phosphate addition the number of cells increased, which resulted in an increase of the iron oxidation rate in the reactor with phosphate addition by a factor of 1.7 compared to a reference approach without phosphate addition. Terminal restriction fragment length polymorphism (T-RFLP) analysis during the cultivation revealed a shift of the microbial community depending on the phosphate addition. While almost exclusively iron-oxidizing bacteria related to "Ferrovum" sp. were detected with phosphate addition, the microbial community was more diverse without phosphate addition. In the latter case, iron-oxidizing bacteria ("Ferrovum" sp., Acidithiobacillus spp.) as well as non-iron-oxidizing bacteria (Acidiphilium sp.) were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. CUMULATE ROCKS ASSOCIATED WITH CARBONATE ASSIMILATION, HORTAVÆR COMPLEX, NORTH-CENTRAL NORWAY

    Science.gov (United States)

    Barnes, C. G.; Prestvik, T.; Li, Y.

    2009-12-01

    The Hortavær igneous complex intruded high-grade metamorphic rocks of the Caledonian Helgeland Nappe Complex at ca. 466 Ma. The complex is an unusual mafic-silicic layered intrusion (MASLI) because the principal felsic rock type is syenite and because the syenite formed in situ rather than by deep-seated partial melting of crustal rocks. Magma differentiation in the complex was by assimilation, primarily of calc-silicate rocks and melts with contributions from marble and semi-pelites, plus fractional crystallization. The effect of assimilation of calcite-rich rocks was to enhance stability of fassaitic clinopyroxene at the expense of olivine, which resulted in alkali-rich residual melts and lowering of silica activity. This combination of MASLI-style emplacement and carbonate assimilation produced three types of cumulate rocks: (1) Syenitic cumulates formed by liquid-crystal separation. As sheets of mafic magma were loaded on crystal-rich syenitic magma, residual liquid was expelled, penetrating the overlying mafic sheets in flame structures, and leaving a cumulate syenite. (2) Reaction cumulates. Carbonate assimilation, illustrated by a simple assimilation reaction: olivine + calcite + melt = clinopyroxene + CO2 resulted in cpx-rich cumulates such as clinopyroxenite, gabbro, and mela-monzodiorite, many of which contain igneous calcite. (3) Magmatic skarns. Calc-silicate host rocks underwent partial melting during assimilation, yielding a Ca-rich melt as the principal assimilated material and permitting extensive reaction with surrounding magma to form Kspar + cpx + garnet-rich ‘cumulate’ rocks. Cumulate types (2) and (3) do not reflect traditional views of cumulate rocks but instead result from a series of melt-present discontinuous (peritectic) reactions and partial melting of calc-silicate xenoliths. In the Hortavær complex, such cumulates are evident because of the distinctive peritectic cumulate assemblages. It is unclear whether assimilation of

  14. Acoustic Velocity Data for Clay Bearing Carbonate Rocks

    DEFF Research Database (Denmark)

    Lind, Ida; Shogenova, Alla

    1998-01-01

    Two sets of acoustic data on carbonates were combined to span the porosity interval from below 5% to more than 75%: dolomite and limestone of Paleozoic age from Estonia and mixed sediments from the Caribbean. The carbonate content of the samples ranges from less than 50% to 100%, and it was attem...

  15. ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman

    Science.gov (United States)

    Rajendran, Sankaran; Nasir, Sobhi

    2014-02-01

    Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates

  16. Distribution regularities and prospecting of carbonate-siliceous-argillitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Zhao Fengmin; Pan Yan

    2012-01-01

    The carbonate-siliceous-argillitic rock type uranium deposit is one of the important types of uranium deposits in China. Exogenic permeability type and hydrothermal type are dominated in genetic type. Four mineralization zones, two independent mineralization districts, two potential mineralization zones can be classified in China, uranium mineralization districts can be classified further. They are classified as four levels through the potential metallogenic evaluation on the mineralization districts, an important prospective area in the near future. In order to develop and make use of carbonate-siliceous-argillitic rock type uranium resources, exploration and study should be listed in the development planning on uranium geology. (authors)

  17. Carbonate rocks of the Seward Peninsula, Alaska: Their correlation and paleogeographic significance

    Science.gov (United States)

    Dumoulin, Julie A.; Harris, Alta; Repetski, John E.

    2014-01-01

    Paleozoic carbonate strata deposited in shallow platform to off-platform settings occur across the Seward Peninsula and range from unmetamorphosed Ordovician–Devonian(?) rocks of the York succession in the west to highly deformed and metamorphosed Cambrian–Devonian units of the Nome Complex in the east. Faunal and lithologic correlations indicate that early Paleozoic strata in the two areas formed as part of a single carbonate platform. The York succession makes up part of the York terrane and consists of Ordovician, lesser Silurian, and limited, possibly Devonian rocks. Shallow-water facies predominate, but subordinate graptolitic shale and calcareous turbidites accumulated in deeper water, intraplatform basin environments, chiefly during the Middle Ordovician. Lower Ordovician strata are mainly lime mudstone and peloid-intraclast grainstone deposited in a deepening upward regime; noncarbonate detritus is abundant in lower parts of the section. Upper Ordovician and Silurian rocks include carbonate mudstone, skeletal wackestone, and coral-stromatoporoid biostromes that are commonly dolomitic and accumulated in warm, shallow to very shallow settings with locally restricted circulation. The rest of the York terrane is mainly Ordovician and older, variously deformed and metamorphosed carbonate and siliciclastic rocks intruded by early Cambrian (and younger?) metagabbros. Older (Neoproterozoic–Cambrian) parts of these units are chiefly turbidites and may have been basement for the carbonate platform facies of the York succession; younger, shallow- and deep-water strata likely represent previously unrecognized parts of the York succession and its offshore equivalents. Intensely deformed and altered Mississippian carbonate strata crop out in a small area at the western edge of the terrane. Metacarbonate rocks form all or part of several units within the blueschist- and greenschist-facies Nome Complex. The Layered sequence includes mafic meta¬igneous rocks and

  18. Effect of temperature downshifts on a bench-scale hybrid A/O system: Process performance and microbial community dynamics.

    Science.gov (United States)

    Zhou, Hexi; Li, Xiangkun; Chu, Zhaorui; Zhang, Jie

    2016-06-01

    Effect of temperature downshifts on process performance and bacterial community dynamics was investigated in a bench-scale hybrid A/O system treating real domestic wastewater. Results showed that the average COD removal in this system reached 90.5%, 89.1% and 90.3% for Run 1 (25 °C), Run 2 (15 °C) and Run 3 (10 °C), respectively, and variations in temperature barely affected the effluent COD concentration. The average removal efficiencies of NH4(+)-N were 98.4%, 97.8%, 95.7%, and that of TN were 77.1%, 61.8%, 72% at 25 °C, 15 °C and 10 °C, respectively. Although the hybrid system was subjected to low temperature, this process effectively removed NH4(+)-N and TN even at 10 °C with the average effluent concentrations of 2.4 mg/L and 14.3 mg/L, respectively. Results from high-throughput sequencing analysis revealed that when the operation temperature decreased from 25 °C to 10 °C, the richness and diversity indexes of the system decreased in the sludge samples, while underwent an increase in the biofilm samples. Furthermore, the major heterotrophic bacteria consisted of Lewinella, Lutimonas, Chitinophaga and Fluviicola at 10 °C, which could be central to effective COD removal at low temperature. Additionally, Azospira, one denitrifying-related genus increased from 0.4% to 4.45% in the biofilm samples, with a stable TN removal in response to temperature downshifts. Nitrosomonas and Nitrospira increased significantly in the biofilm samples, implying that the attached biofilm contributed to more nitrification at low temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Investigations into NOx emissions and burnout for coals with high ash content in a bench scale test facility

    Energy Technology Data Exchange (ETDEWEB)

    Greul, U.; Kluger, F.; Peter, G.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    2000-07-01

    At the Stuttgart University's Institute of Process Engineering and Power Plant Technology (IVD) investigations of in-furnace DeNOx technologies with regard to their NOx reduction efficiency are carried out using an electrically heated bench-scale test facility to evaluate the effect of different process parameters independently. The DeNOx technologies of air and fuel staging have been demonstrated to be effective control techniques to reduce NOx from stationary sources. For a wide range of brown and hard coals from Europe, South Africa and Australia test runs with air-staged combustion have been carried out. The ash content of the hard coals used was in the range between 8 and 28%. The investigated parameters were temperature (1000-1300{degree}C), stoichiometry (1.25-0.55), and residence time (1-6 s) in the fuel rich primary zone. With increasing temperatures and residence times in fuel-rich conditions in air-staged combustion NOx emissions below 300 mg/m{sup 3} can be achieved even with hard coals. For a few brown coals NOx values lower than 100 mg/m{sup 3} are possible. Dependent on the coal rank individual parameters are more important than others. For low and medium volatile hard coals the increasing of the residence time is more effective than higher temperature or lower air ratios in the primary zone. However, with high volatile hard coal or brown coal as primary fuel the influence of temperature and stoichiometry in the primary zone plays a key role for NOx reduction effectiveness. The burnout led to restrictions in large scale applications for air-staged combustion especially with hard coals as primary fuel. Investigations at different primary air ratios and temperatures show the effect of these parameters on the burnout values along the course of combustion. 7 refs., 14 figs., 2 tabs.

  20. Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors

    International Nuclear Information System (INIS)

    Nam, Hyungseok; Capareda, Sergio C.; Ashwath, Nanjappa; Kongkasawan, Jinjuta

    2015-01-01

    Energy conversion efficiencies of three pyrolysis reactors (bench-scale auger, batch, and fluidized bed) were investigated using rice straw as the feedstock at a temperature of 500 °C. The highest bio-oil yield of 43% was obtained from the fluidized bed reactor, while the maximum bio-char yield of 48% was obtained from the batch reactor. Similar bio-oil yields were obtained from the auger and batch type reactors. The GCMS and FTIR were used to evaluate the liquid products from all reactors. The best quality bio-oil and bio-char from the batch reactor was determined to have a heating value of 31 MJ/kg and 19 MJ/kg, respectively. The highest alkali mineral was found in the bio-char produced from the auger reactor. The energy conversion efficiencies of the three reactors indicated that the majority of the energy (50–64%) was in the bio-char products from the auger and batch reactors, while the bio-oil from the fluidized bed reactor contained the highest energy (47%). A Sankey diagram has been produced to show the flows of product energy from each pyrolysis process. The result will help determine which conversion process would be optimal for producing specific products of bio-char, bio-oil, and gas depending on the needs. - Highlights: • Pyrolysis products from auger, batch, and fluidized bed reactor were examined. • O/C ratios of bio-oils stayed in specific ranges depending on the process reactors. • The largest quantity of bio-oil from fluidized, while the best quality from batch. • The highest alkali concentration of 37 g/kg included in the auger based bio-char. • Sankey diagram was used to understand the energy distribution from reactors.

  1. Bench Scale Process for Low Cost CO2 Capture Using a PhaseChanging Absorbent: Techno-Economic Analysis Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Miebach, Barbara [GE Global Research, Niskayuna, New York (United States); McDuffie, Dwayne [GE Global Research, Niskayuna, New York (United States); Spiry, Irina [GE Global Research, Niskayuna, New York (United States); Westendorf, Tiffany [GE Global Research, Niskayuna, New York (United States)

    2017-01-27

    The objective of this project is to design and build a bench-scale process for a novel phase-changing CO2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2 capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove CO2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO2 removal cost for the phase-changing CO2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced

  2. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengrong [Yale Univ., New Haven, CT (United States); Qiu, Lin [Yale Univ., New Haven, CT (United States); Zhang, Shuang [Yale Univ., New Haven, CT (United States); Bolton, Edward [Yale Univ., New Haven, CT (United States); Bercovici, David [Yale Univ., New Haven, CT (United States); Ague, Jay [Yale Univ., New Haven, CT (United States); Karato, Shun-Ichiro [Yale Univ., New Haven, CT (United States); Oristaglio, Michael [Yale Univ., New Haven, CT (United States); Zhu, Wen-Iu [Univ. of Maryland, College Park, MD (United States); Lisabeth, Harry [Univ. of Maryland, College Park, MD (United States); Johnson, Kevin [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  3. The geomechanical strength of carbonate rock in Kinta valley, Ipoh, Perak Malaysia

    Science.gov (United States)

    Mazlan, Nur Amanina; Lai, Goh Thian; Razib, Ainul Mardhiyah Mohd; Rafek, Abdul Ghani; Serasa, Ailie Sofyiana; Simon, Norbert; Surip, Noraini; Ern, Lee Khai; Mohamed, Tuan Rusli

    2018-04-01

    The stability of both cut rocks and underground openings were influenced by the geomechanical strength of rock materials, while the strength characteristics are influenced by both material characteristics and the condition of weathering. This paper present a systematic approach to quantify the rock material strength characteristics for material failure and material & discontinuities failure by using uniaxial compressive strength, point load strength index and Brazilian tensile strength for carbonate rocks. Statistical analysis of the results at 95 percent confidence level showed that the mean value of compressive strength, point load strength index and Brazilian tensile strength for with material failure and material & discontinuities failure were 76.8 ± 4.5 and 41.2 ± 4.1 MPa with standard deviation of 15.2 and 6.5 MPa, respectively. The point load strength index for material failure and material & discontinuities failure were 3.1 ± 0.2 MPa and 1.8 ± 0.3 MPa with standard deviation of 0.9 and 0.6 MPa, respectively. The Brazilian tensile strength with material failure and material & discontinuities failure were 7.1 ± 0.3 MPa and 4.1 ± 0.3 MPa with standard deviation of 1.4 and 0.6 MPa, respectively. The results of this research revealed that the geomechanical strengths of rock material of carbonate rocks for material & discontinuities failure deteriorates approximately ½ from material failure.

  4. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ikwuakor, K.C.

    1994-03-01

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  5. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    Science.gov (United States)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  6. Performance analysis of K-based KEP-CO2P1 solid sorbents in a bench-scale continuous dry-sorbent CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Cheol; Jo, Sung-Ho; Lee, Seung-Yong; Moon, Jong-Ho; Yi, Chang-Keun [Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon (Korea, Republic of); Ryu, Chong Kul; Lee, Joong Beom [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2016-01-15

    Korea Institute of Energy Research (KIER) and Korea Electric Power Corporation Research Institute (KEPCORI) have been developing a CO{sub 2} capture technology using dry sorbents. In this study, KEP-CO2P1, a potassium-based dry sorbent manufactured by a spray-drying method, was used. We employed a bench-scale dry-sorbent CO{sub 2} capture fluidized-bed process capable of capturing 0.5 ton CO{sub 2}/day at most. We investigated the sorbent performance in continuous operation mode with solid circulation between a fast fluidized-bed-type carbonator and a bubbling fluidizedbed- type regenerator. We used a slip stream of a real flue gas from 2MWe coal-fired circulating fluidized-bed (CFB) power facilities installed at KIER. Throughout more than 50 hours of continuous operation, the temperature of the carbonator was maintained around 70-80 .deg. C using a jacket-type heat exchanger, while that of the regenerator was kept above 180 .deg. C using an electric furnace. The differential pressure of both the carbonator and regenerator was maintained at a stable level. The maximum CO{sub 2} removal was greater than 90%, and the average CO{sub 2} removal was about 83% during 50 hours of continuous operation.

  7. Isotopic studies of beach rock carbonates from Konkan, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, B.; Rajamanickam, G.V.; Gujar, A.R.

    .7% (PDB) and delta sup(18)O signatures lie in a narrow range of +27.5 to +28.6% (SMOW), respectively. Isotopic data obtained in this study show that cementation of beach rock carbonates might have taken place in a shallow vadose zone. The large variations...

  8. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods

    NARCIS (Netherlands)

    Poot, A.; Quik, J.T.K.; Veld, H.; Koelmans, A.A.

    2009-01-01

    Black Carbon (BC) quantification methods are reviewed, including new Rock-Eval 6 data on BC reference materials. BC has been reported to have major impacts on climate, human health and environmental quality. Especially for risk assessment of persistent organic pollutants (POPs) it is important to

  9. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyatt [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  10. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling.

    Science.gov (United States)

    Thorley, Rachel M S; Taylor, Lyla L; Banwart, Steve A; Leake, Jonathan R; Beerling, David J

    2015-09-01

    On million-year timescales, carbonate rock weathering exerts no net effect on atmospheric CO2 concentration. However, on timescales of decades-to-centuries, it can contribute to sequestration of anthropogenic CO2 and increase land-ocean alkalinity flux, counteracting ocean acidification. Historical evidence indicates this flux is sensitive to land use change, and recent experimental evidence suggests that trees and their associated soil microbial communities are major drivers of continental mineral weathering. Here, we review key physical and chemical mechanisms by which the symbiotic mycorrhizal fungi of forest tree roots potentially enhance carbonate rock weathering. Evidence from our ongoing field study at the UK's national pinetum confirms increased weathering of carbonate rocks by a wide range of gymnosperm and angiosperm tree species that form arbuscular (AM) or ectomycorrhizal (EM) fungal partnerships. We demonstrate that calcite-containing rock grains under EM tree species weather significantly faster than those under AM trees, an effect linked to greater soil acidification by EM trees. Weathering and corresponding alkalinity export are likely to increase with rising atmospheric CO2 and associated climate change. Our analyses suggest that strategic planting of fast-growing EM angiosperm taxa on calcite- and dolomite-rich terrain might accelerate the transient sink for atmospheric CO2 and slow rates of ocean acidification. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  11. Hydrocarbon accumulation in deep fluid modified carbonate rock in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The activities of deep fluid are regionalized in the Tarim Basin. By analyzing the REE in core samples and crude oil, carbon isotope of carbon dioxide and inclusion temperature measurement in the west of the Tazhong Uplift in the western Tarim Basin, all the evidence confirms the existence of deep fluid. The deep fluid below the basin floor moved up into the basin through discordogenic fauit and volcanicity to cause corrosion and metaaomatosis of carbonate rock by exchange of matter and energy. The pore structure and permeability of the carbonate reservoirs were improved, making the carbonate reservoirs an excellent type of deeply buried modification. The fluorite ore belts discovered along the large fault and the volcanic area in the west of the Tazhong Uplift are the outcome of deep fluid action. Such carbonate reservoirs are the main type of reservoirs in the Tazhong 45 oilfield. The carbonate reservoirs in well YM 7 are improved obviously by thermal fluid dolomitization. The origin and territory of deep fluid are associated with the discordogenic fault and volcanicity in the basin. The discordogenic fault and volcanic area may be the pointer of looking for the deep fluid modified reservoirs. The primary characteristics of hydrocarbon accumulation in deep fluid reconstructed carbonate rock are summarized as accumulation near the large fault and volcano passage, late-period hydrocarbon accumulation after volcanic activity, and subtle trap reservoirs controlled by lithology.

  12. Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey)

    Science.gov (United States)

    Ersoy, Hakan; Yalçinalp, Bülent; Arslan, Mehmet; Babacan, Ali Erden; Çetiner, Gözde

    2016-11-01

    Turkey located in the Alpine-Himalayan Mountain Belt has 35% of the natural stone reserves of the world and has good quality marble, limestone, travertine and onyx reserves especially in the western regions of the country. The eastern Black Sea Region with a 1.4 million meters cubes reserve has a little role on the natural stone production in the country. For this reason, this paper deals with investigation on the potential of carbonate stone in the region and determination of the geological and geo-mechanical properties of these rocks in order to provide economic contribution to the national economy. While the study sites are selected among the all carbonate rock sites, the importance as well as the representative of the sites were carefully considered for the region. After representative samples were analyzed for major oxide and trace element compositions to find out petrochemical variations, the experimental program conducted on rock samples for determination of both physical and strength properties of the carbonate rocks. The results of the tests showed that there are significant variations in the geo-mechanical properties of the studied rock groups. The density values vary from 2.48 to 2.70 gr/cm3, water absorption by weight values range from 0.07 to 1.15% and the apparent porosity of the carbonate rocks are between 0.19 and 3.29%. However, the values of the UCS shows variation from 36 to 80 MPa. Tensile and bending strength values range from 3.2 to 7.5 MPa and 6.0-9.2 MPa respectively. Although the onyx samples have the lowest values of apparent porosity and water absorption by weight, these samples do not have the highest values of UCS values owing to occurrence of the micro-cracks. The UCS values of the rock samples were also found after cycling tests However, the limestone samples have less than 5% deterioration after freezing-thawing and wetting-drying tests, but travertine and onyx samples have more than 15% deterioration. Exception of the apparent

  13. Distribution of uranium in the carbonate rock of Um Bogma formation, Southwest, Sinai, Egypt

    International Nuclear Information System (INIS)

    El-AAssy, I.E.; Ahmed, F.Y.; Morsy, A.M.; El-Fawal, F.M.; Mansour, M.Gh.

    1998-01-01

    The lower carboniferous Um bogma Formation is a potential source for Mn, Cu and U. it is mainly composed of dolostone and limestone with few clastic different interbeds of clay stone, siltstone and sandstone. The different diagenetic processes which affected this formation are mainly, compaction, cementation, neomorphism, dissolution, dolomitization, silicification and filling the veins and pores. The distribution of uranium and thorium within the three members and their correlation with the iron oxides and organic matter, were studied. The channel porosity and intercrystalline spaces which resulted from dolomitization acted as pathways for uraniferous solutions in the carbonate rocks. On the other hand, the shales and clay stones underneath the carbonates of Um bogma formation acted as barriers and good depositional environment for the accumulation of uranium on the surfaces of joints and fractures.The accumulated uranium minerals in the carbonate rocks are most likely of the efflorescent deposits

  14. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Thomas [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Soukri, Mustapha [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Farmer, Justin [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Mobley, Paul [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Tanthana, Jak [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Dongxiang [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Xiaoxing [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Song, Chunshan [Research Triangle Institute (RTI), Research Triangle Park, NC (United States)

    2015-12-31

    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  15. First accelerator carbon-14 date for pigment from a rock painting

    International Nuclear Information System (INIS)

    Van der Merwe, N.J.; Sealy, J.; Yates, R.

    1987-01-01

    South Africa is particularly blessed with rock art: thousands of paintings and engravings provide a window on the cognitive systems of prehistoric populations. A major stumbling block in studying the art is the lack of a method for dating it. This article shows that some of the paintings can be directly dated by means of accelerator 14 C counting of carbon from black pigment. The advent of accelerator 14 C provides the capability of analysing very small samples and brings pigments from rock paintings into the realm of datable materials

  16. Sinkhole susceptibility in carbonate rocks of the Apulian karst (southern Italy)

    Science.gov (United States)

    Di Santo, Antonio; Fazio, Nunzio L.; Fiore, Antonio; Lollino, Piernicola; Luisi, Michele; Miccoli, Maria N.; Pagliarulo, Rosa; Parise, Mario; Perrotti, Michele; Pisano, Luca; Spalluto, Luigi; Vennari, Carmela; Vessia, Giovanna

    2016-04-01

    modelling the instability processes, and the development of charts for a preliminary evaluation of the stability of underground caves. Two distinct approaches were established to take into account the different petrographic, structural and geotechnical features of both the hard and soft carbonate rocks. The approach dealing with hard carbonate rocks (where natural karst caves develop) is based on speleological and geometrical surveys of the caves and on an integrated geological and geomechanical characterization of the carbonate rock mass, aimed at individuating the main critical aspects of the karst caves in terms of likely effects on the society. On the other hand, the approach to verify the stability of soft rocks where artificial cavities have been excavated is mostly dependent upon the peculiar petrographic and geomechanical characteristics of the calcarenite rock mass, typically massive and unaffected by tectonic discontinuities. As a consequence, the traditional analytical methods of rock mass classification fail in these materials, since the rock strength of soft calcarenites is mostly dependent upon sediment texture, porosity type and distribution and degree of cementation. The fluid circulation into the rock mass is also important because the removal of the rock matrix may induce a rapid deterioration of the mechanical behaviour of the rock mass. The approach to the calcarenite is mostly based on the characterization of petrographic and geotechnical parameters by means of direct sampling from the rock walls and in situ surveys (wells, trenches, etc.). Through implementation of the two approaches, our goal is to reconstruct accurate geometrical, geological and geotechnical models for both natural caves and artificial cavities. These models will be useful also to plan specific monitoring activities in order to understand the development of underground instability, and the related evolution through the rock mass, possibly threatening the urban areas and

  17. Identification and Quantification of Carbonate Species Using Rock-Eval Pyrolysis

    Directory of Open Access Journals (Sweden)

    Pillot D.

    2013-03-01

    Full Text Available This paper presents a new reliable and rapid method to characterise and quantify carbonates in solid samples based on monitoring the CO2 flux emitted by progressive thermal decomposition of carbonates during a programmed heating. The different peaks of destabilisation allow determining the different types of carbonates present in the analysed sample. The quantification of each peak gives the respective proportions of these different types of carbonates in the sample. In addition to the chosen procedure presented in this paper, using a standard Rock-Eval 6 pyrolyser, calibration characteristic profiles are also presented for the most common carbonates in nature. This method should allow different types of application for different disciplines, either academic or industrial.

  18. Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps.

    Directory of Open Access Journals (Sweden)

    Lisa A Levin

    Full Text Available Carbonate communities: The activity of anaerobic methane oxidizing microbes facilitates precipitation of vast quantities of authigenic carbonate at methane seeps. Here we demonstrate the significant role of carbonate rocks in promoting diversity by providing unique habitat and food resources for macrofaunal assemblages at seeps on the Costa Rica margin (400-1850 m. The attendant fauna is surprisingly similar to that in rocky intertidal shores, with numerous grazing gastropods (limpets and snails as dominant taxa. However, the community feeds upon seep-associated microbes. Macrofaunal density, composition, and diversity on carbonates vary as a function of seepage activity, biogenic habitat and location. The macrofaunal community of carbonates at non-seeping (inactive sites is strongly related to the hydrography (depth, temperature, O2 of overlying water, whereas the fauna at sites of active seepage is not. Densities are highest on active rocks from tubeworm bushes and mussel beds, particularly at the Mound 12 location (1000 m. Species diversity is higher on rocks exposed to active seepage, with multiple species of gastropods and polychaetes dominant, while crustaceans, cnidarians, and ophiuroids were better represented on rocks at inactive sites. Macro-infauna (larger than 0.3 mm from tube cores taken in nearby seep sediments at comparable depths exhibited densities similar to those on carbonate rocks, but had lower diversity and different taxonomic composition. Seep sediments had higher densities of ampharetid, dorvilleid, hesionid, cirratulid and lacydoniid polychaetes, whereas carbonates had more gastropods, as well as syllid, chrysopetalid and polynoid polychaetes. Stable isotope signatures and metrics: The stable isotope signatures of carbonates were heterogeneous, as were the food sources and nutrition used by the animals. Carbonate δ13Cinorg values (mean = -26.98‰ ranged from -53.3‰ to +10.0‰, and were significantly heavier than

  19. Lead isotopic composition of paleozoic and late proterozoic marine carbonate rocks in the vicinity of Yucca Mountains, Nevada

    International Nuclear Information System (INIS)

    Zartman, R.E.; Kwak, L.M.

    1993-01-01

    Paleozoic and Late Proterozoic marine carbonate rocks (limestones, dolomites, and their metamorphic equivalents) cropping out in the vicinity of Yucca Mountain contain lead with an isotopic composition strongly suggesting them to be a major source of the lead observed at Trench 14 in the carbonate phase of carbonate-silica veins and nearby surficial calcrete deposits. Six whole-rock samples of marine carbonate rocks yield 206 Pb/ 204 Pb = 19.21-29.06, 207 Pb/ 204 Pb = 15.74-16.01, and 208 Pb/ 204 Pb = 37.90-39.25, and leachate and residue fractions of the rocks reveal additional isotopic heterogeneity within individual samples. Two samples of eolian dust also have isotopic compositions lying along a 'carbonate' to 'silicate' mixing trend that appears to arise entirely from pedeogenic processes. The tendency for the marine carbonate rocks to evolve highly uranogenic, but not thorogenic, lead results in a distinctive isotopic composition that serves as a tracer in eolian dust and secondary carbonate minerals derived from the marine carbonate rocks

  20. Geo-Mechanical Characterization of Carbonate Rock Masses by Means of Laser Scanner Technique

    Science.gov (United States)

    Palma, Biagio; Parise, Mario; Ruocco, Anna

    2017-12-01

    Knowledge of the geometrical and structural setting of rock masses is crucial to evaluate the stability and to design the most suitable stabilization works. In this work we use the Terrestrial Laser Scanning (TLS) at the site of the Grave of the Castellana Caves, a famous show cave in southern Italy. The Grave is the natural access to the cave system, produced by collapse of the vault, due to upward progression of instabilities in the carbonate rock masses. It is about 55-m high, bell-shaped, with maximum width of 120 m. Aim of the work is the characterization of carbonate rock masses from the structural and geo-mechanical standpoints through the use of innovative survey techniques. TLS survey provides a product consisting of millions of geo-referenced points, to be managed in space, to become a suitable database for the morphological and geological-structural analysis. Studying by means of TLS a rock face, partly inaccessible or located in very complex environments, allows to investigate slopes in their overall areal extent, thus offering advantages both as regards safety of the workers and time needed for the survey. In addition to TLS, the traditional approach was also followed by performing scanlines surveys along the rims of the Grave, following the ISRM recommendations for characterization of discontinuity in rock masses. A quantitative comparison among the data obtained by TLS technique and those deriving from the classical geo-mechanical survey is eventually presented, to discuss potentiality of drawbacks of the different techniques used for surveying the rock masses.

  1. Bench-Scale Synthetic Optimization of 1,2-bis(2-aminophenylthio)ethane (APO-Link) Used in the Production of APO-BMI Resin

    Energy Technology Data Exchange (ETDEWEB)

    Hilary Wheeler; Crystal Densmore

    2007-07-31

    The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).

  2. Complex resistivity spectra in relation to multiscale pore geometry in carbonates and mixed-siliciclastic rocks

    Science.gov (United States)

    Norbisrath, Jan Henrik

    Carbonate rocks are known to have complex and heterogeneous pore structures, which result from their biogenic origin and strong affinity for diagenetic processes that change their pore structure after burial. The combination of sheer endless variations of precursor biogenic material, depositional environments, and diagenetic effects results in rocks that are interesting to study but intricate to understand. Many schemes to categorize the diversity of carbonate rocks are in use today; most are based on the macropore structure and qualitative thin-section analysis. Many studies, however, acknowledge that micropores have a significant influence on the macroscopic petrophysical rock properties, which are essential to determine reservoir quality. Micropores are, by definition, smaller than the thickness of a thin-section (four major carbonate microporosity types: (1) small intercrystalline, (2) large inter-crystalline, (3) intercement, and (4) micromoldic. Each microporosity type shows a distinct capacity to conduct electrical charge, which largely controls the magnitude and range of cementation factors (m) in rocks with such microporosity type. The BIB-SEM method is also used on a dataset of mixed carbonate-siliciclastic (mudrock) samples with high kerogen and pyrite content. Results show that the nanopore geometry here has little influence on cementation factors, and instead porosity is the main control on m in mudrocks. Cementation factors are crucial for estimates of oil-in-place and water saturation in a wireline application, and a slight change of (assumed) cementation factor can change the interpreter's evaluation from dry hole to discovery. Therefore, accurate determination of cementation factors is a critical task in formation evaluation, similar to accurate estimates of permeability. To achieve this goal, this dissertation utilizes a new approach of using complex resistivity spectra (CRS) to assess the pore geometry and its resulting electrical and fluid flow

  3. Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi

    2016-07-01

    Full Text Available Abstract Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL® 816 and AEROSIL® 200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample (solid phase and surfactant solution (aqueous phase. The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.

  4. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection....... The advance in lab source based micro-CT has made it capable of in situ experiments. We used a commercial bench top micro-CT (Zeiss Versa XRM410) to study the microstructure changes of chalk during liquid injection. Flexible temporal CT resolution is essential in this study because that the time scales...... of coupled physical and chemical processes can be very different. The results validated the feasibility of using a bench top CT system with a pressure cell to monitor the mesoscale multiphase interactions in chalk....

  5. Geochemical modelling of CO2-water-rock interactions for carbon storage : data requirements and outputs

    International Nuclear Information System (INIS)

    Kirste, D.

    2008-01-01

    A geochemical model was used to predict the short-term and long-term behaviour of carbon dioxide (CO 2 ), formation water, and reservoir mineralogy at a carbon sequestration site. Data requirements for the geochemical model included detailed mineral petrography; formation water chemistry; thermodynamic and kinetic data for mineral phases; and rock and reservoir physical characteristics. The model was used to determine the types of outputs expected for potential CO 2 storage sites and natural analogues. Reaction path modelling was conducted to determine the total reactivity or CO 2 storage capability of the rock by applying static equilibrium and kinetic simulations. Potential product phases were identified using the modelling technique, which also enabled the identification of the chemical evolution of the system. Results of the modelling study demonstrated that changes in porosity and permeability over time should be considered during the site selection process.

  6. Range of engineering-geological properties for some carbonate rock complexes for Balkan peninsula

    International Nuclear Information System (INIS)

    Jovanovski, Milorad; Shpago, Azra; Peshevski, Igor

    2010-01-01

    The Carbonate Rock masses are a geological media with extremely complex states and properties, which has a certain influences on the mechanical and hydraulic behavior during construction and exploitation of engineering structures. Practical aspects of the problem analysis arise from the fact that the areas of Bosnia and Herzegovina, Macedonia and the entire Balkans is characterized by presence of wide areas covered with carbonate complexes, where large number of complex engineering structures have been, or shall be constructed in the future. In this context, their engineering-geological modeling is still a practical and scientific challenge. The analysis of engineering- geological properties is one of the main steps in forming of analytical and geotechnical models for complex rock structures. This article gives a data about the range for these properties, according to the results from an extensive investigation program. Some original correlations and testing results are given and they are compared with some published relations from the world. (Author)

  7. Archaeal Diversity and CO2 Fixers in Carbonate-/Siliciclastic-Rock Groundwater Ecosystems

    Directory of Open Access Journals (Sweden)

    Cassandre Sara Lazar

    2017-01-01

    Full Text Available Groundwater environments provide habitats for diverse microbial communities, and although Archaea usually represent a minor fraction of communities, they are involved in key biogeochemical cycles. We analysed the archaeal diversity within a mixed carbonate-rock/siliciclastic-rock aquifer system, vertically from surface soils to subsurface groundwater including aquifer and aquitard rocks. Archaeal diversity was also characterized along a monitoring well transect that spanned surface land uses from forest/woodland to grassland and cropland. Sequencing of 16S rRNA genes showed that only a few surface soil-inhabiting Archaea were present in the groundwater suggesting a restricted input from the surface. Dominant groups in the groundwater belonged to the marine group I (MG-I Thaumarchaeota and the Woesearchaeota. Most of the groups detected in the aquitard and aquifer rock samples belonged to either cultured or predicted lithoautotrophs (e.g., Thaumarchaeota or Hadesarchaea. Furthermore, to target autotrophs, a series of 13CO2 stable isotope-probing experiments were conducted using filter pieces obtained after filtration of 10,000 L of groundwater to concentrate cells. These incubations identified the SAGMCG Thaumarchaeota and Bathyarchaeota as groundwater autotrophs. Overall, the results suggest that the majority of Archaea on rocks are fixing CO2, while archaeal autotrophy seems to be limited in the groundwater.

  8. Potential and costs of carbon dioxide removal by enhanced weathering of rocks

    Science.gov (United States)

    Strefler, Jessica; Amann, Thorben; Bauer, Nico; Kriegler, Elmar; Hartmann, Jens

    2018-03-01

    The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a-1 being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential. The crucial parameters defining this potential are the grain size and weathering rates. The main uncertainties about the potential relate to weathering rates and rock mass that can be integrated into the soil. The discussed results do not specifically address the enhancement of weathering through microbial processes, feedback of geogenic nutrient release, and bioturbation. We do not only assess dunite rock, predominantly bearing olivine (in the form of forsterite) as the mineral that has been previously proposed to be best suited for carbon removal, but focus also on basaltic rock to minimize potential negative side effects. Our results show that enhanced weathering is an option for carbon dioxide removal that could be competitive already at 60 US  t-1 CO2 removed for dunite, but only at 200 US  t-1 CO2 removed for basalt. The potential carbon removal on cropland areas could be as large as 95 Gt CO2 a-1 for dunite and 4.9 Gt CO2 a-1 for basalt. The best suited locations are warm and humid areas, particularly in India, Brazil, South-East Asia and China, where almost 75% of the global potential can be realized. This work presents a techno-economic assessment framework, which also allows for the incorporation of further processes.

  9. Bench-Scale Study of Hydrogen Separation Using Pre-Commercial Membranes; Estudio, a Escala de Planta Piloto, del Proceso de Separacion de Hidrogeno mediante Membranas Pre-Comerciales

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Hervas, J. M.; Marano, M.

    2011-11-10

    This report compiles the research undertaken by CIEMAT over 2009-2011 in the sub-project 8 Purification and Separation of Hydrogen of the PSE H2ENOV Project funded by the Spanish Ministry of Science and Innovation, MICINN. Permeability and hydrogen selectivity of a pre-commercial palladium membrane was studied at bench scale level. The effect of main operating parameters - pressure, temperature and feed-flow-rate- on permeate flow-rate was determined. The influence of other gas components on hydrogen permeation was evaluated. Mixtures of H{sub 2}-N{sub 2} and H{sub 2}-CO{sub 2} were studied. Although nitrogen and carbon dioxide did not permeate, both components decreased hydrogen permeation rate. Operating the membrane for around 1000 h under various conditions showed a small decrease in hydrogen permeation, but not in selectivity. A literature review was done in order to identify causes for permeation inhibition and reduction and for the definition of procedures for membrane regeneration. (Author) 29 refs.

  10. Inorganic carbon cycle in soil-rock-groundwater system in karst and fissured aquifers

    Directory of Open Access Journals (Sweden)

    Ajda Koceli

    2013-12-01

    Full Text Available The paper presents a systematic analysis of the isotopic composition of carbon (δ13CCaCO3 in carbonate rocks in central Slovenia, representing karst and fissured aquifers, and share of carbon contributions from carbonate dissolution and degradation of organic matter in aquifers, calculated from the mass balance equation. 59 samples of rocks (mainly dolomites from Upper Permian to Upper Triassic age were analyzed. Samples of carbonate rocks were pulverized and ground to fraction of 45 μm and for determination of δ13CCaCO3 analyzed with mass spectrometer for analyses of stable isotopes of light elements-IRMS. The same method was used for determination of isotopic composition of dissolved inorganic carbon (δ13CDIC in groundwater for 54 of 59 locations. Values of δ13CCaCO3 are in the range from -2.0 ‰ to +4.1 ‰, with an average δ13CCaCO3 value of +2.2 ‰. These values are typical for marine carbonates with δ13CCaCO3 around 0 ‰, although δ13CCaCO3 values differ between groups depending on the origin and age. Early diagenetic dolomites have relatively higher values of δ13CCaCO3 compared to other analyzed samples. The lowest values of δ13CCaCO3 were observed in Cordevolian and Bača dolomite, probably due to late diagenesis, during which meteoric water with lower isotopic carbon composition circulated in the process of sedimentation. Values of δ13CDIC range from -14.6 ‰ to -8.2 ‰. Higher δ13CDIC values (-8.2 ‰ indicate a low proportion of soil CO2 in the aquifer and rapid infiltration, while lower values (-14.6 ‰ indicate higher proportion of soil CO2 in the aquifer and slower infiltration. Calculated contributions of carbon from organic matter / dissolution of carbonates in the karstic and fissured aquifers s how a similar proportion (50 % : 50 %.

  11. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  12. Source rock potential of the organic rich Turonian - Upper Campanian carbonates of northern Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Daher, S. Bou; Littke, R. [RWTH Aachen Univ. (Germany). Energy and Mineral Resources Group (EMR); Nader, F.H. [IFP Energies nouvelles, Paris (France). Dept. of Sedimentology-Stratigraphy

    2013-08-01

    Upper Cretaceous chalks, marls, and shales are arguably the most prolific petroleum source rocks in the eastern Mediterranean region. 209 core samples from the Turonian - Upper Campanian rock succession in north Lebanon were collected and analyzed for their organic matter (OM) content, quality, and maturity. The total organic carbon (TOC) measurements revealed a very good source rock potential for a 150 m interval within the Upper Santonian - Upper Campanian, with an average of 2% TOC. High HI values (average 707 mg/g TOC) characterize these source rocks as type I kerogen and reflect a very good preservation of the organic matter. T{sub max} values (average 421 C) match the other maturity parameters such as vitrinite reflectance (average 0.35%), and all point towards immature organic matter. The equivalent Upper Cretaceous in the offshore Levant basin has enough overburden to have reached maturity. However, the accurate extrapolation of the organic matter quality and quantity to the offshore is yet a challenge with the data at hand. (orig.)

  13. Sorption of carbon, cobalt, nickel, strontium, iodine, cesium, americium and neptumium in rocks and minerals

    International Nuclear Information System (INIS)

    Pinnoja, S.; Jaakkola, T.; Kaemaeraeinen, E.L.; Koskinen, A.; Lindberg, A.

    1984-09-01

    Sorption of the radionuclides C-14, Co-58, Ni-63, I-125, Sr-85, Cs-134, Am-241 and Np-237, which are important in nuclear waste, were studied in rock by autoradiographic method. Samples were selected to represent common rocks and minerals in Finnish bedrock: rapakivi granite, tonalite, mica gneiss, granodiorite, biotite, quartz, plagioclase, K feldspar and hornblende. Polished thin sections were used to determine the contributions of different minerals to the sorption of the radionuclides. Sawn rock pieces (1.2 x 1.2 x 1.6 cm) were used to determine the Ksub(a)-values for rough rock surfaces where penetration into the rock matrix was found. The sorption order of the elements determined with the rock pieces was Ksub(a)sup(Cs)>Ksub(a)sup(Ni)>Ksub(a)sup(Co)>Ksub(a)sup(Sr)>Ksub(a)sup(C)>Ksub(a)sup(I). The same order of sorption was determined with thin sections for all nuclides except carbon, which was not sorbed on thin sections. Wide differences in the Ksub(a)-values for different minerals were found for Cs and Sr. The sorption mechanism for these elements is presumed to be ion exchange. The Ksub(a)-values of Cs varied between 0.1 x 10 -4 and 600 x 10 -4 m 3 /m 2 and those for Sr between 0.01 x 10 -4 and 10 x 10 -4 m 3 /m 2 . The lowest values were determined for quartz and the highest for biotite. Radionuclides having a tendency to form pseudocolloids and hydroxide precipitates (Am, Np, Ni) were sorbed on thin sections with only small variation in Ksub(a)-values: all values were between 1 x 10 -4 and 10 x 10 -4 and 100 x 10 -4 m 3 /m 2 . A very good agreement was found between experimental and calculated Ksub(a)-values for rock thin sections. Ksub(a)-values were calculated by multiplying the percentages of individual minerals in the rock by the Ksub(a)-values of the corresponding pure minerals and summing the results. Calculated Ksub(a)-values were occasionally up to 50% smaller than the experimental ones, owing to the low contents of some high adsorbing minerals

  14. Fission track dating of authigenic quartz in red weathering crusts of carbonate rocks in Guizhou province

    International Nuclear Information System (INIS)

    Liu Xiuming; Wang Shijie; Zhang Feng

    2004-01-01

    The Cenozoic evolution history of Guizhou Province, which is located on the southeastern flank of the Qinghai-Tibet Plateau, is unclear because of the lack of sedimentation records. The red weathering crusts widespread on the Yunnan-Guizhou Plateau may bear critical information about their evolution history. This work firstly determined the ages of four red weathering crusts in eastern, central and northern Guizhou. The material used in fission track dating is well-crystallized quartz occurring in many in-situ weathering crusts of carbonate rocks. The results showed that the fission track ages of quartz vary over a wide range from 1 Ma to 25 Ma in the four profiles, significantly younger than the ages of Triassic and Cambrian parent rocks. In combination with the regionally geological evolution history during the period from 25 Ma to 1 Ma, the ages of quartz can exclude the possibility that the origin of quartz has nothing to do with primary clastic minerals in parent rocks, authigenesis during diagenesis and hydrothermal precipitation or replacement by volcanic activities. It is deduced that the well-crystallized quartz was precipitated from Si-rich weathering fluids during weathering processes of carbonate rocks. The recorded ages of quartz from the four profiles are consistent with the episodes of planation surfaces on the Qinghai-Tibet Plateau, the stages of red soil in the tropics of South China, the tectonically stable periods in Guizhou, and the ages of weathering in other parts of the world during the Cenozoic era. That is to say, the ages of authigenic quartz dated by the fission track method are well feasible and credible. (authors)

  15. Enhanced Oil Recovery from Oil-wet Carbonate Rock by Spontaneous Imbibition of Aqueous Surfactant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Standnes, Dag Chun

    2001-09-01

    The main theme of this thesis is an experimental investigation of spontaneous imbibition (SI) of aqueous cationic surfactant solution into oil-wet carbonate (chalk- and dolomite cores). The static imbibition process is believed to represent the matrix flow of oil and water in a fractured reservoir. It was known that aqueous solution of C{sub 12}-N(CH{sub 3}){sub 3}Br (C12TAB) was able to imbibe spontaneously into nearly oil-wet chalk material, but the underlying mechanism was not understood. The present work was therefore initiated, with the following objectives: (1) Put forward a hypothesis for the chemical mechanism underlying the SI of C12TAB solutions into oil-wet chalk material based on experimental data and (2) Perform screening tests of low-cost commercially available surfactants for their ability to displace oil by SI of water into oil-wet carbonate rock material. It is essential for optimal use of the surfactant in field application to have detailed knowledge about the mechanism underlying the SI process. The thesis also discusses some preliminary experimental results and suggests mechanisms for enhanced oil recovery from oil-wet carbonate rock induced by supply of thermal energy.

  16. Genome Sequence of Carbon Dioxide-Sequestering Serratia sp. Strain ISTD04 Isolated from Marble Mining Rocks

    OpenAIRE

    Kumar, Manish; Gazara, Rajesh Kumar; Verma, Sandhya; Kumar, Madan; Verma, Praveen Kumar; Thakur, Indu Shekhar

    2016-01-01

    The Serratia sp. strain ISTD04 has been identified as a carbon dioxide (CO2)-sequestering bacterium isolated from marble mining rocks in the Umra area, Rajasthan, India. This strain grows chemolithotrophically on media that contain sodium bicarbonate (NaHCO3) as the sole carbon source. Here, we report the genome sequence of 5.07?Mb Serratia sp. ISTD04.

  17. Hot spring microbial community composition, morphology, and carbon fixation: implications for interpreting the ancient rock record

    Science.gov (United States)

    Schuler, Caleb G.; Havig, Jeff R.; Hamilton, Trinity L.

    2017-11-01

    Microbial communities in hydrothermal systems exist in a range of macroscopic morphologies including stromatolites, mats, and filaments. The architects of these structures are typically autotrophic, serving as primary producers. Structures attributed to microbial life have been documented in the rock record dating back to the Archean including recent reports of microbially-related structures in terrestrial hot springs that date back as far as 3.5 Ga. Microbial structures exhibit a range of complexity from filaments to more complex mats and stromatolites and the complexity impacts preservation potential. As a result, interpretation of these structures in the rock record relies on isotopic signatures in combination with overall morphology and paleoenvironmental setting. However, the relationships between morphology, microbial community composition, and primary productivity remain poorly constrained. To begin to address this gap, we examined community composition and carbon fixation in filaments, mats, and stromatolites from the Greater Obsidian Pool Area (GOPA) of the Mud Volcano Area, Yellowstone National Park, WY. We targeted morphologies dominated by bacterial phototrophs located in close proximity within the same pool which are exposed to similar geochemistry as well as bacterial mat, algal filament and chemotrophic filaments from nearby springs. Our results indicate i) natural abundance δ13C values of biomass from these features (-11.0 to -24.3 ‰) are similar to those found in the rock record; ii) carbon uptake rates of photoautotrophic communities is greater than chemoautotrophic; iii) oxygenic photosynthesis, anoxygenic photosynthesis, and chemoautotrophy often contribute to carbon fixation within the same morphology; and iv) increasing phototrophic biofilm complexity corresponds to a significant decrease in rates of carbon fixation—filaments had the highest uptake rates whereas carbon fixation by stromatolites was significantly lower. Our data highlight

  18. Hot Spring Microbial Community Composition, Morphology, and Carbon Fixation: Implications for Interpreting the Ancient Rock Record

    Directory of Open Access Journals (Sweden)

    Caleb G. Schuler

    2017-11-01

    Full Text Available Microbial communities in hydrothermal systems exist in a range of macroscopic morphologies including stromatolites, mats, and filaments. The architects of these structures are typically autotrophic, serving as primary producers. Structures attributed to microbial life have been documented in the rock record dating back to the Archean including recent reports of microbially-related structures in terrestrial hot springs that date back as far as 3.5 Ga. Microbial structures exhibit a range of complexity from filaments to more complex mats and stromatolites and the complexity impacts preservation potential. As a result, interpretation of these structures in the rock record relies on isotopic signatures in combination with overall morphology and paleoenvironmental setting. However, the relationships between morphology, microbial community composition, and primary productivity remain poorly constrained. To begin to address this gap, we examined community composition and carbon fixation in filaments, mats, and stromatolites from the Greater Obsidian Pool Area (GOPA of the Mud Volcano Area, Yellowstone National Park, WY. We targeted morphologies dominated by bacterial phototrophs located in close proximity within the same pool which are exposed to similar geochemistry as well as bacterial mat, algal filament and chemotrophic filaments from nearby springs. Our results indicate (i natural abundance δ13C values of biomass from these features (−11.0 to −24.3‰ are similar to those found in the rock record; (ii carbon uptake rates of photoautotrophic communities is greater than chemoautotrophic; (iii oxygenic photosynthesis, anoxygenic photosynthesis, and chemoautotrophy often contribute to carbon fixation within the same morphology; and (iv increasing phototrophic biofilm complexity corresponds to a significant decrease in rates of carbon fixation—filaments had the highest uptake rates whereas carbon fixation by stromatolites was significantly lower

  19. Chemistry and palynology of carbon seams and associated rocks from the Witwatersrand goldfields, South Africa

    Science.gov (United States)

    Ebert, L.B.; Robbins, E.I.; Rose, K.D.; Kastrup, R.V.; Scanlon, J.C.; Gebhard, L.A.; Garcia, A.R.

    1990-01-01

    Carbon seams in the Witwatersrand System of South Africa host some of the richest gold concentrations in the world. A study of the microscopic characteristics in thin sections and acid residues, and of the chemical and physical nature of the carbon-bearing phases, was undertaken to gain some understanding of the biological precursors and thermal changes that have occurred since the seams were buried. The HClHF acid-resistant organic tissues in this Early Proterozoic coal are filamentous and spherical, which are typical morphologies for microorganisms. The tissues are carbonized black as would be expected for metamorphic rocks, so usual palynological techniques were of limited use. Therefore, the chemical and physical nature of the organic remains was studied by H C ratios, X-ray diffraction (XRD), 13C nuclear magnetic resonance (NMR), reductive chemistry, crosspolarization/magic angle spinning NMR (CP/MAS), and electron spin resonance (ESR). The H C ratios of the samples examined are similar to those of semi-anthracite and petroleum cokes from delayed cokers. XRD shows graphite is not present and that the gold is in elemental form, not chemically bound or intercalated between carbon planes. NMR shows that both aromatic and paraffinic carbons are present. Integration of the carbon NMR spectra suggests that 80% of the carbon is sp2-hybridized and 20% is sp3-hybridized. Reductive chemistry shows that the benzenoid entities are larger than common polynuclear aromatic hydrocarbons such as perylene and decacyclene. Dipolar dephasing CP/MAS NMR suggests the presence of two types of paraffinic carbons, a rigid methylene group and a rotating methyl group. The narrowing of the ESR linewidth between room temperature and 300??C shows that the materials examined have not previously been subjected to temperatures as high as 300??C. ?? 1990.

  20. Hydropyrolysis of sugar cane bagasse: effect of sample configuration on bio-oil yields and structures from two bench-scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pindoria, R.V.; Chatzakis, I.N.; Lim, J.-Y.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    1999-01-01

    A wire-mesh reactor has been used as base-case in the study of product yields and structures from the pyrolysis and hydropyrolysis of a sample of sugar cane bagasse in a fixed bed `hot-rod` reactor. Results from the two reactors have been compared to determine how best to assess bench-scale data which might be used for eventual process development. Experiments have been carried out at 600{degree}C at pressures up to 70 bar. Structural features of the bio-oils have been examined by size exclusion chromatography and FT-infrared spectroscopy. In both reactors the effect of increasing pressure was to reduce the bio-oil and total volatile yields: hydropyrolysis bio-oil yields were marginally higher than pyrolysis yields under equivalent operating conditions. The data indicate that about one-third of the original biomass may be converted to oil by direct pyrolysis. 33 refs., 10 figs.

  1. Rock Outcrops Redistribute Organic Carbon and Nutrients to Nearby Soil Patches in Three Karst Ecosystems in SW China.

    Directory of Open Access Journals (Sweden)

    Dianjie Wang

    Full Text Available Emergent rock outcrops are common in terrestrial ecosystems. However, little research has been conducted regarding their surface function in redistributing organic carbon and nutrient fluxes to soils nearby. Water that fell on and ran off 10 individual rock outcrops was collected in three 100 × 100 m plots within a rock desertification ecosystem, an anthropogenic forest ecosystem, and a secondary forest ecosystem between June 2013 and June 2014 in Shilin, SW China. The concentrations of total organic carbon (TOC, total nitrogen (N, total phosphorus (P, and potassium (K in the water samples were determined during three seasons, and the total amounts received by and flowing out from the outcrops were calculated. In all three ecosystems, TOC and N, P, and K were found throughout the year in both the water received by and delivered to nearby soil patches. Their concentrations and amounts were generally greater in forested ecosystems than in the rock desertification ecosystem. When rock outcrops constituted a high percentage (≥ 30% of the ground surface, the annual export of rock outcrop runoff contributed a large amount of organic carbon and N, P, and K nutrients to soil patches nearby by comparison to the amount soil patches received via atmospheric deposition. These contributions may increase the spatial heterogeneity of soil fertility within patches, as rock outcrops of different sizes, morphologies, and emergence ratios may surround each soil patch.

  2. Bench-scale testing of on-line control of column flotation using a novel analyzer. Third quarterly technical progress report, April 1, 1993--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-24

    This document contains the third quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale flotation circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan, as well as the approach to completing the major tasks within the twelve-month project schedule. The project is broken down into three phases, which include: Phase I -- Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing; Phase II -- ET Circuit Installation and Testing: This installation and testing phase of the project was performed at PETC`s CPPRF from January through June, 1993, and was the major focus of the project. It involved testing of the continuous 200--300 lb/hr. circuit; and Phase III -- Project Finalization: The project finalization phase is occurring from July through September, 1993, at PTI`s Calumet offices and involves finalizing analytical work and data evaluation, as well as final project reporting. This Third Quarterly Technical Progress Report principally summarizes the results from the benchscale testing with the second coal (Pittsburgh No. 8 Seam Coal), which occurred in April through June, 1993. It also contains preliminary economic evaluations that will go into the Final Report, as well as the plan for the final reporting task.

  3. Appling hydrolysis acidification-anoxic–oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant

    International Nuclear Information System (INIS)

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-01-01

    Highlights: • Hydrolysis acidification-anoxic–oxic process can be used to treat petrochemical wastewater. • The toxicity and treatability changed significantly after hydrolysis acidification. • The type and concentration of organics reduced greatly after treatment. • The effluent shows low acute toxicity by luminescent bacteria assay. • Advanced treatment is recommended for the effluent. - Abstract: A hydrolysis acidification (HA)-anoxic–oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m 3 h −1 ) was operated with the same parameters. The results showed that the BOD 5 /COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L −1 for bench scale reactor and 60.9 mg L −1 for PCWWTP when the influent COD was about 480 mg L −1 on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC–MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L −1 . There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment.

  4. Application of probabilistic facies prediction and estimation of rock physics parameters in a carbonate reservoir from Iran

    International Nuclear Information System (INIS)

    Karimpouli, Sadegh; Hassani, Hossein; Nabi-Bidhendi, Majid; Khoshdel, Hossein; Malehmir, Alireza

    2013-01-01

    In this study, a carbonate field from Iran was studied. Estimation of rock properties such as porosity and permeability is much more challenging in carbonate rocks than sandstone rocks because of their strong heterogeneity. The frame flexibility factor (γ) is a rock physics parameter which is related not only to pore structure variation but also to solid/pore connectivity and rock texture in carbonate reservoirs. We used porosity, frame flexibility factor and bulk modulus of fluid as the proper parameters to study this gas carbonate reservoir. According to rock physics parameters, three facies were defined: favourable and unfavourable facies and then a transition facies located between these two end members. To capture both the inversion solution and associated uncertainty, a complete implementation of the Bayesian inversion of the facies from pre-stack seismic data was applied to well data and validated with data from another well. Finally, this method was applied on a 2D seismic section and, in addition to inversion of petrophysical parameters, the high probability distribution of favorable facies was also obtained. (paper)

  5. Qualitative and Quantitative Changes of Carbonate Rocks Exposed to SC CO2 (Basque-Cantabrian Basin, Northern Spain

    Directory of Open Access Journals (Sweden)

    Edgar Berrezueta

    2017-11-01

    Full Text Available This study aims at the qualitative and quantitative determination of porosity, mineralogical and textural changes in carbonate rock samples after injection of (i supercritical CO2-rich brine and (ii dry supercritical CO2, under similar experimental conditions (P ≈ 75 bar, T ≈ 35 °C, 970 h exposure time and no CO2 flow. The studied rocks were sampled in the western Basque-Cantabrian Basin, North Spain, and consist of vuggy carbonates (“Carniolas” of the Puerto de la Palombera formation (Hettangian. Mineralogical and pore space characterization is completed using optical microscopy, scanning electron microscopy and optical image analysis. In addition, X-ray fluorescence analyses are performed to refine the mineralogical information and to obtain whole rock geochemical data and the brine composition is analysed before and after the experiment. Mineralogical and chemical results indicate that the carbonate rocks exposed to supercritical CO2 in dry conditions do not suffer significant changes. However, the injection of supercritical CO2-rich brine induces chemical and physical changes in the rock due to the high reactivity of calcite at the low pH conditions produced by the acidified brine. Numerical modelling validates the experimental observations. These results can be used to characterize the behaviour of carbonate rocks under conditions similar to the vicinity of a CO2 injection well. The results should be considered only at the scale of the studied samples and not at reservoir scale.

  6. Imaging of forced-imbibition in carbonate rocks using synchrotron X-ray micro-tomography

    Science.gov (United States)

    Singh, K.; Menke, H. P.; Andrew, M. G.; Lin, Q.; Saif, T.; Al-Khulaifi, Y.; Reynolds, C. A.; Bijeljic, B.; Rau, C.; Blunt, M. J.

    2016-12-01

    We have investigated the pore-scale behavior of brine-oil systems and oil trapping during forced-imbibition in a water-wet carbonate rock in a capillary-dominated flow regime at reservoir pressure conditions. To capture the dynamics of the brine-oil front progression and snap-off process, real-time tomograms with a time resolution of 38 s (24 s for imaging and 14 s for recording the data) and a spatial resolution of 3.28 µm were acquired at Diamond Light Source (UK). The data were first analyzed at global scale (complete imaged rock) for overall front behavior. From the saturation profiles, we obtain the location of the tail of the desaturation front that progresses with a velocity of 13 µm/min. This velocity is smaller than average flow velocity 16.88 µm/min, which explains why it needs slightly more than 1 pore volume of brine injection to reach the residual saturation of oil in a water-wet rock. The data were further analyzed at local scale to investigate the pore-scale mechanisms of oil trapping during brine flooding. We isolated various trapping events which resulted in the creation of discrete oil ganglia occupying one to several pore bodies. We perform pore-scale curvature analysis of brine-oil interfaces to obtain local capillary pressure that will be related to the shape and the size of throats in which ganglia were trapped.

  7. Impact of Acid Attack on the Shear Behaviour of a Carbonate Rock Joint

    Science.gov (United States)

    Nouailletas, O.; Perlot, C.; Rivard, P.; Ballivy, G.; La Borderie, C.

    2017-06-01

    The mechanical behaviour of structural discontinuities in rock mass is a key element of the stability analysis in civil engineering, petroleum engineering and mining engineering. In this paper, the mechanical analysis is coupled with the acidic attack of a rock joint associated with leakage of CO2 through a geological fault in the context of carbon sequestration. Experiments were conducted at the laboratory scale to assess the shear behaviour of degraded joint: direct shear tests were performed on rock joints that have been previously immersed into water or into an acidic solution (pH 0.2). The shear behaviour of joints is governed by the roughness of its walls: the parameters Z2, Z3, Z4 and RL characterize the rough surfaces. They are calculated from the scans of joint surfaces after and before immersion. Their comparison pointed out a slight impact of the acidic attack. However, the results of the direct shear tests show significant modifications in the shear behaviour for the degraded joints: the tangential stress peak disappears, the tangential stiffness decreases in the stress/displacement curve, and the contraction increases, the dilation angle decreases in the dilation curve. Acid attack has a greater impact on the mechanical properties of the asperities than their geometric characteristics. The results of this study will be used to improve chemo-mechanical modelling to better simulate with higher accuracy the fault stability in different cases of civil engineering, petroleum engineering and mining engineering.

  8. Hydrogeologic assessment of shallow clastic and carbonate rock aquifers in Hendry and Collier counties, southwestern Florida

    Science.gov (United States)

    Brown, C. Erwin; Krulikas, R.K.; Brendle, D.L.

    1996-01-01

    Direct-current electrical resistivity data were collected from 109 vertical electrical sounding sites in Hendry and Collier Counties, southwestern Florida. Selected direct-current electrical resistivity surveys, together with available borehole geologic and geophysical data, were used to determine the approximate areal extent of the shallow clastic aquifers composed of thick sands and carbonate lithologies. Results indicated that a complex pattern of shallow sands, clays, and carbonate lithologies occur throughout the area. Buried channel sands were found as deep as 50 meters below land surface in some places. The channels contain unconsolidated fine- to medium-grained quartz sand interbedded with sandy limestone, shell fragments, and gray-green sandy clay. Both surface and borehole geophysical techniques with lithologic data were necessary to approximately locate and define layers that might behave as confining layers and to locate and define the extent of any buried sand aquifers. The borehole geophysical data were used to analyze the zones of higher resistivity. Direct-current electrical resistivity data indicated the approximate location of certain layer boundaries. The conjunctive use of natural gamma and short- and long-normal resistivity logs was helpful in determining lithologic effects. Geohydrologic sections were prepared to identify potential locations of buried channels and carbonates containing freshwater. Buried channel sands and carbonate rock sections were identified in the subsurface that potentially may contain freshwater supplies.

  9. Planetary rover robotics experiment in education: carbonate rock collecting experiment of the Husar-5 rover

    Science.gov (United States)

    Szalay, Kristóf; Lang, Ágota; Horváth, Tamás; Prajczer, Péter; Bérczi, Szaniszló

    2013-04-01

    Introduction: The new experiment for the Husar-5 educational space probe rover consists of steps of the technology of procedure of finding carbonate speci-mens among the rocks on the field. 3 main steps were robotized: 1) identification of carbonate by acid test, 2) measuring the gases liberated by acid, and 3) magnetic test. Construction of the experiment: The basis of the robotic realization of the experiment is a romote-controlled rover which can move on the field. Onto this rover the mechanism of the experiments were built from Technics LEGO elements and we used LEGO-motors for making move these experiments. The operation was coordinated by an NXT-brick which was suitable to programming. Fort he acetic-test the drops should be passed to the selected area. Passing a drop to a locality: From the small holder of the acid using densified gas we pump some drop onto the selected rock. We promote this process by pumpig the atmospheric gas into another small gas-container, so we have another higher pressure gas there. This is pumped into the acid-holder. The effect of the reaction is observed by a wireless onboard camera In the next step we can identify the the liberated gas by the gas sensor. Using it we can confirm the liberation of the CO2 gas without outer observer. The third step is the controll of the paramagnetic properties.. In measuring this feature a LEGO-compass is our instrumentation. We use a electric current gener-ated magnet. During the measurements both the coil and the gas-sensor should be positioned to be near to the surface. This means, that a lowering and an uplifting machinery should be constructed. Summary: The sequence of the measurement is the following. 1) the camera - after giving panorama images - turns toward the soil surface, 2) the dropping onto the rock surface 3) at the same time the gas-sensor starts to move down above the rock 4) the compass sensor also moves down on the arm which holds both the gas-sensor and the compass-sensor 5

  10. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    Science.gov (United States)

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  11. Multi-scale investigation into the mechanisms of fault mirror formation in seismically active carbonate rocks

    Science.gov (United States)

    Ohl, Markus; Chatzaras, Vasileios; Niemeijer, Andre; King, Helen; Drury, Martyn; Plümper, Oliver

    2017-04-01

    Mirror surfaces along principal slip zones in carbonate rocks have recently received considerable attention as they are thought to form during fault slip at seismic velocities and thus may be a marker for paleo-seismicity (Siman-Tov et al., 2013). Therefore, these structures represent an opportunity to improve our understanding of earthquake mechanics in carbonate faults. Recent investigations reported the formation of fault mirrors in natural rocks as well as in laboratory experiments and connected their occurrence to the development of nano-sized granular material (Spagnuolo et al., 2015). However, the underlying formation and deformation mechanisms of these fault mirrors are still poorly constrained and warrant further research. In order to understand the influence and significance of these fault products on the overall fault behavior, we analysed the micro-, and nanostructural inventory of natural fault samples containing mirror slip surfaces. Here we present first results on the possible formation mechanisms of fault mirrors and associated deformation mechanisms operating in the carbonate fault gouge from two seismically active fault zones in central Greece. Our study specifically focuses on mirror slip surfaces obtained from the Arkitsa fault in the Gulf of Evia and the Schinos fault in the Gulf of Corinth. The Schinos fault was reactivated by a magnitude 6.7 earthquake in 1981 while the Arkitsa fault is thought to have been reactivated by a magnitude 6.9 earthquake in 1894. Our investigations encompass a combination of state-of-the-art analytical techniques including X-ray computed tomography, focused ion beam scanning electron microscopy (FIB-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Using this multiscale analytical approach, we report decarbonation-reaction structures, considerable calcite twinning and grain welding immediately below the mirror slip surface. Grains or areas indicating decarbonation reactions show a foam

  12. Validating predictions of evolving porosity and permeability in carbonate reservoir rocks exposed to CO2-brine

    Science.gov (United States)

    Smith, M. M.; Hao, Y.; Carroll, S.

    2017-12-01

    Improving our ability to better forecast the extent and impact of changes in porosity and permeability due to CO2-brine-carbonate reservoir interactions should lower uncertainty in long-term geologic CO2 storage capacity estimates. We have developed a continuum-scale reactive transport model that simulates spatial and temporal changes to porosity, permeability, mineralogy, and fluid composition within carbonate rocks exposed to CO2 and brine at storage reservoir conditions. The model relies on two primary parameters to simulate brine-CO2-carbonate mineral reaction: kinetic rate constant(s), kmineral, for carbonate dissolution; and an exponential parameter, n, relating porosity change to resulting permeability. Experimental data collected from fifteen core-flooding experiments conducted on samples from the Weyburn (Saskatchewan, Canada) and Arbuckle (Kansas, USA) carbonate reservoirs were used to calibrate the reactive-transport model and constrain the useful range of k and n values. Here we present the results of our current efforts to validate this model and the use of these parameter values, by comparing predictions of extent and location of dissolution and the evolution of fluid permeability against our results from new core-flood experiments conducted on samples from the Duperow Formation (Montana, USA). Agreement between model predictions and experimental data increase our confidence that these parameter ranges need not be considered site-specific but may be applied (within reason) at various locations and reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Compositional, mechanical and transport properties of carbonate fault rocks and the seismic cycle in limestone terrains : A case study of surface exposures on the Longmenshan Fault, Sichuan, China

    NARCIS (Netherlands)

    Chen, Jianye

    2015-01-01

    Destructive earthquakes are common in tectonically active regions dominated by carbonate cover rocks. The catastrophic Wenchuan earthquake that struck Sichuan, China, also affected a section of carbonate cover terrain. Numerous studies have focused on characterizing the compositional, transport and

  14. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  15. Lattice Boltzmann Simulations of Fluid Flow in Continental Carbonate Reservoir Rocks and in Upscaled Rock Models Generated with Multiple-Point Geostatistics

    Directory of Open Access Journals (Sweden)

    J. Soete

    2017-01-01

    Full Text Available Microcomputed tomography (μCT and Lattice Boltzmann Method (LBM simulations were applied to continental carbonates to quantify fluid flow. Fluid flow characteristics in these complex carbonates with multiscale pore networks are unique and the applied method allows studying their heterogeneity and anisotropy. 3D pore network models were introduced to single-phase flow simulations in Palabos, a software tool for particle-based modelling of classic computational fluid dynamics. In addition, permeability simulations were also performed on rock models generated with multiple-point geostatistics (MPS. This allowed assessing the applicability of MPS in upscaling high-resolution porosity patterns into large rock models that exceed the volume limitations of the μCT. Porosity and tortuosity control fluid flow in these porous media. Micro- and mesopores influence flow properties at larger scales in continental carbonates. Upscaling with MPS is therefore necessary to overcome volume-resolution problems of CT scanning equipment. The presented LBM-MPS workflow is applicable to other lithologies, comprising different pore types, shapes, and pore networks altogether. The lack of straightforward porosity-permeability relationships in complex carbonates highlights the necessity for a 3D approach. 3D fluid flow studies provide the best understanding of flow through porous media, which is of crucial importance in reservoir modelling.

  16. Cesium Removal From Tanks 241-AN-103 and 241-SX-105 and 241-AZ-101 and 241-AZ-102 Composite For Testing In Bench Scale Steam Reformer

    International Nuclear Information System (INIS)

    Duncan, J.B.; Huber, H.J.

    2011-01-01

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  17. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  18. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  19. Carbonate rocks of Cambrian and Ordovician age in the Lancaster quadrangle, Pennsylvania

    Science.gov (United States)

    Meisler, Harold; Becher, Albert E.

    1968-01-01

    Detailed mapping has shown that the carbonate rocks of Cambrian and Ordovician age in the Lancaster quadrangle, Pennsylvania, can be divided into 14 rock-stratigraphic units. These units are defined primarily by their relative proportions of limestone and dolomite. The oldest units, the Vintage, Kinzers, and Ledger Formations of Cambrian age, and the Conestoga Limestone of Ordovician age are retained in this report. The Zooks Corner Formation, of Cambrian age, a dolomite unit overlying the Ledger Dolomite, is named here for exposures along Conestoga Creek near the village of Zooks Corner. The Conococheague (Cambrian) and Beekmantown (Ordovician) Limestones, as mapped by earlier workers, have been elevated to group rank and subdivided into formations that are correlated with and named for geologic units in Lebanon and Berks Counties, Pa. These formations, from oldest to youngest, are the Buffalo Springs, Snitz Creek, Millbach, and Richland Formations of the Conococheague Group, and the Stonehenge, Bpler, and Ontelaunee Formations of the Beekmantown Group. The Annville and Myerstown Limestones, which are named for lithologically similar units in Dauphin and Lebanon Counties, Pa., overlie the Beekmantown Group in one small area in the quadrangle.

  20. Evaluation of possibilities of the plastic stone masonry of carbonate rocks in Slovakia

    Directory of Open Access Journals (Sweden)

    Peter Ružička

    2006-09-01

    Full Text Available At plastic processing of rocks, the size of mine blocks,is not decisive but aesthetically interesting textural and coloured parts of raw materials. Technologically are compact positions of travertine with a stripe texture, originating from the Hradišťa pod Vrátnom. An attractive raw material for the production of artificial jewelleries are onyx marbles from the Levice surrouting. In Spišské Podhradie honey-yellow stripy aragonite fills travertine rifts, suitable for the production of jewelleries. A small ornamental ware can also be produced from the compact travertine in Vyšné Ružbachy. A contrast textural arain of crinoid limestones from Krivoklát represents a quality raw material for the production of decorative plastics and jewelleries. The locality Prihradzany-Skalka provides guttenstein limestones, appropriate for the production of bigger plastics and utility articles. Aesthetically stand out articles from hallstatt limestones from Silická Brezová. For the figural treatment and the production of utility articles are suitable čorštynske limestones from the depositg Marmont - Stará Ľubovňa. The most widely used decorative stones are marbles from Tuhár. The interesting are pseudobreccias textures of the recrystallize wetterstein limestones from Tisovec. Marbles from Rákoš have variable colours. For the production of plastics are suitable streaked marbles from Lubeník. Positive results from the technological standpoint have locaties of carbonate rocks.

  1. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  2. Thermo-mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions

    Science.gov (United States)

    Pei, Liang; Blöcher, Guido; Milsch, Harald; Zimmermann, Günter; Sass, Ingo; Huenges, Ernst

    2018-01-01

    The present study aims to quantify the thermo-mechanical properties of Neuburger Bankkalk limestone, an outcrop analog of the Upper Jurassic carbonate formation (Germany), and to provide a reference for reservoir rock deformation within future enhanced geothermal systems located in the Southern German Molasse Basin. Experiments deriving the drained bulk compressibility C were performed by cycling confining pressure p c between 2 and 50 MPa at a constant pore pressure p p of 0.5 MPa after heating the samples to defined temperatures between 30 and 90 °C. Creep strain was then measured after each loading and unloading stage, and permeability k was obtained after each creep strain measurement. The drained bulk compressibility increased with increasing temperature and decreased with increasing differential pressure p d = p c - p p showing hysteresis between the loading and unloading stages above 30 °C. The apparent values of the indirectly calculated Biot coefficient α ind containing contributions from inelastic deformation displayed the same temperature and pressure dependencies. The permeability k increased immediately after heating and the creep rates were also temperature dependent. It is inferred that the alteration of the void space caused by temperature changes leads to the variation of rock properties measured under isothermal conditions while the load cycles applied under isothermal conditions yield additional changes in pore space microstructure. The experimental results were applied to a geothermal fluid production scenario to constrain drawdown and time-dependent effects on the reservoir, overall, to provide a reference for the hydromechanical behavior of geothermal systems in carbonate, and more specifically, in Upper Jurassic lithologies.

  3. Genome Sequence of Carbon Dioxide-Sequestering Serratia sp. Strain ISTD04 Isolated from Marble Mining Rocks.

    Science.gov (United States)

    Kumar, Manish; Gazara, Rajesh Kumar; Verma, Sandhya; Kumar, Madan; Verma, Praveen Kumar; Thakur, Indu Shekhar

    2016-10-20

    The Serratia sp. strain ISTD04 has been identified as a carbon dioxide (CO 2 )-sequestering bacterium isolated from marble mining rocks in the Umra area, Rajasthan, India. This strain grows chemolithotrophically on media that contain sodium bicarbonate (NaHCO 3 ) as the sole carbon source. Here, we report the genome sequence of 5.07 Mb Serratia sp. ISTD04. Copyright © 2016 Kumar et al.

  4. Investigating Interactions between the Silica and Carbon Cycles during Precipitation and Early Diagenesis of Authigenic Clay/Carbonate-Mineral Associations in the Carbonate Rock Record

    Science.gov (United States)

    McKenzie, J. A.; Francisca Martinez Ruiz, F.; Sanchez-Roman, M.; Anjos, S.; Bontognali, T. R. R.; Nascimento, G. S.; Vasconcelos, C.

    2017-12-01

    The study of authigenic clay/carbonate-mineral associations within carbonate sequences has important implications for the interpretation of scientific problems related with rock reservoir properties, such as alteration of potential porosity and permeability. More specifically, when clay minerals are randomly distributed within the carbonate matrix, it becomes difficult to predict reservoir characteristics. In order to understand this mineral association in the geological record, we have undertaken a comparative study of specially designed laboratory experiments with modern environments, where clay minerals have been shown to precipitate together with a range of carbonate minerals, including calcite, Mg-calcite and dolomite. Two modern dolomite-forming environments, the Coorong lakes, South Australia and Brejo do Espinho Rio de Janeiro, Brazil, were selected for this investigation. For comparative evaluation, enrichment microbial culture experiments, using natural pore water from Brejo do Espinho as the growth medium to promote mineral precipitation, were performed under both aerobic and anaerobic conditions. To establish the environmental parameters and biological processes facilitating the dual mineral association, the experimental samples have been compared with the natural minerals using HRTEM measurements. The results demonstrate that the clay and carbonate minerals apparently do not co-precipitate, but the precipitation of the different minerals in the same sample has probably occurred under different environmental conditions with variable chemistries, e.g., hypersalinity versus normal salinity resulting from the changing ratio of evaporation versus precipitation. Thus, the investigated mineral association is not a product of diagenetic processes but of sequential in situ precipitation processes related to changes in the silica and carbon availability. Implications for ancient carbonate formations will be presented and discussed in the context of a specific

  5. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  6. Autochthonous bioaugmentation with environmental samples rich in hydrocarbonoclastic bacteria for bench-scale bioremediation of oily seawater and desert soil.

    Science.gov (United States)

    Ali, Nedaa; Dashti, Narjes; Salamah, Samar; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2016-05-01

    Oil-contaminated seawater and desert soil batches were bioaugmented with suspensions of pea (Pisum sativum) rhizosphere and soil with long history of oil pollution. Oil consumption was measured by gas-liquid chromatography. Hydrocarbonoclastic bacteria in the bioremediation batches were counted using a mineral medium with oil vapor as a sole carbon source and characterized by their 16S ribosomal RNA (rRNA)-gene sequences. Most of the oil was consumed during the first 2-4 months, and the oil-removal rate decreased or ceased thereafter due to nutrient and oxygen depletion. Supplying the batches with NaNO3 (nitrogen fertilization) at a late phase of bioremediation resulted in reenhanced oil consumption and bacterial growth. In the seawater batches bioaugmented with rhizospheric suspension, the autochthonous rhizospheric bacterial species Microbacterium oxidans and Rhodococcus spp. were established and contributed to oil-removal. The rhizosphere-bioaugmented soil batches selectively favored Arthrobacter nitroguajacolicus, Caulobacter segnis, and Ensifer adherens. In seawater batches bioaugmented with long-contaminated soil, the predominant oil-removing bacterium was the marine species Marinobacter hydrocarbonoclasticus. In soil batches on the other hand, the autochthonous inhabitants of the long-contaminated soil, Pseudomonas and Massilia species were established and contributed to oil removal. It was concluded that the use of rhizospheric bacteria for inoculating seawater and desert soil and of bacteria in long-contaminated soil for inoculating desert soil follows the concept of "autochthonous bioaugmentation." Inoculating seawater with bacteria in long-contaminated soil, on the other hand, merits the designation "allochthonous bioaugmentation."

  7. Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates

    Science.gov (United States)

    Li, Hongbing; Zhang, Jiajia

    2018-04-01

    The pore structure in heterogeneous carbonate rock is usually very complex. This complex pore system makes the relationship between the velocity and porosity of the rock highly scattered, so that for the classical two-dimensional rock physics template (2D RPT) it is not enough to accurately describe the quantitative relationship between the rock elastic parameters of this kind of reservoir and its porosity and water saturation. Therefore it is possible to attribute the effect of pore type to that of the porosity or water saturation, and leads to great deviations when applying such a 2D RPT to predict the porosity and water saturation in seismic reservoir prediction and hydrocarbon detection. This paper first presents a method to establish a new three-dimensional rock physics template (3D RPT) by integrating the Gassmann equations and the porous rock physics model, and use it to characterize the quantitative relation between rock elastic properties and the reservoir parameters including the pore aspect ratio, porosity and water saturation, and to predict these parameters from the known elastic properties. The test results on the real logging and seismic inversion data show that the 3D RPT can accurately describe the variations of elastic properties with the porosity, water saturation and pore-structure parameters, and effectively improve the accuracy of reservoir parameters prediction.

  8. Silurian and Devonian source rocks and crude oils from the western part of Libya: Organic geochemistry, palynology and carbon stratigraphy

    NARCIS (Netherlands)

    Elkelani, Mohamed M.A.

    2015-01-01

    The Early Silurian “hot” shales and Late Devonian black shales are major regional oil and gas source rocks in North Africa. Their deposition probably played a major role in global carbon cycling in general because of the large areas of the ocean affected. Comparing the Libyan δ13C record with

  9. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic

  10. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    International Nuclear Information System (INIS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-01-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  11. Characterization of L-asparaginase from marine-derived Aspergillus niger AKV-MKBU, its antiproliferative activity and bench scale production using industrial waste.

    Science.gov (United States)

    Vala, Anjana K; Sachaniya, Bhumi; Dudhagara, Dushyant; Panseriya, Haresh Z; Gosai, Haren; Rawal, Rakesh; Dave, Bharti P

    2018-03-01

    L-asparaginase (LA), an enzyme with anticancer activities, produced by marine-derived Aspergillus niger was subjected to purification and characterization. The purified enzyme was observed to have molecular weight ∼90KDa. The enzyme retained activity over a wide range of pH, i.e. pH 4-10. The enzyme was quite stable in temperature range 20-40°C. Tween 80 and Triton X-100 were observed to enhance LA activity while inhibition of LA activity was observed in presence of heavy metals. The values for K m was found to be 0.8141 mM and V max was 6.228μM/mg/min. The enzyme exhibited noteworthy antiproliferative activity against various cancer cell lines tested. Successful bench scale production (in 5L bioreacator) of LA using groundnut oil cake as low cost substrate has also been carried out. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of toluene and salinity on biosurfactant production by Bacillus sp.: scale up from flasks to a bench-scale bioreactor

    Directory of Open Access Journals (Sweden)

    Ellen Cristina Souza

    Full Text Available ABSTRACT To select the best biosurfactant producer, Pseudomonas putida, Bacillus megatherium, Bacillus licheniformis and Bacillus subtilis were cultured in flasks on media with different salinity [low salinity (LS, Bushnell-Haas (BH and artificial sea water (SW media] supplemented or not with toluene as a model pollutant. Toluene inhibited the growth of all microorganisms and stimulated the biosurfactant production. B. subtilis exhibited the best performance, being able to lower the surface tension (ST in the LS medium to 65.5 mN/min in the absence of toluene, and to 46.5 mN/min in the BH medium in the presence of toluene, corresponding to ST reductions of 13.0 and 27.5 mN/m, respectively. Scaling up the process to a bench-scale fermentor, the best results were obtained in the LS medium, where B. subtilis was able to reduce the toluene concentration from 26.0 to 4.3 g/L within 12 h and ST by 17.2 mN/m within 18 h. The results of this study point out that B. subtilis is an interesting biosurfactant producer, which could be used in the bioremediation of toluene-contaminated water.

  13. Flexible Bench-Scale Recirculating Flow CPC Photoreactor for Solar Photocatalytic Degradation of Methylene Blue Using Removable TiO2 Immobilized on PET Sheets

    Directory of Open Access Journals (Sweden)

    Doaa M. EL-Mekkawi

    2016-01-01

    Full Text Available TiO2 immobilized on polyethylene (PET nonwoven sheet was used in the solar photocatalytic degradation of methylene blue (MB. TiO2 Evonik Aeroxide P25 was used in this study. The amount of loaded TiO2 on PET was approximately 24%. Immobilization of TiO2 on PET was conducted by dip coating process followed by exposing to mild heat and pressure. TiO2/PET sheets were wrapped on removable Teflon rods inside home-made bench-scale recirculating flow Compound Parabolic Concentrator (CPC photoreactor prototype (platform 0.7 × 0.2 × 0.4 m3. CPC photoreactor is made up of seven low iron borosilicate glass tubes connected in series. CPC reflectors are made of stainless steel 304. The prototype was mounted on a platform tilted at 30°N local latitude in Cairo. A centrifugal pump was used to circulate water containing methylene blue (MB dye inside the glass tubes. Efficient photocatalytic degradation of MB using TiO2/PET was achieved upon the exposure to direct sunlight. Chemical oxygen demand (COD analyses reveal the complete mineralization of MB. Durability of TiO2/PET composite was also tested under sunlight irradiation. Results indicate only 6% reduction in the amount of TiO2 after seven cycles. No significant change was observed for the physicochemical characteristics of TiO2/PET after the successive irradiation processes.

  14. Bench Scale Process for Low Cost CO2 Capture Using a Phase-Changing Absorbent: Topical Report EH&S Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, Tiffany; Farnum, Rachel; Perry, Robert; Herwig, Mark; Giolando, Salvatore; Green, Dianne; Morall, Donna

    2016-05-11

    GE Global Research was contracted by the Department of Energy to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2 capture solvent (award number DEFE0013687). As part of this program, a technology EH&S assessment (Subtask 5.1) has been completed for a CO2 capture system for a 550 MW coal-fired power plant. The assessment focuses on two chemicals used in the process, the aminosilicone solvent, GAP-0, and dodecylbenzenesulfonic acid (DDBSA), the GAP-0 carbamate formed upon reaction of the GAP-0 with CO2, and two potential byproducts formed in the process, GAP-0/SOx salts and amine-terminated, urea-containing silicone (also referred to as “ureas” in this report). The EH&S assessment identifies and estimates the magnitude of the potential air and water emissions and solid waste generated by the process and reviews the toxicological profiles of the chemicals associated with the process. Details regarding regulatory requirements, engineering controls, and storage and handling procedures are also provided in the following sections.

  15. Bench scale model studies on sanitary landfill leachate treatment with M. oleifera seed extract and hollow fibre micro-filtration membrane

    Directory of Open Access Journals (Sweden)

    S. A. Muyibi

    2002-10-01

    Full Text Available A laboratory-based study using a Bench Scale model of four unit operations made up of coagulation (using Moringa oleifera seed extract as a coagulant, flocculation, sedimentation and micro-filtration, have been adopted to treat the leachate from Air Hitman Sanitary Landfill at Puchong in Malaysia. M. oleifera dosages of 150 and 175 mg/L had achieved 43.8% Cadmium removal, 21.2% Total Chromium removal, 66.8% Lead removal and 16% Iron removal. It also removed 55.4% of Total Suspended Solids, 10% of Total Dissolved Solids and 24.2% of Volatile Suspended Solids. Micro-filtration hollow fibre membrane decreased the turbidity, total suspended solids, total dissolved solids, volatile suspended solids, and organic matter in the leachate by 98.3%, 96.7%, 20.8%, 36.6% and 21.9% respectively. Overall heavy metals removal after micro-filtration using hollow fibre membrane was 94% for Cadmium, 29.8% for Total Chromium, 73.2% for Lead, and 18.3% for Iron. The results have shown that M. oleifera is a promising natural polymer for removing heavy metals from leachates and may be used as a pre-treatment to eliminate a portion of the toxic heavy metals, which limits the activity of micro organisms in the leachates.

  16. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    Science.gov (United States)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  17. Biomarkers, carbon isotopic composition and source rock potentials of Awgu coals, middle Benue trough, Nigeria

    Science.gov (United States)

    Adedosu, Taofik A.; Sonibare, Oluwadayo O.; Tuo, Jincai; Ekundayo, Olusegun

    2012-05-01

    Coal and carbonaceous shale samples were collected from two boreholes (BH 94 and BH 120) in Awgu formation of Middle Benue Trough, Nigeria. Source rock potentials of the samples were studied using biomarkers and carbon isotopic composition. Biomarkers in the aliphatic fractions in the samples were studied using Gas Chromatography-Mass Spectrometry (GC-MS). The Carbon isotope analysis of individual n-alkanes in the aliphatic fraction was performed using Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometer (GC-IRMS). The abundance of hopanes, homohopanes (C31-C35), and C29 steranes in the samples indicate terrestrial plant, phytoplankton and cyanobacteria contributions to the organic matter that formed the coal. High (Pr/Ph) ratio (3.04-11.07) and isotopic distribution of individual alkanes showed that the samples consisted of mixed terrestrial/marine organic matter deposited under oxic condition in lacustrine-fluvial/deltaic depositional environment. The maturity parameters derived from biomarker distributions showed that the samples are in the main phase of oil window.

  18. The potential for storing carbon dioxide in the rocks beneath the UK Southern North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Michelle Brook; Karen Shaw; Ceri Vincent; Sam Holloway [British Geological Survey, Keyworth (United Kingdom). Kingsley Dunham Centre

    2003-07-01

    The CO{sub 2} storage potential of the UK sector of the Southern North Sea has been intensively studied in the EU Energie Programme project: 'European Potential for Geological Storage of Carbon Dioxide from Fossil Fuel Combustion' (acronym GESTCO). This project is determining the cost and practicality of extending carbon dioxide storage technology similar to that being demonstrated at the Sleipner West gas field to the major industrial plant of western Europe. The characteristics of the two extensive, well sealed reservoir rocks - the Rotliegend Sandstone and the Bunter Sandstone are discussed and their capacity to store injected CO{sub 2} is estimated. The Sherwood Sandstone, the part of the Bunter Sandstone onshore in eastern England, is used for water supply which could be an issue of conflict of use. A cost estimate of CO{sub 2} sequestration into the Bunter Sandstone, made in 1966 is given. A table gives CO{sub 2} storage capacity of the Rotliegend and Triassic Gas fields of the Southern North Sea. 11 refs., 3 figs., 2 tabs.

  19. The diffusivity of cesium, strontium, carbon and nickel in concrete and mixtures of sodium bentonite and crushed rock

    International Nuclear Information System (INIS)

    Muurinen, A.; Penttilae-Hiltunen, P.; Rantanen, J.

    1986-07-01

    The engineering barriers suggested to be used for the disposal of low and intermediate level wastes in Finland are concrete and crushed rock or mixtures of crushed rock and bentonite. In the repository the barriers are saturated by groundwater and radionuclides may be released by diffusion through the barries. For safety analysis, the mechanisms by which the nuclides migrate and corresponding parameters should be known. In this study diffusion measurements on different types of concrete and mixtures of sodium bentonite and crushed rock were carried out. Radioactive isotopes of cesium, strontium, carbon and nickel were used as tracers. The apparent diffusivities (Dsub(a)) were evaluated on the basis of the measurements. The apparent diffusivity of cesium in concretes was 10 -14 ...10 -15 m 2 /s. Strontium was mainly sorbed on cement where it diffuses slowly. Part of strontium propably penetrates in the rock ballast by diffusion. The diffusivities of carbon and nickel in the concrete was low. The upper limit was evaluated to be Dsub(a) -14 m 2 /s. The diffusivity of cesium in the mixtures of crushed rock and bentonite varies between 0.5x10 -12 and 7x10 -12 m 2 /s. Cesium was mainly sorbed on the rock. The diffusivity of strontium was 2x10 -11 ...2x10 -12 m 2 /s. Strontium was mainly sorbed on bentonite. The diffusion of the sorbed ions (surface diffusion) seems to be a additional migration mechanism in the case of cesium and strontium in the mixture of bentonite and crushed rock. The diffusivity of carbon in the mixtures of crushed rock and bentonite was 6x10 -11 ...4x10 -12 m 2 /s. No sorption was found in the case of carbon. The measured Dsub(a) of nickel in the mixtures of crushed rock and bentonite was 4x10 -14 ...2x10 -15 m 2 /s. The experimental arrangement was not, however, in the stationary state and the more correct values would propably be 10 -13 ...10 -14 m 2 /s. No surface diffusion was found in the case of nickel. (author)

  20. Charaterising water-rock interaction in a mixed carbonate-evaporite karstified aquifer system, Qatar

    Science.gov (United States)

    Thirathititham, R.; Whitaker, F.

    2017-12-01

    Qatar is an arid country, most of the rainfall (80 mm/yr) occurring during intense storms. Surface runoff is endorheic and recharge is facilitated by karst features developed over an extended (c.30 Ma) period of exposure of the carbonate bedrock. In December 2016, we sampled a rare intense rainfall event (41 mm over 3 days), after which waters ponded within low-relief terminal depressions prior to infiltration. We compare the chemistry of these recharge waters with that of ground waters from 76 wells distributed across Qatar to understand the nature and spatial distribution of water-rock interaction. Using Cl- as a conservative tracer for seawater mixing, we calculate concentrations of rock-derived Ca2+, Mg2+ and SO42-. During surface detention, rain chemistry is modified by evaporation and interaction with clays and the surface bedrock over days to weeks. However, groundwater chemistry is dominated by subsurface interaction between recharge waters and the karstified Tertiary aquifers. These include the largely dolomitic Paleocene to Lower Eocene Umm er Radhuma (UER) and overlying Lower Eocene Rus, with the Middle Eocene Abarug limestone forming a locally important aquifer in the south west. Away from coastal areas which show clear evidence of salinisation, TDS of groundwaters in the interior of the peninsula increases from north to south. All groundwaters are significantly enriched in SO42-, but this enrichment is marked greater in the south. This likely reflects the presence of a unit of middle Rus gypsum that in the south of the country confines the Lower Rus and UER aquifers, whilst in the north either gypsum was not deposited or has been dissolved. Waters in the Abarug limestone show limited sulfate enrichment and a 1:1 molar ratio of rock-derived SO42-: Ca2+, but across much of the country both SO42- enrichment and SO42-: Ca2+ molar ratio are significantly higher, the latter reaching 2:1 and suggesting an additional sink for Ca2+. The dolomite aquifer waters

  1. Petroleum geological features and exploration prospect of deep marine carbonate rocks in China onshore: A further discussion

    Directory of Open Access Journals (Sweden)

    Zhao Wenzhi

    2014-10-01

    Full Text Available Deep marine carbonate rocks have become one of the key targets of onshore oil and gas exploration and development for reserves replacement in China. Further geological researches of such rocks may practically facilitate the sustainable, steady and smooth development of the petroleum industry in the country. Therefore, through a deep investigation into the fundamental geological conditions of deep marine carbonate reservoirs, we found higher-than-expected resource potential therein, which may uncover large oil or gas fields. The findings were reflected in four aspects. Firstly, there are two kinds of hydrocarbon kitchens which were respectively formed by conventional source rocks and liquid hydrocarbons cracking that were detained in source rocks, and both of them can provide large-scale hydrocarbons. Secondly, as controlled by the bedding and interstratal karstification, as well as the burial and hydrothermal dolomitization, effective carbonate reservoirs may be extensively developed in the deep and ultra-deep strata. Thirdly, under the coupling action of progressive burial and annealing heating, some marine source rocks could form hydrocarbon accumulations spanning important tectonic phases, and large quantity of liquid hydrocarbons could be kept in late stage, contributing to rich oil and gas in such deep marine strata. Fourthly, large-scale uplifts were formed by the stacking of multi-episodic tectonism and oil and gas could be accumulated in three modes (i.e., stratoid large-area reservoir-forming mode of karst reservoirs in the slope area of uplift, back-flow type large-area reservoir-forming mode of buried hill weathered crust karst reservoirs, and wide-range reservoir-forming mode of reef-shoal reservoirs; groups of stratigraphic and lithologic traps were widely developed in the areas of periclinal structures of paleohighs and continental margins. In conclusion, deep marine carbonate strata in China onshore contain the conditions for

  2. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  3. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    Science.gov (United States)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  4. Paleofacies of Eocene Lower Ngimbang Source Rocks in Cepu Area, East Java Basin based on Biomarkers and Carbon-13 Isotopes

    Science.gov (United States)

    Devi, Elok A.; Rachman, Faisal; Satyana, Awang H.; Fahrudin; Setyawan, Reddy

    2018-02-01

    The Eocene Lower Ngimbang carbonaceous shales are geochemically proven hydrocarbon source rocks in the East Java Basin. Sedimentary facies of source rock is important for the source evaluation that can be examined by using biomarkers and carbon-13 isotopes data. Furthermore, paleogeography of the source sedimentation can be reconstructed. The case study was conducted on rock samples of Lower Ngimbang from two exploration wells drilled in Cepu area, East Java Basin, Kujung-1 and Ngimbang-1 wells. The biomarker data include GC and GC-MS data of normal alkanes, isoprenoids, triterpanes, and steranes. Carbon-13 isotope data include saturate and aromatic fractions. Various crossplots of biomarker and carbon-13 isotope data of the Lower Ngimbang source samples from the two wells show that the source facies of Lower Ngimbang shales changed from transitional/deltaic setting at Kujung-1 well location to marginal marine setting at Ngimbang-1 well location. This reveals that the Eocene paleogeography of the Cepu area was composed of land area in the north and marine setting to the south. Biomarkers and carbon-13 isotopes are powerful data for reconstructing paleogeography and paleofacies. In the absence of fossils in some sedimentary facies, these geochemical data are good alternatives.

  5. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  6. Hydrogen production with short contact time. Catalytic partial oxidation of hydrocarbons and oxygenated compounds: Recent advances in pilot- and bench-scale testing and process design

    Energy Technology Data Exchange (ETDEWEB)

    Guarinoni, A.; Ponzo, R.; Basini, L. [ENI Refining and Marketing Div., San Donato Milanese (Italy)

    2010-12-30

    ENI R and D has been active for fifteen years in the development of Short Contact Time - Catalytic Partial Oxidation (SCT-CPO) technologies for producing Hydrogen/Synthesis Gas. From the beginning the experimental work addressed either at defining the fundamental principles or the technical and economical potential of the technology. Good experimental responses, technical solutions' simplicity and flexibility, favourable techno-economical evaluations promoted the progressive widening of the field of the investigations. From Natural Gas (NG) the range of ''processable'' Hydrocarbons extended to Liquefied Petroleum Gas (LPG) and Gasoils, including those characterised by high levels of unsaturated and sulphurated molecules and, lately, to other compounds with biological origin. The extensive work led to the definition of different technological solutions, grouped as follows: Technology 1: Air Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 2: Enriched Air/Oxygen Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 3: Enriched Air/Oxygen Blown SCT-CPO of Liquid Hydrocarbons and/or Compounds with biological origin Recently, the licence rights on a non-exclusive basis for the commercialisation of SCT-CPO based processes for H{sub 2}/Synthesis gas production from light hydrocarbons with production capacity lower than 5,000 Nm{sup 3}/h of H{sub 2} or 7,500 Nm3/h of syngas have been assigned to two external companies. In parallel, development of medium- and large-scale plant solutions is progressing within the ENI group framework. These last activities are addressed to the utilisation of SCT-CPO for matching the variable Hydrogen demand in several contexts of oil refining operation. This paper will report on the current status of SCT-CPO with a focus on experimental results obtained, either at pilot- and bench- scale level. (orig.)

  7. Chemical Remagnetization of Jurassic Carbonates and a Primary Paleolatitude of Lower Cretaceous Volcaniclastic Rocks of the Tibetan Himalaya

    Science.gov (United States)

    Huang, W.; Van Hinsbergen, D. J. J.; Dekkers, M. J.; Garzanti, E.; Dupont Nivet, G.; Lippert, P. C.; Li, X.; Maffione, M.; Langereis, C. G.; Hu, X.; Guo, Z.; Kapp, P. A.

    2014-12-01

    Paleolatitudes for the Tibetan Himalaya Zone based on paleomagnetic inclinations provide kinematic constraints of the passive northern Indian margin and the extent of 'Greater India' before the India-Asia collision. Here, we present a paleomagnetic investigation of the Jurassic (carbonates) to Lower Cretaceous (volcaniclastic rocks) Wölong section of the Tibetan Himalaya in the Everest region. The carbonates yield positive fold tests, suggesting that the remanent magnetizations have a pre-folding origin. However, detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic studies reveal that the magnetic carrier of the Jurassic carbonates is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic rocks is detrital magnetite. We conclude that the Jurassic carbonates were remagnetized, whereas the Lower Cretaceous volcaniclastics retain a primary remanence. We hypothesize that remagnetization of the Jurassic carbonates was probably caused by the oxidation of early diagenetic pyrite to magnetite within the time interval at ~86-84 Ma during the latest Cretaceous Normal Superchron and earliest deposition of Cretaceous oceanic red beds in the Tibetan Himalaya. The remagnetization of the limestones prevents determining the size of 'Greater India' during Jurassic time. Instead, a paleolatitude of the Tibetan Himalaya of 23.8±2.1° S at ~86-84 Ma is suggested. This value is lower than the expected paleolatitude of India from apparent polar wander path (APWP). The volcaniclastic rocks with the primary remanence, however, yielded a Lower Cretaceous paleolatitude of Tibetan Himalaya of 55.5±3° S, fitting well with the APWP of India.

  8. Oxygen and Carbon Isotopic Composition of Carbonate Rocks of the Permian Qixia Formation, Sichuan Basin: Thermal Effects of Emeishan Basalt

    Directory of Open Access Journals (Sweden)

    Keke Huang

    2016-01-01

    Full Text Available The late Permian thermal events related to Emeishan Basalt has made a great impact on the underlying carbonate rock properties in the western margin of the Yangtze Platform. In this paper, we investigate the carbon and oxygen isotopic composition of the Qixia Formation carbonates from two sections: the Qiaoting Section in the northeastern part of the Sichuan Basin and the Changjianggou Section at the northwestern edge of the Basin. The data reveal that: (i Samples from Qiaoting section show a relatively narrow range of δ13C and δ18O, varying from 2.7‰ to 5.2‰ with an average of 4.2‰, and -3.8‰ to -7.8‰ with an average of -5.4‰, respectively. In contrast, Samples from Changjianggou section exhibit larger magnitude of variation in δ13C and δ18O, ranging from -1‰ to 3.8‰ with an average of 1.5‰, and -2.1 to -9.2‰, with an average of -6.0‰ respectively; (ii δ13C and δ18O records in carbonates from Qiaoting section are similar to those of Middle Permian seawater whereas carbonates from the Changjianggou section are depleted in 13C and 18O compared to contemporary seawater; (iii On the basis of combined petrographic and paleo-heat flow evidence, the lower carbon and oxygen isotopic composition of the carbonates from the Changjianggou section are interpreted to be the results of thermal effects of Emeishan Basalt because of its proximity to the eruption center of the basalt. The high temperature reduced the δ18O values of the carbonates and forced the organic matter to mature at an early stage, thus producing 13C-enriched carbon dioxide to participate in the formation of carbonates.     Composición Isotópica de Oxígeno y Carbón en Rocas de Carbonato de la Formación de Edad Pérmica Qixia, en la Cuenca de Sichuan: Efectos Térmicos del Basalto Emeishan   Resumen Los eventos térmicos del Pérmico tardío relacionados con el Basalto Emeishan han tenido un gran impacto en las propiedades de las rocas de carbonato

  9. Carbonate rock classification applied to brazilian sedimentary basins; Classificacao de rochas carbonaticas aplicavel as bacias sedimentares brasileiras

    Energy Technology Data Exchange (ETDEWEB)

    Terra, Gerson Jose Salamoni [Universidade Petrobras, Rio de Janeiro, RJ (Brazil). Escola de Ciencias e Tecnologias de Exploracao e Producao], E-mail: gersonterra@petrobras.com.br; Spadini, Adali Ricardo [Petrobras E e P, Rio de Janeiro, RJ (Brazil). Exploracao], E-mail: spadini@petrobras.com.br; Franca, Almerio Barros [Centro de Pesquisa e Desenvolvimento Leopoldo A. Miguez de Mello (CENPES), Rio de Janeiro, RJ (Brazil). Sedimentologia e Petrologia] (and others)

    2009-11-15

    A new classification of carbonate rocks is proposed seeking to cover the entire spectrum of their occurrence in Brazilian basins. Emphasis is given to those in oil exploration and production locations, especially since the discovery of giant oil fields in the so called Pre-Salt section. This classification is a synergy between the various existing classifications adapting or modifying some terms and introducing new names. The carbonate rocks were divided into four groups according to their depositional texture: 1) elements not bound during deposition (mudstone, wackestone, packstone, grainstone, floatstone, rudstone, bioaccumulated, breccia), 2) elements bound during deposition, or in situ (boundstone, stromatolite, arborescent stromatolite, arbustiform stromatolite, dendriform stromatolite, thrombolite, dendrolite, leiolite, spherulitite, travertine and tufa), 3) elements bound or not bound during deposition (laminite, smooth laminite, crenulated laminite); 4) unrecognized depositional texture (crystalline limestone, dolomite). (author)

  10. Estimating the Permeability of Carbonate Rocks from the Fractal Properties of Moldic Pores using the Kozeny-Carman Equation

    Directory of Open Access Journals (Sweden)

    Adewale Amosu

    2018-02-01

    Full Text Available Reservoir modeling of carbonate rocks requires a proper understanding of the pore space distribution and its relationship to permeability. Using a pigeonhole fractal model we characterize the fractal geometry of moldic pore spaces and extract the fractal dimension. We apply the Kozeny-Carman equation and equations relating the tortuosity and the porosity to the fractal dimension to derive an empirical relationship between permeability and porosity.

  11. Secondary and tertiary gas injection in fractured carbonate rock: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Karimaie, H.; Torsaeter, O. [SPE, NTNU (Norway); Darvish, G.R. [SPE, STATOIL (Norway); Lindeberg, E. [SPE, SINTEF (Norway)

    2008-09-15

    The use of CO{sub 2} has received considerable interest as a method of EOR but a major drawback is its availability and increasing cost. Therefore, as the number of CO{sub 2} injection projects increase, an alternative must be considered to meet the economic considerations. For this reason attention has been directed to nitrogen injection which may be a good substitute for CO{sub 2}. The purpose of the experiments described in this paper was to investigate the efficiency of oil recovery by CO{sub 2} and N{sub 2} in fractured carbonate rock. The combined effects of gravity drainage and component exchange between gas in fracture and oil in matrix on oil recovery in fractured reservoirs subjected to CO{sub 2} or nitrogen gas injection are experimentally studied. Laboratory experiments have been carried out on a low permeable outcrop chalk, as an analogue to a North Sea reservoir rock. This was surrounded by a fracture, established with a novel experimental set-up. The experiments aimed to investigate the potential of oil recovery by secondary and tertiary CO{sub 2} and nitrogen gas injection at high pressure high temperature condition. The matrix block was saturated using recombined binary mixture live oil (C{sub 1}-C{sub 7}), while the fracture was filled with a sealing material to obtain a homogeneous saturation. The sealing material was then removed by increasing the temperature which in turn creates the fracture surrounding the core. Gas was injected into the fracture at pressures above the bubble point of the oil. Oil recovery as a function of time was monitored during the experiments. Results from secondary gas injection experiments indicate that CO{sub 2} injection at elevated pressure and temperature is more efficient than N{sub 2} injection. Results from tertiary gas injection experiments also show that injection of CO{sub 2} could significantly recover the oil, even after waterflooding, compared to N{sub 2} injection. (author)

  12. Experimental reactivity with CO2 of clayey cap-rock and carbonate reservoir of the Paris basin

    International Nuclear Information System (INIS)

    Hubert, G.

    2009-01-01

    The constant increase in the quantity of carbon dioxide in the atmosphere is regarded as being the principal cause of the current global warming. The geological sequestration of CO 2 seems to be an ideal solution to reduce the increase of greenhouse gases (of which CO 2 ) in the atmosphere but only if the reservoir's cap-rock keep its integrity for several hundreds or thousands of years. Batch experimental simulations were conducted to observe the reactivity of a cap-rock made of clay and a carbonate reservoir with CO 2 at 80 C and 150 C for a pressure of 150 bar with an equilibrated water. The analytical protocol established allowed to compare the rocks before and after experimentations finding a very low reactivity, focusing on aluminium in phyllosilicates. Textural analysis shows that CO 2 does not affect the properties of adsorption and the specific surface. The study of carbonate reservoir by confocal microscopy has revealed phenomena of dissolution-precipitation which have no significant impact on chemistry and structure of the reservoir. The numerical simulations carried out on mineral reference as calcium montmorillonite or clinochlore show a significant reaction in the presence of CO 2 not achieved experimentally, probably due to lacunas in the thermodynamic databases or the kinetics of reactions. The simulations on Bure show no reaction on the major minerals confirming the results with batch experiments. (author)

  13. Carbonation processes of basalts and ultra-basic rocks in subsurface conditions

    International Nuclear Information System (INIS)

    Daval, D.

    2009-01-01

    For mitigating against rising levels of carbon dioxide (CO 2 ) in the atmosphere, several ways are envisaged to store it geologically. Among them, mineral trapping by carbonation of basic and ultra-basic rocks is thought to be the safest. However, little is known about the reaction kinetics and mechanisms of the process, which would ultimately make us able to foresee the fate of CO 2 over long time spans, and possibly enhance the efficiency of the mineral trapping. As a consequence, this thesis aimed at bringing new constrains on the weathering processes of (ultra)basic silicates, with (or without) high pCO 2 . Original experimental data of dissolution and carbonation processes were acquired on five silicates: wollastonite (CaSiO 3 ), forsterite (Mg 2 SiO 4 ), diopside (CaMgSi 2 O 6 ), lizardite (Mg 3 Si 2 O 5 (OH) 4 ) and fayalite (Fe 2 SiO 4 ). The main parameters which could affect the rates of carbonation were assessed: role and mechanism of formation of passivating layers, saturation state of the fluid, specific effect of CO 2 and behaviour of iron (II). Each mineral was thought to be relevant to bring new insights on each one of these questions. Wollastonite carbonation was first investigated in batch reactors. At 90 C and pCO 2 = 25 MPa, the reaction reaches completion within a couple of days. The measured carbonation rate is similar to the modelled one, indicating that the rate-limiting step of the process is wollastonite dissolution. Consequently, the thick amorphous silica coatings (≥ 100 μm) that form onto wollastonite surface do not prevent the fluid to reach the pristine mineral. This result is in agreement with the structure of the silica coating, determined to be meso-porous at the nm-scale. Besides, the chemical gradient of calcium across the silica layer suggests that it is formed by a dissolution-precipitation mechanism instead of a solid-state diffusion mechanism. On the other hand, the dissolution of forsteritic olivine is inhibited by the

  14. Tests of US rock salt for long-term stability of CAES reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gehle, R.M.; Thoms, R.L.

    1986-01-01

    This is a report on laboratory tests to assess the effects of compressed air energy storage (CAES) on rock salt within the US. The project included a conventional laboratory test phase, with triaxial test machines, and a bench-scale test phase performed in salt mines in southern Louisiana. Limited numerical modeling also was performed to serve as a guide in selecting test layouts and for interpreting test data.

  15. Carbon Capture: A Technology Assessment

    Science.gov (United States)

    2013-10-21

    whereas laboratory-scale experiments typically seek to validate or obtain data for specific components of a system. Laboratory- and bench-scale processes...Plant,” Energy, vol. 35 (2010), pp. 841-850. E. Favre, R. Bounaceur, and D. Roizard, “ Biogas , Membranes and Carbon Dioxide Capture,” Journal of...pp. 1-49. 64 Favre, “ Biogas , Membranes.” Carbon Capture: A Technology Assessment Congressional Research Service 42 materials have pore sizes

  16. Multicriteria decision-making analysis based methodology for predicting carbonate rocks' uniaxial compressive strength

    Directory of Open Access Journals (Sweden)

    Ersoy Hakan

    2012-10-01

    Full Text Available

    ABSTRACT

    Uniaxial compressive strength (UCS deals with materials' to ability to withstand axially-directed pushing forces and especially considered to be rock materials' most important mechanical properties. However, the UCS test is an expensive, very time-consuming test to perform in the laboratory and requires high-quality core samples having regular geometry. Empirical equations were thus proposed for predicting UCS as a function of rocks' index properties. Analytical hierarchy process and multiple regression analysis based methodology were used (as opposed to traditional linear regression methods on data-sets obtained from carbonate rocks in NE Turkey. Limestone samples ranging from Devonian to late Cretaceous ages were chosen; travertine-onyx samples were selected from morphological environments considering their surface environmental conditions Test results from experiments carried out on about 250 carbonate rock samples were used in deriving the model. While the hierarchy model focused on determining the most important index properties affecting on UCS, regression analysis established meaningful relationships between UCS and index properties; 0. 85 and 0. 83 positive coefficient correlations between the variables were determined by regression analysis. The methodology provided an appropriate alternative to quantitative estimation of UCS and avoided the need for tedious and time consuming laboratory testing


    RESUMEN

    La resistencia a la compresión uniaxial (RCU trata con la capacidad de los materiales para soportar fuerzas empujantes dirigidas axialmente y, especialmente, es considerada ser uno de las más importantes propiedades mecánicas de

  17. Revised interpretations of stable C and O patterns in carbonate rocks resulting from meteoric diagenesis

    Science.gov (United States)

    Swart, Peter K.; Oehlert, Amanda M.

    2018-02-01

    A positive correlation between the δ13C and δ18O values of carbonate rocks is a screening tool widely used to identify the overprint of meteoric diagenesis on the original isotopic composition of a sample. In particular, it has been suggested that systematic change from negative to positive δ13C and δ18O values with increasing depth in the core is an indicator of alteration within the zone of mixing between meteoric and marine waters. In this paper, we propose that such covariance is not generated within the traditionally defined mixing zone, and that positive correlations between δ13C and δ18O values in marine carbonates are not necessarily indicators of meteoric alteration. This new interpretation is based on data collected from the shallow sub-surface of the Bahamas, a region unequivocally influenced by meteoric waters to depths of at least 200 m below the current sediment-water interface. The classic interpretation of the diagenetic environments, based on changes in the δ13C and δ18O values, would suggest the maximum penetration of freshwater occurs between 65 and 100 m below seafloor. Below these depths, a strong positive covariation between the δ13C and δ18O values exists, and would traditionally be defined as the mixing zone. However, based upon known changes in sea level, the penetration of the freshwater lens extends significantly below this limit. We contend that the zone showing covariance of δ13C and δ18O values is actually altered within the freshwater lens, and not the mixing zone as previously proposed. The co-varying trend in δ13C and δ18O values is the result of diagenetic processes occurring at the interface between vadose and phreatic zones. Significantly greater rates of recrystallization and neomorphism are driven by the increased rates of oxidation of organic matter at this transition with progressively less alteration occurring with increasing depth. As sea level oscillates, the position of this interface moves through the

  18. δ13C and δ18O measurements of carbonate rocks using Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Lucic, G.; Kim-Hak, D.; Curtis, J. H.

    2017-12-01

    We present a novel, user friendly and cost effective method for the analysis of δ13C and δ18O in CO2 gas obtained from acid digestion of carbonate rocks. 2 to 3 milligrams of pure carbonate, ground to a powder, is digested in a pre-evacuated glass vial using 100% phosphoric acid at 70° C. Vials with the reacted samples are then loaded onto an automated carousel sampler where produced CO2 gas in the headspace is extracted and sent to a Picarro CRDS isotopic C and O analyzer. Once loaded onto the carousel, 49 samples may be analyzed automatically at a rate of one sample every 15 minutes. δ13C and δ18O of the sample are reported in real time with a precision of 0.2 and 0.4 per mil, respectively. The portability and simplicity of the autosampler and CRDS setup opens up potential for permanent and mobile deployments, enabling near-realtime sampling feedback in the lab or on the go in the field. Consumable and operating costs are small when compared to other technology in use, making the CRDS-Carbonate system suitable for large and small research labs. Finally, we present a summary results from a series of validation tests in which standards and natural carbonate rock samples were analyzed and compared to traditional Kiel-IRMS results.

  19. Carbonation of Subduction Interface Ultramafic Rocks and Implications for Deep Carbon Cycling: Evidence from Hybrid Serpentinite-Marble in the Voltri Massif, Italy

    Science.gov (United States)

    Scambelluri, M.; Bebout, G. E.; Gilio, M.; Belmonte, D.; Campomenosi, N.; Crispini, L.

    2015-12-01

    Release of COH fluids from hydrous minerals and carbonates influences element recycling and magmatism at subduction zones. Contradictory interpretations exist regarding the retention/storage of C in subducting plates and in the forearc to subarc mantle. Multiple lines of evidence indicate mobility of C in forearcs; however, the magnitude of this loss is highly uncertain[1-5]. A poorly constrained fraction of the 40-115 Mt/y of C initially subducted is released into fluids (e.g., by decarbonation, carbonate dissolution), and 18-43 Mt/y is returned at arc volcanoes[2-5, refs. therein]. The imbalance could reflect subduction into the deeper mantle or forearc/subarc storage[4-7]. We examine the fate of C in slab/interface ultramafic rocks, and by analogy serpentinized mantle wedge, via study of fluid-rock evolution of marble and variably carbonated serpentinite (Ligurian Alps). Based on petrography, and major/trace element and C and O isotope compositions, we demonstrate that serpentinite dehydration at 2-2.5 GPa, 550°C released aqueous fluids triggering breakdown of dolomite in nearby marbles, thus releasing C into fluids. Carbonate + olivine veins document flow of COH fluids; interaction of these COH fluids with serpentinite led to formation of high-pressure carbonated ultramafic-rock domains, thus resulting in retention of C in some rocks at an ancient subduction interface. We stress that lithologically complex interfaces could contain sites of both C release and C addition, further confounding estimates of net C loss at forearc and subarc depths [cf 4,5]. Sites of C retention, also including carbonate veins and graphite as reduced carbonate[7], could influence the transfer of slab C to at least the depths beneath volcanic fronts. 1. Poli S et al. 2009 EPSL; 2. Ague and Nicolescu 2014 Nat Geosci; 3. Cook-Collars et al. 2014 Chem Geol; 4. Collins et al. 2015 Chem Geol; 5. Kelemen and Manning 2015 PNAS; 6. Sapienza et al. 2009 CMP; 7 Galvez et al. 2013 Nat Geosci

  20. Isotopic determinations of carbon and oxygen in the metasedimentary rocks of the Rio Pardo group-Bahia State, Brazil

    International Nuclear Information System (INIS)

    Costa Pinto, N.M.A.C.

    1977-01-01

    Determination of the carbon and oxygen isotopic compositions were made on approximately 100 samples of Late Precambrian metasedimentary rocks of the Rio Pardo Group from Southern Bahia. The results obtained show that carbon varies from δ 13 =C=5,73 per mille to δ 13 C=+9,00 per mille, and oxygen from δ 18 O=-1,87 per mille to δ 18 O=-19,67 per mille relative to PBD. The interpretations lead to some conclusions which confirm the validity the isotopic technique as auxiliary instrument in the study of geological problems. These include: 1) the evidence of a marine transgression during the Camaca sedimentation; 2) the probability that the dolomitic metalimestones of the Agua Preta formation belong to the Serra do Paraiso formation; 3) the assignment of the dolomitic metalismestones, which occur in Itiroro and which had been previously grouped with the crystalline basement rocks, to the Serra do Paraiso formation; 4) the removal of the marble from Serra do Paraiso formation and re-signment to the basement rocks, and finally; 5) the sedimentary evolution of the Rio Pardo Group from a typical fresh-water to a marine environment. (Author) [pt

  1. Pore space quantification of carbonate rocks before-after supercritical CO2 interaction by optical image analysis

    Science.gov (United States)

    Berrezueta, Edgar; José Domínguez-Cuesta, María

    2017-04-01

    The aim of this research is to show an experimental application of an automated quantification process of optical porosity in thin sections. Petrographic studies using scanning electronic microscopy, optical microscopy (OpM) and optical image analysis (OIA) could provide a reproducible pore characterization of carbonate rocks in applications related to the geological storage of CO2. This research is focused on i) the quantification of optical pores in a carbonate rock before and after supercritical CO2-rich brine (P ≈ 7.5 MPa and T ≈ 35 °C) and ii) the description of the process followed to guarantee the reproducibility of the OIA method on images acquired with high-resolution scanner. Mineral images were acquired from thin sections using a high-resolution scanner (HRS). Digital images were geo-referenced by using geographic information system to ensure correct spatial correlation and superposition. The optical measures of porosity by image analysis on the carbonates thin sections showed an effective pore segmentation considering different cross-polarized light conditions (90°/0°; 120°/30°) and plane-polarized light conditions (90°/-) of the same petrographic scene. The pore characterization by OpM and OIA-HRS has allowed a preliminary approximation of pore evolution in carbonate rocks under the supercritical CO2-rich brine. This study shows a fast, effective and reproducible methodology that allowed a preliminary characterization (changes in the pore network) of the samples studied. The procedure carried out could be applied to similar experimental injection tests.

  2. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography

    Science.gov (United States)

    Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed

    2018-04-01

    With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.

  3. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    International Nuclear Information System (INIS)

    Xiong Yongqiang; Wang Yanmei; Wang Yongquan; Xu Shiping

    2007-01-01

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition

  4. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)], E-mail: xiongyq@gig.ac.cn; Wang Yanmei; Wang Yongquan; Xu Shiping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2007-11-15

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition.

  5. Linking Rock Magnetic Parameters and Tropical Paleoclimate in Postglacial Carbonates of the Tahitian Coral Reef

    Science.gov (United States)

    Platzman, E. S.; Lund, S.; Camoin, G.; Thouveny, N.

    2009-12-01

    In areas far away from active plate boundaries and previously glaciated regions, ecologically sensitive coral reefs provide an ideal laboratory for studying the timing and extent of deglaciation events as well as climatic change/variability at sub-millennial timescales. We have studied the Post Last-Glacial-Maximum (Post-LGM) coral reef terrace sediments recovered from the island of Tahiti on IODP Expedition 310. Samples for magnetic analysis were obtained from 632 meters of core from three reef tracts (Maraa, Tiarei, Faaa) surrounding the island (37 holes at 22 sites). The Post-LGM sediments are composed of >95% carbonate residing in a mixture of macroscopic framework corals, encrusting coralline algae, and bacterial microbialites (60% of the total core volume). Detailed paleomagnetic and rock magnetic measurements indicate that the microbialites carry a strong and stable natural magnetic remanence residing almost entirely in titanomagnetite derived from the Tahitian volcanic edifice. Within each tract, paleomagnetic results (inclination, relative paleointensity) were correlated to build a composite magnetic stratigraphy, which we could then compile with radiocarbon dates to develop an absolute chronostratigraphy. At the Maraa tract, for example, we use 54 radiocarbon dates to date our composite section to 7,500 to 13,500 cal. ybp. and demonstrate that the reef developed in a smooth and coherent manner over this interval. Overlaying the chronostratigraphy on measurements of the variation in magnetic properties including susceptibility, ARM, and IRM we can monitor changes in concentration, composition and grainsize of the influx of volcanogenic sediment over time. The ARM, IRM, and CHI intensities (normalized to sample weight) show a single strong peak between~9-10,000 years ago. We also observe a ~500-yr cyclicity in magnetic grain size and a clear increase in grain size associated with the Younger Dryas that we interpret to be related to rainfall variability. The

  6. THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION

    Science.gov (United States)

    Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...

  7. Predicting bi-decadal organic carbon mineralization in northwestern European soils with Rock-Eval pyrolysis

    Science.gov (United States)

    Soucemarianadin, Laure; Barré, Pierre; Baudin, François; Chenu, Claire; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Cécillon, Lauric

    2017-04-01

    The organic carbon reservoir of soils is a key component of climate change, calling for an accurate knowledge of the residence time of soil organic carbon (SOC). Existing proxies of the size of SOC labile pool such as SOC fractionation or respiration tests are time consuming and unable to consistently predict SOC mineralization over years to decades. Similarly, models of SOC dynamics often yield unrealistic values of the size of SOC kinetic pools. Thermal analysis of bulk soil samples has recently been shown to provide useful and cost-effective information regarding the long-term in-situ decomposition of SOC. Barré et al. (2016) analyzed soil samples from long-term bare fallow sites in northwestern Europe using Rock-Eval 6 pyrolysis (RE6), and demonstrated that persistent SOC is thermally more stable and has less hydrogen-rich compounds (low RE6 HI parameter) than labile SOC. The objective of this study was to predict SOC loss over a 20-year period (i.e. the size of the SOC pool with a residence time lower than 20 years) using RE6 indicators. Thirty-six archive soil samples coming from 4 long-term bare fallow chronosequences (Grignon, France; Rothamsted, Great Britain; Ultuna, Sweden; Versailles, France) were used in this study. For each sample, the value of bi-decadal SOC mineralization was obtained from the observed SOC dynamics of its long-term bare fallow plot (approximated by a spline function). Those values ranged from 0.8 to 14.3 gC·kg-1 (concentration data), representing 8.6 to 50.6% of total SOC (proportion data). All samples were analyzed using RE6 and simple linear regression models were used to predict bi-decadal SOC loss (concentration and proportion data) from 4 RE6 parameters: HI, OI, PC/SOC and T50 CO2 oxidation. HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g-1SOC) and OI (the CO2 yield during the pyrolysis phase of RE6; mgCO2.g-1SOC) parameters describe SOC bulk chemistry. PC/SOC (the amount of organic

  8. Carbon dioxide generation and drawdown during active orogenesis of siliciclastic rocks in the Southern Alps, New Zealand

    Science.gov (United States)

    Menzies, Catriona D.; Wright, Sarah L.; Craw, Dave; James, Rachael H.; Alt, Jeffrey C.; Cox, Simon C.; Pitcairn, Iain K.; Teagle, Damon A. H.

    2018-01-01

    Collisional mountain building influences the global carbon cycle through release of CO2 liberated by metamorphic reactions and promoting mechanical erosion that in turn increases chemical weathering and drawdown of atmospheric CO2. The Southern Alps is a carbonate-poor, siliciclastic mountain belt associated with the active Australian Pacific plate boundary. On-going, rapid tectonic uplift, metamorphism and hydrothermal activity are mobilising carbon. Here we use carbon isotope measurements of hot spring fluids and gases, metamorphic host rocks, and carbonate veins to establish a metamorphic carbon budget. We identify three major sources for CO2 within the Southern Alps: (1) the oxidation of graphite; (2) consumption of calcite by metamorphic reactions at the greenschist-amphibolite facies boundary, and (3) the dissolution of groundmass and vein-hosted calcite. There is only a minor component of mantle CO2 arising on the Alpine Fault. Hot springs have molar HCO3-/Ca2+ ∼9, which is substantially higher than produced by the dissolution of calcite indicating that deeper metamorphic processes must dominate. The total CO2 flux to the near surface environment in the high uplift region of the Southern Alps is estimated to be ∼6.4 × 108 mol/yr. Approximately 87% of this CO2 is sourced from coupled graphite oxidation (25%) and disseminated calcite decarbonation (62%) reactions during prograde metamorphism. Dissolution of calcite and mantle-derived CO2 contribute ∼10% and ∼3% respectively. In carbonate-rich orogens CO2 production is dominated by metamorphic decarbonation of limestones. The CO2 flux to the atmosphere from degassing of hot springs in the Southern Alps is 1.9 to 3.2 × 108 mol/yr, which is 30-50% of the flux to the near surface environment. By contrast, the drawdown of CO2 through surficial chemical weathering ranges between 2.7 and 20 × 109 mol/yr, at least an order of magnitude greater than the CO2 flux to the atmosphere from this orogenic belt

  9. Experimental studies of the deformation of carbonated rocks by dissolution crystallization under stress

    International Nuclear Information System (INIS)

    Zubtsov, Sergey

    2003-01-01

    The first part of this research thesis reports the experimental investigation and the modelling of the deformation of poly-mineral rocks under the influence of mechanism of dissolution-crystallization under stress. This mechanism has a significant role in the compaction of sedimentary rocks, in the folding process of the earth's crust. The author notably reports the results of the experimental deformation of calcite in presence of water (calcite is present in marls in which the deposit of nuclear wastes in planned in France). The second part deals with the fact that healing is possible between two grains of similar mineralogy, and slows down or even stops deformation

  10. Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain)

    International Nuclear Information System (INIS)

    Rios, Asuncion de los; Camara, Beatriz; Garcia del Cura, Ma Angeles; Rico, Victor J.; Galvan, Virginia; Ascaso, Carmen

    2009-01-01

    In this study, the deterioration effects of lichens and other lithobionts in a temperate mesothermal climate were explored. We examined samples of dolostone and limestone rocks with visible signs of biodeterioration taken from the exterior wall surfaces of four Romanesque churches in Segovia (Spain): San Lorenzo, San Martin, San Millan and La Vera Cruz. Biofilms developing on the lithic substrate were analyzed by scanning electron microscopy. The most common lichen species found in the samples were recorded. Fungal cultures were then obtained from these carbonate rocks and characterized by sequencing Internal Transcribed Spacers (ITS). Through scanning electron microscopy in back-scattered electron mode, fungi (lichenized and non-lichenized) were observed as the most frequent microorganisms occurring at sites showing signs of biodeterioration. The colonization process was especially conditioned by the porosity characteristics of the stone used in these buildings. While in dolostones, microorganisms mainly occupied spaces comprising the rock's intercrystalline porosity, in bioclastic dolomitized limestones, fungal colonization seemed to be more associated with moldic porosity. Microbial biofilms make close contact with the substrate, and thus probably cause significant deterioration of the underlying materials. We describe the different processes of stone alteration induced by fungal colonization and discuss the implications of these processes for the design of treatments to prevent biodeterioration

  11. Geophysical Prediction Technology Based on Organic Carbon Content in Source Rocks of the Huizhou Sag, the South China Sea

    Directory of Open Access Journals (Sweden)

    Yang Wei

    2017-08-01

    Full Text Available Due to the high exploration cost, limited number of wells for source rocks drilling and scarce test samples for the Total Organic Carbon Content (TOC in the Huizhou sag, the TOC prediction of source rocks in this area and the assessment of resource potentials of the basin are faced with great challenges. In the study of TOC prediction, predecessors usually adopted the logging assessment method, since the data is only confined to a “point” and the regional prediction of the source bed in the seismic profile largely depends on the recognition of seismic facies, making it difficult to quantify TOC. In this study, we combined source rock geological characteristics, logging and seismic response and built the mathematical relation between quasi TOC curve and seismic data based on the TOC logging date of a single well and its internal seismic attribute. The result suggested that it was not purely a linear relationship that was adhered to by predecessors, but was shown as a complicated non-linear relationship. Therefore, the neural network algorithm and SVMs were introduced to obtain the optimum relationship between the quasi TOC curve and the seismic attribute. Then the goal of TOC prediction can be realized with the method of seismic inversion.

  12. Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Asuncion de los [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales (CSIC), Serrano 115 dpdo., 28006 Madrid (Spain)], E-mail: arios@ccma.csic.es; Camara, Beatriz [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales (CSIC), Serrano 115 dpdo., 28006 Madrid (Spain); Garcia del Cura, Ma Angeles [Instituto de Geologia Economica CSIC-UCM, Laboratorio de Petrologia Aplicada, Unidad Asociada CSIC-UA, Alicante (Spain); Rico, Victor J. [Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid (Spain); Galvan, Virginia [Facultad Patrimonio Cultural, Universidad SEK, Convento de Santa Cruz la Real, 40003 Segovia (Spain); Ascaso, Carmen [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales (CSIC), Serrano 115 dpdo., 28006 Madrid (Spain)

    2009-01-15

    In this study, the deterioration effects of lichens and other lithobionts in a temperate mesothermal climate were explored. We examined samples of dolostone and limestone rocks with visible signs of biodeterioration taken from the exterior wall surfaces of four Romanesque churches in Segovia (Spain): San Lorenzo, San Martin, San Millan and La Vera Cruz. Biofilms developing on the lithic substrate were analyzed by scanning electron microscopy. The most common lichen species found in the samples were recorded. Fungal cultures were then obtained from these carbonate rocks and characterized by sequencing Internal Transcribed Spacers (ITS). Through scanning electron microscopy in back-scattered electron mode, fungi (lichenized and non-lichenized) were observed as the most frequent microorganisms occurring at sites showing signs of biodeterioration. The colonization process was especially conditioned by the porosity characteristics of the stone used in these buildings. While in dolostones, microorganisms mainly occupied spaces comprising the rock's intercrystalline porosity, in bioclastic dolomitized limestones, fungal colonization seemed to be more associated with moldic porosity. Microbial biofilms make close contact with the substrate, and thus probably cause significant deterioration of the underlying materials. We describe the different processes of stone alteration induced by fungal colonization and discuss the implications of these processes for the design of treatments to prevent biodeterioration.

  13. Grain coarsening in polymineralic contact metamorphic carbonate rocks: The role of different physical interactions during coarsening

    DEFF Research Database (Denmark)

    Brodhag, Sabine; Herwegh, Marco; Berger, Alfons

    2011-01-01

    ) and microstructures with considerable second-phase volume fractions of up to 0.5. The variations might be of general validity for any polymineralic rock, which undergoes grain coarsening during metamorphism. The new findings are important for a better understanding of the initiation of strain localization based...... on the activation of grain size dependent deformation mechanisms....

  14. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  15. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    Science.gov (United States)

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  16. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    Science.gov (United States)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  17. Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico

    NARCIS (Netherlands)

    Pancost, R.D.; Zhang, C.L.; Tavacoli, J.; Talbot, H.M.; Farrimond, P.; Schouten, S.; Sinninghe Damsté, J.S.; Sassen, R.

    2005-01-01

    Anaerobic oxidation of methane (AOM) is common in ocean-margin sediments, where it is mediated by consortia of Archaea and Bacteria and can result in the formation of authigenic carbonate, including extensive carbonate crusts. Previous work indicates that AOM is associated with Gulf of Mexico

  18. In vitro receptivity of carbonate rocks to endolithic lichen-forming aposymbionts.

    Science.gov (United States)

    Favero-Longo, Sergio E; Borghi, Alessandro; Tretiach, Mauro; Piervittori, Rosanna

    2009-10-01

    Sterile cultured isolates of lichen-forming aposymbionts have not yet been used to investigate lichen-rock interactions under controlled conditions. In this study mycobionts and photobiont of the endolithic lichens Bagliettoa baldensis and Bagliettoa marmorea were isolated and inoculated with coupons of one limestone and four marbles commonly employed in the Cultural Heritage framework. After one year of incubation, microscopic observations of polished cross-sections were performed to verify if the typical colonization patterns observed in the field may be reproduced in vitro and to evaluate the receptivity of the five lithotypes to endolithic lichens. The mycobionts of the two species developed both on the surface of and within all the lithotypes, showing different penetration pathways which depend on mineralogical and structural features and highlight different receptivity. By contrast, algae inoculated with the coupons did not penetrate them. Observations suggest that the hyphal penetration along intrinsic discontinuities of rocks is a relatively fast phenomenon when these organisms are generally considered as slow-growing. Samples from limestone outcrops and abandoned marble quarries, colonized by the same species or other representatives of Verrucariaceae, showed penetration pathways intriguingly similar to those reproduced in vitro and highlighted that lichen-driven erosion processes only increase the availability of hyphal passageways after a long-term colonization. These results show that in vitro incubation of sterile cultured lichen-forming ascomycetes with rock coupons is a practicable experimental system to investigate the lichen-rock interactions under controlled conditions and, together with analysis in situ, may support decisions on conservative treatments of historical and cultural significant stone substrata.

  19. Strengthening carbonate roof rock of workings by the use of resins in Karst disturbance zones

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, O.V.; Gerovich, E.G.

    1977-12-01

    Test results are given for a proposed method of injection strengthening of rock in sinkhole areas in order to stabilize the rock of mining areas. Tests were made of appropriately selected NaOH solutions to act as catalysts in the injection of resins. Relationships are given between the hardening time of the aqueous resin solutions and the concentration of the NaOH catalyst, the relationship between the viscosity of the resin solutions and the temperature at specific ratios, between the hardness of the polymer materials and age, and between the resinous mixture compression strength and its age at specific temperatures. A diagram is presented of the injection equipment, and data are presented on the number of boreholes receiving the injected resin in relation to physical measurements. The tests of the resinated areas indicate that the rock hardness of the treated zones approaches that of the fissured zones so that props with less supporting power can be used, and work safety is increased. 3 references, 6 figures, 1 table.

  20. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Necib, S. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); Diomidis, N. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Keech, P. [Nuclear Waste Management Organisation NWMO, Toronto (Canada); Nakayama, M. [Japan Atomic Energy Agency JAEA, Horonobe-Cho (Japan)

    2017-04-15

    Carbon steel is widely considered as a candidate material for the construction of spent fuel and high-level waste disposal canisters. In order to investigate corrosion processes representative of the long term evolution of deep geological repositories, two in situ experiments are being conducted in the Mont Terri rock laboratory. The iron corrosion (IC) experiment, aims to measure the evolution of the instantaneous corrosion rate of carbon steel in contact with Opalinus Clay as a function of time, by using electrochemical impedance spectroscopy measurements. The Iron Corrosion in Bentonite (IC-A) experiment intends to determine the evolution of the average corrosion rate of carbon steel in contact with bentonite of different densities, by using gravimetric and surface analysis measurements, post exposure. Both experiments investigate the effect of microbial activity on corrosion. In the IC experiment, carbon steel showed a gradual decrease of the corrosion rate over a period of 7 years, which is consistent with the ongoing formation of protective corrosion products. Corrosion product layers composed of magnetite, mackinawite, hydroxychloride and siderite with some traces of oxidising species such as goethite were identified on the steel surface. Microbial investigations revealed thermophilic bacteria (sulphate and thiosulphate reducing bacteria) at the metal surface in low concentrations. In the IC-A experiment, carbon steel samples in direct contact with bentonite exhibited corrosion rates in the range of 2 µm/year after 20 months of exposure, in agreement with measurements in absence of microbes. Microstructural and chemical characterisation of the samples identified a complex corrosion product consisting mainly of magnetite. Microbial investigations confirmed the limited viability of microbes in highly compacted bentonite. (authors)

  1. Pb/Pb isochron ages and Pb isotope geochemistry of Bambui Group carbonate rocks from the southern portion of the Sao Francisco Basin

    International Nuclear Information System (INIS)

    Babinski, M.

    1993-01-01

    This study involves the establishment of chemical and analytical procedure for Pb/Pb dating of Neo proterozoic carbonate rocks and their application to obtaining isochron ages of Bambui Group rocks from the southern portion of the Sao Francisco Basin, Minas Gerais State. The Pb isotopic compositions and U and Pb concentrations determined on more than 90 samples (≅ 600 analyses) from Sete Lagoas do Jacare formations, Bambui Group, from different parts of the basin, showed four distinct types of Pb, here called types I, II, III and IV. Type I Pb was found in samples with low Pb concentrations and relatively high U concentrations. Type II Pb is present in samples with relatively high Pb concentrations and low U concentrations it is non-radiogenic crustal Pb. Type III Pb is also found in samples with high Pb concentrations and low U concentrations but it is radiogenic crustal Pb. Type IV Pb occurs in samples with U/Pb ratios lower than 1 and is intermediate in composition between Type III and Type I Pb. According to the data presented in this paper it is suggested that carbonate rocks from Sete Lagoas Formations were deposited before 686±69 Ma. Rocks from the Lagoa do Jacare Formation, contained only Type II Pb, which does not permit determination of a Pb/Pb age. During the interval from 690 to 500 Ma, the Pb isotope system of the carbonate rocks from the Sao Francisco Basin was disturbed, and in some areas it was totally reset. The imprecise U/Pb ages of 550-600 Ma obtained from some of the carbonate rocks reflect this disturbance. The ages determined in this study are in agreement with most of the published ages of the tectonism from the Brasiliano fold belts marginal to Sao Francisco Craton, showing that the isotopic systems of Sao Francisco Basin rocks were largely affected by brasiliano tectonism. (author)

  2. The Use of Ameliorant Fe3+ and Rock Phosphates in Peat Soil at Several Water Condition on the P Content of Plants Rice and Carbon Emission

    Directory of Open Access Journals (Sweden)

    Nelvia

    2009-09-01

    Full Text Available The addition of ameliorant Fe3+ and rock phosphates containing high Fe cation can reduce effect of toxic organic acids, increase peat stability through formation of complex compounds and reduce carbon emission. The research was conducted in the laboratory and green house of the Departement of Soil Science, Faculty of Agriculture, Bogor Agriculture University. Peat samples with hemic degree of decomposition were taken from Riau. Rock phosphates were taken from the rock phosphates of PT. Petrokimia Gresik, Christmas Island phosphates, and Huinan China and FeCl3.6H2O was used as the other Fe3+ source. The aims of the research were to study (a the effect of the applications of ameliorant Fe3+ and rock phosphates on the P content of plants dan (b the effect of the application ameliorant Fe3+ and the contribution of Fe cation in rock phosphates in the decrease of carbon emission. The results showed that the P content of plants rice increased 58 – 286% with the applications of ameliorant Fe3+ and rock phosphates. The estimation of carbon loss through CO2 and CH4 emissions from peats if planted continuously with rice was around 2.5, 2.2 and 2.6 Mg of C ha-1 year-1 respectively in field capacity condition, two times of field capacity condition, and 5 cm of saturated condition. The application of ameliorant Fe3+ and rock phosphates containing high Fe cation increased the stability of peats and reduced the carbon loss around 1.7 Mg of C ha-1 year-1 (64% in 5 cm of saturated condition, 1.3 Mg of C ha-1 year-1 (58% in two times of field capacity condition, and 1.0 Mg of C ha-1 year-1 (41% in field capacity condition.

  3. Mineral CO2 sequestration in basalts and ultra-basic rocks: impact of secondary silicated phases on the carbonation process

    International Nuclear Information System (INIS)

    Sissmann, Olivier

    2013-01-01

    The formation of carbonates constitutes a stable option for carbon dioxide (CO 2 ) geological sequestration, and is prone to play a significant role in reducing emissions of anthropic origin. However, our comprehension of the carbonation mechanism, as well as of the kinetics limitations encountered during this chemical reaction, remains poorly developed. Though there is a large number of studies focusing on the dissolution kinetics of basic silicates and on the precipitation of carbonates, few have inquired about the impact that the formation of non-carbonated secondary phases can have on these reaction's kinetics. It is the approach chosen here, as only solid knowledge of the global carbonation mechanism can make this process predictive and efficient. Experimental data on dissolution and carbonation have therefore been determined in batch reactors, on relevant minerals and rocks. Firstly, we studied the carbonation of olivine (a major phase within peridotites and minor within basalts) at 90 deg. C and under pCO 2 of 280 bars. The dissolution of San Carlos olivine (Mg 1.76 Fe 0.24 SiO 4 ) is slowed down by the formation of a surface silica gel, when the fluid reaches equilibrium with amorphous silica. The transport of species to the reactive medium becomes the limiting step of the process, slowing down the dissolution process of San Carlos olivine by 5 orders of magnitude. However, this passivation doesn't occur during the alteration of Ca-olivine (Ca 2 SiO 4 ), though a surface silica layer does form. This comparison suggests that it isn't the structure of the silicate but its chemical composition, which controls the transport properties through the interfacial layer. The second part explores the effects of organic ligands and of temperature variations on the formation of those phases. The addition of citrate at 90 deg. C increases the kinetics of San Carlos olivine by one order of magnitude, and allows the release of enough Mg in the aqueous medium to form

  4. Effects of Nozzle Configuration on Rock Erosion Under a Supercritical Carbon Dioxide Jet at Various Pressures and Temperatures

    Directory of Open Access Journals (Sweden)

    Man Huang

    2017-06-01

    Full Text Available The supercritical carbon dioxide (SC-CO2 jet offers many advantages over water jets in the field of oil and gas exploration and development. To take better advantage of the SC-CO2 jet, effects of nozzle configuration on rock erosion characteristics were experimentally investigated with respect to the erosion volume. A convergent nozzle and two Laval nozzles, as well as artificial cores were employed in the experiments. It was found that the Laval nozzle can enhance rock erosion ability, which largely depends on the pressure and temperature conditions. The enhancement increases with rising inlet pressure. Compared with the convergent nozzle, the Laval-1 nozzle maximally enhances the erosion volume by 10%, 21.2% and 30.3% at inlet pressures of 30, 40 and 50 MPa, respectively; while the Laval-2 nozzle maximally increases the erosion volume by 32.5%, 49.2% and 60%. Moreover, the enhancement decreases with increasing ambient pressure under constant inlet pressure or constant pressure drop. The growth of fluid temperature above the critical value can increase the enhancement. In addition, the jet from the Laval-2 nozzle with a smooth inner profile always has a greater erosion ability than that from the Laval-1 nozzle.

  5. How the rock fabrics can control the physical properties - A contribution to the understanding of carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Duerrast, H.; Siegesmund, S. [Goettingen Univ. (Germany)

    1998-12-31

    The correlation between microfabrics and physical properties will be illustrated in detail on three dolomitic carbonate reservoir rocks with different porosity. For this study core segments from the Zechstein Ca2-layer (Permian) of the Northwest German Basin were kindly provided by the Preussag Energie GmbH, Lingen. The mineral composition was determined by using the X-ray diffraction method. Petrographic and detailed investigation of the microfabrics, including the distribution and orientation of the cracks were done macroscopally (core segments) and microscopally with the optical microscope and the Scanning Electron Microscope (thin sections in three orthogonally to each other oriented directions). Different kinds of petrophysical measurements were carried out, e.g. porosity, permeability, electrical conductivity, seismic velocities. (orig.)

  6. The relationship between carbonate facies, volcanic rocks and plant remains in a late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina)

    Science.gov (United States)

    Busquets, P.; Méndez-Bedia, I.; Gallastegui, G.; Colombo, F.; Cardó, R.; Limarino, O.; Heredia, N.; Césari, S. N.

    2013-07-01

    The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the

  7. Genesis of Pb-Zn-Cu-Ag Deposits within Permian Carboniferous-Carbonate Rocks in Madina Regency, North Sumatra

    Directory of Open Access Journals (Sweden)

    Bhakti Hamonangan Harahap

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.167-184Strong mineralized carbonate rock-bearing Pb-Zn-Cu-Ag-(Au ores are well exposed on the Latong River area, Madina Regency, North Sumatra Province. The ore deposit is hosted within the carbonate rocks of the Permian to Carboniferous Tapanuli Group. It is mainly accumulated in hollows replacing limestone in the forms of lensoidal, colloform, veins, veinlets, cavity filling, breccia, and dissemination. The ores dominantly consist of galena (126 000 ppm Pb and sphalerite (2347 ppm Zn. The other minerals are silver, azurite, covellite, pyrite, marcasite, and chalcopyrite. This deposit was formed by at least three phases of mineralization, i.e. pyrite and then galena replaced pyrite, sphalerite replaced galena, and pyrite. The last phase is the deposition of chalcopyrite that replaced sphalerite. The Latong sulfide ore deposits posses Pb isotope ratio of 206Pb/204Pb = 19.16 - 20.72, 207Pb/204Pb = 16.16 - 17.29, and 208Pb/204Pb = 42.92 - 40.78. The characteristic feature of the deposit indicates that it is formed by a sedimentary process rather than an igneous activity in origin. This leads to an interpretation that the Latong deposit belongs to the Sedimentary Hosted Massive Sulfide (SHMS of Mississippi Valley-Type (MVT. The presence of SHMS in the island arc such as Sumatra has become controversial. For a long time, ore deposits in the Indonesian Island Arc are always identical with the porphyry and hydrothermal processes related to arc magmatism. This paper is dealing with the geology of Latong and its base metal deposits. This work is also to interpret their genesis as well as general relationship to the regional geology and tectonic setting of Sumatra.

  8. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock.

    Science.gov (United States)

    Voegelin, Andreas; Pfenninger, Numa; Petrikis, Julia; Majzlan, Juraj; Plötze, Michael; Senn, Anna-Caterina; Mangold, Stefan; Steininger, Ralph; Göttlicher, Jörg

    2015-05-05

    We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (μ-XRF) and X-ray absorption spectroscopy (μ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.

  9. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Ruppel

    2005-02-01

    Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

  10. Geological factors of the isotopic distribution of carbon of organic matter in sedimentary rocks

    International Nuclear Information System (INIS)

    Maass, J.

    1981-01-01

    The isotope ratio of carbon of fossile organic matter can be regarded as a definite criterion of its genetic origin. As the biofacial character of organic matter, especially the chemical composition (H/C-ratio), decisively influences the mode and quantity of the potential hydrocarbon production, isotopic analysis is an essential method for the prognostic evaluation of sedimentary basins with regard to their oil and gas perspectives. The genetic relations to the parent substance continue in the bituminization and coalification products and make it possible to apply the isotopic analysis of carbon to prospection work for hydrocarbons. (author)

  11. Water-rock interaction under peri-glacial conditions: example of the secondary carbonates of the Broegger Peninsula (Spitzbergen)

    International Nuclear Information System (INIS)

    Marlin, C.; Dever, L.

    1998-01-01

    Measurements of the isotopic and chemical contents of soil water and carbonates at different field sites in Spitzbergen were undertaken to study the precipitation conditions of soil secondary calcites under the current peri-glacial climate. A main experimental site ('cote 80') has been established located on a fluvio-glacial terrasse at 80 m.a.s.l. near Ny Alesund (79 deg N, 12 deg. E). The active layer is at around 1.2 m depth on a continuous permafrost. The soil temperatures measured every 5 cm from the surface to the permafrost show that the freezing fronts move both the surface and permafrost, converging at around 0.6 m depth where the system is closed. During the beginning of the freezing period, the solute content increases in the residual water according to the distribution coefficient between water and ice. Calcite precipitation occurs in a second stage as indicated by the simultaneous decrease of the calcite saturation index and increase of the concentration of non-interactive elements. Chemical and isotopic ( 18 O, 2 H, 13 C et 14 C) analyses have been made on the different samples with a mineralogical description of the carbonate coatings obtained by SEM and microprobe analyses. The isotopic values result from a mixing between recent calcites and 'old' calcites. The recent calcites are probably in isotopic equilibrium with the present day solutions. The 'old calcites' have precipitated under colder conditions than today. The low radiocarbon activities (10.2 to 24.8 pcm) of the 'cote 80' site indicate that the 'old calcites' have precipitated during the last interglacial period or an inter-stadial period of the Pleistocene. The good relationship between the carbon- 14 activity and the carbon- 13 content indicates that the beginning of the pedogenesis is not identical at all sites and is dependent on the timing of deglaciation and vulnerability of rocks to frost-weathering. (authors)

  12. 2D and 3D seismic measurements to evaluate the collapse risk of an important prehistoric cave in soft carbonate rock

    Science.gov (United States)

    Leucci, Giovanni; De Giorgi, Lara

    2015-02-01

    The southern part of the Apulia region (the Salento peninsula) has been the site of at least fifteen collapse events due to sinkholes in the last twenty years. The majority of these occurred in "soft" carbonate rocks (calcarenites). Man-made and/or natural cavities are sometimes assets of historical and archaeological significance. This paper provides a methodology for the evaluation of sinkhole hazard in "soft" carbonate rocks, combining seismic and mine engineering methods.Acase study of a natural cavity which is called Grotta delle Veneri is illustrated. For this example the approach was: i) 2D and 3D seismic methods to study the physical-mechanical characteristics of the rock mass that constitutes the roof of the cave; and ii) scaled span empirical analysis in order to evaluate the instability of the crown pillar's caves.

  13. Acid neutralizing capacity and leachate results for igneous rocks, with associated carbon contents of derived soils, Animas River AML site, Silverton, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Stanton, Mark R.; Choate, LaDonna M.; Burchell,

    2009-01-01

    Mine planning efforts have historically overlooked the possible acid neutralizing capacity (ANC) that local igneous rocks can provide to help neutralize acidmine drainage. As a result, limestone has been traditionally hauled to mine sites for use in neutralizing acid drainage. Local igneous rocks, when used as part of mine life-cycle planning and acid mitigation strategy, may reduce the need to transport limestone to mine sites because these rocks can contain acid neutralizing minerals. Igneous hydrothermal events often introduce moderately altered mineral assemblages peripheral to more intensely altered rocks that host metal-bearing veins and ore bodies. These less altered rocks can contain ANC minerals (calcite-chlorite-epidote) and are referred to as a propylitic assemblage. In addition, the carbon contents of soils in areas of new mining or those areas undergoing restoration have been historically unknown. Soil organic carbon is an important constituent to characterize as a soil recovery benchmark that can be referred to during mine cycle planning and restoration. This study addresses the mineralogy, ANC, and leachate chemistry of propylitic volcanic rocks that host polymetallic mineralization in the Animas River watershed near the historical Silverton, Colorado, mining area. Acid titration tests on volcanic rocks containing calcite (2 – 20 wt %) and chlorite (6 – 25 wt %), have ANC ranging from 4 – 146 kg/ton CaCO3 equivalence. Results from a 6-month duration, kinetic reaction vessel test containing layered pyritic mine waste and underlying ANC volcanic rock (saturated with deionized water) indicate that acid generating mine waste (pH 2.4) has not overwhelmed the ANC of propylitic volcanic rocks (pH 5.8). Sequential leachate laboratory experiments evaluated the concentration of metals liberated during leaching. Leachate concentrations of Cu-Zn-As-Pb for ANC volcanic rock are one-to-three orders of magnitude lower when compared to leached solution from

  14. Preliminary investigations on the carbon dioxide sequestering potential of the ultramafic rock

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Guthrie, G.; Counce, D.; Kluk, E.; Bergfeld, D.; Snow, M.

    1997-08-01

    Fossil fuels continue to provide major sources of energy to the modern world even though global emissions of CO{sub 2} are presently at levels of 19 Gt/yr. Future antipollution measures may include sequestering of waste CO{sub 2} as magnesite (MgCO{sub 3}) by processing ultramafic rocks to obtain reactable Mg. Huge ultramafic deposits consisting of relatively pure Mg-rich silicates exist throughout much of the world in ophiolites and layered intrusions. Peridotites (especially dunites) and serpentinites comprise the best ores because they contain the most Mg by weight and are relatively reactive to hot acids such as HCl. Although mining such deposits on a large scale would have environmental impacts, the sequestering process could provide Cr, Ni, and other metals as byproducts and could dispose of existing waste (white) asbestos. Small ultramafic bodies ({approximately} 1 km{sup 3}) can potentially sequester about 1 Gt of CO{sub 2} or about 20% of annual US emissions. A single large deposit of dunite ({approximately} 30 km{sup 3}) could dispose of about 20 yr of current US CO{sub 2} emissions. The cost and environmental impact of mining these deposits must be weighed against the increased costs of energy and benefits to the atmosphere and climate.

  15. Pore facies analysis: incorporation of rock properties into pore geometry based classes in a Permo-Triassic carbonate reservoir in the Persian Gulf

    International Nuclear Information System (INIS)

    Rahimpour-Bonab, H; Aliakbardoust, E

    2014-01-01

    Pore facies analysis is a useful method for the classification of reservoir rocks according to pore geometry characteristics. The importance of this method is related to the dependence of the dynamic behaviour of the reservoir rock on the pore geometry. In this study, pore facies analysis was performed by the quantification and classification of the mercury injection capillary pressure (MICP) curves applying the multi-resolution graph-based clustering (MRGC) method. Each pore facies includes a limited variety of rock samples with different depositional fabrics and diagenetic histories, which are representative of one type of pore geometry. The present pore geometry is the result of the interaction between the primary rock fabric and its diagenetic overprint. Thus the variations in petrographic properties can be correlated with the pore geometry characteristics. Accordingly, the controlling parameters in the pore geometry characteristics were revealed by detailed petrographic analysis in each pore facies. The reservoir rock samples were then classified using the determined petrographic properties which control the pore system quality. This method is proposed for the classification of reservoir rocks in complicated carbonate reservoirs, in order to reduce the incompatibility of traditional facies analysis with pore system characteristics. The method is applicable where enough capillary pressure data is not available. (papers)

  16. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California

    International Nuclear Information System (INIS)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; Brian D. Marshall.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  17. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky

    2014-03-01

    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  18. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; William B. Harrison

    2002-12-01

    Michigan Basin, and it is crucial in developing reservoir quality rocks in some fields. Data on the occurrence of dolomite was extracted from driller's reports for all reported occurrences in Michigan, nearly 50 fields and over 500 wells. A digital database was developed containing the geographic location of all these wells (latitude-longitude) as well as the elevation of the first encounter of dolomite in the field/reservoir. Analysis shows that these dolomite occurrences are largely confined to the center of the basin, but with some exceptions, such as N. Adams Field. Further, some of the dolomite occurrences show a definite relationship to the fracture pattern described above, suggesting a genetic relationship that needs further work. Other accomplishments of this past reporting period include obtaining a complete land grid for the State of Michigan and further processing of the high and medium resolution DEM files. We also have measured new fluid inclusion data on dolomites from several fields that suggest that the dolomitization occurred at temperatures between 100 and 150 C. Finally, we have extracted the lithologic data for about 5000 wells and are in the process of integrating this data into the overall model for the Michigan Basin.

  19. Effective porosity and density of carbonate rocks (Maynardville Limestone and Copper Ridge Dolomite) within Bear Creek Valley on the Oak Ridge Reservation based on modern petrophysical techniques

    International Nuclear Information System (INIS)

    Dorsch, J.

    1997-02-01

    The purpose of this study is to provide quantitative data on effective porosity of carbonate rock from the Maynardville Limestone and Copper Ridge Dolomite within Bear Creek Valley based on modern petrophysical techniques. The data will be useful for groundwater-flow and contaminant-flow modeling in the vicinity of the Y-12 Plant on the Oak Ridge Reservation (ORR). Furthermore, the data provides needed information on the amount of interconnected pore space potentially available for operation of matrix diffusion as a transport process within the fractured carbonate rock. A second aspect of this study is to compare effective porosity data based on modern petrophysical techniques to effective porosity data determined earlier by Goldstrand et al. (1995) with a different technique. An added bonus of the study is quantitative data on the bulk density and grain density of dolostone and limestone of the Maynardville Limestone and Copper Ridge Dolomite which might find use for geophysical modeling on the ORR

  20. A porous silica rock ("tripoli") in the footwall of the Jurassic Úrkút manganese deposit, Hungary: composition, and origin through carbonate dissolution

    Science.gov (United States)

    Polgari, Marta; Szabo, Zoltan; Szabo-Drubina, Magda; Hein, James R.; Yeh, Hsueh-Wen

    2005-01-01

    The mineralogical, chemical, and isotopic compositions were determined for a white tripoli from the footwall of the Jurassic Úrkút Mn-oxide ore deposit in the Bakony Mountains, Hungary. The tripoli consists of quartz and chalcedony, with SiO2 contents up to 100 wt.%; consequently, trace-element contents are very low. Oxygen isotopes and quartz crystallinity indicate a low-temperature diagenetic origin for this deposit. The tripoli was formed by dissolution of the carbonate portion of the siliceous (sponge spicules) Isztimér Limestone. Dissolution of the carbonate was promoted by inorganic and organic acids generated during diagensis and left a framework composed of diagenetic silica that preserved the original volume of the limestone layer. The relative enrichment of silica and high porosity is the result of that carbonate dissolution. The silty texture of this highly friable rock is due to the structurally weak silica framework.

  1. Polymeric Traypack Integrity: Bench-Scale Unit

    National Research Council Canada - National Science Library

    Canavan, Jeffrey

    2002-01-01

    .... Additional experimentation was conducted to determine the applicability of the unit for non-destructive residual gas testing since current destructive tests represent a substantial continuing expense...

  2. Bench Scale Saltcake Dissolution Test Report

    International Nuclear Information System (INIS)

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-01-01

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird(reg s ign) sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method

  3. Reactive Transport at the Pore Scale with Applications to the Dissolution of Carbonate Rocks for CO2 Sequestration Operations

    Science.gov (United States)

    Boek, E.; Gray, F.; Welch, N.; Shah, S.; Crawshaw, J.

    2014-12-01

    In CO2 sequestration operations, CO2 injected into a brine aquifer dissolves in the liquid to create an acidic solution. This may result in dissolution of the mineral grains in the porous medium. Experimentally, it is hard to investigate this process at the pore scale. Therefore we develop a new hybrid particle simulation algorithm to study the dissolution of solid objects in a laminar flow field, as encountered in porous media flow situations. First, we calculate the flow field using a multi-relaxation-time lattice Boltzmann (LB) algorithm implemented on GPUs, which demonstrates a very efficient use of the GPU device and a considerable performance increase over CPU calculations. Second, using a stochastic particle approach, we solve the advection-diffusion equation for a single reactive species and dissolve solid voxels according to our reaction model. To validate our simulation, we first calculate the dissolution of a solid sphere as a function of time under quiescent conditions. We compare with the analytical solution for this problem [1] and find good agreement. Then we consider the dissolution of a solid sphere in a laminar flow field and observe a significant change in the sphericity with time due to the coupled dissolution - flow process. Second, we calculate the dissolution of a cylinder in channel flow in direct comparison with corresponding dissolution experiments. We discuss the evolution of the shape and dissolution rate. Finally, we calculate the dissolution of carbonate rock samples at the pore scale in direct comparison with micro-CT experiments. This work builds on our recent research on calculation of multi-phase flow [2], [3] and hydrodynamic dispersion and molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using LB simulations [4]. It turns out that the hybrid simulation model is a suitable tool to study reactive flow processes at the pore scale. This is of great importance for CO2 storage and

  4. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    Science.gov (United States)

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Assimilation of carbonate country rock by the parent magma of the Panzhihua Fe-Ti-V deposit (SW China: Evidence from stable isotopes

    Directory of Open Access Journals (Sweden)

    Clément Ganino

    2013-09-01

    Full Text Available The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit. During emplacement of the main intrusion, multiple generations of mafic dykes invaded carbonate wall rocks, producing a large contact aureole. We measured the oxygen-isotope composition of the intrusions, their constituent minerals, and samples of the country rock. Magnetite and plagioclase from Panzhihua intrusion have δ18O values that are consistent with magmatic equilibrium, and formed from magmas with δ18O values that were 1–2‰ higher than expected in a mantle-derived magma. The unmetamorphosed country rock has high δ18O values, ranging from 13.2‰ (sandstone to 24.6–28.6‰ (dolomite. The skarns and marbles from the aureole have lower δ18O and δ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole. This would explain the alteration of δ18O of the dykes which have significantly higher values than expected for a mantle-derived magma. Depending on the exact δ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevated δ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%, assuming simple mixing. The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock, mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites. These mechanisms, particularly the latter, were probably involved in the formation of the Fe-Ti-V ores.

  6. Report on results of R and D of coal liquefaction technology under Sunshine Project in fiscal 1981. Development of direct hydro-liquefaction plant (research on liquefaction by bench scale equipment, and research on solid-liquid separation method); 1981 nendo sekitan ekika gijutsu no kenkyu kaihatsu, chokusetsu suiten ekika plant no kaihatsu seika hokokusho. Bench scale sochi ni yoru ekika kenkyu, koeki bunriho ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This paper explains the results of development of direct hydro-liquefaction plant under the Sunshine Project in fiscal 1981. As element studies for supplementing and supporting a 2.4 t/day PDU (process development unit), in the research using a 0.1 t/day bench scale continuous type equipment of fiscal 1981, a hydrogenation experiment was conducted for anthracene oil and also, an examination was made on the reaction conditions of Taiheiyo coal and Horonai coal, as well as on the catalyst and reaction ratio and on the product material distribution. A medium oil equalizing test was performed using Taiheiyo coal in order to obtain knowledge about equalized medium oil. Liquefaction characteristics in the preheating process and reaction process were elucidated by means of a semi-batch device. Comparative studies were made between domestic and overseas coals, in coal properties and liquefaction characteristics using a shaking type autoclave. The performance of iron-sulfur based catalysts was also examined. In the research on a solid-liquid separation method, the basic properties of coal liquefied crude oil were measured such as general properties, solid grading distribution and distillation characteristics, with the basic tests carried out for standing separation, filtrating separation and centrifuging separation, providing selected materials of the solid-liquid separation method suitable for the crude oil produced by the direct hydro-liquefaction method. In addition, studies were conducted on the use of residual oil generated by solid-liquid separation, providing knowledge of the viscosity and thermal cracking. (NEDO)

  7. Stages of weathering mantle formation from carbonate rocks in the light of rare earth elements (REE) and Sr-Nd-Pb isotopes

    Science.gov (United States)

    Hissler, Christophe; Stille, Peter

    2015-04-01

    Weathering mantles are widespread and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual high content of associated trace elements in weathering mantles originating from carbonate rocks, which have been poorly studied, compared to those developing on magmatic bedrocks. For instance, these enrichments can be up to five times the content of the underlying carbonate rocks. However, these studies also showed that the carbonate bedrock content only partially explains the soil enrichment for all the considered major and trace elements. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources. REE distribution patterns and Sr-Nd-Pb isotope ratios have been used because they are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments have been applied to identify mobile phases in the soil system and to yield information on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. All these geochemical informations indicate that the cambisol developing on such a typical weathering mantle ("terra fusca") has been formed through weathering of a condensed Bajocian limestone-marl facies. This facies shows compared to average world carbonates important trace element enrichments. Their trace element distribution patterns are similar to those of the soil

  8. The human impact on natural rock reserves using basalt, anorthosite, and carbonates as raw materials in insulation products

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Clausen, Anders U.; Hansen, Peter B.

    2011-01-01

    lithosphere or subducted with oceanic crust and recycled through the mantle by plate tectonics. Insulation products have a chemical composition similar to average crustal rocks and participate in the natural rock cycle. However, these products need not accumulate in nature, inasmuch as old insulation......Typical crustal rocks such as basalt, limestone, and anorthosite are used in stone wool insulation products. The raw materials for stone wool production are not specific to any rare mineral source but depend upon the mixture of materials having the correct chemical composition, exemplified by 40 wt......% basalt, 20 wt% anorthosite, and 40 wt% cement-bonded renewable materials. This study provides an overview of the natural cycle of these resources, including their abundances in nature, and sets the consumption by the stone wool industry and other human activities in perspective. Basalt, anorthosite...

  9. Recovery of glycols, sugars, and Related Multiple -OH Compounds from Dilute-Aqueous Solution by Regenerable Adsorption onto Activated Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, Daniel [Univ. of California, Berkeley, CA (United States)

    1999-06-01

    The present research explores the use of adsorption onto activated carbons as a means of recover glycerol, glycols, and sugars from dilute-aqueous solution. Our work is focused on understanding the mechanisms of adsorption onto carbons, assessing the degree of adsorption reversibility with precision, and implementing a bench-scale recovery process that results in a higher product concentration and reduction of the energy load for final purification.

  10. Rock formation characterization for carbon dioxide geosequestration: 3D seismic amplitude and coherency anomalies, and seismic petrophysical facies classification, Wellington and Anson-Bates Fields, Kansas, USA

    Science.gov (United States)

    Ohl, Derek; Raef, Abdelmoneam

    2014-04-01

    Higher resolution rock formation characterization is of paramount priority, amid growing interest in injecting carbon dioxide, CO2, into subsurface rock formations of depeleting/depleted hydrocarbon reservoirs or saline aquifers in order to reduce emissions of greenhouse gases. In this paper, we present a case study for a Mississippian carbonate characterization integrating post-stack seismic attributes, well log porosities, and seismic petrophysical facies classification. We evaluated changes in petrophysical lithofacies and reveal structural facies-controls in the study area. Three cross-plot clusters in a plot of well log porosity and acoustic impedance corroborated a Neural Network petrophysical facies classification, which was based on training and validation utilizing three petrophysically-different wells and three volume seismic attributes, extracted from a time window including the wavelet of the reservoir-top reflection. Reworked lithofacies along small-throw faults has been revealed based on comparing coherency and seismic petrophysical facies. The main objective of this study is to put an emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2 carbon geosequestration in a depleting reservoir and also in the deeper saline aquifer of the Arbuckle Group, south central Kansas. The 3D seismic coherency attribute, we calculated from a window embracing the Mississippian top reflection event, indicated anomalous features that can be interpreted as a change in lithofacies or faulting effect. An Artificial Neural Network (ANN) lithofacies modeling has been used to better understand these subtle features, and also provide petrophysical classes, which will benefit flow-simulation modeling and/or time-lapse seismic monitoring feasibility analysis. This paper emphasizes the need of paying greater attention to small-scale features when embarking upon characterization of a reservoir or saline-aquifer for CO2

  11. Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals

    Science.gov (United States)

    Welch, N.; Crawshaw, J.

    2017-12-01

    Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.

  12. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  13. Implicit fracture modelling in FLAC3D: Assessing the behaviour of fractured shales, carbonates and other fractured rock types

    NARCIS (Netherlands)

    Osinga, S.; Pizzocolo, F.; Veer, E.F. van der; Heege, J.H. ter

    2016-01-01

    Fractured rocks play an important role in many types of petroleum and geo-energy operations. From fractured limestone reservoirs to unconventionals, understanding the geomechanical behaviour and the dynamically coupled (dual) permeability system is paramount for optimal development of these systems.

  14. Mineral carbonation - possibilities in and ex-situ, evaluation and experiments in laboratory. Final report

    International Nuclear Information System (INIS)

    Bodenan, F.; Bailly, L.; Piantone, P.; Seron, A.; Touze, S.

    2006-01-01

    This report proposes a state of the art of the knowledge and a synthesis of the studies realized at the BRGM since many years, especially in the following domains: the possibilities of the natural minerals and alkaline wastes for the CO 2 sequestration under mineral form, a accounting analysis of the ex-situ processes called direct and indirect, the design of experimental bench scale to study the mineral carbonation at ambient conditions and at high pressure and temperature. (A.L.B.)

  15. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    NARCIS (Netherlands)

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.

    2013-01-01

    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture

  16. Petroleum potential of dysaerobic carbonate source rocks in an intra-shelf basin: the Lower Cretaceous of Provence, France

    Energy Technology Data Exchange (ETDEWEB)

    Machhour, L.; Oudin, J.-L.; Lambert, B.; Lapointe, P. [TOTAL, Centre Scientifique et Technique, Saint-Remy-les-Chevreuse, 78 (France); Masse, J.-P. [Universite de Provence, Centre de Sedimentologie-Paleontologie, Marseille, 13 (France)

    1998-05-01

    Barremian-Aptian Carbonate sediments in southern Provence belong to a drowning sequence within an intra-shelf basin and display organic-carbon-rich horizons corresponding to the demise of a rudists platform system and the onset of dysaerobic conditions. These horizons depart from the classical anoxic model accepted for most marine organic-carbon-rich deposits. They have a rich and diverse fauna documenting nutrient-rich waters with low oxygen content - an environment in which organic matter is preserved from both biological and chemical degradation. Sedimentological, geochemical and palaeoecological investigations suggest that the organic-carbon-rich carbonates reflect dysaerobic conditions favourable for organic matter preservation, the amount of dissolved oxygen being lower than the geochemical threshold for organic matter decay. These organic-carbon-rich sediments are the result of high sea surface productivity and sea bottom conditions favouring preservation. The kerogen is mainly amorphous sapropelic organic matter, essentially algal, with a high hydrogen index and is of marine origin, deposited during high sea-level. (Author)

  17. A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils

    Science.gov (United States)

    Cécillon, Lauric; Baudin, François; Chenu, Claire; Houot, Sabine; Jolivet, Romain; Kätterer, Thomas; Lutfalla, Suzanne; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Savignac, Florence; Soucémarianadin, Laure N.; Barré, Pierre

    2018-05-01

    of 0.15). Samples were subjected to thermal analysis by Rock-Eval 6 that generated a series of 30 parameters reflecting their SOC thermal stability and bulk chemistry. We trained a nonparametric machine-learning algorithm (random forests multivariate regression model) to predict the proportion of centennially persistent SOC in new soils using Rock-Eval 6 thermal parameters as predictors. We evaluated the model predictive performance with two different strategies. We first used a calibration set (n = 88) and a validation set (n = 30) with soils from all sites. Second, to test the sensitivity of the model to pedoclimate, we built a calibration set with soil samples from three out of the four sites (n = 84). The multivariate regression model accurately predicted the proportion of centennially persistent SOC in the validation set composed of soils from all sites (R2 = 0.92, RMSEP = 0.07, n = 30). The uncertainty of the model predictions was quantified by a Monte Carlo approach that produced conservative 95 % prediction intervals across the validation set. The predictive performance of the model decreased when predicting the proportion of centennially persistent SOC in soils from one fully independent site with a different pedoclimate, yet the mean error of prediction only slightly increased (R2 = 0.53, RMSEP = 0.10, n = 34). This model based on Rock-Eval 6 thermal analysis can thus be used to predict the proportion of centennially persistent SOC with known uncertainty in new soil samples from different pedoclimates, at least for sites that have similar Rock-Eval 6 thermal characteristics to those included in the calibration set. Our study reinforces the evidence that there is a link between the thermal and biogeochemical stability of soil organic matter and demonstrates that Rock-Eval 6 thermal analysis can be used to quantify the size of the centennially persistent organic carbon pool in temperate soils.

  18. Temperature effect on the poro-mechanical or hydraulic behaviour of a carbonated rock and a mortar: experimental studies

    International Nuclear Information System (INIS)

    Lion, M.

    2004-07-01

    The main objective of this study is to evaluate the temperature effect on the hydraulic and poro-mechanical behaviour of a limestone. Many experimental tests (porosity and permeability measurements, uniaxial and hydrostatic compressions tests) were carried out in order to study the thermal treatments effect and so the thermal microcracking effect on rock behaviour. Moreover, an experimental device for permeability measurements under high temperatures (until 200 C) was realized. This experimental device permitted to study the permeability variation of the limestone under thermal stresses. Finally, the behaviour of cementitious materials was studied; the temperature effect on the permeability of a mortar was examined. (author)

  19. Rock Art

    Science.gov (United States)

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  20. Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates

    Science.gov (United States)

    James, Noel P.; Narbonne, Guy M.; Dalrymple, Robert W.; Kurtis Kyser, T.

    2005-01-01

    Stellate crystals of ferroan dolomite in neritic siliciclastic and carbonate sedimentary rocks between Sturtian and Marinoan glaciations in the Mackenzie Mountains are interpreted as replaced glendonites. These pseudomorphs after ikaite indicate that shallow seawater at that time was near freezing. Stromatolites verify that paleoenvironments were in the photic zone and physical sedimentary structures such as hummocky cross-bedding confirm that the seafloor was repeatedly disturbed by storms. Glendonites within these low-latitude, continental shelf to coastal sedimentary deposits imply that global ocean water during much of Cryogenian time was likely very cold. Such an ocean would easily have cooled to yield widespread sea ice and, through positive feedback, growth of low-latitude continental glaciers. In this situation gas hydrates could have formed in shallow-water, cold shelf sediment, but would have been particularly sensitive to destabilization as a result of sea-level change. Co-occurrence of pisolites and glendonites in these rocks additionally implies that some ooids and pisoids might have been, unlike Phanerozoic equivalents, characteristic of cold-water sediments.

  1. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    Science.gov (United States)

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  2. Dawsonite and other carbonate veins in the Cretaceous Izumi Group, SW Japan: a natural support for fracture self-sealing in mud-stone cap-rock in CGS?

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Yasuko; Funatsu, Takahiro; Fujii, Takashi [Institute for Geo-Resources and environment, GSJ, AISI, 1-1-1 Higashi, Central 7, Tsukuba, ibaraki 305-8567 (Japan); Take, Shuji [Kishiwada Nature Club, c/o Kishiwada City Natural History Museum, Sakai-Machi 5-6, Kishiwada, Osaka 596-0072 (Japan)

    2013-07-01

    Dawsonite-bearing carbonate veins are abundant in a compact mud-stone layer of the lower part of the Izumi Group, SW Japan. The mode of occurrence of the veins probably indicates fracturing and mineral sealing associated with upwelling of CO{sub 2}-rich fluid evolved in the reservoir beneath. The carbonate veins studied here can be a natural support to fracturing and healing of mud-stone cap-rock in the CO{sub 2} geological storage. (authors)

  3. Low temperature geothermal systems in carbonate-evaporitic rocks: Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain).

    Science.gov (United States)

    Blasco, Mónica; Gimeno, María J; Auqué, Luis F

    2018-02-15

    Geothermometrical calculations in low-medium temperature geothermal systems hosted in carbonate-evaporitic rocks are complicated because 1) some of the classical chemical geothermometers are, usually, inadequate (since they were developed for higher temperature systems with different mineral-water equilibria at depth) and 2) the chemical geothermometers calibrated for these systems (based on the Ca and Mg or SO 4 and F contents) are not free of problems either. The case study of the Arnedillo thermal system, a carbonate-evaporitic system of low temperature, will be used to deal with these problems through the combination of several geothermometrical techniques (chemical and isotopic geothermometers and geochemical modelling). The reservoir temperature of the Arnedillo geothermal system has been established to be in the range of 87±13°C being the waters in equilibrium with respect to calcite, dolomite, anhydrite, quartz, albite, K-feldspar and other aluminosilicates. Anhydrite and quartz equilibria are highly reliable to stablish the reservoir temperature. Additionally, the anhydrite equilibrium explains the coherent results obtained with the δ 18 O anhydrite - water geothermometer. The equilibrium with respect to feldspars and other aluminosilicates is unusual in carbonate-evaporitic systems and it is probably related to the presence of detrital material in the aquifer. The identification of the expected equilibria with calcite and dolomite presents an interesting problem associated to dolomite. Variable order degrees of dolomite can be found in natural systems and this fact affects the associated equilibrium temperature in the geothermometrical modelling and also the results from the Ca-Mg geothermometer. To avoid this uncertainty, the order degree of the dolomite present in the Arnedillo reservoir has been determined and the results indicate 18.4% of ordered dolomite and 81.6% of disordered dolomite. Overall, the results suggest that this multi

  4. Pore Scale Investigation of Wettability Alteration Through Chemically-Tuned Waterflooding in Oil-Wet Carbonate Rocks Using X-Ray Micro-Ct Imaging

    Science.gov (United States)

    Tawfik, M. S.; Karpyn, Z.

    2017-12-01

    Carbonate reservoirs host more than half of the remaining oil reserves worldwide. Due to their complex pore structure and intermediate to oil-wet nature, it is challenging to produce the remaining oil from these formations. For two decades, chemically tuned waterflooding (CTWF) has gained the attention of many researchers. Experimental, numerical, and field studies suggest that changes in ion composition of injected brine can increase oil recovery in carbonate reservoirs via wettability alteration. However, previous studies explaining the improvement in oil recovery by wettability alteration deduce wettability based on indirect measurements, including sessile drop contact angle measurements on polished rocks, relative permeability, chromatographic separation of SCN- and potential determining ions (PDIs), etc. CTWF literature offers no direct measurement of wettability alteration at the pore scale. This study proposes a direct pore-scale measurement of changes in interfacial curvatures before and after CTWF. Micro-coreflood experiments are performed to investigate the effect of injection brine salinity, ion composition and temperature on rock wettability at the pore scale. X-ray micro-CT scanning is used to obtain 3D image sets to calculate in-situ contact angle distributions. The study also aims to find a correlation between the magnitude of improvement in oil recovery at the macro-scale and the corresponding contact angle distribution at the pore-scale at different experimental conditions. Hence, macro-scale coreflood experiments are performed using the same conditions as the micro-corefloods. Macro-scale coreflood experiments have shown that brines with higher concentration of Ca2+, Mg2+ and SO42- ions have higher recoveries compared to standard seawater. This translates to wettability alteration into a more intermediate-wet state. This study enhances the understanding of the pore-scale physico-chemical mechanisms controlling wettability alteration via CTWF

  5. The Formation of Carbonate Minerals and the Mobility of Heavy Metals during Water-CO2-Mafic Rock Interactions

    DEFF Research Database (Denmark)

    Olsson, Jonas

    to the carbonate precipitation in CarbFix project. In the third study, water and solid samples from two alkaline springs in Oman were examined. The elements detected in the spring waters in order of abundance were Na, Cl, Ca, Mg, SO4, K, Br, Si, F, B, Sr, Al, Fe, Mo, Zn, Ni, Cu, Mn, V, Ba, Cr, Co, Ti, Hg and Pb...

  6. Tracing groundwater with low-level detections of halogenated VOCs in a fractured carbonate-rock aquifer, Leetown Science Center, West Virginia, USA

    Science.gov (United States)

    Plummer, Niel; Sibrell, Philip L.; Casile, Gerolamo C.; Busenberg, Eurybiades; Hunt, Andrew G.; Schlosser, Peter

    2013-01-01

    Measurements of low-level concentrations of halogenated volatile organic compounds (VOCs) and estimates of groundwater age interpreted from 3H/3He and SF6 data have led to an improved understanding of groundwater flow, water sources, and transit times in a karstic, fractured, carbonate-rock aquifer at the Leetown Science Center (LSC), West Virginia. The sum of the concentrations of a set of 16 predominant halogenated VOCs (TDVOC) determined by gas chromatography with electron-capture detector (GC–ECD) exceeded that possible for air–water equilibrium in 34 of the 47 samples (median TDVOC of 24,800 pg kg−1), indicating that nearly all the water sampled in the vicinity of the LSC has been affected by addition of halogenated VOCs from non-atmospheric source(s). Leakage from a landfill that was closed and sealed nearly 20 a prior to sampling was recognized and traced to areas east of the LSC using low-level detection of tetrachloroethene (PCE), methyl chloride (MeCl), methyl chloroform (MC), dichlorodifluoromethane (CFC-12), and cis-1,2-dichloroethene (cis-1,2-DCE). Chloroform (CHLF) was the predominant VOC in water from domestic wells surrounding the LSC, and was elevated in groundwater in and near the Fish Health Laboratory at the LSC, where a leak of chlorinated water occurred prior to 2006. The low-level concentrations of halogenated VOCs did not exceed human or aquatic-life health criteria, and were useful in providing an awareness of the intrinsic susceptibility of the fractured karstic groundwater system at the LSC to non-atmospheric anthropogenic inputs. The 3H/3He groundwater ages of spring discharge from the carbonate rocks showed transient behavior, with ages averaging about 2 a in 2004 following a wet climatic period (2003–2004), and ages in the range of 4–7 a in periods of more average precipitation (2008–2009). The SF6 and CFC-12 data indicate older water (model ages of 10s of years or more) in the low-permeability shale of the Martinsburg

  7. 'Escher' Rock

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks [figure removed for brevity, see original site] Figure 1 This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters. The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water. Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend. These data were taken by the rover's alpha particle X-ray spectrometer.

  8. Cyclic Sequences, Events and Evolution of the Sino-Korean Plate,with a Discussion on the Evolution of Molar-tooth Carbonates,Phosphorites and Source Rocks

    Institute of Scientific and Technical Information of China (English)

    MENG Xianghua; GE Ming

    2003-01-01

    This paper gives an account of the research that the authors conducted on the cyclic sequences, events and evolutionary history from Proterozoic to Meso-Cenozoic in the Sino-Korean plate based on the principle of the Cosmos-Earth System. The authors divided this plate into 20 super-cyclic or super-mega-cyclic periods and more than 100 Oort periods. The research focused on important sea flooding events, uplift interruption events, tilting movement events, molar-tooth carbonate events, thermal events, polarity reversal events, karst events, volcanic explosion events and storm events, as well as types of resource areas and paleotectonic evolution. By means of the isochronous theory of the Cosmos-Earth System periodicity and based on long-excentricity and periodicity, the authors elaborately studied the paleogeographic evolution of the aulacogen of the Sino-Korean plate, the oolitic beach platform formation, the development of foreland basin and continental rift valley basin, and reconstructed the evolution of tectonic paleogeography and stratigraphic framework in the Sino-Korean plate in terms of evolutionary maps. Finally, the authors gave a profound discussion on the formation and development of molar-tooth carbonates, phosphorites and source rocks.

  9. Wettability Alteration of Sandstone and Carbonate Rocks by Using ZnO Nanoparticles in Heavy Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Masoumeh Tajmiri

    2015-10-01

    Full Text Available Efforts to enhance oil recovery through wettability alteration by nanoparticles have been attracted in recent years. However, many basic questions have been ambiguous up until now. Nanoparticles penetrate into pore volume of porous media, stick on the core surface, and by creating homogeneous water-wet area, cause to alter wettability. This work introduces the new concept of adding ZnO nanoparticles by an experimental work on wettability alteration and oil recovery through spontaneous imbibition mechanism. Laboratory tests were conducted in two experimental steps on four cylindrical core samples (three sandstones and one carbonate taken from a real Iranian heavy oil reservoir in Amott cell. In the first step, the core samples were saturated by crude oil. Next, the core samples were flooded with nanoparticles and saturated by crude oil for about two weeks. Then, the core samples were immersed in distilled water and the amount of recovery was monitored during 30 days for both steps. The experimental results showed that oil recovery for three sandstone cores changed from 20.74, 4.3, and 3.5% of original oil in place (OOIP in the absence of nanoparticles to 36.2, 17.57, and 20.68% of OOIP when nanoparticles were added respectively. Moreover, for the carbonate core, the recovery changed from zero to 8.89% of OOIP by adding nanoparticles. By the investigation of relative permeability curves, it was found that by adding ZnO nanoparticles, the crossover-point of curves shifted to the right for both sandstone and carbonate cores, which meant wettability was altered to water- wet. This study, for the first time, illustrated the remarkable role of ZnO nanoparticles in wettability alteration toward more water-wet for both sandstone and carbonate cores and enhancing oil recovery.

  10. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Marte

    2013-05-31

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in

  11. The effect of carbon dioxide during the desulfurization of flue gas with Mardin-Mazidagi phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Melike Sinirkaya; Hatice Bayrakceken; A. Kadir Ozer; M. Sahin Gulaboglu [Ataturk University, Erzurum (Turkey). Department of Chemical Engineering

    2008-11-15

    The effects of temperature, CO{sub 2} concentration and particle size on simultaneous calcination/sulfation of Mardin-Mazidagi phosphate rock in fluidized-bed reactor were investigated. For this, a raw sample was exposed to calcination and sulfation processes in a fluidized-bed reactor to determine the effects of parameters by using a model gas mixture similar to the flue gas composition. The calcination ratio increased with increasing temperature and decreasing particle size, but decreased with increasing CO{sub 2} concentration. In sulfation process, however, sulphate conversion ratio increased with increasing CO{sub 2} ratio and decreased with decreasing particle size. The sulfation reaction is well represented by the shrinking core model and can be divided into two regions with different rate controlling step. For low conversions, the controlling step was found to be chemical reaction at the interface, but the diffusion through the product layer for high conversion. The activation energies for the chemical reaction at the interface and diffusion through the product layer cases were calculated as 100 and 296 kJ mol{sup -1}, respectively. 23 refs., 13 figs., 1 tab.

  12. Recreating Rocks

    DEFF Research Database (Denmark)

    Posth, Nicole R

    2008-01-01

    Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers.......Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers....

  13. The use of thick-walled hollow cylinder creep tests for evaluating flow criteria for rock salt

    International Nuclear Information System (INIS)

    Morgan, H.S.; Wawersik, W.R.

    1990-01-01

    Finite element simulations of two laboratory creep tests on thick-walled hollow cylinders of rock salt are evaluated to determine if such bench-scale experiments can be used to establish applicability of either von Mises or Tresca stress measures and associated flow conditions. In the tests, the cylinders were loaded axially and pressurized both internally and externally to produce stress fields similar to those found around underground excavations in rock salt. Several different loading stages were used in each test. The simulations show that for each of two creep models studied, quite different deformations of the cylinders are predicted with the Mises and Tresca flow criteria, especially if friction between the cylinders and axial loading platens is ignored. When friction is included in the simulations, the differences in deformation are changed but are sill clearly distinguishable. 10 refs., 10 figs

  14. HgCl{sub 2} sorption on lignite activated carbon: Analysis of fixed-bed results

    Energy Technology Data Exchange (ETDEWEB)

    Mibeck, Blaise A.F.; Olson, Edwin S.; Miller, Stanley J. [University of North Dakota Energy and Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018 (United States)

    2009-11-15

    Factors that influence kinetic reactivity and equilibrium between elemental mercury, carbon, and flue gas components have been the focus of numerous studies. This study pertains to recent bench-scale fixed-bed tests in which activated carbon was exposed to HgCl{sub 2} in a flue gas composition typical of an unscrubbed eastern bituminous coal. Results are discussed in light of a refined binding site model based on the zigzag carbene structures recently proposed for electronic states at the edges of the carbon graphene layers. (author)

  15. A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils

    Directory of Open Access Journals (Sweden)

    L. Cécillon

    2018-05-01

    Full Text Available Changes in global soil carbon stocks have considerable potential to influence the course of future climate change. However, a portion of soil organic carbon (SOC has a very long residence time ( >  100 years and may not contribute significantly to terrestrial greenhouse gas emissions during the next century. The size of this persistent SOC reservoir is presumed to be large. Consequently, it is a key parameter required for the initialization of SOC dynamics in ecosystem and Earth system models, but there is considerable uncertainty in the methods used to quantify it. Thermal analysis methods provide cost-effective information on SOC thermal stability that has been shown to be qualitatively related to SOC biogeochemical stability. The objective of this work was to build the first quantitative model of the size of the centennially persistent SOC pool based on thermal analysis. We used a unique set of 118 archived soil samples from four agronomic experiments in northwestern Europe with long-term bare fallow and non-bare fallow treatments (e.g., manure amendment, cropland and grassland as a sample set for which estimating the size of the centennially persistent SOC pool is relatively straightforward. At each experimental site, we estimated the average concentration of centennially persistent SOC and its uncertainty by applying a Bayesian curve-fitting method to the observed declining SOC concentration over the duration of the long-term bare fallow treatment. Overall, the estimated concentrations of centennially persistent SOC ranged from 5 to 11 g C kg−1 of soil (lowest and highest boundaries of four 95 % confidence intervals. Then, by dividing the site-specific concentrations of persistent SOC by the total SOC concentration, we could estimate the proportion of centennially persistent SOC in the 118 archived soil samples and the associated uncertainty. The proportion of centennially persistent SOC ranged from 0.14 (standard deviation

  16. Art Rocks with Rock Art!

    Science.gov (United States)

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  17. Research to lessen the amounts of curing agents in processed meat through use of rock salt and carbon monoxide

    Science.gov (United States)

    Sakata, R.; Takeda, S.; Kinoshita, Y.; Waga, M.

    2017-09-01

    This study was carried out to examine the reddening of meat products due to the addition of natural yellow salt (YS) and carbon monoxide (CO). Following YS or NaCl addition at 2% to pork subsequent to nitrite (0∼100 ppm) treatment, color development due to this addition was analyzed visually. Heme pigment content in the meat was also determined spectrophotometrically. YS was found to bring about greater reddening than NaCl, indicating residual nitrite and nitrate content to be significantly higher in meat containing YS, through the amount of either was quite small. The amount of nitrite required for a red color to develop was noted to vary significantly from one meat product to another. CO treatment of pork caused the formation of carboxy myoglobin (COMb) with consequent reddening of the meat. COMb was shown to be heat-stable and form stably at pH 5.0 to ∼8.0 and to be extractable with water, but was barely extractable at all with acetone. Nitric oxide was found to have greater affinity toward myoglobin (Mb) than CO. Nitrosyl Mb was noted to be stable in all meat products examined. CO was seen to be capable of controlling the extent of lipid oxidation.

  18. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage.

    Science.gov (United States)

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu

    2018-03-20

    Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.

  19. Rock Physics

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2017-01-01

    Rock physics is the discipline linking petrophysical properties as derived from borehole data to surface based geophysical exploration data. It can involve interpretation of both elastic wave propagation and electrical conductivity, but in this chapter focus is on elasticity. Rock physics is based...... on continuum mechanics, and the theory of elasticity developed for statics becomes the key to petrophysical interpretation of velocity of elastic waves. In practice, rock physics involves interpretation of well logs including vertical seismic profiling (VSP) and analysis of core samples. The results...

  20. Rocking pneumonia

    OpenAIRE

    Rijkers, Ger T.; Rodriguez Gomez, Maria

    2017-01-01

    Ever since Chuck Berry coined the term “rocking pneumonia” in his 1956 song “Roll over Beethoven”, pneumonia has been mentioned frequently in modern blues and rock songs. We analyzed the lyrics of these songs to examine how various elements of pneumonia have been represented in popular music, specifically the cause of pneumonia, the risk groups, comorbidity (such as the boogie woogie flu), the clinical symptoms, and treatment and outcome. Up to this day, songwriters suggest that pneumonia is ...

  1. Epigenetic alterations of sedimentary rocks at deposits

    International Nuclear Information System (INIS)

    Komarova, G.V.; Kondrat'eva, I.A.; Zelenova, O.I.

    1980-01-01

    Notions are explained, and technique for studying epigenetic alterations of sedimentary rocks at uranium deposits is described. Main types of epigenetic transformations and their mineralogic-geochemical characteristics are considered. Rock alterations, accompanying uranium mineralization, can be related to 2 types: oxidation and reduction. The main mineralogic-geochemical property of oxidation transformations is epigenetic limonitization. Stratal limonitization in primary grey-coloured terrigenic rocks and in epigenetically reduced (pyritized) rocks, as well as in rock, subjected to epigenetic gleying, are characterized. Reduction type of epigenetic transformations is subdivided into sulphidic and non-sulphidic (gley) subtypes. Sulphidic transformations in grey-coloured terrigenic rocks with organic substance of carbonic row, in rocks, containing organic substance of oil row, sulphide transformations of sedimentary rocks, as well as gley transformations, are considered

  2. Intellektuaalne rock

    Index Scriptorium Estoniae

    2007-01-01

    Briti laulja-helilooja ja näitleja Toyah Willcox ning Bill Rieflin ansamblist R.E.M. ja Pat Mastelotto King Krimsonist esinevad koos ansamblitega The Humans ja Tuner 25. okt. Tallinnas Rock Cafés ja 27. okt Tartu Jaani kirikus

  3. Igneous Rocks

    Science.gov (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  4. Rock solidification method

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Funakoshi, Toshio; Inagaki, Yuzo; Hashimoto, Yasuhide.

    1985-01-01

    Purpose: To convert radioactive wastes into the final state for storage (artificial rocks) in a short period of time. Method: Radioactive burnable wastes such as spent papers, cloths and oils and activated carbons are burnt into ashes in a burning furnace, while radioactive liquid wastes such as liquid wastes of boric acid, exhausted cleaning water and decontaminating liquid wastes are powderized in a drying furnace or calcining furnace. These powders are joined with silicates as such as white clay, silica and glass powder and a liquid alkali such as NaOH or Ca(OH) 2 and transferred to a solidifying vessel. Then, the vessel is set to a hydrothermal reactor, heated and pressurized, then taken out about 20 min after and tightly sealed. In this way, radioactive wastes are converted through the hydrothermal reactions into aqueous rock stable for a long period of time to obtain solidification products insoluble to water and with an extremely low leaching rate. (Ikeda, J.)

  5. White Rock

    Science.gov (United States)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  6. Rock stresses (Grimsel rock laboratory)

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, S.; Braeuer, V.; Gloeggler, W.

    1989-01-01

    On the research and development project 'Rock Stress Measurements' the BGR has developed and tested several test devices and methods at GTS for use in boreholes at a depth of 200 m and has carried out rock mechanical and engineering geological investigations for the evaluation and interpretation of the stress measurements. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on hollow cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure and vertical stresses which agree well with the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are generally lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (orig./HP) [de

  7. Thermal Inertia of Rocks and Rock Populations

    Science.gov (United States)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  8. Serpentinization and carbonation of pristine continental ultramafic rocks and applications to the oceanic crust; H2O-CO2 alteration of dunites and re-distribution of Ni-Cu-PGE in sulphide deposits

    Science.gov (United States)

    Grant, Thomas; McEnroe, Suzanne; Eske Sørensen, Bjørn; Larsen, Rune; Pastore, Zeudia; Rune Grannes, Kim; Nikolaisen, Even

    2017-04-01

    Here, we document carbonation and serpentinization within a suite of ultramafic rocks from a continental setting. These ultramafic rocks vary from pristine dunites to varying degrees of serpentinization which locally penetrates the ultramafic complex. Hence, it allows us to observe a number of delicate serpentinization and carbonation reactions, otherwise lost during more extensive alteration or tectonic events. We use a multi-disciplinary approach using petrographic, EPMA, thermodynamic modelling and geophysical data to reveal how the initial stages of serpentization and carbonation in dunites affects the distribution of economic to sub-economic deposits of Ni-Cu and PGE. The data can then be applied to oceanic crust. The samples are dunites and poikilitic wehrlites from the Reinfjord Ultramafic complex, Seiland Igneous Province Northern Norway. The complex formed through crystallization of picritic melts in the lower continental crust. The dunites contain small amounts of interstitial clinopyroxene, sulphides and spinel, with local enrichments in Ni, Cu and PGE. Late magmatic CO2-H2O-S fluids reacted with the dunite forming clots of amphibole + dolomite + sulphides + enstatite, reaction rims of enstatite + dolomite, and inclusions trails of dolomite + enstatite + magnetite + CO2 fluid. Thermodynamic modelling reveals that these textures formed at pressures of >12 kbar and temperatures 850-950 °C, which would be consistent with the late magmatic history of the Reinfjord complex. The clots and reactions have local association with enrichments in gold-rich PGMs. A second stage of alteration involved H2O-dominated fluids. These formed predominantly lizardite serpentinization, as is often concentrated within highly localized fracture zones. Thermodynamic modelling shows that these formed serpentinization interacted with the earlier formed carbonate bearing assemblages leading to the formation of serpentinite, native copper and symplectites of brucite + calcite. The

  9. Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters

    Science.gov (United States)

    Swanson, Sharon M.; Enomoto, Catherine B.; Dennen, Kristin O.; Valentine, Brett J.; Cahan, Steven M.

    2017-02-10

    In 2010, the U.S. Geological Survey (USGS) assessed Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups and their equivalent units for technically recoverable, undiscovered hydrocarbon resources underlying onshore lands and State Waters of the Gulf Coast region of the United States. This assessment was based on a geologic model that incorporates the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico basin; the TPS was defined previously by the USGS assessment team in the assessment of undiscovered hydrocarbon resources in Tertiary strata of the Gulf Coast region in 2007. One conventional assessment unit (AU), which extends from south Texas to the Florida panhandle, was defined: the Fredericksburg-Buda Carbonate Platform-Reef Gas and Oil AU. The assessed stratigraphic interval includes the Edwards Limestone of the Fredericksburg Group and the Georgetown and Buda Limestones of the Washita Group. The following factors were evaluated to define the AU and estimate oil and gas resources: potential source rocks, hydrocarbon migration, reservoir porosity and permeability, traps and seals, structural features, paleoenvironments (back-reef lagoon, reef, and fore-reef environments), and the potential for water washing of hydrocarbons near outcrop areas.In Texas and Louisiana, the downdip boundary of the AU was defined as a line that extends 10 miles downdip of the Lower Cretaceous shelf margin to include potential reef-talus hydrocarbon reservoirs. In Mississippi, Alabama, and the panhandle area of Florida, where the Lower Cretaceous shelf margin extends offshore, the downdip boundary was defined by the offshore boundary of State Waters. Updip boundaries of the AU were drawn based on the updip extent of carbonate rocks within the assessed interval, the presence of basin-margin fault zones, and the presence of producing wells. Other factors evaluated were the middle

  10. SAFIRA project B.3.3: in-situ-treatment of contaminated ground water by catalytic oxidation. Final report; Sanierungsforschung in regional kontaminierten Aquiferen (SAFIRA). Projekt B.3.3: In situ-Behandlung von kontaminierten Grundwaessern durch katalytische Oxidation. Teilvorhaben 1: Untersuchungen im Labormassstab. Teilvorhaben 2: Tests in der bench-scale-Anlage und Teilvorhaben 3: Die Erprobung in der Pilotanlage am Modellstandort. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, J.; Haentzschel, D.; Freier, U.; Wecks, M.

    2003-06-27

    A new technology for treatment of contaminated ground water was developed. In this process heterogeneous catalysts (full metal catalyst, mixed oxide catalyst or iron-containing zeolites) in combination with hydrogen peroxide are used. In the reactor catalytic oxidation and aerob biological degradation occur simultaneously. A complete degradation of chlorobenzene was observed in a bench-scale-equipment (2 liter) and also in the pilot plant at the model site located in Bitterfeld (30 liter reactor). The technology can be applied to the ground and waste water treatment. (orig.) [German] Fuer die Behandlung von Grundwaessern, die mit organischen Schadstoffen belastet sind, wurde ein neuartiges Verfahren entwickelt. Bei der katalytischen Oxidation werden heterogene Katalysatoren in Form von Vollmetall-, Mischoxid- und Traegerkatalysatoren in Verbindung mit Wasserstoffperoxid als Oxidationsmittel eingesetzt. In den Katalysereaktoren laufen die heterogen-katalytische Oxidation und der aerob-biologische Abbau nebeneinander ab. Es werden synergistische Effekte erzielt. Mit dem Verfahren wurde in einer bench-scale-Angle (2 Liter) und in der Pilotanlage am Modellstandort in Bitterfeld (30 l Reaktor) der Schadstoff Chlorbenzol vollstaendig umgesetzt. Das Verfahren kann zur Grund- und Abwasserbehandlung eingesetzt werden. (orig.)

  11. Element mobilization and immobilization from carbonate rocks between CO 2 storage reservoirs and the overlying aquifers during a potential CO 2 leakage

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew; Kukkadapu, Ravi K.; Qafoku, Odeta; Bacon, Diana H.; Brown, Christopher F.

    2018-04-01

    Despite the numerous studies on changes within the reservoir following CO2 injection and the effects of CO2 release into overlying aquifers, little or no literature is available on the effect of CO2 release on rock between the storage reservoirs and subsurface. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO2, liquid analysis showed an increase of major elements (e.g., Ca, and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower concentrations were observed in N2 controls. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.

  12. Characterisation of carbonate rocks from near-surface cross-hole and reflection GPR investigations - A case study from southeast Zealand, Denmark

    DEFF Research Database (Denmark)

    Nielsen, Lars; Looms, Majken Caroline; Hansen, Thomas Mejer

    successful in generating well-defined statistical parameters for the GPR velocity field of the subsurface than the typical strategy in which the total rock section covered by the cross-hole data is regarded as the same type of medium. Modelling strategies in which porosity data from the boreholes...

  13. Oil source rocks in the Adiyaman area, southeast Turkey

    Science.gov (United States)

    Soylu, Cengiz

    In the Adiyaman area, southeast Turkey, two carbonate source rock units, the Karababa-A Member and the Karabogaz Formation, are identified. The maturity levels of the source rock units increase towards the north and the west. Both the Karababa-A Member and the Karabogaz Formation are good to excellent oil-source rocks with widespread "kitchen areas".

  14. Modified IRC bench-scale arc melter for waste processing

    International Nuclear Information System (INIS)

    Eddy, T.L.; Sears, J.W.; Grandy, J.D.; Kong, P.C.; Watkins, A.D.

    1994-03-01

    This report describes the INEL Research Center (IRC) arc melter facility and its recent modifications. The arc melter can now be used to study volatilization of toxic and high vapor pressure metals and the effects of reducing and oxidizing (redox) states in the melt. The modifications include adding an auger feeder, a gas flow control and monitoring system, an offgas sampling and exhaust system, and a baghouse filter system, as well as improving the electrode drive, slag sampling system, temperature measurement and video monitoring and recording methods, and oxidation lance. In addition to the volatilization and redox studies, the arc melter facility has been used to produce a variety of glass/ceramic waste forms for property evaluation. Waste forms can be produced on a daily basis. Some of the melts performed are described to illustrate the melter's operating characteristics

  15. 100 Area soil washing bench-scale test procedures

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gerber, M.A.; Mattigod, S.V.; Serne, R.J.

    1993-03-01

    This document describes methodologies and procedures for conducting soil washing treatability tests in accordance with the 100 Area Soil Washing Treatability Test Plan (DOE-RL 1992, Draft A). The objective of this treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. These data will be primarily used for determining feasibility of the individual unit operations and defining the requirements for a system, or systems, for pilot-scale testing

  16. Development of continuous bench scale unit for direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wang Lai [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1996-12-31

    Batch coal liquefaction experiments using tubing bombs and continuous experiments by cell liquefaction test facility were carried out. The main purpose was to maximize the coal liquefaction yields by improving the activity of coal dissolution catalysts which are oil soluble transition metal naphthenate and to supplement the incomplete research results. In the meantime, the study on the reaction characteristics of coal liquefaction and coal liquid upgrading catalyst upon sulfiding conditions and phosphorous addition have been conducted (author). 102 refs., 35 figs.

  17. Lab and Bench-Scale Pelletization of Torrefied Wood Chips

    DEFF Research Database (Denmark)

    Shang, Lei; Nielsen, Niels Peter K.; Stelte, Wolfgang

    2013-01-01

    Combined torrefaction and pelletization is used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. In the present study, a single-pellet press tool was used to screen for the effects of pellet die temperature, moisture cont...... of the torrefied pellets was higher and the particle size distribution after grinding the pellets was more uniform compared to conventional wood pellets....

  18. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  19. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  20. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2) TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2) TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn(sub 2) TiO(sub 4)+ 2H(sub 2)S(yields) 2ZnS+ TiO(sub 2)+ 2H(sub 2)O; Regeneration: 2ZnS+ TiO(sub 2)+ 3O(sub 2)(yields) Zn(sub 2) TiO(sub 4)+ 2SO(sub 2) The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  1. Thymol Hydrogenation in Bench Scale Trickle Bed Reactor

    Czech Academy of Sciences Publication Activity Database

    Dudas, J.; Hanika, Jiří; Lepuru, J.; Barkhuysen, M.

    2005-01-01

    Roč. 19, č. 3 (2005), s. 255-262 ISSN 0352-9568 Institutional research plan: CEZ:AV0Z40720504 Keywords : thymol hydrogenation * trickle bed reactor * gas-liquid-solid reaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.632, year: 2005

  2. Bench-Scale Studies with Argentine Ion Exchange Material

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A.

    2002-01-01

    The United States Department of Energy (DOE), as well as international atomic energy commission, facilities use ion exchange materials for purification of aqueous streams in the nuclear industry. Unfortunately, the use of the ion exchange materials creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resins often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposable alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces

  3. Development of continuous bench scale unit for direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wang Lai [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    Batch coal liquefaction experiments using tubing bombs and continuous experiments by cell liquefaction test facility were carried out. The main purpose was to maximize the coal liquefaction yields by improving the activity of coal dissolution catalysts which are oil soluble transition metal naphthenate and to supplement the incomplete research results. In the meantime, the study on the reaction characteristics of coal liquefaction and coal liquid upgrading catalyst upon sulfiding conditions and phosphorous addition have been conducted (author). 102 refs., 35 figs.

  4. Implementation of Canflex bundle manufacture - from 'bench scale' to production

    International Nuclear Information System (INIS)

    Pant, A.

    1999-01-01

    Zircatec Precision Industries (ZPI) has been involved with the development of the 43 element Canflex bundle design since 1986. This development included several 'prototype' campaigns involving the manufacture of small quantities of test bundles using enriched fuel. Manufacturing and inspection methods for this fuel were developed at ZPI as the design progressed. The most recent campaign involved the production of 26 bundles of the final Canflex design for a demonstration irradiation in the Point Lepreau Generating Station. This presentation will explore issues pertaining to the introduction of a new product line from initial trial quantities to full production levels. The Canflex fuel experience and a brief review of development efforts will be used as an example. (author)

  5. Goethite Bench-scale and Large-scale Preparation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

  6. Bench-scale/field-scale interpretations: Session overview

    International Nuclear Information System (INIS)

    Cunningham, A.B.; Peyton, B.M.

    1995-04-01

    In situ bioremediation involves complex interactions between biological, chemical, and physical processes and requires integration of phenomena operating at scales ranging from that of a microbial cell (10 -6 ) to that of a remediation site (10 to 1000 m). Laboratory investigations of biodegradation are usually performed at a relatively small scale, governed by convenience, cost, and expedience. However, extending the results from a laboratory-scale experimental system to the design and operation of a field-scale system introduces (1) additional mass transport mechanisms and limitations; (2) the presence of multiple phases, contants, and competing microorganisms (3) spatial geologic heterogeneities; and (4) subsurface environmental factors that may inhibit bacterial growth such as temperature, pH, nutrient, or redox conditions. Field bioremediation rates may be limited by the availability of one of the necessary constituents for biotransformation: substrate, contaminant, electron acceptor, nutrients, or microorganisms capable of degrading the target compound. The factor that limits the rate of bioremediation may not be the same in the laboratory as it is in the field, thereby leading, to development of unsuccessful remediation strategies

  7. Electrodialytic remediation of air pollution control residues in bench scale

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ferreira, Celia; Hansen, Henrik K.

    2008-01-01

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) is considered a hazardous waste due to its alkalinity and high content of salts and mobile heavy metals. Various solutions for the handling of APC-residue exist in different regions; however, most commercial soluti...

  8. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  9. Rollerjaw Rock Crusher

    Science.gov (United States)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  10. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that

  11. Study on investigation and evaluation methods of deep seated sedimentary rocks. Chemical weathering, pore water squeezing and relationships of physical properties of sedimentary rocks

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Suzuki, Koichi

    2006-01-01

    Chemical weathering, porewater squeezing and physical properties for the sedimentary rocks were examined. Chemical weathering potential of rocks was described by the sulfur as a acceleration factor of weathering and carbonate contents as a neutralization factor of it. The carbonate contents in the rocks were measured accurately by the gas pressure measurement method. Pore water squeezing method was applied for the semi-hard sedimentary rocks (Opalinusclay). The chemical change of extracted pore water under high pressure conditions was estimated. Physical property of sedimentary rocks have relationship among the porosity and permeability and resistivity coefficient in the same rock types. It is possible to estimate the water permeability from the geophysical tests. (author)

  12. Permanganate diffusion and reaction in sedimentary rocks.

    Science.gov (United States)

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Rock formation characterization for CO2-EOR and carbon geosequestration; 3D seismic amplitude and coherency anomalies, Wellington Field, Kansas, USA

    Science.gov (United States)

    Ohl, D.; Raef, A.; Watnef, L.; Bhattacharya, S.

    2011-01-01

    In this paper, we present a workflow for a Mississipian carbonates characterization case-study integrating post-stack seismic attributes, well-logs porosities, and seismic modeling to explore relating changes in small-scale "lithofacies" properties and/or sub-seismic resolution faulting to key amplitude and coherency 3D seismic attributes. The main objective of this study is to put emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2-EOR in preparation for future carbon geosequestration in a depleting reservoir and a deep saline aquifer. The extracted 3D seismic coherency attribute indicated anomalous features that can be interpreted as a lithofacies change or a sub-seismic resolution faulting. A 2D finite difference modeling has been undertaken to understand and potentially build discriminant attributes to map structural and/or lithofacies anomalies of interest especially when embarking upon CO2-EOR and/or carbon sequestration monitoring and management projects. ?? 2011 Society of Exploration Geophysicists.

  14. Source rock potential of middle cretaceous rocks in Southwestern Montana

    Science.gov (United States)

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  15. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  16. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    International Nuclear Information System (INIS)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-01-01

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  17. The source rock characters of U-rich granite

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Debao, He [CNNC Key Laboratory of Uranium Resources Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology (China)

    2012-03-15

    This paper discusses the stratum composition, lithological association, uranium content of crust and the activation, migration, concentration of uranium at each tectonic cycle in South China. The authors point out that the source rock of U-rich granite is U-rich continental crust which is rich in Si, Al and K. The lithological association is mainly composed of terrestrial clastic rocks formation of mudstone and sandstone, mingled with intermediate-acidic, mafic pyroclastic rocks and carbonate rocks formation. During tectonic movements, the rocks had undergone regional metamorphism, migmatitization, granitization, and formed U-rich granites finally. (authors)

  18. The source rock characters of U-rich granite

    International Nuclear Information System (INIS)

    Feng Mingyue; He Debao

    2012-01-01

    This paper discusses the stratum composition, lithological association, uranium content of crust and the activation, migration, concentration of uranium at each tectonic cycle in South China. The authors point out that the source rock of U-rich granite is U-rich continental crust which is rich in Si, Al and K. The lithological association is mainly composed of terrestrial clastic rocks formation of mudstone and sandstone, mingled with intermediate-acidic, mafic pyroclastic rocks and carbonate rocks formation. During tectonic movements, the rocks had undergone regional metamorphism, migmatitization, granitization, and formed U-rich granites finally. (authors)

  19. Removal of 2,4-Dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon

    OpenAIRE

    Dehghani, Mansooreh; Nasseri, Simin; Karamimanesh, Mojtaba

    2014-01-01

    Background Low cost 2,4-Dichlorophenolyxacetic acid (2,4-D) widely used in controlling broad-leafed weeds is frequently detected in water resources. The main objectives of this research were focused on evaluating the feasibility of using granular activated carbon modified with acid to remove 2,4-D from aqueous phase, determining its removal efficiency and assessing the adsorption kinetics. Results The present study was conducted at bench-scale method. The influence of different pH (3–9), the ...

  20. Rocks Can Wow? Yes, Rocks Can Wow!

    Science.gov (United States)

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  1. Ferroan Dolomitization by Seawater Interaction with Mafic Igneous Dikes and Carbonate Host Rock at the Latemar Platform, Dolomites, Italy: Numerical Modeling of Spatial, Temporal, and Temperature Data

    Directory of Open Access Journals (Sweden)

    K. Blomme

    2017-01-01

    Full Text Available Numerous publications address the petrogenesis of the partially dolomitized Latemar carbonate platform, Italy. A common factor is interpretation of geochemical data in terms of heating via regional igneous activity that provided kinetically favorable conditions for replacement dolomitization. New field, petrographic, XRD, and geochemical data demonstrate a spatial, temporal, and geochemical link between replacement dolomite and local mafic igneous dikes that pervasively intrude the platform. Dikes are dominated by strongly altered plagioclase and clinopyroxene. Significantly, where ferroan dolomite is present, it borders dikes. We hypothesize that seawater interacted with mafic minerals, causing Fe enrichment in the fluid that subsequently participated in dolomitization. This hypothesis was tested numerically through thermodynamic (MELTS, Arxim-GEM and reactive flow (Arxim-LMA simulations. Results confirm that seawater becomes Fe-enriched during interaction with clinopyroxene (diopside-hedenbergite and plagioclase (anorthite-albite-orthoclase solid solutions. Reaction of modified seawater with limestone causes ferroan and nonferroan replacement dolomitization. Dolomite quantities are strongly influenced by temperature. At 40 to 80°C, ferroan dolomite proportions decrease with increasing temperature, indicating that Latemar dolomitization likely occurred at lower temperatures. This relationship between igneous dikes and dolomitization may have general significance due to the widespread association of carbonates with rifting-related igneous environments.

  2. Rock slope design guide.

    Science.gov (United States)

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  3. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  4. The Rock Cycle

    Science.gov (United States)

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  5. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  6. Rock History and Culture

    OpenAIRE

    Gonzalez, Éric

    2013-01-01

    Two ambitious works written by French-speaking scholars tackle rock music as a research object, from different but complementary perspectives. Both are a definite must-read for anyone interested in the contextualisation of rock music in western popular culture. In Une histoire musicale du rock (i.e. A Musical History of Rock), rock music is approached from the point of view of the people – musicians and industry – behind the music. Christophe Pirenne endeavours to examine that field from a m...

  7. A Cenozoic record of the equatorial Pacific carbonate compensation depth

    NARCIS (Netherlands)

    Pälike, H.; Lyle, M.W.; Nishi, H.; Raffi, I.; Ridgwell, A.; Gamage, K.; Klaus, A.; Acton, G.; Anderson, L.; Backman, J.; Baldauf, J.; Beltran, C.; Bohaty, S.M.; Bown, P.; Busch, W.; Channell, J.E.T.; Chun, C.O.J.; Delaney, M.; Dewangan, P.; Jones, T.D.; Edgar, K.M.; Evans, H.; Fitch, P.; Foster, G.L.; Gussone, N.; Hasegawa, H.; Hathorne, E.C.; Hayashi, H.; Herrle, J.O.; Holbourn, A.; Hovan, S.; Hyeong, K.; Iijima, K.; Ito, T.; Kamikuri, S.; Kimoto, K.; Kuroda, J.; Leon-Rodriguez, L.; Malinverno, A.; Moore, T.C.; Murphy, B.H.; Murphy, D.P.; Nakamura, H.; Organe, K.; Ohneiser, C.; Richter, C.; Robinson, R.; Rohling, E.J.; Romero, O.; Sawada, K.; Scher, H.; Schneider, L.; Sluijs, A.; Takata, H.; Tian, J.; Tsujimoto, A.; Wade, B.S.; Westerhold, T.; Wilkens, R.; Williams, T.; Wilson, P.A.; Yamamoto, Y.; Yamamoto, S.; Yamazaki, T.; Zeebe, R.E.

    2012-01-01

    Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carboninput fromvolcanicandmetamorphicoutgassingandits removalbyweathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The

  8. Effect of nutrient sources on bench scale vinegar production using response surface methodology Efeito das fontes de nutrientes sobre a produção de vinagre em escala de bancada, usando-se a metodologia de superfície de resposta

    Directory of Open Access Journals (Sweden)

    Joelma M. Ferreira

    2005-03-01

    Full Text Available The present work aims to evaluate on a bench scale, the effects of nitrogen and phosphorous nutrient source concentrations in vinegar production, a process that is used by small scale industries in the State of Paraiba. The response surface methodology has been utilized for modeling and optimization of the fermentation process. Initially a 2³ complete factorial design was used, where the effects of initial concentrations of ethyl alcohol, phosphorous and nitrogen sources were observed. After this analysis the concentration range of the nutrient variables were extended and a two level plus a star configuration factorial experimental design was performed. The experimental values are well represented by the linear and quadratic model equations obtained. The optimum concentration of ethanol was 4% in which the yield and the productivity of the acetic acid were maximized to the values of 70% and 0.87 g L-1 h-1 respectively, for a 24 hours fermentation period. The evaluation of the quadratic models showed that the yield of vinegar is maximized from 28.1 to 51.04% and the productivity from 0.69 to 1.29 g L-1 h-1 when the concentration of the nitrogen nutrient in the medium is increased from 0.2 to 2.3 g mL-1. Thus, at the optimized nitrogen nutrient concentration both the yield and the productivity of the vinegar are increased by 1.85 times.Objetivou-se com o presente trabalho, estudar em escala de bancada, os efeitos de concentrações de fontes dos nutrientes nitrogênio e fósforo sobre a produção de vinagre de álcool, um processo muito utilizado nas indústrias de pequeno porte do Estado da Paraíba. A metodologia de superfície de resposta foi usada na modelagem e otimização de processo de fermentação acética. Inicialmente, a metodologia de planejamento fatorial completo 2³ foi utilizada, onde os efeitos das concentrações iniciais de etanol, de fontes de fósforo e de nitrogênio foram observados. Após esta análise as faixas das

  9. Radiocarbon dating of ancient rock paintings

    Energy Technology Data Exchange (ETDEWEB)

    Ilger, W.A.; Hyman, M.; Rowe, M.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Southon, J. [Lawrence Livermore National Lab., CA (United States)

    1995-06-20

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  10. Radiocarbon dating of ancient rock paintings

    International Nuclear Information System (INIS)

    Ilger, W.A.; Hyman, M.; Rowe, M.W.

    1995-01-01

    This report presents progress made on a technique for 14 C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions

  11. Experimental Studies on the Interaction of scCO2 and scCO2-SO2 With Rock Forming Minerals at Conditions of Geologic Carbon Storages - First Results

    Science.gov (United States)

    Erzinger, J.; Wilke, F.; Wiersberg, T.; Vasquez Parra, M.

    2010-12-01

    Co-injection of SO2 (plus possibly NOx and O2) during CO2 storage in deep saline aquifers may cause stronger brine acidification than CO2 alone. Because of that, we investigate chemical corrosion of rocks and rock-forming minerals with impure supercritical CO2 (scCO2) at possible storage conditions of >73.7 bar and >31°C. Contaminates were chosen with respect to the composition of CO2 captured industrially from coal-fired power plants using the oxyfuel technology. The resulting data should build a base for the long-term prediction of the behavior of CO2 in geologic storage reservoirs. Experiments of up to 1000 hrs duration have been performed with 10 natural mineral concentrates (calcite, dolomite, siderite, anhydrite, hematite, albite, microcline, kaolinite, muscovite, biotite) in 3n NaCl solution and pure scCO2 or scCO2+SO2 (99.5+0.5 vol%). The NaCl reaction fluid resembles the average salinity of deep formation waters of the North German Basin and is not free of oxygen. To increase reaction rates all minerals were ground and the reagents agitated either by stirring or shaking in autoclaves of about one liter in volume. The autoclaves consist of Hastelloy™ or ferromagnetic stainless steel fully coated with PTFE. We used in average 15 g of solids, 700 ml liquid, and the vessels were pressurized up to 100 bars with CO2 or CO2-SO2 mixture. Experiments were run at temperatures up to 90°C. Before, during and after the experiments small amounts fluids were sampled and analyzed for dissolved constituents and pH. Solid phases were characterized by XRF, XRD, and EMPA before and after the experiments. Pure scCO2 corrodes all carbonates, reacts only slightly with anhydrite, albite, and microcline at a minimum pH of 4, and does not recognizably interact with the others. After the experiment, albite has gained in a, not yet fully identified, carbonate phase which might be dawsonite. Reaction fluids of the experiments with scCO2+SO2 have mostly lower pH than using scCO2

  12. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  13. X-ray microtomography application in pore space reservoir rock.

    Science.gov (United States)

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Investigation of the porosity of rocks

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Siitari-Kauppi, M.

    1990-06-01

    Methods for characterizing the nature of rock porosity in conjunction with diffusion experiments, are amongst the primary tools used in repository-site selection investigations. At this time no experimental method, alone, is capable of giving an unambiguous picture of the narrow-aperture pore space in crystalline rock. Methods giving information on overall properties must be complemented by those having high spatial resolution; then the lateral distribution of porosity within the matrix and its association with particular mineral phases or features, such as microfissures, fissure fillings, weathered or altered mineral phases etc, and the identification of diffusion pathways in inhomogeneous rock matrices can be determined. Nonsorbing, nonelectrolytic tracers should be used when one wants to determine rock-typical properties of the internal porosity without interference of interactions with surfaces. Preliminary information on a new method fulfilling these criteria is given. Impregnating rock samples with methylmethacrylate labeled with carbon-14 which, after impregnation, was polymerized by gamma radiation, gave specimens that made preparation of sections suitable for quantification by autoradiographic methods easy. Diffusion experiments can be conducted so that labeled MMA diffuses out of rock specimens into inactive free, MMA. Additional information may be gained by leaching PMMA fractions of lower molecular weight from the matrix

  15. Rock Cycle Roulette.

    Science.gov (United States)

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  16. X-ray microtomography application in pore space reservoir rock

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.F.S.; Lima, I. [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972, Rio de Janeiro (Brazil); Borghi, L. [Geology Department, Geosciences Institute, Federal University of Rio de Janeiro, Brazil. (Brazil); Lopes, R.T., E-mail: ricardo@lin.ufrj.br [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972, Rio de Janeiro (Brazil)

    2012-07-15

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. - Highlights: Black-Right-Pointing-Pointer This study is about porosity parameter in carbonate rocks by 3D X-Ray Microtomography. Black-Right-Pointing-Pointer This study has become useful as data input for modeling reservoir characterization. Black-Right-Pointing-Pointer This technique was able to provide pores, grains and mineralogical differences among the samples.

  17. Rock engineering in Finland

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Contains a large collection of short articles concerned with tunnels and underground caverns and their construction and use. The articles are grouped under the following headings: use of the subsurface space; water supply; waste water services; energy management (includes articles on power stations, district heating and oil storage and an article on coal storage); multipurpose tunnels; waste disposal; transport; shelters; sporting and recreational amenities located in rock caverns; storage facilities; industrial, laboratory, and service facilities; rock foundations; tourism and culture; utilization of rock masses; research on the disposal of nuclear waste; training and research in the field of rock engineering; site investigation techniques; design of structures in rock; construction; the environment and occupational safety; modern equipment technology; underground space in Helsinki.

  18. Relating rock avalanche morphology to emplacement processes

    Science.gov (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  19. Eos Chaos Rocks

    Science.gov (United States)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region. Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  20. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  1. Rock properties data base

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1991-03-01

    As mining companies proceed deeper and into areas whose stability is threatened by high and complex stress fields, the science of rock mechanics becomes invaluable in designing underground mine strata control programs. CANMET's Mining Research Laboratories division has compiled a summary of pre- and post-failure mechanical properties of rock types which were tested to provide design data. The 'Rock Properties Data Base' presents the results of these tests, and includes many rock types typical of Canadian mine environments. The data base also contains 'm' and 's' values determined using Hoek and Brown's failure criteria for both pre- and post-failure conditions. 7 refs., 3 tabs., 9 figs., 1 append.

  2. Eclogite facies rocks

    National Research Council Canada - National Science Library

    Carswell, D. A

    1990-01-01

    ... of eclogite evolution and genesis. The authors present a thorough treatment of the stability relations and geochemistry of these rocks, their intimate association with continental plate collision zones and suture zones...

  3. Rock kinoekraanil / Katrin Rajasaare

    Index Scriptorium Estoniae

    Rajasaare, Katrin

    2008-01-01

    7.-11. juulini kinos Sõprus toimuval filminädalal "Rock On Screen" ekraanile jõudvatest rockmuusikuid portreteerivatest filmidest "Lou Reed's Berlin", "The Future Is Unwritten: Joe Strummer", "Control: Joy Division", "Hurriganes", "Shlaager"

  4. Eclogite facies rocks

    National Research Council Canada - National Science Library

    Carswell, D. A

    1990-01-01

    .... This is the first volume to provide a coherent and comprehensive review of the conditions necessary for the formation of eclogites and eclogite facies rocks and assemblages, and a detailed account...

  5. Solid as a rock

    International Nuclear Information System (INIS)

    Pincus, H.J.

    1984-01-01

    Recent technologic developments have required a more comprehensive approach to the behavior of rock mass or rock substance plus discontinuities than was adequate previously. This work considers the inherent problems in such operations as the storage of hot or cold fluids in caverns and aquifers, underground storage of nuclear waste, underground recovery of heat from hydrocarbon fuels, tertiary recovery of oil by thermal methods, rapid excavation of large openings at shallow to great depths and in hostile environments, and retrofitting of large structures built on or in rock. The standardization of methods for determining rock properties is essential to all of the activities described, for use not only in design and construction but also in site selection and post-construction monitoring. Development of such standards is seen as a multidisciplinary effort

  6. Rock Equity Holdings, LLC

    Science.gov (United States)

    The EPA is providing notice of an Administrative Penalty Assessment in the form of an Expedited Storm Water Settlement Agreement against Rock Equity Holdings, LLC, for alleged violations at The Cove at Kettlestone/98th Street Reconstruction located at 3015

  7. Pop & rock / Berk Vaher

    Index Scriptorium Estoniae

    Vaher, Berk, 1975-

    2001-01-01

    Uute heliplaatide Redman "Malpractice", Brian Eno & Peter Schwalm "Popstars", Clawfinger "A Whole Lot of Nothing", Dario G "In Full Color", MLTR e. Michael Learns To Rock "Blue Night" lühitutvustused

  8. Basic rocks in Finland

    International Nuclear Information System (INIS)

    Piirainen, T.; Gehoer, S.; Iljina, M.; Kaerki, A.; Paakkola, J.; Vuollo, J.

    1992-10-01

    Basic igneous rocks, containing less than 52% SiO 2 , constitute an important part of the Finnish Archaean and Proterozoic crust. In the Archaean crust exist two units which contain the majority of the basic rocks. The Arcaean basic rocks are metavolcanics and situated in the Greenstone Belts of Eastern Finland. They are divided into two units. The greenstones of the lower one are tholeiites, komatiites and basaltic komatiites. The upper consists of bimodal series of volcanics and the basic rocks of which are Fe-tholeiites, basaltic komatiites and komatiites. Proterozoic basic rocks are divided into seven groups according to their ages. The Proterozoic igneous activity started by the volominous basic magmatism 2.44 Ga ago. During this stage formed the layered intrusions and related dykes in the Northern Finland. 2.2 Ga old basic rocks are situated at the margins of Karelian formations. 2.1 Ga aged Fe-tholeiitic magmatic activity is widespread in Eastern and Northern Finland. The basic rocks of 1.97 Ga age group are met within the Karelian Schist Belts as obducted ophiolite complexes but they occur also as tholeiitic diabase dykes cutting the Karelian schists and Archean basement. The intrusions and the volcanics of the 1.9 Ga old basic igneous activity are mostly encountered around the Granitoid Complex of Central Finland. Subjotnian, 1.6 Ga aged tholeiitic diabases are situated around the Rapakivi massifs of Southern Finland, and postjotnian, 1.2 Ga diabases in Western Finland where they form dykes cutting Svecofennian rocks

  9. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  10. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Science.gov (United States)

    Schobben, Martin; van de Velde, Sebastiaan; Gliwa, Jana; Leda, Lucyna; Korn, Dieter; Struck, Ulrich; Vinzenz Ullmann, Clemens; Hairapetian, Vachik; Ghaderi, Abbas; Korte, Christoph; Newton, Robert J.; Poulton, Simon W.; Wignall, Paul B.

    2017-11-01

    Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian-Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-)sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the observed signal of carbon

  11. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Directory of Open Access Journals (Sweden)

    M. Schobben

    2017-11-01

    Full Text Available Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian–Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the

  12. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of molten-carbonate fuel-cell technology. Final report, February-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The objective of the work was to focus on the basic technology for producing molten carbonate fuel cell (MCFC) components. This included the development and fabrication of stable anode structures, preparation of lithiated nickel oxide cathodes, synthesis and characterization of a high surface area (gamma-lithium-aluminate) electrolyte support, pressurized cell testing and modeling of the overall electrolyte distribution within a cell to aid performance optimization of the different cell components. The electrode development program is highlighted by two successful 5000 hour bench-scale tests using stabilized anode structures. One of these provided better performance than in any previous state-of-the-art, bench-scale cell (865 mV at 115 mA/cm/sup 2/ under standard conditions). Pressurized testing at 10 atmosphere of a similar stabilized, high surface area, Ni/Co anode structure in a 300 cm/sup 2/ cell showed that the 160 mA/cm/sup 2/ performance goal of 850 mV on low Btu fuel (80% conversion) can be readily met. A study of the H/sub 2/S-effects on molten carbonate fuel cells showed that ERC's Ni/Co anode provided better tolerance than a Ni/Cr anode. Prelithiated nickel oxide plaques were prepared from materials made by a low temperature and a high temperature powder-production process. The methods for fabricating handleable cathodes of various thicknesses were also investigated. In electrolyte matrix development, accelerated out-of-cell and in-cell tests have confirmed the superior stability of ..gamma..-LiAlO/sub 2/.

  15. Transporting radioactive rock

    International Nuclear Information System (INIS)

    Pearce, G.

    1990-01-01

    The case is made for exempting geological specimens from the IAEA Regulations for Safer Transport of Radioactive Materials. It is pointed out that many mineral collectors in Devon and Cornwall may be unwittingly infringing these regulations by taking naturally radioactive rocks and specimens containing uranium ores. Even if these collectors are aware that these rocks are radioactive, and many are not, few have the necessary equipment to monitor the activity levels. If the transport regulations were to be enforced alarm could be generated and the regulations devalued in case of an accident. The danger from a spill of rock specimens is negligible compared with an accident involving industrial or medical radioactive substances yet would require similar special treatment. (UK)

  16. Geotechnical properties of rock

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, R.; Gorski, B.; Gyenge, M.

    1995-12-31

    The manual is a compilation of the geotechnical properties of many types of rock that are typical of Canadian mining environments. Included are values for density, porosity, compressive and shear wave velocity, uniaxial compressive strength, Young`s modulus, and Poisson`s ratio. The data base contains material constants that were determined using the Hoek and Brown failure criteria for both before and after failure conditions. 76 data sheets of rock properties in Canadian mines are included. 7 refs., 85 figs., 3 tabs.

  17. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    Franklin, J.A.; Dusseault, M.B.

    1991-01-01

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  18. Smart Rocking Armour Units

    OpenAIRE

    Hofland, B.; Arefin, Syed Shamsil; van der Lem, Cock; van gent, Marcel

    2018-01-01

    This paper describes a method to measure the rocking motion of lab-scale armour units. Sensors as found in mobile phones are used. These sensors, data-storage and battery are all embedded in the model units, such that they can be applied without wires attached to them. The technique is applied to double-layer units in order to compare the results to the existing knowledge for this type of armour layers. In contrast to previous research, the gyroscope reading is used to determine the (rocking)...

  19. Rock Hellsinki, Marketing Research

    OpenAIRE

    Todd, Roosa; Jalkanen, Katariina

    2013-01-01

    This paper is a qualitative research about rock and heavy metal music tourism in the capital city of Finland, Helsinki. As Helsinki can be considered the city of contrasts, the silent nature city mixed with urban activities, it is important to also use the potential of the loud rock and heavy metal music contrasting the silence. Finland is known abroad for bands such as HIM, Nightwish, Korpiklaani and Children of Bodom so it would make sense to utilize these in the tourism sector as well. The...

  20. Removal of 226Ra, Fe3+ and Mn2+ from ground water using modified activated carbon

    International Nuclear Information System (INIS)

    Daifullah, A.A.M.

    2003-01-01

    A locally available biomass material, rice husk, was carbonized and activated in a steam/nitrogen flow by the use of a bench-scale fluidized bed reactor. The virgin carbon prepared from rice husk was further treated chemically using an alkali (e.g.10% NaOH and 10% KOH) in order to change the surface basicity of the carbon or oxidized with 30%H 2 O 2 and 10% HNO 3 in order to introduce different oxygen surface complexes. The modified carbons were characterized by FTIR and elemental analysis and investigated for removing unacceptably high concentrations of 326 Ra from ground water. The results showed that the best removal was obtained by the virgin carbon. The effect of process variables such as: contact time, Ph, carbon mass, sorbent surface modification and cation interference (e.g.iron and manganese) on the removal efficiency by the virgin carbon was studied. The data was fitted to Freundlich adsorption equation. Recommended procedures were adapted for complete removal of 226 Ra, Fe 3+ and Mn 2+ from ground water. Treated water quality remained good and no significant external radiation dose was caused to the residents

  1. Hydrological evaluation of five sedimentary rocks for high-level waste disposal

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Kanehiro, B.Y.

    1986-01-01

    Utilizing performance criteria that are based upon siting guidelines issued by DOE for postclosure as well as preclosure conditions, a preliminary hydrologic evaluation and ranking is being conducted to determine the suitability of five sedimentary rocks as potential host rocks for a high-level radioactive waste repository. Based upon both quantitative and qualitative considerations, the hydrological ranking of the rocks in order of their potential as a host rock for the disposal of radioactive wastes would be shale, anhydrock, sandstone, chalk, and carbonates, with the first three rocks being significantly better than the remaining two types

  2. A Rock Retrospective.

    Science.gov (United States)

    O'Grady, Terence J.

    1979-01-01

    The author offers an analysis of musical techniques found in the major rock trends of the 1960s. An annotated list of selected readings and a subject-indexed list of selected recordings are appended. This article is part of a theme issue on popular music. (Editor/SJL)

  3. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  4. Fluids in metamorphic rocks

    NARCIS (Netherlands)

    Touret, J.L.R.

    2001-01-01

    Basic principles for the study of fluid inclusions in metamorphic rocks are reviewed and illustrated. A major problem relates to the number of inclusions, possibly formed on a wide range of P-T conditions, having also suffered, in most cases, extensive changes after initial trapping. The

  5. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  6. Northeast Church Rock Mine

    Science.gov (United States)

    Northeast Church Rock Mine, a former uranium mine 17 miles northeast of Gallup, NM in the Pinedale Chapter of the Navajo Nation. EPA is working with NNEPA to oversee cleanup work by United Nuclear Corporation, a company owned by General Electric (GE).

  7. Smart Rocking Armour Units

    NARCIS (Netherlands)

    Hofland, B.; Arefin, Syed Shamsil; van der Lem, Cock; van gent, Marcel

    2018-01-01

    This paper describes a method to measure the rocking motion of lab-scale armour units. Sensors as found in mobile phones are used. These sensors, data-storage and battery are all embedded in the model units, such that they can be applied without wires attached to them. The technique is applied to

  8. Teaching the Rock Cycle with Ease.

    Science.gov (United States)

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  9. Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ayagh, Hossein [FuelCell Energy, Inc., Danbury, CT (United States)

    2017-12-21

    FuelCell Energy, Inc. (FCE), in collaboration with AECOM Corporation (formerly URS Corporation) and Pacific Northwest National Laboratory, has been developing a novel Combined Electric Power and Carbon-dioxide Separation (CEPACS) system. The CEPACS system is based on electrochemical membrane (ECM) technology derived from FCE’s carbonate fuel cell products featuring internal (methane steam) reforming and carrying the trade name of Direct FuelCell®. The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean electric power at high efficiency using a supplementary fuel. The development effort was carried out under the U.S. Department of Energy (DOE) cooperative agreement DE-FE0007634. The overall objective of this project was to successfully demonstrate the ability of FCE’s ECM-based CEPACS system technology to separate ≥90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. In addition, a key objective was to show, through the technical and economic feasibility study and bench scale testing, that the ECM-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE’s objective related to the incremental cost of electricity (COE) for post-combustion CO2 capture (no more than 35% increase in COE). The project was performed in three budget periods (BP). The specific objective for BP1 was to complete the Preliminary Technical and Economic Feasibility Study

  10. "Rocking-Chair"-Type Metal Hybrid Supercapacitors.

    Science.gov (United States)

    Yoo, Hyun Deog; Han, Sang-Don; Bayliss, Ryan D; Gewirth, Andrew A; Genorio, Bostjan; Rajput, Nav Nidhi; Persson, Kristin A; Burrell, Anthony K; Cabana, Jordi

    2016-11-16

    Hybrid supercapacitors that follow a "rocking-chair"-type mechanism were developed by coupling divalent metal and activated carbon electrodes in nonaqueous electrolytes. Conventional supercapacitors require a large amount of electrolyte to provide a sufficient quantity of ions to the electrodes, due to their Daniell-type mechanism that depletes the ions from the electrolyte while charging. The alternative "rocking-chair"-type mechanism effectively enhances the energy density of supercapacitors by minimizing the necessary amount of electrolyte, because the ion is replenished from the metal anode while it is adsorbed to the cathode. Newly developed nonaqueous electrolytes for Mg and Zn electrochemistry, based on bis(trifluoromethylsulfonyl)imide (TFSI) salts, made the metal hybrid supercapacitors possible by enabling reversible deposition on the metal anodes and reversible adsorption on an activated carbon cathode. Factoring in gains through the cell design, the energy density of the metal hybrid supercapacitors is projected to be a factor of 7 higher than conventional devices thanks to both the "rocking-chair"-type mechanism that minimizes total electrolyte volume and the use of metal anodes, which have substantial merits in capacity and voltage. Self-discharge was also substantially alleviated compared to conventional supercapacitors. This concept offers a route to build supercapacitors that meet dual criteria of power and energy densities with a simple cell design.

  11. For Those About to Rock : Naislaulajat rock-genressä

    OpenAIRE

    Herranen, Linda

    2015-01-01

    For those about to rock – naislaulajat rock-genressä antaa lukijalleen kokonaisvaltaisen käsityksen naisista rock-genressä: rockin historiasta, sukupuolittuneisuudesta, seksismistä, suomalaisten naislaulajien menestyksestä. Työn aineisto on koottu aihepiirin kirjallisuudesta ja alalla toimiville naislaulajille teetettyjen kyselyiden tuloksista. Lisäksi avaan omia kokemuksiani ja ajatuksiani, jotta näkökulma naisista rock-genressä tulisi esille mahdollisimman monipuolisesti. Ajatus aihees...

  12. Comparison of disposal concepts for rock salt and hard rock

    International Nuclear Information System (INIS)

    Papp, R.

    1998-01-01

    The study was carried out in the period 1994-1996. The goals were to prepare a draft on spent fuel disposal in hard rock and additionally a comparison with existing disposal concepts for rock salt. A cask for direct disposal of spent fuel and a repository for hard rock including a safeguards concept were conceptually designed. The results of the study confirm, that the early German decision to employ rock salt was reasonable. (orig.)

  13. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  14. Study of stripping cristallization processus of AUC with ammonium carbonate

    International Nuclear Information System (INIS)

    Chegrouche, Salah.

    1987-09-01

    This study is concerned with direct crystallization of ammonium uranyl carbonate (AUC) from a uranium loaded organic phase (30% TBP in kerosene), with ammonium carbonate (NH 4 ) 2 CO 3 . The effects of operating conditions ((NH 4 ) 2 CO 3 concentration, flow-ratio, residence time, temperature) on the physical properties of AUC crystals (particle size distribution, specific surface, density...) are reported. All products were identified (both by chemical analysis, X-Ray diffraction) as being ammonium uranyl carbonate crystals (AUC). The results show that a high phase ratio and (NH 4 ) 2 CO 3 concentration favor the formation of fine AUC grains and aggregates. This is due mainly to the high concentration of NH + 4 in the system which leads to a high solution supersaturation and consequently to a rapid formation rate of crystal (germination). The reverse phenomenon is observed at low phase ratio and (NH 4 ) 2 CO 3 concentration, where germination and crystal growth are slow and the product is mainly monocrystal. In the intermediate range, a mixture of polycrystal and aggregates is obtained. Residence and temperature are also shown to have an effect on the processes (the effect of time being more important than temperature). In the course of this study a bench-scale stripper-crystallizer was developped and operated successfully. (author). tables, graphs

  15. Range sections as rock models for intensity rock scene segmentation

    CSIR Research Space (South Africa)

    Mkwelo, S

    2007-11-01

    Full Text Available This paper presents another approach to segmenting a scene of rocks on a conveyor belt for the purposes of measuring rock size. Rock size estimation instruments are used to monitor, optimize and control milling and crushing in the mining industry...

  16. Safe and quick carbon sequestration

    International Nuclear Information System (INIS)

    Tiano, M.

    2016-01-01

    Geological sequestration of carbon dioxyde is considered as an important tool to fight global warming but long term safety is an essential issue due to the risk of accidental leakages. The CarbFix experimentation has shown the possibility to turn hundreds tons of CO 2 into inert carbonated rocks in less than 2 years. This CO 2 injection took place in basaltic rocks. Basaltic rocks allows an adequate diffusion of the gas because of its porosity and favors the acido-base chemical reaction that turns CO 2 into inert and stable carbonates. This experiment was performed with CO 2 dissolved in water in order to limit leaks, basaltic layers being naturally cracked, and to accelerate the formation of carbonates by dissolving the metal ions coming from the rocks. The important quantity of water required for this technique, limits its use to coastal sites. (A.C.)

  17. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  18. Substantial global carbon uptake by cement carbonation

    OpenAIRE

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn

    2016-01-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 20131, 2. Considerable attention has been paid to quantifying these industrial process emissions from cement production2, 3, but the natural reversal of the process—carbonation—has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondar...

  19. Critical issues in soft rocks

    OpenAIRE

    Milton Assis Kanji

    2014-01-01

    This paper discusses several efforts made to study and investigate soft rocks, as well as their physico-mechanical characteristics recognized up to now, the problems in their sampling and testing, and the possibility of its reproduction through artificially made soft rocks. The problems in utilizing current and widespread classification systems to some types of weak rocks are also discussed, as well as other problems related to them. Some examples of engineering works in soft rock or in soft ...

  20. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, David; Vidal, Rafael; Russell, Tania; Babcock, Doosan; Freeman, Charles; Bearden, Mark; Whyatt, Greg; Liu, Kun; Frimpong, Reynolds; Lu, Kunlei; Salmon, Sonja; House, Alan; Yarborough, Erin

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorber off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.

  1. Isotope shifting capacity of rock

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1980-01-01

    Any oxygen isotope shifted rock volume exactly defines a past throughput of water. An expression is derived that relates the throughput of an open system to the isotope shift of reservoir rock and present-day output. The small isotope shift of Ngawha reservoir rock and the small, high delta oxygen-18 output are best accounted for by a magmatic water source

  2. Laboratory Investigations in Support of Carbon Dioxide-Limestone Sequestration in the Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Dan Golomb; Eugene Barry; David Ryan; Carl Lawton; Stephen Pennell; Peter Swett; Huishan Duan; Michael Woods

    2005-11-01

    This semi-annual progress reports includes further findings on CO{sub 2}-in-Water (C/W) emulsions stabilized by fine particles. In previous semi-annual reports we described the formation of stable C/W emulsions using pulverized limestone (CaCO{sub 3}), flyash, beach sand, shale and lizardite, a rock rich in magnesium silicate. For the creation of these emulsions we used a High-Pressure Batch Reactor (HPBR) equipped with view windows for illumination and video camera recording. For deep ocean sequestration, a C/W emulsion using pulverized limestone may be the most suitable. (a) Limestone (mainly CaCO{sub 3}) is cheap and plentiful; (b) limestone is innocuous for marine organisms (in fact, it is the natural ingredient of shells and corals); (c) it buffers the carbonic acid that forms when CO{sub 2} dissolves in water. For large-scale sequestration of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion a device is needed that mixes the ingredients, liquid carbon dioxide, seawater, and a slurry of pulverized limestone in seawater continuously, rather than incrementally as in a batch reactor. A practical mixing device is a Kenics-type static mixer. The static mixer has no moving parts, and the shear force for mixing is provided by the hydrostatic pressure of liquid CO{sub 2} and CaCO{sub 3} slurry in the delivery pipes from the shore to the disposal depth. This semi-annual progress report is dedicated to the description of the static mixer and the results that have been obtained using a bench-scale static mixer for the continuous formation of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} emulsion. The static mixer has an ID of 0.63 cm, length 23.5 cm, number of baffles 27. Under pressure, a slurry of CaCO{sub 3} in artificial seawater (3.5% by weight NaCl) and liquid CO{sub 2} are co-injected into the mixer. From the mixer, the resulting emulsion flows into a Jerguson cell with two oblong windows on opposite sides, then it is vented. A fully ported ball valve inserted after the Jerguson

  3. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  4. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  5. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  6. Rock and mineral magnetism

    CERN Document Server

    O’Reilly, W

    1984-01-01

    The past two decades have witnessed a revolution in the earth sciences. The quantitative, instrument-based measurements and physical models of. geophysics, together with advances in technology, have radically transformed the way in which the Earth, and especially its crust, is described. The study of the magnetism of the rocks of the Earth's crust has played a major part in this transformation. Rocks, or more specifically their constituent magnetic minerals, can be regarded as a measuring instrument provided by nature, which can be employed in the service of the earth sciences. Thus magnetic minerals are a recording magnetometer; a goniometer or protractor, recording the directions of flows, fields and forces; a clock; a recording thermometer; a position recorder; astrain gauge; an instrument for geo­ logical surveying; a tracer in climatology and hydrology; a tool in petrology. No instrument is linear, or free from noise and systematic errors, and the performance of nature's instrument must be assessed and ...

  7. Aram Chaos Rocks

    Science.gov (United States)

    2005-01-01

    8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location. Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  8. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  9. Physical modeling of rock

    International Nuclear Information System (INIS)

    Cheney, J.A.

    1981-01-01

    The problems of statisfying similarity between a physical model and the prototype in rock wherein fissures and cracks place a role in physical behavior is explored. The need for models of large physical dimensions is explained but also testing of models of the same prototype over a wide range of scales is needed to ascertain the influence of lack of similitude of particular parameters between prototype and model. A large capacity centrifuge would be useful in that respect

  10. Rock disposal problems identified

    Energy Technology Data Exchange (ETDEWEB)

    Knox, R

    1978-06-01

    Mathematical models are the only way of examining the return of radioactivity from nuclear waste to the environment over long periods of time. Work in Britain has helped identify areas where more basic data is required, but initial results look very promising for final disposal of high level waste in hard rock repositories. A report by the National Radiological Protection Board of a recent study, is examined.

  11. Rock pushing and sampling under rocks on Mars

    Science.gov (United States)

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  12. The Rock Characterization Facility

    International Nuclear Information System (INIS)

    Holmes, J.

    1994-01-01

    In 1989, UK Nirex began a programme of surface-based characterization of the geology and hydrogeology of a site at Sellafield to evaluate its suitability to host a deep repository for radioactive waste. The next major stage in site characterization will be the construction and operation of a Rock Characterization Facility (RCF). It will be designed to provide rock characterization information and scope for model validation to permit firmer assessment of long-term safety. It will also provide information needed to decide the detailed location, design and orientation of a repository and to inform repository construction methods. A three-phase programme is planned for the RCF. During each phase, testwork will steadily improve our geological, hydrogeological and geotechnical understanding of the site. The first phase will involve sinking two shafts. That will be preceded by the establishment of a network of monitoring boreholes to ensure that the impact of shaft sinking can be measured. This will provide valuable data for model validation. In phase two, initial galleries will be excavated, probably at a depth of 650 m below Ordnance datum, which will host a comprehensive suite of experiments. These galleries will be extended in phase three to permit access to most of the rock volume that would host the repository. (Author)

  13. Phosphorus and uranium recovery process from phosphated rocks

    Energy Technology Data Exchange (ETDEWEB)

    Sze, M C.Y.; Long, R H

    1981-01-30

    Improvement of uranium recovery in phosphate rocks by treatment with nitric acid avoiding the formation of a precipitate including a part of the uranium. The separation of uranium from phosphoric acid is obtained by liquid-liquid extraction using dialkyl posphoric acid with at least 10 carbon atoms and a phosphoryl alkyl alkoxy compound with at least 10 carbon atoms and a non water miscible organic solvent.

  14. Rock in Rio: forever young

    Directory of Open Access Journals (Sweden)

    Ricardo Ferreira Freitas

    2014-12-01

    Full Text Available The purpose of this article is to discuss the role of Rock in Rio: The Musical, as herald of megafestival Rock in Rio. Driven by the success that musicals have reached in Brazil, we believe that the design of this spectacle of music, dance and staging renews the brand of the rock festival, once it adds the force of young and healthy bodies to its concept. Moreover, the musical provides Rock in Rio with some distance from the controversal trilogy of sex, drugs and rock and roll, a strong mark of past festivals around the world. Thus, the musical expands the possibilities of growth for the brand.

  15. Characterization of rock samples and mineralogical controls on leachates

    Science.gov (United States)

    Hammarstrom, Jane M.; Cravotta, Charles A.; Galeone, Daniel G.; Jackson, John C.; Dulong, Frank T.; Hornberger, Roger J.; Brady, Keith B.C.

    2009-01-01

    Rocks associated with coal beds typically include shale, sandstone, and (or) limestone. In addition to common rock-forming minerals, all of these rock types may contain sulfide and sulfate minerals, various carbonate minerals, and organic material. These different minerals have inherently different solubility characteristics, as well as different acid-generating or acid-neutralizing potentials. The abundance and composition of sulfur- and carbonate-bearing minerals are of particular interest in interpreting the leaching column data because (1) pyrite and carbonate minerals are the primary controls on the acid-base account of a sample, (2) these minerals incorporate trace metals that can be released during weathering, and (3) these minerals readily react during weathering due to mineral dissolution and oxidation of iron.Rock samples were collected by the Pennsylvania Department of Environmental Protection (PaDEP) from five different sites to assess the draft standardized leaching column method (ADTI-WP2) for the prediction of weathering rates and water quality at coal mines. Samples were sent to USGS laboratories for mineralogical characterization and to ActLabs for chemical analysis. The samples represent a variety of rock types (shales, sandstones, and coal refuse) that are typical of coal overburden in the eastern United States. These particular samples were chosen for testing the weathering protocols because they represent a range of geochemical and lithologic characteristics, sulfur contents, and acid-base accounting characteristics (Hornberger et al., 2003). The rocks contain variable amounts of pyrite and carbonate minerals and vary in texture.This chapter includes bulk rock chemical data and detailed mineralogical and textural data for unweathered starting materials used in the interlaboratory validation study, and for two samples used in the early phases of leaching column tests (Wadesville Sandstone, Leechburg Coal Refuse). We also characterize some of the

  16. Development of artificial soft rock

    International Nuclear Information System (INIS)

    Kishi, Kiyoshi

    1995-01-01

    When foundation base rocks are deeper than the level of installing structures or there exist weathered rocks and crushed rocks in a part of base rocks, often sound artificial base rocks are made by substituting the part with concrete. But in the construction of Kashiwazaki Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc., the foundation base rocks consist of mudstone, and the stiffness of concrete is large as compared with the surrounding base rocks. As the quality of the substituting material, the nearly same stiffness as that of the surrounding soft rocks and long term stability are suitable, and the excellent workability and economical efficiency are required, therefore, artificial soft rocks were developed. As the substituting material, the soil mortar that can obtain the physical property values in stable form, which are similar to those of Nishiyama mudstone, was selected. The mechanism of its hardening and the long term stability, and the manufacturing plant are reported. As for its application to the base rocks of Kashiwazaki Kariwa Nuclear Power Station, the verification test at the site and the application to the base rocks for No. 7 plant reactor building and other places are described. (K.I.)

  17. Hydrological characteristics of Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial to evaluate the hydrogeological characteristics of rock in Japan in order to assess the performance of geosphere. This report summarizes the hydrogeological characteristics of various rock types obtained from broad literature surveys and the fields experiments at the Kamaishi mine in northern Japan and at the Tono mine in central Japan. It is found that the hydraulic conductivity of rock mass ranges from 10 -9 m/s to 10 -8 m/s, whereas the hydraulic conductivity of fault zone ranges from 10 -9 m/s to 10 -3 m/s. It is also found that the hydraulic conductivity tends to decrease with depth. Therefore, the hydraulic conductivity of rock mass at the depth of a repository will be smaller than above values. From the investigations at outcrops and galleries throughout the country, fractures are observed as potential pathways in all rock types. All kinds of crystalline rocks and pre-Neogene sedimentary rocks are classified as fractured media where fracture flow is dominant. Among these rocks, granitic rock is considered the archetype fractured media. On the other hand, andesite, tuff and Neogene sedimentary rocks are considered as intermediate between fractured media and porous media where flow in fractures as well as in rock matrix are significant. (author)

  18. Determining air distribution during outbursts of gases and rocks

    Energy Technology Data Exchange (ETDEWEB)

    Struminski, A; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses use of the KPW-1 iterative and autocorrelation method developed by A. Struminski for forecasting effects of rock bursts on ventilation systems of underground coal mines with increased content of methane or carbon dioxide in coal seams and adjacent rock strata. The method is used for prediction of air flow changes caused by a rock burst accompanied by violent outburst of gases. Directions of air flow, flow rate and concentration of gases emitted from surrounding strata to mine workings are predicted. On the basis of this prediction concentration of gases from a coal outburst is determined for any point in a ventilation network. The prediction method is used for assessing hazards for coal mines during and after a rock burst. Use of the method is explained on the example of the Thorez and Walbrzych coal mines. Computer programs developed for ODRA and IBM/XT computers are discussed. 6 refs.

  19. Grinding into Soft, Powdery Rock

    Science.gov (United States)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars. Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements. In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  20. Controlled sample program publication No. 1: characterization of rock samples

    International Nuclear Information System (INIS)

    Ames, L.L.

    1978-10-01

    A description is presented of the methodology used and the geologic parameters measured on several rocks which are being used in round-robin laboratory and nuclide adsorption methodology experiments. Presently investigators from various laboratories are determining nuclide distribution coefficients utilizing numerous experimental techniques. Unfortunately, it appears that often the resultant data are dependent not only on the type of groundwater and rock utilized, but also on the experimentor or method used. The Controlled Sample Program is a WISAP (Waste Isolation Safety Assessment Program) attempt to resolve the apparent method and dependencies and to identify individual experimenter's bias. The rock samples characterized in an interlaboratory Kd methodology comparison program include Westerly granite, Argillaceous shale, Oolitic limestone, Sentinel Gap basalt, Conasauga shale, Climax Stock granite, anhydrite, Magenta dolomite and Culebra dolomite. Techniques used in the characterization include whole rock chemical analysis, X-ray diffraction, optical examination, electron microprobe elemental mapping, and chemical analysis of specific mineral phases. Surface areas were determined by the B.E.T. and ethylene glycol sorption methods. Cation exchange capacities were determined with 85 Sr, but were of questionable value for the high calcium rocks. A quantitative mineralogy was also estimated for each rock. Characteristics which have the potential of strongly affecting radionuclide Kd values such as the presence of sulfides, water-soluble, pH-buffering carbonates, glass, and ferrous iron were listed for each rock sample

  1. Methods of photometric analysis of ore-enclosing rocks and ores

    International Nuclear Information System (INIS)

    Danchev, V.I.

    1985-01-01

    A photometric method for investigation of colour of sedimentary rocks being of importance in prospecting for uranium deposits is considered. Attention is paid to sample preparation for analysis, protometry procedure. An example of using the photometric method for studying carbonate uranium-bearing rocks is given

  2. Organic richness and organic matter quality studies of source rocks ...

    African Journals Online (AJOL)

    The hydrocarbon potential of the Upper Cretaceous units (Maastrichtian Mamu Formation) exposed at Imiegba and environs of the Benin Flank, Western Anambra Basin was assessed by Total Organic Carbon (TOC) and Rock-Eval Pyrolysis Analyses. The investigated sections of the Mamu Formation consist of dark grey to ...

  3. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  4. Rock stress investigations

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, St.; Braeuer, V.; Gloeggler, W.

    1989-04-01

    On the research project 'Rock Stress Mesurements' the BGR has developed and tested several methods for use in boreholes at a depth of 200 m. Indirect stress measurements using overcoring methods with BGR-probes and CSIR-triaxial cells as well as direct stress measurements using the hydraulic-fracturing method were made. To determine in-situ rock deformation behavior borehole deformation tests, using a BGR-dilatometer, were performed. Two types of the BGR-probe were applied: a four-component-probe to determine horizontal stresses and a five-component-probe to determine a quasi three-dimensional stress field. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on low cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (author) 4 tabs., 76 figs., 31 refs

  5. Depositional environment and source rock potential of Cenomanian and Turonian sedimentary rocks of the Tarfaya Basin, Southwest Morocco

    Energy Technology Data Exchange (ETDEWEB)

    Ghassal, B.I.; Littke, R.; Sachse, V.; Sindern, S.; Schwarzbauer, J.

    2016-07-01

    Detailed organic and inorganic geochemical analyses were used to assess the depositional environment and source rock potential of the Cenomanian and Turonian oil shale deposits in the Tarfaya Basin. This study is based on core samples from the Tarfaya Sondage-4 well that penetrated over 300m of Mid Cretaceous organic matter-rich deposits. A total of 242 samples were analyzed for total organic and inorganic carbon and selected samples for total sulfur and major elements as well as for organic petrology, Rock-Eval pyrolysis, Curie-Point-pyrolysis-gaschromatography-Mass-Spectrometry and molecular geochemistry of solvent extracts. Based on major elements the lower Cenomanian differs from the other intervals by higher silicate and lower carbonate contents. Moreover, the molecular geochemistry suggests anoxic bottom marine water conditions during the Cenomanian-Turonian Boundary Event (CTBE; Oceanic Anoxic Event 2: OAE2). As a proxy for the Sorg/Corg ratio, the ratio total thiophenes/total benzenes compounds was calculated from pyrolysate compositions. The results suggest that Sorg/ Corg is low in the lower Cenomanian, moderate in the upper Cenomanian, very high in the CTBE (CenomanianTuronian Boundary Event) and high in the Turonian samples. Rock-Eval data reveal that the lower Cenomanian is a moderately organic carbon-rich source rock with good potential to generate oil and gas upon thermal maturation. On the other hand, the samples from the upper Cenomanian to Turonian exhibit higher organic carbon content and can be classified as oil-prone source rocks. Based on Tmax data, all rocks are thermally immature. The microscopic investigations suggest dominance of submicroscopic organic matter in all samples and different contents of bituminite and alginite. The lower Cenomanian samples have little visible organic matter and no bituminite. The upper Cenomanian and CTBE samples are poor in bituminite and have rare visible organic matter, whereas the Turonian samples change

  6. Ground Water movement in crystalline rock aquifers

    International Nuclear Information System (INIS)

    Serejo, A.N.C.; Freire, C.; Siqueira, H.B. de; Frischkorn, H.; Torquato, J.R.F.; Santiago, M.M.F.; Barbosa, P.C.

    1984-01-01

    Ground water movement studies were performed in crystalline rock aquifers from the upper Acarau River hydrographic basin, state of Ceara, Brazil. The studies included carbon-14, 18 O/ 16 O and tritium measurements as well as chemical analysis. A total of 35 wells were surveyed during drought seasons. Carbon-14 values displayed little variation which implied that the water use was adequate despite of the slower recharge conditions. Fairly constant isotopic 18 O/ 16 O ratio values in the wells and their similarity with rainwater values indicated that the recharge is done exclusively by pluvial waters. A decreasing tendency within the tritium concentration values were interpreted as a periodic rainwater renewal for these aquifers. The chemical analysis demonstrated that there is in fact no correlation between salinity and the time the water remains in the aquifer itself. (D.J.M.) [pt

  7. PRINCIPLE ROCK TYPES FOR RADIOACTIVE WASTE REPOSITORIES

    Directory of Open Access Journals (Sweden)

    Sibila Borojević Šostarić

    2012-07-01

    Full Text Available Underground geological storage of high- and intermediate/low radioactive waste is aimed to represent a barrier between the surface environment and potentially hazardous radioactive elements. Permeability, behavior against external stresses, chemical reacatibility and absorption are the key geological parameters for the geological storage of radioactive waste. Three principal rock types were discussed and applied to the Dinarides: (1 evaporites in general, (2 shale, and (3 crystalline basement rocks. (1 Within the Dinarides, evaporite formations are located within the central part of a Carbonate platform and are inappropriate for storage. Offshore evaporites are located within diapiric structures of the central and southern part of the Adriatic Sea and are covered by thick Mesozoic to Cenozoic clastic sediment. Under very specific circumstances they can be considered as potential site locations for further investigation for the storage of low/intermediate level radioactive wast e. (2 Thick flysch type formation of shale to phyllite rocks are exposed at the basement units of the Petrova and Trgovska gora regions whereas (3 crystalline magmatic to metamorphic basement is exposed at the Moslavačka Gora and Slavonian Mts. regions. For high-level radioactive waste, basement phyllites and granites may represent the only realistic potential option in the NW Dinarides.

  8. A smart rock

    Science.gov (United States)

    Pressel, Phil

    2014-12-01

    This project was to design and build a protective weapon for a group of associations that believed in aliens and UFO's. They collected enough contributions from societies and individuals to be able to sponsor and totally fund the design, fabrication and testing of this equipment. The location of this facility is classified. It also eventually was redesigned by the Quartus Engineering Company for use at a major amusement park as a "shoot at targets facility." The challenge of this project was to design a "smart rock," namely an infrared bullet (the size of a gallon can of paint) that could be shot from the ground to intercept a UFO or any incoming suspicious item heading towards the earth. Some of the challenges to design this weapon were to feed cryogenic helium at 5 degrees Kelvin from an inair environment through a unique rotary coupling and air-vacuum seal while spinning the bullet at 1500 rpm and maintain its dynamic stability (wobble) about its spin axis to less than 10 micro-radians (2 arc seconds) while it operated in a vacuum. Precision optics monitored the dynamic motion of the "smart rock."

  9. Geological constraints for muon tomography: The world beyond standard rock

    Science.gov (United States)

    Lechmann, Alessandro; Mair, David; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Käser, Samuel; Nishiyama, Ryuichi; Scampoli, Paola; Vladymyrov, Mykhailo; Schlunegger, Fritz

    2017-04-01

    flux can vary up to 20-30%, in the case of carbonates and up to 100% for peridotites, compared to standard rock data.

  10. Rock critics as 'Mouldy Modernists'

    Directory of Open Access Journals (Sweden)

    Becky Shepherd

    2011-08-01

    Full Text Available Contemporary rock criticism appears to be firmly tied to the past. The specialist music press valorise rock music of the 1960s and 1970s, and new emerging artists are championed for their ‘retro’ sounding music by journalists who compare the sound of these new artists with those included in the established ‘canon’ of rock music. This article examines the narrative tropes of authenticity and nostalgia that frame the retrospective focus of this contemporary rock writing, and most significantly, the maintenance of the rock canon within contemporary popular culture. The article concludes by suggesting that while contemporary rock criticism is predominately characterised by nostalgia, this nostalgia is not simply a passive romanticism of the past. Rather, this nostalgia fuels a process of active recontextualisation within contemporary popular culture.

  11. Low-Energy Solvents For Carbon Dioxide Capture Enabled By A Combination Of Enzymes And Vacuum Regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Sonja [Novozymes North America, Inc., Franklinton, NC (United States); House, Alan [Novozymes North America, Inc., Franklinton, NC (United States); Liu, Kun [Univ. of Kentucky, Lexington, KY (United States); Frimpong, Reynolds [Univ. of Kentucky, Lexington, KY (United States); Liu, Kunlei [Univ. of Kentucky, Lexington, KY (United States); Freeman, Charles [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Whyatt, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Slater, Jonathan [Doosan Babcock, Renfew (United Kingdom); Fitzgerald, David [Doosan Babcock, Renfew (United Kingdom)

    2015-08-31

    An integrated bench-scale system combining the attributes of the bio-renewable enzyme carbonic anhydrase (CA) with low-enthalpy CO2 absorption solvents and vacuum regeneration was designed, built and operated for 500 hours using simulated flue gas. The objective was to develop a CO2 capture process with improved efficiency and sustainability when compared to NETL Case 10 monoethanolamine (MEA) scrubbing technology. The use of CA accelerates inter-conversion between dissolved CO2 and bicarbonate ion to enhance CO2 absorption, and the use of low enthalpy CO2 absorption solvents makes it possible to regenerate the solvent at lower temperatures relative to the reference MEA-based solvent. The vacuum regeneration-based integrated bench-scale system operated successfully for an accumulated 500 hours using aqueous 23.5 wt% K2CO3-based solvent containing 2.5 g/L enzyme to deliver an average 84% CO2 capture when operated with a 20% enzyme replenishment rate per ~7 hour steady-state run period. The total inlet gas flow was 30 standard liters per minute with 15% CO2 and 85% N2. The absorber temperature was 40°C and the stripper operated under 35 kPa pressure with an approximate 77°C stripper bottom temperature. Tests with a 30°C absorber temperature delivered >90% capture. On- and off-line operational measurements provided a full process data set, with recirculating enzyme, that allowed for enzyme replenishment and absorption/desorption kinetic parameter calculations. Dissolved enzyme replenishment and conventional process controls were demonstrated as straightforward approaches to maintain system performance. Preliminary evaluation of a novel flow-through ultrasonically enhanced regeneration system was also conducted, yet resulted in CO2 release within the range of temperature-dependent release, and further work would be needed to validate the benefits of ultrasonic enhanced stripping. A full technology assessment was completed in which four techno-economic cases for

  12. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, T.; Sjostrom, S.; Smith, J. [and others

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  13. Sedimentary environments and hydrocarbon potential of cretaceous rocks of indus basin, Pakistan

    International Nuclear Information System (INIS)

    Sheikh, S.A.; Naseem, S.

    1999-01-01

    Cretaceous rocks of Indus Basin of Pakistan are dominated by clastics with subordinate limestone towards the top. These rocks represent shelf facies and were deposited in deltaic to reducing marine conditions at variable depths. Indications of a silled basin with restricted circulation are also present. Cretaceous fine clastics/carbonates have good source and reservoir qualities. Variable geothermal gradients in different parts of basin have placed these rocks at different maturity levels; i.e. from oil to condensate and to gas. The potential of these rocks has been proved by several oil and gas discoveries particularly in the Central and Southern provinces of Indus Basin. (author)

  14. Principles of safe mechanization of operations in seams with hazards of rock and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, B; Siarkiewicz, R

    1976-10-01

    Rock burst hazards in Lower Silesia, Poland, and methods for rock burst forecasting are discussed. From 1894 to 1974, 1403 rock bursts occurred in the basin; five were accompanied by emission of methane, the rest with emission of carbon dioxide. Use of the GMA-030 sensor system (type GfG) for detecting increasing emission of carbon dioxide at longwall faces mined by coal plows is analyzed. Site selection for sensors at longwall faces (retreat or advance) in mines with ascending or descending ventilation, with blowing or exhaust ventilation systems and in mine drivage is analyzed. Examples of sensor installation at face ends are evaluated. Recommendations for sensor installation are made. 2 references.

  15. Rock.XML - Towards a library of rock physics models

    Science.gov (United States)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  16. Effect of solids retention time on the bioavailability of organic carbon in anaerobically digested swine waste.

    Science.gov (United States)

    Kinyua, Maureen N; Cunningham, Jeffrey; Ergas, Sarina J

    2014-06-01

    Anaerobic digestion (AD) can be used to stabilize and produce energy from livestock waste; however, digester effluents may require further treatment to remove nitrogen. This paper quantifies the effects of varying solids retention time (SRT) methane yield, volatile solids (VS) reduction and organic carbon bioavailability for denitrification during swine waste AD. Four bench-scale anaerobic digesters, with SRTs of 14, 21, 28 and 42 days, operated with swine waste feed. Effluent organic carbon bioavailability was measured using anoxic microcosms and respirometry. Excellent performance was observed for all four digesters, with >60% VS removal and CH4 yields between 0.1 and 0.3(m(3)CH4)/(kg VS added). Organic carbon in the centrate as an internal organic carbon source for denitrification supported maximum specific denitrification rates between 47 and 56(mg NO3(-)-N)/(g VSS h). The digester with the 21-day SRT had the highest CH4 yield and maximum specific denitrification rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Rocks under pressure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-01

    Physicists have used nuclear magnetic resonance to investigate the destructive effects of the crystallization of salt. Salt-weathering is one of the main causes of rock disintegration in nature, particularly in deserts, polar regions and along coastlines. However, it is also a very widespread cause of damage to man-made constructions. Bridges, for example, are attacked by de-icing salts, and cities such as Bahrain, Abu Dhabi and Adelaide are affected by rising damp from high ground-water levels. Indeed, many examples of cultural heritage, including the Islamic sites of Bokhara and Petra in Jordan and the Sphinx in Egypt, may ultimately be destroyed due to the effects of salt-weathering. Now Lourens Rijniers and colleagues at Eindhoven University in the Netherlands have developed a way to observe the solubility of various salts inside porous materials directly (Phys. Rev. Lett. 94 075503). (U.K.)

  18. Rock the Globe

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    Created in 2005, the Swiss rock band "Wind of Change" is now candidate for the Eurovision Song Contest 2011 with a new song " Night & Light " with the music video filmed at CERN.   With over 20 gigs under their belt and two albums already released, the five members of the band (Alex Büchi, vocals; Arthur Spierer, drums; David Gantner, bass; Romain Mage and Yannick Gaudy, guitar) continue to excite audiences. For their latest composition "Night & Light", the group filmed their music video in the Globe of Science and Innovation. Winning the Eurovision contest would be a springboard in their artistic career for these young musicians. The selection results will be available December 11, 2010.      

  19. Electrochemistry of lunar rocks

    Science.gov (United States)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  20. Microbial Fluid-Rock Interactions in Chalk Samples and Salinity Factor in Divalent Ca2+ ions Release for Microbial Enhanced Oil Recovery Purposes

    DEFF Research Database (Denmark)

    Jimoh, Ismaila Adetunji; Rudyk, Svetlana Nikolayevna; Søgaard, Erik Gydesen

    2011-01-01

    In this study, laboratory experiments were performed on chalk samples from Danish sector of the North Sea to study microbial fluid-rock interactions with carbonate rock and to evaluate the dissolution of rock matrix (CaCO3). Result showed that the average concentration of Ca2+ ions after microbia...

  1. Influence of substrate rocks on Fe-Mn crust composition

    Science.gov (United States)

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  2. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Light element geochemistry and spallogenesis in lunar rocks

    International Nuclear Information System (INIS)

    Des Marais, D.J.

    1983-01-01

    The abundances and isotopic compositions of carbon, nitrogen and sulfur were measured in eleven lunar rocks. Samples were combusted sequentially at three temperatures to resolve terrestrial contamination from indigenous volatiles. Sulfur abundances in Apollo 16 highland rocks range from 73 to 1165 μg/g, whereas sulfur contents in Apollo 15 and 17 basalts range from 719 to 1455 μg/g and correlate with TiO 2 content. Lunar rocks as a group have a remarkably uniform sulfur isotopic composition, which may reflect the low oxygen fugacity of the basaltic magmas. Much of the range of reported delta 34 Ssub(CD) values is caused by systematic analytical discrepancies between laboratories. Lunar rocks very likely contain less than 0.1 μg/g of nitrogen. The measured spallogenic production rate, 4.1 x 10 -6 μg 15 N/g sample/m.y., agrees remarkably closely with previous estimates. An estimate which includes all available data is 3.7 x 10 -6 μg 15 N/g sample/m.y. Lunar basalts may contain no indigenous lunar carbon in excess of procedural blank levels. Highland rocks consistently release about 1 to 5 μg/g of carbon in excess of blank levels, but this carbon might either derive from ancient meteoritic debris or be a mineralogic product of terrestrial weathering. The average measured spallogenic 13 C production rate is 4.1 x 10 -6 μg 13 C/g sample/m.y. (author)

  4. Create a Consortium and Develop Premium Carbon Products from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  5. Rock Art in Kurdistan Iran

    Directory of Open Access Journals (Sweden)

    Jamal Lahafian

    2013-12-01

    Full Text Available Kurdistan, with great potential and prehistoric resources, has numerous petroglyphs in different areas of the province. During the last 14 years of extensive field study, more than 30 sites of rock art have been identified and introduced by the author. In this article, we summarize these rock art areas in Iranian Kurdistan.

  6. Rockin' around the Rock Cycle

    Science.gov (United States)

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  7. 'Mister Badger' Pushing Mars Rock

    Science.gov (United States)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  8. Rock suitability classification RSC 2012

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, T. (ed.) [McEwen Consulting, Leicester (United Kingdom); Kapyaho, A. [Geological Survey of Finland, Espoo (Finland); Hella, P. [Saanio and Riekkola, Helsinki (Finland); Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.

    2012-12-15

    This report presents Posiva's Rock Suitability Classification (RSC) system, developed for locating suitable rock volumes for repository design and construction. The RSC system comprises both the revised rock suitability criteria and the procedure for the suitability classification during the construction of the repository. The aim of the classification is to avoid such features of the host rock that may be detrimental to the favourable conditions within the repository, either initially or in the long term. This report also discusses the implications of applying the RSC system for the fulfilment of the regulatory requirements concerning the host rock as a natural barrier and the site's overall suitability for hosting a final repository of spent nuclear fuel.

  9. Rock suitability classification RSC 2012

    International Nuclear Information System (INIS)

    McEwen, T.; Kapyaho, A.; Hella, P.; Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.

    2012-12-01

    This report presents Posiva's Rock Suitability Classification (RSC) system, developed for locating suitable rock volumes for repository design and construction. The RSC system comprises both the revised rock suitability criteria and the procedure for the suitability classification during the construction of the repository. The aim of the classification is to avoid such features of the host rock that may be detrimental to the favourable conditions within the repository, either initially or in the long term. This report also discusses the implications of applying the RSC system for the fulfilment of the regulatory requirements concerning the host rock as a natural barrier and the site's overall suitability for hosting a final repository of spent nuclear fuel

  10. Rock strength under explosive loading

    International Nuclear Information System (INIS)

    Rimer, N.; Proffer, W.

    1993-01-01

    This presentation emphasizes the importance of a detailed description of the nonlinear deviatoric (strength) response of the surrounding rock in the numerical simulation of underground nuclear explosion phenomenology to the late times needed for test ban monitoring applications. We will show how numerical simulations which match ground motion measurements in volcanic tuffs and in granite use the strength values obtained from laboratory measurements on small core samples of these rocks but also require much lower strength values after the ground motion has interacted with the rock. The underlying physical mechanisms for the implied strength reduction are not yet well understood, and in fact may depend on the particular rock type. However, constitutive models for shock damage and/or effective stress have been used successfully at S-Cubed in both the Geophysics Program (primarily for DARPA) and the Containment Support Program (for DNA) to simulate late time ground motions measured at NTS in many different rock types

  11. ROCK inhibitors in ocular disease

    Directory of Open Access Journals (Sweden)

    Eva Halasz

    2016-12-01

    Full Text Available Rho kinases (ROCKs have a crucial role in actin-cytoskeletal reorganization and thus are involved in broad aspects of cell motility, from smooth muscle contraction to neurite outgrowth. The first marketed ROCK inhibitor, called fasudil, has been used safely for treatment of cerebral vasospasm since 1995 in Japan. During the succeeding decades ROCK inhibitors have been applied in many pathological conditions from central nervous system disorders to cardiovascular disease as potential therapeutic agents or experimental tools to help understand the underlying (pathomechanisms. In 2014, a fasudil derivate named ripasudil was accepted for clinical use in glaucoma and ocular hypertension. Since ROCK kinases are widely expressed in ocular tissues, they have been implicated in the pathology of many ocular conditions such as corneal dysfunction, glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, and retinal detachment. This paper aims to provide an overview of the most recent status/application of ROCK inhibitors in the field of eye disease.

  12. Paper From Rocks

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2010-01-01

    @@ Papermaking techniques are undergoing a great revolution and a new paper made from stone is lining up to take the place of the conventional type. At this year's National People's Congress of China and the Chinese People's Political Consultative Conference that is to start on March 3, all the file bags and scratchpads will be made from a new type of low-carbon paper which is environmentally friendly.

  13. Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases

    Science.gov (United States)

    Hsi, H.-C.; Chen, S.; Rostam-Abadi, M.; Rood, M.J.; Richardson, C.F.; Carey, T.R.; Chang, R.

    1998-01-01

    Coal-derived activated carbons (CDACs) were tested for their suitability in removing trace amounts of vapor-phase mercury from simulated flue gases generated by coal combustion. CDACs were prepared in bench-scale and pilot-scale fluidized-bed reactors with a three-step process, including coal preoxidation, carbonization, and then steam activation. CDACs from high-organicsulfur Illinois coals had a greater equilibrium Hg0 adsorption capacity than activated carbons prepared from a low-organic-sulfur Illinois coal. When a low-organic-sulfur CDAC was impregnated with elemental sulfur at 600 ??C, its equilibrium Hg0 adsorption capacity was comparable to the adsorption capacity of the activated carbon prepared from the high-organicsulfur coal. X-ray diffraction and sulfur K-edge X-ray absorption near-edge structure examinations showed that the sulfur in the CDACs was mainly in organic forms. These results suggested that a portion of the inherent organic sulfur in the starting coal, which remained in the CDACs, played an important role in adsorption of Hg0. Besides organic sulfur, the BET surface area and micropore area of the CDACs also influenced Hg0 adsorption capacity. The HgCl2 adsorption capacity was not as dependent on the surface area and concentration of sulfur in the CDACs as was adsorption of Hg0. The properties and mercury adsorption capacities of the CDACs were compared with those obtained for commercial Darco FGD carbon.

  14. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    International Nuclear Information System (INIS)

    Ouhadi, V.R.; Yong, R.N.; Shariatmadari, N.; Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M.

    2010-01-01

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO 3 ) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.

  15. Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method

    Energy Technology Data Exchange (ETDEWEB)

    Ouhadi, V.R., E-mail: vahidouhadi@yahoo.ca [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Yong, R.N. [RNY Geoenvironmental Research, North Saanich (Canada); Shariatmadari, N. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saeidijam, S.; Goodarzi, A.R.; Safari-Zanjani, M. [Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2010-01-15

    While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of 'calcite or carbonate' (CaCO{sub 3}) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments we