WorldWideScience

Sample records for carbonate reservoirs based

  1. Carbon sequestration in leaky reservoirs

    OpenAIRE

    Jean-Marie, Alain; MOREAUX Michel; Tidball, Mabel

    2011-01-01

    PDF file identical to the paper submitted (available online at the conference site) with authors and affiliations added. International audience We propose in this paper a model of optimal Carbon Capture and Storage in which the reservoir of sequestered carbon is leaky, and pollution eventually is released into the atmosphere. We formulate the social planner problem as an optimal control program and we describe the optimal consumption paths as a function of the initial conditions, the ph...

  2. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas

    Science.gov (United States)

    Dou, Qifeng; Sun, Yuefeng; Sullivan, Charlotte

    2011-05-01

    In addition to mineral composition and pore fluid, pore type variations play an important role in affecting the complexity of velocity-porosity relationship and permeability heterogeneity of carbonate reservoirs. Without consideration of pore type diversity, most rock physics models applicable to clastic rocks for explaining the rock acoustic properties and reservoir parameters relationship may not work well for carbonate reservoirs. A frame flexibility factor ( γ) defined in a new carbonate rock physics model can quantify the effect of pore structure changes on seismic wave velocity and permeability heterogeneity in carbonate reservoirs. Our study of an Upper San Andres carbonate reservoir, Permian Basin, shows that for core samples of given porosity, the lower the frame flexibility factor ( γ), the higher the sonic wave velocity. For the studied reservoir, samples with frame flexibility factor ( γ) 3.85 indicate either dominant interparticle pore space in dolopackstone or microcrack pore space in dolowackstone or dolomudstone. Using the frame flexibility factor ( γ), different porosity-impedance and porosity-permeability trends can be classified with clear geologic interpretation such as pore type and rock texture variations to improve porosity and permeability prediction accuracy. New porosity-permeability relations with γ classification help delineate permeability heterogeneity in the Upper San Andres reservoir, and could be useful for other similar carbonate reservoir studies. In addition, results from analysis of amplitude variation with offset (AVO) and impedance modeling indicate that by combining rock physics model and pre-stack seismic inversion, simultaneous estimation of porosity and frame flexibility factor ( γ) is quite feasible because of the strong influence of carbonate pore types on AVO especially when offset is large.

  3. Finite Element Method Using a Characteristic-Based Split for Numerical Simulation of a Carbonate Fracture-Cave Reservoir

    Directory of Open Access Journals (Sweden)

    Liehui Zhang

    2015-01-01

    Full Text Available Fracture-cave carbonate reservoirs occur widely in source rocks and are prospects for exploitation worldwide. However, the presence of massive caves and multiscale fracture systems results in extremely complex fluid flow patterns. Therefore, in this paper, a discrete network model for fracture-cave reservoirs was established to study fluid flow characteristics and pressure distributions in complex flow regimes. In this study, the cave system was treated as a free-flow region, and the fluid flow in fracture systems followed the Navier-Stokes and Darcy equations, respectively. After discrete modeling, the Galerkin finite element method was used for numerical calculation of the single-phase free flow; the method maintains a high-precision result with low grid orientations during the simulation. In addition, because only one linear equation requires solving at each step, the solution is obtained quickly. Moreover, based on the proposed discrete media network model of fracture-cave reservoirs and the finite element numerical calculation method, a corresponding simulator was also developed. The finite element numerical simulation method based on the characteristic-based split (CBS algorithm has proven to be applicable to complex flow problems in fracture-cave reservoirs.

  4. Q estimation using modified S transform based on pre-stack gathers and its applications on carbonate reservoir

    Science.gov (United States)

    Zandong Sun, Sam; Sun, Xuekai; Wang, Yonggang; Xie, Huiwen

    2015-10-01

    Pre-stack seismic data is acknowledged to be more favorable in estimating Q values since it carries much more valuable information in traveltime and amplitude than post-stack data. However, the spectrum of reflectors can be strongly altered by nearby reflector or side lobes of the wavelet, which thereby degrades the accuracy of Q estimation based on the pre-stack spectral ratio method. To solve this problem, we propose a method based on the modified S-transform (MST) for estimating Q values from pre-stack gathers, in which Q values can be obtained with regression analysis based on the relationship between spectral ratio slope and the square of offset. Through tests on a numerical model, we first prove advantages of this pre-stack spectral ratio method compared to the traditional post-stack method. Besides, it is also shown that application of MST would lead to a much more focused intercept, which is the kernel for the pre-stack method. Therefore, the accuracy of Q estimation using MST is further improved when compared with that of conventional S-transform (ST). Based on this Q estimation method, we apply relevant processing methods (e.g. inverse Q filtering and dynamic Q migration) in practice, in order to improve imaging resolution and gathering quality with better amplitude and phase relationships. Applications on a carbonate reservoir witness remarkable enhancements of the imaging result, in which features of faults and deep strata are more clearly revealed. Moreover, pre-stack common-reflection-point (CRP) gathers obtained by dynamic Q migration well compensate the amplitude loss and correct the phase. Its ultimate pre-stack elastic inversion result better characterizes the geologic rules of complex carbonate reservoir predominated by secondary-storage-space.

  5. Carbon emission from global hydroelectric reservoirs revisited.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs. PMID:24943886

  6. Geologic storage of carbon dioxide and enhanced oil recovery. I. Uncertainty quantification employing a streamline based proxy for reservoir flow simulation

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) is already injected into a limited class of reservoirs for oil recovery purposes; however, the engineering design question for simultaneous oil recovery and storage of anthropogenic CO2 is significantly different from that of oil recovery alone. Currently, the volumes of CO2 injected solely for oil recovery are minimized due to the purchase cost of CO2. If and when CO2 emissions to the atmosphere are managed, it will be necessary to maximize simultaneously both economic oil recovery and the volumes of CO2 emplaced in oil reservoirs. This process is coined 'cooptimization'. This paper proposes a work flow for cooptimization of oil recovery and geologic CO2 storage. An important component of the work flow is the assessment of uncertainty in predictions of performance. Typical methods for quantifying uncertainty employ exhaustive flow simulation of multiple stochastic realizations of the geologic architecture of a reservoir. Such approaches are computationally intensive and thereby time consuming. An analytic streamline based proxy for full reservoir simulation is proposed and tested. Streamline trajectories represent the three-dimensional velocity field during multiphase flow in porous media and so are useful for quantifying the similarity and differences among various reservoir models. The proxy allows rational selection of a representative subset of equi-probable reservoir models that encompass uncertainty with respect to true reservoir geology. The streamline approach is demonstrated to be thorough and rapid

  7. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    KAUST Repository

    Qin, Guan

    2010-01-01

    Naturally-fractured carbonate karst reservoirs are characterized by various-sized solution caves that are connected via fracture networks at multiple scales. These complex geologic features can not be fully resolved in reservoir simulations due to the underlying uncertainty in geologic models and the large computational resource requirement. They also bring in multiple flow physics which adds to the modeling difficulties. It is thus necessary to develop a method to accurately represent the effect of caves, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling of naturally fractured carbonate karst reservoirs.

  8. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations.

    Science.gov (United States)

    Curtarelli, Marcelo Pedroso; Ogashawara, Igor; de Araújo, Carlos Alberto Sampaio; Lorenzzetti, João Antônio; Leão, Joaquim Antônio Dionísio; Alcântara, Enner; Stech, José Luiz

    2016-05-01

    We used a three-dimensional model to assess the dynamics of diffusive carbon dioxide flux (FCO2) from a hydroelectric reservoir located at Amazon rainforest. Our results showed that for the studied periods (2013 summer/wet and winter/dry seasons) the surface averaged FCO2 presented similar behaviors, with regular emissions peaks. The mean daily surface averaged FCO2 showed no significant difference between the seasons (p>0.01), with values around -1338mgCm-2day-1 (summer/wet) and -1395mgCm-2day-1 (winter/dry). At diel scale, the FCO2 was large during the night and morning and low during the afternoon in both seasons. Regarding its spatial distribution, the FCO2 showed to be more heterogeneous during the summer/wet than during the winter/dry season. The highest FCO2 were observed at transition zone (-300mgCm-2h-1) during summer and at littoral zone (-55mgCm-2h-1) during the winter. The total CO2 emitted by the reservoir along 2013year was estimated to be 1.1TgCyear-1. By extrapolating our results we found that the total carbon emitted by all Amazonian reservoirs can be around 7TgCyear-1, which is 22% lower than the previous published estimate. This significant difference should not be neglected in the carbon inventories since the carbon emission is a key factor when comparing the environmental impacts of different sources of electricity generation and can influences decision makers in the selection of the more appropriate source of electricity and, in case of hydroelectricity, the geographical position of the reservoirs. PMID:26914722

  9. Pore facies analysis: incorporation of rock properties into pore geometry based classes in a Permo-Triassic carbonate reservoir in the Persian Gulf

    International Nuclear Information System (INIS)

    Pore facies analysis is a useful method for the classification of reservoir rocks according to pore geometry characteristics. The importance of this method is related to the dependence of the dynamic behaviour of the reservoir rock on the pore geometry. In this study, pore facies analysis was performed by the quantification and classification of the mercury injection capillary pressure (MICP) curves applying the multi-resolution graph-based clustering (MRGC) method. Each pore facies includes a limited variety of rock samples with different depositional fabrics and diagenetic histories, which are representative of one type of pore geometry. The present pore geometry is the result of the interaction between the primary rock fabric and its diagenetic overprint. Thus the variations in petrographic properties can be correlated with the pore geometry characteristics. Accordingly, the controlling parameters in the pore geometry characteristics were revealed by detailed petrographic analysis in each pore facies. The reservoir rock samples were then classified using the determined petrographic properties which control the pore system quality. This method is proposed for the classification of reservoir rocks in complicated carbonate reservoirs, in order to reduce the incompatibility of traditional facies analysis with pore system characteristics. The method is applicable where enough capillary pressure data is not available. (papers)

  10. Optimal Carbon Sequestration Policies in Leaky Reservoirs

    OpenAIRE

    Jean-Marie, Alain; MOREAUX Michel; Tidball, Mabel

    2014-01-01

    We study in this report a model of optimal Carbon Capture and Storage in which the reservoir of sequestered carbon is leaky, and pollution eventually is released into the atmosphere. We formulate the social planner problem as an optimal control program and we describe the optimal consumption paths as a function of the initial conditions, the physical constants and the economical parameters. In particular, we show that the presence of leaks may lead to situations which do not occur otherwise, ...

  11. Relative influence of deposition and diagenesis on carbonate reservoir layering

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Emmanuelle [Total E and P, Courbevoie (France); Javaux, Catherine [Total E and P, Pointe Noire (Congo)

    2008-07-01

    The architecture heterogeneities and petrophysical properties of carbonate reservoirs result from a combination of platform morphology, related depositional environments, relative sea level changes and diagenetic events. The reservoir layering built for static and dynamic modelling purposes should reflect the key heterogeneities (depositional or diagenetic) which govern the fluid flow patterns. The layering needs to be adapted to the goal of the modelling, ranging from full field computations of hydrocarbon volumes, to sector-based fine-scale simulations to test the recovery improvement. This paper illustrates various reservoir layering types, including schemes dominated by depositional architecture, and those more driven by the diagenetic overprint. The examples include carbonate platform reservoirs from different stratigraphic settings (Tertiary, Cretaceous, Jurassic and Permian) and different regions (Europe, Africa and Middle East areas). This review shows how significant stratigraphic surfaces (such as sequence boundaries or maximum flooding) with their associated facies shifts, can be often considered as key markers to constrain the reservoir layering. Conversely, how diagenesis (dolomitization and karst development), resulting in units with particular poroperm characteristics, may significantly overprint the primary reservoir architecture by generating flow units which cross-cut depositional sequences. To demonstrate how diagenetic processes can create reservoir bodies with geometries that cross-cut the depositional fabric, different types of dolomitization and karst development are illustrated. (author)

  12. Smart Waterflooding in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel

    porous media. The main conclusion of most previous studies was that it is the rock wettability alteration towards more water wetting condition that helps improving the oil recovery. In the first step of this project, we focused on verifying this conclusion. Coreflooding experiments were carried out using...... imbibition rather than forced flooding. The objective of the third step of this project was to investigate the potential of high salinity waterflooding process by carrying out experiments with reservoir chalk samples. We carried out waterflooding instead of spontaneous imbibition using core plugs with and...... without aging. The total oil recovery, recovery rate and interaction mechanisms of ions with rock were studied for different injected fluids under different temperatures and wettability conditions. Experimental results demonstrate that the oil recovery mechanism under high salinity seawater flooding at...

  13. CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment

    Science.gov (United States)

    Miller, Charles E.; Dinardo, Steven J.

    2012-01-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.

  14. Well-based stable carbon isotope leakage monitoring of an aquifer overlying the CO2 storage reservoir at the Ketzin pilot site, Germany

    Science.gov (United States)

    Nowak, Martin; Myrttinen, Anssi; Zimmer, Martin; van Geldern, Robert; Barth, Johannes A. C.

    2014-05-01

    At the pilot site for CO2 storage in Ketzin, a new well-based leakage-monitoring concept was established, comprising geochemical and hydraulic observations of the aquifer directly above the CO2 reservoir (Wiese et al., 2013, Nowak et al. 2013). Its purpose was to allow early detection of un-trapped CO2. Within this monitoring concept, we established a stable carbon isotope monitoring of dissolved inorganic carbon (DIC). If baseline isotope values of aquifer DIC (δ13CDIC) and reservoir CO2 (δ13CCO2) are known and distinct from each other, the δ13CDIC has the potential to serve as an an early indicator for an impact of leaked CO2 on the aquifer brine. The observation well of the overlying aquifer was equipped with an U-tube sampling system that allowed sampling of unaltered brine. The high alkaline drilling mud that was used during well drilling masked δ13CDIC values at the beginning of the monitoring campaign. However, subsequent monitoring allowed observing on-going re-equilibration of the brine, indicated by changing δ13CDIC and other geochemical values, until values ranging around -23 ‰ were reached. The latter were close to baseline values before drilling. Baselineδ13CDIC and δ13CCO2 values were used to derive a geochemical and isotope model that predicts evolution of δ13CDIC, if CO2 from the reservoir would leak into the aquifer. The model shows that equilibrium isotope fractionation would have to be considered if CO2 dissolves in the brine. The model suggests that stable carbon isotope monitoring is a suitable tool to assess the impact of injected CO2 in overlying groundwater aquifers. However, more data are required to close gaps of knowledge about fractionation behaviour within the CO2(g) - DIC system under elevated pressures and temperatures. Nowak, M., Myrttinen, A., Zimmer, M., Wiese, B., van Geldern, R., Barth, J.A.C., 2013. Well-based, Geochemical Leakage Monitoring of an Aquifer Immediately Above a CO2 Storage Reservoir by Stable Carbon

  15. Influence of Ordovician carbonate reservoir beds in Tarim Basin by faulting

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The quality of the Ordovician carbonate reservoir beds in the Tarim Basin is closely related to the development of secondary pores,fractures and cavities. Karstification is important in improving the properties of reservoir beds,and karstification related to unconformity has caught wide attention. Compared with the recent research on the unconformity karst reservoir bed improvement,this paper shows a new way of carbonate reservoir bed transformation. Based on field survey,core and slices observation,transformation of Ordovician carbonate reservoir beds by faulting can be classified into three types: (1) Secondary faults and fracturs generated by faulting improved carbonate reservoir bed properties,which were named the Lunnan or Tazhong82 model; (2) upflow of deep geothermal fluids caused by faulting,with some components metasomatizing with carbonate and forming some secon-dary deposit,such as fluorite. It can improve carbonate reservoir bed properties obviously and is named the Tazhong 82 model; and (3) the faulting extending up to the surface increased the depth of supergene karstification and the thickness of reservoir bed. It is named the Hetianhe model. Trans-formation effect of carbonate reservoir beds by faulting was very significant,mainly distributed on the slopes or on the edge or plunging end of the uplift.

  16. Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs

    OpenAIRE

    Mayumi, Daisuke; Dolfing, Jan; Sakata, Susumu; Maeda, Haruo; Miyagawa, Yoshihiro; Ikarashi, Masayuki; Tamaki, Hideyuki; Takeuchi, Mio; Nakatsu, Cindy H.; Kamagata, Yoichi

    2013-01-01

    Deep subsurface formations (for example, high-temperature oil reservoirs) are candidate sites for carbon capture and storage technology. However, very little is known about how the subsurface microbial community would respond to an increase in CO2 pressure resulting from carbon capture and storage. Here we construct microcosms mimicking reservoir conditions (55 °C, 5 MPa) using high-temperature oil reservoir samples. Methanogenesis occurs under both high and low CO2 conditions in the microcos...

  17. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, T. Scott; Justice, James J.; Egg, Rebecca

    2001-08-07

    The Oxy operated Class 2 Project at West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO2 injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir demonstration characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO2 flood design based on the reservoir characterization.

  18. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir, Class II; ANNUAL

    International Nuclear Information System (INIS)

    The Oxy operated Class 2 Project at West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO2 injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir demonstration characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO2 flood design based on the reservoir characterization

  19. Thermal recovery of bitumen from carbonate reservoirs: formation damage aspects

    Energy Technology Data Exchange (ETDEWEB)

    Thimm, H.F. [Thimm Petroleum Technologies Inc. (Canada)

    2011-07-01

    In Alberta, about a third of bitumen resources are located in carbonate reservoirs but none of it is considered as a reserve by the Alberta Energy Resources Conservation Board (ERCB). In fact no pilot has been successful in recovering bitumen from carbonate reservoirs due to formation damage problems. Carbonate rock is chemically active at the high temperatures reached in thermal recovery processes, carbon dioxide is generated and carbonate minerals are precipitated. The aim of this paper is to find methods to control the phenomenon. Kinetic and thermodynamic controls were used. Results showed that formation damage is due to aqueous carbon dioxide attacking the reservoir rock. They found that a reduction of the partial pressure of carbon dioxide could inhibit the initial dissolution of rock material by reducing the concentration of aqueous carbon dioxide. A method to overcome the formation damage problem was found and a co-injection of gas and steam process was developed to apply it.

  20. An Efficient Upscaling Process Based on a Unified Fine-scale Multi-Physics Model for Flow Simulation in Naturally Fracture Carbonate Karst Reservoirs

    KAUST Repository

    Bi, Linfeng

    2009-01-01

    The main challenges in modeling fluid flow through naturally-fractured carbonate karst reservoirs are how to address various flow physics in complex geological architectures due to the presence of vugs and caves which are connected via fracture networks at multiple scales. In this paper, we present a unified multi-physics model that adapts to the complex flow regime through naturally-fractured carbonate karst reservoirs. This approach generalizes Stokes-Brinkman model (Popov et al. 2007). The fracture networks provide the essential connection between the caves in carbonate karst reservoirs. It is thus very important to resolve the flow in fracture network and the interaction between fractures and caves to better understand the complex flow behavior. The idea is to use Stokes-Brinkman model to represent flow through rock matrix, void caves as well as intermediate flows in very high permeability regions and to use an idea similar to discrete fracture network model to represent flow in fracture network. Consequently, various numerical solution strategies can be efficiently applied to greatly improve the computational efficiency in flow simulations. We have applied this unified multi-physics model as a fine-scale flow solver in scale-up computations. Both local and global scale-up are considered. It is found that global scale-up has much more accurate than local scale-up. Global scale-up requires the solution of global flow problems on fine grid, which generally is computationally expensive. The proposed model has the ability to deal with large number of fractures and caves, which facilitate the application of Stokes-Brinkman model in global scale-up computation. The proposed model flexibly adapts to the different flow physics in naturally-fractured carbonate karst reservoirs in a simple and effective way. It certainly extends modeling and predicting capability in efficient development of this important type of reservoir.

  1. Resolution of carbonate reservoirs at depth

    International Nuclear Information System (INIS)

    Porous Smackover algal mounds associated with granite knobs produce oil throughout southwestern Alabama. This paper reports on a detailed gravity survey over Vocation Field demonstrates lateral density contrasts between reservoir and non-reservoir rocks that can be measured even when the reservoir depth exceeds 14,000 feet (4270 m). A similar gravity survey combined with standard seismic and subsurface interpretation methods could have drastically increased the success rate and lowered development costs

  2. Wellbore stability analysis in carbonate reservoir considering anisotropic behaviour

    Science.gov (United States)

    Alves, José; Guevara, Nestor; Coelho, Lucia; Baud, Patrick

    2010-05-01

    Carbonate reservoirs represent a major part of the world oil and gas reserves. In particular, recent discoveries in the pre-salt offshore Brazil place big challenges to exploration and production under high temperatures and pressures (HTHP). During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities, in particular, observed microstructure of samples suggests anisotropic behaviour. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling, considering anisotropic ductile damage and pressure sensitiveness on the wellbore stability. Parameter values for the analysis were based based on experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel

  3. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  4. Organic carbon burial efficiency in a subtropical hydroelectric reservoir

    Science.gov (United States)

    Mendonça, Raquel; Kosten, Sarian; Sobek, Sebastian; Jaqueline Cardoso, Simone; Figueiredo-Barros, Marcos Paulo; Henrique Duque Estrada, Carlos; Roland, Fábio

    2016-06-01

    Hydroelectric reservoirs bury significant amounts of organic carbon (OC) in their sediments. Many reservoirs are characterized by high sedimentation rates, low oxygen concentrations in bottom water and a high share of terrestrially derived OC, and all of these factors have been linked to a high efficiency of OC burial. However, investigations of OC burial efficiency (OCBE, i.e., the ratio between buried and deposited OC) in reservoirs are limited to a few studies, none of which include spatially resolved analyses. In this study we determined the spatial variation in OCBE in a large subtropical reservoir and related it to sediment characteristics. Our results show that the sediment accumulation rate explains up to 92 % of the spatial variability in OCBE, outweighing the effect of other variables, such as OC source and oxygen exposure time. OCBE at the pelagic sites varied from 48 to 86 % (mean 67 %) and decreased towards the dam. At the margins, OCBE was lower (9-17 %) due to the low sediment accumulation in shallow areas. Our data show that the variability in OCBE both along the rivers-dam and the margin-pelagic axes must be considered in whole-reservoir assessments. Combining these results with a spatially resolved assessment of sediment accumulation and OC burial in the studied reservoir, we estimated a spatially resolved mean OC burial efficiency of 57 %. Being the first assessment of OCBE with such a high spatial resolution in a reservoir, these results suggest that reservoirs may bury OC more efficiently than natural lakes.

  5. Development of Acidizing Techniques for Low-permeability Carbonate Reservoirs

    Institute of Scientific and Technical Information of China (English)

    Liu Tongbin

    1996-01-01

    @@ Geological Background In accordance with gas reservoir occurrence, reserve type and trap type, the discovered and developed carbonate reservoirs in Sichuan Basin can be classified into the following three types: the first type is the layered porous gas reservoir (including porous and fractured porous gas reservoir), mainly distributed in East Sichuan area; the second is the block vug bottom water drive gas reservoir; the third is the irregular gas reservoir with fracture system, mainly distributed in the areas of South Sichuan and Southwest Sichuan. The reservoirs of these gas pools are mainly of carbonatite. The matrix porosity and permeability of carbonatite are very low, the porosity being below 1% - 3% and the permeability, 0.1×10-3-8× 10-3 μm2. Also the throat capillary resistance force is considerable with the mid-value width of the throat (γ50)of 0.1 - 4 μm, most below 2 μm. Owing to the low permeability and porosity as well as the serious heterogeneity of the reservoir, the productivi ty of gas wells changes greatly.

  6. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  7. Generation of saturation functions for simulation models of carbonate reservoirs

    Science.gov (United States)

    Huang, Qingfeng

    A rock type is the unit of rock deposited under similar conditions, which went through similar diagenetic processes, producing analogous rock fabric, with distinct set of pore types, and pore throat size distribution, having specific range of porosity and permeability. Rock typing can generally be used as a guide to assign petrophysical characteristics to different zones for detailed reservoir characterization, modeling and simulation, which provide valid frames for reservoir development. It is often assumed that conventional rock types are capable of assigning multiphase flow characteristics, such as capillary pressure and relative permeability to the cells of dynamic simulation models. However, these conventional rock types, or static reservoir rock types (SRRT) fail to capture the actual variability of capillary pressure and relative permeability, due to lack of representation of wettability difference at different elevation above the free water level (FWL) in carbonate reservoirs, especially in the highly heterogeneous reservoirs. This should be resolved through dynamic reservoir rock types (DRRT), in which wettability effect is imposed on the SRRTs to generate saturation functions for simulation models. This research studies Ghedan's comprehensive DRRT model7, and proposes a modified Ghedan's model. First, the defined static rock types are sub-divided into sub-static rock types based on porosity frequency. Second, three curve-fitting programs are coded to generate the related saturation-height functions. These are the modified Ghedan-Okuyiga equation, Cuddy function and Power Law function. Developed from Ghedan-Okuyiga function113, the recommended modified Ghedan-Okuyiga function has been proposed with saturation and implicit porosity as a function of height above FWL in the transition zone. Third, each sub-static rock type is divided into a number of DRRTs by determining the capillary pressure and relative permeability curves in the oil zone from gas

  8. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    2000-04-30

    This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small

  9. Acidizing carbonate reservoirs with chlorocarboxylic acid salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Scheuerman, R.F.; Templeton, C.C.

    1978-10-31

    A carbonate reservoir is acidized slowly by injecting an aqueous solution of a chlorocarboxylic acid salt so that the rate of the acidization is limited to the rate at which an acid is formed by the hydrolyzing of the chlorocarboxylate ions. The rate at which a chlorocarboxylic acid salt hydrolyzes to form an acid provides the desired rate of acid-release. A more complete acid-base reaction by chloroacetic acid, as compared to formic, acetic, and proprionic, is due to its being a much stronger acid. The pKa of chloroacetic acid is 2.86, whereas that of formic acid is 3.75, and that of acetic acid is 4.75. The pKa of a solution of a weak acid is the pH exhibited when the concentration of undissociated acid equals the concentration of the acid anion. 14 claims.

  10. Carbonate reservoir plays in the South Atlantic and worldwide analogs

    Science.gov (United States)

    Mohriak, Webster

    2015-04-01

    This work presents a summary of the geological, geophysical and petrophysical challenges for interpretation of post-salt and presalt carbonate rocks that constitute one of the main reservoirs in the hydrocarbon accumulations in the South Atlantic, particularly in the Campos and Santos basins offshore Brazil and in the Angola -Gabon conjugate margins. Carbonate rocks associated with salt tectonics constitute one of the main exploratory plays in several basins worldwide, and recently have yielded large petroleum discoveries in the southeastern Brazilian continental margin (Santos Basin) and also in Angola (Kwanza Basin) . The presalt microbialite reservoirs are sealed by evaporites and the origin of these rocks is still controversial. One current of interpretation assumes they are associated with reefs and carbonate buildups formed during periods of sea-level rises in a desiccating basin. Other currents of interpretation assume that these rocks might be associated with hydrothermal fluids and chemical precipitation of carbonates in a basin affected by volcanic episodes, resulting in travertine deposits with secondary biogenic growth. We present examples of post-salt oil fields involving Albian carbonates in the South Atlantic, and also discuss the presalt plays recently drilled in ultradeep waters. The presalt carbonate reservoirs are compared with possible microbialite analogs in the sedimentary basins of Brazil dating from Neoproterozoic to Recent, and their similarities and differences in terms of depositional setting and petrophysical parameters from the Late Aptian presalt carbonate rocks that have been sampled in the Santos and Kwanza basins.

  11. Exploring cyclic changes of the ocean carbon reservoir

    Institute of Scientific and Technical Information of China (English)

    WANG Pinxian; TIAN Jun; CHENG Xinrong; LIU Quanlian; XU Jian

    2003-01-01

    A 5-Ma record from ODP Site 1143 has revealed the long-term cycles of 400-500 ka in the carbon isotope variations. The periodicity is correlatable all over the global ocean and hence indicative of low-frequency changes in the ocean carbon reservoir. As the same periodicity is also found in carbonate and eolian dust records in the tropical ocean, it may have been caused by such low-latitude processes like monsoon. According to the Quaternary records from Site 1143 and elsewhere, major ice-sheet expansion and major transition in glacial cyclicity (such as the Mid-Brunhes Event and the Mid-Pleistocene Revolution ) were all preceded by reorganization in the ocean carbon reservoir expressed as an episode of carbon isotope maximum (δ 13Cmax), implying the role of carbon cycling in modulating the glacial periodicity. The Quaternary glacial cycles, therefore, should no more be ascribed to the physical response to insolation changes at the Northern Hemisphere high latitudes alone; rather, they have been driven by the "double forcing", a combination of processes at both high and low latitudes, and of processes in both physical (ice-sheet) and biogeochemical (carbon cycling) realms. As the Earth is now passing through a new carbon isotope maximum, it is of vital importance to understand the cyclic variations in the ocean carbon reservoir and its climate impact. The Pre-Quaternary variations in carbon and oxygen isotopes are characterized by their co-variations at the 400-ka eccentricity band, but the response of δ 13C and δ 18O to orbital forcing in the Quaternary became diverged with the growth of the Arctic ice-sheet. The present paper is the second summary report of ODP Leg 184 to the South China Sea.

  12. A preliminary evaluation model for reservoir hydrocarbon-generating potential established based on dissolved hydrocarbons in oilfield water

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons sug gested that the contents and composition of dissolved hydrocarbons varied with the hydrocar bon-generating potential of reservoirs. The concentrations of dissolved hydrocarbons were low in dry layers, water layers and gas-water layers, but high in gas reservoirs and oil reservoirs, especially in gas reservoirs with condensed oil. Series of carbon-number alkanes were usually absent in oilfield water from dry layers, water layers and gas-water layers but abundant in oil field water from oil-water reservoirs, gas reservoirs and oil reservoirs, whose carbon numbers varied most widely in oil reservoirs and least in gas reservoirs. A preliminary evaluation model for reservoir hydrocarbon-generating potential was established based on the characteristics of dissolved hydrocarbons in oilfield water to assist hydrocarbon exploration.

  13. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    Energy Technology Data Exchange (ETDEWEB)

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  14. Carbon dioxide storage capacity in gas shale reservoirs

    International Nuclear Information System (INIS)

    As the commercial success of shale gas exploitation in USA, there also amount of water resource depleted and some potential environmental problems exist. According to the low pore pressure, low porosity, low permeability characteristic of shale gas reservoir, and the successful experience of CO2 sequestration and enhanced methane recovery in the unminable coalbed, incorporating the differential adsorption capacity of CO2 and CH4 in shale, the injection technology of CO2 into shale gas reservoir for storage and enhancing shale gas recovery was pro- posed. Then the technology, economic and safety feasibility of this solution was analyzed. The result suggested that the shales adsorb more carbon dioxide than methane at reservoir conditions, the methane can be displaced by carbon dioxide injection and enhanced shale gas recovery could be achieved. A model for calculation of CO2 storage capacity was development, the preliminary estimate of the CO2 storage potential was 2.11∼4.32 times of the shale gas. So Injection of carbon di- oxide into shale gas reservoir is a promising technology which has the potential to enhance shale gas recovery, while simultaneously sequestering amount of CO2. (authors)

  15. Effect of Faulting on Ordovician Carbonate Buried-Hill Reservoir Beds in Hetianhe Gas Field,Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    Lü Xiuxiang; Bai Zhongkai; Li Jianjiao; Wang Weiguang; Fu Hui; Wang Qinghua

    2008-01-01

    Ordovician carbonate buried-hill reservoir beds in the Hetianhe (和田河) gas field,located in the Mazhatage (玛扎塔格) structural belt on the southern margin of the Bachu (巴楚) faulted uplift,southwestern Tarim basin,were studied.Based on field survey,core and slice observation,the general characteristics of carbonate buried-hill reservoir beds and specifically Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were discussed.The karst zone of the reservoir beds in Hetianhe gas field was divided into superficial karst zone,vertical infiltration karst zone,lower subsurface flow karst zone,and deep sluggish flow zone from top to bottom.The effects of faulting on Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were obvious.The faulting intensified the karstification and increased the depth of denudation.Faulting and subsequent fracture growth modified the reservoir beds and improved the physical property and quality of the reservoir beds.Moreover,faulting enhanced the development of the dissolution holes and fractures and increased the thickness of the effective reservoir beds.Meanwhile,faulting made the high porosity-permeability carbonate belts,which created conditions for the hydrocarbon accumulation,develop near the fault zone.

  16. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Ruppel

    2005-02-01

    Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

  17. Matrix acidification in carbonate reservoirs; Acidificacoes matriciais em reservatorios carbonaticos

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcio de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Carbonate reservoirs are characterized by great diversity of its properties, including permeability and porosity. When submitted to matrix acidification, if no effort is employed, acid will tend to consume carbonates where permeability and porosity are higher, further increasing conductivity of these sites and also increasing permeability and porosity contrast existing before acid effects on formation. That would give limited production as result of small effective producer zone extent, with probable underutilization of potential reservoirs productivity. To overcome this effect and to achieve greater coverage of treatments, divergence techniques should be applied, including associations of them. This paper presents divergence techniques performed in matrix acidification of Campos and Espirito Santo basins wells, which represent great structural diversity and, as consequence, a significant range of situations. Formations tests results are analyzed to verify diversion systems effectiveness, and how they contribute to the growth of productive potential. (author)

  18. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three dimensional (3-D) seismic; (3) Cross-well bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO2) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  19. Estimation of soil organic carbon reservoir in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The paper respectively adopted physio-chemical properties of every soil stratum from 2473 soil profiles of the second national soil survey. The corresponding carbon content of soils is estimated by utilizing conversion coefficient 0.58. In the second soil survey, the total amount of soil organic carbon is about 924.18×108t and carbon density is about 10.53 kgC/m2 in China according to the area of 877.63×106 hm2 surveyed throughout the country. The spatial distribution characteristics of soil organic carbon in China is that the carbon storage increases when latitude increases in eastern China and the carbon storage decreases when longitude reduces in northern China. A transitional zone with great variation in carbon storage exists. Moreover, there is an increasing tendency of carbon density with decrease of latitude in western China. Soil circle is of great significance to global change, but with substantial difference in soil spatial distribution throughout the country. Because the structure of soil is inhomogeneous, it could bring some mistakes in estimating soil carbon reservoirs. It is necessary to farther resolve soil respiration and organic matter conversion and other questions by developing uniform and normal methods of measurement and sampling.

  20. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    Science.gov (United States)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable

  1. Carbon dioxide emissions from the tropical Dowleiswaram Reservoir on the Godavari River, Southeast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, M.H.K.; Sarma, V.V.S.S.; Sarma, V.V.; Krishna, M.S.; Reddy, N.P.C.

    Time-series observations were conducted in the Dowleiswaram dam reservoir that was constructed on the largest monsoonal river in India to understand the source of inorganic carbon, and fluxes to the atmosphere. The reservoir stores water during dry...

  2. Characterization of Ordovician carbonate reservoirs, southeastern Saskatchewan, Canada

    Institute of Scientific and Technical Information of China (English)

    QING Hai-ruo

    2004-01-01

    The discovery of the prolific Ordovician Red River reservoirs in 1995 in southeastern Saskatchewan was the catalyst for extensive exploration activity which resulted in the discovery of more than 15 new Red River pools. The best yields of Red River production to date have been from dolomite reservoirs. Understanding the processes of dolomitization is, therefore, crucial for the prediction of the connectivity, spatial distribution and heterogeneity of dolomite reservoirs.The Red River reservoirs in the Midale area consist of 3~4 thin dolomitized zones, with a total thickness of about 20 m, which occur at the top of the Yeoman Formation. Two types of replacement dolomite were recognized in the Red River reservoir: dolomitized burrow infills and dolomitized host matrix. The spatial distribution of dolomite suggests that burrowing organisms played an important role in facilitating the fluid flow in the backfilled sediments. This resulted in penecontemporaneous dolomitization of burrow infills by normal seawater. The dolomite in the host matrix is interpreted as having occurred at shallow burial by evaporitic seawater during precipitation of Lake Almar anhydrite that immediately overlies the Yeoman Formation. However, the low δ18O values of dolomited burrow infills (-5.9‰~ -7.8‰, PDB) and matrix dolomites (-6.6‰~ -8.1‰, avg. -7.4‰ PDB) compared to the estimated values for the late Ordovician marine dolomite could be attributed to modification and alteration of dolomite at higher temperatures during deeper burial, which could also be responsible for its 87Sr/86Sr ratios (0.7084~0.7088) that are higher than suggested for the late Ordovician seawaters (0.7078~0.7080). The trace amounts of saddle dolomite cement in the Red River carbonates are probably related to "cannibalization" of earlier replacement dolomite during the chemical compaction.

  3. SCREENING METHODS FOR SELECTION OF SURFACTANT FORMULATIONS FOR IOR FROM FRACTURED CARBONATE RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu; Seung Soon Jang

    2005-07-01

    This topical report presents details of the laboratory work performed to complete Task 1 of this project; developing rapid screening methods to assess surfactant performance for IOR (Improved Oil Recovery) from fractured carbonate reservoirs. The desired outcome is to identify surfactant formulations that increase the rate and amount of aqueous phase imbibition into oil-rich, oil-wet carbonate reservoir rock. Changing the wettability from oil-wet to water-wet is one key to enhancing this water-phase imbibition process that in turn recovers additional oil from the matrix portion of a carbonate reservoir. The common laboratory test to evaluate candidate surfactant formulations is to measure directly the aqueous imbibition rate and oil recovery from small outcrop or reservoir cores, but this procedure typically requires several weeks. Two methods are presented here for the rapid screening of candidate surfactant formulations for their potential IOR performance in carbonate reservoirs. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant performance reported in the literature.

  4. Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs

    Science.gov (United States)

    Li, Sheng-Jie; Shao, Yu; Chen, Xu-Qiang

    2016-03-01

    We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models. By analyzing the measured data from carbonate samples in the TL area, a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed, which is a prerequisite in the analysis of carbonate reservoirs. A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model. We performed numerical experiments and compared the theoretical prediction and measured data. The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs. The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.

  5. Carbon Sequestration in Unconventional Reservoirs: Advantages and Limitations

    Science.gov (United States)

    Zakharova, N. V.; Slagle, A. L.; Goldberg, D.

    2014-12-01

    To make a significant impact on anthropogenic CO2 emissions, geologic carbon sequestration would require thousands of CO2 repositories around the world. Unconventional reservoirs, such as igneous rocks and fractured formations, may add substantial storage capacity and diversify CO2 storage options. In particular, basaltic rocks represent a promising target due to their widespread occurrence, potentially suitable reservoir structure and high reactivity with CO2, but a comprehensive evaluation of worldwide CO2 sequestration capacity in unconventional reservoirs is lacking. In this presentation we summarize available data on storage potential of basaltic rocks and fractured formations illustrated by field examples from the Columbia River Basalt, the Newark Rift Basin and IODP Site 1256, and discuss potential limiting factors, such as effective porosity and the risk of inducing earthquakes by CO2 injections. Large Igneous Provinces (LIPs), low-volume flows and intrusions, and ocean floor basalt represent three general classes of basaltic reservoirs, each characterized by different structure and storage capacity. Oceanic plateaus and LIPs are projected to have the highest CO2 storage capacity, on the order of thousands gigatons (Gt) per site, followed by continental LIPs and ocean floor basalts (hundreds to thousands Gt per site). Isolated basalt flows and intrusions are likely to offer only low- to moderate-capacity options. An important limiting factor on CO2 injection volumes and rates is the risk of inducing earthquakes by increasing pore pressure in the subsurface. On continents, available in situ stress analysis suggests that local stress perturbations at depth may create relaxed stress conditions, allowing for pore pressure increase without reactivating fractures and faults. Remote storage sites on oceanic plateaus and below the seafloor are advantageous due to low impact of potential seismic and/or leakage events. Other effects, such as thermal stresses created

  6. Reservoirs

    OpenAIRE

    Nilsson, Christer

    2009-01-01

    This article provides an overview of the water reservoirs in the world. There are nearly 50 000 large dams in the world, retaining more than 6500 km3 of water. Creation of reservoirs has inundated an area like the size of France or California and has forced 40–80 million people to resettle. The majority of these reservoirs have been built during the last 50 years, but new reservoirs are still constructed at a rate of nearly one new reservoir per day. Reservoirs are used for irrigation, hydroe...

  7. Carbon capture and storage reservoir properties from poroelastic inversion: A numerical evaluation

    Science.gov (United States)

    Lepore, Simone; Ghose, Ranajit

    2015-11-01

    We investigate the prospect of estimating carbon capture and storage (CCS) reservoir properties from P-wave intrinsic attenuation and velocity dispersion. Numerical analogues for two CCS reservoirs are examined: the Utsira saline formation at Sleipner (Norway) and the coal-bed methane basin at Atzbach-Schwanestadt (Austria). P-wave intrinsic dispersion curves in the field-seismic frequency band, obtained from theoretical studies based on simulation of oscillatory compressibility and shear tests upon representative rock samples, are considered as observed data. We carry out forward modelling using poroelasticity theories, making use of previously established empirical relations, pertinent to CCS reservoirs, to link pressure, temperature and CO2 saturation to other properties. To derive the reservoir properties, poroelastic inversions are performed through a global multiparameter optimization using simulated annealing. We find that the combination of attenuation and velocity dispersion in the error function helps significantly in eliminating the local minima and obtaining a stable result in inversion. This is because of the presence of convexity in the solution space when an integrated error function is minimized, which is governed by the underlying physics. The results show that, even in the presence of fairly large model discrepancies, the inversion provides reliable values for the reservoir properties, with the error being less than 10% for most of them. The estimated values of velocity and attenuation and their sensitivity to effective stress and CO2 saturation generally agree with the earlier experimental observation. Although developed and tested for numerical analogues of CCS reservoirs, the approach presented here can be adapted in order to predict key properties in a fluid-bearing porous reservoir, in general.

  8. A simulation-based reservoir management program

    Energy Technology Data Exchange (ETDEWEB)

    Voskanian, M.M. [California State Lands Commission, Sacramento, CA (United States); Kendall, R.P.; Whitney, E.M. [Los Alamos National Lab., NM (United States); Coombs, S. [Pacific Operators Offshore, Inc., Santa Barbara, CA (United States); Paul, R.G. [Minerals Management Service, Reston, VA (United States). Headquarters Office; Ershaghi, I. [Univ. of Southern California, Los Angeles, CA (United States)

    1996-05-01

    There are more than 5,200 independent oil and gas producers operating in the US today (based on current IPAA membership figures). These companies are playing an increasingly important role in production of hydrocarbons in California and elsewhere in the US. Pacific Operators Offshore, Inc., in a historic collaboration with its government royalty owners, the California State Lands Commission and the Minerals Management Service of the US Department of Interior, is attempting to redevelop the Carpinteria Offshore Field after two-and-a-half decades of production and partial abandonment by a previous operator. This paper will describe a project which focuses on the distribution of advanced reservoir management technologies (geological, petrophysical, and engineering) to independent producers like Pacific Operators Offshore, Inc. The evolving information highway, specifically the World Wide Web (WWW), serves as the distribution medium. The project to be described in this paper is an example of the implementation of a reservoir management tool which is supported by distributed databases, incorporates a shared computing environment, and integrates stochastic, geological, and engineering modeling.

  9. Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations

    Science.gov (United States)

    Jones, Kevin B.; Blondes, Madalyn S.

    2015-01-01

    “Unconventional reservoirs” for carbon dioxide (CO2) storage—that is, geologic reservoirs in which changes to the rock trap CO2 and therefore contribute to CO2 storage—including coal, shale, basalt, and ultramafic rocks, were the focus of a U.S. Geological Survey (USGS) workshop held March 28 and 29, 2012, at the National Conservation Training Center in Shepherdstown, West Virginia. The goals of the workshop were to determine whether a detailed assessment of CO2 storage capacity in unconventional reservoirs is warranted, and if so, to build a set of recommendations that could be used to develop a methodology to assess this storage capacity. Such an assessment would address only the technically available resource, independent of economic or policy factors. At the end of the workshop, participants agreed that sufficient knowledge exists to allow an assessment of the potential CO2 storage resource in coals, organic-rich shales, and basalts. More work remains to be done before the storage resource in ultramafic rocks can be meaningfully assessed.

  10. Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome

    International Nuclear Information System (INIS)

    Most energy generation globally is fueled by coal and oil, raising concerns about greenhouse gas emissions. Hydroelectric reservoirs are anthropogenic aquatic systems that occur across a wide geographical extent, and, in addition to their importance for energy production, they have the potential to release two important greenhouse gases (GHGs), carbon dioxide and methane. We report results from an extensive study of eight hydroelectric reservoirs located in central and southeastern tropical Brazil. In the Brazilian dry tropical biome reservoirs, emissions (in tons of CO2 Eq. per MW h) varied from 0.01 to 0.55, and decreased with reservoir age. Total emissions were higher in the reservoir lake when compared to the river downstream the dam; however, emissions per unit area, in the first kilometer of the river after the dam, were higher than that in the reservoir. The results showed, despite higher carbon emissions per energy production in the youngest reservoirs, lower emission from hydroelectric reservoirs from the studied region in relation to thermo electrical supply, fueled by coal or fossil fuel. The ratio emission of GHG per MWh produced is an important parameter in evaluating the service provided by hydroelectric reservoir and for energy planning policies. - Highlights: ► Hydroelectric reservoirs construction is growing worldwide. ► The effect of hydropower reservoir in the carbon cycle is dependent on environment characteristics. ► Carbon emissions per energy production are higher in the youngest tropical savannah reservoirs. ► Methane emissions decrease with reservoir age in tropical savannah reservoirs. ► In general, the effect of hydropower in the carbon cycle is lower than other energy sources

  11. Seagrass meadows as a globally significant carbonate reservoir

    KAUST Repository

    Mazarrasa, I.

    2015-03-06

    There has been a growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the organic carbon (POC) stocks and accumulation rates and ignored the inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 402 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m sediments ranged between 3 and 1660 Mg PIC ha-1, with an average of 654 ± 24 Mg PIC ha-1, exceeding about 5 fold those of POC reported in previous studies. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 ± 2 Mg PIC ha-1 degree-1 of latitude (GLM, p < 0.0003). Using PIC concentration and estimates of sediment accretion in seagrass meadows, mean PIC accumulation rates in seagrass sediments is 126.3 ± 0.7 g PIC m-2 y-1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top meter of sediment and accumulate between 22 and 76 Tg PIC y-1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrates the comparison of carbon (POC and POC) stocks between vegetated and adjacent un-vegetated sediments.

  12. Seagrass meadows as a globally significant carbonate reservoir

    Directory of Open Access Journals (Sweden)

    I. Mazarrasa

    2015-03-01

    Full Text Available There has been a growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the organic carbon (POC stocks and accumulation rates and ignored the inorganic carbon (PIC fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 402 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m sediments ranged between 3 and 1660 Mg PIC ha-1, with an average of 654 ± 24 Mg PIC ha-1, exceeding about 5 fold those of POC reported in previous studies. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 ± 2 Mg PIC ha-1 degree-1 of latitude (GLM, p -2 y-1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2, these ecosystems globally store between 11 and 39 Pg of PIC in the top meter of sediment and accumulate between 22 and 76 Tg PIC y-1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrates the comparison of carbon (POC and POC stocks between vegetated and adjacent un-vegetated sediments.

  13. Seagrass meadows as a globally significant carbonate reservoir

    Science.gov (United States)

    Mazarrasa, I.; Marbà, N.; Lovelock, C. E.; Serrano, O.; Lavery, P. S.; Fourqurean, J. W.; Kennedy, H.; Mateo, M. A.; Krause-Jensen, D.; Steven, A. D. L.; Duarte, C. M.

    2015-08-01

    There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha-1, with an average of 654 ± 24 Mg PIC ha-1, exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 ± 2 Mg PIC ha-1 per degree of latitude (general linear model, GLM; p seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 ± 31.05 g PIC m-2 yr-1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr-1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrated by the comparison of carbon (PIC and POC) stocks between vegetated and adjacent un-vegetated sediments.

  14. Distinguishing Carbonate Reservoir Pore Facies with Nuclear Magnetic Resonance Measurements

    International Nuclear Information System (INIS)

    Characterization of carbonate rocks may involve identifying the important pore types which are present. In the past, this task has required detailed petrographic analysis of many core samples. Here, we describe a method which uses nuclear magnetic resonance (NMR) measurements to reduce the amount of petrographic analysis needed for porosity typing of carbonate reservoir rocks.For a rock sample which has been measured with NMR, our method decomposes the log(T2) spectrum into at most three Gaussian-shaped components and gives a set of nine parameters. Two characteristic quantities having geological significance are extracted from the nine parameters. Values of the two quantities are compared with a reference set, established from samples having both NMR and petrographic evaluations of porosity types. We use a Bayesian approach to the classification of the dominant porosity type.Tests of our method on 103 samples show a correct prediction in 60 to 90 percent of the samples. The lower success rate was obtained for samples with five porosity types from three fields; the higher success rate obtained with samples with three porosity types from one well. The use of geologically significant quantities extracted from the decomposition gives comparable success rate to those obtained using a standard, non-geological approach such as canonical variates

  15. Kinetics of carbonate dissolution in CO2-saturated aqueous system at reservoir conditions

    Science.gov (United States)

    Peng, Cheng; Crawshaw, John P.; Maitland, Geoffrey; Trusler, J. P. Martin

    2014-05-01

    results of the study indicate that the rotating disc technique can allow accurate measurement of the carbonate dissolution rate under surface-reaction-controlled conditions, and that the carbonate dissolution rate typically increases with the increase of temperature, CO2 partial pressure and solution acidity. The study shows that the dissolution of carbonate in CO2-free acidic solutions can be described as a first order heterogeneous reaction; however, this model is not sufficient to describe the reaction kinetics of carbonate minerals in the (CO2 + H2O) system, particularly for high reactivity carbonates, such as calcite, at reservoir conditions. For these systems, both pH and the activity of CO2(aq) influence the dissolution rate. Based on the experimental results, kinetic models have been developed and parameterised to describe the dissolution of different carbonate minerals. The results of this study should facilitate more rigorous modelling of mineral dissolution in deep saline aquifers used for CO2 storage. We gratefully acknowledge the funding of QCCSRC provided jointly by Qatar Petroleum, Shell, and the Qatar Science & Technology Park. Keywords: Carbon Dioxide, Carbonate, High Pressure, High Temperature, Reaction Kinetics.

  16. Reservoir-Condition Pore-Scale Imaging of Reaction in Carbonates using Synchrotron Fast Tomography

    Science.gov (United States)

    Menke, H. P.; Andrew, M. G.; Bijeljic, B.; Blunt, M. J.

    2015-12-01

    Carbon capture and storage in carbonate reservoirs is essential for mitigating climate change. Supercritical CO2 mixed with host brine is acidic and can dissolve the surrounding pore structure and change flow dynamics. However, the type, speed, and magnitude of the dissolution are dependent on both the reactive transport properties of the pore-fluid and the intrinsic properties of the rock. Understanding how changes in the pore structure, chemistry, and flow properties affect dissolution is vital for successful predictive modelling both on the pore-scale and for up-scaled reservoir simulations. Reaction in carbonates has been studied at the pore-scale but has never been imaged dynamically in situ. We present an experimental method whereby both lab-based benchtop instruments and 'Pink Beam' synchrotron radiation are used in X-ray microtomography to investigate pore structure changes during supercritical CO2 injection at reservoir conditions. Three types of pure limestone rock with broadly varying rock topology were imaged under the same reservoir conditions. Flow-rate and brine acidity was varied in successive experiments by half an order of magnitude to gain insight into the impact of flow, transport, and physical heterogeneity. The images were binarized and the magnitude of dissolution was identified on a voxel-by-voxel basis to extract pore-by-pore dissolution data. The impact of dissolution on flow characteristics was studied by computing the evolution of the pore-scale velocity fields with a flow solver. We found that increasing rock heterogeneity increased channelized flow [Figure 1] through preferential pathways and that higher flow rate increased total dissolution. Additionally, decreasing reaction rate lowered overall reaction rate and made axial flow less uniform. Experimentally measured reaction rates in real rocks are at least an order of magnitude lower when compared to batch experiments. We provide evidence that this can be due to transport limitations

  17. Organic Inclusions as an Indicator of Oil/Gas Potential Assessment of Carbonate Reservoir Beds

    Institute of Scientific and Technical Information of China (English)

    施继锡; 兰文波

    1993-01-01

    Organic inclusions could be formed at the stages of either primary or secondary migration of hydrocarbons so long as mineral crystallization or recrystallization takes place in the sediments, presenting a direct indicator of oil/gas evolution, migration and abundance.Based on the strdy of organic inclusions in carbonate-type reser voir beds of commercial importance from North China ,Xingjing ,North Jiangsu, Sichuan and Guizhou in China ,many inclusion parameters for oil/gas potential assessment of carbonate reservoir beds are summarized in this paper, including;1) Types of organic inclusion; Ccmmercially important oil beds are characterized by inclusions consisting of either pure liquid hydrocarbons or liquid plus minor gaseous hydrocarbons, while commercially important gas reservoirs are characterized by inclusions consisting of either pure gaseous hydrocarbons or gas plus minor liquid hydrocarbons.2)Quantity of organic inclusions:The num-ber of organic inclusions in commercially important oil/gas reservoirs is over 60% of the total inclusion percent-tage.3)Temperature of saline inclusions .The homogenization temperatures of contemporaneous saline inclu-sions in oil reservoirs range from 91-161℃, while in gas reservoirs from 150-250℃).4) Inclusion composition: In commercially important oil reservoirs, C1/C2=2-10,C1/C3=2-4,C1/C4=2-21,(C2-C4)/(C1-C4)(%)>20,(CH4+CO+H2)/CO2(molecules/g)=0.5-1.0,and in C2-C3-nC4 triangle diagram there should be an upside-down triangle with the apex within the ellipse, while in commercial gas reservoirs, C1/C2=10-35,C1/C3=14-82,C1/C4=21-200,(C2-C4)/(C1-C4)(%)1,and there would be an upright triangle with the apex within the ellipse.The abovementioned parameters have been used to evaluate a number of other unknown wells or regions and the results are very satisfactory.It is valid to use organic inclusions as an indicator to assess the oil/gas potential during oil/gas exploration and prospecting,This approach is effective

  18. A new laboratory method for evaluating formation damage in fractured carbonate reservoirs

    Institute of Scientific and Technical Information of China (English)

    Ye Yan; Yan Jienian; Zou Shengli; Wang Shuqi; Lu Rende

    2008-01-01

    Natural carbonate core samples with artificial fractures are often used to evaluate the damage of fractured carbonate formations in the laboratory. It is shown that the most frequent error for evaluation results directly from the random width characterized by the artificial fractures. To solve this problem,a series of simulated fractured core samples made of stainless steel with a given width of fracture were prepared. The relative error for the width of artificial fracture decreased to 1%. The width of natural and artificial fractures in carbonate reservoirs can be estimated by image log data. A series of tests for formation damage were conducted by using the stainless steel simulated core samples flushed with different drilling fluids, such as the suifonate/polymer drill-in fluid and the solids-free drill-in fluid with or without ideal packing bridging materials. Based on the experimental results using this kind of simulated cores, a novel approach to the damage control of fractured carbonate reservoirs was presented. The effective temporary plugging ring on the end face of the simulated core sample can be observed clearly.The experimental results also show that the stainless steel simulated cores made it possible to visualize the solids and filtrate invasion.

  19. Identification of permeable zones in carbon-bearing reservoirs of crack and pore-crack types

    International Nuclear Information System (INIS)

    Described is the technique for permeable zone identification in carbonate reservoirs of oil fields of crack and pore-crack types by means of time measurements by pulse neutron-neutron logging method. The technique is based on pressure pumping into stratum of the fluid containing elements with high thermal-neutron capture cross-section (chlorine, boron, cadmium). The quantity of fluid saturated by the above element and penetrated into the stratum is proportional to the stratum efficient porosity. The measurements by pulse neutron-neutron method were carried out at 800, 1000, and 2200 μs time fixations before and after production into stratum. Boron in the borax compound with concentration of 0,5 g/l was taken as a reagent. According to the value of thermal neutron attenuation decrement before and after neutron active substance introduction into the stratum the reservoir permeability can be determined

  20. Simulation research on carbon dioxide as cushion gas in gas underground reservoirs

    Institute of Scientific and Technical Information of China (English)

    TAN Yu-fei; LIN Tao

    2009-01-01

    Aimed at the problem of mixing working gas and cushion gas in carbon sequestration technology, the feasibility of using cation dioxide as the cushion gas in reservoirs is discussed firstly. At the usual condition of reservoirs, carbon dioxide is a kind of supercritieal fluid with high condensability, high viscosity and high density. Secondly, this article studies the laws of formation and development of mixing zone by numerical simulation and analyses the impact on mixing zone brought by different injection modes and rational ratios of cushion gas in reservoirs. It is proposed that the appropriate injection ratio of cushion gas is 20% - 30%. Using carbon dioxide as cushion gas in gas reservoirs is able to make the running of natural gas reservoirs economical and efficient.

  1. Seagrass meadows as a globally significant carbonate reservoir

    KAUST Repository

    Mazarrasa, I.

    2015-08-24

    There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha−1, with an average of 654 ± 24 Mg PIC ha−1, exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of −8 ± 2 Mg PIC ha−1 per degree of latitude (general linear model, GLM; p < 0.0003). Using PIC concentrations and estimates of sediment accretion in seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 ± 31.05 g PIC m−2 yr−1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr−1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2

  2. Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic Wafra case study

    KAUST Repository

    Katterbauer, Klemens

    2015-07-14

    Heavy oil recovery has been a major focus in the oil and gas industry to counter the rapid depletion of conventional reservoirs. Various techniques for enhancing the recovery of heavy oil were developed and pilot-tested, with steam drive techniques proven in most circumstances to be successful and economically viable. The Wafra field in Saudi Arabia is at the forefront of utilizing steam recovery for carbonate heavy oil reservoirs in the Middle East. With growing injection volumes, tracking the steam evolution within the reservoir and characterizing the formation, especially in terms of its porosity and permeability heterogeneity, are key objectives for sound economic decisions and enhanced production forecasts. We have developed an integrated reservoir history matching framework using ensemble based techniques incorporating seismic data for enhancing reservoir characterization and improving history matches. Examining the performance on a synthetic field study of the Wafra field, we could demonstrate the improved characterization of the reservoir formation, determining more accurately the position of the steam chambers and obtaining more reliable forecasts of the reservoir’s recovery potential. History matching results are fairly robust even for noise levels up to 30%. The results demonstrate the potential of the integration of full-waveform seismic data for steam drive reservoir characterization and increased recovery efficiency.

  3. Upper Paleozoic Carbonate Buildups of the Timan-Pechora Basin, the Sverdrup Basin and the Barents Sea as Potential Reservoirs of the Arctic

    OpenAIRE

    Svyatkovskiy, Alexey

    2014-01-01

    The main objective of this work was to study the three Arctic Provinces: the Timan-Pechora Basin, the Sverdrup Basin and the Barents Sea, and make a comparison between them with a focus on the Paleozoic sediments and their potential as reservoirs based on published literature. The Upper Paleozoic carbonate reefal structures of the Timan-Pechora Basin have been proven as good reservoirs for hydrocarbon accumulation, while similar carbonate buildups of the Sverdrup Basin and the Barents Sea ar...

  4. Flood-related, organic-carbon anomalies as possible temporal markers in reservoir bottom sediments

    Science.gov (United States)

    Juracek, K.E.

    2004-01-01

    Results of a study of sediment cores from four reservoirs in the upper Mississippi River Basin, USA, indicated that anomalous organic carbon concentrations associated with flood deposits may provide detectable temporal markers in reservoir bottom sediments. Temporal markers are needed for reservoir sediment studies to date sediment layers deposited between the 1963-64 cesium-137 peak and the present. For two of four reservoirs studied, anomalously low organic carbon concentrations were measured for a sample interval in the upper part of a sediment core. The anomalous interval was interpreted to have been deposited during the July 1993 flood that affected a large area of the upper Mississippi River Basin. Potentially, the July 1993 flood deposit may be used as a temporal marker in reservoir bottom sediments in parts of the basin affected by the flood. Several uncertainties remain regarding the viability of organic carbon as a temporal marker including the combination of flood, basin, and reservoir characteristics required to produce a recognizable organic carbon marker in the bottom sediment and the optimal sampling strategy needed to detect the marker in a sediment core. It is proposed that flood duration and basin size may be important factors as to whether or not an anomalous and detectable organic carbon layer is deposited in a reservoir. ?? Copyright by the North American Lake Management Society 2004.

  5. Experimental studies of low salinity water flooding in carbonate reservoirs: A new promising approach

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Skauge, Arne

    2012-01-01

    Low salinity water flooding is well studied for sandstone reservoirs, both laboratory and field tests have showed improvement in the oil recovery in many cases. Up to very recently, the low salinity effect has been indeterminated for carbonates. Most recently, Saudi Aramco reported that substanti...... light of experimental results, discussions are made about possible mechanisms for improving oil recovery in carbonate reservoir as a function of change in brine salinity. Copyright 2012, Society of Petroleum Engineers....

  6. Robust Reservoir Generation by Correlation-Based Learning

    Directory of Open Access Journals (Sweden)

    Tadashi Yamazaki

    2009-01-01

    Full Text Available Reservoir computing (RC is a new framework for neural computation. A reservoir is usually a recurrent neural network with fixed random connections. In this article, we propose an RC model in which the connections in the reservoir are modifiable. Specifically, we consider correlation-based learning (CBL, which modifies the connection weight between a given pair of neurons according to the correlation in their activities. We demonstrate that CBL enables the reservoir to reproduce almost the same spatiotemporal activity patterns in response to an identical input stimulus in the presence of noise. This result suggests that CBL enhances the robustness in the generation of the spatiotemporal activity pattern against noise in input signals. We apply our RC model to trace eyeblink conditioning. The reservoir bridged the gap of an interstimulus interval between the conditioned and unconditioned stimuli, and a readout neuron was able to learn and express the timed conditioned response.

  7. High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir

    Science.gov (United States)

    Almeida, Rafael M.; Nóbrega, Gabriel N.; Junger, Pedro C.; Figueiredo, Aline V.; Andrade, Anízio S.; de Moura, Caroline G. B.; Tonetta, Denise; Oliveira, Ernandes S.; Araújo, Fabiana; Rust, Felipe; Piñeiro-Guerra, Juan M.; Mendonça, Jurandir R.; Medeiros, Leonardo R.; Pinheiro, Lorena; Miranda, Marcela; Costa, Mariana R. A.; Melo, Michaela L.; Nobre, Regina L. G.; Benevides, Thiago; Roland, Fábio; de Klein, Jeroen; Barros, Nathan O.; Mendonça, Raquel; Becker, Vanessa; Huszar, Vera L. M.; Kosten, Sarian

    2016-01-01

    Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 ± 934 mg C m-2 d-1), net heterotrophy was prevalent due to high ecosystem respiration (5209 ± 992 mg C m-2 d-1). Consequently, the reservoir was a source of atmospheric CO2 (518 ± 182 mg C m-2 d-1). In addition, the reservoir was a source of ebullitive (17 ± 10 mg C m-2 d-1) and diffusive CH4 (11 ± 6 mg C m-2 d-1). OC sedimentation was high (1162 mg C m-2 d-1), but our results suggest that the majority of it is mineralized to CO2 (722 ± 182 mg C m-2 d-1) rather than buried as OC (440 mg C m-2 d-1). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high

  8. High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir.

    Science.gov (United States)

    Almeida, Rafael M; Nóbrega, Gabriel N; Junger, Pedro C; Figueiredo, Aline V; Andrade, Anízio S; de Moura, Caroline G B; Tonetta, Denise; Oliveira, Ernandes S; Araújo, Fabiana; Rust, Felipe; Piñeiro-Guerra, Juan M; Mendonça, Jurandir R; Medeiros, Leonardo R; Pinheiro, Lorena; Miranda, Marcela; Costa, Mariana R A; Melo, Michaela L; Nobre, Regina L G; Benevides, Thiago; Roland, Fábio; de Klein, Jeroen; Barros, Nathan O; Mendonça, Raquel; Becker, Vanessa; Huszar, Vera L M; Kosten, Sarian

    2016-01-01

    Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 ± 934 mg C m(-2) d(-1)), net heterotrophy was prevalent due to high ecosystem respiration (5209 ± 992 mg C m(-2) d(-1)). Consequently, the reservoir was a source of atmospheric CO2 (518 ± 182 mg C m(-2) d(-1)). In addition, the reservoir was a source of ebullitive (17 ± 10 mg C m(-2) d(-1)) and diffusive CH4 (11 ± 6 mg C m(-2) d(-1)). OC sedimentation was high (1162 mg C m(-2) d(-1)), but our results suggest that the majority of it is mineralized to CO2 (722 ± 182 mg C m(-2) d(-1)) rather than buried as OC (440 mg C m(-2) d(-1)). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C

  9. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  10. Study of Deep Carbonate Reservoirs in the Desert Areas by Transient Electromagnetic Method

    Institute of Scientific and Technical Information of China (English)

    HeZhanxiang; LiuZebin; SongQunhui; gangXianghao; LuJiangnan

    2003-01-01

    In 1997, the TZ- 162 well in Tazhong area of the Tarim basin hit the lower Paleozoic dolomite reservoir at a depth of 5,900 m. The distribution of the dolomite reservoir, however,was very difficult to delineate due to the complex surface conditions and poor seismic properties. High-precision transient electromagnetic sounding (TEM) was conducted and good results obtained in this area. This paper discussed the principle,data processing and interpretation of this method. The resultsof studying the dolomite reservoirs demonstrated the effectiveness of the method in studying the low-resistance dolomite reservoirs in the high-resistance carbonates. This method should be an effective one to study reservoirs in areas with similar physical properties as well.

  11. Runoff Simulation of Shitoukoumen Reservoir Basin Based on SWAT Model

    Institute of Scientific and Technical Information of China (English)

    XIE; Miao; LI; Hong-yan; LIU; Tie-juan; RU; Shi-rong

    2012-01-01

    [Objective]The study aimed to simulate the runoff of Shitoukoumen Reservoir basin by using SWAT model. [Method] Based on DEM elevation, land use type, soil type and hydrometeorological data, SWAT model, a distributed hydrological model was established to simulate the monthly runoff of Shitoukoumen Reservoir basin, and the years 2006 and 2010 were chosen as the calibration and validation period respectively. [Result] The simulation results indicated that SWAT model could be used to simulate the runoff of Shitoukoumen Reservoir basin, and the simulation effect was good. However, the response of the model to local rainstorm was not obvious, so that the actual runoff in June and July of 2010 was abnormally higher than the simulation value. [Conclusion] The research could provide theoretical references for the plan and management of water resources in Shitoukoumen Reservoir basin in future.

  12. Seagrass meadows as a globally significant carbonate reservoir

    OpenAIRE

    Mazarrasa, I.; Marbà, N.; C. E. Lovelock; O. Serrano; P. S. Lavery; Fourqurean, J.W.; Kennedy, H.; M. A. Mateo; D. Krause-Jensen; A. D. L. Steven; Duarte, C. M.

    2015-01-01

    There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and be...

  13. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    Science.gov (United States)

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  14. Carbon flow dynamics in the pelagic community of the Sau Reservoir (Catalonia, NE Spain)

    Czech Academy of Sciences Publication Activity Database

    Comerma, M.; García, J. C.; Romero, M.; Armengol, J.; Šimek, Karel

    2003-01-01

    Roč. 504, - (2003), s. 87-98. ISSN 0018-8158. [Reservoir Limnology and Water Quality /4./. České Budějovice, 12.08.2002-16.08.2002] Institutional research plan: CEZ:AV0Z6017912 Keywords : reservoir * longitudinal plankton succession * carbon flow through microbial food webs Subject RIV: EE - Microbiology, Virology Impact factor: 0.720, year: 2003

  15. Mechanisms controlling the carbon stable isotope composition of phytoplankton in karst reservoirs

    OpenAIRE

    Baoli Wang; Cong-Qiang Liu; Xi Peng; Fushun Wang

    2013-01-01

    In order to systematically understand the mechanisms controlling the carbon stable isotope composition of phytoplankton (δ13CPHY)in freshwater ecosystems, seasonal changes in δ13CPHY and related environmental factors were determined in karst reservoirs from the Wujiang river basin, China. Substantial and systematic differences within seasons and reservoirs were observed for δ13CPHY, which ranged from -39.2‰ to -15.1‰. An increase in water temperature triggered fast growth of phytoplankton whi...

  16. Estimates of Carbon Reservoirs in High-Altitude Wetlands in the Colombian Andes

    OpenAIRE

    Enrique Javier Peña; Harrison Sandoval; Orlando Zuñiga; Alba Marina Torres

    2009-01-01

    The observed increase in emission of greenhouse gases, with attendant effects on global warming, have raised interests in identifying sources and sinks of carbon in the environment. Terrestrial carbon (C) sequestration involves capture of atmospheric C through photosynthesis and storage in biota, soil and wetlands. Particularly, wetland systems function primarily as long-term reservoirs for atmospheric carbon dioxide (CO2) and as sources of atmospheric methane (CH4). The objective of this stu...

  17. Deep carbonate reservoirs of the Eo/Mesoalbian, Santos Basin

    International Nuclear Information System (INIS)

    The Tubarao Field, discovered in 1988 by wildcat well 1-PRS-4, was the first commercial hydrocarbon accumulation to be found in the Eo/Mesoalbian limestones of the Santos Basin. The Tubarao Field, studied here in production zones B1 and B2, has two notable characteristics. One is the faciological control of reservoir quality, with preservation of porosity occurring only in facies of high depositional energy (grain stones). The second is related to diagenesis. The intense meteoric activity to which zone B1 reservoirs were submitted partially obliterated the original porosity of the grain stones, producing a domain of micro porosity that is reflected in low permeability values. Zone B2 reservoirs went straight from marine to subsurface diagenesis, producing a domain of macro porosity and, consequently, high permeability values. What is most worthy of note is that the two reservoirs currently display nearly identical porosity values. Accumulation was thus controlled by the occurrence of high-energy facies and by the action of diagenesis, which, together with the early migration of hydrocarbons to the structure, fostered the preservation of interparticle primary porosity at depths of over 4,500 m. (author)

  18. Carbon reservoirs on Mars: Constraints from Martian meteorites

    OpenAIRE

    Grady, Monica; Wright, Ian

    2003-01-01

    We have measured the abundance and stable isotopic composition of magmatic carbon extracted from a suite of shergottites. The results confirm previous findings that primordial carbon on Mars is isotopically lighter than that of the Earth.

  19. Knowledge – Based Reservoir Simulation – A Novel Approach

    Directory of Open Access Journals (Sweden)

    M. Enamul Hossain

    2010-01-01

    Full Text Available It is well known that reservoir simulation studies are very subjective and vary fromsimulator to simulator. While SPE benchmarking has helped accept differences inpredicting petroleum reservoir performance, there has been no scientific explanationbehind the variability that has frustrated many policy makers and operations managers andpuzzled scientists and engineers. In a recent book by the research group of R. Islam, anew approach is taken to add the Knowledge dimension to the problem. For the first time,reservoir simulation equations are shown to have embedded variability and multiplesolutions that are in line with physics rather than spurious mathematical solutions. Withthis clear description, a fresh perspective in reservoir simulation is presented. Unlike themajority of reservoir simulation approaches available today, the 'knowledge-based'approach does not stop at questioning the fundamentals of reservoir simulation but offerssolutions and demonstrates that proper reservoir simulation should be transparent andempower decision makers rather than creating a black box. Mathematical developments ofnew governing equations based on in-depth understanding of the factors that influencefluid flow in porous media under different flow conditions are introduced. Behavior of flowthrough matrix and fractured systems in the same reservoir, heterogeneity and fluid/rockproperties interactions, Darcy and non-Darcy flow are among the issues that are thoroughlyaddressed. For the first time, the fluid memory factor is introduced with a functionalform. The resulting governing equations are solved without linearization at any stage. Aseries of clearly superior mathematical and numerical techniques are also presented thatallow one to achieve this objective. Mathematical solutions that provide a basis forsystematic tracking of multiple solutions that are inherent to non-linear governingequations. This was possible because the new technique is capable of solving non

  20. Modeling and optimizing the design of matrix treatments in carbonate reservoirs with self-diverting acid systems

    International Nuclear Information System (INIS)

    Application of a self-diverting-acid based on viscoelastic surfactant (SDVA) is a promising technology for improving the efficacy of acid treatment in oil and gas-bearing carbonate reservoirs. In this study, we present a mathematical model for assessing SDVA flow and reaction with carbonate rock using the SDVA rheological characteristics. The model calculates the technological parameters for acidizing operations and the prediction of well productivity after acid treatment, in addition to technical and economic optimization of the acidizing process by modeling different acid treatment options with varying volumes, injection rates, process fluids stages and initial economic scenarios

  1. Axial obliquity control on the greenhouse carbon budget through middle- to high-latitude reservoirs

    Science.gov (United States)

    Laurin, Jiří; Meyers, Stephen R.; Uličný, David; Jarvis, Ian; Sageman, Bradley B.

    2015-02-01

    Carbon sources and sinks are key components of the climate feedback system, yet their response to external forcing remains poorly constrained, particularly for past greenhouse climates. Carbon-isotope data indicate systematic, million-year-scale transfers of carbon between surface reservoirs during and immediately after the Late Cretaceous thermal maximum (peaking in the Cenomanian-Turonian, circa 97-91 million years, Myr, ago). Here we calibrate Albian to Campanian (108-72 Myr ago) high-resolution carbon isotope records with a refined chronology and demonstrate how net transfers between reservoirs are plausibly controlled by ~1 Myr changes in the amplitude of axial obliquity. The amplitude-modulating terms are absent from the frequency domain representation of insolation series and require a nonlinear, cumulative mechanism to become expressed in power spectra of isotope time series. Mass balance modeling suggests that the residence time of carbon in the ocean-atmosphere system is—by itself—insufficient to explain the Myr-scale variability. It is proposed that the astronomical control was imparted by a transient storage of organic matter or methane in quasi-stable reservoirs (wetlands, soils, marginal zones of marine euxinic strata, and potentially permafrost) that responded nonlinearly to obliquity-driven changes in high-latitude insolation and/or meridional insolation gradients. While these reservoirs are probably underrepresented in the geological record due to their quasi-stable character, they might have provided an important control on the dynamics and stability of the greenhouse climate.

  2. Determining Carbon and Oxygen Stable Isotope Systematics in Brines at Elevated p/T Conditions to Enhance Monitoring of CO2 Induced Processes in Carbon Storage Reservoirs

    Science.gov (United States)

    Becker, V.; Myrttinen, A.; Mayer, B.; Barth, J. A.

    2012-12-01

    factors. Laboratory experiments with original reservoir fluids from CO2 storage reservoirs in Canada using supercritical fluid extraction reactors are being conducted at temperatures of up to 200 °C and CO2 pressures of up to 20 MPa. Preliminary results show that equilibration times for δ18O in high saline waters increase by an order of magnitude compared to fresh water, with exact times depending on CO2 partial pressure, stirring and the contact area between the phases. References Becker, V. et al., 2011. Predicting δ13CDIC dynamics in CCS: A scheme based on a review of inorganic carbon chemistry under elevated pressures and temperatures. International Journal of Greenhouse Gas Control, 5, pp.1250-1258. Johnson, G. et al., 2011. Using oxygen isotope ratios to quantitatively assess trapping mechanisms during CO2 injection into geological reservoirs: The Pembina case study. Chemical Geology, 283(3-4), pp.185-193.

  3. Sources and metabolism of carbon in a Canadian boreal hydroelectric reservoir

    International Nuclear Information System (INIS)

    Using isotopic approaches, we try to document the sources and pathways of this CO2 with special attention to seasonal patterns and to the cycling of organic carbon in the reservoir Robert-Bourassa . It is located in the Boreal forest area, south-east of Hudson Bay and is part of a series of 8 reservoirs. It has a mean surface area of 2835 km2 and was flooded in 1979. The isotopic monitoring of the reservoir started in 1998. However, we will essentially refer here to data collected during the summers of 2001 and 2002. Three sampling strategies were retained: i) sampling in surface waters of 15 sites scattered across the reservoir, ii) sampling along three water columns (from shallow to deep sites), and iii) sampling of of inflow and outflow waters of the reservoir, once a month during 1 year. At each sampling site, in situ measurements included: water and air temperatures, pH, alkalinity and wind speed. Samples were collected at each site for the measurement of concentrations of dissolved organic carbon (DOC), C/N ratios of dissolved organic matter (DOM) and isotopic compositions of dissolved inorganic carbon (DIC), DOC, air CO2 and dissolved organic nitrogen (DON)

  4. Characterization and prevention of formation damage for fractured carbonate reservoir formations with low permeability

    Institute of Scientific and Technical Information of China (English)

    Shu Yong; Yan Jienian

    2008-01-01

    Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure,lithology, porosity, permeability and mineral components all affect the potential for formation damage.The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity,and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed,which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid.Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology.

  5. A CUDA based parallel multi-phase oil reservoir simulator

    Science.gov (United States)

    Zaza, Ayham; Awotunde, Abeeb A.; Fairag, Faisal A.; Al-Mouhamed, Mayez A.

    2016-09-01

    Forward Reservoir Simulation (FRS) is a challenging process that models fluid flow and mass transfer in porous media to draw conclusions about the behavior of certain flow variables and well responses. Besides the operational cost associated with matrix assembly, FRS repeatedly solves huge and computationally expensive sparse, ill-conditioned and unsymmetrical linear system. Moreover, as the computation for practical reservoir dimensions lasts for long times, speeding up the process by taking advantage of parallel platforms is indispensable. By considering the state of art advances in massively parallel computing and the accompanying parallel architecture, this work aims primarily at developing a CUDA-based parallel simulator for oil reservoir. In addition to the initial reported 33 times speed gain compared to the serial version, running experiments showed that BiCGSTAB is a stable and fast solver which could be incorporated in such simulations instead of the more expensive, storage demanding and usually utilized GMRES.

  6. Modelling the effect of wettability distributions on oil recovery from microporous carbonate reservoirs

    OpenAIRE

    Kallel, W; Wood, Rachel; van Dijke, M.I.J.; Sorbie, K.S.; Jiang, Z.; Harland, S

    2015-01-01

    Carbonate-hosted hydrocarbon reservoirs are often weakly- to moderately oil-wet. Such wettability states are reached after oil migration through a series of chemical processes which are only understood in outline even though wettability is fundamental to prediction of multi-phase flow behaviour. Modelling the pore-scale wettability features of carbonates using pore-network models is challenging due to both our inability to incorporate appropriate chemical characteristics to the pore surfaces ...

  7. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Saibal Bhattacharya

    2005-08-31

    Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring

  8. Mathematical modeling of biogenous sulfate reduction in flooded carbonate petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ametov, A.M.

    1981-07-01

    A mathematical model of the activity of biocenosis of hydrocarbon oxidizing and sulfate reducing bacteria in flooded carbonate petroleum reservoirs, which leads to hydrogen sulfide generation which makes the working of deposits difficult, is investigated. A method of suppressing the bacterial processes in the bottom hole zones of injection wells is proposed. It presupposes that no viable bacteria reach the stratum.

  9. Estimates of Carbon Reservoirs in High-Altitude Wetlands in the Colombian Andes

    Directory of Open Access Journals (Sweden)

    Enrique Javier Peña

    2009-10-01

    Full Text Available The observed increase in emission of greenhouse gases, with attendant effects on global warming, have raised interests in identifying sources and sinks of carbon in the environment. Terrestrial carbon (C sequestration involves capture of atmospheric C through photosynthesis and storage in biota, soil and wetlands. Particularly, wetland systems function primarily as long-term reservoirs for atmospheric carbon dioxide (CO2 and as sources of atmospheric methane (CH4. The objective of this study was to evaluate the patterns of carbon reservoirs in two high-altitude wetlands in the central Andean mountain of Colombia. Carbon cycle in both systems is related mainly with the plant biomass dynamics from the littoral zone. Thus, total organic carbon concentrate an average up to 329 kg of N ha-1 and 125 kg of P ha-1 every year vs only 17 kg N ha-1 and 6 kg P ha-1 in the water column of the limnetic zone in the wetland, evidencing spatial differences in carbon concentrations for these types of ecosystems. Results revealed that these systems participate in the balance and sequestration of carbon in the Colombian Andes.

  10. The net carbon footprint of a newly created boreal hydroelectric reservoir

    OpenAIRE

    Teodoru, Cristian R.; Bastien, Julie; Bonneville, Marie-Claude; del Giorgio, Paul A.; Demarty, Maud; Garneau, Michelle; Hélie, Hélie Jean-Francois; Pelletier, Luc; Prairie, Yves T.; Roulet, Nigel T.; Strachan, Ian B.; Tremblay, Alain

    2012-01-01

    We present here the first comprehensive assessment of the carbon (C) footprint associated with the creation of a boreal hydroelectric reservoir (Eastmain-1 in northern Québec, Canada). This is the result of a large-scale, interdisciplinary study that spanned over a 7-years period (2003–2009), where we quantified the major C gas (CO2 and CH4)sources and sinks of the terrestrial and aquatic components of the pre-flood landscape, and also for the reservoir following the impoundment in 2006. The ...

  11. High Resolution Chemostratigraphy of Khartam Member of the Permo-Triassic Khuff Carbonate : Outcrop Reservoir Analog Approach from Central Saudi Arabia

    Science.gov (United States)

    Abdullatif, Osman; Adam, Ammar

    2013-04-01

    The Permo- Triassic carbonate Khuff reservoir (and equivalents) in the Middle East are estimated to contain about 15-20 % of the world's gas reserves. Excellently exposed Permian-Triassic outcropping strata in central Saudi Arabia provide good outcrop analog to the subsurface Khuff reservoir. The outcrop analog can allow examining and evaluating the stratigraphical and sedimentological heterogeneity which has important impact or reservoir quality and architecture. This chemostratigraphic study is part of an integrated outcrop analog study utilizing both field and laboratory stratigraphical and sedimentological data. The study objective is to characterize the chemostratigraphic properties and signatures related to depositional facies, diagenetic overprint, cyclicity and stratigraphic hierarchy. The Chemostratigraphic outcrop analog study is intended to provide a database and to enhance understanding and prediction of the Khuff carbonate reservoir rocks heterogeneity and quality. The field work included detailed sedimentological and stratigraphical description and analysis, gamma-ray logging and bed-by-bed sampling of outcrop sections of the Khartam Member. Lithofacies varies from mudstone, wackestone, packstone to grainstone and several meter to less than meter scale cyclicity were determined. For all samples collected chemical analysis was carried out for major, trace and rare earth elements. The chemostratigraphic signatures, based on major, trace and rare earth elements, and observed at the outcrop sections is capable of capturing stratigraphic and sedimentologic features observed at the outcrop scale and related to lithofacies, cyclicity, stacking pattern and surfaces. Reservoir and non reservoir facies were also identified and correlated. The high resolution chemostratigraphic approach used in this study may help to refine of stratigraphic hierarchy and reservoir models based on subsurface data. Consequently, this might contribute to better understanding of

  12. Technical difficulties of logging while drilling in carbonate reservoirs and the countermeasures: A case study from the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shudong Zhang

    2015-12-01

    Full Text Available In the Sichuan Basin, carbonate reservoirs are characterized by deep burial depth and strong heterogeneity, so it is difficult to conduct structure steering, pore space reservoir tracking and trajectory control in the process of geosteering logging while drilling. In this paper, a series of corresponding techniques for structure, reservoir and formation tracking were proposed after analysis was conducted on multiple series of carbonate strata in terms of their geologic and logging response characteristics. And investigation was performed on the adaptabilities of the following logging technologies to geosteering while drilling, including gamma ray imaging while drilling, resistivity imaging while drilling, density imaging while drilling, gamma ray logging while drilling, resistivity logging while drilling, neutron logging while drilling and density logging while drilling. After while drilling information was thoroughly analyzed, the logging suites for four common types of complicated reservoirs (thin layered reservoirs, thick massive reservoirs, denuded karst reservoirs and shale gas reservoirs were optimized, and five logging combinations suitable for different formations and reservoirs were proposed, including gamma ray logging + porosity + resistivity imaging, gamma ray logging + resistivity imaging, gamma ray logging + porosity + resistivity logging, gamma ray imaging + resistivity logging, and gamma ray logging. Field application indicates that it is of great reference and application value to use this method for the first time to summarize logging while drilling combinations for different types of carbonate reservoirs.

  13. Pore Type Classification on Carbonate Reservoir in Offshore Sarawak using Rock Physics Model and Rock Digital Images

    International Nuclear Information System (INIS)

    It has been recognized that carbonate reservoirs are one of the biggest sources of hydrocarbon. Clearly, the evaluation of these reservoirs is important and critical. For rigorous reservoir characterization and performance prediction from geophysical measurements, the exact interpretation of geophysical response of different carbonate pore types is crucial. Yet, the characterization of carbonate reservoir rocks is difficult due to their complex pore systems. The significant diagenesis process and complex depositional environment makes pore systems in carbonates far more complicated than in clastics. Therefore, it is difficult to establish rock physics model for carbonate rock type. In this paper, we evaluate the possible rock physics model of 20 core plugs of a Miocene carbonate platform in Central Luconia, Sarawak. The published laboratory data of this area were used as an input to create the carbonate rock physics models. The elastic properties were analyzed to examine the validity of an existing analytical carbonate rock physics model. We integrate the Xu-Payne Differential Effective Medium (DEM) Model and the elastic modulus which was simulated from a digital carbonate rock image using Finite Element Modeling. The results of this integration matched well for the separation of carbonate pore types and sonic P-wave velocity obtained from laboratory measurement. Thus, the results of this study show that the integration of rock digital image and theoretical rock physics might improve the elastic properties prediction and useful for more advance geophysical techniques (e.g. Seismic Inversion) of carbonate reservoir in Sarawak

  14. Reservoir Modeling of Carbonate on Fika Field: The Challenge to Capture the Complexity of Rock and Oil Types

    Directory of Open Access Journals (Sweden)

    Erawati Fitriyani Adji

    2014-09-01

    Full Text Available DOI: 10.17014/ijog.v1i2.181The carbonate on Fika Field has a special character, because it grew above a basement high with the thickness and internal character variation. To develop the field, a proper geological model which can be used in reservoir simulation was needed. This model has to represent the complexity of the rock type and the variety of oil types among the clusters. Creating this model was challenging due to the heterogeneity of the Baturaja Formation (BRF: Early Miocene reef, carbonate platform, and breccia conglomerate grew up above the basement with a variety of thickness and quality distributions. The reservoir thickness varies between 23 - 600 ft and 3D seismic frequency ranges from 1 - 80 Hz with 25 Hz dominant frequency. Structurally, the Fika Field has a high basement slope, which has an impact on the flow unit layering slope. Based on production data, each area shows different characteristics and performance: some areas have high water cut and low cumulative production. Oil properties from several clusters also vary in wax content. The wax content can potentially build up a deposit inside tubing and flow-line, resulted in a possible disturbance to the operation. Five well cores were analyzed, including thin section and XRD. Seven check-shot data and 3D seismic Pre-Stack Time Migration (PSTM were available with limited seismic resolution. A seismic analysis was done after well seismic tie was completed. This analysis included paleogeography, depth structure map, and distribution of reservoir and basement. Core and log data generated facies carbonate distribution and rock typing, defining properties for log analysis and permeability prediction for each zone. An Sw prediction for each well was created by J-function analysis. This elaborates capillary pressure from core data, so it is very similar to the real conditions. Different stages of the initial model were done i.e. scale-up properties, data analysis, variogram modeling

  15. Fish mercury development in relation to abiotic characteristics and carbon sources in a six-year-old, Brazilian reservoir

    International Nuclear Information System (INIS)

    Time series on fish mercury (Hg) development are rare for hydroelectric reservoirs in the tropics. In the central-western part of Brazil, a hydroelectric reservoir, called Lago Manso, was completed in 1999 after that background levels of fish Hg concentrations had been determined. The development for the first 3 years was studied in 2002. The objective of the present study was to determine development of fish Hg concentrations for a second three-year period after flooding. The bioaccumulation factor and certain abiotic and biotic factors, possibly affecting the availability and accumulation of Hg, were also examined. The results show that Hg levels in fish from Lago Manso have increased more than five times compared to the background levels observed before construction of the reservoir. At the same time, dissolved organic carbon has increased while dissolved oxygen has decreased indicating enhanced bioavailability of Hg. In the reservoir, Salminus brasiliensis had in average a Hg content of 1.1 μg g-1 f.w., Pseudoplatystoma fasciatum 1.2, Serrasalmus marginatus/spilopleura 0.9, and Brycon hilarii 0.6 μg g-1 f.w. The average fish Hg contents were higher downstream, except for B. hilarii. In the reservoir, the average Hg content of each species was in 2005 always over the consumption limit (0.55 μg total Hg g-1 f.w.) recommended by WHO. Therefore, the people living around Lago Manso should be informed of the health effects of Hg, and fish consumption recommendations should be carried out. The accumulation of Hg varies widely between species as shown by the bioaccumulation factor which ranges between 5.08 and 5.59 log units. The observed variation is explained by differences in diet and trophic position with piscivorous fish exhibiting the highest mean Hg concentration, followed by carnivorous and omnivorous species. Carbon isotope analyses imply that trophic position is not the only cause of the observed differences in Hg levels between omnivorous B. hilarii

  16. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    Science.gov (United States)

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  17. Simulated experiment evidences of the corrosion and reform actions of H2S to carbonate reservoirs: an example of Feixianguan Formation, east Sichuan

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The reservoir of Feixianguan Formation of the Lower Triassic in the Sichuan Basin is the deepest buried carbonate reservoir in China, with developed secondary corrosion holes, high quantities carbonate reservoir, maximum effective carbonate reservoir thickness. Also Feixianguan gas reservoir has the highest quantities of H2S. Research discovers that there are close relationships between the formation of reservoir and H2S. The mutual actions between acidity fluid and carbonate promoted the forming of secondary carbonate holes. Through the experiment of corrosion of the samples of Feixianguan carbonate reservoir in saturated aqueous solution of hydrogen sulfide, the porosity and permeability increased greatly, porosity increased 2% and permeability increased nearly two quantity degrees, also the density became light, which confirm the corrosion and reform actions of H2S to carbonate.

  18. A novel viscoelastic surfactant suitable for use in high temperature carbonate reservoirs for diverted acidizing stimulation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Stuart; Zhou, Jian; Gadberry, Fred [AkzoNobel Surface Chemistry, Forth Worth, TX (United States); Nasr-El-Din, Hisham; Wang, Guanqun [Texas A and M University, College Station, TX (United States). Dept. of Petroleum Engineering

    2012-07-01

    Due to the low permeability of many carbonate hydrocarbon-bearing reservoirs, it is difficult to achieve economic hydrocarbon recovery from a well without secondary stimulation. Bullheading of strong acids, such as HCl is practiced in low temperature reservoirs, but as the bottom hole temperature (BHT) rises, the acid becomes increasingly corrosive, causing facial dissolution and sub-optimal wormhole network development. In the last decade, viscoelastic surfactants (VES) have been added to HCl acid systems to improve the stimulation of HT carbonate reservoirs. The VES form 'living polymers' or worm-like micelles as electrolyte concentration rises in the acid due to reaction with the reservoir. This leads to viscosification of the stimulation fluid. The viscosification slows further acid reaction in the region already contacted by the acid, and forces the acid to take an alternate path into the rock, leading to diversion of the acids further down the well to the harder to access toe or lower permeability zones. Until recently, the maximum BHT that such VES-based diverting systems could be used was up to about 250 deg F/120 deg C. Above that temperature, all viscous properties of the fluid are lost, destroying the mechanism of acid diversion. A recently developed novel viscoelastic surfactant provides nearly 100 deg F/55 deg C extension in the BHT range in which diverted acid treatments can be used. These fluids are able to maintain both viscosity up to about 375 deg F/190 deg C, with the elastic modulus predominating up to 350 deg F/175 deg C. It is the elasticity which is particularly important in acid diversion. These fluids can have their viscosity readily broken by in-situ hydrocarbons, dilution with water or by using a mutual solvent. The broken fluids are readily removed from the near-well bore, leaving the newly created wormhole network to produce the target hydrocarbons. The new VES is significantly more environmentally benign compared with current

  19. Investigating Protoplanetary Carbon Reservoirs and Molecular Inheritance along a Galactic Gradient

    OpenAIRE

    Smith, R.L.; Blake, G. A.; Boogert, A. C. A.; Pontoppidan, K. M.; Lockwood, A. C.

    2015-01-01

    High-resolution observations of CO gas toward young stellar objcts (YSOs) enable valuable comparisons between forming protoplanetry systems and solar system material, as well as robust evaluation of early protoplanetry chemical reservoirs [1-7]. Precise isotopic observations of carbon and oxygen in the gas-phase have largely targeted low-mass YSOs in our local solar neighborhood [1,2]. Yet, precise investigations of YSOs ranging in size, luminosity, and Galactic locati...

  20. Carbon nanotube reservoirs for self-healing materials

    International Nuclear Information System (INIS)

    A novel nanoreservoir made of carbon nanotubes (CNTs) is proposed for realizing tougher and automated self-healing materials. The advantages of the approach are that CNTs have the potential to play the role of reinforcing elements prior to and after sealing a crack and that the number of voids is reduced after the material and the CNTs themselves are healed. The focus of this paper is on investigating the feasibility of using CNTs as a nanoreservoir by analyzing the dynamics of a fluid flowing out of a ruptured single-walled CNT (SWNT), where the fluid resembles an organic healing agent. With this in mind the escaping mechanism of organic molecules stored inside a cracked SWNT was investigated through a molecular dynamics study. The study shows that, when a SWNT wall suffers the formation of a crack, a certain amount of organic molecules, stored inside the SWNT, escape into space in a few picoseconds. This phenomenon is found to depend on the temperature and on the size of the cracks. The results of this study indicate that CNTs have the potential to be successfully used to realize the next generation of stronger, lighter and self-healing materials.

  1. Carbon Solubility in Core Melts in Shallow Magma Ocean Environment and its bearing on Distribution of Carbon between Deep Earth Reservoirs

    Science.gov (United States)

    Dasgupta, R.; Walker, D.

    2007-12-01

    pressure, this may indicate the presence of a hidden carbon- rich mantle reservoir untapped by oceanic volcanism. For the entire range of possible bulk Earth carbon content from chondritic to subchondritic and for the mantle carbon content of 50-1000 ppm, DC of 10-4- 100 are derived. But for 1000 ppm bulk Earth carbon, DC is 10-2-100. Using the complete range of possible DC for a magma ocean at ~2200 °C, we predict maximum carbon content of the Earth's core to be 6-7 wt.% and a preferred value of 0.25 ± 0.15 wt.% carbon for a bulk Earth carbon concentration of 1000 ppm. Based on our estimate, the core is likely one of the most enriched terrestrial reservoirs of carbon with concentration as high as 0.4 wt.%, which likely is at least an order of magnitude higher than that of the average mantle. The higher carbon content of OIBs compared to MORBs thus may derive in part from core contributions to mantle plumes.[1] Dasgupta, R. and Hirschmann, M.M. 2006, Nature 440, 659- 662. [2] Wood, B.J. 1993, Earth Planet Sci Lett 117, 593-607.

  2. Mechanisms controlling the carbon stable isotope composition of phytoplankton in karst reservoirs

    Directory of Open Access Journals (Sweden)

    Baoli Wang

    2013-02-01

    Full Text Available In order to systematically understand the mechanisms controlling the carbon stable isotope composition of phytoplankton (δ13CPHYin freshwater ecosystems, seasonal changes in δ13CPHY and related environmental factors were determined in karst reservoirs from the Wujiang river basin, China. Substantial and systematic differences within seasons and reservoirs were observed for δ13CPHY, which ranged from -39.2‰ to -15.1‰. An increase in water temperature triggered fast growth of phytoplankton which assimilated more dissolved inorganic carbon (DIC, resulting in the increase of δ13CPHY, δ13CDIC and pH. When the concentration of dissolved carbon dioxide (CO2 was less than 10 mmol L–1, phytoplankton shifted to using HCO3– as a carbon source. This resulted in the sharp increase of δ13CPHY. The carbon stable isotope composition of phytoplankton tended to decrease with the increase of Bacillariophyta, which dominated in January and April, but tended to increase with the increase of Chlorophyta and Dinophyta, which dominated in July. Multiple regression equations suggested that the influence of biological factors such as taxonomic difference on δ13CPHY could be equal or more important than that of physical and chemical factors. Thus, the effect of taxonomic differences on δ13CPHY must be considered when explaining the δ13C of organic matter in lacustrine ecosystem.

  3. Dual permeability flow behavior for modeling horizontal well production in fractured-vuggy carbonate reservoirs

    Science.gov (United States)

    Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu

    2012-09-01

    SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.

  4. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic

  5. Capillarity and wetting of carbon dioxide and brine during drainage in Berea sandstone at reservoir conditions

    Science.gov (United States)

    Al-Menhali, Ali; Niu, Ben; Krevor, Samuel

    2015-10-01

    The wettability of CO2-brine-rock systems will have a major impact on the management of carbon sequestration in subsurface geological formations. Recent contact angle measurement studies have reported sensitivity in wetting behavior of this system to pressure, temperature, and brine salinity. We report observations of the impact of reservoir conditions on the capillary pressure characteristic curve and relative permeability of a single Berea sandstone during drainage—CO2 displacing brine—through effects on the wetting state. Eight reservoir condition drainage capillary pressure characteristic curves were measured using CO2 and brine in a single fired Berea sandstone at pressures (5-20 MPa), temperatures (25-50°C), and ionic strengths (0-5 mol kg-1 NaCl). A ninth measurement using a N2-water system provided a benchmark for capillarity with a strongly water wet system. The capillary pressure curves from each of the tests were found to be similar to the N2-water curve when scaled by the interfacial tension. Reservoir conditions were not found to have a significant impact on the capillary strength of the CO2-brine system during drainage through a variation in the wetting state. Two steady-state relative permeability measurements with CO2 and brine and one with N2 and brine similarly show little variation between conditions, consistent with the observation that the CO2-brine-sandstone system is water wetting and multiphase flow properties invariant across a wide range of reservoir conditions.

  6. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    F. Jerry Lucia

    2002-01-31

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock

  7. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    International Nuclear Information System (INIS)

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock-fabric flow layers

  8. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2004-02-25

    reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

  9. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Boomer, R.J.; Cole, R.; Kovar, M.; Prieditis, J.; Vogt, J.; Wehner, S.

    1999-02-24

    The application cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in capital-intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in a attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir.

  10. Application of Optimized Neural Network Models for Prediction of Nuclear Magnetic Resonance Parameters in Carbonate Reservoir Rocks

    Directory of Open Access Journals (Sweden)

    Javad Ghiasi-Freez

    2015-05-01

    Full Text Available Neural network models are powerful tools for extracting the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local minima. The present study went to step forward by optimizing neural network models using three intelligent optimization algorithms, including genetic algorithm (GA, particle swarm optimization (PSO, and ant colony (AC, to eliminate the risk of being exposed to local minima. This strategy was capable of significantly improving the accuracy of a neural network by optimizing network parameters such as weights and biases. Nuclear magnetic resonance (NMR log measures some of the most useful characteristics of reservoir rock; the capabilities of the optimized models were used for prediction of nuclear magnetic resonance (NMR log parameters in a carbonate reservoir rock of Iran. Conventional porosity logs, which are the easily accessible tools compared to NMR log’s parameters, were introduced to the models as inputs while free fluid porosity and permeability, which were measured by NMR log, are desire outputs. The performance of three optimized models was verified by some unseen test data. The results show that PSO-based network and ACO-based network is the best and poorest method, respectively, in terms of accuracy; however, the convergence time of GA-based model is considerably smaller than PSO-based and GA-based models.

  11. APHRON-BASED DRILLING FLUIDS: SOLUTION FOR LOW PRESSURE RESERVOIRS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2009-12-01

    Full Text Available Drilling wells throughout depleted or low pressure reservoirs requires low density drilling fluids, often with density less than water. Methods to reduce the density of drilling fluids have included mixing-in air or nitrogen. However, problems with these approaches include instability of gas bubbles (bubbles collapse or expand and increased costs. Recently, the use of micro bubbles named aphrons in drilling, completion and workover fluids has proven success in solving many problems related to low pressure reservoirs such as fluid loss control, formation damage, stabilization of multipressure sequences with one fluid and possible differential sticking. Aphrons represent bubble with uniquely structure stabilized with surfactant. Against conventional micro bubbles, aphrons are more stable in downhole conditions and they are generated using standard mixing equipment. Owing to their properties and overpressure in wellbore aphrons penetrate into low pressure layers and set up inner bridging. Depleted wells which are very expensive to drill underbalanced or with other remediation techniques can now be drilled overbalanced. This paper presents description of aphron structure and stability, aphron bridging mechanism, aphron-based fluid composition and properties, and field experiences in applying aphron-based fluids.

  12. Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

    2007-09-30

    This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite

  13. Capillary Trapping of CO2 in Oil Reservoirs: Observations in a Mixed-Wet Carbonate Rock.

    Science.gov (United States)

    Al-Menhali, Ali S; Krevor, Samuel

    2016-03-01

    Early deployment of carbon dioxide storage is likely to focus on injection into mature oil reservoirs, most of which occur in carbonate rock units. Observations and modeling have shown how capillary trapping leads to the immobilization of CO2 in saline aquifers, enhancing the security and capacity of storage. There are, however, no observations of trapping in rocks with a mixed-wet-state characteristic of hydrocarbon-bearing carbonate reservoirs. Here, we found that residual trapping of supercritical CO2 in a limestone altered to a mixed-wet state with oil was significantly less than trapping in the unaltered rock. In unaltered samples, the trapping of CO2 and N2 were indistinguishable, with a maximum residual saturation of 24%. After the alteration of the wetting state, the trapping of N2 was reduced, with a maximum residual saturation of 19%. The trapping of CO2 was reduced even further, with a maximum residual saturation of 15%. Best-fit Land-model constants shifted from C = 1.73 in the water-wet rock to C = 2.82 for N2 and C = 4.11 for the CO2 in the mixed-wet rock. The results indicate that plume migration will be less constrained by capillary trapping for CO2 storage projects using oil fields compared with those for saline aquifers. PMID:26812184

  14. Enhancing Caprock Integrity of Carbon Sequestration Reservoirs Using Colloidal Silica Gel

    Science.gov (United States)

    Roberts, S. K.; Ezzedine, S. M.; Bourcier, W.; Hunt, J. D.

    2013-12-01

    Silica gels are abundant in various subsurface applications. For example, it has been used in a) oil and gas industries as permeability reducer, b) geotechnical industry as a stabilizer and c) environmental industry as an isolator, and more recently in d) enhanced geothermal systems as a diverter agent; yet silica gels have not been evaluated for geological carbon sequestration. In the latter, several leakage pathways can compromise the integrity of the reservoir, thus the containment of the injected supercritical carbon dioxide. On one hand, interfacial dislocations around the injection well can lead leakage pathways compromising the well stability and integrity, and on the other, undetected preexisting fracture in the caprock can compromise the containment of the injected carbon dioxide. We propose to use silica gels as a sealing agent to seal fast pathways, minimize any leakages and enhance the overall integrity of the reservoir. Diverting and blocking agents currently used in the industry are often organic polymers that raise environmental concerns; whereas silicas are inorganic and environmentally friendly which underscore their suitability. In the current study we have developed a numerical model to simulate the flow mass and heat transport of silica gel in supercritical CO2 sequestration reservoirs. We illustrate the application of the model for minimizing CO2 leakages to the caprock by using the gel as sealing agent. Several 2D and 3D examples in porous and fractured network will be presented and design criteria for both applications will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Sources and metabolism of carbon in a Canadian boreal hydroelectric reservoir

    International Nuclear Information System (INIS)

    Average emission values of 1 to 2 g of CO2·m-2·d-1 were observed for hydroelectric reservoirs located in northern Quebec. Here, using isotopic approaches, we try to document the sources and pathways of this CO2 with special attention to seasonal patterns and to the cycling of organic carbon in the reservoir Robert-Bourassa . It is located in the Boreal forest area, south-east of Hudson Bay and is part of a series of 8 reservoirs (including notably LG-2 and LG-3). It has a mean surface area of 2835 km2 and was flooded in 1979. The isotopic monitoring of the reservoir started in 1998. However, we will essentially refer here to data collected during the summers of 2001 and 2002. Three sampling strategies were retained: i) sampling in surface waters of ∼15 sites scattered across the reservoir, ii) sampling along three water columns (from shallow to deep sites), and iii) sampling of of inflow and outflow waters of the reservoir, once a month during 1 year. At each sampling site, in situ measurements included: water and air temperatures, pH, alkalinity and wind speed. Samples were collected at each site for the measurement of concentrations of dissolved organic carbon (DOC), C/N ratios of dissolved organic matter (DOM) and isotopic compositions of dissolved inorganic carbon (DIC), DOC, air CO2 and dissolved organic nitrogen (DON). Samples were also collected for the measurements of 14C-concentrations in DOM and of δ18O-values of dissolved oxygen (DO). δ13C-values of DIC vary, throughout the reservoir, from -9 per mille to -14 per mille vs VPDB (i.e., from -13 to -19, for the corresponding dissolved CO2) whereas δ13C-values in the overlying air-CO2 vary from -9 to -11 per mille. Both show a shift towards more depleted values under windy conditions. δ13C-values in DOC vary little in the reservoir. They average -27.1±0.2 per mille. C/N ratios of DOM vary between 12 and 38 with a mean of 30. The 14C activity of DOM, at the deepest sampling station vary between 106

  16. Geological storage of carbon dioxide in the coal seams: from material to the reservoir

    International Nuclear Information System (INIS)

    CO2 emissions into the atmosphere are recognized to have a significant effect on global warming. Geological storage of CO2 is widely regarded as an essential approach to reduce the impact of such emissions on the environment. Moreover, injecting carbon dioxide in coal bed methane reservoirs facilitates the recovery of the methane naturally present, a process known as enhanced coal bed methane recovery (ECBM). But the swelling of the coal matrix induced by the preferential adsorption by coal of carbon dioxide over the methane in place leads to a closure of the cleat system (a set of small natural fractures) of the reservoir and therefore to a loss of injectivity. This PhD thesis is dedicated to a study of how this injectivity evolves in presence of fluids. We derive two poro-mechanical dual-porosity models for a coal bed reservoir saturated by a pure fluid. The resulting constitutive equations enable to better understand and model the link between the injectivity of a coal seam and the adsorption-induced swelling of coal. For both models, the pore space of the reservoir is considered to be divided into the macroporous cleats and the pores of the coal matrix. The two models differ by how adsorption of fluid is taken into account: the first model is restricted to surface adsorption, while the second model can be applied for adsorption in a medium with a generic pore size distribution and thus in a microporous medium such as coal, in which adsorption mostly occurs by micropore filling. The latter model is calibrated on two coals with different sorption and swelling properties. We then perform simulations at various scales (Representative Elementary Volume, coal sample, coal seam). In particular, we validate our model on experimental data of adsorption-induced variations of permeability of coal. We also perform simulations of seams from which methane would be produced (CBM) or of methane-free seams into which CO2 would be injected. We study the effect of various

  17. A Constrained Differential Evolution Algorithm for Reservoir Management: Optimal Placement and Control of Wells for Geological Carbon Storage with Uncertainty in Reservoir Properties

    Science.gov (United States)

    Cihan, A.; Birkholzer, J. T.; Bianchi, M.

    2014-12-01

    Injection of large volume of CO2 into deep geological reservoirs for geologic carbon sequestration (GCS) is expected to cause significant pressure perturbations in subsurface. Large-scale pressure increases in injection reservoirs during GCS operations, if not controlled properly, may limit dynamic storage capacity and increase risk of environmental impacts. The high pressure may impact caprock integrity, induce fault slippage, and cause leakage of brine and/or CO2 into shallow fresh groundwater resources. Thus, monitoring and controlling pressure buildup are critically important for environmentally safe implementation of GCS projects. Extraction of native brine during GCS operations is a pressure management approach to reduce significant pressure buildup. Extracted brine can be transferred to the surface for utilization or re-injected into overlying/underlying saline aquifers. However, pumping, transportation, treatment and disposal of extracted brine can be challenging and costly. Therefore, minimizing volume of extracted brine, while maximizing CO2 storage, is an essential objective of the pressure management with brine extraction schemes. Selection of optimal well locations and extraction rates are critical for maximizing storage and minimizing brine extraction during GCS. However, placing of injection and extraction wells is not intuitive because of heterogeneity in reservoir properties and complex reservoir geometry. Efficient computerized algorithms combining reservoir models and optimization methods are needed to make proper decisions on well locations and control parameters. This study presents a global optimization methodology for pressure management during geologic CO2 sequestration. A constrained differential evolution (CDE) algorithm is introduced for solving optimization problems involving well placement and injection/extraction control. The CDE methodology is tested and applied for realistic CO2 storage scenarios with the presence of uncertainty in

  18. Stratigraphic sections showing coal correlations within the lower coal zone of the Paleocene Fort Union Formation, Fillmore Ranch and Seaverson Reservoir quadrangles, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Honey, J.G.; Hettinger, R.D.

    1989-01-01

    Stratigraphic sections showing coal correlations within the lower coal zone of the Paleocene Fort Union Formation, Fillmore Ranch and Seaverson Reservoir quadrangles, Carbon County, Wyoming are presented.

  19. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai

    2015-10-26

    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems. In this framework, a parallel reservoir simulator, reservoir-simulation toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, whereas the MD simulations are performed to provide the required physical parameters. Technologies from several different fields are used to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large-scale CO2 sequestration for long-term storage in subsurface geological formations, such as depleted oil and gas reservoirs and deep saline aquifers, which has been proposed as one of the few attractive and practical solutions to reduce CO2 emissions and address the global-warming threat. Fine grids and accurate prediction of the properties of fluid mixtures under geological conditions are essential for accurate simulations. In this work, CO2 sequestration is presented as a first example for coupling reservoir simulation and MD, although the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical processes in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability is observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well-demonstrated with several experiments with hundreds of millions to one billion cells. To the best of our knowledge, the present work represents the first attempt to couple reservoir simulation and molecular simulation for large-scale modeling. Because of the complexity of

  20. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    OpenAIRE

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.

    2013-01-01

    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture network heterogeneity is therefore essential in order to understand and predict fluid flow in fractured reservoirs, but this cannot be accomplished using only 1D data from wells, which is usually t...

  1. The impact of reservoir conditions on the residual trapping of carbon dioxide in Berea sandstone

    Science.gov (United States)

    Niu, Ben; Al-Menhali, Ali; Krevor, Samuel C.

    2015-04-01

    The storage of carbon dioxide in deep brine-filled permeable rocks is an important tool for CO2 emissions mitigation on industrial scales. Residual trapping of CO2 through capillary forces within the pore space of the reservoir is one of the most significant mechanisms for storage security and is also a factor determining the ultimate extent of CO2 migration within the reservoir. In this study we have evaluated the impact of reservoir conditions of pressure, temperature, and brine salinity on the residual trapping characteristic curve of a fired Berea sandstone rock. The observations demonstrate that the initial-residual characteristic trapping curve is invariant across a wide range of pressure, temperature, and brine salinities and is also the same for CO2-brine systems as a N2-water system. The observations were made using a reservoir condition core-flooding laboratory that included high-precision pumps, temperature control, the ability to recirculate fluids for weeks at a time, and an X-ray CT scanner. Experimental conditions covered pressures of 5-20 MPa, temperatures of 25-50°C, and 0-5 mol/kg NaCl brine salinity. A novel coreflooding approach was developed, making use of the capillary end effect to create a large range in initial CO2 saturation (0.15-0.6) in a single coreflood. Upon subsequent flooding with CO2-equilibriated brine, the observation of residual saturation corresponded to the wide range of initial saturations before flooding resulting in a rapid construction of the initial-residual curve. For each condition we report the initial-residual curve and the resulting parameterization of the Land hysteresis models.

  2. Optimal nonlinear information processing capacity in delay-based reservoir computers

    Science.gov (United States)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  3. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs

    OpenAIRE

    Haugan, Peter Mosby; Joos, Fortunat

    2004-01-01

    Different metrics to assess mitigation of global warming by carbon capture and storage are discussed. The climatic impact of capturing 30% of the anthropogenic carbon emission and its storage in the ocean or in geological reservoir are evaluated for different stabilization scenarios using a reduced-form carbon cycle-climate model. The accumulated Global Warming Avoided (GWA) remains, after a ramp-up during the first ~50 years, in the range of 15 to 30% over the next millennium for de...

  4. Temperate forest as a carbon-storage reservoir for carbon dioxide emitted by coal-fired generating stations - a case study for New Brunswick, Canada

    International Nuclear Information System (INIS)

    The potential use of a temperature forest to compensate for CO2 emissions from a coal-fired generating station is discussed, with the province of New Brunswick, Canada developed as a case study. Each year a 200 MW generating station would emit a calculated 0.34 x 106t C. To offset this emission with aggrading biomass carbon of typical, unmanaged, mature forest in New Brunswick, the reserve area would have to have an area of about (4.7 x 105) ha, equivalent to 8% of the forested area of that province. Because agricultural sites start from a much smaller base of fixed carbon, a smaller area of reserve would be required if such land were to be reforested, about (0.72 x 105) ha of conifer plantation on high-quality sites or (1.9 x 105)has of unmanaged regeneration. Compensatory forest reserves must be protected from catastrophic disturbance by harvesting, fire, or insect defoliation in order to maintain fixed C in an organic reservoir. Additional C-storage gains could be realized by allowing continued succession towards an old-growth stage of development, and by making silvicultural investments to increase the rate of net carbon fixation in mature stands. Overall, however, the area of land that would have to be reserved to compensate for carbon emissions from a 200 MW coal-fired generating station would be very large, and would require unrealistic changes in existing land use in New Brunswick

  5. Estimation of nonfluctuating reservoir inflow from water level observations using methods based on flow continuity

    Science.gov (United States)

    Deng, Chao; Liu, Pan; Guo, Shenglian; Wang, Hao; Wang, Dingbao

    2015-10-01

    The accurate estimation of "true" reservoir inflow is important for hydrological forecasting and efficient operation of reservoirs. However, reservoir inflow estimated using the conventional simple water balance method is not always accurate because the estimation is very sensitive to errors in reservoir water level observations and uncertainty in the stage-storage relationship. An analytical method (AM) and a method using the ensemble Kalman filter (EnKF) are proposed to determine nonfluctuating reservoir inflow based on the concept of inflow continuity; that is, that inflow should not change much within a short time period. The AM is developed based on the simultaneous minimization of both the estimated reservoir water level error and the inflow variation. The EnKF, which is built on state equations (inflow continuity and water balance equations) and an observation equation (the reservoir stage-storage relationship), is used to update inflow states by assimilating water level observations. The two proposed methods are evaluated using a synthetic experiment with various conditions including water level observation error, reservoir stage-storage relationship error, and the influence of water surface slope. The AM outperforms the EnKF under all conditions. Case studies of the Gaobazhou and Danjiangkou Reservoirs in China demonstrate that both of the proposed methods can derive an hourly inflow without fluctuations. The results indicate that the AM and the EnKF method can improve reservoir inflow estimation compared with conventional methods.

  6. Carbon based prosthetic devices

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  7. The COS-Dwarfs Survey: The Carbon Reservoir Around sub-L* Galaxies

    CERN Document Server

    Bordoloi, Rongmon; Werk, Jessica K; Oppenheimer, Benjamin D; Peeples, Molly S; Prochaska, J Xavier; Tripp, Todd M; Katz, Neal; Davé, Romeel; Fox, Andrew; Thom, Christopher; Ford, Amanda Brady; Weinberg, David H; Burchett, Joseph N; Kollmeier, Juna A

    2014-01-01

    We report new observations of circumgalactic gas from the COS-Dwarfs survey, a systematic investigation of the gaseous halos around 43 low-mass z $\\leq$ 0.1 galaxies using background QSOs observed with the Cosmic Origins Spectrograph. From the projected 1D and 2D distribution of C IV absorption, we find that C IV absorption is detected out to ~ 0.5 R$_{vir}$ of the host galaxies. The C IV absorption strength falls off radially as a power law and beyond 0.5 R$_{vir}$, no C IV absorption is detected above our sensitivity limit of ~ 50-100 m$\\AA$. We find a tentative correlation between detected C IV absorption strength and star formation, paralleling the strong correlation seen in highly ionized oxygen for L~L* galaxies by the COS-Halos survey. The data imply a large carbon reservoir in the CGM of these galaxies, corresponding to a minimum carbon mass of $\\gtrsim$ 1.2$\\times 10^6$ $M_\\odot$ out to ~ 110 kpc. This mass is comparable to the carbon mass in the ISM and more than the carbon mass currently in stars o...

  8. Analytical solution of geological carbon sequestration under constant pressure injection into a horizontal radial reservoir

    Science.gov (United States)

    Jhang, R.; Liou, T.

    2013-12-01

    Carbon capture and sequestration (CCS) is believed to be an economically feasible technology to mitigate global warming by capturing carbon dioxide (CO2), the major component of greenhouse gases, from the atmosphere and injecting it into deep geological formations.Several mechanisms can help trap CO2 in the pore space of a geological reservoir, stratigraphic and structural trapping, hydrodynamic trapping, and geochemical trapping.Besides these trapping mechanisms, another important issue that deserves careful attention is the risk of CO2 leakage. The common ';constant injection rate' scenario may induce high pressure buildup that will endanger the mechanical integrity as well as the sealing capability of the cap rock. Instead of injecting CO2 at a constant mass rate, CO2 can be injected into the reservoir by fixing the pressure (usually the bottom-hole pressure) in the injection borehole. By doing so, the inevitable pressure buildup associated with the constant injection scheme can be completely eliminated in the constant pressure injection scheme. In this paper, a semi-analytical solution for CO2 injection with constant pressure was developed. For simplicity, structural and geochemical trapping mechanisms were not considered. Therefore, a horizontal reservoir with infinite radial extent was considered. Prior to injection, the reservoir is fully saturated with the formation brine. It is assumed that CO2 does not mix with brine such that a sharp interface is formed once CO2 invades the brine-saturated pores. Because of the density difference between CO2 and brine, CO2 resides above the interface. Additional assumptions were also made when building up the brine and CO2 mass balance equations: (1) both of the fluids and the geological formations are incompressible, (2) capillary pressure is neglected, (3)there is no fluid flow in the vertical direction, and the horizontal flow satisfies the Darcy's law.In order to solve for the height of brine-CO2 interface, the two

  9. Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology

    Science.gov (United States)

    Regnet, J. B.; Robion, P.; David, C.; Fortin, J.; Brigaud, B.; Yven, B.

    2015-02-01

    This integrated study provides significant insight into parameters controlling the acoustic and reservoir properties of microporous limestones, improving the knowledge of the relationships among petrophysic and microstructural content. Petrophysical properties measured from laboratory and logging tools (porosity, permeability, electrical conductivity, and acoustic properties) have been coupled with thin section and scanning electron microscope observations on the EST205 borehole from the Oxfordian limestone aquifer of the eastern part of the Paris Basin. A major achievement is the establishment of the link between micrite microtexture types (particle morphology and nature of intercrystal contacts) and the physical response, introducing a new effective and interesting rock-typing approach for microporous reservoirs. Fluid-flow properties are enhanced by the progressive augmentation of intercrystalline microporosity and associated pore throat diameter, as the coalescence of micrite particles decreases. Concerning acoustic properties, the slow increase of P wave velocity can be seen as a reflection of crystal size and growing contact cementation leading to a more cohesive and stiffer micrite microtexture. By applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates. This dispersion analysis highlights the presence of microcracks in the rocks, and their overall effect on acoustic and transport properties. The presence of microcracks is also confirmed with observations and permeability measurements under high confining pressure. Finally, a possible origin of high porous levels in neritic limestones is a mineralogical transformation of carbonates through freshwater-related diagenesis during subaerial exposure time. Finally, by applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates.

  10. Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

    Energy Technology Data Exchange (ETDEWEB)

    Tuncay, K.; Romer, S.; Ortoleva, P. [Indiana Univ., Bloomington, IN (United States); Hoak, T. [Kestrel Geoscience, Littleton, CO (United States); Sundberg, K. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1998-12-31

    The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.

  11. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation

    Science.gov (United States)

    Matter, Jürg M.; Kelemen, Peter B.

    2009-12-01

    Anthropogenic greenhouse-gas emissions continue to increase rapidly despite efforts aimed at curbing the release of such gases. One potentially long-term solution for offsetting these emissions is the capture and storage of carbon dioxide. In principle, fluid or gaseous carbon dioxide can be injected into the Earth's crust and locked up as carbonate minerals through chemical reactions with calcium and magnesium ions supplied by silicate minerals. This process can lead to near-permanent and secure sequestration, but its feasibility depends on the ease and vigour of the reactions. Laboratory studies as well as natural analogues indicate that the rate of carbonate mineral formation is much higher in host rocks that are rich in magnesium- and calcium-bearing minerals. Such rocks include, for example, basalts and magnesium-rich mantle rocks that have been emplaced on the continents. Carbonate mineral precipitation could quickly clog up existing voids, presenting a challenge to this approach. However, field and laboratory observations suggest that the stress induced by rapid precipitation may lead to fracturing and subsequent increase in pore space. Future work should rigorously test the feasibility of this approach by addressing reaction kinetics, the evolution of permeability and field-scale injection methods.

  12. Use of 3D Seismic Azimuthal Iso-Frequency Volumes for the Detection and Characterization of High Porosity/Permeability Zones in Carbonate Reservoirs

    Science.gov (United States)

    Toelle, Brian E.

    Among the most important properties controlling the production from conventional oil and gas reservoirs is the distribution of porosity and permeability within the producing geologic formation. The geometry of the pore space within these reservoirs, and the permeability associated with this pore space geometry, impacts not only where production can occur and at what flow rates but can also have significant influence on many other rock properties. Zones of high matrix porosity can result in an isotropic response for certain reservoir properties whereas aligned porosity/permeability, such as open, natural fracture trends, have been shown to result in reservoirs being anisotropic in many properties. The ability to identify zones within a subsurface reservoir where porosity/permeability is significantly higher and to characterize them according to their geometries would be of great significance when planning where new boreholes, particularly horizontal boreholes, should be drilled. The detection and characterization of these high porosity/permeability zones using their isotropic and anisotropic responses may be possible through the analysis of azimuthal (also referred to as azimuth-limited) 3D seismic volumes. During this study the porosity/permeability systems of a carbonate, pinnacle reef within the northern Michigan Basin undergoing enhanced oil recovery were investigated using selected seismic attributes extracted from azimuthal 3D seismic volumes. Based on the response of these seismic attributes an interpretation of the geometry of the porosity/permeability system within the reef was made. This interpretation was supported by well data that had been obtained during the primary production phase of the field. Additionally, 4D seismic data, obtained as part of the CO2 based EOR project, supported reservoir simulation results that were based on the porosity/permeability interpretation.

  13. Source Term Modeling for Evaluating the Potential Impacts to Groundwater of Fluids Escaping from a Depleted Oil Reservoir Used for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Brown, Christopher F.

    2014-06-13

    In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Modeling is currently being conducted to evaluate potential risks to groundwater associated with leakage of fluids from depleted oil reservoirs used for storage of CO2. Modeling results reported here focused on understanding how toxic organic compounds found in oil will distribute between the various phases within a storage reservoir after introduction of CO2, understanding the migration potential of these compounds, and assessing potential groundwater impacts should leakage occur. Two model scenarios were conducted to evaluate how organic components in oil will distribute among the phases of interest (oil, CO2, and brine). The first case consisted of 50 wt.% oil and 50 wt.% water; the second case was 90 wt.% CO2 and 10 wt.% oil. Several key organic compounds were selected for special attention in this study based upon their occurrence in oil at significant concentrations, relative toxicity, or because they can serve as surrogate compounds for other more highly toxic compounds for which required input data are not available. The organic contaminants of interest (COI) selected for this study were benzene, toluene, naphthalene, phenanthrene, and anthracene. Partitioning of organic compounds between crude oil and supercritical CO2 was modeled using the Peng-Robinson equation of state over temperature and pressure conditions that represent the entire subsurface system (from those relevant to deep geologic carbon storage environments to near surface conditions). Results indicate that for a typical set of oil reservoir conditions (75°C, and 21,520 kPa) negligible amounts of the COI dissolve into the aqueous phase. When CO2 is introduced into the reservoir such that the final composition of the reservoir is 90 wt.% CO2 and 10 wt.% oil, a significant fraction of the oil

  14. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II; ANNUAL

    International Nuclear Information System (INIS)

    The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs

  15. Efficient modeling of seismic signature of patchy saturation for time lapse monitoring of carbon sequestrated deep saline reservoirs

    International Nuclear Information System (INIS)

    Highlights: • As the injected CO2 migrates upwards, it results in a patchy saturation within the reservoir. • A stack of equivalent isotropic/anisotropic layers can model seismic response from these patchy saturated reservoirs. • These equivalent layers are also capable of predicting the CO2 saturation within the reservoir volumes. • Time-lapse seismic data could be inverted for equivalent layers to predict CO2 saturation for post-injection monitoring. • Such monitoring requires combining seismic with reservoir flow simulation and geomechanical analyses. - Abstract: Various mechanisms controlling the multiphase flow in a real geological porous medium such as those associated with carbon dioxide (CO2) storage in a saline reservoir can lead to a patchy saturation distribution. Successful monitoring of CO2 plumes using time-lapse seismic data under these conditions is a challenge due to the degree of uncertainty in the relationship between CO2 saturation and elastic (seismic) responses. Moreover, efficient modeling of these responses is vital for practical bookkeeping of stored volumes. We investigate the potential of using seismic methods to monitor CO2 in the subsurface by using reservoir simulation data generated in two types of models. The first one consists of a random distribution of absolute permeability, not unlike typical representation of geostatistical models of permeability. A second model, more geologically meaningful, represents an eolian sand deposit containing bounding surfaces. By combining reservoir flow modeling with seismic modeling, we demonstrate that the patchy nature of the saturation distribution, resulting from small-scale multiphase flow features commonly neglected in reservoir simulation exercises, can be seismically modeled with an equivalent stack of homogeneous isotropic/anisotropic layers and the elastic properties of this equivalent stack of layers can potentially predict the actual CO2 saturation within the reservoir to

  16. Knowledge – Based Reservoir Simulation – A Novel Approach

    OpenAIRE

    M. Enamul Hossain; M. Rafiqul Islam

    2010-01-01

    It is well known that reservoir simulation studies are very subjective and vary fromsimulator to simulator. While SPE benchmarking has helped accept differences inpredicting petroleum reservoir performance, there has been no scientific explanationbehind the variability that has frustrated many policy makers and operations managers andpuzzled scientists and engineers. In a recent book by the research group of R. Islam, anew approach is taken to add the Knowledge dimension to the problem. For t...

  17. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir

    International Nuclear Information System (INIS)

    To limit emissions of greenhouse gases in the atmosphere, CO2 geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO2. Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  18. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs.

    Science.gov (United States)

    Wang, Shibo; Tokunaga, Tetsu K

    2015-06-16

    In geologic carbon sequestration, capillary pressure (Pc)-saturation (Sw) relations are needed to predict reservoir processes. Capillarity and its hysteresis have been extensively studied in oil-water and gas-water systems, but few measurements have been reported for supercritical (sc) CO2-water. Here, Pc-Sw relations of scCO2 displacing brine (drainage), and brine rewetting (imbibition) were studied to understand CO2 transport and trapping behavior under reservoir conditions. Hysteretic drainage and imbibition Pc-Sw curves were measured in limestone sands at 45 °C under elevated pressures (8.5 and 12.0 MPa) for scCO2-brine, and in limestone and dolomite sands at 23 °C (0.1 MPa) for air-brine using a new computer programmed porous plate apparatus. scCO2-brine drainage and imbibition curves shifted to lower Pc relative to predictions based on interfacial tension, and therefore deviated from capillary scaling predictions for hydrophilic interactions. Fitting universal scaled drainage and imbibition curves show that wettability alteration resulted from scCO2 exposure over the course of months-long experiments. Residual trapping of the nonwetting phases was determined at Pc = 0 during imbibition. Amounts of trapped scCO2 were significantly larger than for those for air, and increased with pressure (depth), initial scCO2 saturation, and time. These results have important implications for scCO2 distribution, trapping, and leakage potential. PMID:25945400

  19. Characterisation of epeiric ''layer-cake'' carbonate reservoirs: Upper Muschelkalk (Middle Triassic), the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Borkhataria, R.; Aigner, T.; Poeppelreiter, M.C.; Pipping, J.C.P. [Shell International Exploration and Production Inc., Houston, TX (United States)

    2005-04-01

    Upper Muschelkalk (Middle Triassic) carbonates produce natural gas at Coevorden field in the NE Netherlands. This is currently the only field that produces gas from this succession although several other prospects have been identified nearby. In order to help develop these hydrocarbons, this study proposes a facies and reservoir model of the Upper Muschelkalk in the NE Netherlands together with a regional framework intended to assist in further evaluation. Distribution of facies and reservoir properties of the Upper Muschelkalk carbonates in the NE Netherlands indicate deposition on a storm-dominated epeiric ramp with a very low gradient. The predominantly muddy and marly lithofacies types in proximal and distal parts of the ramp gradually interfinger with a shoreline-detached ''shoal''-like ooidal grainstone complex. The best reservoir quality (permeability up to 60 mD) is recognised within dolomitised peloid ooid grainstones. These are interpreted as high-energy backshoal deposits. Reservoir quality decreases in the limestone-dominated ''shoal'' facies and the muddier foreshoal facies. A four-fold hierarchy of depositional cycles describes the systematic and thus predictable vertical variation in reservoir quality (permeability) and quantity (net-to-gross). High-resolution correlation suggests that medium-scale cycles (5 to 15 metres thick) can be traced for hundreds of kilometres. Small-scale cycles (1 to 3 metres thick) are persistent for several tens of kilometres and have sheet-like geometries. Individual reservoir units (several decimetres thick) appear to be laterally continuous over a maximum of a few kilometres although internal flow barriers might be expected. Mapping of Upper Muschelkalk thickness and facies has clearly defined backshoal, ''shoal'' and foreshoal facies belts with distinctly different reservoir characteristics. Typically, reservoir quality and quantity decrease with increasing

  20. the COS-Dwarfs survey: the carbon reservoir around sub-L* galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, Rongmon; Tumlinson, Jason; Peeples, Molly S.; Fox, Andrew J.; Thom, Christopher [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Werk, Jessica K.; Prochaska, J. Xavier [UCO/Lick Observatory, University of California, Santa Cruz, CA 95140 (United States); Oppenheimer, Benjamin D. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Tripp, Todd M.; Katz, Neal; Burchett, Joseph N. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Ford, Amanda Brady [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Weinberg, David H. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Kollmeier, Juna A., E-mail: bordoloi@stsci.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2014-12-01

    We report new observations of circumgalactic gas from the COS-Dwarfs survey, a systematic investigation of the gaseous halos around 43 low-mass z ≤ 0.1 galaxies using background QSOs observed with the Cosmic Origins Spectrograph. From the projected one-dimensional and two-dimensional distribution of C IV absorption, we find that C IV is detected out to ≈100 kpc (corresponding roughly to ≈0.5 R {sub vir}) of the host galaxies. The C IV absorption strength falls off radially as a power law, and beyond ≈0.5 R {sub vir}, no C IV absorption is detected above our sensitivity limit of ≈50-100 mÅ. We find a tentative correlation between detected C IV absorption strength and star formation, paralleling the strong correlation seen in highly ionized oxygen for L ∼ L* galaxies by the COS-Halos survey. The data imply a large carbon reservoir in the circumgalactic medium (CGM) of these galaxies, corresponding to a minimum carbon mass of ≳ 1.2 × 10{sup 6} M {sub ☉} out to ∼110 kpc. This mass is comparable to the carbon mass in the interstellar medium and exceeds the carbon mass currently in the stars of these galaxies. The C IV absorption seen around these sub-L* galaxies can account for almost two-thirds of all W{sub r} ≥ 100 mÅ C IV absorption detected at low z. Comparing the C IV covering fraction with hydrodynamical simulations, we find that an energy-driven wind model is consistent with the observations whereas a wind model of constant velocity fails to reproduce the CGM or the galaxy properties.

  1. Gradient-based methods for production optimization of oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Suwartadi, Eka

    2012-07-01

    Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis. The emphasis has been on numerical optimization algorithms, tested on case examples using simple hypothetical oil reservoirs. Gradientbased optimization, which utilizes adjoint-based gradient computation, is used to solve the optimization problems. The first contribution of this thesis is to address output constraint problems. These kinds of constraints are natural in production optimization. Limiting total water production and water cut at producer wells are examples of such constraints. To maintain the feasibility of an optimization solution, a Lagrangian barrier method is proposed to handle the output constraints. This method incorporates the output constraints into the objective function, thus avoiding additional computations for the constraints gradient (Jacobian) which may be detrimental to the efficiency of the adjoint method. The second contribution is the study of the use of second-order adjoint-gradient information for production optimization. In order to speedup convergence rate in the optimization, one usually uses quasi-Newton approaches such as BFGS and SR1 methods. These methods compute an approximation of the inverse of the Hessian matrix given the first-order gradient from the adjoint method. The methods may not give significant speedup if the Hessian is ill-conditioned. We have developed and implemented the Hessian matrix computation using the adjoint method. Due to high computational cost of the Newton method itself, we instead compute the Hessian-timesvector product which is used in a conjugate gradient algorithm. Finally, the last contribution of this thesis is on surrogate optimization for water flooding in the presence of the output constraints. Two kinds of model order reduction techniques are applied to build surrogate models. These are proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM

  2. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas - Near-Term, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    2001-10-30

    The focus of this project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent.

  3. Experimental reactivity with CO2 of clayey cap-rock and carbonate reservoir of the Paris basin

    International Nuclear Information System (INIS)

    The constant increase in the quantity of carbon dioxide in the atmosphere is regarded as being the principal cause of the current global warming. The geological sequestration of CO2 seems to be an ideal solution to reduce the increase of greenhouse gases (of which CO2) in the atmosphere but only if the reservoir's cap-rock keep its integrity for several hundreds or thousands of years. Batch experimental simulations were conducted to observe the reactivity of a cap-rock made of clay and a carbonate reservoir with CO2 at 80 C and 150 C for a pressure of 150 bar with an equilibrated water. The analytical protocol established allowed to compare the rocks before and after experimentations finding a very low reactivity, focusing on aluminium in phyllosilicates. Textural analysis shows that CO2 does not affect the properties of adsorption and the specific surface. The study of carbonate reservoir by confocal microscopy has revealed phenomena of dissolution-precipitation which have no significant impact on chemistry and structure of the reservoir. The numerical simulations carried out on mineral reference as calcium montmorillonite or clinochlore show a significant reaction in the presence of CO2 not achieved experimentally, probably due to lacunas in the thermodynamic databases or the kinetics of reactions. The simulations on Bure show no reaction on the major minerals confirming the results with batch experiments. (author)

  4. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf carbonate reservoir. End of budget period report, August 3, 1994--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.R.; Hinterlong, G.; Watts, G.; Justice, J.; Brown, K.; Hickman, T.S.

    1997-12-01

    The Oxy West Welch project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in a lower quality shallow shelf carbonate reservoir. The research and design phase primarily involves advanced reservoir characterization and accelerating the production response. The demonstration phase will implement the reservoir management plan based on an optimum miscible CO{sub 2} flood as designed in the initial phase. During Budget Period 1, work was completed on the CO{sub 2} stimulation treatments and the hydraulic fracture design. Analysis of the CO{sub 2} stimulation treatment provided a methodology for predicting results. The hydraulic fracture treatment proved up both the fracture design approach a and the use of passive seismic for mapping the fracture wing orientation. Although the 3-D seismic interpretation is still being integrated into the geologic model and interpretation of borehole seismic is still underway, the simulator has been enhanced to the point of giving good waterflood history matches. The simulator-forecasted results for an optimal designed miscible CO{sub 2} flood in the demonstration area gave sufficient economics to justify continuation of the project into Budget Period 2.

  5. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    International Nuclear Information System (INIS)

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management. (technical note)

  6. A novel carbon fiber based porous carbon monolith

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-07-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described.

  7. Key Factors for Determining Risk of Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Susan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Keating, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mansoor, Kayyum [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Zhenue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trainor-Guitton, Whitney [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, Chris [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bacon, Diana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-06

    The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from CO2 injection (www.netldoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address uncertainties in shallow underwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models,l referred to here as reduced-order models (ROMs), for each component system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that could result from a leakage of brine and/or CO2 from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. We have used this approach to develop predictive reduced-order models for two common types of reservoirs, but the approach could be used to develop a model for a specific aquifer or other common types of aquifers. In this paper we describe potential impacts to groundwater quality due to CO2 and brine leakage, discuss an approach to calculate thresholds under which "no impact" to groundwater occurs, describe the time scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur.

  8. APHRON-BASED DRILLING FLUIDS: SOLUTION FOR LOW PRESSURE RESERVOIRS

    OpenAIRE

    2009-01-01

    Drilling wells throughout depleted or low pressure reservoirs requires low density drilling fluids, often with density less than water. Methods to reduce the density of drilling fluids have included mixing-in air or nitrogen. However, problems with these approaches include instability of gas bubbles (bubbles collapse or expand) and increased costs. Recently, the use of micro bubbles named aphrons in drilling, completion and workover fluids has proven success in solving many problems related t...

  9. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations, a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. This project has two defined budget periods. The first budget period primarily involves tasks associated with reservoir analysis and characterization, characterizing existing producibility problems, and reservoir simulation of the proposed technology. The final budget period covers the actual field demonstration of the proposed technology. Technology transfer spans the entire course of the project. This report covers the concluding tasks performed under the second budget period.

  10. Permeability prediction in a carbonate reservoir, Middle East; Tansan`en gan`yuso ni okeru shintoritsu no suisoku

    Energy Technology Data Exchange (ETDEWEB)

    Masuzawa, T. [Japan National Oil Corp., Tokyo (Japan); Tani, A. [Fuji Research Institue Corp. Tokyo (Japan)

    1997-11-01

    The reservoir characterization is used in a narrow sense as the meaning of predicting how the parameters of rock property distributes in an oil reservoir. In this study, a method for estimating the well permeability, specially for estimating the horizontal permeability distribution of no core well, that is indispensable for the oil reservoir characterization, is studied using core data and log data. Then, the permeability is estimated by using two methods, the neural network method and the multiple linear regression analysis method, and the estimated values of the two methods are compared with the results of permeability prediction obtained by {phi}-K correlation which has been traditionally used. Furthermore, which method among them is suitable to the oil reservoir is discussed. In this study, the accuracy of the permeability estimated by these three methods are not very high. That the object of this stud is an oil reservoir consisted of carbonate may be considered as an important reason for the low accuracy due to its complicated nature. 10 figs.

  11. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  12. A novel carbon fiber based porous carbon monolith

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-06-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described. A novel adsorbent carbon composite material has been developed comprising carbon fibers and a binder. The material, called carbon fiber composite molecular sieve (CFCMS), was developed through a joint research program between Oak Ridge National Laboratory (ORNL) and the University of Kentucky, Center for Applied Energy Research (UKCAER).

  13. High-resolution crosswell imaging of a west Texas carbonate reservoir. Part 5: Core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nolen-Hoeksema, R.C.; Harris, J.M. [Stanford Univ., CA (United States); Wang, Z. [Chevron Petroleum Technology Co., La Habra, CA (United States); Langan, R.T. [Chevron Petroleum Technology Co., La Habra, CA (United States)]|[Stanford Univ., CA (United States). Geophysics Dept.

    1995-05-01

    The authors conducted a core analysis program to provide supporting data to a series of crosswell field experiments being carried out in McElroy Field by Stanford University`s Seismic Tomography Project. The objective of these experiments is to demonstrate the use of crosswell seismic profiling for reservoir characterization and for monitoring CO{sub 2} flooding. For these west Texas carbonates, they estimate that CO{sub 2} saturation causes P-wave velocity to change by {minus}1.9% (pooled average, range = {minus}6.3 to +0.1%), S-wave velocity by +0.6% (range = 0 to 2.7%), and the P-to-S velocity ratio by {minus}2.4% (range = {minus}6.4 to {minus}0.3%). When one compares these results to the precisions they can expect from traveltime tomography (about {+-} 1% for P- and S-wave velocity and about {+-} 2% for the P-to-S velocity ratio), they conclude that time-lapse traveltime tomography is sensitive enough to resolve changes in the P-wave velocity, S-wave velocity, and P-to-S velocity ratio that result from CO{sub 2} saturation. They concentrated here don the potential for CO{sub 2} saturation to affect seismic velocities. The potential for CO{sub 2} saturation to affect other seismic properties, not discussed here, may prove to be more significant (e.g., P-wave and S-wave impedance).

  14. Determination of porosity and facies trends in a complex carbonate reservoir, by using 3-D seismic, borehole tools, and outcrop geology

    Energy Technology Data Exchange (ETDEWEB)

    Zacharakis, T.G. Jr.; Comet, J.N.; Murillo, A.A. [Respol Exploracion, S.A., Madrid (Spain)] [and others

    1996-08-01

    Mesozoic carbonate reservoirs are found in the Mediterranean Sea, off the east coast of Spain. A wide variation of porosities are found in the core samples and logs: vuggy, breccia, fractures, and cavern porosity. In addition, complex Tertiary carbonate geometries include olistostromes, breccia bodies, and reef buildups, which are found on top of Mesozoic carbonates. Predicting the porosity trends within these oil productive reservoirs requires an understanding of how primary porosity was further enhanced by secondary processes, including fractures, karstification, and dolomitization in burial conditions. Through an extensive investigation of field histories, outcrop geology, and seismic data, a series of basic reservoir styles have been identified and characterized by well log signature and seismic response. The distribution pattern of the different reservoirs styles is highly heterogeneous, but by integrating subsurface data and outcrop analogs, it is possible to distinguish field-scale and local patterns of both vertical and local variations in reservoir properties. Finally, it is important to quantify these reservoir properties through the study of seismic attributes, such as amplitude variations, and log responses at the reservoir interval. By incorporating 3-D seismic data, through the use of seismic inversion, it is possible to predict porosity trends. Further, the use of geostatistics can lead to the prediction of reservoir development within the carbonate facies.

  15. 3D Geostatistical Modeling and Uncertainty Analysis in a Carbonate Reservoir, SW Iran

    OpenAIRE

    Mohammad Reza Kamali; Azadeh Omidvar; Ezatallah Kazemzadeh

    2013-01-01

    The aim of geostatistical reservoir characterization is to utilize wide variety of data, in different scales and accuracies, to construct reservoir models which are able to represent geological heterogeneities and also quantifying uncertainties by producing numbers of equiprobable models. Since all geostatistical methods used in estimation of reservoir parameters are inaccurate, modeling of “estimation error” in form of uncertainty analysis is very important. In this paper, the definition of ...

  16. A Review of Recovery Mechanisms of Ionically Modified Waterflood in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen

    2016-01-01

    . This process has been evaluated as a wettability-modifying agent in carbonates and captured the global research focus in water-based enhanced oil recovery (EOR) methods. This paper provides a comprehensive review of the published research to speed the process of further investigations in this field...

  17. Review of Recovery Mechanisms of Ionically Modi fi ed Water fl ood in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen

    2016-01-01

    . This process has been evaluated as a wettability-modifying agent in carbonates and captured the global research focus in water-based enhanced oil recovery (EOR) methods. This paper provides a comprehensive review of the published research to speed the process of further investigations in this field. The...

  18. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    OpenAIRE

    Wang, M; Cheng, W.; Yu, B.-S.; Fang, Y.

    2015-01-01

    The conservation of drinking water source reservoirs has a close relationship between regional economic development and people’s livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool) model. The model was adjusted to analyse the temporal-spatial distribution...

  19. Dolomitization of carbonated reservoirs of platforms. From geologic data to modeling. Example of the great Bahama bank; La dolomitisation des reservoirs carbonates de plate-forme. Des donnees geologiques a la modelisation. Exemple du Grand Banc des Bahamas

    Energy Technology Data Exchange (ETDEWEB)

    Caspard, E.

    2002-09-01

    Dolomitization has long been one of the most studied geological processes because of its economic interest (dolomitic rocks form a significant share of hydrocarbon reservoirs) as well as its academic interest, based on the fact that dolomite scarcely forms in current and recent marine environments whereas seawater is highly over-saturated; and that it is still not possible to synthesize it in laboratory under the same conditions. We used data collected by the University of Miami (Bahamas Drilling Project, ODP Leg 166) to understand the geological context of complete dolomitization of a Messinian 60 m thick reef unit. Classical methods of petrographic analysis of thin sections (optical microscopy, cathodoluminescence, scanning electron microscopy, in situ isotopic analyze using ionic microprobe) showed that the intensity of dolomitization is not controlled by the initial texture of the sediment, that the key parameter for dolomitization is the conservation of the initial mineralogy of magnesian bio-clasts, and that redox conditions, salinity and/or temperature of the precipitation fluid varied significantly during the process. Hydrodynamic modelling showed that during periods of high sea-level, Kohout thermal convection is a viable mechanism for driving marine fluids through the sediments. The key parameter for fluid circulations is the permeability anisotropy on the platform scale. Geochemical modelling showed that seawater is able to induce a complete dolomitization over durations of around one million years. Sensitivity tests showed that the critical parameter (as well as one of the less well-known) to describe diagenetic processes in carbonates is the water/rock reactions kinetics and in particular the precipitation kinetics of carbonate minerals. We finally propose that the dolomitization of the reef unit of the Unda well took place during the high sea-level period which extended over 1,1 My in the early Pliocene, according to the Kohout thermal convection

  20. Gears Based on Carbon Nanotubes

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  1. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to an Unconfined Oxidizing Carbonate Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui; Qafoku, Nikolla; Lawter, Amanda R.; Bowden, Mark E.; Harvey, Omar; Sullivan, E. C.; Brown, Christopher F.

    2015-07-15

    A series of batch and column experiments combined with solid phase characterization studies (i.e., quantitative x-ray diffraction and wet chemical extractions) were conducted to address a variety of scientific issues and evaluate the impacts of the potential leakage of carbon dioxide (CO2) from deep subsurface storage reservoirs. The main objective was to gain an understanding of how CO2 gas influences: 1) the aqueous phase pH; and 2) mobilization of major, minor, and trace elements from minerals present in an aquifer overlying potential CO2 sequestration subsurface repositories. Rocks and slightly weathered rocks representative of an unconfined, oxidizing carbonate aquifer within the continental US, i.e., the Edwards aquifer in Texas, were used in these studies. These materials were exposed to a CO2 gas stream or were leached with a CO2-saturated influent solution to simulate different CO2 gas leakage scenarios, and changes in aqueous phase pH and chemical composition were measured in the liquid samples collected at pre-determined experimental times (batch experiments) or continuously (column experiments). The results from the strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the Edward aquifer samples contain As, Cd, Pb, Cu, and occasionally Zn, which may potentially be mobilized from the solid to the aqueous phase during or after exposure to CO2. The results from the batch and column experiments confirmed the release of major chemical elements into the contacting aqueous phase (such as Ca, Mg, Ba, Sr, Si, Na, and K); the mobilization and possible rapid immobilization of minor elements (such as Fe, Al, and Mn), which are able to form highly reactive secondary phases; and sporadic mobilization of only low concentrations of trace elements (such as As, Cd, Pb, Cu, Zn, Mo, etc.). The results from this experimental research effort will help in developing a systematic understanding of how CO2

  2. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  3. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix. PMID:22214656

  4. ``Stacked reservoirs`` in the Zechstein 2 carbonate (Ca2): inversion tectonics in the pre-Zechstein subdivision-saline base of the Lower Saxony basin (Germany); ``Stacked Reservoirs`` im Zechstein 2 Karbonat (Ca2): Inversionstektonik im prae-Zechstein-salinaren Sockel des Niedersaechsischen Beckens (NW-Deutschland)

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbauch, K.; Brauckmann, F.; Schaefer, H.G.; Utermoehlen, S. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    This article looks at areas in the Lower Saxony basis of North-West Germany where the carbonate of the 2nd Zechstein subdivision cycle (Ca2) was tectonically removed from its stratigraphic compound and is found in several stacks elsewhere. Modern 3D seismology and deep drillings were evaluated and tectonic models were developed which could be compared with examples from other saline provinces. This revealed new aspects of exploration for sour natural gas in the Zechstein subdivision (orig.). [Deutsch] Der Artikel behandelt Bereiche innerhalb des Niedersaechsischen Beckens von Nordwestdeutschland, wo das Karbonat des 2. Zechstein-Zyklus (Ca2) tektonisch aus seinem stratigraphischen Verband geloest wurde und an anderer Stelle mehrfach uebereinander gestapelt anzutreffen ist. Hierzu wurden moderne 3D Seismik sowie Tiefbohrungen ausgewertet und tektonische Modelle entwickelt, die mit Beispielen aus anderen Salinarprovinzen verglichen wurden. Hinsichtlich der Exploration auf Sauergas im Zechstein ergeben sich daraus neue Aspekte und Moeglichkeiten. (orig.)

  5. Carbon flow dynamics in the pelagic community along an eutrophic reservoir

    Czech Academy of Sciences Publication Activity Database

    Comerma, M.; García, J. C.; Romero, M.; Armengol, J.; Šimek, Karel

    Praha : ICARIS, 2002. s. 75. [International Conference on Reservoir Limnology and Water Quality /4./. 12.08.2002-16.08.2002, České Budějovice] Institutional research plan: CEZ:AV0Z6017912 Keywords : eutrophic reservoir * bacterial and plankton dynamics * longitudinal gradients Subject RIV: EE - Microbiology, Virology

  6. The applicability of C-14 measurements in the soil gas for the assessment of leakage out of underground carbon dioxide reservoirs

    Directory of Open Access Journals (Sweden)

    Chałupnik Stanisław

    2014-03-01

    Full Text Available Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage. Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to know if there is any escape of CO2 from underground gas reservoirs, created as a result of sequestration. Such information is crucial to ensure safety of the population in areas located above geological reservoirs. It is possible to assess the origin of carbon dioxide, if the measurement of radiocarbon 14C concentration in this gas is done. If CO2 contains no 14C, it means, that the origin of the gas is either geological or the gas has been produced as a result of combustion of fossil fuels, like coal. A lot of efforts are focused on the development of monitoring methods to ensure safety of CO2 sequestration in geological formations. A radiometric method has been tested for such a purpose. The main goal of the investigations was to check the application possibility of such a method. The technique is based on the liquid scintillation counting of samples. The gas sample is at first bubbled through the carbon dioxide adsorbent, afterwards the adsorbent is mixed with a dedicated cocktail and measured in a low-background liquid scintillation spectrometer Quantulus. The described method enables measurements of 14C in mine and soil gas samples.

  7. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas -- Near-Term - Class

    International Nuclear Information System (INIS)

    The objective of this project is to demonstrate incremental reserves from Osagian and Meramecian (Mississippian) dolomite reservoirs in western Kansas through application of reservoir characterization to identify areas of unrecovered mobile oil. The project addresses producibility problems in two fields: Specific reservoirs target the Schaben Field in Ness County, Kansas, and the Bindley Field in Hodgeman County, Kansas. The producibility problems to be addressed include inadequate reservoir characterization, drilling and completion design problems, non-optimum recovery efficiency. The results of this project will be disseminated through various technology transfer activities. At the Schaben demonstration site, the Kansas team will conduct a field project to demonstrate better approaches to identify bypassed oil within and between reservoir units

  8. Diffusive emission of methane and carbon dioxide from two hydropower reservoirs in Brazil.

    Science.gov (United States)

    Marcelino, A A; Santos, M A; Xavier, V L; Bezerra, C S; Silva, C R O; Amorim, M A; Rodrigues, R P; Rogerio, J P

    2015-05-01

    The role of greenhouse gas emissions from freshwater reservoirs and their contribution to increase greenhouse gas concentrations in the atmosphere is currently under discussion in many parts of the world. We studied CO2 and CH4 diffusive fluxes from two large neotropical hydropower reservoirs with different climate conditions. We used floating closed-chambers to estimate diffusive fluxes of these gaseous species. Sampling campaigns showed that the reservoirs studied were sources of greenhouse gases to the atmosphere. In the Serra da Mesa Reservoir, the CH4 emissions ranged from 0.530 to 396.96 mg.m(-2).d(-1) and CO2 emissions ranged from -1,738.33 to 11,166.61 mg.m(-2).d(-1) and in Três Marias Reservoir the CH4 fluxes ranged 0.720 to 2,578.03 mg.m(-2).d(-1) and CO2 emission ranged from -3,037.80 to 11,516.64 to mg.m(-2).d(-1). There were no statistically significant differences of CH4 fluxes between the reservoirs, but CO2 fluxes from the two reservoirs studied were significantly different. The CO2 emissions measured over the periods studied in Serra da Mesa showed some seasonality with distinctions between the wet and dry transition season. In Três Marias Reservoir the CO2 fluxes showed no seasonal variability. In both reservoirs, CH4 emissions showed a tendency to increase during the study periods but this was not statistically significant. These results contributed to increase knowledge about the magnitude of CO2 and CH4 emission in hydroelectric reservoirs, however due to natural variability of the data future sampling campaigns will be needed to better elucidate the seasonal influences on the fluxes of greenhouse gases. PMID:26132015

  9. Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)

    Science.gov (United States)

    Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.; Chang, R. Y.-W.; Karion, A.; Miller, J. B.; Sweeney, C.; Steiner, N.; Wofsy, S. C.; Miller, C. E.

    2015-04-01

    This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first 2 years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s-1 in 2012 and 0.3 m s-1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, better allowing for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF

  10. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and

  11. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2001-09-14

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been

  12. Application of probabilistic facies prediction and estimation of rock physics parameters in a carbonate reservoir from Iran

    International Nuclear Information System (INIS)

    In this study, a carbonate field from Iran was studied. Estimation of rock properties such as porosity and permeability is much more challenging in carbonate rocks than sandstone rocks because of their strong heterogeneity. The frame flexibility factor (γ) is a rock physics parameter which is related not only to pore structure variation but also to solid/pore connectivity and rock texture in carbonate reservoirs. We used porosity, frame flexibility factor and bulk modulus of fluid as the proper parameters to study this gas carbonate reservoir. According to rock physics parameters, three facies were defined: favourable and unfavourable facies and then a transition facies located between these two end members. To capture both the inversion solution and associated uncertainty, a complete implementation of the Bayesian inversion of the facies from pre-stack seismic data was applied to well data and validated with data from another well. Finally, this method was applied on a 2D seismic section and, in addition to inversion of petrophysical parameters, the high probability distribution of favorable facies was also obtained. (paper)

  13. Types of Karst-fractured and Porous Reservoirs in China's Carbonates and the Nature of the Tahe Oilfield in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kang; WANG Darui

    2004-01-01

    Almost all the oil and gas reservoirs developed in marine sedimentary strata of China have undergone processes of multi-phase reservoir formation and later modification. The irregular reservoirs are classified into three types as the Naxi, Tahe and Renqiu ones, increasing successively in the development degree of karstificated pores and fissures and the connection degree of independent reservoirs. In these reservoirs, the unity in the fluid feature, pressure and oil-gaswater interface also increases successively from the Naxi to the Renqiu type. The main body of Ordovician reservoirs of the Tahe Oilfield in the Tarim Basin is a network pool rather than a stratified, massive, stratigraphically-unconformed or weathering-crust one. The fluid nature of oil, gas and water, the interface positions and the pressures, as well as the dynamic conditions of fluids within the reservoirs during the production are all different from those in stratified or massive oil and gas reservoirs. Carbonates in the Akekule uplift and the Tahe Oilfield are assemblages of various types of reservoirs, which have an overall oil-bearing potential and obvious uneven distribution. Testing and producing tests are the major means to evaluate this type of reservoirs and acid fracturing improvement is a key link in petroleum exploration and development.

  14. Arc-based constrained ant colony optimisation algorithms for the optimal solution of hydropower reservoir operation problems

    Energy Technology Data Exchange (ETDEWEB)

    Moeini, R.; Afshar, M.H.

    2011-07-15

    Hydropower is currently the number one source of electricity production in the world. For the design and construction of such systems, mathematical modelling is often use for reservoir operations. As conventional methods present some shortcomings in solving reservoir operation problems, a new method is presented here. It consists in an arc-based formulation of hydropower reservoir operation problems which can be applied to ant colony optimization algorithms. This paper first described this formulation and then applied it to solve two hydropower reservoir operation problems. The results showed that this formulation can optimally solve large-scale hydropower reservoir operation problems while offering a clear definition of heuristic information.

  15. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity. PMID:23901504

  16. Credibility theory based dynamic control bound optimization for reservoir flood limited water level

    Science.gov (United States)

    Jiang, Zhiqiang; Sun, Ping; Ji, Changming; Zhou, Jianzhong

    2015-10-01

    The dynamic control operation of reservoir flood limited water level (FLWL) can solve the contradictions between reservoir flood control and beneficial operation well, and it is an important measure to make sure the security of flood control and realize the flood utilization. The dynamic control bound of FLWL is a fundamental key element for implementing reservoir dynamic control operation. In order to optimize the dynamic control bound of FLWL by considering flood forecasting error, this paper took the forecasting error as a fuzzy variable, and described it with the emerging credibility theory in recent years. By combining the flood forecasting error quantitative model, a credibility-based fuzzy chance constrained model used to optimize the dynamic control bound was proposed in this paper, and fuzzy simulation technology was used to solve the model. The FENGTAN reservoir in China was selected as a case study, and the results show that, compared with the original operation water level, the initial operation water level (IOWL) of FENGTAN reservoir can be raised 4 m, 2 m and 5.5 m respectively in the three division stages of flood season, and without increasing flood control risk. In addition, the rationality and feasibility of the proposed forecasting error quantitative model and credibility-based dynamic control bound optimization model are verified by the calculation results of extreme risk theory.

  17. GIS-based rapid-assessment of bighead carp Hypophthalmichthys nobilis (Richardson, 1845) suitability in reservoirs

    Science.gov (United States)

    Long, James M.; Liang, Yu; Shoup, Daniel E.; Dzialowski, Andrew R.; Bidwell, Joseph R.

    2014-01-01

    Broad-scale niche models are good for examining the potential for invasive species occurrences, but can fall short in providing managers with site-specific locations for monitoring. Using Oklahoma as an example, where invasive bighead carp (Hypophthalmichthys nobilis) are established in certain reservoirs, but predicted to be widely distributed based on broad-scale niche models, we cast bighead carp reproductive ecology in a site-specific geospatial framework to determine their potential establishment in additional reservoirs. Because bighead carp require large, long free-flowing rivers with suitable hydrology for reproduction but can persist in reservoirs, we considered reservoir tributaries with mean annual daily discharge ≥8.5 cubic meters per second (m3 /s) and quantified the length of their unimpeded portions. In contrast to published broad-scale niche models that identified nearly the entire state as susceptible to invasion, our site-specific models showed that few reservoirs in Oklahoma (N = 9) were suitable for bighead carp establishment. Moreover, this method was rapid and identified sites that could be prioritized for increased study or scrutiny. Our results highlight the importance of considering the environmental characteristics of individual sites, which is often the level at which management efforts are implemented when assessing susceptibility to invasion.

  18. Numerical simulation of the electrical properties of shale gas reservoir rock based on digital core

    Science.gov (United States)

    Nie, Xin; Zou, Changchun; Li, Zhenhua; Meng, Xiaohong; Qi, Xinghua

    2016-08-01

    In this paper we study the electrical properties of shale gas reservoir rock by applying the finite element method to digital cores which are built based on an advanced Markov Chain Monte Carlo method and a combination workflow. Study shows that the shale gas reservoir rock has strong anisotropic electrical conductivity because the conductivity is significantly different in both horizontal and vertical directions. The Archie formula is not suitable for application in shale reservoirs. The formation resistivity decreases in two cases; namely (a) with the increase of clay mineral content and the cation exchange capacity of clay, and (b) with the increase of pyrite content. The formation resistivity is not sensitive to the solid organic matter but to the clay and gas in the pores.

  19. High performance photonic reservoir computer based on a coherently driven passive cavity

    CERN Document Server

    Vinckier, Quentin; Smerieri, Anteo; Vandoorne, Kristof; Bienstman, Peter; Haelterman, Marc; Massar, Serge

    2015-01-01

    Reservoir computing is a recent bio-inspired approach for processing time-dependent signals. It has enabled a breakthrough in analog information processing, with several experiments, both electronic and optical, demonstrating state-of-the-art performances for hard tasks such as speech recognition, time series prediction and nonlinear channel equalization. A proof-of-principle experiment using a linear optical circuit on a photonic chip to process digital signals was recently reported. Here we present the first implementation of a photonic reservoir computer based on a coherently driven passive fiber cavity processing analog signals. Our experiment surpasses all previous experiments on a wide variety of tasks, and also has lower power consumption. Furthermore, the analytical model describing our experiment is also of interest, as it arguably constitutes the simplest high performance reservoir computer algorithm introduced so far. The present experiment, given its remarkable performances, low energy consumption...

  20. Ensemble-based reservoir characterization using time-lapse seismic waveform data

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Brouwer, J.; Trani, M.

    2010-01-01

    Assisted history matching methods are beginning to offer the possibility to use 4D seismic data in quantitative ways for reservoir characterization. We use the waveform data without any explicit inversion or interpretation step directly in an ensemble-based assisted history matching scheme with a 3D

  1. On-line Optimization-Based Simulators for Fractured and Non-fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Milind D. Deo

    2005-08-31

    Oil field development is a multi-million dollar business. Reservoir simulation is often used to guide the field management and development process. Reservoir characterization and geologic modeling tools have become increasingly sophisticated. As a result the geologic models produced are complex. Most reservoirs are fractured to a certain extent. The new geologic characterization methods are making it possible to map features such as faults and fractures, field-wide. Significant progress has been made in being able to predict properties of the faults and of the fractured zones. Traditionally, finite difference methods have been employed in discretizing the domains created by geologic means. For complex geometries, finite-element methods of discretization may be more suitable. Since reservoir simulation is a mature science, some of the advances in numerical methods (linear, nonlinear solvers and parallel computing) have not been fully realized in the implementation of most of the simulators. The purpose of this project was to address some of these issues. {sm_bullet} One of the goals of this project was to develop a series of finite-element simulators to handle problems of complex geometry, including systems containing faults and fractures. {sm_bullet} The idea was to incorporate the most modern computing tools; use of modular object-oriented computer languages, the most sophisticated linear and nonlinear solvers, parallel computing methods and good visualization tools. {sm_bullet} One of the tasks of the project was also to demonstrate the construction of fractures and faults in a reservoir using the available data and to assign properties to these features. {sm_bullet} Once the reservoir model is in place, it is desirable to find the operating conditions, which would provide the best reservoir performance. This can be accomplished by utilization optimization tools and coupling them with reservoir simulation. Optimization-based reservoir simulation was one of the

  2. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    Science.gov (United States)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    Atmospheric CO2 concentrations increased an estimated 35% since preindustrial levels two centuries ago, reportedly due to the burning of fossil fuels combined with increased deforestation. In the U.S., energy-related activities account for 75% of anthropogenic greenhouse gas (GHG) emissions, with more than 50% from large stationary sources such as power plants and about one-third from transportation. Mitigation technologies for CO2 atmospheric stabilization based on energy and economic scenarios include coal-based power plant- carbon capture and storage (CCS), and the U.S. Department of Energy (DOE) is assessing CCS operations and supporting technologies at U.S. locations and opportunities abroad reported here. The Algerian In Salah Joint Industry Project injecting 1 million tons CO2 (MtCO2)/year into a gas field sandstone, and the Canadian Weyburn-Midale CO2 Monitoring and Storage Project injecting over 1.8 MtCO2/year into carbonate oil reservoirs are ongoing industrial-scale storage operations DOE participates in. DOE also supports mid-scale CCS demonstrations at the Australian Otway Project and CO2SINK in Germany. Enhanced oil recovery operations conducted for decades in west Texas and elsewhere have provided the industrial experience to build on, and early pilots such as Frio-I Texas in 2004 have spearheaded technology deployment. While injecting 1,600 tons of CO2 into a saline sandstone at Frio, time-lapse borehole and surface seismic detected P-wave velocity decreases and reflection amplitude changes resulting from the replacement of brine with CO2 in the reservoir. Just two of many cutting-edge technologies tested at Frio, these and others are now deployed by U.S. researchers with international teams to evaluate reservoir injectivity, capacity, and integrity, as well as to assess CO2 spatial distribution, trapping, and unlikely leakage. Time-lapse Vertical Seismic Profiling at Otway and microseismic at In Salah and Otway, monitor injection and reservoir

  3. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  4. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  5. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands

    Science.gov (United States)

    Kunz, Manuel J.; Wüest, Alfred; Wehrli, Bernhard; Landert, Jan; Senn, David B.

    2011-12-01

    Large dams can have major ecological and biogeochemical impacts on downstream ecosystems such as wetlands and riparian habitats. We examined sediment removal and carbon (C), nitrogen (N), and phosphorus (P) cycling in Itezhi-Tezhi Reservoir (ITT; area = 364 km2, hydraulic residence time = 0.7 yr), which is located directly upstream of a high ecological value floodplain ecosystem (Kafue Flats) in the Zambezi River Basin. Field investigations (sediment cores, sediment traps, water column samples), mass balance estimates, and a numerical biogeochemical reservoir model were combined to estimate N, P, C, and sediment removal, organic C mineralization, primary production, and N fixation. Since dam completion in 1978, 330 × 103 tons (t) of sediment and 16 × 103, 1.5 × 103, 200 t of C, N, and P, respectively, have accumulated annually in ITT sediments. Approximately 50% of N inputs and 60% of P inputs are removed by the reservoir, illustrating its potential in decreasing nutrients to the downstream Kafue Flats floodplain. The biogeochemical model predicted substantial primary production in ITT (˜280 g C m-2 yr-1), and significant N-fixation (˜30% for the total primary production) was required to support primary production due to marginal inputs of inorganic N. Model simulations indicate that future hydropower development in the reservoir, involving the installation of turbines driven by hypolimnetic water, will likely result in the delivery of low-oxygen waters to downstream ecosystems and increased outputs of dissolved inorganic N and P by a factor of ˜4 and ˜2 compared to current dam management, respectively.

  6. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, S.C.

    1995-05-01

    It is anticipated that this project will show that the application of the CO{sub 2} Huff-n-Puff process in shallow shelf carbonates can be economically implemented to recover appreciable volumes of light oil. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. The selected site for the demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Work is nearing completion on the reservoir characterization components of the project. The near-term emphasis is to, (1) provide an accurate distribution of original oil-in-place on a waterflood pattern entity level, (2) evaluate past recovery efficiencies, (3) perform parametric simulations, and (4) forecast performance for a site specific field demonstration of the proposed technology. Macro zonation now exists throughout the study area and cross-sections are available. The Oil-Water Contact has been defined. Laboratory capillary pressure data was used to define the initial water saturations within the pay horizon. The reservoir`s porosity distribution has been enhanced with the assistance of geostatistical software. Three-Dimensional kriging created the spatial distributions of porosity at interwell locations. Artificial intelligence software was utilized to relate core permeability to core porosity, which in turn was applied to the 3-D geostatistical porosity gridding. An Equation-of-State has been developed and refined for upcoming compositional simulation exercises. Options for local grid-refinement in the model are under consideration. These tasks will be completed by mid-1995, prior to initiating the field demonstrations in the second budget period.

  7. Polymer-Based Carbon Monoxide Sensors

    Science.gov (United States)

    Homer, M. L.; Shevade, A. V.; Zhou, H.; Kisor, A. K.; Lara, L. M.; Yen, S.-P. S.; Ryan, M. A.

    2010-01-01

    Polymer-based sensors have been used primarily to detect volatile organics and inorganics; they are not usually used for smaller, gas phase molecules. We report the development and use of two types of polymer-based sensors for the detection of carbon monoxide. Further understanding of the experimental results is also obtained by performing molecular modeling studies to investigate the polymer-carbon monoxide interactions. The first type is a carbon-black-polymer composite that is comprised of a non-conducting polymer base that has been impregnated with carbon black to make it conducting. These chemiresistor sensors show good response to carbon monoxide but do not have a long lifetime. The second type of sensor has a non-conducting polymer base but includes both a porphyrin-functionalized polypyrrole and carbon black. These sensors show good, repeatable and reversible response to carbon monoxide at room temperature.

  8. The resolution of reservoir dynamics with noise based technologies: A case study from the 2006 Basel injection experiment

    Science.gov (United States)

    Hillers, Gregor; Husen, Stephan; Obermann, Anne; Planes, Thomas; Campillo, Michel; Larose, Eric

    2014-05-01

    We explore the applicability of noise-based monitoring and imaging techniques in the context of the 2006 Basel stimulation experiment using data from five borehole velocimeters and five surface accelerometers located around the injection site. We observe a significant perturbation of medium properties associated with the reservoir stimulation. The transient perturbation, with a duration of 20-30 days, reaches its maximum about 15 days after shut in, when microseismic activity has ceased; it is thus associated with aseismic deformation. Inverting relative velocity change and decorrelation observations using techniques developed and applied on laboratory and local to regional seismological scales, we can image the associated deformation pattern. We discuss limits of the the frequency- and lapse-time dependent resolution and suggestions for improvements considering the 3-D network geometry together with wave propagation models. The depth sensitivity of the analyzed wave field indicates resolution of perturbation in the shallow parts of the sedimentary layer above the stimulated deep volume located in the crystalline base layer. The deformation pattern is similar to InSAR/satellite observations associated with CO2 sequestration experiments, and indicates the transfer of deformation beyond scales associated with the instantaneously stimulated volume. Our detection and localization of delayed induced shallow aseismic transient deformation indicates that monitoring the evolution of reservoir properties using the ambient seismic field provides observables that complement information obtained with standard microseismic approaches. The results constitute a significant advance for the resolution of reservoir dynamics; the technology has the potential to provide critical constraints in related geotechnical situations associated with fluid injection, fracking, (nuclear) waste management, and carbon capture and storage.

  9. Hydrocarbon Reservoir Prediction Using Bi-Gaussian S Transform Based Time-Frequency Analysis Approach

    Science.gov (United States)

    Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.

    2015-12-01

    Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the

  10. Computer Modeling of the Displacement Behavior of Carbon Dioxide in Undersaturated Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Ju Binshan

    2015-11-01

    Full Text Available The injection of CO2 into oil reservoirs is performed not only to improve oil recovery but also to store CO2 captured from fuel combustion. The objective of this work is to develop a numerical simulator to predict quantitatively supercritical CO2 flooding behaviors for Enhanced Oil Recovery (EOR. A non-isothermal compositional flow mathematical model is developed. The phase transition diagram is designed according to the Minimum Miscibility Pressure (MMP and CO2 maximum solubility in oil phase. The convection and diffusion of CO2 mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude and phase partitioning are considered. The governing equations are discretized by applying a fully implicit finite difference technique. Newton-Raphson iterative technique was used to solve the nonlinear equation systems and a simulator was developed. The performances of CO2 immiscible and miscible flooding in oil reservoirs are predicted by the new simulator. The distribution of pressure and temperature, phase saturations, mole fraction of each component in each phase, formation damage caused by asphaltene precipitation and the improved oil recovery are predicted by the simulator. Experimental data validate the developed simulator by comparison with simulation results. The applications of the simulator in prediction of CO2 flooding in oil reservoirs indicate that the simulator is robust for predicting CO2 flooding performance.

  11. High-resolution crosswell imaging of a west Texas carbonate reservoir. Part 1: Project summary and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.M.; Nolen-Hoeksema, R.C.; Van Schaack, M.; Lazaratos, S.K.; Rector, J.W. [Stanford Univ., CA (United States); Langan, R.T. [Chevron Petroleum Technology Co., La Habra, CA (United States)]|[Stanford Univ., CA (United States). Geophysics Dept.

    1995-05-01

    A carbon dioxide flood pilot is being conducted in a section of Chevron`s McElroy field in Crane County, west Texas. Prior to CO{sub 2} injection, two high-frequency crosswell seismic profiles were recorded to investigate the use of seismic profiling for high-resolution reservoir delineation and CO{sub 2} monitoring. These preinjection profiles provide the baseline for time-lapse monitoring. Profile {number_sign}1 was recorded between an injector well and an offset observation well at a nominal well-to-well distance of 184 ft (56 m). Profile {number_sign}2 was recorded between a producing well and the observation well at a nominal distance of 600 ft (183 m). The combination of traveltime tomography and stacked CDP reflection amplitudes demonstrates how high-frequency crosswell seismic data can be used to image both large and small scale heterogeneity between wells: transmission traveltime tomography is used to image the large scale velocity variations; CDP reflection imaging is then used to image smaller scale impedance heterogeneities. The results of this integrated study demonstrate (1) the use of crosswell seismic profiling to produce a high-resolution reservoir delineation and (2) the possibility for successful monitoring of CO{sub 2} in carbonate reservoirs. The crosswell data were acquired with a piezoelectric source and a multilevel hydrophone array. Both profiles, nearly 80,000 seismic traces, were recorded in approximately 80 hours using a new acquisition technique of shooting on-the-fly. This paper presents the overall project summary and interpretation of the results from the near-offset profile.

  12. Impact of stylolitization on diagenesis of a Lower Cretaceous carbonate reservoir from a giant oilfield, Abu Dhabi, United Arab Emirates

    Science.gov (United States)

    Paganoni, Matteo; Al Harthi, Amena; Morad, Daniel; Morad, Sadoon; Ceriani, Andrea; Mansurbeg, Howri; Al Suwaidi, Aisha; Al-Aasm, Ihsan S.; Ehrenberg, Stephen N.; Sirat, Manhal

    2016-04-01

    Bed-parallel stylolites are a widespread diagenetic feature in Lower Cretaceous limestone reservoirs, Abu Dhabi, United Arab Emirates (UAE). Diagenetic calcite, dolomite, kaolin and small amounts of pyrite, fluorite, anhydrite and sphalerite occur along and in the vicinity of the stylolites. Petrographic observations, negative δ18OVPDB, fluid inclusion microthermometry, and enrichment in 87Sr suggest that these cements have precipitated from hot basinal brines, which migrated along the stylolites and genetically related microfractures (tension gashes). Fluid migration was presumably related to lateral tectonic compression events related to the foreland basin formation. The low solubility of Al3 + in formation waters suggests that kaolin precipitation was linked to derivation of organic acids during organic matter maturation, probably in siliciclastic source rocks. The mass released from stylolitization was presumably re-precipitated as macro- and microcrystalline calcite cement in the host limestones. The flanks of the oilfield (water zone) display more frequent presence and higher amplitude of stylolites, lower porosity and permeability, higher homogenization temperatures and more radiogenic composition of carbonates compared to the crest (oil zone). This indicates that oil emplacement retards diagenesis. This study demonstrates that stylolitization plays a crucial role in fluid flow and diagenesis of carbonate reservoirs during basin evolution.

  13. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.

    2015-05-01

    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  14. Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System

    Science.gov (United States)

    Homayounfar, Mehran; Zomorodian, Mehdi; Martinez, Christopher J.; Lai, Sai Hin

    2015-01-01

    So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i) having a discrete nature; and (ii) working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance) of the state variable (water level in the reservoir) is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP), and a discrete stochastic dynamic game model (PSDNG). By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in water allocation

  15. Two Monthly Continuous Dynamic Model Based on Nash Bargaining Theory for Conflict Resolution in Reservoir System.

    Directory of Open Access Journals (Sweden)

    Mehran Homayounfar

    Full Text Available So far many optimization models based on Nash Bargaining Theory associated with reservoir operation have been developed. Most of them have aimed to provide practical and efficient solutions for water allocation in order to alleviate conflicts among water users. These models can be discussed from two viewpoints: (i having a discrete nature; and (ii working on an annual basis. Although discrete dynamic game models provide appropriate reservoir operator policies, their discretization of variables increases the run time and causes dimensionality problems. In this study, two monthly based non-discrete optimization models based on the Nash Bargaining Solution are developed for a reservoir system. In the first model, based on constrained state formulation, the first and second moments (mean and variance of the state variable (water level in the reservoir is calculated. Using moment equations as the constraint, the long-term utility of the reservoir manager and water users are optimized. The second model is a dynamic approach structured based on continuous state Markov decision models. The corresponding solution based on the collocation method is structured for a reservoir system. In this model, the reward function is defined based on the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable for water allocation in arid and semi-arid regions. A case study was carried out at the Zayandeh-Rud river basin located in central Iran to identify the effectiveness of the presented methods. The results are compared with the results of an annual form of dynamic game, a classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Programming model, BSDP, and a discrete stochastic dynamic game model (PSDNG. By comparing the results of alternative methods, it is shown that both models are capable of tackling conflict issues in

  16. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. PMID:26437092

  17. Predicting cement distribution in geothermal sandstone reservoirs based on estimates of precipitation temperatures

    Science.gov (United States)

    Olivarius, Mette; Weibel, Rikke; Whitehouse, Martin; Kristensen, Lars; Hjuler, Morten L.; Mathiesen, Anders; Boyce, Adrian J.; Nielsen, Lars H.

    2016-04-01

    Exploitation of geothermal sandstone reservoirs is challenged by pore-cementing minerals since they reduce the fluid flow through the sandstones. Geothermal exploration aims at finding sandstone bodies located at depths that are adequate for sufficiently warm water to be extracted, but without being too cemented for warm water production. The amount of cement is highly variable in the Danish geothermal reservoirs which mainly comprise the Bunter Sandstone, Skagerrak and Gassum formations. The present study involves bulk and in situ stable isotope analyses of calcite, dolomite, ankerite, siderite and quartz in order to estimate at what depth they were formed and enable prediction of where they can be found. The δ18O values measured in the carbonate minerals and quartz overgrowths are related to depth since they are a result of the temperatures of the pore fluid. Thus the values indicate the precipitation temperatures and they fit the relative diagenetic timing identified by petrographical observations. The sandstones deposited during arid climatic conditions contain calcite and dolomite cement that formed during early diagenesis. These carbonate minerals precipitated as a response to different processes, and precipitation of macro-quartz took over at deeper burial. Siderite was the first carbonate mineral that formed in the sandstones that were deposited in a humid climate. Calcite began precipitating at increased burial depth and ankerite formed during deep burial and replaced some of the other phases. Ankerite and quartz formed in the same temperature interval so constrains on the isotopic composition of the pore fluid can be achieved. Differences in δ13C values exist between the sandstones that were deposited in arid versus humid environments, which suggest that different kinds of processes were active. The estimated precipitation temperatures of the different cement types are used to predict which of them are present in geothermal sandstone reservoirs in

  18. Investigating Protostellar Carbon Reservoirs with High-Resolution Spectroscopy Toward Massive Young Stellar Objects

    OpenAIRE

    Smith, R.L.; Blake, G. A.; Boogert, A. C. A.; Pontoppidan, K. M.; Lockwood, A. C.

    2014-01-01

    Near-IR observations of CO isotopologues taken at high spectral resolution toward young stellar objects (YSOs) enable valuable comparisons between YSOs and solar system material, as well as robust evaluation of early protoplanetry chemical reservoirs. Recent observations toward low-mass, solar-type YSOs revealed signatures consistent with CO self-shielding, as well as significant heterogeneity in [^(12)C^(16)O]/[^(13)C^(16)O]Gas, which may in part be due to interplay b...

  19. Development of a management tool for reservoirs in Mediterranean environments based on uncertainty analysis

    Science.gov (United States)

    Gómez-Beas, R.; Moñino, A.; Polo, M. J.

    2012-05-01

    In compliance with the development of the Water Framework Directive, there is a need for an integrated management of water resources, which involves the elaboration of reservoir management models. These models should include the operational and technical aspects which allow us to forecast an optimal management in the short term, besides the factors that may affect the volume of water stored in the medium and long term. The climate fluctuations of the water cycle that affect the reservoir watershed should be considered, as well as the social and economic aspects of the area. This paper shows the development of a management model for Rules reservoir (southern Spain), through which the water supply is regulated based on set criteria, in a sustainable way with existing commitments downstream, with the supply capacity being well established depending on demand, and the probability of failure when the operating requirements are not fulfilled. The results obtained allowed us: to find out the reservoir response at different time scales, to introduce an uncertainty analysis and to demonstrate the potential of the methodology proposed here as a tool for decision making.

  20. The element-based finite volume method applied to petroleum reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cordazzo, Jonas; Maliska, Clovis R.; Silva, Antonio F.C. da; Hurtado, Fernando S.V. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    In this work a numerical model for simulating petroleum reservoirs using the Element-based Finite Volume Method (EbFVM) is presented. The method employs unstructured grids using triangular and/or quadrilateral elements, such that complex reservoir geometries can be easily represented. Due to the control-volume approach, local mass conservation is enforced, permitting a direct physical interpretation of the resulting discrete equations. It is demonstrated that this method can deal with the permeability maps without averaging procedures, since this scheme assumes uniform properties inside elements, instead inside of control volumes, avoiding the need of weighting the permeability values at the control volumes interfaces. Moreover, it is easy to include the full permeability tensor in this method, which is an important issue in simulating heterogeneous and anisotropic reservoirs. Finally, a comparison among the results obtained using the scheme proposed in this work in the EbFVM framework with those obtained employing the scheme commonly used in petroleum reservoir simulation is presented. It is also shown that the scheme proposed is less susceptible to the grid orientation effect with the increasing of the mobility ratio. (author)

  1. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir; Monitoring geochimique par couplage entre les gaz rares et les isotopes du carbone: etude d'un reservoir naturel

    Energy Technology Data Exchange (ETDEWEB)

    Jeandel, E

    2008-12-15

    To limit emissions of greenhouse gases in the atmosphere, CO{sub 2} geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO{sub 2}. Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  2. North-south Differentiation of the Hydrocarbon Accumulation Pattern of Carbonate Reservoirs in the Yingmaili Low Uplift, Tarim Basin,Northwest China

    Institute of Scientific and Technical Information of China (English)

    L(U) Xiuxiang; LI Jianjiao; ZHAO Fengyun; YANG Ning; ZHANG Qiucha

    2008-01-01

    By analyzing the characteristics of development, structural evolution and reservoir beds of the residual carbonate strata, this study shows that the residual carbonate strata in the Yingmaili low uplift are favorable oil and gas accumulation series in the Tabei (northern Tarim uplift) uplift. There are different patterns of hydrocarbon accumulation on the northern and southern slopes of the Yingmaili low uplift. The north-south differentiation of oil reservoirs were caused by different lithologies of the residual carbonate strata and the key constraints on the development of the reservoir beds. The Mesozoic terrestrial organic matter in the Kuqa depression and the Palaeozoic marine organic matter in the Manjiaer sag of the Northern depression are the major hydrocarbon source rocks for the northern slope and southern slope respectively. The hydrocarbon accumulation on the northern and southern slopes is controlled by differences in maturity and thermal evolution history of these two kinds of organic matter. On the southern slope, the oil accumulation formed in the early stage was destroyed completely, and the period from the late Hercynian to the Himalayian is the most important time for hydrocarbon accumulation. However, the time of hydrocarbon accumulation on the northern slope began 5 Ma B.P. Carbonate inner buried anticlines reservoirs are present on the southern slope, while weathered crust and paleo-buried hill karst carbonate reservoirs are present on the northern slope. The northern and southern slopes had different controlling factors of hydrocarbon accumulation respectively. Fracture growth in the reservoir beds is the most important controlling factor on the southern slope; while hydrocarbon accumulation on the northern slope is controlled by weathered crust and cap rock.

  3. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model

    Directory of Open Access Journals (Sweden)

    R. E. Zeebe

    2011-06-01

    Full Text Available The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  4. High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir

    NARCIS (Netherlands)

    Almeida, Rafael M.; Nóbrega, Gabriel N.; Junger, Pedro C.; Figueiredo, Aline V.; Andrade, Anízio S.; Moura, de Caroline G.B.; Tonetta, Denise; Oliveira, Ernandes S.; Araújo, Fabiana; Rust, Felipe; Piñeiro-Guerra, Juan M.; Mendonça, Jurandir R.; Medeiros, Leonardo R.; Pinheiro, Lorena; Miranda, Marcela; Costa, Mariana R.A.; Melo, Michaela L.; Nobre, Regina L.G.; Benevides, Thiago; Roland, Fábio; Klein, de Jeroen; Barros, Nathan O.; Mendonça, Raquel; Becker, Vanessa; Huszar, Vera L.M.; Kosten, Sarian

    2016-01-01

    Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a

  5. Reservoir Characterization during Underbalanced Drilling of Horizontal Wells Based on Real-Time Data Monitoring

    OpenAIRE

    Gao Li; Hongtao Li; Yingfeng Meng; Na Wei; Chaoyang Xu; Li Zhu; Haibo Tang

    2014-01-01

    In this work, a methodology for characterizing reservoir pore pressure and permeability during underbalanced drilling of horizontal wells was presented. The methodology utilizes a transient multiphase wellbore flow model that is extended with a transient well influx analytical model during underbalanced drilling of horizontal wells. The effects of the density behavior of drilling fluid and wellbore heat transfer are considered in our wellbore flow model. Based on Kneissl’s methodology, an imp...

  6. Reactive Transport Modeling of Supercritical Carbon Dioxide Injection Into Mafic Rock Reservoirs

    Science.gov (United States)

    Podgorney, R.; Hull, L.; Huang, H.; McLing, T.

    2007-12-01

    Technologies to reduce emissions of greenhouse gases and increase the sequestration of CO2 have received increasing attention since the development of the Kyoto protocol. One promising technology is the sequestration of CO2 in geologic formations. The suitability of a fractured basalt reservoir for CO2 sequestration is constrained by three broad categories of issues, which we refer to as physical, technical, and economic constraints. Physical constraints are beyond human control; thus, it is a requirement that a systematic method be developed by which a particular target reservoir may be evaluated to determine if it lies within the bounds required for safe and effective disposal. Technical constraints, on the other hand, are challenges to the ability to design, construct, and/or monitor a sequestration project as a result of limitations on our ability to determine the distribution of properties in the subsurface, our knowledge of the behavior of CO2 in the deep subsurface, and the current state of computational science and subsurface monitoring. Equally important are the heterogeneity of economic costs associated with sequestering CO2 at different sites and within different formations. The work presented here focuses on the technical aspects of CO2 injection, specifically examining reactive transport of CO2 in the subsurface in the vicinity of the injection well using the simulation code TOUGHREACT. Pressure distribution and propagation, kinetics of the geochemical reactions, and resultant changes in permeability/porosity are examined in order to evaluate injection scenarios that maximize the longevity of the injection well and sustainability of the reservoir.

  7. How the rock fabrics can control the physical properties - A contribution to the understanding of carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Duerrast, H.; Siegesmund, S. [Goettingen Univ. (Germany)

    1998-12-31

    The correlation between microfabrics and physical properties will be illustrated in detail on three dolomitic carbonate reservoir rocks with different porosity. For this study core segments from the Zechstein Ca2-layer (Permian) of the Northwest German Basin were kindly provided by the Preussag Energie GmbH, Lingen. The mineral composition was determined by using the X-ray diffraction method. Petrographic and detailed investigation of the microfabrics, including the distribution and orientation of the cracks were done macroscopally (core segments) and microscopally with the optical microscope and the Scanning Electron Microscope (thin sections in three orthogonally to each other oriented directions). Different kinds of petrophysical measurements were carried out, e.g. porosity, permeability, electrical conductivity, seismic velocities. (orig.)

  8. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    马仁志; 魏秉庆; 徐才录; 梁吉; 吴德海

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2 ·xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2· xH2O in the composite electrodes reaches 75% . In addition , supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  9. Development of supercapacitors based on carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Block-type electrodes made of carbon nanotubes were fabricated by different processes. The volumetric specific capacitance based on such electrodes reached 107 F/cm3, which proves carbon nanotubes to be ideal candidate materials for supercapacitors. The composite electrodes consisting of carbon nanotubes and RuO2.xH2O were developed by the deposition of RuO2 on the surface of carbon nanotubes. Supercapacitors based on the composite electrodes show much higher specific capacitance than those based on pure carbon nanotube ones. A specific capacitance of 600 F/g can be achieved when the weight percent of RuO2.xH2O in the composite electrodes reaches 75%. In addition, supercapacitors based on the composite electrodes show both high energy density and high power density characteristics.

  10. Reservoir capacity estimates in shale plays based on experimental adsorption data

    Science.gov (United States)

    Ngo, Tan

    uncertainties in the adsorbed amount can reach up to 80 and 200% at 500 and 1600 psia, respectively. The latter can be reduced (i) by increasing the mass of adsorbent material (15.2% and 42.3% when the mass of adsorbent is doubled as compared to the experiment with 13X zeolite) and/or (ii) by increasing the precision of the pressure transducers (uncertainty is further reduced to 3% and 8.4% from case (i) when the transducers with 0.05% accuracy are used. These experiments are justified by the need of extending the current data set on gas adsorption of mudrocks, thus enabling a more reliable estimate on the available gas reserves in shale reservoir and the potential of carbon dioxide storage. (Abstract shortened by UMI.).

  11. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion

    International Nuclear Information System (INIS)

    The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the second quarter falls within the demonstration project

  12. Fossil fuel burning in Taylor Valley, southern Victoria Land, Antarctica: Estimating the role of scientific activities on carbon and nitrogen reservoirs and fluxes

    International Nuclear Information System (INIS)

    Particulate organic and elemental carbon and nitrogen as well as NOx fluxes from scientific activities have been computed for Taylor Valley, Antarctica (∼78degree S). These authropogenic fluxes have been compared to both the natural fluxes and landscape reservoirs as determined from Long-Term Ecological Research (LTER) investigations in the valley. The anthropogenic, nongaseous carbon fluxes are minor compared to the natural fluxes, while the anthropogenic NOx flux may be potentially important over decadal time scales

  13. Field-wide Pressure Response of Three Mid-Cenozoic Sandstone Reservoirs to Fluid Production: a Reverse Analog to Carbon Storage

    Science.gov (United States)

    Gillespie, J.; Jordan, P. D.; Chehal, S.; Gonzales, G.; goodell, J. A.; Wilson, J.

    2013-12-01

    Potential carbon storage reservoirs exist in mature oilfields of the southern San Joaquin Valley, California. Data regarding fluid extraction and injection and reservoir pressure exist for the three main oil reservoirs with carbon storage potential: the Monterey (Stevens sandstone member), Vedder and Temblor formations. The pressure response of these reservoirs to fluid volume changes over time provides information regarding how carbon storage may affect the pressure gradients in the adjacent saline aquifers outside the fields where less data exist. This project may provide a template for analysis of other potential carbon storage reservoirs that are contiguous with oilfields. A field-scale version of the productivity index (PI, defined as the average net fluid production rate divided by the average pressure drop over the time period) was calculated for fields with substantial production from depths suitable for carbon storage. The PI determines the reservoir's pressure response to fluid production and is related to the effective CO2 storage capacity. The variance of the 2005 pressure values within each reservoir provides a measure of reservoir continuity. The highest PI values (113,000 and 88,410 m3/yr/MPa) are in the Vedder Formation. The lowest PI values occur in the Temblor Formation and range from 3734 to 16,460 m3/yr/MPa. This indicates the Vedder reservoirs have more pressure support from the aquifer beyond the field than do the Temblor reservoirs. The pressure variance of 3.2 MPa within the Vedder Formation in the Greeley Field is the lowest. The greatest variance (8.5 MPa) occurs within the Temblor Formation in the Carneros unit of the Railroad Gap field. This indicates greater uniformity in the Vedder and more compartmentalization of the Temblor. Pressure response in the Stevens is more varied within the two fields examined in this study: North and South Coles Levee. In North Coles Levee, water injection was employed throughout the field resulting in a

  14. Carbon dioxide and methane annual emissions from two boreal reservoirs and nearby lakes in Quebec, Canada

    Directory of Open Access Journals (Sweden)

    M. Demarty

    2009-03-01

    Full Text Available The results of dissolved GHG (CO2 and CH4 measurement campaigns carried out in Quebec (Canada during the open-water periods and under-ice in a newly created reservoir (Eastmain 1, a 25 year old reservoir (Robert-Bourassa and in three reference lakes are presented. While CO2 partial pressures varied with season with a net increase under the ice cover, CH4 partial pressures did not. We were able to extrapolate the highest CO2 partial pressures reached in the different studied systems just before ice break-up with high spring emission period. We then estimated the springtime CO2 fluxes and compared them to annual CO2 fluxes and GHG fluxes. Thus we clearly demonstrated that in our systems CH4 fluxes was of minor importance in the GHG emissions, CO2 fluxes representing around 90% of the annual fluxes. We also pointed out the importance of springtime emissions in the annual budget.

  15. Carbonate facies dimensions at the reservoir- and exploration scale: What are sources for this information?

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.M. [Chevron Petroleum Technology Co., La Habra, CA (United States)

    1997-09-01

    Sources that can provide information for enhancing the interwell correlation of facies were reviewed. Holocene examples were found to be valuable analogs: satellite images, aerial photographs, or surface sediment maps can be used to show any patterns relative to simulated well spacing. The results of coring studies from modern environments where the spatial distribution of facies within a depositional cycle is provided proved to be even more valuable. Unfortunately, Holocene analogs often lack the diagenetic complexities of their subsurface counterparts. But outcrop analogs can provide two- or even three-dimensional views of facies with greater diagenetic overprint than found in modern examples, and over a more substantial stratigraphic thickness. Porosity and permeability can also be measured on outcrops within a cycle and facies framework, thus providing a more complete view of facies and reservoir quality dimensions. To know how well a modern outcrop analog actually compares with a particular reservoir or subsurface stratigraphic layer, crosswell seismic profile may prove to be a suitable method. When combined with core and log data and compared with porosity models, the seismic data can be used to map petrophysical facies between wells. Similarly, 3-D seismic data combined with existing wells and larger-scale porosity models provide an approximation of interwell facies distribution.

  16. Operating Rule Classification System of Water Supply Reservoir Based on Learning Classifier System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-feng; WANG Xiao-lin; YIN Zheng-jie; LI Hui-qiang

    2008-01-01

    An operating rule classification system based on lesrning classifier system (LCS), which learns through credit assignment (bucket brigade algorithm, BBA) and rule discovery (genetic algorithm, GA), is established to extract water-supply reservoir operating rules. The proposed system acquires an online identification rate of 95% for training samples and an offline rate of 85% for testing samples in a case study. The performances of the rule classification system are discussed from the rationality of the obtained rules, the impact of training samples on rule extraction, and a comparison between the rule classification system and the artificial neural network (ANN). The results indicate that the LCS is feasible and effective for the system to obtain the reservoir supply operating rules.

  17. Hedging Rules for Water Supply Reservoir Based on the Model of Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2016-06-01

    Full Text Available This study proposes a hedging rule model which is composed of a two-period reservior operation model considering the damage depth and hedging rule parameter optimization model. The former solves hedging rules based on a given poriod’s water supply weighting factor and carryover storage target, while the latter optimization model is used to optimize the weighting factor and carryover storage target based on the hedging rules. The coupling model gives the optimal poriod’s water supply weighting factor and carryover storage target to guide release. The conclusions achieved from this study as follows: (1 the water supply weighting factor and carryover storage target have a direct impact on the three elements of the hedging rule; (2 parameters can guide reservoirs to supply water reasonably after optimization of the simulation and optimization model; and (3 in order to verify the utility of the hedging rule, the Heiquan reservoir is used as a case study and particle swarm optimization algorithm with a simulation model is adopted for optimizing the parameter. The results show that the proposed hedging rule can improve the operation performances of the water supply reservoir.

  18. Organic matter turnover in reservoirs of the Harz Mountains (Germany): evidence from 13C/12C changes in dissolved inorganic carbon

    Science.gov (United States)

    Barth, Johannes A. C.; Nenning, Franziska; van Geldern, Robert; Mader, Michael; Friese, Kurt

    2014-05-01

    The Harz Mountains in Germany host several reservoirs for drinking water and electricity supply, the largest of which is the Rappbode System with its two pre-reservoirs. They are the Hassel and the Rappbode pre-reservoirs that have about the same size. These pre-reservoirs were investigated in a comparative study in order to quantify turnover of dissolved organic carbon (DOC) as a representative for organic matter. The objective was to find out how organic matter turnover in these reservoirs may affect dissolved inorganic carbon (DIC) and related CO2 dynamics. Depth profiles of dissolved organic and inorganic carbon (DOC and DIC) were established together with their carbon stable isotope distributions (expressed as δ13CDIC and δ13CDOC). Our results showed up to 104 % increase of DIC contents by organic matter turnover when calculated via isotope mass balances. This contrasted observations of DIC concentration differences between waters collected at the surface and at 12 m depth. These concentration comparisons showed much less DIC increases, and in some cases even decreases, between surface and bottom waters. Such discrepancies could be explained by formation of CO2 at depths below the photic zone that reached calculated values above 7000 ppmV. Such high CO2 concentrations may have reduced the DIC pool by upwards migration. Despite such a concentration decrease, turnover of organic matter has likely incorporated its isotope signal into the DIC pool. While not all DOC present was transposed to DIC, other forms of organic matter from sediments may also have transferred their isotope ratio on the DIC pool. However, with its stable isotope ratio of -28.5 permille the measured DOC was representative of C3 plants and can be assumed as a proxy for other forms of sedimentary carbon including carbon from pore waters and particulate organic matter. Other carbon turnover, including DOC leaching, increased import to the reservoirs after precipitation events and

  19. Optimization of computer-based technology of creating large reservoir's Digital Elevation Models

    Science.gov (United States)

    Shikunova, Ekaterina; Pavlovsky, Andrew; Zemlyanov, Igor; Gorelits, Olga

    2010-05-01

    Using Digital Elevation Model of bottom and coastal zone for large-scale anthropogenic water reservoirs is very important for sustainable water management in actual conditions of Global Climate Change. DEM is unified monitoring base for different types of reservoirs in varied types of ecosystems in various environmental and economical conditions. It may be used for getting current morphometric characteristics, pollution and biodiversity analysis, monitoring bottom relief changing and making management decisions. In 2008-2009 State Oceanography Institute (SOI) carried out the DEMs for reservoirs of Volga river system. In 2008 in SOI was created DEM of Uglichsky reservoir, which is typical Russian reservoir. Methodology and computer-based technology were developed and evaluated. In 2009 in SOI were created DEMs of Gorkovsky, Volgogradsky and six reservoirs of Moscow region. Such result was achieved by optimization of DEM's creating process. Initially we used complex of GIS programs, which include GIS Map-2008 Panorama, ArcMap v.9.3.1, ArcView v.3.2a, Golden Surfer v.8, Global Mapper v.10. The input data are bathymetric survey data, large-scale maps (scale 1:10 000, 1:25 000) and remote sensing data of high resolution. Office analysis consists of several main milestones. 1. Vectorization of coastline and relief data from maps and remote sensing data using GIS Map-2008 by Panorama; ArcView v.3.2a. 2. Maps data elaboration with using bathymetric survey data. Because some maps are longstanding it is necessary to renew them. 3. Creating point's array including all data from maps, RSD and bathymetric survey. 4. Separation small calculation zones including four survey cross-sections. 5. Determine of anisotropy parameters, which depend on channel orientation. 6. Create shapes for clipping of correct grid zones. Each shape includes 2 cross-sections. Milestones 2-6 realize in ArcView v.3.2a. 7. Creating grid's array using Golden Surfer v.8 for each zone by interpolation method

  20. A methodology for incorporating geomechanically-based fault damage zones models into reservoir simulation

    Science.gov (United States)

    Paul, Pijush Kanti

    In the fault damage zone modeling study for a field in the Timor Sea, I present a methodology to incorporate geomechanically-based fault damage zones into reservoir simulation. In the studied field, production history suggests that the mismatch between actual production and model prediction is due to preferential fluid flow through the damage zones associated with the reservoir scale faults, which is not included in the baseline petrophysical model. I analyzed well data to estimate stress heterogeneity and fracture distributions in the reservoir. Image logs show that stress orientations are homogenous at the field scale with a strike-slip/normal faulting stress regime and maximum horizontal stress oriented in NE-SW direction. Observed fracture zones in wells are mostly associated with well scale fault and bed boundaries. These zones do not show any anomalies in production logs or well test data, because most of the fractures are not optimally oriented to the present day stress state, and matrix permeability is high enough to mask any small anomalies from the fracture zones. However, I found that fracture density increases towards the reservoir scale faults, indicating high fracture density zones or damage zones close to these faults, which is consistent with the preferred flow direction indicated by interference and tracer test done between the wells. It is well known from geologic studies that there is a concentration of secondary fractures and faults in a damage zone adjacent to larger faults. Because there is usually inadequate data to incorporate damage zone fractures and faults into reservoir simulation models, in this study I utilized the principles of dynamic rupture propagation from earthquake seismology to predict the nature of fractured/damage zones associated with reservoir scale faults. The implemented workflow can be used to more routinely incorporate damage zones into reservoir simulation models. Applying this methodology to a real reservoir utilizing

  1. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  2. Laboratory based diagnosis of leishmaniasis in rodents as the reservoir hosts in southern Iran, 2012

    Institute of Scientific and Technical Information of China (English)

    Amin Masoumeh; Azizi Kourosh; Kalantari Mohsen; Motazedian Mohammad Hossein; Asgari Qasem; Najafi Mohammad Esmaeil; Dabaghmanesh Tahereh

    2014-01-01

    Objective:To examine the fauna of rodents as zoonotic cutaneous leishmaniasis reservoir hosts in Zarqan County, Fars Province, south of Iran, during 2012. Methods:During 2012, wild rodents from different parts of this region were caught by Sherman traps and checked by the examination of liver and spleen smears, for Leishmania infection, to see which species were acting as reservoir hosts;the slides were then processed to extract DNA for molecular test using PCR assay. Results:From 108 rodent species caught, 63%were male and 37%identified as female. Meriones libycus was the most abundant species caught (80.5%) and 5.7%of them were found to be smear-positive for Leishmania amastigotes. The other species were Rattus rattus (14.8%) and Mus musculus (4.7%), but none of them were found positive. Leishmania infection was observed in male and female samples microscopically. Moreover, molecular results revealed Leishmania major in three male and two female specimens. Conclusions:Based on our knowledge, Meriones libycus is incriminated as the main reservoir hosts of Leishmania major in the rural area of Zarqan.

  3. Friction Theory Prediction of Crude Oil Viscosity at Reservoir Conditions Based on Dead Oil Properties

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2003-01-01

    The general one-parameter friction theory (f-theory) models have been further extended to the prediction of the viscosity of real "live" reservoir fluids based on viscosity measurements of the "dead" oil and the compositional information of the live fluid. This work representation of the viscosity...... within the oil industry. In sake of completeness, this work also presents a simple characterization procedure which is based on compositional information of an oil sample. This procedure provides a method for characterizing an oil into a number of compound groups along with the critical constants...

  4. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  5. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation.

    Science.gov (United States)

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size ([Formula: see text]), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168

  6. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  7. Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonaradian Age) Reservoirs, West Texas and New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Zeno; Jennings, Jr., James W.

    2001-05-08

    The major goal of this project was to evaluate the impact of fracture porosity on performance of the South Wasson Clear Fork reservoir. The approach was to use subcritical crack (SCC) index measurements and a crack-growth simulator to model potential fracture geometries in this reservoir. The SCC index on representative rock samples and proceedings with other pertinent rock measurements were measured. An approach for modeling coupled matrix and fracture flow using nonneighbor connections in a traditional finite-difference simulator was tested and found to be feasible.

  8. CO2 Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Annual report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, S.C.; Boomer, R.J.; Cole, R.; Preiditus, J.; Vogt, J.

    1996-09-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg/San Andres formation; a light oil, shallow shelf carbonate reservoir within the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico.

  9. Axial-obliquity control on the greenhouse carbon budget through mid- to high-latitude reservoirs

    Czech Academy of Sciences Publication Activity Database

    Laurin, Jiří; Meyers, S. R.; Uličný, David; Jarvis, I.; Sageman, B. B.

    2015-01-01

    Roč. 30, č. 2 (2015), s. 133-149. ISSN 0883-8305 R&D Projects: GA MŠk LH12041; GA ČR GAP210/10/1991 Institutional support: RVO:67985530 Keywords : Cretaceous * carbon cycle * Milankovitch forcing Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.738, year: 2014

  10. Carbon Nanotube Paper-Based Electroanalytical Devices

    OpenAIRE

    Youngmi Koo; Vesselin N. Shanov; Yeoheung Yun

    2016-01-01

    Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT) array, grown using chemical vapor deposition (CVD), was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT) sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The de...

  11. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  12. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR

  13. Supercapacitors based on carbon foams

    Science.gov (United States)

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1993-11-09

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m[sup 2]/g-1000 m[sup 2]/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figures.

  14. Photonics based on carbon nanotubes

    OpenAIRE

    Gu, Qingyuan; Gicquel-Guézo, Maud; Loualiche, Slimane; Pouliquen, Julie Le; Batte, Thomas; Folliot, Hervé; Dehaese, Olivier; Grillot, Frederic; Battie, Yann; Loiseau, Annick; Liang, Baolai; Huffaker, Diana

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the effi...

  15. Characterization of electrospun lignin based carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri [School of Engineering, Thornbrough Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada); Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada)

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  16. Characterization of electrospun lignin based carbon fibers

    International Nuclear Information System (INIS)

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems

  17. Active CO2 Reservoir Management for Carbon Capture, Utilization, and Sequestration: Impact on Permitting, Monitoring, and Public Acceptance

    Science.gov (United States)

    Buscheck, T. A.; Chen, M.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Aines, R. D.

    2011-12-01

    CO2 capture and sequestration (CCS) integrated with geothermal energy production in deep geological formations can play an important role in reducing CO2 emissions to the atmosphere and thereby mitigate global climate change. For industrial-scale CO2 injection in saline formations, pressure buildup can limit storage capacity and security. Active CO2 Reservoir Management (ACRM) combines brine production with CO2 injection to relieve pressure buildup, increase injectivity, manipulate CO2 migration, constrain brine leakage, and enable beneficial utilization of produced brine. Therefore, ACRM can be an enabler of carbon capture, utilization, and sequestration (CCUS). Useful products may include freshwater, cooling water, make-up water for pressure support in oil, gas, and geothermal reservoir operations, and geothermal energy production. Implementation barriers to industrial-scale CCS include concerns about (1) CO2 sequestration security and assurance, (2) pore-space competition with neighboring subsurface activities, (3) CO2 capture costs, and (4) water-use demands imposed by CCS operations, which is particularly important where water resources are already scarce. CCUS, enabled by ACRM, has the potential of addressing these barriers. Pressure relief from brine production can substantially reduce the driving force for potential CO2 and brine migration, as well as minimize interference with neighboring subsurface activities. Electricity generated from geothermal energy can offset a portion of the parasitic energy and financial costs of CCS. Produced brine can be used to generate freshwater by desalination technologies, such as RO, provide a source for saltwater cooling systems or be used as make-up water for oil, gas, or geothermal reservoir operations, reducing the consumption of valuable freshwater resources. We examine the impact of brine production on reducing CO2 and brine leakage. A volumetric balance between injected and produced fluids minimizes the spatial

  18. Evaluation on an original resistivity inversion method of water flooding a conglomerate reservoir based on petrophysical analysis

    Science.gov (United States)

    Liu, Renqiang; Duan, Yonggang; Tan, Fengqi; Wang, Guochang; Qin, Jianhua; Neupane, Bhupati

    2015-10-01

    An accurate inversion of original reservoir resistivity is an important problem for waterflood development in oilfields in the middle-late development period. This paper describes the theoretical model of original resistivity recovery for a conglomerate reservoir established by petrophysical models, based on the stratigraphic model of reservoir vertical invasion of the conglomerate reservoir of an oilfield. Likewise two influencing factors of the resistivity change with a water-flooded reservoir were analyzed. The first one is the clay volume decrease due to an injected water wash argillaceous particle and the reservoir resistivity changes are influenced by it, and the other is to inject water to displace crude oil in the pore space leading to the increase of the water-bearing volume. Moreover the conductive ions of the injected water and the original formation water exchange and balance because of their salinity difference, and the reservoir resistivity changes are also influenced by them. Through the analysis of the above influential factors based on the fine identification of conglomerate lithologies the inversion models of three variables, including changes in the amount of clay, the resistivity of the irreducible water and the increase of the water bearing volume, were established by core analysis data, production performance and well logging curves information, and accurately recovered the original reservoir resistivity of the conglomerate. The original oil saturation of the reservoir was calculated according to multiple linear regression models. Finally, the produced index is defined as the difference of the original oil saturation and current oil saturation to the original oil saturation ratio, and it eliminates the effects of conglomerate lithologies and heterogeneity for the quantitative evaluation of flooded layers by the use of the principle of relative value. Compared with traditional flooding sensitive parameters which are oil saturation and water

  19. Study of different factors affecting the electrical properties of natural gas reservoir rocks based on digital cores

    International Nuclear Information System (INIS)

    The effects of the wettability and solubility of natural gas in formation water on the electrical properties of natural gas reservoir rocks are studied using the finite element method based on digital cores. The results show that the resistivity index of gas-wet reservoir rocks is significantly higher than that of water-wet reservoir rocks in the entire range of water saturation. The difference between them increases with decreasing water saturation. The resistivity index of natural gas reservoir rocks decreases with increasing additional conduction of water film. The solubility of natural gas in formation water has a dramatic effect on the electrical properties of reservoir rocks. The resistivity index of reservoir rocks increases as the solubility of natural gas increases. The effect of the solubility of natural gas on the resistivity index is very obvious under conditions of low water saturation, and it becomes weaker with increasing water saturation. Therefore, the reservoir wettability and the solubility of natural gas in formation water should be considered in defining the saturation exponent

  20. A new method for upscaling of reservoir permeability based on fluid dynamics in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Mata-Lima, Herlander [Dept. de Matematica e Engenharias, Univ. da Madeira (UMa), Funchal (Portugal)

    2009-06-15

    Permeability and porosity are the parameters having the largest influence in determining reservoir performance. Geostatistical simulation methods can provide detailed field-scale geologic models with millions of cells (10 ), although flow simulators are limited to hundreds of thousands of grid blocks. This article proposes a new method for upscaling of petrophysical properties based on fluid dynamics in porous media, and is denominated as ''semi-empirical upscaling'', since the equivalent properties of upscaled blocks are a combination of fine grid blocks permeability showing similar hydraulic responses. The new method was applied to two synthetic case studies and led to satisfactory results with significant efficiency. (orig.)

  1. Chemical effects of sulfur dioxide co-injection with carbon dioxide on the reservoir and caprock mineralogy and permeability in depleted gas fields

    International Nuclear Information System (INIS)

    Highlights: • The effects of SO2 in the CO2 stream on core samples were determined experimentally. • Permeability of the reservoir increased by a factor of 1.2–2.2 after 30 days. • In the caprock permeability changes are related to carbonate/anhydrite ratio. • Dependency of permeability variations on the caprock composition was modeled. • The modeled results were in good agreement with the experimental results. - Abstract: The most suitable candidates for subsurface storage of CO2 are depleted gas fields. Their ability to retain CO2 can however be influenced by the effect which impurities in the CO2 stream (e.g. H2S and SO2) have on the mineralogy of reservoir and seal. In order to investigate the effects of SO2 we carried out laboratory experiments on reservoir and cap rock core samples from gas fields in the northeast of the Netherlands. The rock samples were contained in reactor vessels for 30 days in contact with CO2 and 100 ppm SO2 under in-situ conditions (300 bar, 100 °C). The vessels also contained brine with the same composition as in the actual reservoir. Furthermore equilibrium modeling was carried out using PHREEQC software in order to model the experiments on caprock samples. After the experiments the permeability of the reservoir samples had increased by a factor of 1.2–2.2 as a result of dissolution of primary reservoir minerals. Analysis of the associated brine samples before and after the experiments showed that concentrations of K, Si and Al had increased, indicative of silicate mineral dissolution. In the caprock samples, composed of carbonate and anhydrite minerals, permeability changed by a factor of 0.79–23. The increase in permeability is proportional to the amount of carbonate in the caprock. With higher carbonate content in comparison with anhydrite the permeability increase is higher due to the additional carbonate dissolution. This dependency of permeability variations was verified by the modeling study. Hence, caprock

  2. Tensor based geology preserving reservoir parameterization with Higher Order Singular Value Decomposition (HOSVD)

    Science.gov (United States)

    Afra, Sardar; Gildin, Eduardo

    2016-09-01

    Parameter estimation through robust parameterization techniques has been addressed in many works associated with history matching and inverse problems. Reservoir models are in general complex, nonlinear, and large-scale with respect to the large number of states and unknown parameters. Thus, having a practical approach to replace the original set of highly correlated unknown parameters with non-correlated set of lower dimensionality, that captures the most significant features comparing to the original set, is of high importance. Furthermore, de-correlating system's parameters while keeping the geological description intact is critical to control the ill-posedness nature of such problems. We introduce the advantages of a new low dimensional parameterization approach for reservoir characterization applications utilizing multilinear algebra based techniques like higher order singular value decomposition (HOSVD). In tensor based approaches like HOSVD, 2D permeability images are treated as they are, i.e., the data structure is kept as it is, whereas in conventional dimensionality reduction algorithms like SVD data has to be vectorized. Hence, compared to classical methods, higher redundancy reduction with less information loss can be achieved through decreasing present redundancies in all dimensions. In other words, HOSVD approximation results in a better compact data representation with respect to least square sense and geological consistency in comparison with classical algorithms. We examined the performance of the proposed parameterization technique against SVD approach on the SPE10 benchmark reservoir model as well as synthetic channelized permeability maps to demonstrate the capability of the proposed method. Moreover, to acquire statistical consistency, we repeat all experiments for a set of 1000 unknown geological samples and provide comparison using RMSE analysis. Results prove that, for a fixed compression ratio, the performance of the proposed approach

  3. About aerogels based on carbon nanomaterials

    Directory of Open Access Journals (Sweden)

    Fail Sultanov

    2014-12-01

    Full Text Available In this review a current trends in development and application of carbon nanomaterials and derivatives based on them are presented. Aerogels based on graphene and other carbon nanomaterials present a class of novel ultralight materials in which a liquid phase is completely substituted by gaseous. In its turn graphene based aerogel was named as the lightest material, thus the record of aerographite, which has retained for a long time was beaten. Aerogels are characterized by low density, high surface area and high index of hydrophobicity. In addition, depending on its application, aerogels based on carbon nanomaterials can be electrically conductive and magnetic, while retaining the flexibility of its 3D structure. Impressive properties of novel material – aerogels causes a huge interest of scientists in order to find their application in various fields, ranging from environment problems to medicine and electronics.

  4. A carbon nanotube-based sensing element

    Institute of Scientific and Technical Information of China (English)

    YANG Xing; ZHOU Zhao-ying; WU Ying; ZHANG Jin; ZHANG Ying-ying

    2007-01-01

    A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes,carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on microelectrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.

  5. Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China

    Science.gov (United States)

    Wang, Fushun; Wang, Baoli; Liu, Cong-Qiang; Wang, Yuchun; Guan, Jin; Liu, Xiaolong; Yu, Yuanxiu

    2011-07-01

    Recently, controversies about whether hydropower is still a clean energy have been arisen up with the studies about high CO 2 emission flux from hydroelectric reservoirs in boreal and tropical regions. In this study, four subtropical reservoirs and their related reaches, draining on karstic area in southwest of China, were investigated to understand their CO 2 emission, with monthly sampling strategy from July 2007 to June 2008. pCO 2 values in the surface water of these reservoirs ranged from 38 to 3300 μ atm, indicating that reservoir surface could be not only source but also sink to atmosphere CO 2 in different seasons. In Hongfeng reservoir, the flux of CO 2 from surface water varied from -9 to 70 mmol m -2 d -2 with an average of 15 mmol m -2 d -2, and in Baihua reservoir, it had a range from -8 to 77 mmol m -2 d -2 with an average of 24 mmol m -2 d -2. Hongyan reservoir had similar average flux of CO 2 to Baihua reservoir. Xiuwen had the highest average flux of CO 2 with a value of 47 mmol m -2 d -2 among the studied reservoirs. Downstream the dams discharged by hydropower generation from these reservoirs generally had quite high flux of CO 2, with an average of 489 ± 297 mmol m -2 d -2, which is close to those from tropical rivers. This means that water releasing from these reservoirs would be an important way for CO 2 emission into atmosphere. The results showed that dam construction has significant impacts on the river water chemistry, with abrupt changes in pCO 2, DO, T, pH and SIc in surface water and their outlets. In addition, with the development of thermal gradient in warm seasons, water chemistry along the water column of reservoirs also showed seasonal variations, except in Xiuwen reservoir which only has daily storage capacity.

  6. The growth environments of sloan diamonds: inferences based on their carbon isotope composition

    International Nuclear Information System (INIS)

    Carbon isotope compositions have been determined from the Sloan diatremes of the Colorado-Wyoming State Line kimberlite district (North America). The diamonds were previously broken for a study of their mineral inclusions. Based on mineral inclusion composition, the Sloan diamonds are divided into the broad peridotitic and eclogitic categories found for diamonds worldwide. Group I is comprised entirely of peridotitic diamonds whereas most of the diamonds in Group II and Group III are of eclogitic affinity. Differences in diamond morphology and mass are found between the three groups. Significant variation in δ13C was documented within single diamonds. Carbon isotope modelling of the Sloan diamond data suggests that the ranges in δ13C found for Group I and Group II diamonds at Sloan could have been produced from relatively homogeneous carbon reservoirs undergoing Rayleigh fractionation. The Group III diamonds were probably not produced from a single, isotopically homogeneous carbon reservoir. It is possible that the wide range of δ13C values for Group III diamonds was formed from an initially inhomogeneous (primordial or recycled) carbon source. Alternatively, the Group III diamonds may have crystallized from a less inhomogeneous, 13C-depleted fraction remaining after crystallization of Group I and Group II diamonds. The latter posibility suggests that the full range of δ13C values found for Sloan diamonds could have been produced in stages from an initially homogeneous carbon source. 2 figs., 3 refs

  7. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.

  8. Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China

    Science.gov (United States)

    Zhang, Jiawu; Ma, Xueyang; Qiang, Mingrui; Huang, Xiaozhong; Li, Shuang; Guo, Xiaoyan; Henderson, Andrew C. G.; Holmes, Jonathan A.; Chen, Fahu

    2016-07-01

    Inorganic carbonates are often used to establish radiocarbon (14C) chronologies for lake sediments when terrestrial plant remains (TPR) are rare or when bulk organic matter is insufficient for dating, a problem that is common for many lakes in arid regions. However, the reservoir effect (RE), as well as old carbon contributed from the lakes catchment make it difficult to establish reliable chronologies. Here we present a systematic study of inorganic 14C ages of two lake-sediment sequences, one from a small-enclosed saline lake - Lake Gahai in Qaidam Basin, and the other from a large freshwater lake - Lake Bosten in Xinjiang. Modern dissolved inorganic carbon (DIC) of the lakes, paleo-lake sediments exposed in the catchment, and mollusk shells in core sediments from Lake Gahai were dated to assess the RE and the contribution of pre-aged carbon to the old ages in the cores. We propose a statistical regression to assess more than one RE for the 14C carbonate ages within our sedimentary sequences. Old radiocarbon ages contributed by detrital carbonates were assessed by comparing the ages of mollusk shells with those of carbonates at the same sediment depths. We established the RE of the authigenic component and assessed detrital old carbon contributions to our two sites, and this was used to correct the 14C ages. Based on this approach, we developed age models for both cores, and tested them using 210Pb ages in both cores and TPR-based 14C-ages recovered from Lake Bosten. We further tested our age models by comparing carbonate-based oxygen isotope (δ18O) records from both lakes to an independently-dated regional speleothem δ18O record. Our results suggest if sedimentary sequences are densely dated and the RE and the contribution of old carbon from detrital carbonates can be ascertained, robust chronological frameworks based on carbonate-based 14C determinations can be established.

  9. Improved oil recovery in Mississippian carbonate reservoirs of Kansas -- near term -- Class 2. Quarterly report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carr, T.; Green, D.W.; Willhite, G.P.; Schoeling, L.; Reynolds, R.

    1995-07-01

    The objective of this project is to demonstrate incremental reserves from Osagian and Meramecian (Mississippian) dolomite reservoirs in western Kansas through application of reservoir characterization to identify areas of unrecovered mobile oil. The project addresses producibility problems in two fields: specific reservoirs target the Schaben Field in Ness County, Kansas, and the Bindley Field in Hodgeman County, Kansas. The producibility problems to be addressed include inadequate reservoir characterization, drilling and completion design problems, non-optimum recovery efficiency. The results of this project will be disseminated through various technology transfer activities. General overview--progress is reported for the period from 1 April 1995 to 30 June 1995. Work in this quarter has concentrated on reservoir characterization with the initiation of technology transfer. Difficulties still remain in the drilling of the final two wells. Some preliminary work on reservoir characterization has been completed, and related technology transfer has been initiated.

  10. Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs

    Science.gov (United States)

    de Faria, Felipe A. M.; Jaramillo, Paulina; Sawakuchi, Henrique O.; Richey, Jeffrey E.; Barros, Nathan

    2015-12-01

    Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time/stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models’ uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources.

  11. Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Brazil plans to meet the majority of its growing electricity demand with new hydropower plants located in the Amazon basin. However, large hydropower plants located in tropical forested regions may lead to significant carbon dioxide and methane emission. Currently, no predictive models exist to estimate the greenhouse gas emissions before the reservoir is built. This paper presents two different approaches to investigate the future carbon balance of eighteen new reservoirs in the Amazon. The first approach is based on a degradation model of flooded carbon stock, while the second approach is based on flux data measured in Amazonian rivers and reservoirs. The models rely on a Monte Carlo simulation framework to represent the balance of the greenhouse gases into the atmosphere that results when land and river are converted into a reservoir. Further, we investigate the role of the residence time/stratification in the carbon emissions estimate. Our results imply that two factors contribute to reducing overall emissions from these reservoirs: high energy densities reservoirs, i.e., the ratio between the installed capacity and flooded area, and vegetation clearing. While the models’ uncertainties are high, we show that a robust treatment of uncertainty can effectively indicate whether a reservoir in the Amazon will result in larger greenhouse gas emissions when compared to other electricity sources. (letter)

  12. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; William B. Harrison

    2001-04-01

    Among the accomplishments of this past reporting period are obtaining a complete landgrid for the State of Michigan and the digital processing of the high and medium resolution DEM files. We can now extract lineations from the DEMs automatically using machine algorithms. One tentative result that may be very significant is that we may be seeing manifestations of buried structures in the DEM data. We are looking at a set of extracted lineations in the northern lower peninsula that appear to follow the trend of the pinnacle reefs (Silurian) which had relief approaching 300 feet but are now buried to greater than 3000 feet. We have also extracted the dolomite alteration data from all fields and can show that this is mainly confined to the basin center. It may be related to the paleo-rift suggested by the paleomagnetic and gravity data. As reported last time, the acquisition of a 3D seismic dataset over Stoney Point Field from Marathon Oil Company, is complete and attention is being devoted to incorporating the data into the project database and utilizing it. The surface lineation study is focusing on Stoney Point Field using the high-resolution DEM data and plotting of subsurface formation top data for the main reservoir, the Trenton (Ordovician) Formation. The fault pattern at Stoney Point is well documented by Marathon and we are looking for any manifestations on the surface. The main project database is now about as complete as it will be for this project. The main goals have been met, although the scanning of the paper records will have to continue beyond the scheduled end of the project due to the sheer number of records and the increased donations of data from companies as word spread of the project. One of the unanticipated benefits of the project has been the cooperation of gas and oil companies that are or were active in the Michigan Basin in donating material to the project. Both Michigan Tech and Western Michigan continue to receive donations at an

  13. In-filled reservoirs serving as sediment archives to analyse soil organic carbon erosion - Taking a closer look at the Karoo rangelands

    Science.gov (United States)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Heckrath, Goswin; Foster, Ian; Boardman, John; Meadows, Michael; Kuhn, Nikolaus

    2016-04-01

    The semi-arid rangelands of the Great Karoo region in South Africa, which are nowadays characterized by badlands on the foot slopes of upland areas and complex gully systems in valley bottoms, have experienced a number of environmental changes. With the settlement of European farmers in the late 18th century agricultural activities increased, leading to overgrazing which probably acted as a trigger to land degradation. As a consequence of higher water demands and shifting rainfall patterns, many dams and small reservoirs have been constructed to provide drinking water for cattle or to facilitate irrigation during dry periods. Most of these dams are now filled with sediment and many have become breached, revealing sediment archives that can be used to analyse land use changes as well as carbon erosion and deposition during the last ca. 100 years. In this ongoing project, a combination of analytical methods that include drone imagery, landscape mapping, erosion modelling and sediment analysis have been employed to trace back the sediment origin and redistribution within the catchment, setting a special focus on the carbon history. Sediment deposits from a silted-up reservoir were analysed for varying physicochemical parameters, in order to analyse erosional and depositional patterns. A sharp decrease in total carbon content with decreasing depth suggests that land degradation during and after the post-European settlement most likely triggered erosion of the relatively fertile surface soils which presumably in-filled the reservoirs. It is assumed that the carbon-rich bottom layers of the dam deposits originate from these eroded surface soils. A combination of erosion modelling and sediment analysis will be used to determine the source areas of the depositional material and might clarify the question if land degradation in the Karoo has resulted in its return from being a net sink of carbon into a net source of carbon.

  14. Pre-stack-texture-based reservoir characteristics and seismic facies analysis

    Science.gov (United States)

    Song, Cheng-Yun; Liu, Zhi-Ning; Cai, Han-Peng; Qian, Feng; Hu, Guang-Min

    2016-03-01

    Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation. However, information is mislaid in the stacking process when traditional texture attributes are extracted from post-stack data, which is detrimental to complex reservoir description. In this study, pre-stack texture attributes are introduced, these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset, anisotropy, and heterogeneity in the medium. Due to its strong ability to represent stratigraphics, a pre-stack-data-based seismic facies analysis method is proposed using the self-organizing map algorithm. This method is tested on wide azimuth seismic data from China, and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified, in addition to the method's ability to reveal anisotropy and heterogeneity characteristics. The pre-stack texture classification results effectively distinguish different seismic reflection patterns, thereby providing reliable evidence for use in seismic facies analysis.

  15. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  16. Fachtagung 'carbon-nanophysics': carbon based organic optoelectronic devices

    International Nuclear Information System (INIS)

    Full text: Recent developments on carbon based organic light emitting diodes (OLEDs), photovoltaic diodes (OPVs) and photoactive organic field effect transistors (photOFETs) are discussed. The photophysics of such devices is based on the photoinduced charge and/or energy transfer interactions between donor type semiconducting conjugated materials and acceptor type conjugated molecules such as Buckminster-fullerene, C60. Furthermore, organic/inorganic nanoparticle based 'hybrid' devices will be discussed. This talk gives an overview of materials' aspect, charge-transport, and device physics of organic diodes and field-effect transistors. Due to the compatibility of carbon/ hydrogen based organic semiconductors with organic biomolecules and living cells there can be a great opportunity to integrate such organic semiconductor devices (biOFETs) with the living organisms. In general, bio/life sciences and information technology can be bridged in an advanced cybernetic approach using organic semiconductor devices embedded in bio-life sciences. This field of bio-organic electronic devices is proposed to be an important mission of organic semiconductor devices. (author)

  17. Benefits and limitations of an intercalibration of phytoplankton assessment methods based on the Mediterranean GIG reservoir experience.

    Science.gov (United States)

    Pahissa, José; Catalan, Jordi; Morabito, Giuseppe; Dörflinger, Gerald; Ferreira, João; Laplace-Treyture, Christophe; Gîrbea, Ruxandra; Marchetto, Aldo; Polykarpou, Polina; de Hoyos, Caridad

    2015-12-15

    The status of European legislation regarding inland water quality after the enactment of the Water Framework Directive (WFD) originated scientific effort to develop reliable methods, primarily based on biological parameters. An important aspect of the process was to ensure that quality assessment was comparable between the different Member States. The Intercalibration process (IC), required in the WFD ensures the unbiased application of the norm. The presented results were developed in the context of the 2nd IC phase. An overview of the reservoir type definition of the Lake Mediterranean Geographical Intercalibration Group, where four types were considered divided by both alkalinity and climate, together with the results for selection of Maximum Ecological Potential sites (MEP) are presented. MEP reservoirs were selected based on pressure and biological variables. Three phytoplankton-based assessment methods were intercalibrated using data from Mediterranean countries. The Mediterranean Assessment System for Reservoirs Phytoplankton (Spain), the New Mediterranean Assessment System for Reservoirs Phytoplankton (Portugal and Cyprus) and the New Italian Method (Italy) were applied. These three methods were compared through option 3 of the Intercalibration Guide. The similarity of the assessments was quantified, and the Good/Moderate (GM) boundaries assessed. All three methods stood as comparable at the GM boundary except for the MASRP in siliceous wet reservoirs, which was slightly stricter. Finally, the main taxonomic groups represented in the phytoplankton community at MEP conditions were identified, as well as their main changes with an increasing trophic status. MEP sites are dominated by chrysophytes in siliceous wet reservoirs and by the diatoms Cyclotella and Achnanthes in calcareous ones. Cyanobacteria take over the community in both calcareous and siliceous wet reservoirs as eutrophication increases. In summary, the relevance and reliability of the quality

  18. Amperometric biosensors based on carbon composite transducers

    Science.gov (United States)

    Lu, Fang

    1998-12-01

    Much current work in analytical chemistry is devoted to design of biosensors. One particular area in this field is the development of enzyme-based amperometric biosensors for the quantitative determination of a series of substrates in clinical, environmental, industrial and agricultural significance. This dissertation focuses on the design of improved amperometric biosensors based on carbon composite transducers. The use of metallized carbons as transducer materials results in remarkably selective amperometric biosensors. Such enzyme-based transducers eliminate major electroactive interferences, and hence circumvent the need for mediators or membrane barriers. The remarkable selectivity of metal-dispersed carbons is attributed to their strong, preferential, electrocatalytic capacity towards the reductive detection of biologically-generated hydrogen peroxide. Such electrocatalytic activity allows metal-dispersed biosensors to be operated at the optimal potential region between +0.1 and -0.2 V, where the unwanted reactions are neglected resulting in the lowest noise level. Several new materials (e.g., ruthenium on carbon, rhodium on carbon, etc.) and constructions (e.g., carbon fiber, electrochemical co-deposition transducer, etc.) were applied in the development of novel enzyme-based transducers in order to improve the selectivity and applicability of amperometric biosensors. The susceptibility of first-generation oxidase amperometric biosensing to oxygen fluctuations can be improved by using oxygen-rich fluorocarbons as the pasting binders in carbon paste enzyme transducers. Such binders provide an internal supply of oxygen resulting in efficient detection in oxygen-deficit conditions. In particular, the use of poly-chlorotrifluorethylene (Kel-F) oil as carbon paste binder results in a well-defined response and an identical signal up to 40 mM glucose in both the presence and absence of oxygen. Comparing with mediated or wired enzyme-based transducers, such internal

  19. Recent progress on carbon-based superconductors

    Science.gov (United States)

    Kubozono, Yoshihiro; Eguchi, Ritsuko; Goto, Hidenori; Hamao, Shino; Kambe, Takashi; Terao, Takahiro; Nishiyama, Saki; Zheng, Lu; Miao, Xiao; Okamoto, Hideki

    2016-08-01

    This article reviews new superconducting phases of carbon-based materials. During the past decade, new carbon-based superconductors have been extensively developed through the use of intercalation chemistry, electrostatic carrier doping, and surface-proving techniques. The superconducting transition temperature T c of these materials has been rapidly elevated, and the variety of superconductors has been increased. This review fully introduces graphite, graphene, and hydrocarbon superconductors and future perspectives of high-T c superconductors based on these materials, including present problems. Carbon-based superconductors show various types of interesting behavior, such as a positive pressure dependence of T c. At present, experimental information on superconductors is still insufficient, and theoretical treatment is also incomplete. In particular, experimental results are still lacking for graphene and hydrocarbon superconductors. Therefore, it is very important to review experimental results in detail and introduce theoretical approaches, for the sake of advances in condensed matter physics. Furthermore, the recent experimental results on hydrocarbon superconductors obtained by our group are also included in this article. Consequently, this review article may provide a hint to designing new carbon-based superconductors exhibiting higher T c and interesting physical features.

  20. Recent progress on carbon-based superconductors.

    Science.gov (United States)

    Kubozono, Yoshihiro; Eguchi, Ritsuko; Goto, Hidenori; Hamao, Shino; Kambe, Takashi; Terao, Takahiro; Nishiyama, Saki; Zheng, Lu; Miao, Xiao; Okamoto, Hideki

    2016-08-24

    This article reviews new superconducting phases of carbon-based materials. During the past decade, new carbon-based superconductors have been extensively developed through the use of intercalation chemistry, electrostatic carrier doping, and surface-proving techniques. The superconducting transition temperature T c of these materials has been rapidly elevated, and the variety of superconductors has been increased. This review fully introduces graphite, graphene, and hydrocarbon superconductors and future perspectives of high-T c superconductors based on these materials, including present problems. Carbon-based superconductors show various types of interesting behavior, such as a positive pressure dependence of T c. At present, experimental information on superconductors is still insufficient, and theoretical treatment is also incomplete. In particular, experimental results are still lacking for graphene and hydrocarbon superconductors. Therefore, it is very important to review experimental results in detail and introduce theoretical approaches, for the sake of advances in condensed matter physics. Furthermore, the recent experimental results on hydrocarbon superconductors obtained by our group are also included in this article. Consequently, this review article may provide a hint to designing new carbon-based superconductors exhibiting higher T c and interesting physical features. PMID:27351938

  1. Modelling carbon nanotubes-based mediatorless biosensor.

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas; Petrauskas, Karolis; Razumiene, Julija

    2012-01-01

    This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments): a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate. PMID:23012537

  2. Modelling Carbon Nanotubes-Based Mediatorless Biosensor

    Directory of Open Access Journals (Sweden)

    Julija Razumiene

    2012-07-01

    Full Text Available This paper presents a mathematical model of carbon nanotubes-based mediatorless biosensor. The developed model is based on nonlinear non-stationary reaction-diffusion equations. The model involves four layers (compartments: a layer of enzyme solution entrapped on a terylene membrane, a layer of the single walled carbon nanotubes deposited on a perforated membrane, and an outer diffusion layer. The biosensor response and sensitivity are investigated by changing the model parameters with a special emphasis on the mediatorless transfer of the electrons in the layer of the enzyme-loaded carbon nanotubes. The numerical simulation at transient and steady state conditions was carried out using the finite difference technique. The mathematical model and the numerical solution were validated by experimental data. The obtained agreement between the simulation results and the experimental data was admissible at different concentrations of the substrate.

  3. Effect of reactive surface area of minerals on mineralization and carbon dioxide trapping in a depleted gas reservoir

    NARCIS (Netherlands)

    Bolourinejad, P.; Shoeibi Omrani, P.; Herber, R.

    2014-01-01

    In this study, a long-term (up to 1000 years) geochemical modelling of subsurface CO2 storage was carried out on sandstone reservoirs of depleted gas fields in northeast Netherlands. It was found that mineral dissolution/precipitation has only a minor effect on reservoir porosity. In order to valida

  4. Research on anisotropy of shale oil reservoir based on rock physics model

    Science.gov (United States)

    Guo, Zhi-Qi; Liu, Cai; Liu, Xi-Wu; Dong, Ning; Liu, Yu-Wei

    2016-06-01

    Rock physics modeling is implemented for shales in the Luojia area of the Zhanhua topographic depression. In the rock physics model, the clay lamination parameter is introduced into the Backus averaging theory for the description of anisotropy related to the preferred alignment of clay particles, and the Chapman multi-scale fracture theory is used to calculate anisotropy relating to the fracture system. In accordance with geological features of shales in the study area, horizontal fractures are regarded as the dominant factor in the prediction of fracture density and anisotropy parameters for the inversion scheme. Results indicate that the horizontal fracture density obtained has good agreement with horizontal permeability measured from cores, and thus confirms the applicability of the proposed rock physics model and inversion method. Fracture density can thus be regarded as an indicator of reservoir permeability. In addition, the anisotropy parameter of the P-wave is higher than that of the S-wave due to the presence of horizontal fractures. Fracture density has an obvious positive correlation with P-wave anisotropy, and the clay content shows a positive correlation with S-wave anisotropy, which fully shows that fracture density has a negative correlation with clay and quartz contents and a positive relation with carbonate contents.

  5. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    The freshwater reservoir effect can result in anomalously old radiocarbon ages of samples from lakes and rivers. This includes the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. Water rich in dissolved ancient calcium carbonates, commonly known...... order of magnitude and degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants, and animals, shows that age differences of up to 2000 14C years can occur within one river. The freshwater reservoir effect has also...... implications for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany. The surprisingly old ages of the earliest pottery most probably are caused by a freshwater reservoir effect. In a sediment core from the Limfjord, northern Denmark, the impact of the...

  6. Diagenesis and application of LiDAR in reservoir analogue studies: karstification in the Cretaceous Apulia carbonate platform dolomitization in the Triassic Latemar carbonate buildup

    OpenAIRE

    Jacquemyn, Carl

    2013-01-01

    The ever-increasing demand for energy and hydrocarbons coincides with gradual depletion of currently producing conventional oil and gas reservoirs. Therefore new exploration plays are extended to more complex oil and gas plays, such as karstified limestones and hydrothermal dolomites. Furthermore production from currently producing reservoirs is optimized by revisiting or improving the geological knowledge of these reservoirs. These two perspectives are covered in this study on dolomitization...

  7. Risk-based methodology for parameter calibration of a reservoir flood control model

    OpenAIRE

    Bianucci, P.; A. Sordo-Ward; Pérez, J. I.; J. García-Palacios; L. Mediero; L. Garrote

    2013-01-01

    Flash floods are of major relevance in natural disaster management in the Mediterranean region. In many cases, the damaging effects of flash floods can be mitigated by adequate management of flood control reservoirs. This requires the development of suitable models for optimal operation of reservoirs. A probabilistic methodology for calibrating the parameters of a reservoir flood control model (RFCM) that takes into account the stochastic variability of flood events is presented. This study a...

  8. Simulation of Gas Transport in Tight/Shale Gas Reservoirs by a Multicomponent Model Based on PEBI Grid

    Directory of Open Access Journals (Sweden)

    Longjun Zhang

    2015-01-01

    Full Text Available The ultra-low permeability and nanosize pores of tight/shale gas reservoir would lead to non-Darcy flow including slip flow, transition flow, and free molecular flow, which cannot be described by traditional Darcy’s law. The organic content often adsorbs some gas content, while the adsorbed amount for different gas species is different. Based on these facts, we develop a new compositional model based on unstructured PEBI (perpendicular bisection grid, which is able to characterize non-Darcy flow including slip flow, transition flow, and free molecular flow and the multicomponent adsorption in tight/shale gas reservoirs. With the proposed model, we study the effect of non-Darcy flow, length of the hydraulic fracture, and initial gas composition on gas production. The results show both non-Darcy flow and fracture length have significant influence on gas production. Ignoring non-Darcy flow would underestimate 67% cumulative gas production in lower permeable gas reservoirs. Gas production increases with fracture length. In lower permeable reservoirs, gas production increases almost linearly with the hydraulic fracture length. However, in higher permeable reservoirs, the increment of the former gradually decreases with the increase in the latter. The results also show that the presence of CO2 in the formation would lower down gas production.

  9. Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration

    International Nuclear Information System (INIS)

    India has recently witnessed the production of coalbed methane (CBM) on a commercial scale. The analysis of Garg and Shukla (2009) summarizes that initial carbon dioxide storage opportunities should be ventured in CBM sector where the effective cost of the process is partly lowered due to enhanced recovery of methane. This research work was carried out to understand and establish the technical feasibility of CO2 driven enhanced CBM recovery in Indian coals. A regional scale underground coal seam/block was modeled using a commercial reservoir simulator, COMET3. It was found that approximately 218 Mm3 of CO2 can be sequestered in place of 74 Mm3 of CH4 produced from the chosen dimensions of coal block. The changes in fracture gas saturation, matrix CO2 concentration and matrix CH4 concentration with space and time were monitored. Eventually, the numerical values for peak saturation at certain time intervals have been reported. This study is an initial technical estimate for CO2 driven ECBM (enhanced coalbed methane) at a regional scale in India. The results are expected to prove useful not only to reduce India's contribution to greenhouse gases emission into the atmosphere but also to partially meet with the growing energy demand by enhanced recovery of methane from deep, unminable coal seams. -- Highlights: ► Critical numerical simulation of storage of CO2 in coal vis-à-vis capture of natural gas. ► Approximately 218 Mm3 of CO2 can be sequestered in the chosen dimensions of Gondwana coal block. ► A total of 74 Mm3 of CH4 can be produced for the period of study (4000 days). ► Monitoring matrix gas saturation, fracture CO2-CBM saturation with space and time. ► A brief review on possible CO2 sinks in India.

  10. Nanoscale Lasers Based on Carbon Peapods

    Institute of Scientific and Technical Information of China (English)

    HE Shao-Long; SHEN Jian-Qi

    2006-01-01

    A scheme of nanoscale lasers based on the so-called carbon peapods is examined in detail.Since there is considerable cylindrical empty space in the middle of a single-wall carbon nanotube (SWCNT),it can serve as a laser resonant cavity that consists of two highly reflecting alignment "mirrors" separated by a distance.These mirrors refer to ordered arrays of C60 inside SWCNTs,which have photonic bandgap structures.Meanwhile,ideally single-mode lasers are supposed to be produced in the nanoscale resonant cavity.

  11. Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonaradian Age) Reservoirs, West Texas and New Mexico, Semi-Annual; SEMIANNUAL

    International Nuclear Information System (INIS)

    Outcrop studies include stratigraphic and petrophysical analysis. Analysis of the detailed sequence- and cycle-scale architecture of the Clear Fork reservoir-equivalent outcrops in Apache Canyon is nearly complete. This work reveals two high-frequency transgressive-regressive sequences (HFS) in the lower Clear Fork composite depositional sequence and three HFS in the basal middle Clear Fork composite depositional sequence. A 1,800-ft transect of 1-inch-diameter samples was collected from one cycle at the Apache Canyon outcrop. The transect was sampled with 5-ft spacing, but there were some gaps due to cover and cliff, resulting in 181 samples. Permeability, porosity, and grain density were measured, and the spatial statistics are being analyzed geostatistically

  12. Freshwater reservoir effect variability in Northern Germany

    DEFF Research Database (Denmark)

    Philippsen, Bente; Heinemeier, Jan

    2012-01-01

    The freshwater reservoir effect is a potential problem when radiocarbon dating fishbones, shells, human bones or food crusts on pottery from sites next to rivers or lakes. The reservoir age in rivers containing considerable amounts of dissolved 14C-free carbonates can be up to several thousand...... variability that can also be expected for the past. Water DIC from different seasons, and from the same season in different years, has been dated because it is the carbon source in photosynthesis and thus at the basis of the rivers’ food webs. The radiocarbon ages of underwater plants and different parts...... years and may be highly variable. For accurate radiocarbon dating of freshwater-based samples, the order of magnitude of the reservoir effect as well as the degree of variability has to be known. The initial problem in this case was the accurate dating of food crusts on pottery from the Mesolithic sites...

  13. The components and carbon isotope of the gases in inclusions in reservoir layers of Upper Paleozoic gas pools in the Ordos Basin,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The components and carbon isotope of gases in inclusions are one of the most important geochemical indexes for gas pools.The analysis results of the components and carbon isotope of gases from inclusions in reservoir layers of Upper Palaeozoic gas pools in the Ordos Basin show that most inclusions grown in reservoir sandstone are primary inclusions.There is only a little difference about the components and carbon isotope between the well gases and the secondary inclusions gases.This indicated that the epigenetic change of gas pools is little.This difference between the well gases and the secondary inclusions gases is caused by two reasons:(i)The well gases come from several disconnected sand bodies buried in a segment of depth,while the inclusion gases come from a point of depth.(ii)The secondary inclusions trapped the gases generated in the former stage of source rock gas generation,and the well gases are the mixed gases generated in all the stages.It is irresponsible to reconstruct the palaeo-temperature and palaeo-pressure under which the gas pool formed using carbon dioxide inclusions.

  14. Selecting fish-based metrics responding to human pressures in French natural lakes and reservoirs: towards the development of a fish-based index (FBI) for French lakes

    OpenAIRE

    Launois, L.; Veslot, J.; Irz, P.; ARGILLIER C.

    2010-01-01

    1.Fish-based indices of biotic integrity (IBI) have been developed for many lotic systems but remain scarce for lakes. The goal of the present study was to assess the responses of lentic fish assemblages to anthropogenic pressures when environmental variability was controlled for, and to compare them between French natural lakes and reservoirs. 2.Environmental features, catchment-scale anthropogenic descriptors and fish data were collected from 30 natural lakes and 59 reservoirs throughout...

  15. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

    2010-07-01

    An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

  16. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    Energy Technology Data Exchange (ETDEWEB)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  17. Ray-based stochastic inversion of pre-stack seismic data for improved reservoir characterisation

    NARCIS (Netherlands)

    van der Burg, D.W.

    2007-01-01

    To estimate rock and pore-fluid properties of oil and gas reservoirs in the subsurface, techniques can be used that invert seismic data. Hereby, the detailed information about the reservoir that is available at well locations, such as the thickness and porosity of individual layers, is extrapolated

  18. Multi-Site Calibration of Linear Reservoir Based Geomorphologic Rainfall-Runoff Models

    Directory of Open Access Journals (Sweden)

    Bahram Saeidifarzad

    2014-09-01

    Full Text Available Multi-site optimization of two adapted event-based geomorphologic rainfall-runoff models was presented using Non-dominated Sorting Genetic Algorithm (NSGA-II method for the South Fork Eel River watershed, California. The first model was developed based on Unequal Cascade of Reservoirs (UECR and the second model was presented as a modified version of Geomorphological Unit Hydrograph based on Nash’s model (GUHN. Two calibration strategies were considered as semi-lumped and semi-distributed for imposing (or unimposing the geomorphology relations in the models. The results of models were compared with Nash’s model. Obtained results using the observed data of two stations in the multi-site optimization framework showed reasonable efficiency values in both the calibration and the verification steps. The outcomes also showed that semi-distributed calibration of the modified GUHN model slightly outperformed other models in both upstream and downstream stations during calibration. Both calibration strategies for the developed UECR model during the verification phase showed slightly better performance in the downstream station, but in the upstream station, the modified GUHN model in the semi-lumped strategy slightly outperformed the other models. The semi-lumped calibration strategy could lead to logical lag time parameters related to the basin geomorphology and may be more suitable for data-based statistical analyses of the rainfall-runoff process.

  19. Temporal-spatial distribution of non-point source pollution in a drinking water source reservoir watershed based on SWAT

    Science.gov (United States)

    Wang, M.; Cheng, W.; Yu, B.-S.; Fang, Y.

    2015-05-01

    The conservation of drinking water source reservoirs has a close relationship between regional economic development and people's livelihood. Research on the non-point pollution characteristics in its watershed is crucial for reservoir security. Tang Pu Reservoir watershed was selected as the study area. The non-point pollution model of Tang Pu Reservoir was established based on the SWAT (Soil and Water Assessment Tool) model. The model was adjusted to analyse the temporal-spatial distribution patterns of total nitrogen (TN) and total phosphorus (TP). The results showed that the loss of TN and TP in the reservoir watershed were related to precipitation in flood season. And the annual changes showed an "M" shape. It was found that the contribution of loss of TN and TP accounted for 84.5% and 85.3% in high flow years, and for 70.3% and 69.7% in low flow years, respectively. The contributions in normal flow years were 62.9% and 63.3%, respectively. The TN and TP mainly arise from Wangtan town, Gulai town, and Wangyuan town, etc. In addition, it was found that the source of TN and TP showed consistency in space.

  20. Carbon Market Regulation Mechanism Research Based on Carbon Accumulation Model with Jump Diffusion

    OpenAIRE

    Dongmei Guo; Yi Hu; Bingjie Zhang

    2014-01-01

    In order to explore carbon market regulation mechanism more effectively, based on carbon accumulation model with jump diffusion, this paper studies the carbon price from two perspectives of quantity instrument and price instrument and quantitatively simulates carbon price regulation mechanisms in the light of actual operation of EU carbon market. The results show that quantity instrument and price instrument both have certain effects on carbon market; according to the comparison of the elasti...

  1. Relationship between fracturing and porogenesis in a carbonate reservoir: Example from the Middle Turonian Bireno Member in Jebel M'rhila, Central Tunisia

    Science.gov (United States)

    Haj Ali, Hajer; Belghithi, Hanen; Ouali, Jamel Abdennaceur; Touir, Jamel

    2016-09-01

    relationship between fracturing and the reservoir potentiality of dolomites and the dolomitization process. Although the porosity in dolomites is not important enough, its gradual lateral variation with the distance from the fractures reflects the role of the latter in the porogenesis. The field observation and the results of the petrographic and petrophysical analysis show that the fractures must have played a substantial role in conducting the meteoric waters from the emerged platform surface to its base and laterally, resulting in a cementing dolomitization and a solution-related porogenesis. Therefore, it seems that if the dolomitic Bireno Member is rather a good potential reservoir due to the associated fractures networks.

  2. Carbon Nanotube Paper-Based Electroanalytical Devices

    Directory of Open Access Journals (Sweden)

    Youngmi Koo

    2016-04-01

    Full Text Available Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT array, grown using chemical vapor deposition (CVD, was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT sheet to a thin CNT sheet. A 200-layered HA-CNT sheet and a 100-layered HA-CNT sheet are explored as a working electrode. The device was fabricated using the following methods: (1 cellulose-based paper was patterned using a wax printer, (2 electrical connection was made using a silver ink-based circuit printer, and (3 three electrodes were stacked on a 2D Origami cell. Electrochemical behavior was evaluated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. We believe that this platform could attract a great deal of interest for use in various chemical and biomedical applications.

  3. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    OpenAIRE

    Mehran Tehrani; Ayoub Yari Boroujeni; Claudia Luhrs; Jonathan Phillips; Al-Haik, Marwan S.

    2014-01-01

    Carbon nanofilament and nanotubes (CNTs) have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs) and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers emplo...

  4. Effect of stratification on segregation in carbon dioxide miscible flooding in a water-flooded oil reservoir

    International Nuclear Information System (INIS)

    Oil reservoirs are subjected to tertiary recovery by deploying any enhanced oil recovery (EOR) technique for the recovery of left over oil. Amongst many EOR methods one of the widely applied worldwide is CO/sub 2/ flooding through miscible, near miscible or immiscible displacement processes. CO/sub 2/ flooding process responds to a number of reservoir and fluid characteristics. These characteristics have strong effect on overall efficiency of the displacement process. Better understanding of the effect of different characteristics on displacement process is important to plan an efficient displacement process. In this work, the effect of stratification resulting in gravity segregation of the injected fluid is studied in an oil reservoir which is water-flooded during secondary phase of recovery. Sensitivity analysis is performed through successive simulation on Eclipse 300 (compositional) reservoir simulator. Process involves the continuous CO/sub 2/ injection in an oil reservoir with more than 1/3rd of original oil in place left after water flooding. Reservoir model with four different permeability layers is studied. Four patterns by changing the arrangement of the permeabilities of the layers are analysed. The effect of different arrangement or stratification on segregation of CO/sub 2/ and ultimately on the incremental oil recovery, is investigated. It has been observed that out of four arrangements, upward fining pattern relatively overcame the issue of the segregation of CO/sub 2/ and consequently 33% more oil with half injection volume is recovered when compared with the downward fining pattern. (author)

  5. Irradiation behavior of carbon-based composite materials

    International Nuclear Information System (INIS)

    Consideration is given to the data on radiation changes of sizes and some properties of different carbon-based composite materials (carbon-graphite and graphite-graphite compositions; carbon-carbon composite materials with carbon reinforcing fibers; carbon-silicon compositions), irradiated by neutrons at 320-1700 k. It is shown that change of sizes is dictated by the type and the ratio of components, forming (or not forming) the reinforcing uniform frame. 22 refs.; 10 figs

  6. Epoxy based photoresist/carbon nanoparticle composites

    DEFF Research Database (Denmark)

    Lillemose, Michael; Gammelgaard, Lauge; Richter, Jacob;

    2008-01-01

    We have fabricated composites of SU-8 polymer and three different types of carbon nanoparticles (NPs) using ultrasonic mixing. Structures of composite thin films have been patterned on a characterization chip with standard UV photolithography. Using a four-point bending probe, a well defined stress...... is applied to the composite thin film and we have demonstrated that the composites are piezoresistive. Stable gauge factors of 5-9 have been measured, but we have also observed piezoresistive responses with gauge factors as high as 50. As SU-8 is much softer than silicon and the gauge factor of the...... composite material is relatively high, carbon nanoparticle doped SU-8 is a valid candidate for the piezoresistive readout in polymer based cantilever sensors, with potentially higher sensitivity than silicon based cantilevers....

  7. Porous Carbon Spheres: Rational Design of Si/SiO2 @Hierarchical Porous Carbon Spheres as Efficient Polysulfide Reservoirs for High-Performance Li-S Battery (Adv. Mater. 16/2016).

    Science.gov (United States)

    Rehman, Sarish; Guo, Shaojun; Hou, Yanglong

    2016-04-01

    S. Guo, Y. Hou, and S. Rehman develop a new class of silicon crosslinked with hierarchical porous carbon spheres usable as an efficient polysulfide reservoir for enhancing the performance of lithium-sulfur batteries. As described on page 3167, the developed hybrid material adsorbs negatively charged polysulfides via both chemical and physical adsorption. Remarkably, the hybrid spheres show a high specific capacity, an excellent rate capability and long cyclability. PMID:27105813

  8. Fermentation based carbon nanotube multifunctional bionic composites

    OpenAIRE

    Luca Valentini; Silvia Bittolo Bon; Stefano Signetti; Manoj Tripathi; Erica Iacob; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extr...

  9. Fermentation based carbon nanotube bionic functional composites

    OpenAIRE

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique mechanical and physical properties that are not produced by abiotic processes. Based on grape must and bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at r...

  10. Quantum transport in carbon-based nanostructures

    OpenAIRE

    Nemec, Norbert

    2007-01-01

    The electronic structure and the quantum transport properties of graphene, carbon nanotubes and graphene nanoribbons are studied using analytical and numerical tools. Special care is taken in considering fundamental questions of high experimental relevance and in relating the results to experiments. The main focus of the work is on numerical calculations based on the tight-binding description of electrons, also integrating the results of microscopic ab initio calculations a...

  11. Carbon-based tribofilms from lubricating oils.

    Science.gov (United States)

    Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2016-08-01

    Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid 'tribofilms', which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant's anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon-carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm. PMID:27488799

  12. Area of Interest 1, CO2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, Peter [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Evans, James [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Dewers, Thomas [New Mexico Institute Of Mining And Technology, Socorro, NM (United States)

    2014-10-31

    Formation reservoir/caprock interface in order to extend our work to a reservoir/caprock pair this is currently being assessed for long-term carbon storage. These analyses indicate that interface features similar to those observed at the Utah sites 3 were not observed. Although not directly related to our main study topic, one byproduct of our investigation is documentation of exceptionally high degrees of heterogeneity in the pore-size distribution of the Mount Simon Sandstone. This suggests that the unit has a greater-than-normal potential for residual trapping of supercritical CO2.

  13. Mid- to late-Holocene reservoir-age variability and isotope-based palaeoenvironmental reconstruction in the Limfjord, Denmark

    DEFF Research Database (Denmark)

    Philippsen, Bente; Olsen, Jesper; Lewis, Jonathan P.;

    2013-01-01

    Palaeoenvironmental and 14C reservoir age variability in the Limfjord, a sound through northern Jutland, Denmark, was investigated for the period 7300 to 1300 cal yr BP. Shells and bulk sediment samples from a core from a former inlet, Kilen, were analysed by radiocarbon dating and stable isotope...... (C/N) measurements. A strong correlation between the C/N ratios and δ13C values verifies that these are good carbon source indicators and thus allow environmental reconstructions. Furthermore, δ13C values are correlated with salinity in the photic zone, inferred quantitatively from diatom assemblages...

  14. CO{sub 2} huff-n-puff process in a light oil shallow carbonate reservoir. Annual report, January 1, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Prieditis, J.; Wehner, S.

    1998-01-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations; a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Miscible CO{sub 2} flooding is the process of choice for enhancing recovery of light oils and already accounts for over 12% of the Permian Basin`s daily production. There are significant probable reserves associated with future miscible CO{sub 2} projects. However, many are marginally economic at current market conditions due to large up-front capital commitments for a peak response which may be several years in the future. The resulting negative cash-flow is sometimes too much for an operator to absorb. The CO{sub 2} H-n-P process is being investigated as a near-term option to mitigate the negative cash-flow situation--allowing acceleration of inventoried miscible CO{sub 2} projects when coupled together.

  15. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    Science.gov (United States)

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures. PMID:23627310

  16. The applicability of C-14 measurements in the soil gas for the assessment of leakage out of underground carbon dioxide reservoirs

    OpenAIRE

    Chałupnik Stanisław; Wysocka Małgorzata

    2014-01-01

    Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage). Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to...

  17. Superconductivity in dense carbon-based materials

    Science.gov (United States)

    Lu, Siyu; Liu, Hanyu; Naumov, Ivan I.; Meng, Sheng; Li, Yinwei; Tse, John S.; Yang, Bai; Hemley, Russell J.

    2016-03-01

    Guided by a simple strategy in search of new superconducting materials, we predict that high-temperature superconductivity can be realized in classes of high-density materials having strong sp3 chemical bonding and high lattice symmetry. We examine in detail sodalite carbon frameworks doped with simple metals such as Li, Na, and Al. Though such materials share some common features with doped diamond, their doping level is not limited, and the density of states at the Fermi level in them can be as high as that in the renowned Mg B2 . Together with other factors, this boosts the superconducting temperature (Tc) in the materials investigated to higher levels compared to doped diamond. For example, the Tc of sodalitelike Na C6 is predicted to be above 100 K. This phase and a series of other sodalite-based superconductors are predicted to be metastable phases but are dynamically stable. Owing to the rigid carbon framework of these and related dense carbon materials, these doped sodalite-based structures could be recoverable as potentially useful superconductors.

  18. Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)

    Energy Technology Data Exchange (ETDEWEB)

    Milind Deo; Chung-Kan Huang; Huabing Wang

    2008-08-31

    volume of injection at lower rates. However, if oil production can be continued at high water cuts, the discounted cumulative production usually favors higher production rates. The workflow developed during the project was also used to perform multiphase simulations in heterogeneous, fracture-matrix systems. Compositional and thermal-compositional simulators were developed for fractured reservoirs using the generalized framework. The thermal-compositional simulator was based on a novel 'equation-alignment' approach that helped choose the correct variables to solve depending on the number of phases present and the prescribed component partitioning. The simulators were used in steamflooding and in insitu combustion applications. The framework was constructed to be inherently parallel. The partitioning routines employed in the framework allowed generalized partitioning on highly complex fractured reservoirs and in instances when wells (incorporated in these models as line sources) were divided between two or more processors.

  19. Results from probability-based, simplified, off-shore Louisiana CSEM hydrocarbon reservoir modeling

    Science.gov (United States)

    Stalnaker, J. L.; Tinley, M.; Gueho, B.

    2009-12-01

    Perhaps the biggest impediment to the commercial application of controlled-source electromagnetic (CSEM) geophysics marine hydrocarbon exploration is the inefficiency of modeling and data inversion. If an understanding of the typical (in a statistical sense) geometrical and electrical nature of a reservoir can be attained, then it is possible to derive therefrom a simplified yet accurate model of the electromagnetic interactions that produce a measured marine CSEM signal, leading ultimately to efficient modeling and inversion. We have compiled geometric and resistivity measurements from roughly 100 known, producing off-shore Louisiana Gulf of Mexico reservoirs. Recognizing that most reservoirs could be recreated roughly from a sectioned hemi-ellipsoid, we devised a unified, compact reservoir geometry description. Each reservoir was initially fit to the ellipsoid by eye, though we plan in the future to perform a more rigorous least-squares fit. We created, using kernel density estimation, initial probabilistic descriptions of reservoir parameter distributions, with the understanding that additional information would not fundamentally alter our results, but rather increase accuracy. From the probabilistic description, we designed an approximate model consisting of orthogonally oriented current segments distributed across the ellipsoid--enough to define the shape, yet few enough to be resolved during inversion. The moment and length of the currents are mapped to geometry and resistivity of the ellipsoid. The probability density functions (pdfs) derived from reservoir statistics serve as a workbench. We first use the pdfs in a Monte Carlo simulation designed to assess the detectability off-shore Louisiana reservoirs using magnitude versus offset (MVO) anomalies. From the pdfs, many reservoir instances are generated (using rejection sampling) and each normalized MVO response is calculated. The response strength is summarized by numerically computing MVO power, and that

  20. Imagerie sismique d'un réservoir carbonaté : le dogger du Bassin parisien Seismic Imaging a Carbonate Reservoir: the Paris Basin Dogger

    Directory of Open Access Journals (Sweden)

    Mougenot D.

    2006-11-01

    inversion, 3D interpretation through automatic picking and horizon attributes. The combined use of all these techniques on the Villeperdue (Total operator and Fontaine-au-Bron fields (EAP, operator illustrates the appropriateness of surface seismic for describing the characteristics of the thin reservoir (30 m lying at the top of the Dogger carbonate, at a depth of 1900 m. Widening the frequency content of the seismic comes into conflict with the limitations imposed by the attenuation of the high frequencies as they are propagated in the subsurface. An evaluation of this attenuation, made by VSP, indicates that the filtering related to propagation as far as the Dogger (1. 3 s twt is sharply amplified beyond 90 Hz. High-resolution seismic (2D-HR is used to record this transition frequency at the level of the target, since it provides sufficiently adequate vertical resolution for the reflections at the top and at the base of the reservoir not to interfere (lambda/2 = 26 m. The amplitude of these reflectors is therefore representative of the impedance contrasts on either limit of the reservoir and their lateral variations reveal heterogeneities, such as porosity changes, which are expressed well acoustically. The high frequency content of the 3D seismic (70 Hz was more difficult to enhance. As a result of careful static corrections, which are related to a geological database and uphole surveys, the time-image of the reservoir, at the location of the syncline described by the 3D, is not influenced by the topographic variations and the associated strong surface heterogeneities. Yet the essential contribution made by the 3D, thanks to the continuity of its spatial sampling, is to evidence, via the picking of the reservoir and the corresponding horizon attributes, submeridian lineaments corresponding to faults with throw of several meters which is too weak to be detected on vertical sections. The distribution of these faults, via which water tends to invade the reservoir, and the

  1. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  2. FEM based simulation of thermal discharges to reservoir from condenser cooling water system of a power plant

    International Nuclear Information System (INIS)

    Finite element based digital models are developed for thermal discharges to a reservoir from condenser cooling water system of a power plant. The FEM based digital models are applied for mapping temperature profiles due to thermal discharges from a power plant. Isoparametric rectangular elements are employed for two-dimensional system and equation of continuity and motion are coupled with the two-dimensional temperature dispersion model. The model developed is applied for case study for Kaiga Atomic Power Project. (author)

  3. Log-based identification of sweet spots for effective fracs in shale reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Hashmy, K.; Barnett, C.; Jonkers, J. [Weatherford (United States); Abueita, S. [Anadarko Petroleum (United States)

    2011-07-01

    Shale reservoir exploitation requires horizontal hydro-fracturing, often in a multi-stage configuration. Fracture stages are usually evenly spaced along the horizontal well, regardless of reservoir characteristics, even though wireline logs or logging-while-drilling (LWD) methods could be used to determine sweet spots for more cost-effective fracturing locations. This paper aims to show how failure to take into consideration a reservoir's geological properties can lead to less effective exploitation, and then goes on to describe logging techniques, LWD and wireline logs combined, and their usefulness in effectively placing fracturing stages on a reservoir's sweet spots. By studying logs from different LWD and wireline log techniques, such as gamma ray, resistivity, X-ray fluorescence or shockwave sonic measurements for different existing wells, the study shows how sweet spots, where kerogen concentration is higher, with higher porosity, can be determined. These logging techniques, requiring low investments, offer a variety of methods for identifying sweet spots in shale reservoirs, and fracturing only these spots will avoid unnecessary expenditure on frac stages in zones with poor reservoir characteristics.

  4. Carbon-based tribofilms from lubricating oils

    Science.gov (United States)

    Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L.; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K. R. S.

    2016-08-01

    Moving mechanical interfaces are commonly lubricated and separated by a combination of fluid films and solid ‘tribofilms’, which together ensure easy slippage and long wear life. The efficacy of the fluid film is governed by the viscosity of the base oil in the lubricant; the efficacy of the solid tribofilm, which is produced as a result of sliding contact between moving parts, relies upon the effectiveness of the lubricant’s anti-wear additive (typically zinc dialkyldithiophosphate). Minimizing friction and wear continues to be a challenge, and recent efforts have focused on enhancing the anti-friction and anti-wear properties of lubricants by incorporating inorganic nanoparticles and ionic liquids. Here, we describe the in operando formation of carbon-based tribofilms via dissociative extraction from base-oil molecules on catalytically active, sliding nanometre-scale crystalline surfaces, enabling base oils to provide not only the fluid but also the solid tribofilm. We study nanocrystalline catalytic coatings composed of nitrides of either molybdenum or vanadium, containing either copper or nickel catalysts, respectively. Structurally, the resulting tribofilms are similar to diamond-like carbon. Ball-on-disk tests at contact pressures of 1.3 gigapascals reveal that these tribofilms nearly eliminate wear, and provide lower friction than tribofilms formed with zinc dialkyldithiophosphate. Reactive and ab initio molecular-dynamics simulations show that the catalytic action of the coatings facilitates dehydrogenation of linear olefins in the lubricating oil and random scission of their carbon–carbon backbones; the products recombine to nucleate and grow a compact, amorphous lubricating tribofilm.

  5. Towards "Intelligent Compression" in Streams: A Biased Reservoir Sampling based Bloom Filter Approach

    CERN Document Server

    Dutta, Sourav; Narang, Ankur

    2011-01-01

    With the explosion of information stored world-wide,data intensive computing has become a central area of research.Efficient management and processing of this massively exponential amount of data from diverse sources,such as telecommunication call data records,online transaction records,etc.,has become a necessity.Removing redundancy from such huge(multi-billion records) datasets resulting in resource and compute efficiency for downstream processing constitutes an important area of study. "Intelligent compression" or deduplication in streaming scenarios,for precise identification and elimination of duplicates from the unbounded datastream is a greater challenge given the realtime nature of data arrival.Stable Bloom Filters(SBF) address this problem to a certain extent.However,SBF suffers from a high false negative rate(FNR) and slow convergence rate,thereby rendering it inefficient for applications with low FNR tolerance.In this paper, we present a novel Reservoir Sampling based Bloom Filter,(RSBF) data struc...

  6. Estimation of reservoir and remaining oil prediction based on flow unit analysis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Through natural partition and clustering analysis,four kinds of flow units were distinguished in Pu53 block,Pucheng Oilfield. Taking the short-term cycle as studying unit,the two-dimensional distribution of each type of flow units was forecasted and the short-term cycle was classified into four types based on the two-dimensional characteristics of the flow units. The remaining oil was predicted by conceptual simulation,qualitative analysis and quantitative modeling. The results showed obvious control of the characteristics of reservoir flow units to the remaining oil. E and G units in type I and type II short-term cycles which are distributed continuously in large areas are mostly flooded,while the uncontrolled small isolated G flow unit in type III short-term cycles which were mainly made of F flow unit and F flow unit with continuous distribution become the accumulating place for remaining oil. Thus the development adjustment strategy should optimize the development of small-scale E and G units,strengthen the development of type III short-term cycles,and block out type I short-term cycles. This strategy improves the development of Pu53 block obviously.

  7. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  8. Seismic spectral decomposition and analysis based on Wigner–Ville distribution for sandstone reservoir characterization in West Sichuan depression

    International Nuclear Information System (INIS)

    Reflections from a hydrocarbon-saturated zone are generally expected to have a tendency to be low frequency. Previous work has shown the application of seismic spectral decomposition for low-frequency shadow detection. In this paper, we further analyse the characteristics of spectral amplitude in fractured sandstone reservoirs with different fluid saturations using the Wigner–Ville distribution (WVD)-based method. We give a description of the geometric structure of cross-terms due to the bilinear nature of WVD and eliminate cross-terms using smoothed pseudo-WVD (SPWVD) with time- and frequency-independent Gaussian kernels as smoothing windows. SPWVD is finally applied to seismic data from West Sichuan depression. We focus our study on the comparison of SPWVD spectral amplitudes resulting from different fluid contents. It shows that prolific gas reservoirs feature higher peak spectral amplitude at higher peak frequency, which attenuate faster than low-quality gas reservoirs and dry or wet reservoirs. This can be regarded as a spectral attenuation signature for future exploration in the study area

  9. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    Science.gov (United States)

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.

    2015-04-01

    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  10. Carbon ion radiotherapy of skull base chondrosarcomas

    International Nuclear Information System (INIS)

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity

  11. Carbon Ion Radiotherapy for Skull Base Chordoma

    OpenAIRE

    Mizoe, Jun–etsu; Hasegawa, Azusa; Takagi, Ryo; Bessho, Hiroki; Onda, Takeshi; Tsujii, Hirohiko

    2009-01-01

    Objective: To present the results of the clinical study of carbon ion radiotherapy (CIRT) for skull base and paracervical spine tumors at the National Institute of Radiological Sciences in Chiba, Japan. Methods: The study is comprised of three protocols: a pilot study, a phase I/II dose escalation study, and a phase II study. All the patients were treated by 16 fractions for 4 weeks with total doses of 48.0, 52.8, 57.6, and 60.8 Gy equivalents (GyE). Results: As a result of the dose escalatio...

  12. Seismic signatures of reservoir permeability based on the patchy-saturation model

    Science.gov (United States)

    Guo, Zhi-Qi; Liu, Cai; Li, Xiang-Yang

    2015-06-01

    Modeling of seismic responses of variable permeability on the basis of the patchy-saturation model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency domain and seismic modeling on the basis of the propagator matrix method. For a layered patchy-saturated reservoir, the seismic responses represent a combination of factors, including impedance contrast, the effect of dispersion and attenuation within the reservoir, and the tuning and interference of reflections at the top and bottom of the reservoir. Numerical results suggest that increasing permeability significantly reduces the P-wave velocity and induces dispersion between the high- and low-frequency elastic limit. Velocity dispersion and the layered structure of a reservoir lead to complex reflection waveforms. Seismic reflections are sensitive to permeability if the impedance of the reservoir is close to that of the surroundings. For variable layer thickness, the stacked amplitudes increase with permeability for high-velocity surrounding shale, whereas the stacked amplitudes decrease with permeability for low-velocity surrounding shale.

  13. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    Science.gov (United States)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    The injection of CO2 into geological formations at quantities necessary to significantly reduce CO2 emissions will represent an environmental perturbation on a continental scale. The extent to which biological processes may play a role in the fate and transport of CO2 injected into geological formations has remained an open question due to the fact that at temperatures and pressures associated with reservoirs targeted for sequestration CO2 exists as a supercritical fluid (scCO2), which has generally been regarded as a sterilizing agent. Natural subsurface accumulations of CO2 serve as an excellent analogue for studying the long-term effects, implications and benefits of CO2 capture and storage (CCS). While several geologic formations bearing significant volumes of nearly pure scCO2 phases have been identified in the western United States, no study has attempted to characterize the microbial community present in these systems. Because the CO2 in the region is thought to have first accumulated millions of years ago, it is reasonable to assume that native microbial populations have undergone extensive and unique physiological and behavioral adaptations to adjust to the exceedingly high scCO2 content. Our study focuses on the microbial communities associated with the dolomite limestone McElmo Dome scCO2 Field in the Colorado Plateau region, approximately 1,000 m below the surface. Fluid samples were collected from 10 wells at an industrial CO2 production facility outside Cortez, CO. Subsamples preserved on site in 3.7% formaldehyde were treated in the lab with Syto 9 green-fluorescent nucleic acid stain, revealing 3.2E6 to 1.4E8 microbial cells per liter of produced fluid and 8.0E9 cells per liter of local pond water used in well drilling fluids. Extracted DNAs from sterivex 0.22 um filters containing 20 L of sample biomass were used as templates for PCR targeting the 16S rRNA gene. 16S rRNA amplicons from these samples were cloned, sequenced and subjected to microbial

  14. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part II: Impact of Geological CO2 Storage Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.

    2016-07-01

    Full Text Available Some key points still prevent the full development of geological carbon sequestration in underground formations, especially concerning the assessment of the integrity of such storage. Indeed, the consequences of gas injection on chemistry and petrophysical properties are still much discussed in the scientific community, and are still not well known at either laboratory or field scale. In this article, the results of an experimental study about the mobilization of Trace Elements (TE during CO2 injection in a reservoir are presented. The experimental conditions range from typical storage formation conditions (90 bar, supercritical CO2 to shallower conditions (60 and 30 bar, CO2 as gas phase, and consider the dissolution of the two carbonates, coupled with the sorption of an initial concentration of 10−5 M of Zn(II, and the consequent release in solution of Mn(II and Sr(II. The investigation goes beyond the sole behavior of TE in the storage conditions: it presents the specific behavior of each element with respect to the pressure and the natural carbonate considered, showing that different equilibrium concentrations are to be expected if a fluid with a given concentration of TE leaks to an upper formation. Even though sorption is evidenced, it does not balance the amount of TE released by the dissolution process. The increase in porosity is clearly evidenced as a linear function of the CO2 pressure imposed for the St-Emilion carbonate. For the Lavoux carbonate, this trend is not confirmed by the 90 bar experiment. A preferential dissolution of the bigger family of pores from the preexisting porosity is observed in one of the samples (Lavoux carbonate while the second one (St-Emilion carbonate presents a newly-formed family of pores. Both reacted samples evidence that the pore network evolves toward a tubular network type.

  15. Carbon based thirty six atom spheres

    Science.gov (United States)

    Piskoti, Charles R.; Zettl, Alex K.; Cohen, Marvin L.; Cote, Michel; Grossman, Jeffrey C.; Louie, Steven G.

    2005-09-06

    A solid phase or form of carbon is based on fullerenes with thirty six carbon atoms (C.sub.36). The C.sub.36 structure with D.sub.6h symmetry is one of the two most energetically favorable, and is conducive to forming a periodic system. The lowest energy crystal is a highly bonded network of hexagonal planes of C.sub.36 subunits with AB stacking. The C.sub.36 solid is not a purely van der Waals solid, but has covalent-like bonding, leading to a solid with enhanced structural rigidity. The solid C.sub.36 material is made by synthesizing and selecting out C.sub.36 fullerenes in relatively large quantities. A C.sub.36 rich fullerene soot is produced in a helium environment arc discharge chamber by operating at an optimum helium pressure (400 torr). The C.sub.36 is separated from the soot by a two step process. The soot is first treated with a first solvent, e.g. toluene, to remove the higher order fullerenes but leave the C.sub.36. The soot is then treated with a second solvent, e.g. pyridine, which is more polarizable than the first solvent used for the larger fullerenes. The second solvent extracts the C.sub.36 from the soot. Thin films and powders can then be produced from the extracted C.sub.36. Other materials are based on C.sub.36 fullerenes, providing for different properties.

  16. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  17. Combining statistical and physics-based methods for predicting induced seismic hazard during reservoir stimulation

    Science.gov (United States)

    Gischig, V. S.; Mena Cabrera, B.; Goertz-Allmann, B.; Wiemer, S.

    2012-12-01

    Improving the management of risk associated with induced seismicity during reservoir stimulation depends on real-time analysis and forecasting of time-dependent seismic hazard during a stimulation experiment. We present a forward-model based on a semi-stochastic approach that can be used in a probabilistic seismic hazard analysis (PSHA) framework, and calibrate it against observations of induced seismicity during the Basel EGS stimulation in 2006. The modeling strategy is based on two components: a non-linear fluid pressure diffusion model, and a stochastic seed model that includes basic geo-mechanical principles. The transient fluid pressure field is computed with a numerical continuum flow model, in which permeability can increase irreversibly above a certain pressure threshold. The flow model thus mimics permeability enhancement through shear-induced fracture dilation, and is capable of reproducing the wellhead pressure behavior during stimulation. The pressure field is used to trigger events at so-called seed points, locations of potential seismic events that are randomly distributed around an injection well. They are assigned principal stress magnitudes drawn from a normal distribution representative of the ambient stress field. Once the effective stress at a seed point meets a pre-defined Mohr-Coulomb failure criterion due to a fluid pressure increase a seismic event is induced. Inspired by observed event statistics of both tectonic earthquakes and acoustic emissions in laboratory experiments, we assume a negative linear relationship between b-values and differential stress. Thus, for each event a magnitude can be drawn from a frequency-magnitude distribution with a b-value corresponding to the differential stress at failure. The result is a synthetic event catalogue of a seismic cloud evolving in time and space. Computing a large number (several hundred) of such random synthetic catalogues allows a statistically sound comparison between model results and

  18. Using trait-based approaches to study phytoplankton seasonal succession in a subtropical reservoir in arid central western Argentina.

    Science.gov (United States)

    Beamud, S G; León, J G; Kruk, C; Pedrozo, F; Diaz, M

    2015-05-01

    The application of trait-based approaches has become a widely applied tool to analyse community assembly processes and dynamics in phytoplankton communities. Its advantages include summarizing information of many species without losing essentials of the main driving processes. Here, we used trait-based approaches to study phytoplankton temporal succession in a subtropical reservoir. We applied a combined approach including morphological traits (i.e. volume, surface) and functional clustering of species (morphology-based functional groups (MBFG) and Reynolds' groups) and related the clustering of species with the environment. We found that this reservoir is characterized by a low richness and a bimodal distribution of phytoplankton biomass. Taxonomic and functional classifications were coincident, and the dominant species and groups biomasses were explained by the same group of variables. For instance, group X₂, MBFG V and Carteria sp. biomasses were explained by: pH, Secchi disk depth, N-NH₄; while group B, MBFG VI and Cyclotella ocellata biomasses were explained by stability of the water column, incident solar radiation, Secchi disk depth and N-NH4. From our results, we state that functional and taxonomic classifications are complementary rather than opposed approaches, and their specific uses depend exclusively on the aim of the study and the characteristics of the environment under evaluation. Our work is the first description of phytoplankton dynamics in a reservoir in the arid central western Argentina (Cuyo region). PMID:25893768

  19. Reservoir management

    International Nuclear Information System (INIS)

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  20. Reservoir-scale stratigraphic controls on the distribution of vertical fractures: insights from a 200-m thick carbonate platform exposure (Sorrento peninsula, Italy)

    Science.gov (United States)

    Corradetti, Amerigo; Tavani, Stefano; Iannace, Alessandro; Vinci, Francesco; Pirmez, Carlos; Torrieri, Stefano; Giorgioni, Maurizio; Strauss, Christoph; Pignalosa, Antonio; Mazzoli, Stefano

    2016-04-01

    Through-going fractures cutting across numerous beds are often invoked to match large-scale permeability patterns in tight carbonate reservoirs. Despite the importance of these structures for fluid flow simulations, there are only few field analogues allowing estimating many of their parameters, including spacing and vertical extent, which are instead required to populate reservoir models. This is mostly due to the fact that the study of these reservoir-scale fractures requires very wide outcrops that for several reasons, including logistics, are rarely analysed. Nevertheless, recent improvements in the construction of digital models of outcrops can greatly help to overcome many logistic issues. In this work, we present the results obtained from combined field and remote sensing observations of a 300-meters wide and 200-meters high carbonate platform reservoir analogue in the Sorrento peninsula (Italy). The outcrop consists of a nearly vertical cliff exposing alternating gently-dipping shallow-water limestones and dolomites characterized by the presence of several vertical fractures of different size and hence with different vertical connectivity. In order to gather both stratigraphic and structural (i.e. fracture) data, we integrated field measurements and stratigraphic logs with a remote sensing study carried out on a digital model of the cliff, made by means of multi-view stereo-photogrammetry. This combined field and remote sensing study has allowed us to recognize that major bed-perpendicular through-going fractures are vertically discontinuous due to variable segmentation and fracture distribution within the country rock. In particular, we observed that large (i.e. tens of meters in height) fractures pass across medium to thick beds (bed thickness > 30 cm), while they arrest against packages made of thinly stratified layers of dolomites. In essence, through-going fractures arrest on weak levels, consisting of thinly bedded layers interposed between packages

  1. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor

    International Nuclear Information System (INIS)

    Three groups of hydrate-bearing sediment samples with/without underlying gas were prepared using a three-dimensional middle-size reactor to investigate the favorable conditions for methane recovery from hydrate reservoir with gaseous CO2. The experimental results indicated that hydrate reservoir with underlying free gas, high saturation of free gas and low saturation of water is appropriate for recovering CH4 with CO2. For the replacement mechanism, it is assumed that the CO2–CH4 replacement chiefly includes two parts: CH4 hydrate dissociation and mixed hydrate re-formation from the dissociated water and free water. In the re-formed hydrate, CO2 molecules mainly occupy the large cage and CH4 molecules mainly occupy the small cage. A kinetics model was constructed to describe the replacement process, which considers not only the kinetic reaction of CH4–CO2 replacement but also the reaction between CO2 and free water. The calculated results agree well with the experimental data. The influencing factors on the replacement rate were also discussed according to the developed model. It is found that the replacement rate and the mole fraction of CH4 in gas phase increase with the increase of initial CO2 mole fraction, the decrease of system pressure, and the increase of diffusion coefficient of CH4 in hydrate layer. -- Highlights: ► Three classes of hydrate reservoir samples are prepared using a three-dimensional reactor. ► For reservoir class with low water saturation, the replacement effect is encouraged. ► CO2–CH4 replacement includes CH4 hydrate dissociation and mixed hydrate re-formation. ► A kinetics model was constructed to describe the replacement process.

  2. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  3. A cell nanoinjector based on carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xing; Kis, Andras; Zettl, Alex; Bertozzi, Carolyn R.

    2007-01-30

    Technologies for introducing molecules into living cells are vital for probing the physical properties and biochemical interactions that govern the cell's behavior. Here we report the development of a nanoscale cell injection system-termed the nanoinjector-that uses carbon nanotubes to deliver cargo into cells. A single multi-walled carbon nanotube attached to an atomic force microscope tip was functionalized with cargo via a disulfide-based linker. Penetration of cell membranes with this 'nanoneedle', followed by reductive cleavage of the disulfide bonds within the cell's interior, resulted in the release of cargo inside the cells. The capability of the nanoinjector was demonstrated by injection of protein-coated quantum dots into live human cells. Single-particle tracking was employed to characterize the diffusion dynamics of injected quantum dots in the cytosol. This new technique causes no discernible membrane or cell damage, and can deliver a discrete number of molecules to the cell's interior without the requirement of a carrier solvent.

  4. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  5. Model-based workflows for optimal long-term reservoir mangement

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Egberts, P.; Chitu, A.; Wilschut, F.

    2014-01-01

    Life-cycle optimization is the process of finding field operation strategies that aim to optimize recovery or economic value with a long-term (years to decades) horizon. A reservoir simulation model is therefore generally appropriate and sufficient to explore the impact of different recovery scenari

  6. Ray-based stochastic inversion of prestack seismic data for improved reservoir characterization

    NARCIS (Netherlands)

    Van der Burg, D.; Verdel, A.; Wapenaar, C.P.A.

    2009-01-01

    Trace inversion for reservoir parameters is affected by angle averaging of seismic data and wavelet distortion on the migration image. In an alternative approach to stochastic trace inversion, the data are inverted prestack before migration using 3D dynamic ray tracing. This choice makes it possible

  7. Fast Electromechanical Switches Based on Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama; Wong, Eric; Epp, Larry

    2008-01-01

    Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma

  8. Porous Carbon Based Solid Adsorbents for Carbon Dioxide Capture

    OpenAIRE

    Travis, W.

    2015-01-01

    The aim of this project is the design, synthesis and characterisation of porous carbon structures capable of the selective capture of carbon dioxide (CO2) from the exhaust gases of coal and gas post-combustion power stations. In such systems, the fossil fuel is burnt in an air environment producing CO2 as just one of a multi-component flue gas. This flue gas is expected to contain nitrogen and water among other constituents. It is at ambient pressures and temperatures of ≥323 K. Successful ca...

  9. Carbon-nanotube-based photonic devices

    Science.gov (United States)

    Yamashita, Shinji

    2007-11-01

    We recently proposed and demonstrated a saturable absorber (SA) incorporating carbon nanotube (CNT). CNT-based SA offers several key advantages such as: ultra-fast recovery time, polarization insensitivity, high optical damage threshold, mechanical and environmental robustness, chemical stability, and the ability to operate at wide range of wavelength bands. Using the CNT-based SA, we have realized femtosecond fiber pulsed lasers at various wavelengths, as well as the very short-cavity fiber laser having high repetition rate. Besides the saturable absorption, CNT has been shown to have high third-order nonlinearity, which is also attractive for realization of compact and integrated functional photonic devices, such as all-optical switches and wavelength converters. In this paper, we first present photonic properties of CNTs, and review our studies on CNT-based mode-locked fiber lasers. We also refer to fabrication methods of CNT-based photonic devices. We show our recent research progresses on novel photonic devices using evanescent coupling between optical field and CNT.

  10. Magnetism of carbon-based materials

    OpenAIRE

    Makarova, Tatiana

    2002-01-01

    We present a collection of experimental evidence on UFOs: Unidentified Ferromagnetic Organic structures. Five types of carbon magnets have been obtained experimentally: 1. Chains of interacting radicals 2. Carbonaceous substances with a mixture of sp2 and sp3 coordinated atoms 3. Amorphous carbon structures containing trivalent elements like P, N. B. 4. Nanographite and bulk graphite, nanodiamond, carbon nanofoam 5. Fullerenes.

  11. Reservoir capacity estimates in shale plays based on experimental adsorption data

    Science.gov (United States)

    Ngo, Tan

    Fine-grained sedimentary rocks are characterized by a complex porous framework containing pores in the nanometer range that can store a significant amount of natural gas (or any other fluids) through adsorption processes. Although the adsorbed gas can take up to a major fraction of the total gas-in-place in these reservoirs, the ability to produce it is limited, and the current technology focuses primarily on the free gas in the fractures. A better understanding and quantification of adsorption/desorption mechanisms in these rocks is therefore required, in order to allow for a more efficient and sustainable use of these resources. Additionally, while water is still predominantly used to fracture the rock, other fluids, such as supercritical CO2 are being considered; here, the idea is to reproduce a similar strategy as for the enhanced recovery of methane in deep coal seams (ECBM). Also in this case, the feasibility of CO2 injection and storage in hydrocarbon shale reservoirs requires a thorough understanding of the rock behavior when exposed to CO2, thus including its adsorption characteristics. The main objectives of this Master's Thesis are as follows: (1) to identify the main controls on gas adsorption in mudrocks (TOC, thermal maturity, clay content, etc.); (2) to create a library of adsorption data measured on shale samples at relevant conditions and to use them for estimating GIP and gas storage in shale reservoirs; (3) to build an experimental apparatus to measure adsorption properties of supercritical fluids (such as CO2 or CH 4) in microporous materials; (4) to measure adsorption isotherms on microporous samples at various temperatures and pressures. The main outcomes of this Master's Thesis are summarized as follows. A review of the literature has been carried out to create a library of methane and CO2 adsorption isotherms on shale samples from various formations worldwide. Large discrepancies have been found between estimates of the adsorbed gas density

  12. Carbon-Nanotube-Based Chemical Gas Sensor

    Science.gov (United States)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  13. Carbon-carbon composites based on a polyimide matrix ITA

    Czech Academy of Sciences Publication Activity Database

    Yudin, V. E.; Goikhman, M. Y.; Gribanov, A. V.; Gubanova, G. N.; Kudryavtsev, V. V.; Balík, Karel; Glogar, Petr

    Singapore : World Scientific, 1996 - (Palmer, K.; Marx , D.; Wright, M.), s. 187-197 ISBN 981-02-2801-5. [Carbon and Carbonaceous Composite Materials: Structure-Property Relationships. Malenovice (CZ), 10.10.1995-13.10.1995] R&D Projects: GA ČR GA104/94/1789

  14. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    Science.gov (United States)

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long

  15. Nanostructure-based Processes at the Carbonizing Steels

    Directory of Open Access Journals (Sweden)

    L.I. Roslyakova

    2015-12-01

    Full Text Available The studies of nanostructure-based processes carburizing steels showed that oxidizing atmosphere when carburizing steel contains along with carbon dioxide (CO2 + C = 2CO molecular and atmospheric oxygen (O2 + 2C = 2CO; O + C = CO released from the carbonate ВаСОз during its thermal dissociation. Intensive formation of CO provides high carbonizing ability of carbonate-soot coating and steel.

  16. Analytical modeling of glucose biosensors based on carbon nanotubes

    OpenAIRE

    Pourasl, Ali H; Ahmadi, Mohammad Taghi; Rahmani, Meisam; Chin, Huei Chaeng; Lim, Cheng Siong; Ismail, Razali; Tan, Michael Loong Peng

    2014-01-01

    In recent years, carbon nanotubes have received widespread attention as promising carbon-based nanoelectronic devices. Due to their exceptional physical, chemical, and electrical properties, namely a high surface-to-volume ratio, their enhanced electron transfer properties, and their high thermal conductivity, carbon nanotubes can be used effectively as electrochemical sensors. The integration of carbon nanotubes with a functional group provides a good and solid support for the immobilization...

  17. Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Decheng; XU Dongyu; CHENG Xin; CHEN Wen

    2009-01-01

    The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete(HPC)were investigated.The experimental results show that with the decreasing water/cement ratio,the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably,and the carbonation resistance capability is also improved with the adding admixtures.The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD.The analysis results reveal that the main hydration product of sulphoaluminate cement,that is ettringite(AFt),de-composes after carbonation.

  18. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4

    Directory of Open Access Journals (Sweden)

    R. E. Zeebe

    2012-01-01

    Full Text Available The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR's configuration of ocean geometry is flexible and allows for easy switching between modern and paleo-versions. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  19. PICOREF: carbon sequestration in geological reservoirs in France.Map of the unknown ''ground motion''. Final report

    International Nuclear Information System (INIS)

    in the framework of the PICOREF project, ''CO2 sequestration in geological reservoirs in France'', two main objectives are decided: the characterization of french adapted sites and the redaction of a document to ask for the storage authorization, including a methodology to survey and study the storage site. This report aims to define the unknown ground motion which the impact should present a risk for the surface installations. The project is presented, as the geological context and the proposed methodology. (A.L.B.)

  20. Analysis on the Stability of Reservoir Soil Slope Based on Fuzzy Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Lianguang Mo

    2013-01-01

    Full Text Available Owing to the fact that the relation between the reservoir soil slope stability and its influencing factors is complicated and fuzzy, a method-fuzzy neural network to analyze the reservoir soil slope stability is proposed. The method infuses fuzzy reasoning process into the structure of neural network, makes the physical meaning of neuron and weight of neural network clear, reduces the process of regulation match, raises the speed of reasoning and improves greatly the self-adaption capacity of the system. In the end, the fuzzy neural network model is trained and tested by the collected 21 cases of soil slope data samples. The result proves that the fuzzy neural network is a valid method, which has significant advantages over general BP neural network model in analyzing effectiveness and quality.

  1. Tracer-based prediction of thermal reservoir lifetime: scope, limitations, and the role of thermosensitive tracers

    Science.gov (United States)

    Ghergut, I.; Behrens, H.; Karmakar, S.; Licha, T.; Nottebohm, M.; Sauter, M.

    2012-04-01

    Thermal-lifetime prediction is a traditional endeavour of inter-well tracer tests conducted in geothermal reservoirs. Early tracer test signals (detectable within the first few years of operation) are expected to correlate with late-time production temperature evolutions ('thermal breakthrough', supposed to not occur before some decades of operation) of a geothermal reservoir. Whenever a geothermal reservoir can be described as a single-fracture system, its thermal lifetime will, ideally, be determined by two parameters (say, fracture aperture and porosity), whose inversion from conservative-tracer test signals is straightforward and non-ambiguous (provided that the tracer tests, and their interpretation, are performed in accordance to the rules of the art). However, as soon as only 'few more' fractures are considered, this clear-cut correlation is broken. A given geothermal reservoir can simultaneously feature a single-fracture behaviour, in terms of heat transport, and a multiple-fracture behaviour, in terms of solute tracer transport (or vice-versa), whose effective values of fracture apertures, spacings, and porosities are essentially uncorrelated between heat and solute tracers. Solute transport parameters derived from conservative-tracer tests will no longer characterize the heat transport processes (and thus temperature evolutions) taking place in the same reservoir. Parameters determining its thermal lifetime will remain 'invisible' to conservative tracers in inter-well tests. We demonstrate this issue at the example of a five-fracture system, representing a deep-geothermal reservoir, with well-doublet placement inducing fluid flow 'obliquely' to the fractures. Thermal breakthrough in this system is found to strongly depend on fracture apertures, whereas conservative-solute tracer signals from inter-well tests in the same system do not show a clear-cut correlation with fracture apertures. Only by using thermosensitive substances as tracers, a reliable

  2. Reservoir Characterization for CO2 Sequestration: Assessing the Potential of the Devonian Carbonate Nisku Formation of Central Alberta

    International Nuclear Information System (INIS)

    The Wabamun Lake area of Central Alberta, Canada includes several large CO2 point source emitters, collectively producing more than 30 Mt annually. Previous studies established that deep saline aquifers beneath the Wabamun Lake area have good potential for the large-scale injection and storage of CO2. This study reports on the characterization of the Devonian carbonate Nisku Formation for evaluation as a CO2 repository. Major challenges for characterization included sparse well and seismic data, poor quality flow tests, and few modern measurements. Wire-line porosity measurements were present in only one-third of the wells, so porosity and flow capacity (permeability-thickness) were estimated using wire-line electrical measurements. The Archie cementation factor appears to vary between 2 and 3, creating uncertainty when predicting porosity using the electrical measurements; however, high-porosity zones could be identified. The electrically-based flow capacity predictions showed more favorable values using a correlation with core than the relation based on drill stem and production tests. This behavior is expected, since the flow test flow capacities are less influenced by local occurrences of very permeable vuggy and moldic rocks. Facies distributions were modeled using both pixel and object methods. The object models, using dimensions obtained from satellite imaging of modern day environments, gave results that were more consistent with the geological understanding of the Nisku and showed greater large-scale connectivity than the pixel model. Predicted volumes show considerable storage capacity in the Nisku, but flow simulations suggest injection capacities are below an initial 20 Mt/year target using vertical wells. More elaborate well designs, including fracture stimulation or multi-lateral wells may allow this goal to be reached or surpassed. (authors)

  3. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation

    OpenAIRE

    Li, Wenjie; WANG Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite s...

  4. Changes in the radiocarbon reservoir age in Lake Xingyun, Southwestern China during the Holocene.

    Directory of Open Access Journals (Sweden)

    Aifeng Zhou

    Full Text Available Chronology is a necessary component of paleoclimatology. Radiocarbon dating plays a central role in determining the ages of geological samples younger than ca. 50 ka BP. However, there are many limitations for its application, including radiocarbon reservoir effects, which may cause incorrect chronology in many lakes. Here we demonstrate temporal changes in the radiocarbon reservoir age of Lake Xingyun, Southwestern China, where radiocarbon ages based on bulk organic matter have been reported in previous studies. Our new radiocarbon ages, determined from terrestrial plant macrofossils suggest that the radiocarbon reservoir age changed from 960 to 2200 years during the last 8500 cal a BP years. These changes to the reservoir effect were associated with inputs from either pre-aged organic carbon or 14C-depleted hard water in Lake Xingyun caused by hydrological change in the lake system. The radiocarbon reservoir age may in return be a good indicator for the carbon source in lake ecosystems and depositional environment.

  5. Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale

    Science.gov (United States)

    Jiang, Meijuan; Spikes, Kyle T.

    2016-06-01

    Seismic reservoir characterization of unconventional gas shales is challenging due to their heterogeneity and anisotropy. Rock properties of unconventional gas shales such as porosity, pore-shape distribution, and composition are important for interpreting seismic data amplitude variations in order to locate optimal drilling locations. The presented seismic reservoir characterization procedure applied a grid-search algorithm to estimate the composition, pore-shape distribution, and porosity at the seismic scale from the seismically inverted impedances and a rock-physics model, using the Haynesville Shale as a case study. All the proposed rock properties affected the seismic velocities, and the combined effects of these rock properties on the seismic amplitude were investigated simultaneously. The P- and S-impedances correlated negatively with porosity, and the V P/V S correlated positively with clay fraction and negatively with the pore-shape distribution and quartz fraction. The reliability of these estimated rock properties at the seismic scale was verified through comparisons between two sets of elastic properties: one coming from inverted impedances, which were obtained from simultaneous inversion of prestack seismic data, and one derived from these estimated rock properties. The differences between the two sets of elastic properties were less than a few percent, verifying the feasibility of the presented seismic reservoir characterization.

  6. Nanometer-scale ionic reservoir based on ion-responsive hydrogels

    Science.gov (United States)

    Kazakov, Sergey V.; Kaholek, Marian; Levon, Kalle

    2002-07-01

    The applicability of the concept of ionic reservoir for the description of hydrogel behavior was demonstrated by potentiometric titration of poly(N-isopropylacrylamide-co-1- vinylimidazole) hydrogel suspension. Four different regions of pH-changes of the microgel suspensions were identified on the titration curve in comparison with pure water. Particularly, at 10.5>pH>6.5 a hydrogel accumulates or releases H+ and Cl- ions without significant swelling/deswelling whereas at 6.5>pH>4 the storage of the ions occurs both due to their binding with ionizable groups on polymer network and due to strong swelling. The mechanical response of hydrogel (swelling/deswelling) is assumed to be a faster process than the electrochemical response (equilibration of ion concentrations interior and exterior to the hydrogel). The size of hydrogel spheres should be diminished to fasten an ionic reservoir response of the hydrogel. A novel protocol for preparation of polymer hydrogel spherical particles on a nanometer scale (nanogels) has been developed. Temperature- and pH-sensitive nanogels were detected and characterized by the dynamic light scattering technique and atomic force microscopy. Ptoentiometric titration of the obtained nanogels shows that the decrease in the ionic reservoir size gains the efficiency and, presumably, the rate of the electrochemical response. These findings indicate the necessity of time-resolved pH-measurements of the hydrogel suspensions for the characterization of the rate of the solute diffusion through the gel/water surface.

  7. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, S.; Prieditis, J.

    1996-12-31

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will be used to determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate reservoirs. Texaco Exploration and Production Inc`s. (TEPI) mid-term plans are to implement a full-scale miscible CO{sub 2} project in the CVU. TEPI concluded all of the tasks associated with the First Budget Period by October, 1995. The DOE approved the TEPI continuation application. Budget Period No. 2 is in progress. Initial injection of CO{sub 2} began in November, and after a short shut-in period for the soak, the well was returned to production in late December, 1995. This report, covers TEPI`s efforts at history matching the results of the field demonstration. Costs and economics of the work are presented. The majority of effort during the fourth quarter has revolved around the selection of a new project site and refinement of the demonstration design and well selection.

  8. Comparative modeling of fault reactivation and seismicity in geologic carbon storage and shale-gas reservoir stimulation

    Science.gov (United States)

    Rutqvist, Jonny; Rinaldi, Antonio; Cappa, Frederic

    2016-04-01

    The potential for fault reactivation and induced seismicity are issues of concern related to both geologic CO2 sequestration and stimulation of shale-gas reservoirs. It is well known that underground injection may cause induced seismicity depending on site-specific conditions, such a stress and rock properties and injection parameters. To date no sizeable seismic event that could be felt by the local population has been documented associated with CO2 sequestration activities. In the case of shale-gas fracturing, only a few cases of felt seismicity have been documented out of hundreds of thousands of hydraulic fracturing stimulation stages. In this paper we summarize and review numerical simulations of injection-induced fault reactivation and induced seismicity associated with both underground CO2 injection and hydraulic fracturing of shale-gas reservoirs. The simulations were conducted with TOUGH-FLAC, a simulator for coupled multiphase flow and geomechanical modeling. In this case we employed both 2D and 3D models with an explicit representation of a fault. A strain softening Mohr-Coulomb model was used to model a slip-weakening fault slip behavior, enabling modeling of sudden slip that was interpreted as a seismic event, with a moment magnitude evaluated using formulas from seismology. In the case of CO2 sequestration, injection rates corresponding to expected industrial scale CO2 storage operations were used, raising the reservoir pressure until the fault was reactivated. For the assumed model settings, it took a few months of continuous injection to increase the reservoir pressure sufficiently to cause the fault to reactivate. In the case of shale-gas fracturing we considered that the injection fluid during one typical 3-hour fracturing stage was channelized into a fault along with the hydraulic fracturing process. Overall, the analysis shows that while the CO2 geologic sequestration in deep sedimentary formations are capable of producing notable events (e

  9. Reasons for reservoir effect variability

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    Freshwater reservoir effects can be large and highly variable. I will present my investigations into the short-term variability of the freshwater reservoir effect in two Northern German rivers. The samples analysed in this study were collected between 2007 and 2012. Reservoir ages of water sample...... potentially very different radiocarbon ages. Finally, I will discuss the influence of bomb carbon on radiocarbon dating of modern freshwater samples....... plants. Their carbon should represent an average value of the entire growth season. However, there are large reservoir age variations in aquatic plants and animals as well. These can best be explained by the multitude of carbon sources which can be utilized by aquatic organisms, and which have...

  10. Polymer composite material structures comprising carbon based conductive loads

    OpenAIRE

    Jérôme, Robert; Pagnoulle, Christophe; Detrembleur, Christophe; Thomassin, Jean-Michel; Huynen, Isabelle; Bailly, Christian; Bednarz, Luikasz; Daussin, Raphaël; Saib, Aimad; Baudouin, Anne-Christine; Laloyaux, Xavier

    2007-01-01

    The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 wt % to 6 wt % carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loa...

  11. Polymer composite material structures comprising carbon based conductive loads

    OpenAIRE

    Jérôme, Robert; Pagnoulle, Christophe; Detrembleur, Christophe; Thomassin, Jean-Michel; Huynen, Isabelle; Bailly, Christian; Bednarz, Lucasz; Daussin, Raphaël; Saib, Aimad

    2006-01-01

    The present invention provides a polymer composite material structure comprising at least one layer of a foamed polymer composite material comprising a foamed polymer matrix and 0.1 to 6 wt% carbon based conductive loads, such as e.g. carbon nanotubes, dispersed in the foamed polymer matrix. The polymer composite material structure according to embodiments of the present invention shows good shielding and absorbing properties notwithstanding the low amount of carbon based conductive loads. Th...

  12. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene

    Directory of Open Access Journals (Sweden)

    William I. Milne

    2012-05-01

    Full Text Available There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area.

  13. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene.

    Science.gov (United States)

    Zhu, Zhigang; Garcia-Gancedo, Luis; Flewitt, Andrew J; Xie, Huaqing; Moussy, Francis; Milne, William I

    2012-01-01

    There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. PMID:22778628

  14. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.

    Science.gov (United States)

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-01-01

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp(3) bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale. PMID:27004752

  15. Carbon nanomaterial based electrochemical sensors for biogenic amines

    International Nuclear Information System (INIS)

    This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references. (author)

  16. Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution within Carbonate Oil Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Pennington; Mohamed Ibrahim; Roger Turpening; Sean Trisch; Josh Richardson; Carol Asiala; Walid Mabrouk

    2008-09-30

    Crosswell seismic surveys were conducted at two fields in northern Michigan. One of these, Springdale, included two monitor wells that are located external to the reef, and the other, Coldspring, employed two production wells within the reef. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. The resulting seismic images provide the best views of pinnacle Niagaran reefs obtained to date. The tops of the reservoirs can be clearly distinguished, and their lateral extent or dipping edges can be observed along the profile. Reflecting events internal to the reef are evident; some of them are fairly continuous across the reef and others are discontinuous. Inversion of the seismic data indicates which events represent zones of higher porosity and which are lower porosity or even anhydrite plugged. The full stacked image includes angles that are beyond critical for many of the interfaces, and some reflections are visible only for a small range of angles, presumably near their critical angle. Stacking these angles in provides an opportunity for these events to be seen on the stacked image, where otherwise they would have been unrecognized. For inversion, however, the complexity associated with phase changes beyond critical can lead to poor results, and elastic inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Strong apparent attenuation of signals occurs when seismic ray paths pass through the upper part of the Springdale reservoir; this may be due to intrinsic attenuation and/or scattering of events due to the locally strongly varying gas saturation and extremely low fluid pressures. Signal-to-noise limitations become evident far from the source well in the Coldspring study, probably because the raw data were strongly affected by tube-wave noise generated by flow through the perforation of the receiver well. The seismic images obtained, and

  17. Mercury (Hg) accumulation in terrestrial carbon (C) reservoirs: magnitude, spatial patterns, fate upon C losses, and implications of global change

    Science.gov (United States)

    Obrist, D.; Johnson, D. W.; Lindberg, S. E.; Luo, Y.

    2012-04-01

    Terrestrial ecosystems are strong natural reservoirs that retain the bulk of atmospheric Hg deposition. As a result, a long-term legacy of past and present Hg pollution is sequestered in surface litter and soil pools. Hg shows a particular affinity to—and hence tends to accumulate in—terrestrial organic C. We present a summary of a comprehensive five-year investigation where we quantified: (i) relationships between Hg and C across 14 forests sites to assess the affinity of Hg to C accumulation across spatial scales; (ii) the degree to which C determines net retention and spatial accumulation of Hg; (iii) the fate of Hg upon losses of C, including losses though wildfires and mineralization; (iv) the coupling of gaseous Hg losses to CO2 respiration; and (v) the potential sensitivity of climate-change induced changes in C on terrestrial Hg sequestration. Results show that continental-scale spatial distribution of Hg in soils and litter is strongly related to C, and that old terrestrial C pools (as determined by C/N ratios) are particularly prone to Hg enrichment. The correlation of Hg and C is likely responsible for increasing Hg levels (concentrations and pools of total Hg, as well as methylated Hg) with higher latitude, which we attribute to a legacy of Hg sequestration in C-rich layers of northern ecosystems. Experimental studies and field observations to address fate of Hg sequestered in organic C show that: (i) fires leads to up-to-complete Hg losses in either gaseous elemental or particulate-bound form; (ii) litter decomposition also leads to evasion losses of Hg in the range of 50% of initial Hg, but little Hg is subject to runoff as dissolved Hg; (iii) soils effectively retain Hg with only about 3% of Hg subject to volatilization upon C loss during respiration; (iv) no links between CO2 and gaseous Hg concentrations are observed in soil depth profiles in the field, indicating that fate and movement of gaseous Hg is decoupled from that of CO2. We calculate

  18. Carbon and oxygen isotopic composition of carbonate cements of different phases in terrigenous siliciclastic reservoirs and significance for their origin: A case study from sandstones of the Triassic Yanchang Formation, southwestern Ordos Basin,China

    Institute of Scientific and Technical Information of China (English)

    WANG Qi; ZHUO Xizhun; CHEN Guojun; LI Xiaoyan

    2008-01-01

    Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope (their δ18O values range from -0.3‰-0.1‰) and lighter oxygen isotope (their ‰18O values range from -22.1‰--19.5‰). Generally, they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water. This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones, preserving intragranular volume and providing the mass basis for later dissolution caused by acidic fluid flow to produce secondary porosity. Ferriferous calcites are characterized by relatively light carbon isotope with δ13C values ranging from -8.02‰ to -3.23‰, and lighter oxygen isotope with δ18O values ranging from -22.9‰ to -19.7‰, which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis. As the mid-late diagenetic products, ferriferous calcites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir. The late ankerite is relatively heavy in carbon isotope with δ13C values ranging from -1.92‰ to -0.84‰, and shows a wide range of variations in oxygen isotopic composition, with δ18O values ranging from -20.5‰ to -12.6‰. They are believed to have nothing to do with decarboxylation, but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation, and the alkaline diagenetic environment at the mid-late stage would promote this process.

  19. Pristine carbon nanotubes based resistive temperature sensor

    Science.gov (United States)

    Alam, Md Bayazeed; Saini, Sudhir Kumar; Sharma, Daya Shankar; Agarwal, Pankaj B.

    2016-04-01

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible method to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ˜ 0.29%/°C in the 25°C to 60°C temperature range.

  20. Carbon nanotube based NEMS actuators and sensors

    Science.gov (United States)

    Forney, Michael; Poler, Jordan

    2011-03-01

    Single-walled carbon nanotubes (SWNTs) have been widely studied due to superior mechanical and electrical properties. We have grown vertically aligned SWNTs (VA-SWNTs) onto microcantilever (MC) arrays, which provides an architecture for novel actuators and sensors. Raman spectroscopy confirms that the CVD-grown nanotubes are SWNTs and SEM confirms aligned growth. As an actuator, this hybrid MC/VA-SWNT system can be electrostatically modulated. SWNTs are excellent electron acceptors, so we can charge up the VA-SWNT array by applying a voltage. The electrostatic repulsion among the charged SWNTs provides a surface stress that induces MC deflection. Simulation results show that a few electrons per SWNT are needed for measureable deflections, and experimental actuators are being characterized by SEM, Raman, and an AFM optical lever system. The applied voltage is sinusoidally modulated, and deflection is measured with a lock-in amplifier. These actuators could be used for nano-manipulation, release of drugs from a capsule, or nano-valves. As a sensor, this MC/VA-SWNT system offers an improved sensitivity for chemical and bio-sensing compared to surface functionalized MC-based sensors. Those sensors only have a 2D sensing surface, but a MC/VA-SWNT system has significantly more sensing surface because the VA-SWNTs extend microns off the MC surface.

  1. A new approach to assessing the water footprint of hydroelectric power based on allocation of water footprints among reservoir ecosystem services

    Science.gov (United States)

    Zhao, Dandan; Liu, Junguo

    Hydroelectric power is an important energy source to meet the growing demand for energy, and large amounts of water are consumed to generate this energy. Previous studies often assumed that the water footprint of hydroelectric power equaled the reservoir's water footprint, but failed to allocate the reservoir water footprint among the many beneficiaries; dealing with this allocation remains a challenge. In this study, we developed a new approach to quantify the water footprint of hydroelectric power (WFh) by separating it from the reservoir water footprint (WF) using an allocation coefficient (ηh) based on the ratio of the benefits from hydroelectric power to the total ecosystem service benefits. We used this approach in a case study of the Three Gorges Reservoir, the world's largest reservoir, which provides multiple ecosystem services. We found large differences between the WFh and the water footprint of per unit of hydroelectric production (PWFh) calculated using ηh and those calculated without this factor. From 2003 to 2012, ηh decreased sharply (from 0.76 in 2005 to 0.41 in 2012), which was due to the fact that large increases in the value of non-energy ecosystem services, and particularly flood control. In 2009, flood control replaced hydroelectricity as the largest ecosystem service of water from the Three Gorges Reservoir. Using our approach, WFh and PWFh averaged 331.0 × 106 m3 and 1.5 m3 GJ-1, respectively. However, these values would almost double without allocating water footprints among different reservoir ecosystem services. Thus, previous studies have overestimated the WFh and PWFh of reservoirs, especially for reservoirs that serve multiple purposes. Thus, the allocation coefficient should not be ignored when calculating the WF of a product or service.

  2. Organochlorine pesticides accumulated by SPMD-based virtual organisms and feral fish in Three Gorges Reservoir, China

    International Nuclear Information System (INIS)

    Organochlorine pesticides (OCPs) accumulated by semipermeable membrane device (SPMD) -based virtual organisms (VOs) and local feral fish were studied in Three Gorges Reservoir (TGR), China. VOs were deployed at seven sites in TGR for two periods in 2009 and 5 species of fish with different living habitats and feeding habits collected in the same periods from two counties in TGR. 28 OCPs were analyzed and the concentration and profile of OCPs in fish were quite different from those in VOs. The lipid-based concentrations of OCPs in fish ranged from 225.7 ng/g lw to 1996.4 ng/g lw which were much higher than those in VOs which ranged from 17.3 to 112.4 ng/g lw. Dichlorodiphenyltrichloroethanes (DDTs) were the prevalent OCPs in the investigated fish, while hexachlorobenzene (HCB) was the dominant compound in VOs. DDT in the few fish sample analyzed was not of concern based on chemical contaminant limits of non-carcinogenic effect. - Highlights: • OCPs contamination in fish was investigated in Three Gorges Reservoir, China. • Comparison of OCPs accumulation was conducted in feral fish and VOs in TGR. • Composition of OCPs in feral fish was significantly different from that in VOs. • DDTs were the prevalent OCPs in fish and were mainly originated from historical usage. - Comparison of OCPs accumulation was conducted in feral fish and VOs in TGR

  3. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) Measurements of Seasonal to Interannual Variability in Alaskan CO2 and CH4 Fluxes

    Science.gov (United States)

    Miller, C. E.; Dinardo, S. J.

    2014-12-01

    CARVE is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE campaigns across 2012-2014 growing seasons have established a baseline for monthly, regional scale estimates for surface-atmosphere fluxes of carbon dioxide and methane, and revealed large interannual variability in arctic and boreal carbon cycle dynamics. We find that measurements during the freeze/thaw shoulder seasons, especially the fall refreeze, are critical to accurate evaluation of the annual carbon budget for Alaska. In 2014 we initiated flights to the Mackenzie Delta and will compare the carbon dioxide and methane fluxes from this region with those observed over Alaska. We provide lessons learned from CARVE to guide future investigations of carbon cycling and ecosystem vulnerability in the Arctic-Boreal region.

  4. Microfiber devices based on carbon materials

    Directory of Open Access Journals (Sweden)

    Gengzhi Sun

    2015-05-01

    Full Text Available Microfiber devices are able to extend the micro/nano functionalities of materials or devices to the macroscopic scale with excellent flexibility and weavability, promising a variety of unique applications and, sometimes, also improved performance as compared with bulk counterparts. The fiber electrodes in these devices are often made of carbon materials (e.g. carbon nanotubes and graphene because of their exceptional electrical, mechanical, and structural properties. Covering the latest developments and aiming to stimulate more exciting applications, we comprehensively review the preparation and applications of carbon-microfiber devices on energy conversion and storage, electronics, sensors and actuators.

  5. Carbon nanotube based functional superhydrophobic coatings

    Science.gov (United States)

    Sethi, Sunny

    The main objective of this dissertation is synthesis of carbon nanotube (CNT) based superhydrophobic materials. The materials were designed such that electrical and mechanical properties of CNTs could be combined with superhydrophobicity to create materials with unique properties, such as self-cleaning adhesives, miniature flotation devices, ice-repellant coatings, and coatings for heat transfer furnaces. The coatings were divided into two broad categories based on CNT structure: Vertically aligned CNT arrays (VA coatings) and mesh-like (non-aligned) carbon nanotube arrays (NA coatings). VA coatings were used to create self-cleaning adhesives and flexible field emission devices. Coatings with self cleaning property along with high adhesiveness were inspired from structure found on gecko foot. Gecko foot is covered with thousands of microscopic hairs called setae; these setae are further divided into hundreds of nanometer sized hairs called spatulas. When gecko presses its foot against any surface, these hairs bend and conform to the topology of the surface resulting into very large area of contact. Such large area of intimate contact allows geckos to adhere to surfaces using van der Waals (vdW) interactions alone. VA-CNTs adhere to a variety of surfaces using a similar mechanism. CNTs of suitable diameter could withstand four times higher adhesion force than gecko foot. We found that upon soiling these CNT based adhesives (gecko tape) could be cleaned using a water droplet (lotus effect) or by applying vibrations. These materials could be used for applications requiring reversible adhesion. VA coatings were also used for developing field emission devices. A single CNT can emit electrons at very low threshold voltages. Achieving efficient electron emission on large scale has a lot of challenges such as screening effect, pull-off and lower current efficiency. We have explored the use of polymer-CNT composite structures to overcome these challenges in this work. NA

  6. Carbon-Based Fibrous EDLC Capacitors and Supercapacitors

    Directory of Open Access Journals (Sweden)

    C. Lekakou

    2011-01-01

    Full Text Available This paper investigates electrochemical double-layer capacitors (EDLCs including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF and a multiwall carbon nanotube (CNT electrode, as well as hybrid CWF-CNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working voltage. The capacitor cells were tested in cyclic voltammetry, charge-discharge, and impedance tests. The best separator was a glass fibre-fine pore filter. The carbon woven fabric electrode and the corresponding supercapacitor exhibited superior performance per unit area, whereas the multiwall carbon nanotube electrode and corresponding supercapacitor demonstrated excellent specific properties. The hybrid CWF-CNT electrodes did not show a combined improved performance due to the lack of carbon nanotube penetration into the carbon fibre fabric.

  7. Piezoresistive Sensors Based on Carbon Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-wei; WANG Wan-lu; LIAO Ke-jun; WANG Yong-tian; LIU CHang-lin; Zeng Qing-gao

    2005-01-01

    Piezoresistive effect of carbon nanotube films was investigated by a three-point bending test.Carbon nanotubes were synthesized by hot filament chemical vapor deposition.The experimental results showed that the carbon nanotubes have a striking piezoresistive effect.The relative resistance was changed from 0 to 10.5×10-2 and 3.25×10-2 for doped and undoped films respectively at room temperature when the microstrain under stress from 0 to 500. The gauge factors for doped and undoped carbon nanotube films under 500 microstrain were about 220 and 67 at room temperature, respectively, exceeding that of polycrystalline silicon (30) at 35℃.The origin of the resistance changes in the films may be attributed to a strain-induced change in the band gap for the doped tubes and the defects for the undoped tubes.

  8. Functional Materials based on Carbon Nanotubes

    OpenAIRE

    Jung, Adrian Thomas

    2007-01-01

    Carbon nanotubes, no matter if they are single-walled or multi-walled, are an integral component in the vastly growing field of nanotechnology. Since their discovery by TEM and the invention of numerous large-scale production techniques, nanotubes are close to making their way into industrial products. Although many properties and modification processes are still under intensive research, the first real-market applications for carbon nanotubes have already been presented. However, if function...

  9. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance and...

  10. Carbon-Based Fibrous EDLC Capacitors and Supercapacitors

    OpenAIRE

    Lekakou, C.; O. Moudam; Markoulidis, F; Andrews, T.; J. F. Watts; Reed, G.T.

    2011-01-01

    This paper investigates electrochemical double-layer capacitors (EDLCs) including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF) and a multiwall carbon nanotube (CNT) electrode, as well as hybrid CWF-CNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working voltage. The capacitor cells were tested in cyclic voltammetry, charge-discharge, and impedance test...

  11. Carbonation of adjuvant concretes based on local Algerian resources

    OpenAIRE

    Dakhmouche Chabil, Fatima-Zohra,

    2009-01-01

    The carbonation is a pathology which affects cement-based materials such as concretes and mortars.The carbonated skin of material becomes brittle and losses the protection of inner steels againstcorrosion. The corrosion products generate a degradation of the concrete which may lead to thecollapse of the structure.Six types of adjuvant concretes and two cement pastes have been designed by a rheological study inorder to study the effect of accelerated and natural carbonation on the sustainabili...

  12. Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls

    Science.gov (United States)

    Bonnema, Matthew; Sikder, Safat; Miao, Yabin; Chen, Xiaodong; Hossain, Faisal; Ara Pervin, Ismat; Mahbubur Rahman, S. M.; Lee, Hyongki

    2016-05-01

    Growing population and increased demand for water is causing an increase in dam and reservoir construction in developing nations. When rivers cross international boundaries, the downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multisensor precipitation products can be used as a practical way to provide downstream stakeholders with the fundamentally elusive upstream information on reservoir outflow needed to make important and proactive water management decisions. This study uses a mass balance approach of three hydrologic controls to estimate reservoir outflow from satellite data at monthly and annual time scales: precipitation-induced inflow, evaporation, and reservoir storage change. Furthermore, this study explores the importance of each of these hydrologic controls to the accuracy of outflow estimation. The hydrologic controls found to be unimportant could potentially be neglected from similar future studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the annual outflow of both reservoirs with reasonable skill. The estimation of monthly outflow from both reservoirs was however less accurate. The Kaptai basin exhibited a shift in basin behavior resulting in variable accuracy across the 9 year study period. Monthly outflow estimation from Hungry Horse Reservoir was compounded by snow accumulation and melt processes, reflected by relatively low accuracy in summer and fall, when snow processes control runoff. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation-induced inflow being the most important control for the Kaptai

  13. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern

  14. Skiff-based Sonar/LiDAR Survey to Calibrate Reservoir Volumes for Watershed Sediment Yield Studies: Carmel River Example

    Science.gov (United States)

    Smith, D. P.; Kvitek, R.; Quan, S.; Iampietro, P.; Paddock, E.; Richmond, S. F.; Gomez, K.; Aiello, I. W.; Consulo, P.

    2009-12-01

    processes during winter months. The pre-runoff reservoir volume was developed by collecting and merging sonar and LiDAR data from a small research skiff equipped with a high-precision positioning and attitude-correcting system. The terrestrial LiDAR data were augmented with shore-based total station positioning. Watershed monitoring included benchmarked serial stream surveys and semi-quantitative assessment of a variety of near-channel colluvial processes. Rainfall in the 2009-10 water year was not intense enough to trigger widespread debris flows of slope failure in the burned watershed, but dry ravel was apparently accelerated. The geomorphic analysis showed that sediment yield was not significantly higher during this low-rainfall year, despite the wide-spread presence of very steep, fire-impacted slopes. Because there was little to no increase in sediment yield this year, we have postponed our second reservoir survey. A predicted ENSO event that might bring very intense rains to the watershed is currently predicted for winter 2009-10.

  15. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir.

    Science.gov (United States)

    Macario, Kita D; Alves, Eduardo Q; Carvalho, Carla; Oliveira, Fabiana M; Ramsey, Christopher Bronk; Chivall, David; Souza, Rosa; Simone, Luiz Ricardo L; Cavallari, Daniel C

    2016-01-01

    In Brazilian archaeological shellmounds, many species of land snails are found abundantly distributed throughout the occupational layers, forming a contextualized set of samples within the sites and offering a potential alternative to the use of charcoal for radiocarbon dating analyses. In order to confirm the effectiveness of this alternative, one needs to prove that the mollusk shells reflect the atmospheric carbon isotopic concentration in the same way charcoal does. In this study, 18 terrestrial mollusk shells with known collection dates from 1948 to 2004 AD, around the nuclear bombs period, were radiocarbon dated. The obtained dates fit the SH1-2 bomb curve within less than 15 years range, showing that certain species from the Thaumastus and Megalobulimus genera are reliable representatives of the atmospheric carbon isotopic ratio and can, therefore, be used to date archaeological sites in South America. PMID:27271349

  16. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    Science.gov (United States)

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  17. An ensemble based nonlinear orthogonal matching pursuit algorithm for sparse history matching of reservoir models

    KAUST Repository

    Fsheikh, Ahmed H.

    2013-01-01

    A nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of reservoir models is presented. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated components of the basis functions with the residual. The discovered basis (aka support) is augmented across the nonlinear iterations. Once the basis functions are selected from the dictionary, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on approximate gradient estimation using an iterative stochastic ensemble method (ISEM). ISEM utilizes an ensemble of directional derivatives to efficiently approximate gradients. In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm.

  18. Web3DGIS-Based System for Reservoir Landslide Monitoring and Early Warning

    Directory of Open Access Journals (Sweden)

    Huang Huang

    2016-02-01

    Full Text Available Landslides are the most frequent type of natural disaster, and they bring about large-scale damage and are a threat to human lives and infrastructure; therefore, the ability to conduct real-time monitoring and early warning is important. In this study, a Web3DGIS (Web3D geographic information systems system for monitoring and forecasting landslides was developed using the Danjiangkou Reservoir area as a case study. The development of this technique involved system construction, functional design, organizing and managing multi-source spatial data, and implementing a forecasting plan and landslide-forecasting model. By integrating sensor technologies, spatial information technologies, 3D visualization technologies, and a landslide-forecasting model, the results of this study provide a tool for real-time monitoring at potential landslide sites. When relevant data from these sites reach threshold values, the model automatically initiates forecasting procedures, and sends information to disaster prevention sectors for emergency management.

  19. A Novel 3D Viscoelastic Acoustic Wave Equation Based Update Method for Reservoir History Matching

    KAUST Repository

    Katterbauer, Klemens

    2014-12-10

    The oil and gas industry has been revolutionized within the last decade, with horizontal drilling and hydraulic fracturing enabling the extraction of huge amounts of shale gas in areas previously considered impossible and the recovering of hydrocarbons in harsh environments like the arctic or in previously unimaginable depths like the off-shore exploration in the South China sea and Gulf of Mexico. With the development of 4D seismic, engineers and scientists have been enabled to map the evolution of fluid fronts within the reservoir and determine the displacement caused by the injected fluids. This in turn has led to enhanced production strategies, cost reduction and increased profits. Conventional approaches to incorporate seismic data into the history matching process have been to invert these data for constraints that are subsequently employed in the history matching process. This approach makes the incorporation computationally expensive and requires a lot of manual processing for obtaining the correct interpretation due to the potential artifacts that are generated by the generally ill-conditioned inversion problems. I have presented here a novel approach via including the time-lapse cross-well seismic survey data directly into the history matching process. The generated time-lapse seismic data are obtained from the full wave 3D viscoelastic acoustic wave equation. Furthermore an extensive analysis has been performed showing the robustness of the method and enhanced forecastability of the critical reservoir parameters, reducing uncertainties and exhibiting the benefits of a full wave 3D seismic approach. Finally, the improved performance has been statistically confirmed. The improvements illustrate the significant improvements in forecasting that are obtained via readily available seismic data without the need for inversion. This further optimizes oil production in addition to increasing return-on-investment on oil & gas field development projects, especially

  20. Prospects in using carbon-carbon composite materials based on viscose carbon fibers for the space technology needs

    International Nuclear Information System (INIS)

    Due to the unique combination of low density, high mechanical strength under elevated temperatures, high resistance to thermal shock loads and ablation resistance, carbon-carbon composite materials (CCCM) are widely used for manufacturing of highly thermally loaded structural components. The important scientific and technical difficulty is to increase and stabilize CCCM properties, reduce cost and leads to searching for new raw materials and engineering solutions. The article describes the prospects of replacing carbon fiber fills based on PAN-precursors which are traditionally used for producing CCCM by carbon fillers on the basis of viscose raw material; shows the advantages of using viscose-based carbon fibers when forming products of complex shape as well as the possibility of obtaining products with high functional characteristics. The creation of CCCM of layered reinforcement structure, in which carbon fabric layers interleave with layers of discontinuous carbon fibers, enabled to increase the overall density of carbon composites, to ensure sufficiently high level of mechanical characteristics and resistance to ablation

  1. Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and carbon isotope records

    International Nuclear Information System (INIS)

    A global carbon cycle model is used to reconstruct the carbon budget, balancing emissions from fossil fuel and land use with carbon uptake by the oceans, and the terrestrial biosphere. We apply Bayesian statistics to estimate uncertainty of carbon uptake by the oceans and the terrestrial biosphere based on carbon dioxide and carbon isotope records, and prior information on model parameter probability distributions. This results in a quantitative reconstruction of past carbon budget and its uncertainty derived from an explicit choice of model, data-based constraints, and prior distribution of parameters. Our estimated ocean sink for the 1980s is 17±7 Gt C (90% confidence interval) and is comparable to the estimate of 20±8 Gt C given in the recent Intergovernmental Panel on Climate Change assessment [Schimel et al., 1996]. Constraint choice is tested to determine which records have the most influence over estimates of the past carbon budget; records individually (e.g., bomb-radiocarbon inventory) have little effect since there are other records which form similar constraints. (c) 1999 American Geophysical Union

  2. Carbon pipette-based electrochemical nanosampler.

    Science.gov (United States)

    Yu, Yun; Noël, Jean-Marc; Mirkin, Michael V; Gao, Yang; Mashtalir, Olha; Friedman, Gary; Gogotsi, Yury

    2014-04-01

    Sampling ultrasmall volumes of liquids for analysis is essential in a number of fields from cell biology to microfluidics to nanotechnology and electrochemical energy storage. In this article, we demonstrate the possibility of using nanometer-sized quartz pipettes with a layer of carbon deposited on the inner wall for sampling attoliter-to-picoliter volumes of fluids and determining redox species by voltammetry and coulometry. Very fast mass-transport inside the carbon-coated nanocavity allows for rapid exhaustive electrolysis of the sampled material. By using a carbon pipette as the tip in the scanning electrochemical microscope (SECM), it can be precisely positioned at the sampling location. The developed device is potentially useful for solution sampling from biological cells, micropores, and other microscopic objects. PMID:24655227

  3. Carbon Dot Based Sensing of Dopamine and Ascorbic Acid

    OpenAIRE

    Upama Baruah; Neelam Gogoi; Achyut Konwar; Manash Jyoti Deka; Devasish Chowdhury; Gitanjali Majumdar

    2014-01-01

    We demonstrate carbon dot based sensor of catecholamine, namely, dopamine and ascorbic acid. Carbon dots (CDs) were prepared from a green source: commercially available Assam tea. The carbon dots prepared from tea had particle sizes of ∼0.8 nm and are fluorescent. Fluorescence of the carbon dots was found to be quenched in the presence of dopamine and ascorbic acid with greater sensitivity for dopamine. The minimum detectable limits were determined to be 33 μM and 98 μM for dopamine and ascor...

  4. A Kalman-based deconvolution technique applied to ultrasonic imaging of fibrous composite hydrogen reservoirs: preliminary results

    International Nuclear Information System (INIS)

    Composite reservoirs are common in high-pressure storage of gaseous hydrogen and the cryogenic storage of liquid hydrogen. These tanks are subjected to a lot of stresses that can result in the propagation of cracks than can alter their fiability and safety. It is then necessary to perform tests on these reservoirs to find and locate such defects. Non-destructive testing using ultrasounds is a valuable approach to perform this kind of task. Unfortunately, ultrasonic testing of fibrous composite structures is made difficult because of the noise caused by the diffraction of the emitted wave on the fibres. Due to an overlap between the emitted pulse and noise spectra, standard filters are not efficient to eliminate such structure noise; it is therefore difficult to image clearly the defects present in these structures. We propose a deconvolution technique based on the Kalman filter to detect the different echoes coming from the tested specimen in order to perform ultrasonic imaging of its structure. Preliminary results of C-scan type images obtained from the deconvolution are presented here. (author)

  5. A new approach to estimating evaporation from lakes and reservoirs based on energy balance and remote sensing data

    Science.gov (United States)

    Majidi, Maysam; Sadeghi, Morteza; Shafiei, Mojtaba; Alizadeh, Amin; Farid, Alireza; Azad, Mohammadreza; Vazifedoust, Majid

    2016-04-01

    Estimating evaporation from water bodies such as lakes and reservoirs is commonly a difficult task, especially due to the lack of reliable and available ground data. Remote sensing (RS) data has shown a great potential for filling the gap. Nonetheless, interpretation of the RS data (e.g. optical reflectance, thermal emission, etc.) for estimating water evaporation has remained as a challenge. In this paper, we present a novel approach for estimating water evaporation based on satellite RS data and some readily measurable ground data. In the proposed approach, named as "Reference and Water surface Energy Balance (RWEB)", we define a reference surface and then solve the energy balance equation simultaneously for the reference surfaces and water surface. This approach was tested over the Doosti dam reservoir (north east of Iran) using whether station and RS data as well as water temperature measured biweekly along the study. Accuracy of the RWEB algorithm was examined by comparison to the standard "Bowen Ratio Energy Balance (BREB)" RS algorithm. The RMSD value of 0.047 mm/year indicated a good agreement between RWEB and BREB algorithms, while RWEB provides an easier-to-use approach regarding its required input variables.

  6. Reservoir age based on pre-bomb shells from the intertidal zone along the coast of Israel

    International Nuclear Information System (INIS)

    Local sea level curves are obtained by using various methods, from land as well as from sea records and are based on different indicators. The most updated Holocene sea level curve for the coast of Israel, Eastern Mediterranean, from about 9500 cal years ago up to about 700 hundred years ago (the end of the Crusaders period) is based mainly on coastal archaeological remains. For the last Millennia an attempt was made to use bio-constructions along the present-day abrasion platforms as a tool for reconstructing past sea levels. Here we present radiocarbon dating of pre-bomb mollusks from the intertidal zone in order to determine the reservoir age of the bio-construction.

  7. Simultaneous Computation of Two Independent Tasks Using Reservoir Computing Based on a Single Photonic Nonlinear Node With Optical Feedback.

    Science.gov (United States)

    Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy

    2015-12-01

    In this brief, we numerically demonstrate a photonic delay-based reservoir computing system, which processes, in parallel, two independent computational tasks even when the two tasks have unrelated input streams. Our approach is based on a single-longitudinal mode semiconductor ring laser (SRL) with optical feedback. The SRL emits in two directional optical modes. Each directional mode processes one individual task to mitigate possible crosstalk. We illustrate the feasibility of our scheme by analyzing the performance on two benchmark tasks: 1) chaotic time series prediction and 2) nonlinear channel equalization. We identify some feedback configurations for which the results for simultaneous prediction/classification indicate a good performance, but with slight degradation (as compared with the performance obtained for single task processing) due to nonlinear and linear interactions between the two directional modes of the laser. In these configurations, the system performs well on both tasks for a broad range of the parameters. PMID:25751880

  8. Reservoir age based on pre-bomb shells from the intertidal zone along the coast of Israel

    Energy Technology Data Exchange (ETDEWEB)

    Boaretto, E., E-mail: Elisabetta.boaretto@weizmann.ac.i [Radiocarbon Dating and Cosmogenic Isotopes Laboratory, Weizmann Institute of Science, 76100 Rehovot (Israel); Land of Israel and Archaeology Department, Bar Ilan University, Ramat Gan (Israel); Mienis, H.K. [National Mollusc Collections, Dept. of Evolution, Systematics and Ecology, Hebrew University, 91904 Jerusalem (Israel); Dept. of Zoology, Tel Aviv University, 69978 Tel Aviv (Israel); Sivan, D. [Department of Maritime Civilizations and the Leon Recanati Institute for Maritime Studies (RIMS), University of Haifa, Haifa 31905 (Israel)

    2010-04-15

    Local sea level curves are obtained by using various methods, from land as well as from sea records and are based on different indicators. The most updated Holocene sea level curve for the coast of Israel, Eastern Mediterranean, from about 9500 cal years ago up to about 700 hundred years ago (the end of the Crusaders period) is based mainly on coastal archaeological remains. For the last Millennia an attempt was made to use bio-constructions along the present-day abrasion platforms as a tool for reconstructing past sea levels. Here we present radiocarbon dating of pre-bomb mollusks from the intertidal zone in order to determine the reservoir age of the bio-construction.

  9. Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bio-Based Organic Carbonates.

    Science.gov (United States)

    Fiorani, Giulia; Stuck, Moritz; Martín, Carmen; Belmonte, Marta Martínez; Martin, Eddy; Escudero-Adán, Eduardo C; Kleij, Arjan W

    2016-06-01

    The challenging coupling of highly substituted terpene oxides and carbon dioxide into bio-based cyclic organic carbonates catalyzed by Al(aminotriphenolate) complexes is reported. Both acyclic as well as cyclic terpene oxides were used as coupling partners, showing distinct reactivity/selectivity behavior. Whereas cyclic terpene oxides showed excellent chemoselectivity towards the organic carbonate product, acyclic substrates exhibited poorer selectivities owing to concomitant epoxide rearrangement reactions and the formation of undesired oligo/polyether side products. Considering the challenging nature of these coupling reactions, the isolated yields of the targeted bio-carbonates are reasonable and in most cases in the range 50-60 %. The first crystal structures of tri-substituted terpene based cyclic carbonates are reported and their stereoconnectivity suggests that their formation proceeds through a double inversion pathway. PMID:27159151

  10. Hydrogenation catalyst based on modified carbon nanofibers

    International Nuclear Information System (INIS)

    The aim of this work was to study the palladium-carboxylated carbon nanofibers (CNF) as a catalyst for the hydrogenation of nitrobenzene model reaction. It is shown that the efficiency of the catalyst obtained more than 6 times higher than that of the industrial counterpart (Pd/C).

  11. Carborane-based carbonic anhydrase inhibitors

    Czech Academy of Sciences Publication Activity Database

    Brynda, Jiří; Mader, Pavel; Šícha, Václav; Fábry, Milan; Poncová, Kristýna; Bakardjiev, Mario; Grüner, Bohumír; Cígler, Petr; Řezáčová, Pavlína

    2013-01-01

    Roč. 52, č. 51 (2013), s. 13760-13763. ISSN 1433-7851 R&D Projects: GA TA ČR(CZ) TE01020028; GA AV ČR IAAX00320901 Institutional support: RVO:68378050 ; RVO:61388963 ; RVO:61388980 Keywords : carbonic anhydrases * carboranes * drug discovery * inhibitors * structure elucidation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.336, year: 2013

  12. Preparation of PAN/phenolic-based carbon/carbon composites with flexible towpreg carbon fiber

    International Nuclear Information System (INIS)

    Carbon/carbon composites made with flexible towpreg carbon fiber as reinforcement and phenolic resins as matrix precursor were impregnated with pitch during re-carbonization process. The structural characteristics of the composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), three-point bending tests, Archimedes' method and water adsorption. Results showed that the density of the carbon/carbon composites increases from 1.45 to 1.54 g/cm3 with the cycles of pitch impregnated and re-carbonization. Open porosity measurement indicated that the increase of porosity resulted from the decomposition of phenolic resin matrix, and the open porosity of the composite gradually decreased after the impregnation and re-carbonization process. These composites also exhibited an improvement in flexural strength with increasing number of densification cycles. From SEM morphological observation, it was concluded that few cracks appeared in the surfaces and a few smaller pores with a diameter <1 μm could be observed

  13. Deformation Resistance Effect of PAN-based Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lixia; LI Zhuoqiu; SONG Xianhui; LU Yong

    2009-01-01

    The deformation resistance effect of polyacrylonitrile(PAN)-based carbon fibers was investigated,and the variatipn law of electrical resistivity under tensile stress was analyzed.The results show that the gauge factor(fractional change in resistance per unit strain)of PAN-based carbon fibers is 1.38,which is lower than that of the commonly-used resistance strain gauge.These may due to that the electrical resistivity of carbon fibers decreases under tensile stress.In addition when the carbon fibers are stretched,the change of its resistance is caused by fiber physical dimension and the change of electric resistivity,and mainly caused by the change of physical dimension.The mechanical properties of carbon fiber monofilament were also measured.

  14. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  15. Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual report, June 3, 1994--October 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.

    1996-05-01

    The work reported here covers Budget Phase I of the project. The principal tasks in Budget Phase I are the Reservoir Analysis and Characterization Task and the Advanced Technology Definition Task. Completion of these tasks have enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed and evaluated from an economic and risk analysis standpoint. Field implementation of the project has been recommended to the working interest owner of the South Cowden Unit (SCU) and approval has been obtained. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take or pay requirements, CO{sub 2} purchase price tied to West Texas Intermediate crude oil price) and gas recycle agreements (expensing cost as opposed to large capital investments for compression) were negotiated to further improve project economics. A detailed reservoir characterization study was completed by an integrated team of geoscientists and engineers. The study consisted of detailed core description, integration of log response to core descriptions, mapping of the major flow units, evaluation of porosity and permeability relationships, geostatistical analysis of permeability trends, and direct integration of reservoir performance with the geological interpretation. The study methodology fostered iterative bidirectional feedback between the reservoir characterization team and the reservoir engineering/simulation team to allow simultaneous refinement and convergence of the geological interpretation with the reservoir model. The fundamental conclusion from the study is that South Cowden exhibits favorable enhanced oil recovery characteristics, particularly reservoir quality and continuity.

  16. High-Conductance Thermal Interfaces Based on Carbon Nanotubes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel thermal interface material (TIM) that is based on an array of vertical carbon nanotubes (CNTs) for high heat flux applications. For...

  17. Mesoscale Deformational Features Near Outcrop Analogs of a Reservoir-Seal Interface: Implications for Seal Failure

    OpenAIRE

    Flores, Santiago L.

    2014-01-01

    The interface between a reservoir and a caprock is generally considered a flow boundary where capillary trapping at the base of the caprock and low permeability of the seal resists the upward migration of fluids. Joints and faults may act as mechanisms for seal bypass, allowing fluids to escape from the reservoir. The injection and storage of carbon dioxide (CO2) in subsurface porous sandstone with effective top seals is a proposed method for reducing the amount of anthropogenic CO2 in the...

  18. Recent advances in carbon-based dots for electroanalysis.

    Science.gov (United States)

    Yulong, Ying; Xinsheng, Peng

    2016-04-25

    Carbon-based dots represent a new type of quantum dot with unique and well-defined properties owing to their quantum confinement and edge effects, which are widely employed in sensing, light-emitting diodes, nanomedicine, photocatalysis, electrocatalysis, bioimaging, etc. In this review, we update the latest research results of carbon-based dots in this rapidly evolving field of electroanalysis, place emphases on their applications as sensors and give future perspectives for developing more smart sensors. PMID:26797087

  19. Environmental assessment of cooling reservoirs

    International Nuclear Information System (INIS)

    The environmental impacts, both adverse and beneficial, of cooling reservoirs are compared to cooling towers as an alternative closed cycle cooling system. Generally, the impacts associated with the construction of a cooling reservoir system are greater than for a comparable cooling tower system. Operational impacts are generally greater for cooling towers due to their visual impact, plus icing, fogging, and noise problems. The principle advantages of cooling reservoirs are their lower operating and maintenance costs, greater reliability, greater cooling efficiency, reduced water consumption in areas where cooling water storage is required, and their multiple use potential. A review of pertinent literature on cooling reservoir ecosystems, has revealed that entrainment, thermal, and chemical effects generally result in reduced populations of phytoplankton, zooplankton, and benthos in the vicinity of the power plant discharge. Adverse far field effects are generally less significant and are sometimes stimulatory. The overall effects of a power plant on the fish populations of cooling reservoirs appear to be minor. Based on the thermal characteristics of a model 6400 acre cooling reservoir with four 1150 MWe reactors, the ecological characteristics of the reservoir were predicted. The multiple use possibilities of cooling reservoirs provide their most significant beneficial aspect when compared to cooling towers. In addition, the cage culture of food fishes in cooling reservoirs provides an economical and practical method of commercially utilizing the waste heat discharged by power plants. For many areas of the country, cooling reservoirs appear to provide an environmentally and socially desirable alternative to cooling towers

  20. Carbon Nanotube Tower-Based Supercapacitor

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  1. Electromechanical sensors based on carbon nanotube networks

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Petráš, D.; Machovský, M.; Sáha, P.

    Palmerston North: Massey University, 2010 - (Mukhopadhyay, S.; Fuchs, A.; Sen Gupta, G.; Lay-Ekuakille, A.), s. 542-547 ISBN 978-0-473-16942-8. [International Conference on Sensing Technology /4./. Lecce (IT), 03.06.2010-05.06.2010] R&D Projects: GA AV ČR IAA200600803 Institutional research plan: CEZ:AV0Z20600510 Keywords : carbon nanotube network * compression * electrical conductivity * stress sensor Subject RIV: BK - Fluid Dynamics

  2. Carborane-based inhibitors of carbonic anhydrases

    Czech Academy of Sciences Publication Activity Database

    Brynda, Jiří; Pachl, Petr; Šícha, Václav; Fábry, Milan; Grüner, Bohumír; Cígler, Petr; Řezáčová, Pavlína

    2015-01-01

    Roč. 22, č. 1 (2015), s. 3. ISSN 1211-5894. [Discussions in Structural Molecular Biology . Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] R&D Projects: GA ČR GA15-05677S Institutional support: RVO:61388963 ; RVO:68378050 ; RVO:61388980 Keywords : carboranes * carbonic anhydrase Subject RIV: CE - Biochemistry

  3. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215/sup 0/C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO/sub 2/ equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented.

  4. Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium-sulfur batteries

    Science.gov (United States)

    Xiao, Suo; Liu, Songhang; Zhang, Jianqiu; Wang, Yong

    2015-10-01

    Environmental pollution and energy deficiency are two key issues for the sustainable development of the modern society. Polyurethane foam is a typical commercial polymer with a large production quantity and its waste needs to be recycled. Lithium-sulfur battery is a promising energy-storage device with high energy density and low cost, but its demerits such as poor conductivity of the sulfur and severe capacity degradation due to the soluble lithium polysulfides are still a big challenge. This work reports a facile method to prepare nitrogen-doped porous carbon (NPC) from the polyurethane foam (PUF) waste and use it as a reservoir to impregnate sulfur for lithium-sulfur batteries. The obtained NPC has a unique interconnected sheet-like porous morphology with a large surface area of 1315 m2 g-1. The NPC-S composite delivers a large reversible capacity of 1118 mAh g-1 with good cycling performances and excellent high-rate capabilities. A large reversible capacity of 460 mAh g-1 can be retained at a large current of 5C (8.35 A g-1) after 100 cycles.

  5. Soil-Carbon Measurement System Based on Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Increase in the atmospheric CO2 is associated with concurrent increase in the amount of carbon sequestered in the soil. For better understanding of the carbon cycle it is imperative to establish a better and extensive database of the carbon concentrations in various soil types, in order to develop improved models for changes in the global climate. Non-invasive soil carbon measurement is based on Inelastic Neutron Scattering (INS). This method has been used successfully to measure total body carbon in human beings. The system consists of a pulsed neutron generator that is based on D-T reaction, which produces 14 MeV neutrons, a neutron flux monitoring detector and a couple of large NaI(Tl), 6'' diameter by 6'' high, spectrometers [4]. The threshold energy for INS reaction in carbon is 4.8 MeV. Following INS of 14 MeV neutrons in carbon 4.44 MeV photons are emitted and counted during a gate pulse period of 10 μsec. The repetition rate of the neutron generator is 104 pulses per sec. The gamma spectra are acquired only during the neutron generator gate pulses. The INS method for soil carbon content measurements provides a non-destructive, non-invasive tool, which can be optimized in order to develop a system for in field measurements

  6. Analysis on Wage System Based on Process for Reservoir Management%基于工序的油藏经营工资制度简析

    Institute of Scientific and Technical Information of China (English)

    胡丹; 郭晓军; 钱斌

    2011-01-01

    This paper analyzes the characteristics of modern reservoir management and the current wage system to search a wage system based on process for reservoir management or a rated wage system based on process. Consequently, the current wage system for reservoir management can be completed gradually to effectively motivate workers so as to realize a close tie between reservoir benefit and individual benefit and maximize reservoir benefit and individual benefit.%文章分析了现代油藏经营管理、现行工资制度的特点,探索基于工序的油藏经营工资制度,即基于工序的定额工资制度,以期逐步完善现有的油藏经营工资制度,更有效的激励员工,实现油藏效益与个人收益的紧密联系及最大化.

  7. Carbon nanotube based pressure sensor for flexible electronics

    International Nuclear Information System (INIS)

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate

  8. Carbon nanotube based pressure sensor for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  9. Effect of Anodization on the Graphitization of PANbased Carbon Fibers of PAN-based Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    HE Dongmei; YAO Yinghua; XU Shihai; CAI Qingyun

    2011-01-01

    One-step pretreatment,anodization,is used to activate the polyacrylonitrile (PAN)-based carbon fibers instead of the routine two-step pretreatment,sensitization with SnCl2 and activation with PdCl2 The effect of the anodization pretreatment on the graphitization of PAN-based carbon fibers is investigated as a function of Ni-P catalyst.The PAN-based carbon fibers are anodized in H3PO4 electrolyte resulting in the formation of active sites,which thereby facilitates the following electroless Ni-P coating.Carbon fibers in the presence and absence of Ni-P coatings are heat treated and the structural changes are characterized by X-ray diffraction and Raman spectroscopy,both of which indicate that the graphitization of PAN-based carbon fibers are accelerated by both the anodization treatment and the catalysts Ni-E Using the anodized carbon fibers,the routine two-step pretreatment,sensitization and activation,is not needed.

  10. Chemistry in Protoplanetary Disks: the gas-phase CO/H2 ratio and the Carbon reservoir

    CERN Document Server

    Reboussin, L; Guilloteau, S; Hersant, F; Dutrey, A

    2015-01-01

    The gas mass of protoplanetary disks, and the gas-to-dust ratio, are two key elements driving the evolution of these disks and the formation of planetary system. We explore here to what extent CO (or its isotopologues) can be used as a tracer of gas mass. We use a detailed gas-grain chemical model and study the evolution of the disk composition, starting from a dense pre-stellar core composition. We explore a range of disk temperature profiles, cosmic rays ionization rates, and disk ages for a disk model representative of T Tauri stars. At the high densities that prevail in disks, we find that, due to fast reactions on grain surfaces, CO can be converted to less volatile forms (principally s-CO$_2$, and to a lesser extent s-CH$_4$) instead of being evaporated over a wide range of temperature. The canonical gas-phase abundance of 10$^{-4}$ is only reached above about 30-35 K. The dominant Carbon bearing entity depends on the temperature structure and age of the disk. The chemical evolution of CO is also sensit...

  11. Carbon nanobuds based on carbon nanotube caps: A first-principles study

    OpenAIRE

    Choi, Ji Il; Kim, Hyo Seok; Kim, Han Seul; Lee, Ga In; Kang, Jeung Ku; Kim, Yong-Hoon

    2015-01-01

    Based on density functional theory calculations, we here show that the formation of a fullerene C$_{60}$ carbon "nanobud" (CNB) on carbon nanotube (CNT) caps is energetically more favorable than that on CNT sidewalls. The dominant CNB formation mode for CNT caps is found to be the [2+2] cycloaddition reaction as in the conventional CNT sidewall case. However, it is identified to be exothermic in contrast to the endothermic reaction on CNT sidewalls. Computed reaction pathways further demonstr...

  12. Electroadsorption Desalination with Carbon Nanotube/PAN-Based Carbon Fiber Felt Composites as Electrodes

    OpenAIRE

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF ...

  13. 基于GIS的库区岸坡稳定性评价系统设计%Stability Evaluation System Design for Reservoir Bank Slope Based on GIS

    Institute of Scientific and Technical Information of China (English)

    李运胜; 张发明; 安如; 黄宇; 梁欣

    2013-01-01

    针对水库建设过程中极易发生的库岸塌岸、滑坡等地质灾害,提出了适当的评价指标并确定了权重和隶属度,采用模糊评价方法对库岸塌岸、滑坡等地质灾害进行了稳定性评价.基于ArcGIS平台的AE组件,采用Visual Studio 2008开发语言C#构建了库岸稳定性评价系统,实现了库区基础地质信息的显示、浏览和库岸塌岸、滑坡等地质灾害的分析评价功能.%This paper proposes appropriate evaluation indicators and determines weight and membership degree in order to address easily-happened geological disasters such as reservoir bank slump and landslide during the reservoir construction.The paper adopts fuzzy assessment method to conduct stability evaluation on the geological disasters such as reservoir bank slump and landslide.The stability evaluation system is developed and constructed adopting the AE component based on ArcGIS platform and Visual Studio 2008 development language C#,realizing the display and viewing of fundamental geological data in the reservoir area,and the analysis and evaluation of geological disasters such as reservoir bank slump and landslide.

  14. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE): Measurements of Seasonal to Interannual Variability in Alaskan CO2 and CH4 Fluxes

    Science.gov (United States)

    Miller, Charles; Dinardo, Steve

    2015-04-01

    CARVE is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE campaigns across 2012-2014 growing seasons have established a baseline for monthly, regional scale estimates for surface-atmosphere fluxes of carbon dioxide (CO2) and methane (CH4), and revealed large interannual variability in arctic and boreal carbon cycle dynamics. We find that measurements during the freeze/thaw shoulder seasons, especially the fall refreeze, are critical to accurate evaluation of the annual carbon budget for Alaska. Additionally, we find that Alaskan carbon fluxes exhibit responses to environmental forcings that extend across multiple growing seasons. In 2014 we initiated flights to the Mackenzie Delta and will compare the CO2 and CH4 fluxes from this region with those observed over Alaska. We provide lessons learned from CARVE to guide future investigations of carbon cycling and ecosystem vulnerability in the Arctic-Boreal region.

  15. Time-lapse cased hole reservoir evaluation based on the dual-detector neutron lifetime log: the CHES II approach

    International Nuclear Information System (INIS)

    A newly developed cased hole analysis technique provides detailed information on (1) reservoir rock properties, such as porosity, shaliness, and formation permeability, (2) reservoir fluid saturation, (3) distinction of oil and gas pays, (4) state of reservoir depletion, such as cumulative hydrocarbon-feet at present time and cumulative hydrocarbon-feet already depleted (e.g., the sum of both values then giving the cumulative hydrocarbon-feet originally present), and (5) monitoring of hydrocarbon/water and gas/oil contacts behind pipe. The basic well log data required for this type of analysis include the Dual-Detector Neutron Lifetime Log, run in casing at any particular time in the life of a reservoir, and the initial open-hole resistivity log. In addition, porosity information from open-hole porosity log(s) or core data is necessary. Field examples from several areas are presented and discussed in the light of formation reservoir and hydrocarbon production characteristics

  16. COMMERCIAL VIABILITY ANALYSIS OF LIGNIN BASED CARBON FIBRE

    OpenAIRE

    Michael Chien-Wei Chen

    2014-01-01

    Lignin is a rich renewable source of aromatic compounds. As a potentialpetroleum feedstock replacement, lignin can reduce environmental impacts such ascarbon emission. Due to its complex chemical structure, lignin is currently underutilized.Exploiting lignin as a precursor for carbon fibre adds high economic value to lignin andencourages further development in lignin extraction technology. This report includes apreliminary cost analysis and identifies the key aspects of lignin-based carbon fi...

  17. Equivalent electric circuit of a carbon nanotube based molecular conductor

    CERN Document Server

    Yam, ChiYung; Wang, Fan; Li, Xiaobo; Chen, GuanHua; Zheng, Xiao; Matsuda, Yuki; Tahir-Kheli, Jamil; Goddard, William A

    2008-01-01

    We apply our first-principles method to simulate the transient electrical response through carbon nanotube based conductors under time-dependent bias voltages, and report the dynamic conductance for a specific system. We find that the electrical response of the carbon nanotube device can be mapped onto an equivalent classical electric circuit. This is confirmed by studying the electric response of a simple model system and its equivalent circuit.

  18. Multiwalled Carbon Nanotubes for Amperometric Array-Based Biosensors

    OpenAIRE

    Taurino, Irene; De Micheli, Giovanni; Carrara, Sandro

    2012-01-01

    For diagnostic and therapeutic purposes an accurate determination of multiple metabolites is often required. Amperometric devices are attractive tools to quantify biological compounds due to the direct conversion of a biochemical event to a current. This review addresses recent developments in the use of multiwalled carbon nanotubes to enhance detection ca- pability of amperometric array-based biosensors. More specifically, the principal techniques for multiwalled carbon nanotube incorporatio...

  19. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor

    OpenAIRE

    Zhu, Z.; Song, W.; Burugapalli, K; Moussy, F; Li, Y-L; Zhong, X-H

    2010-01-01

    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 IOP Publishing Ltd. A novel brush-like electrode based on carbon nanotube (CNT) nano-yarn fiber has been designed for electrochemical biosensor applications and its efficacy as an enzymatic glucose biosensor demonstrated. The CNT nano-yarn fiber was spun directly from a chemical-vapor-deposition (CVD) gas flow reaction using a mixture of ethanol and acetone as the carbon...

  20. Carbon Nanotubes Based Glucose Needle-type Biosensor

    OpenAIRE

    Hong Li; Yongquan Li; Minghao Sim; Wenjun Guan; Jinyan Jia

    2008-01-01

    A novel needle-type biosensor based on carbon nanotubes is reported. The biosensor was prepared by packing a mixture of multi-wall carbon nanotubes (MWCNTs), graphite powder and glucose oxidase (Gox) freeze-dried powder into a glass capillary of 0.5 mm inner diameter. The resulting amperometric biosensor was characterized electrochemically using amperometry in the presence of hydrogen peroxide and in the presence of glucose. The glucose biosensor sensitivity was influenced by the glucose oxid...

  1. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Elzbieta Dlugon; Wojciech Simka; Aneta Fraczek-Szczypta; Wiktor Niemiec; Jaroslaw Markowski; Marzena Szymanska; Marta Blazewicz

    2015-09-01

    This paper reports results of the modification of titanium surface with multiwalled carbon nanotubes (CNTs). The Ti samples were covered with CNTs via electrophoretic deposition (EPD) process. Prior to EPD process, CNTs were functionalized by chemical treatment. Mechanical, electrochemical and biological properties of CNT-covered Ti samples were studied and compared to those obtained for unmodified titanium surface. Atomic force microscopy was used to investigate the surface topography. To determine micromechanical characteristics of CNT-covered metallic samples indentation tests were conducted. Throughout electrochemical studies were performed in order to characterize the impact of the coating on the corrosion of titanium substrate. In vitro experiments were conducted using the human osteoblast NHOst cell line. CNT layers shielded titanium from corrosion gave the surface-enhanced biointegrative properties. Cells proliferated better on the modified surface in comparison to unmodified titanium. The deposited layer enhanced cell adhesion and spreading as compared to titanium sample.

  2. Carbon-Based Compounds and Exobiology

    Science.gov (United States)

    Kerridge, John; DesMarais, David; Khanna, R. K.; Mancinelli, Rocco; McDonald, Gene; diBrozollo, Fillipo Radicati; Wdowiak, Tom

    1996-01-01

    The Committee for Planetary and Lunar Explorations (COMPLEX) posed questions related to exobiological exploration of Mars and the possibility of a population of carbonaceous materials in cometary nuclei to be addressed by future space missions. The scientific objectives for such missions are translated into a series of measurements and/or observations to be performed by Martian landers. These are: (1) A detailed mineralogical, chemical, and textural assessment of rock diversity at a landing site; (2) Chemical characterization of the materials at a local site; (3) Abundance of Hydrogen at any accessible sites; (4) Identification of specific minerals that would be diagnostic of aqueous processes; (5) Textual examination of lithologies thought to be formed by aqueous activity; (6) Search for minerals that might have been produced as a result of biological processes; (7) Mapping the distribution, in three dimensions, of the oxidant(s) identified on the Martian surface by the Viking mission; (8) Definition of the local chemical environment; (9) Determination of stable-isotopic ratios for the biogenic elements in surface mineral deposits; (10) Quantitative analysis of organic (non-carbonate) carbon; (11) Elemental and isotopic composition of bulk organic material; (12) Search for specific organic compounds that would yield information about synthetic mechanisms, in the case of prebiotic evolution, and about possible bio-markers, in the case of extinct or extant life; (13) and Coring, sampling, and detection of entrained gases and cosmic-ray induced reaction products at the polar ice cap. A discussion of measurements and/or observations required for cometary landers is included as well.

  3. Reservoir geochemistry; Geoquimica de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Joelma Pimentel; Rangel, Mario Duncan; Morais, Erica Tavares de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)], Emails: joelma.lopes@petrobras.com.br, mduncan@petrobras.com.br, ericat@petrobras.com.br; Aguiar, Helen G.M. de [Fundacao GORCEIX, Ouro Preto, MG (Brazil)], E-mail: helenaguiar.GORCEIX@petrobras.com.br

    2008-03-15

    Reservoir Geochemistry has many important practical applications during petroleum exploration, appraisal and development of oil fields. The most important uses are related to providing or disproving connectivity between reservoirs of a particular well or horizon. During exploration, reservoir geochemistry can indicate the direction of oil filling, suggesting the most appropriate places for drilling new wells. During production, studies of variations in composition with time and determination of proportions of commingled production from multiple zones, may also be carried out. The chemical constituents of petroleum in natural reservoirs frequently show measurable compositional variations, laterally and vertically. Due to the physical and chemical nature of petroleum changes with increasing maturity (or contribution of a second source during the filling process), lateral and vertical compositional variations exist in petroleum columns as reservoir filling is complete. Compositional variation can also be introduced by biodegradation or water washing. Once the reservoir is filled, density driven mixing and molecular diffusion tend to eliminate inherited compositional variations in an attempt to establish mechanical and chemical equilibrium in the petroleum column (England, 1990). Based on organic geochemical analysis it is possible to define these compositional variations among reservoirs, and use these data for developing of petroleum fields and for reservoir appraisal. Reservoir geochemistry offers rapid and low cost evaluation tools to aid in understanding development and production problems. Moreover, the applied methodology is relatively simple and gives reliable results, and can be performed routinely in any good geochemical laboratory at a relatively low cost. (author)

  4. Characterization and evaluation of fracture-cavity type carbonate reservoir in the western part of Northern Tarim uplift%塔北隆起西部缝洞型碳酸盐岩储层表征与评价

    Institute of Scientific and Technical Information of China (English)

    张军林; 田世澄; 郑多明

    2014-01-01

    Fracture-cavity type carbonatite reservoir has strong dimensional anisotropism, and hence reservoir characterization and eval-uation are very difficult. The plateau facies carbonatite fracture-cavity reservoir is stably developed in Middle Ordovician strata in west-ern W block of northern Tarim uplift. Utilizing paleo-geographic coordinate transform, logging reservoir analysis and sensibility attribu-tor analysis of the fracture-cavity type carbonatite reservoir, the authors studied the reservoir facies. Based on reservoir facies research and utilizing stochastic method, the authors built the dual porosity model for fracture-cavity reservoir, and characterized the carbonatite reservoir. Finally, in combination with AVO inversion and reservoir characterization, the carbonatite reservoir was evaluated. It is proved that the reservoir pattern in the study area is mainly of the fracture and cavity type, with fractures acting both as hydrocarbon ac-cumulation space and as the factor for the formation of cavity. AFE ( Automatic Fault Extraction) and wave classification attribution were sensitive to the fracture and cavity type reservoir. With increasing oil saturation, AVO of the reservoir became more obvious. The fluid prediction method based on pre-stack AVO inversion could reasonably forecast oil province of carbonnate reservoir.%缝洞型碳酸盐岩储层存在强烈的空间非均质性,储层表征与评价难度极大。塔北隆起西部W区块奥陶系中统顶部发育稳定的台地相碳酸盐岩缝洞型储层。应用古地理坐标转换构造建模技术、测井储层分析方法,并结合缝洞型储层地震属性进行储层相研究,以储层相分析成果为基础建立双孔隙度模型,对缝洞型储层进行定量表征,最后结合AVO流体预测,进行综合评价。研究表明:该区碳酸盐岩储层类型主要为裂缝型、裂缝孔洞型,裂缝既是储集空间又是孔洞形成的诱导因素;本征值裂缝属性

  5. Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe.

    Science.gov (United States)

    Ali, Haydar; Bhunia, Susanta Kumar; Dalal, Chumki; Jana, Nikhil R

    2016-04-13

    Fluorescent carbon nanoparticle-based probes with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. However, synthesis of red fluorescent carbon nanoparticles and their transformation into functional nanoparticles are very challenging. Here we report red fluorescent carbon nanoparticle-based nanobioconjugates of carbon nanoparticles are synthesized via high temperature colloid-chemical approach and transformed into water-soluble functional nanoparticles via coating with amphiphilic polymer followed by covalent linking with desired biomolecules. Following this approach, carbon nanoparticles are functionalized with polyethylene glycol, primary amine, glucose, arginine, histidine, biotin and folic acid. These functional nanoparticles can be excited with blue/green light (i.e., 400-550 nm) to capture their emission spanning from 550 to 750 nm. Arginine and folic acid functionalized nanoparticles have been demonstrated as fluorescent cell labels where blue and green excitation has been used for imaging of labeled cells. The presented method can be extended for the development of carbon nanoparticle-based other bioimaging probes. PMID:27011336

  6. Using three-dimensional reconstructed microstructures for predicting intrinsic permeability of reservoir rocks based on a Boolean lattice gas method

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.O.E.; Philippi, P.C.; Fernandes, C.P. [Porous Media and Thermophysical Properties Laboratory LMPT, Mechanical Engineering Department, Federal University of Santa Catarina, 88040-900 , SC Florianopolis (Brazil); Damiani, M.C. [Engineering Simulation and Scientific Software ESSS, Parque Tecnologico de Florianopolis, Rodovia SC 401 km 001, 88030-000 , SC Florianopolis (Brazil)

    2002-07-01

    This paper presents a method for predicting the intrinsic permeability of porous media based on the integration of the local velocity field. Three-dimensional representations of the porous structure are reconstructed from two-dimensional binary images, after segmentation of digital images acquired from thin plates, commonly used in microscopy. Velocity field is calculated on these three-dimensional representations using a Boolean lattice gas method (LGA). Reconstruction is based on a Gaussian stochastic simulation. Mercury-intrusion results furnish auxiliary data that are used for the estimation of a critical percolation diameter and to establish a necessary condition for the binary source images to give accurate predictions of permeability, considering the intrinsic limitations of the reconstruction process. Reconstruction method and connection loss, resolution factor, adherence conditions and the effects of Boolean noise in the calculation of permeability are fully discussed. The method is used to simulate flows through several petroleum reservoir rocks, leading to intrinsic permeability prediction. Simulation is compared with experimental results. Considered as an intrinsic permeability prediction method based on the geometrical information that is possible to recovery from microscopy thin plates, three-dimensional reconstruction appears to be the most critical step in present simulation scheme.

  7. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  8. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  9. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  10. Modeling post-fire sediment yield based on two burn scenarios at the Sooke Lake Reservoir, BC, Canada

    Science.gov (United States)

    Dobre, Mariana; Elliot, William J.; Brooks, Erin S.; Smith, Tim

    2016-04-01

    Wildfires can have major adverse effects on municipal water sources. Local governments need methods to evaluate fire risk and to develop mitigation procedures. The Sooke Lake Reservoir is the primary source of water for the city of Victoria, BC and the concern is that sediment delivered from upland burned areas could have a detrimental impact on the reservoir and the water supply. We conducted a sediment delivery modeling pilot study on a portion of the Sooke Lake Reservoir (specifically, the Trestle Creek Management Unit (TCMU)) to evaluate the potential impacts of wildfire on sediment delivery from hillslopes and sub-catchments. We used a process-based hydrologic and soil erosion model called Water Erosion Prediction Project geospatial interface, GeoWEPP, to predict the sediment delivery from specific return period design storms for two burn severity scenarios: real (low-intensity burn severity) and worst (high-intensity burn severity) case scenarios. The GeoWEPP model allows users to simulate streamflow and erosion from hillslope polygons within a watershed. The model requires information on the topographic, soil and vegetative characteristics for each hillslope and a weather file. WEPP default values and several assumptions were necessary to apply the model where data were missing. Based on a 10-m DEM we delineated 16 watersheds within the TCMU area. A long term 100-year daily climate file was generated for this analysis using the CLIGEN model based on the historical observations recorded at Concrete, WA in United States, and adjusted for observed monthly precipitation observed in the Sooke Basin. We ran 100-year simulations and calculated yearly and event-based return periods (for 2, 5, 10, 20, 25, and 50 years) for each of the 16 watersheds. Overall, WEPP simulations indicate that the storms that are most likely to produce the greatest runoff and sediment load in these coastal, maritime climates with relatively low rainfall intensities are likely to occur in

  11. Characterization of oil and gas reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  12. Biodegradation of pitch-based high performance carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. (Yamaguchi Univ., Yamaguchi, (Japan). Faculty of Education)

    1992-09-10

    Although carbon fibers are widely used in various purposes because of their excellent mechanical properties, their behavior under biodegradation by microorganisms has not been elucidated. To elucidate the process of biodegradation of carbon fibers is important for understanding thoroughly the durability and the functionality of the fibers. In this article, a study has been made on biodegradation of pitch-based high performance carbon fibers by microorganisms. The fiber which was degraded has been examined with a scanning electron microscope. Aspergillus flavus has broken surface areas of high performance carbon fibers in 60 days and the fibril structure under the surface layer of the fiber has been exfoliated by degradation. The fibrils on the second layer have been 100-110nm wide. The fibrils have been in line nearly parallel to the fiber axis. The above carbon fibers are carbon type, but in case of graphite type high performance carbon fibers, its broken areas have not been shown and they have shown much stronger resistance against microbial attacks. 11 refs., 8 figs., 2 tabs.

  13. Development and application of a new biotechnology of the molasses in-situ method; detailed evaluation for selected wells in the Romashkino carbonate reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M.; Lungerhausen, D. [Erdoel-Erdgas Gommern GmbH (Germany); Murtada, H.; Rosenthal, G. [VEBA OEL AG, Gelsenkirchen (Germany)

    1995-12-31

    On the basis of different laboratory studies, by which special strains of the type Clostridium tyrobutyricum were found, the application of molasses in-situ method for the enhanced recovery of oil in Romashkino oil field was executed. In an anaerobic, 6%-molasses medium the strains produce about 11,400 mg/l of organic acids (especially butyric acid), 3,200 mg/l ethanol, butanol, etc., and more than 350 ml/g of molasses biogas with a content of 80% C0{sub 2} and 20% H{sub 2}. The metabolics of Clostridium tyrobutyricum depress the growth of SRB, whereas methanogenic bacteria grow in an undiluted fermented molasses medium very well. In this way the dominant final fermentation process is methanogenesis. By laboratory studies with original cores under the conditions of the carbonate reservoir in Bashkir, the recovery of oil increased from 15% after waterflooding to 29% OOIP during the treatment with molasses and bacteria. We developed a new biotechnological method for a self-regulated, automatic continuous culture and constructed a special pilot plant with a high technical standard. The plant produced during the pilot on Romashkino field (September 1992 to August 1994) about 1,000 m{sup 3} of clean inoculum with a content of 3-4 billion cells per ml. This inoculum was injected in slugs together with 15,000 m{sup 3} of molasses medium, first in one, later in five wells. We will demonstrate for two example wells the complex microbiological and chemical changes in the oil, gas, and water phases, and their influences on the recover of oil.

  14. Impact of CO2 leakage from sub-seabed carbon dioxide capture and storage (CCS) reservoirs on benthic virus–prokaryote interactions and functions

    Science.gov (United States)

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell’Anno, Antonio; Amaro, Teresa; Queirós, Ana M.; Widdicombe, Stephen; Danovaro, Roberto

    2015-01-01

    Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus–host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems. PMID:26441872

  15. All carbon coaxial supercapacitors based on hollow carbon nanotube sleeve structure

    International Nuclear Information System (INIS)

    All carbon coaxial supercapacitors based on hollow carbon nanotube (CNT) sleeve structure are assembled and tested. The key advantage of the structure is that the inner core electrode is variable from CNT sleeve sponges, to CNT fibers, reduced graphene oxide fibers, and graphene woven fabrics. By changing core electrodes from sleeve sponges to CNT fibers, the electrochemical performance has been significantly enhanced. The capacitance based on sleeve sponge + CNT fiber double the capacitances of double-sleeve sponge supercapacitors thanks to reduction of the series and internal resistances. Besides, the coaxial sleeve structure possesses many other features, including high rate capacitance, long cycle life, and good flexibility. (paper)

  16. 3D fracture permeability modelling in offshore Arabian Gulf reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Bushara, M.N.; El Tawel, A.; Borougha, H.; Dabbouk, C. [Zakum Development Co., Abu Dhabi (United Arab Emirates); Daly, C. [Roxar Ltd., Dubai (United Arab Emirates)

    2001-06-01

    A stochastic method has been developed to predict fracture permeability distribution for oil fields. This new method does a better job than current methods in determining water encroachment trends. The method was developed based on a study conducted on a carbonate reservoir located offshore Abu Dhabi. The 3D model allows petroleum engineers to assess fractures and to better understand their geologic control in terms of permeability in reservoirs with single porosity models. In this study, strain field over the reservoir, which correlated with test permeability, was obtained from curvature analysis and calibrated to strain calculated from core fractures. Curvature analysis included some uncertainties such as strain estimates, details of fracture spatial geometry and shear/strike-slip movements. It was concluded that these uncertainties could be eliminated with better strain field determination and 3D seismic data. 4 refs., 5 figs.

  17. Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances

    International Nuclear Information System (INIS)

    Highlights: ► We evaluate energy and carbon equivalence from CPO production based on a CBM. ► Energy spent and produced via carbon movement from palm oil mill was determined. ► Scenarios were formulated to evaluate the potential reduction of carbon emission. ► Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of

  18. A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron

    Science.gov (United States)

    Ortín, S.; Soriano, M. C.; Pesquera, L.; Brunner, D.; San-Martín, D.; Fischer, I.; Mirasso, C. R.; Gutiérrez, J. M.

    2015-10-01

    In this paper we present a unified framework for extreme learning machines and reservoir computing (echo state networks), which can be physically implemented using a single nonlinear neuron subject to delayed feedback. The reservoir is built within the delay-line, employing a number of “virtual” neurons. These virtual neurons receive random projections from the input layer containing the information to be processed. One key advantage of this approach is that it can be implemented efficiently in hardware. We show that the reservoir computing implementation, in this case optoelectronic, is also capable to realize extreme learning machines, demonstrating the unified framework for both schemes in software as well as in hardware.

  19. A Three-dimensional simulation study of the performance of Carbon Nanotube Field Effect Transistors with doped reservoirs and realistic geometry

    OpenAIRE

    Fiori, G.; Iannaccone, G.; Klimeck, G.

    2005-01-01

    In this work, we simulate the expected device performance and the scaling perspectives of Carbon nanotube Field Effect Transistors (CNT-FETs), with doped source and drain extensions. The simulations are based on the self-consistent solution of the 3D Poisson-Schroedinger equation with open boundary conditions, within the Non-Equilibrium Green's Function formalism, where arbitrary gate geometry and device architecture can be considered. The investigation of short channel effects for different ...

  20. Science-based permitting of geological sequestration of CO2 in brine reservoirs in the U.S

    International Nuclear Information System (INIS)

    We present a science-based approach to the regulation and permitting of CO2 sequestration activities. Any such regulatory scheme should address both operational (or short-term) issues and the long-term goals of geological sequestration of CO2. In the United States many of the key operational issues, such as permitting injection wells and CO2 pipelines, are reasonably well addressed in current Federal- and State-based rules and legislation. The long-term, overarching goal of sequestration projects of decreasing the rate of increase in atmospheric concentrations of CO2 is not addressed by current regulations. We propose a hierarchical approach, in which the State/Federal government is responsible for developing regional assessments that result in broad regions of brine reservoirs being rated as 'sequestration ready' (and designated in this paper as general permits). The burden faced by an applicant in permitting an injection site should be considerably less if the general area of the chosen site has been ranked favorably. Such a phased, hierarchical permitting process would be helpful in addressing public and stakeholder concerns related to the impact and safety of geological sequestration operations. It will also build in coordination between neighboring injection sites, where interferences are likely because of the large amount of CO2 to be injected

  1. CARBON-CONTAINING COMPOSITES BASED ON METALS

    Directory of Open Access Journals (Sweden)

    VAGANOV V. E.

    2015-10-01

    Full Text Available Problem statement Among the developed technologies metal-composites production,a special place takes powder metallurgy, having fundamental differences from conventionally used foundry technologies. The main advantages of this technology are: the possibility of sensitive control, the structure and phase composition of the starting components, and ultimately the possibility of obtaining of bulk material in nanostructured state with a minimum of processing steps. The potential reinforcers metals include micro and nano-sized oxides, carbides, nitrides, whiskers. The special position is occupied with carbon nanostructures (CNS: С60 fullerenes, single-layer and multi-layer nanotubes, onions (spherical "bulbs", nano-diamonds and graphite,their properties are being intensively studied in recent years. These objects have a high thermal and electrical conductivity values, superelasticity, and have a strength approximate to the theoretical value, which can provide an obtaining composite nanomaterial with a unique set of physical and mechanical properties. In creation of a metal matrix composite nanomaterials (CM, reinforced by various CNS, a special attention should be given to mechanical activation processes (MA already at the stage of preparation of the starting components affecting the structure, phase composition and properties of aluminum-matrix composites. Purpose. To investigate the influence of mechanical activation on the structure and phase composition of aluminum-matrix composites. Conclusion. The results of the study of the structure and phase composition of the initial and mechanically activated powders and bulk-modified metal-composites are shown, depending on the type and concentration of modifying varieties CNS, regimes of MA and parameters of compaction. The study is conducted of tribological properties of Al-CNS OF nanostructured materials.

  2. Fluid circulation and diagenesis of carbonated and sandstone reservoirs in the fronts and fore-lands of folded chains: the Salt Range case - Poswar (Pakistan); Circulation des fluides et diagenese des reservoirs carbonates et greseux dans les fronts de chaines plissees et leur avant pays: le cas du Salt Range - Poswar (Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Benchilla, L.

    2003-05-01

    The Salt Range-Poswar Province is located in the western foothills of the Himalayas, in northern Pakistan. It extends over 170 km from the Main Boundary Thrust (MBT) in the north to the Salt Range in the south. The Salt Range itself is dominantly an ENE-trending structure, but it comprises also a NNW-trending lateral ramp which connects to the west with the Surghar Range. The Salt Range constitutes the frontal part of a detached allochthonous thrust sheet. The sedimentary cover is indeed entirely detached from its substratum along Infracambrian salt horizons. Palaeozoic to Eocene platform series are well exposed in the hanging wall, whereas Neogene molasse has been extensively under-thrust in the footwall of this large over-thrust. The North Potwar Basin is bordered by the Khari-Murat Ridge and coeval back-thrusts in the south, by the northern flank of the Soan syncline in the southeast, and by the MBT in the north. In addition to Neogene outcrops, it also comprises a number of surface anticlines and thrust fronts along which the Eocene platform carbonates are exposed. The Datta Formation is the main Jurassic oil reservoir in the Potwar Basin. It is a fluvio-deltaic deposit which comprises large porous and permeable channels associated to many-calcareous interbeds. The formations crop out well in both the Nammal and Chichali Gorges. The oil field of Toot, located in the western part of the basin, is producing from this reservoir. The petrographic observations show that diagenesis occurred mainly early and was controlled by the fluvio-deltaic environment. (author)

  3. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. PMID:26849343

  4. 基于低碳经济的生态农业发展模式与对策探讨——以三峡库区为例%A Study of Low-carbon Economy Eco-agriculture Model and Countermeasures in Case of Three Gorges Reservoir

    Institute of Scientific and Technical Information of China (English)

    张军以; 苏维词

    2011-01-01

    全球气候变暖的主要因为在于大气中碳浓度的急速升高.为应对全球气候变暖,以低碳为特征的新发展模式成为目前减少温室气体排放,应对全球气候变暖的根本途径.农业生态系统作为最大的人工生态系统,是重要的碳排放源之一.农业活动与气候变暖关系密切,农业生态系统已成为温室气体的第二大来源.本文以三峡库区为例,在分析了库区农业发展面临问题的基础上,探讨了库区发展低碳循环生态农业的意义,提出了库区低碳循环生态农业发展的一般模式及减少农业生产碳排放的五种对策,即推广免耕法、稻田水旱轮作,适度排水放干、发展以沼气为核心的农村新能源系统、发展高效生态循环种养农业和培育新型农民.%The main reason of global climate warming is that the concentration of carbon rapid rise in atmosphere.In response to global warming, the characteristics of the new development model is low-carbon, as a fundamental way to reduction the greenhouse gas emissions and combat global warming. Agricultural ecosystem as the largest ar tificial ecosystems is an important source of carbon emission. Agricultural activity closely related to climate change, agro-ecological systems have become the second largest sources of greenhouse gases. In this paper, as the Three Gorges Reservoir area for example, based on analysis the problems of agricultural development in the reservoir area, discuss the significance of develop low-carbon cycle ecological agriculture of the reservoir, proposed the general pattern of development low-carbon cycle ecological agriculture and five measures to reduce carbon emissions of agricultural production. The five measures are popularize No-till, flood drought rotation and moderate drainage of paddy fields, development the new energy system at the core of biogas in rural areas, development high efficient ecological cycle of agricultural planting, cultivating

  5. Cropland carbon fluxes in the United States: increasing Geospatial Resolution of Inventory-Based Carbon Accounting

    Energy Technology Data Exchange (ETDEWEB)

    West, Tristram O. [ORNL; Brandt, Craig C [ORNL; Baskaran, Latha Malar [ORNL; Hellwinckel, Chad M [ORNL; Marland, Gregg [ORNL; Nelson, Richard G [ORNL; De La Torre Ugarte, Daniel G [ORNL; Post, Wilfred M [ORNL

    2010-01-01

    Net annual soil carbon change, fossil fuel emissions from cropland production, and cropland net primary productivity were estimated and spatially distributed using land cover defined by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by the Cropland Data Layer (CDL). Spatially resolved estimates of net ecosystem exchange (NEE) and net ecosystem carbon balance (NECB) were developed. NEE represents net on-site vertical fluxes of carbon. NECB represents all on-site and off-site carbon fluxes associated with crop production. Estimates of cropland NEE using moderate resolution (~1km2) land cover data were generated for the conterminous US and compared with higher resolution (30m) estimates of NEE and with direct measurements of CO2 flux from croplands in Illinois and Nebraska. Estimates of NEE using the CDL (30m resolution) had a higher correlation with eddy covariance flux tower estimates compared with estimates of NEE using MODIS. Estimates of NECB are primarily driven by net soil carbon change, fossil-fuel emissions associated with crop production, and CO2 emissions from the application of agricultural lime. NEE and NECB for US croplands were -274 and 7 Tg C yr-1 for 2004, respectively. Use of moderate to high resolution satellite-based land cover data enables improved estimates of cropland carbon dynamics.

  6. Main controlling factors of distribution and genetics of marine reservoirs in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Marine reservoirs are mainly made up of clastics and carbonate reservoirs, which are distributed widely in central Tarim, Sichuan, Ordos basins from the Pre-Cambrian to Cenozoic, mainly in Palaeozoic. Marine clastic reservoirs are developed in foreshore and nearshore, tidal flat and delta environment. The sedimentary facies are important controlling factors for reservoir quality. Compaction, pressolution and cementation are factors of decreasing porosity, and low palaeo-temperature gradient, early emplacement of oil and gas and dissolution are favorable for preservation of pore. Carbonate reservoirs are divided into reef and bank, karst, dolomite and fracture reservoirs. Dolomitization, dissolution, TSR and fracture are important factors of controlling carbonate reservoirs' quality.

  7. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting.

    Science.gov (United States)

    West, Tristram O; Brandt, Craig C; Baskaran, Latha M; Hellwinckel, Chad M; Mueller, Richard; Bernacchi, Carl J; Bandaru, Varaprasad; Yang, Bai; Wilson, Bradly S; Marland, Gregg; Nelson, Richard G; De la Torre Ugarte, Daniel G; Post, Wilfred M

    2010-06-01

    Net annual soil carbon change, fossil fuel emissions from cropland production, and cropland net primary production were estimated and spatially distributed using land cover defined by NASA's moderate resolution imaging spectroradiometer (MODIS) and by the USDA National Agricultural Statistics Service (NASS) cropland data layer (CDL). Spatially resolved estimates of net ecosystem exchange (NEE) and net ecosystem carbon balance (NECB) were developed. The purpose of generating spatial estimates of carbon fluxes, and the primary objective of this research, was to develop a method of carbon accounting that is consistent from field to national scales. NEE represents net on-site vertical fluxes of carbon. NECB represents all on-site and off-site carbon fluxes associated with crop production. Estimates of cropland NEE using moderate resolution (approximately 1 km2) land cover data were generated for the conterminous United States and compared with higher resolution (30-m) estimates of NEE and with direct measurements of CO2 flux from croplands in Illinois and Nebraska, USA. Estimates of NEE using the CDL (30-m resolution) had a higher correlation with eddy covariance flux tower estimates compared with estimates of NEE using MODIS. Estimates of NECB are primarily driven by net soil carbon change, fossil fuel emissions associated with crop production, and CO2 emissions from the application of agricultural lime. NEE and NECB for U.S. croplands were -274 and 7 Tg C/yr for 2004, respectively. Use of moderate- to high-resolution satellite-based land cover data enables improved estimates of cropland carbon dynamics. PMID:20597291

  8. Single Shooting and ESDIRK Methods for adjoint-based optimization of an oil reservoir

    DEFF Research Database (Denmark)

    Capolei, Andrea; Völcker, Carsten; Frydendall, Jan;

    2012-01-01

    injections and oil production such that ow is uniform in a given geological structure. Even in the case of conventional water ooding, feedback based optimal control technologies may enable higher oil recovery than with conventional operational strategies. The optimal control problems that must be solved are......Conventional recovery techniques enable recovery of 10-50% of the oil in an oil eld. Advances in smart well technology and enhanced oil recovery techniques enable signicant larger recovery. To realize this potential, feedback model-based optimal control technologies are needed to manipulate the...... sensitivity computation. We demonstrate the procedure on a water ooding example with conventional injectors and producers....

  9. A Poromechanical Model for Coal Seams Injected with Carbon Dioxide: From an Isotherm of Adsorption to a Swelling of the Reservoir Un modéle poromécanique pour l’injection de dioxyde de carbone dans des veines de charbon : d’une isotherme d’adsorption à un gonflement du réservoir

    Directory of Open Access Journals (Sweden)

    Nikoosokhan S.

    2012-11-01

    Full Text Available Injecting carbon dioxide into deep unminable coal seams can enhance the amount of methane recovered from the seam. This process is known as CO2-Enhanced Coal Bed Methane production (CO2-ECBM. The seam is a porous medium whose porous system is made of cleats (small natural fractures and of coal pores (whose radius can be as small as a few angström. During the injection process, the molecules of CO2 get adsorbed in the coal pores. Such an adsorption makes the coal swell, which, in the confined conditions that prevail underground, induces a closure of the cleat system of the coal bed reservoir and a loss of injectivity. In this work, we develop a poromechanical model which, starting from the knowledge of an adsorption isotherm and combined with reservoir simulations, enables to estimate the variations of injectivity of the coal bed reservoir over time during the process of injection. The model for the coal bed reservoir is based on poromechanical equations that explicitly take into account the effect of adsorption on the mechanical behavior of a microporous medium. We consider the coal bed reservoir as a dual porosity (cleats and coal porosity medium, for which we derive a set of linear constitutive equations. The model requires as an input the adsorption isotherm on coal of the fluid considered. Reversely, the model provides a way to upscale an adsorption isotherm into a meaningful swelling of the coal bed reservoir at the macroscopic scale. The parameters of the model are calibrated on data on coal samples available in the literature. Reservoir simulations of an injection of carbon dioxide in a coal seam are performed with an in-house finite volume and element code. The variations of injection rate over time during the process of injection are obtained from the simulations. The effect of the compressibility of the coal matrix on those variations is discussed. L’injection de dioxyde de carbone dans des veines de charbon profondes peut augmenter

  10. Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using Genetic Algorithm

    OpenAIRE

    Tutuka Ariadji; Pudjo Sukarno; Kuntjoro Adji Sidarto; Edy Soewono; Lala Septem Riza; Kenny David

    2012-01-01

    Comparing the quality of basic reservoir rock properties is a common practice to locate new infills or development wells for optimizing an oil field development using a reservoir simulation. The conventional technique employs a manual trial and error process to find new well locations, which proves to be time-consuming, especially, for a large field. Concerning this practical matter, an alternative in the form of a robust technique was introduced in order that time and efforts could be reduce...

  11. Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany

    OpenAIRE

    B. Wiese; Martin Zimmer; Martin Nowak; L. Pellizzari; Peter Pilz

    2013-01-01

    In order to detect hydraulic and geochemical impact on the groundwater directly above the CO2 storage reservoir at the Ketzin pilot site continuous monitoring using an observation well is carried out. The target depth (446 m below ground level, bgl.) of the well is the Exter formation (Upper Triassic, Rhaetian) which is the closest permeable stratigraphic overlying formation to the CO2 storage reservoir (630–636 m bgl. at well location). The monitoring concept comprises evaluation of hydrauli...

  12. Measuring Greenhouse Gas Emissions From China's Reservoirs

    Science.gov (United States)

    Yang, Le; Lu, Fei; Wang, Xiaoke

    2014-01-01

    Hydroelectricity has typically been regarded as a green energy source, but reservoirs created for its generation emit greenhouse gases (GHGs) just as natural lakes and rivers do. The role of reservoirs in GHG emissions has been overlooked. Substantial amounts of methane (CH4) are emitted from reservoir surfaces every year, which account for about 20% of the total CH4 emission from inland waters. GHG emissions (transferred into carbon dioxide (CO2) equivalents) from some tropical reservoirs even exceed CO2 emissions from thermal power plants if the same amount of electricity is generated.

  13. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  14. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture

    OpenAIRE

    Demitri, C.; F. Scalera; M. Madaghiele; A. Sannino; Maffezzoli, A.

    2013-01-01

    The present work deals with the development of a biodegradable superabsorbent hydrogel, based on cellulose derivatives, for the optimization of water resources in agriculture, horticulture and, more in general, for instilling a wiser and savvier approach to water consumption. The sorption capability of the proposed hydrogel was firstly assessed, with specific regard to two variables that might play a key role in the soil environment, that is, ionic strength and pH. Moreover, a preliminary eva...

  15. Daily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Chun-tian Cheng

    2015-07-01

    Full Text Available Accurate daily runoff forecasting is of great significance for the operation control of hydropower station and power grid. Conventional methods including rainfall-runoff models and statistical techniques usually rely on a number of assumptions, leading to some deviation from the exact results. Artificial neural network (ANN has the advantages of high fault-tolerance, strong nonlinear mapping and learning ability, which provides an effective method for the daily runoff forecasting. However, its training has certain drawbacks such as time-consuming, slow learning speed and easily falling into local optimum, which cannot be ignored in the real world application. In order to overcome the disadvantages of ANN model, the artificial neural network model based on quantum-behaved particle swarm optimization (QPSO, ANN-QPSO for short, is presented for the daily runoff forecasting in this paper, where QPSO was employed to select the synaptic weights and thresholds of ANN, while ANN was used for the prediction. The proposed model can combine the advantages of both QPSO and ANN to enhance the generalization performance of the forecasting model. The methodology is assessed by using the daily runoff data of Hongjiadu reservoir in southeast Guizhou province of China from 2006 to 2014. The results demonstrate that the proposed approach achieves much better forecast accuracy than the basic ANN model, and the QPSO algorithm is an alternative training technique for the ANN parameters selection.

  16. Seismic attribute-based characterization of coalbed methane reservoirs: An example from the Fruitland Formation, San Juan basin, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, I.D.; Hart, B.S. [McGill University, Montreal, PQ (Canada)

    2004-11-01

    The Fruitland Formation of the San Juan basin is the largest producer of coalbed methane in the world. Production patterns vary from one well to another throughout the basin, reflecting factors such as coal thickness and fracture and cleat density. In this study, we integrated conventional P-wave three-dimensional (3-D) seismic and well data to investigate geological controls on production from a thick, continuous coal seam in the lower part of the Fruitland Formation. Our objective was to show the potential of using 3-D seismic data to predict coal thickness, as well as the distribution and orientation of subtle structures that may be associated with enhanced permeability zones. To do this, we first derived a seismic attribute-based model that predicts coal thickness. We then used curvature attributes derived from seismic horizons to detect subtle structural features that might be associated with zones of enhanced permeability. Production data show that the best producing wells are associated with seismically definable structural features and thick coal. Although other factors (e.g., completion practices and coal type) affect coalbed methane production, our results suggest that conventional 3-D seismic data, integrated with wire-line logs and production data, are useful for characterizing coalbed methane reservoirs.

  17. Zero-order controlled release of ciprofloxacin-HCl from a reservoir-based, bioresorbable and elastomeric device.

    Science.gov (United States)

    Tobias, Irene S; Lee, Heejin; Engelmayr, George C; Macaya, Daniel; Bettinger, Christopher J; Cima, Michael J

    2010-09-15

    A reservoir-based device constructed of a completely biodegradable elastomer can enable several new implantation and insertion options for localized drug therapy, particularly in the case of urological therapies. We performed an in vitro performance evaluation of an implantable, bio-resorbable device that supplies short-term controlled release of ciprofloxacin-HCl (CIP). The proposed device functions through a combination of osmosis and diffusion mechanisms to release CIP for short-term therapies of a few weeks duration. Poly(glycerol-co-sebacic acid) (PGS) was cast in a tubular geometry with solid drug powder packed into its core and a micro-machined release orifice drilled through its wall. Drug release experiments were performed to determine the effective release rate from a single orifice and the range of orifice sizes in which controlled zero-order release was the main form of drug expulsion from the device. It is demonstrated that PGS is sufficiently permeable to water to allow the design of an elementary osmotic pump for drug delivery. Indeed, PGS's water permeability is several orders of magnitude larger than commonly used cellulose acetate for elementary osmotic pumps. PMID:20566343

  18. Application of MODIS GPP to Forecast Risk of Hantavirus Pulmonary Syndrome Based on Fluctuations in Reservoir Population Density

    Science.gov (United States)

    Loehman, R.; Heinsch, F. A.; Mills, J. N.; Wagoner, K.; Running, S.

    2003-12-01

    Recent predictive models for hantavirus pulmonary syndrome (HPS) have used remotely sensed spectral reflectance data to characterize risk areas with limited success. We present an alternative method using gross primary production (GPP) from the MODIS sensor to estimate the effects of biomass accumulation on population density of Peromyscus maniculatus (deer mouse), the principal reservoir species for Sin Nombre virus (SNV). The majority of diagnosed HPS cases in North America are attributed to SNV, which is transmitted to humans through inhalation of excretions and secretions from infected rodents. A logistic model framework is used to evaluate MODIS GPP, temperature, and precipitation as predictors of P. maniculatus density at established trapping sites across the western United States. Rodent populations are estimated using monthly minimum number alive (MNA) data for 2000 through 2002. Both local meteorological data from nearby weather stations and 1.25 degree x 1 degree gridded data from the NASA DAO were used in the regression model to determine the spatial sensitivity of the response. MODIS eight-day GPP data (1-km resolution) were acquired and binned to monthly average and monthly sum GPP for 3km x 3km grids surrounding each rodent trapping site. The use of MODIS GPP to forecast HPS risk may result in a marked improvement over past reflectance-based risk area characterizations. The MODIS GPP product provides a vegetation dynamics estimate that is unique to disease models, and targets the fundamental ecological processes responsible for increased rodent density and amplified disease risk.

  19. Supercapacitors based on carbon nanotube fuzzy fabric structural composites

    Science.gov (United States)

    Alresheedi, Bakheet Awad

    Supercapacitors used in conjunction with batteries offer a solution to energy storage and delivery problems in systems where high power output is required, such as in fully electric cars. This project aimed to enhance current supercapacitor technology by fabricating activated carbon on a substrate consisting of carbon nanotubes (CNTs) grown on a carbon fiber fabric (fuzzy fabric). The fuzzy surface of CNTs lowers electrical resistance and increases porosity, resulting in a flexible fabric with high specific capacitance. Experimental results confirm that the capacitance of activated carbon fabricated on the fuzzy fiber composite is significantly higher than when activated carbon is formed simply on a bare carbon fiber substrate, indicating the usefulness of CNTs in supercapacitor technology. The fabrication of the fuzzy fiber based carbon electrode was fairly complex. The processing steps included composite curing, stabilization, carbonization and activation. Ratios of the three basic ingredients for the supercapacitor (fiber, CNT and polymer matrix) were investigated through experimentation and Grey relational analysis. The aim of Grey relational analysis was to examine factors that affect the overall performance of the supercapacitor. It is based on finding relationships in both independent and interrelated data series (parameters). Using this approach, it was determined that the amount of CNTs on the fiber surface plays a major role in the capacitor properties. An increased amount of CNTs increases the surface area and electrical conductivity of the substrate, while also reducing the required time of activation. Technical advances in the field of Materials and Structures are usually focused on attaining superior performance while reducing weight and cost. To achieve such combinations, multi-functionality has become essential; namely, to reduce weight by imparting additional functions simultaneously to a single material. In this study, a structural composite with

  20. Numerical methods and inversion algorithms in reservoir simulation based on front tracking

    Energy Technology Data Exchange (ETDEWEB)

    Haugse, Vidar

    1999-04-01

    This thesis uses front tracking to analyse laboratory experiments on multiphase flow in porous media. New methods for parameter estimation for two- and three-phase relative permeability experiments have been developed. Up scaling of heterogeneous and stochastic porous media is analysed. Numerical methods based on front tracking is developed and analysed. Such methods are efficient for problems involving steep changes in the physical quantities. Multi-dimensional problems are solved by combining front tracking with dimensional splitting. A method for adaptive grid refinement is developed.

  1. Reducing carbon transaction costs in community based forest management

    NARCIS (Netherlands)

    Skutsch, Margaret M.

    2004-01-01

    The paper considers the potential for community based forest management (of existing forests) in developing countries, as a future CDM strategy, to sequester carbon and claim credits in future commitment periods. This kind of forestry is cost effective, and should bring many more benefits to local p

  2. Reducing carbon transaction costs in community-based forest management

    NARCIS (Netherlands)

    Skutsch, Margaret M.

    2005-01-01

    The article considers the potential for community-based forest management (of existing forests) in developing countries, as a future CDM strategy, to sequester and mitigate carbon and to claim credits in future commitment periods. This kind of forestry is cost-effective, and should bring many more b

  3. Novel carborane based inhibitors of carbonic anhydrase IX

    Czech Academy of Sciences Publication Activity Database

    Štěpánková, J.; Řezáčová, Pavlína; Brynda, Jiří; Harvanová, M.; Mašek, V.; Nová, A.; Siller, M.; Das, V.; Doležal, D.; Grüner, Bohumír; Šícha, Václav; Konečný, P.; Znojek, P.; Džubák, P.; Hajdúch, M.

    2015-01-01

    Roč. 75, 15 Suppl (2015), s. 4492. ISSN 0008-5472. [Annual Meeting of the American Association for Cancer Research (AACR) /106./. 18.04.2015-22.04.2015, Philadelphia] Institutional support: RVO:61388963 ; RVO:61388980 Keywords : carbonic anhydrase * carborane based inhibitors Subject RIV: CE - Biochemistry

  4. Nanoelectrode ensemble based on multiwalled carbon nanotubes for electrochemical analysis

    OpenAIRE

    Музика, Катерина Миколаївна; Білаш, Олена Михайлівна

    2012-01-01

    The technique of nanoelectrode ensembles development based on multiwall carbon nanotubes has been demonstrated. The obtained NEE has higher Faraday/capacitive current ratio compared to conventional electrodes of the same area, indicating a lower limit of redox-active compounds detection

  5. Hydrogen Adsorption in Carbon-Based Materials Studied by NMR

    Science.gov (United States)

    Wu, Yue; Kleinhammes, Alfred; Anderson, Robert; Mao, Shenghua

    2007-03-01

    Hydrogen adsorption in carbon-based materials such as boron-doped graphite and boron-doped single-walled carbon nanotubes (SWNTs) were investigated by nuclear magnetic resonance (NMR). ^1H NMR is shown to be a sensitive and quantitative probe for detecting adsorbed gas molecules such as H2, methane, and ethane. NMR measurements were carried out in-situ under given H2 pressure up to a pressure of over 100 atm. From such ^1H NMR measurement, the amount of adsorbed H2 molecules was determined versus pressure. This gives an alternative method for measuring the adsorption isotherms where the H2 signature is identified based on spin properties rather than weight or volume as in gravimetric and volumetric measurements. The measurement shows that boron doping has a favorable effect on increasing the adsorption enthalpy of H2 in carbon-based systems. This work was done in collaboration with NREL and Department of Chemistry, University of Pennsylvania, within the DOE Center of Excellence on Carbon-based Hydrogen Storage Materials and is supported by DOE.

  6. Silicon-Compatible Carbon-Based Micro-Supercapacitors.

    Science.gov (United States)

    Zhuang, Xiaodong; Feng, Xinliang

    2016-05-17

    CSi electronics: Recently, Simon and co-workers demonstrated silicon-wafer-supported elastic carbide-derived carbons (CDCs) films without any delamination or cracks for micro-supercapacitor application. The fabrication of these CDC films is particularly important for the practical application of micro-supercapacitors in silicon-based electronics and flexible electronics. PMID:27101107

  7. Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators

    Directory of Open Access Journals (Sweden)

    Janno Torop

    2009-12-01

    Full Text Available Devices using electroactive polymer-supported carbon material can be exploited as alternatives to conventional electromechanical actuators in applications where electromechanical actuators have some serious deficiencies. One of the numerous examples is precise microactuators. In this paper, we show for first time the dilatometric effect in nanocomposite material actuators containing carbide-derived carbon (CDC and polytetrafluoroetylene polymer (PTFE. Transducers based on high surface area carbide-derived carbon electrode materials are suitable for short range displacement applications, because of the proportional actuation response to the charge inserted, and high Coulombic efficiency due to the EDL capacitance. The material is capable of developing stresses in the range of tens of N cm-2. The area of an actuator can be dozens of cm2, which means that forces above 100 N are achievable. The actuation mechanism is based on the interactions between the high-surface carbon and the ions of the electrolyte. Electrochemical evaluations of the four different actuators with linear (longitudinal action response are described. The actuator electrodes were made from two types of nanoporous TiC-derived carbons with surface area (SA of 1150 m2 g-1 and 1470 m2 g-1, respectively. Two kinds of electrolytes were used in actuators: 1.0 M tetraethylammonium tetrafluoroborate (TEABF4 solution in propylene carbonate and pure ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf. It was found that CDC based actuators exhibit a linear movement of about 1% in the voltage range of 0.8 V to 3.0 V at DC. The actuators with EMITf electrolyte had about 70% larger movement compared to the specimen with TEABF4 electrolyte.

  8. Membrane-based systems for carbon capture and hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Berchtold, Kathryn A [Los Alamos National Laboratory

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on

  9. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    Science.gov (United States)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  10. Explosive emission cathode on the base of carbon plastic fibre

    International Nuclear Information System (INIS)

    A fabrication process for explosive emission cathodes on the base of carbon plastic fibre of practically any geometrical shape and dimensions is developed. Experimental studies of electron beam current collection from cathodes, 2cm in diameter, at voltages across the diode of 10 and 150-250kV. It is shown that the ignition voltage for cathode plasma is ∼2kV at the interelectrode diode gap of 5mm and residual gas pressure of ∼5x10-5Torr. The carbon-fibre cathode, fabricated in this way, provides more stable current collection of an electron beam (without oscillations) than other cathodes

  11. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage.

    Science.gov (United States)

    Hudiburg, Tara; Law, Beverly; Turner, David P; Campbell, John; Donato, Dan; Duane, Maureen

    2009-01-01

    Net uptake of carbon from the atmosphere (net ecosystem production, NEP) is dependent on climate, disturbance history, management practices, forest age, and forest type. To improve understanding of the influence of these factors on forest carbon stocks and flux in the western United States, federal inventory data and supplemental field measurements at additional plots were used to estimate several important components of the carbon balance in forests in Oregon and Northern California during the 1990s. Species- and ecoregion-specific allometric equations were used to estimate live and dead biomass stores, net primary productivity (NPP), and mortality. In the semiarid East Cascades and mesic Coast Range, mean total biomass was 8 and 24 kg C/m2, and mean NPP was 0.30 and 0.78 kg C.m(-2).yr(-1), respectively. Maximum NPP and dead biomass stores were most influenced by climate, whereas maximum live biomass stores and mortality were most influenced by forest type. Within ecoregions, mean live and dead biomass were usually higher on public lands, primarily because of the younger age class distribution on private lands. Decrease in NPP with age was not general across ecoregions, with no marked decline in old stands (>200 years old) in some ecoregions. In the absence of stand-replacing disturbance, total landscape carbon stocks could theoretically increase from 3.2 +/- 0.34 Pg C to 5.9 +/- 1.34 Pg C (a 46% increase) if forests were managed for maximum carbon storage. Although the theoretical limit is probably unattainable, given the timber-based economy and fire regimes in some ecoregions, there is still potential to significantly increase the land-based carbon storage by increasing rotation age and reducing harvest rates. PMID:19323181

  12. Production of graphene oxide from pitch-based carbon fiber

    OpenAIRE

    Miyeon Lee; Jihoon Lee; Sung Young Park; Byunggak Min; Bongsoo Kim; Insik In

    2015-01-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  13. Carbon management strategies for US electricity generation capacity: a vintage-based approach

    International Nuclear Information System (INIS)

    Utilities are under increasing pressure to reduce power plant CO2 emissions. If the US and the world follow through on their long-term commitment to dramatically reduce emissions, this pressure will become significant over the coming decades. It is in the face of these concerns that the future of US fossil-fired power plants is examined. There are over 1337 operational fossil-fired power generating units of at least 100 MW in capacity that began operating between the early 1940s and today in the continental US. Together these units provide some 453 GW of electric power. Rapidly retiring this still valuable capital stock or undertaking large-scale immediate redevelopment with advanced power cycles as a means of addressing their greenhouse gas emissions will not be a sensible option for all of these units. Considering a conservative 40-year operating life, there are over 667 existing fossil-fired power plants, representing a capacity of over 291 GW, that have at least a decade's worth of productive life remaining. Applying Battelle's specialized analysis tools, relationships between these 667 plants and their technology type, location, emissions, and vintage have been explored. Based on these factors and the proximity of these plants to geologic reservoirs with potential for sequestering large volumes of CO2, the average costs for retrofitting these newer-vintage plants with capture technology and sequestering their CO2 into such reservoirs are presented. A discussion of a set of planned US fossil-fired power projects within the context of a carbon-constrained world is also included. (author)

  14. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol

    OpenAIRE

    Gouveia-Caridade, Carla; Pauliukaite, Rasa; Brett, Christopher M. A.

    2008-01-01

    Functionalised multi-walled carbon nanotubes (MWCNTs) were cast on glassy carbon (GC) and carbon film electrodes (CFE), and were characterised electrochemically and applied in a glucose-oxidase-based biosensor. MWCNT-modified carbon film electrodes were then used to develop an alcohol oxidase (AlcOx) biosensor, in which AlcOx-BSA was cross-linked with glutaraldehyde and attached by drop-coating. The experimental conditions, applied potential and pH, for ethanol monitoring were optimised, and ...

  15. Characterization of Porosity and Permeability of the Upper Jurassic Arab-D Carbonate Reservoir Using 3D Outcrop Analog, Central Saudi Arabia

    Science.gov (United States)

    Eltom, H.; Makkawi, M.; Abdullatif, O.

    2012-04-01

    Subsurface geological models are considered as a very coarse and low in resolution when compared to the real geology of the reservoir. In this paper a Late Jurassic outcrop analog for Arab-D reservoir, Central Saudi Arabia, was used to build a high resolution outcrop model that can capture the fine geological details. Porosity and permeability derived from the actual subsurface reservoir analog were applied to the outcrop lithofacies. For this purpose data from Ain Dar, Ghwar and Shudgam field were used. Maximum, minimum and average porosity and permeability for every single lithofacies were distributed in the facies model according to their lithofacies type. The result showed nine porosity and nine permeability models for the three field data when using a single geostatistical algorithm. Many realizations were run to see the variability in each model and to quantitatively measure the uncertainty associated with the models. Reservoir potential zones were associated with grainstone, packstone and to some extent wackstone layers. The high resolution lithofacies models allowed detecting permeability barriers and isolated low porosity bodies within the potential reservoir zone. This model gives a chance to examine porosity and permeability distribution along and across very small area of the reservoir rock in the level of one cell dimension of the real subsurface model. It is also highlight on the uncertainty associated with modeling results in terms of algorisms and number of realization used. Consequently, the model is expected to provide better understanding and prediction of reservoir properties and quality at high resolution scale which is unavailable from subsurface data.

  16. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules.

    Science.gov (United States)

    Tiwari, Jitendra N; Vij, Varun; Kemp, K Christian; Kim, Kwang S

    2016-01-26

    The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field. PMID:26579616

  17. Resorcinol–formaldehyde based carbon nanospheres by electrospraying

    Indian Academy of Sciences (India)

    Chandra S Sharma; Sandip Patil; Suman Saurabh; Ashutosh Sharma; R Venkataraghavan

    2009-06-01

    Carbon nanospheres were synthesized using sol–gel processing of organic and aqueous resorcinol formaldehyde (RF) sols combined with electrospraying technique. RF sol was electrosprayed to form nanodroplets which were collected on a Si wafer. After oven drying at 60°C for 12 h, RF nano-droplets were pyrolyzed at 900°C in an inert atmosphere to yield the carbon nanospheres. This study reports the optimization of various process parameters including needle diameter, applied electric potential and liquid flow rate in order to get spherical, mono-disperse particles. For the organic RF sol, the optimized parameters, needle diameter 0.241 mm, electric potential, 1.5 kV/cm and a flow rate of 0.8 ml/h, enabled the synthesis of nearly monodispersed carbon nano-spheres with diameter of 30.2 ± 7.1 nm. With the same conditions, aqueous RF sol produced irregularly shaped nanoparticles with a smaller mean diameter and much higher variance (17.4 ± 8.0 nm). The surface properties were significantly influenced by the surface morphologies as demonstrated by the water contact angle (WCA) studies. The surface covered with the RF derived carbon nano-spheres was extremely hydrophilic (WCA 10.1°) as compared to a much weaker hydrophilicity of the RF derived carbon films (WCA 83.3°). The hydrophilic carbon nanospheres reported here may have potential applications as adsorbents and in controlled drug delivery, biosensors and carbon-based microelectromechanical systems (C-MEMS) including bio-MEMS.

  18. Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes.

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  19. Hybrid Aluminum Composite Materials Based on Carbon Nanostructures

    Directory of Open Access Journals (Sweden)

    Tatiana S. Koltsova

    2015-09-01

    Full Text Available We investigated formation of carbon nanofibers grown by chemical deposition (CVD method using an acetylene-hydrogen mixture on the surface of micron-sized aluminum powder particles. To obtain uniform distribution of the carbon nanostructures on the particles we deposited nickel catalyst on the surface by spraying from the aqueous solution of nickel nitrate. It was found that increasing the time of the synthesis lowers the rate of growth of carbon nanostructures due to the deactivation of the catalyst. The Raman spectroscopy measurements confirm the presence of disordered carbon corresponding to CNFs in the specimen. X-ray photoelectron spectroscopy showed the presence of aluminum carbide in the hot pressed samples. An aluminum composite material prepared using 1 wt.% CNFs obtained by uniaxial cold pressing and sintering showed 30% increase in the hardness compared to pure aluminum, whereas the composites prepared by hot pressing showed 80% increase in the hardness. Composite materials have satisfactory ductility. Thus, the aluminum based material reinforced with carbon nanostructures should be appropriate for creating high-strength and light compacts for aerospace and automotive applications and power engineering.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7355

  20. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors

    KAUST Repository

    Agrawal, Richa

    2015-05-18

    The rapid development in miniaturized electronic devices has led to an ever increasing demand for high-performance rechargeable micropower scources. Microsupercapacitors in particular have gained much attention in recent years owing to their ability to provide high pulse power while maintaining long cycle lives. Carbon microelectromechanical systems (C-MEMS) is a powerful approach to fabricate high aspect ratio carbon microelectrode arrays, which has been proved to hold great promise as a platform for energy storage. C-MEMS is a versatile technique to create carbon structures by pyrolyzing a patterned photoresist. Furthermore, different active materials can be loaded onto these microelectrode platforms for further enhancement of the electrochemical performance of the C-MEMS platform. In this article, different techniques and methods in order to enhance C-MEMS based various electrochemical capacitor systems have been discussed, including electrochemical activation of C-MEMS structures for miniaturized supercapacitor applications, integration of carbon nanostructures like carbon nanotubes onto C-MEMS structures and also integration of pseudocapacitive materials such as polypyrrole onto C-MEMS structures. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  1. Multi-hierarchical fuzzy judgment and nested dominance relation of rough set theory-based environmental risk evaluation for tailings reservoirs

    Institute of Scientific and Technical Information of China (English)

    田森; 陈建宏

    2015-01-01

    Environmental risk assessment of tailings reservoir assessment system is complex and has many index factors. In order to accurately judge surrounding environmental risks of tailings reservoirs and determinate the corresponding prevention and control work, multi-hierarchical fuzzy judgment and nested dominance relation of rough set theory are implemented to evaluate them and find out the rules of this evaluation system with 14 representative cases. The methods of multi-hierarchical fuzzy evaluation can overall consider each influence factor of risk assessment system and their mutual impact, and the index weight based on the analytic hierarchy process is relatively reasonable. Rough set theory based on dominance relation reduces each index attribute from the top down, largely simplifies the complexity of the original evaluation system, and considers the preferential information in each index. Furthermore, grey correlation theory is applied to analysis of importance of each reducted condition attribute. The results demonstrate the feasibility of the proposed safety evaluation system and the application potential.

  2. A Binary Cyclic Carbonates-Based Electrolyte Containing Propylene Carbonate and Trifluoropropylene Carbonate for 5 V Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Graphical abstract: A binary cyclic carbonates-based electrolyte containing propylene carbonate and trifluoropropylene carbonate with an optimized volume ratio is successfully applied for 5 V lithium-ion batteries. Display Omitted -- Highlights: •A binary solvent electrolyte containing TFPC and PC is used for high-voltage LIBs. •Volume ratio of TFPC/PC is a crucial factor affecting the physical and electrochemical properties. •The binary solvent can maintain a stable liquid phase in a broad temperature range. •Graphite anode works well in the electrolyte of 1 mol dm−3 LiPF6-TFPC/PC (1:2). •The optimized electrolyte has good compatibility with 5 V LiNi0.5Mn1.5O4 cathode. -- Abstract: To widen the operating potential window of electrolyte used for lithium-ion batteries, a binary cyclic carbonates-based electrolyte containing propylene carbonate (PC) and trifluoropropylene carbonate (TFPC) with an optimized volume ratio has been successfully proposed. The main function of additive TFPC is to establish a stable SEI layer on graphite electrode and suppress the intercalation reaction of PC molecules. Unlike the previous works, where the TFPC/PC involved electrolyte was simply estimated at a certain volume ration and recognized as an unfavorable system, in this work, the physical properties of the electrolyte solutions with a series of volume ratios of TFPC/PC and their electrochemical performances in a graphite/Li cell and 5 V LiNi0.5Mn1.5O4/Li cell have been systematically studied. The electrolyte of 1 mol dm−3 LiPF6-TFPC/PC (1:2) is adopted as the optimized system due to its high ionic conductivity, low viscosity, broad operating potential window, wide liquid temperature range (−50 ∼ 240 °C) and suitable film-forming property. Both the graphite and LiNi0.5Mn1.5O4 electrodes were found to exhibit high reversible capacity and superb rate performance in the optimized electrolyte, making us have a new recognition of this important binary solvent

  3. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  4. Statfjord field: Development strategy and reservoir management

    International Nuclear Information System (INIS)

    This paper reviews the reservoir performance and management of the Statfjord Field after eight years of production. The reason behind the reservoir development strategies and field experiences are presented. The original development plans have been refined based on field performance through an extensive monitoring program and use of reservoir simulation. The acquired data has improved the geological model and the knowledge of fluid movements in all three reservoirs. This has resulted in a large and complex reservoir simulation model with more than 20,000 grid blocks

  5. Paper-based ultracapacitors with carbon nanotubes-graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: lijian@gwu.edu, E-mail: keidar@gwu.edu; Cheng, Xiaoqian; Brand, Cameron; Shashurin, Alexey; Keidar, Michael, E-mail: lijian@gwu.edu, E-mail: keidar@gwu.edu [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052 (United States); Sun, Jianwei; Reeves, Mark [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2014-04-28

    In this paper, a paper-based ultracapacitors were fabricated by the rod-rolling method with the ink of carbon nanomaterials, which were synthesized by arc discharge under various magnetic conditions. Composites of carbon nanostructures, including high-purity single-walled carbon nanotubes (SWCNTs) and graphene flakes were synthesized simultaneously in a magnetically enhanced arc. These two nanostructures have promising electrical properties and synergistic effects in the application of ultracapacitors. Scanning electron microscope, transmission electron microscope, and Raman spectroscopy were employed to characterize the properties of carbon nanostructures and their thin films. The sheet resistance of the SWCNT and composite thin films was also evaluated by four-point probe from room temperature to the cryogenic temperature as low as 90 K. In addition, measurements of cyclic voltammetery and galvanostatic charging/discharging showed the ultracapacitor based on composites possessed a superior specific capacitance of up to 100 F/g, which is around three times higher than the ultracapacitor entirely fabricated with SWCNT.

  6. Paper-based ultracapacitors with carbon nanotubes-graphene composites

    Science.gov (United States)

    Li, Jian; Cheng, Xiaoqian; Sun, Jianwei; Brand, Cameron; Shashurin, Alexey; Reeves, Mark; Keidar, Michael

    2014-04-01

    In this paper, a paper-based ultracapacitors were fabricated by the rod-rolling method with the ink of carbon nanomaterials, which were synthesized by arc discharge under various magnetic conditions. Composites of carbon nanostructures, including high-purity single-walled carbon nanotubes (SWCNTs) and graphene flakes were synthesized simultaneously in a magnetically enhanced arc. These two nanostructures have promising electrical properties and synergistic effects in the application of ultracapacitors. Scanning electron microscope, transmission electron microscope, and Raman spectroscopy were employed to characterize the properties of carbon nanostructures and their thin films. The sheet resistance of the SWCNT and composite thin films was also evaluated by four-point probe from room temperature to the cryogenic temperature as low as 90 K. In addition, measurements of cyclic voltammetery and galvanostatic charging/discharging showed the ultracapacitor based on composites possessed a superior specific capacitance of up to 100 F/g, which is around three times higher than the ultracapacitor entirely fabricated with SWCNT.

  7. Improving design factors of air diffuser systems based on field conditions of dam reservoirs: CFD simulation approach.

    Science.gov (United States)

    Shin, Sangmin; Lee, Seungjae; Lee, Sangeun; Yum, Kyungtaek; Park, Heekyung

    2012-01-01

    This study aims to improve the design factors of air diffuser systems that have been analyzed in laboratory experiments, with consideration of the field conditions of dam reservoirs. In this study, the destratification number (D(N)), destratification radius, and efficiency are considered as design factors. The computational fluid dynamics (CFD) simulation experiment is performed in diverse field conditions in order to analyze these factors. The results illustrate the wider range of D(N) values in field conditions and the relationship of the destratification radius and efficiency to D(N). The results can lead to better performance of air diffuser systems and water quality management in dam reservoir sites. PMID:22678200

  8. Selection of logging-based TOC calculation methods for shale reservoirs: A case study of the Jiaoshiba shale gas field in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Renchun Huang

    2015-03-01

    Full Text Available Various methods are available for calculating the TOC of shale reservoirs with logging data, and each method has its unique applicability and accuracy. So it is especially important to establish a regional experimental calculation model based on a thorough analysis of their applicability. With the Upper Ordovician Wufeng Fm-Lower Silurian Longmaxi Fm shale reservoirs as an example, TOC calculation models were built by use of the improved ΔlgR, bulk density, natural gamma spectroscopy, multi-fitting and volume model methods respectively, considering the previous research results and the geologic features of the area. These models were compared based on the core data. Finally, the bulk density method was selected as the regional experimental calculation model. Field practices demonstrated that the improved ΔlgR and natural gamma spectroscopy methods are poor in accuracy; although the multi-fitting method and bulk density method have relatively high accuracy, the bulk density method is simpler and wider in application. For further verifying its applicability, the bulk density method was applied to calculate the TOC of shale reservoirs in several key wells in the Jiaoshiba shale gas field, Sichuan Basin, and the calculation accuracy was clarified with the measured data of core samples, showing that the coincidence rate of logging-based TOC calculation is up to 90.5%–91.0%.

  9. Simulation-based inexact chance-constrained nonlinear programming for eutrophication management in the Xiangxi Bay of Three Gorges Reservoir.

    Science.gov (United States)

    Huang, Y L; Huang, G H; Liu, D F; Zhu, H; Sun, W

    2012-10-15

    Although integrated simulation and optimization approaches under stochastic uncertainty have been applied to eutrophication management problems, few studies are reported in eutrophication control planning where multiple formats of uncertainties and nonlinearities are addressed in forms of intervals and probabilistic distributions within an integrated framework. Since the impounding of Three Gorges Reservoir (TGR), China in 2003, the hydraulic conditions and aquatic environment of the Xiangxi Bay (XXB) have changed significantly. The resulting emergence of eutrophication and algal blooms leads to its deteriorated water quality. The XXB becomes an ideal case study area. Thus, a simulation-based inexact chance-constrained nonlinear programming (SICNP) model is developed and applied to eutrophication control planning in the XXB of the TGR under uncertainties. In the SICNP, the wastewater treatment costs for removing total phosphorus (TP) are set as the objective function; effluent discharge standards, stream water quality standards and eutrophication control standards are considered in the constraints; a steady-state simulation model for phosphorus transport and fate is embedded in the environmental standards constraints; the interval programming and chance-constrained approaches are integrated to provide interval decision variables but also the associated risk levels in violating the sy