WorldWideScience

Sample records for carbonate reservoir vernon

  1. Using Recent Advances in 2D Seismic Technology and Surface Geochemistry to Economically Redevelop a Shallow Shelf Carbonate Reservoir: Vernon Field, Isabella County, M, Class III; ANNUAL

    International Nuclear Information System (INIS)

    Wood, James R.; Bornhorst, T.J.; Chittick, S.D.; Harrison, William B.; Tayjor, W. Quinlan

    2001-01-01

    In this project a consortium consisting of Cronus Exploration (Traverse City, MI), Michigan Technological University (Houghton, MI) and Western Michigan University (Kalamazoo, MI) proposed to develop and execute an economical and environmentally sensitive plan for recovery of hydrocarbons from an abandoned shallow-shelf carbonate field that is typical of many fields in the U.S. Midwest. This is a 5-year project that will use surface geochemistry as a tool to reduce risk in locating and producing hydrocarbons in Class II fields. The project will develop new techniques for measuring hydrocarbon gases in the soil horizon to locate new and bypassed oil in the shallow-shelf carbonate environments typified by the Dundee and Trenton Formations of the Michigan Basin (Fisher et. al., 1988). In Phase I of the project, the consortium proposes to re-develop the Vernon Oil field located in Vernon Twp, Isabella County, Michigan and produce both bypassed hydrocarbons from the original field and to locate and produce extensions of the original field

  2. Carbon emission from global hydroelectric reservoirs revisited.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  3. Analysis and application of classification methods of complex carbonate reservoirs

    Science.gov (United States)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  4. Reservoirs as hotspots of fluvial carbon cycling in peatland catchments.

    Science.gov (United States)

    Stimson, A G; Allott, T E H; Boult, S; Evans, M G

    2017-02-15

    Inland water bodies are recognised as dynamic sites of carbon processing, and lakes and reservoirs draining peatland soils are particularly important, due to the potential for high carbon inputs combined with long water residence times. A carbon budget is presented here for a water supply reservoir (catchment area~9km 2 ) draining an area of heavily eroded upland peat in the South Pennines, UK. It encompasses a two year dataset and quantifies reservoir dissolved organic carbon (DOC), particulate organic carbon (POC) and aqueous carbon dioxide (CO 2 (aq)) inputs and outputs. The budget shows the reservoir to be a hotspot of fluvial carbon cycling, as with high levels of POC influx it acts as a net sink of fluvial carbon and has the potential for significant gaseous carbon export. The reservoir alternates between acting as a producer and consumer of DOC (a pattern linked to rainfall and temperature) which provides evidence for transformations between different carbon species. In particular, the budget data accompanied by 14 C (radiocarbon) analyses provide evidence that POC-DOC transformations are a key process, occurring at rates which could represent at least ~10% of the fluvial carbon sink. To enable informed catchment management further research is needed to produce carbon cycle models more applicable to these environments, and on the implications of high POC levels for DOC composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Global Carbon Reservoir Oxidative Ratios

    Science.gov (United States)

    Masiello, C. A.; Gallagher, M. E.; Hockaday, W. C.

    2010-12-01

    Photosynthesis and respiration move carbon and oxygen between the atmosphere and the biosphere at a ratio that is characteristic of the biogeochemical processes involved. This ratio is called the oxidative ratio (OR) of photosynthesis and respiration, and is defined as the ratio of moles of O2 per moles of CO2. This O2/CO2 ratio is a characteristic of biosphere-atmosphere gas fluxes, much like the 13C signature of CO2 transferred between the biosphere and the atmosphere has a characteristic signature. OR values vary on a scale of 0 (CO2) to 2 (CH4), with most ecosystem values clustered between 0.9 and 1.2. Just as 13C can be measured for both carbon fluxes and carbon pools, OR can also be measured for fluxes and pools and can provide information about the processes involved in carbon and oxygen cycling. OR values also provide information about reservoir organic geochemistry because pool OR values are proportional to the oxidation state of carbon (Cox) in the reservoir. OR may prove to be a particularly valuable biogeochemical tracer because of its ability to couple information about ecosystem gas fluxes with ecosystem organic geochemistry. We have developed 3 methods to measure the OR of ecosystem carbon reservoirs and intercalibrated them to assure that they yield accurate, intercomparable data. Using these tools we have built a large enough database of biomass and soil OR values that it is now possible to consider the implications of global patterns in ecosystem OR values. Here we present a map of the natural range in ecosystem OR values and begin to consider its implications. One striking pattern is an apparent offset between soil and biospheric OR values: soil OR values are frequently higher than that of their source biomass. We discuss this trend in the context of soil organic geochemistry and gas fluxes.

  6. Carbonate reservoir characterization with lithofacies clustering and porosity prediction

    International Nuclear Information System (INIS)

    Al Moqbel, Abdulrahman; Wang, Yanghua

    2011-01-01

    One of the objectives in reservoir characterization is to quantitatively or semi-quantitatively map the spatial distribution of its heterogeneity and related properties. With the availability of 3D seismic data, artificial neural networks are capable of discovering the nonlinear relationship between seismic attributes and reservoir parameters. For a target carbonate reservoir, we adopt a two-stage approach to conduct characterization. First, we use an unsupervised neural network, the self-organizing map method, to classify the reservoir lithofacies. Then we apply a supervised neural network, the back-propagation algorithm, to quantitatively predict the porosity of the carbonate reservoir. Based on porosity maps at different time levels, we interpret the target reservoir vertically related to three depositional phases corresponding to, respectively, a lowstand system tract before sea water immersion, a highstand system tract when water covers organic deposits and a transition zone for the sea level falling. The highstand system is the most prospective zone, given the organic content deposited during this stage. The transition zone is also another prospective feature in the carbonate depositional system due to local build-ups

  7. Carbon Sequestration in a Large Hydroelectric Reservoir: An Integrative Seismic Approach

    NARCIS (Netherlands)

    Mendonca, R.; Kosten, S.; Sobek, S.; Cole, J.J.; Bastos, A.C.; Albuquerque, A.L.; Cardoso, S.J.; Roland, F.

    2014-01-01

    Artificial reservoirs likely accumulate more carbon than natural lakes due to their unusually high sedimentation rates. Nevertheless, the actual magnitude of carbon accumulating in reservoirs is poorly known due to a lack of whole-system studies of carbon burial. We determined the organic carbon

  8. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    Energy Technology Data Exchange (ETDEWEB)

    Stephen C. Ruppel

    2005-02-01

    Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

  9. Dr. Vernon W. Hughes, 81, authority on the subatomic

    CERN Multimedia

    Lavietes, S

    2002-01-01

    "Dr. Vernon W. Hughes, a Yale physicist whose investigation of particles called muons poked holes in standard subatomic theory and provided evidence for the existence of previously undetected matter, died at Yale-New Haven Hospital last Tuesday" (1/2 page).

  10. Using reservoir engineering data to solve geological ambiguities : a case study of one of the Iranian carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kord, S. [National Iranian South Oil Co. (Iran, Islamic Republic of)

    2006-07-01

    A fractured carbonate reservoir in southwest Iran was studied with reference to reserve estimation, risk analysis, material balance and recovery factor. The 40 km long and 4 km wide reservoir consists of 2 parts with crest depths of 3780 and 3749 mss respectively. The eastern part is smaller and more productive than the western part which has high water saturation and absolutely no production. Economic production from the reservoir began in 1977. By 2004, the cumulative production had reached 12.064 MMSTB. Of the 6 wells drilled, only 2 wells in the eastern part are productive. This study addressed the main uncertainty of whether the 2 parts of the reservoir are sealed or not. The reservoir is under-saturated but the current pressure is near saturation pressure. The reservoir is divided into the following 4 zones: zones 1 and 2 are productive and consist mainly of carbonate rocks; zone 3 has thin beds of sand and shale; and, zone 4 consists of layers of carbonate, shale, marn, and dolomite. Although there are no faults, mud loss suggests that the reservoir has hairline fractures. Oil in place and reserves were estimated for both parts based on calculated reservoir engineering parameters. Material balance calculations were then performed to analyze and simulate the reservoir. The communication between the 2 parts of the reservoir were examined according to core analysis, rock type, fluid characterization, pressure analysis, water-oil contacts, production history and petrophysical evaluations. The porosity was found to be the same in both parts, but the water saturation and net to gross ratios were different between the eastern and western parts. The petrophysical evaluation revealed that there is no communication between the two parts of the reservoir. 4 refs., 2 figs., 2 appendices.

  11. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    Taylor, Archie R.

    1996-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three dimensional (3-D) seismic; (3) Cross-well bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  12. A unique research partnership investigating the fundamental principles of subsurface carbon dioxide behaviour and carbonate reservoirs

    Science.gov (United States)

    Macdonald, I.; Blunt, M. J.; Maitland, G. C.

    2017-12-01

    Carbonate reservoirs hold the majority of CO2 sequestration potential, however, they are also more complicated than sandstone reservoirs in terms of heterogeneity and potential reactivity impact on operations. There are both significant carbonate reservoir CO2 sinks and CO2 point sources around Qatar making carbon capture and storage a potential decarbonisation pathway. The Qatar Carbonates and Carbon Storage Research Centre (QCCSRC) was formed in 2009 to address the gaps in our current knowledge of both local carbonate reservoir platforms and how CO2 would behave post sequestration. Our work spans 35 graduated PhD students, 10 still studying, 29 post-doctoral researchers, 18 faculty members all aided by 5 support staff and more than 100 MSc and summer students from 30 different countries, the centre has published over 150 papers in over 40 different journals. Our research is based within the Department of Chemical Engineering and the Department of Earth Science and Engineering. Our team annually attends over 20 conferences world-wide to disseminate our findings and activity engage in outreach events (UNFCCC, science festivals, social media, science bars, school visits, etc.). QCCSRC is a research framework agreement over 10 years and valued at $70 million between Qatar Petroleum, Shell, the Qatar Science and Technology Park and Imperial College London bringing together each organisation's unique capabilities. This novel quadruple helix management structure is responsible for the largest single industrially funded research programme conducted at Imperial College London. Our research has focused on data to create and/or improve predictive models for CO2 storage in carbonate reservoirs. Our three broad thematic areas include: Rocks : Rock-fluid interactions : Fluid-fluid interactions and are supported by 5 laboratories. Overall this unique programme is an example of how to approach grand challenges in the energy-carbon dilemma through long-term and multidisciplinary

  13. Smart waterflooding in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, A.

    2012-02-15

    During the last decade, smart waterflooding has been developed into an emerging EOR technology both for carbonate and sandstone reservoirs that does not require toxic or expensive chemicals. Although it is widely accepted that different salinity brines may increase the oil recovery for carbonate reservoirs, understanding of the mechanism of this increase is still developing. To understand this smart waterflooding process, an extensive research has been carried out covering a broad range of disciplines within surface chemistry, thermodynamics of crude oil and brine, as well as their behavior in porous media. The main conclusion of most previous studies was that it is the rock wettability alteration towards more water wetting condition that helps improving the oil recovery. In the first step of this project, we focused on verifying this conclusion. Coreflooding experiments were carried out using Stevens Klint outcrop chalk core plugs with brines without sulfate, as well as brines containing sulfate in different concentrations. The effects of temperature, injection rate, crude oil composition and different sulfate concentrations on the total oil recovery and the recovery rate were investigated. Experimental results clearly indicate improvement of the oil recovery without wettability alteration. At the second step of this project, we studied crude oil/brine interactions under different temperatures, pressures and salinity conditions in order to understand mechanisms behind the high salinity waterflooding. Our results show, in particular that sulfate ions may help decreasing the crude oil viscosity or formation of, seemingly, an emulsion phase between sulfate-enriched brine and oil at high temperature and pressure. Experimental results indicate that crude oils interact differently with the same brine solutions regarding phase behavior and viscosity measurements. This difference is attributed to the difference in composition of the different crude oils. More experiments

  14. Advances in carbonate exploration and reservoir analysis

    Science.gov (United States)

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  15. Relative influence of deposition and diagenesis on carbonate reservoir layering

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Emmanuelle [Total E and P, Courbevoie (France); Javaux, Catherine [Total E and P, Pointe Noire (Congo)

    2008-07-01

    The architecture heterogeneities and petrophysical properties of carbonate reservoirs result from a combination of platform morphology, related depositional environments, relative sea level changes and diagenetic events. The reservoir layering built for static and dynamic modelling purposes should reflect the key heterogeneities (depositional or diagenetic) which govern the fluid flow patterns. The layering needs to be adapted to the goal of the modelling, ranging from full field computations of hydrocarbon volumes, to sector-based fine-scale simulations to test the recovery improvement. This paper illustrates various reservoir layering types, including schemes dominated by depositional architecture, and those more driven by the diagenetic overprint. The examples include carbonate platform reservoirs from different stratigraphic settings (Tertiary, Cretaceous, Jurassic and Permian) and different regions (Europe, Africa and Middle East areas). This review shows how significant stratigraphic surfaces (such as sequence boundaries or maximum flooding) with their associated facies shifts, can be often considered as key markers to constrain the reservoir layering. Conversely, how diagenesis (dolomitization and karst development), resulting in units with particular poroperm characteristics, may significantly overprint the primary reservoir architecture by generating flow units which cross-cut depositional sequences. To demonstrate how diagenetic processes can create reservoir bodies with geometries that cross-cut the depositional fabric, different types of dolomitization and karst development are illustrated. (author)

  16. A method for the assessment of long-term changes in carbon stock by construction of a hydropower reservoir.

    Science.gov (United States)

    Bernardo, Julio Werner Yoshioka; Mannich, Michael; Hilgert, Stephan; Fernandes, Cristovão Vicente Scapulatempo; Bleninger, Tobias

    2017-09-01

    Sustainability of hydropower reservoirs has been questioned since the detection of their greenhouse gas (GHG) emissions which are mainly composed of carbon dioxide and methane. A method to assess the impact on the carbon cycle caused by the transition from a natural river system into a reservoir is presented and discussed. The method evaluates the long term changes in carbon stock instead of the current approach of monitoring and integrating continuous short term fluxes. A case study was conducted in a subtropical reservoir in Brazil, showing that the carbon content within the reservoir exceeds that of the previous landuse. The average carbon sequestration over 43 years since damming was 895 mg C m[Formula: see text] and found to be mainly due to storage of carbon in sediments. These results demonstrate that reservoirs have two opposite effects on the balance of GHGs. By storing organic C in sediments, reservoirs are an important carbon sink. On the other hand, reservoirs increase the flux of methane into the atmosphere. If the sediments of reservoirs could be used for long term C storage, reservoirs might have a positive effect on the balance of GHGs.

  17. Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome

    International Nuclear Information System (INIS)

    Ometto, Jean P.; Cimbleris, André C.P.; Santos, Marco A. dos; Rosa, Luiz P.; Abe, Donato; Tundisi, José G.; Stech, José L.; Barros, Nathan; Roland, Fábio

    2013-01-01

    Most energy generation globally is fueled by coal and oil, raising concerns about greenhouse gas emissions. Hydroelectric reservoirs are anthropogenic aquatic systems that occur across a wide geographical extent, and, in addition to their importance for energy production, they have the potential to release two important greenhouse gases (GHGs), carbon dioxide and methane. We report results from an extensive study of eight hydroelectric reservoirs located in central and southeastern tropical Brazil. In the Brazilian dry tropical biome reservoirs, emissions (in tons of CO 2 Eq. per MW h) varied from 0.01 to 0.55, and decreased with reservoir age. Total emissions were higher in the reservoir lake when compared to the river downstream the dam; however, emissions per unit area, in the first kilometer of the river after the dam, were higher than that in the reservoir. The results showed, despite higher carbon emissions per energy production in the youngest reservoirs, lower emission from hydroelectric reservoirs from the studied region in relation to thermo electrical supply, fueled by coal or fossil fuel. The ratio emission of GHG per MWh produced is an important parameter in evaluating the service provided by hydroelectric reservoir and for energy planning policies. - Highlights: ► Hydroelectric reservoirs construction is growing worldwide. ► The effect of hydropower reservoir in the carbon cycle is dependent on environment characteristics. ► Carbon emissions per energy production are higher in the youngest tropical savannah reservoirs. ► Methane emissions decrease with reservoir age in tropical savannah reservoirs. ► In general, the effect of hydropower in the carbon cycle is lower than other energy sources

  18. Acoustic Impedance Inversion To Identify Oligo-Miocene Carbonate Facies As Reservoir At Kangean Offshore Area

    Science.gov (United States)

    Zuli Purnama, Arif; Ariyani Machmud, Pritta; Eka Nurcahya, Budi; Yusro, Miftahul; Gunawan, Agung; Rahmadi, Dicky

    2018-03-01

    Model based inversion was applied to inversion process of 2D seismic data in Kangean Offshore Area. Integration acoustic impedance from wells and seismic data was expected showing physical property, facies separation and reservoir quality of carbonate rock, particularly in Kangean Offshore Area. Quantitative and qualitative analysis has been conducted on the inversion results to characterize the carbonate reservoir part of Kujung and correlate it to depositional facies type. Main target exploration in Kangean Offshore Area is Kujung Formation (Oligo-Miocene Carbonate). The type of reservoir in this area generate from reef growing on the platform. Carbonate rock is a reservoir which has various type and scale of porosity. Facies determination is required to to predict reservoir quality, because each facies has its own porosity value. Acoustic impedance is used to identify and characterize Kujung carbonate facies, also could be used to predict the distribution of porosity. Low acoustic impedance correlated with packstone facies that has acoustic impedance value below 7400 gr/cc*m/s. In other situation, high acoustic impedance characterized by wackestone facies above 7400 gr/cc*m/s. The interpretation result indicated that Kujung carbonate rock dominated by packstone facies in the upper part of build-up and it has ideal porosity for hydrocarbon reservoir.

  19. Experimental studies of low salinity water flooding in carbonate reservoirs: A new promising approach

    DEFF Research Database (Denmark)

    Zahid, Adeel; Shapiro, Alexander; Skauge, Arne

    2012-01-01

    Low salinity water flooding is well studied for sandstone reservoirs, both laboratory and field tests have showed improvement in the oil recovery in many cases. Up to very recently, the low salinity effect has been indeterminated for carbonates. Most recently, Saudi Aramco reported that substantial...... additional oil recovery can be achieved when successively flooding composite carbonate core plugs with various diluted versions of seawater. The experimental data on carbonates is very limited, so more data and better understanding of the mechanisms involved is needed to utilize this method for carbonate...... reservoirs. In this paper, we have experimentally investigated the oil recovery potential of low salinity water flooding for carbonate rocks. We used both reservoir carbonate and outcrop chalk core plugs. The flooding experiments were carried out initially with the seawater, and afterwards additional oil...

  20. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    Hickman, Scott T.; Justice James L.; Taylor, Archie R.

    1999-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs

  1. Feasibility study on application of volume acid fracturing technology to tight gas carbonate reservoir development

    Directory of Open Access Journals (Sweden)

    Nianyin Li

    2015-09-01

    Full Text Available How to effectively develop tight-gas carbonate reservoir and achieve high recovery is always a problem for the oil and gas industry. To solve this problem, domestic petroleum engineers use the combination of the successful experiences of North American shale gas pools development by stimulated reservoir volume (SRV fracturing with the research achievements of Chinese tight gas development by acid fracturing to propose volume acid fracturing technology for fractured tight-gas carbonate reservoir, which has achieved a good stimulation effect in the pilot tests. To determine what reservoir conditions are suitable to carry out volume acid fracturing, this paper firstly introduces volume acid fracturing technology by giving the stimulation mechanism and technical ideas, and initially analyzes the feasibility by the comparison of reservoir characteristics of shale gas with tight-gas carbonate. Then, this paper analyzes the validity and limitation of the volume acid fracturing technology via the analyses of control conditions for volume acid fracturing in reservoir fracturing performance, natural fracture, horizontal principal stress difference, orientation of in-situ stress and natural fracture, and gives the solution for the limitation. The study results show that the volume acid fracturing process can be used to greatly improve the flow environment of tight-gas carbonate reservoir and increase production; the incremental or stimulation response is closely related with reservoir fracturing performance, the degree of development of natural fracture, the small intersection angle between hydraulic fracture and natural fracture, the large horizontal principal stress difference is easy to form a narrow fracture zone, and it is disadvantageous to create fracture network, but the degradable fiber diversion technology may largely weaken the disadvantage. The practices indicate that the application of volume acid fracturing process to the tight-gas carbonate

  2. Transient pressure and productivity analysis in carbonate geothermal reservoirs with changing external boundary flux

    Directory of Open Access Journals (Sweden)

    Wang Dongying

    2017-01-01

    Full Text Available In this paper, a triple-medium flow model for carbonate geothermal reservoirs with an exponential external boundary flux is established. The pressure solution under constant production conditions in Laplace space is solved. The geothermal wellbore pressure change considering wellbore storage and skin factor is obtained by Stehfest numerical inversion. The well test interpretation charts and Fetkovich production decline chart for carbonate geothermal reservoirs are proposed for the first time. The proposed Fetkovich production decline curves are applied to analyze the production decline behavior. The results indicate that in carbonate geothermal reservoirs with exponential external boundary flux, the pressure derivative curve contains a triple dip, which represents the interporosity flow between the vugs or matrix and fracture system and the invading flow of the external boundary flux. The interporosity flow of carbonate geothermal reservoirs and changing external boundary flux can both slow down the extent of production decline and the same variation tendency is observed in the Fetkovich production decline curve.

  3. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir.

    Science.gov (United States)

    Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R

    2017-06-01

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H

    2013-01-01

    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  5. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    Science.gov (United States)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable

  6. ' "Life is Movement": Vernon Lee and Sculpture'

    DEFF Research Database (Denmark)

    Østermark-Johansen, Lene

    2018-01-01

    How do living, breathing human bodies respond to the inert bodies of sculpture? This article examines some of the art-theoretical and psychological writings of Violet Paget (‘Vernon Lee’) and Clementina Anstruther-Thomson of the 1880s and 1890s in an attempt to map the evolution of their formalist...... art criticism. Engaging with the eighteenth-century ghosts of Johann Joachim Winckelmann and Gotthold Ephraim Lessing, Lee and Anstruther-Thomson created their very own exploration of art forms evolving in space and in time. Questioning how our reading of literature affects our reading of sculpture...... from Lee’s early essays in Belcaro: Being Essays on Sundry Aesthetical Questions (1881) to the late collaborative volume Art and Man (1924)....

  7. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    Science.gov (United States)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  8. Consideration of clay in rocks in discriminating carbonate reservoirs in Eastern Turkmenia

    International Nuclear Information System (INIS)

    Ehjvazov, A.M.

    1975-01-01

    A method is described for calculating the clayiness of rocks in discrimination of carbonate reservoirs of eastern Turkmenia. Carbonate deposits in eastern Turkmenia contain significant amounts of clayey material, which interferes with the collector properties of the rocks. However, in many cases the clayey limestones, when sampled, give industrial supplies of gas. Analysis of gamma-logging data with calculation of the results of sampling for layers of different porosities, as determined from the results of neutron gamma logging, showed a definite correlation between the reservoir properties of carbonate layers and the values of ΔIsub(γ) of two different gamma-logging parameters, calculated by the single ''reference'' horizon method

  9. Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs

    KAUST Repository

    Yutkin, Maxim P.

    2017-08-25

    Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates. When waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation. A simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes. Our evaluation of

  10. Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism

    Science.gov (United States)

    Aurell, Erik

    2018-04-01

    The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z . The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.

  11. Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism

    Science.gov (United States)

    Aurell, Erik

    2018-06-01

    The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z. The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.

  12. 78 FR 41689 - Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA

    Science.gov (United States)

    2013-07-11

    ... submerged automobiles and floating bridge debris in the Skagit River. Following the initial response and...-AA00 Safety Zone; Skagit River Bridge, Skagit River, Mount Vernon, WA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone around the Skagit River Bridge...

  13. Pore Type Classification on Carbonate Reservoir in Offshore Sarawak using Rock Physics Model and Rock Digital Images

    International Nuclear Information System (INIS)

    Lubis, L A; Harith, Z Z T

    2014-01-01

    It has been recognized that carbonate reservoirs are one of the biggest sources of hydrocarbon. Clearly, the evaluation of these reservoirs is important and critical. For rigorous reservoir characterization and performance prediction from geophysical measurements, the exact interpretation of geophysical response of different carbonate pore types is crucial. Yet, the characterization of carbonate reservoir rocks is difficult due to their complex pore systems. The significant diagenesis process and complex depositional environment makes pore systems in carbonates far more complicated than in clastics. Therefore, it is difficult to establish rock physics model for carbonate rock type. In this paper, we evaluate the possible rock physics model of 20 core plugs of a Miocene carbonate platform in Central Luconia, Sarawak. The published laboratory data of this area were used as an input to create the carbonate rock physics models. The elastic properties were analyzed to examine the validity of an existing analytical carbonate rock physics model. We integrate the Xu-Payne Differential Effective Medium (DEM) Model and the elastic modulus which was simulated from a digital carbonate rock image using Finite Element Modeling. The results of this integration matched well for the separation of carbonate pore types and sonic P-wave velocity obtained from laboratory measurement. Thus, the results of this study show that the integration of rock digital image and theoretical rock physics might improve the elastic properties prediction and useful for more advance geophysical techniques (e.g. Seismic Inversion) of carbonate reservoir in Sarawak

  14. Pennsylvanian carbonate buildups, Paradox basin: Increasing reserves in heterogeneous, shallow-shelf reservoirs

    Science.gov (United States)

    Montgomery, S.L.; Chidsey, T.C.; Eby, D.E.; Lorenz, D.M.; Culham, W.E.

    1999-01-01

    Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer precipitous declines. An important new study focused on the detailed characterization of five separate reservoirs has resulted in significant information relevant to their future redevelopment. Completed assessment of Anasazi field suggests that phylloid algal mounds, the major productive buildup type in this area, consist of ten separate lithotypes and can be described in terms of a two-level reservoir system with an underlying high-permeability mound-core interval overlain by a lower permeability but volumetrically larger supramound (mound capping) interval. Reservoir simulations and related performance predictions indicate that CO2 flooding of these reservoirs should have considerable success in recovering remaining oil reserves.Productive carbonate buildups of Pennsylvanian age in the southern Paradox basin, Utah, contain up to 200 million bbl remaining oil potentially recoverable by enhanced recovery methods. These buildups comprise over 100 satellite fields to the giant Greater Aneth field, where secondary recovery operations thus far have been concentrated. Several types of satellite buildups exist and produce oil from the Desert Creek zone of the Paradox Formation. Many of the relevant fields have undergone early abandonment; wells in Desert Creek carbonate mounds commonly produce at very high initial rates (>1000 bbl/day) and then suffer

  15. Estimates of Carbon Reservoirs in High-Altitude Wetlands in the Colombian Andes

    Directory of Open Access Journals (Sweden)

    Enrique Javier Peña

    2009-10-01

    Full Text Available The observed increase in emission of greenhouse gases, with attendant effects on global warming, have raised interests in identifying sources and sinks of carbon in the environment. Terrestrial carbon (C sequestration involves capture of atmospheric C through photosynthesis and storage in biota, soil and wetlands. Particularly, wetland systems function primarily as long-term reservoirs for atmospheric carbon dioxide (CO2 and as sources of atmospheric methane (CH4. The objective of this study was to evaluate the patterns of carbon reservoirs in two high-altitude wetlands in the central Andean mountain of Colombia. Carbon cycle in both systems is related mainly with the plant biomass dynamics from the littoral zone. Thus, total organic carbon concentrate an average up to 329 kg of N ha-1 and 125 kg of P ha-1 every year vs only 17 kg N ha-1 and 6 kg P ha-1 in the water column of the limnetic zone in the wetland, evidencing spatial differences in carbon concentrations for these types of ecosystems. Results revealed that these systems participate in the balance and sequestration of carbon in the Colombian Andes.

  16. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    Science.gov (United States)

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  17. Lithology-dependent In Situ Stress in Heterogeneous Carbonate Reservoirs

    Science.gov (United States)

    Pham, C. N.; Chang, C.

    2017-12-01

    Characterization of in situ stress state for various geomechanical aspects in petroleum development may be particularly difficult in carbonate reservoirs in which rock properties are generally heterogeneous. We demonstrate that the variation of in situ stress in highly heterogeneous carbonate reservoirs is closely related to the heterogeneity in rock mechanical property. The carbonate reservoir studied consists of numerous sequential layers gently folded, exhibiting wide ranges of porosity (0.01 - 0.29) and Young's modulus (25 - 85 GPa) depending on lithology. Wellbore breakouts and drilling-induced tensile fractures (DITFs) observed in the image logs obtained from several wells indicate that the in situ state of stress orientation changes dramatically with depth and location. Even in a wellbore, the azimuth of the maximum horizontal stress changes by as much as 60° within a depth interval of 500 m. This dramatic change in stress orientation is inferred to be due to the contrast in elastic properties between different rock layers which are bent by folding in the reservoir. The horizontal principal stress magnitudes are constrained by back-calculating stress conditions necessary to induce the observed wellbore failures using breakout width and the presence of DITFs. The horizontal stresses vary widely, which cannot be represented by a constant stress gradient with depth. The horizontal principal stress gradient increases with Young's modulus of layer monotonically, indicating that a stiffer layer conveys a higher horizontal stress. This phenomenon can be simulated using a numerical modelling, in which the horizontal stress magnitudes depend on stiffness of individual layers although the applied far-field stress conditions are constant. The numerical results also suggest that the stress concentration at the wellbore wall is essentially higher in a stiffer layer, promoting the possibility of wellbore breakout formation. These results are in agreement with our

  18. Carbonate reservoirs modified by magmatic intrusions in the Bachu area, Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Kang Xu

    2015-09-01

    Full Text Available Oil and gas exploration in carbonate rocks was extremely successful in recent years in the Ordovician in Tarim Basin, NW China. Here, we investigate the carbonate reservoirs in the Bachu area of the Tarim Basin through petrological and geochemical studies combined with oil and gas exploration data. Geochemical analysis included the major, trace, and rare earth elements; fluid inclusion thermometry; clay mineral characterization; and carbon and oxygen isotopes of the carbonate rocks. Homogenization temperatures of the fluid inclusions of Well He-3 in the Bachu area indicate three groups, 60–80 °C, 90–130 °C, and 140–170 °C, and suggest that the carbonate rocks experienced modification due to heating events. The porosity in the reservoir is defined by fractures and secondary pores, and there is a notable increase in the porosity of the carbonate reservoirs in proximity to magmatic intrusion, particularly approximately 8–10 m from the intrusive rocks. The development of secondary pores was controlled by lithofacies and corrosion by various fluids. We identify supercritical fluids with high density (138.12–143.97 mg/cm3 in the Bachu area. The negative correlations of δ13C (−2.76‰ to −0.97‰ and δ18O (−7.91‰ to −5.07‰ suggest that the carbonate rocks in the study area were modified by high-salinity hydrothermal fluid. The formation of clay minerals, such as illite and montmorillonite, caused a decrease in porosity. Our study demonstrates the effect of magmatic intrusions in modifying the reservoir characteristics of carbonate rocks and has important implications for oil and gas exploration.

  19. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  20. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    F. Jerry Lucia

    2002-01-31

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock

  1. SCREENING METHODS FOR SELECTION OF SURFACTANT FORMULATIONS FOR IOR FROM FRACTURED CARBONATE RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu; Seung Soon Jang

    2005-07-01

    This topical report presents details of the laboratory work performed to complete Task 1 of this project; developing rapid screening methods to assess surfactant performance for IOR (Improved Oil Recovery) from fractured carbonate reservoirs. The desired outcome is to identify surfactant formulations that increase the rate and amount of aqueous phase imbibition into oil-rich, oil-wet carbonate reservoir rock. Changing the wettability from oil-wet to water-wet is one key to enhancing this water-phase imbibition process that in turn recovers additional oil from the matrix portion of a carbonate reservoir. The common laboratory test to evaluate candidate surfactant formulations is to measure directly the aqueous imbibition rate and oil recovery from small outcrop or reservoir cores, but this procedure typically requires several weeks. Two methods are presented here for the rapid screening of candidate surfactant formulations for their potential IOR performance in carbonate reservoirs. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant performance reported in the literature.

  2. Kinetics of carbonate dissolution in CO2-saturated aqueous system at reservoir conditions

    Science.gov (United States)

    Peng, Cheng; Crawshaw, John P.; Maitland, Geoffrey; Trusler, J. P. Martin

    2014-05-01

    In recent years, carbon capture and storage (CCS) has emerged as a key technology for limiting anthropogenic CO2 emissions while allowing the continued utilisation of fossil fuels. The most promising geological storage sites are deep saline aquifers because the capacity, integrity and injection economics are most favourable, and the environmental impact can be minimal. Many rock-fluid chemical reactions are known to occur both during and after CO2 injection in saline aquifers. The importance of rock-fluid reactions in the (CO2 + H2O) system can be understood in terms of their impact on the integrity and stability of both the formation rocks and cap rocks. The chemical interactions between CO2-acidified brines and the reservoir minerals can influence the porosity and permeability of the formations, resulting in changes in the transport processes occurring during CO2 storage. Since carbonate minerals are abundant in sedimentary rocks, one of the requirements to safely implement CO2 storage in saline aquifers is to characterise the reactivity of carbonate minerals in aqueous solutions at reservoir conditions. In this work, we reported measurements of the intrinsic rate of carbonate dissolution in CO2-saturated water under high-temperature high-pressure reservoir conditions extending up to 373 K and 14 MPa. The rate of carbonate dissolution in CO2-free HCl(aq) was also measured at ambient pressure at temperatures up to 353 K. Various pure minerals and reservoir rocks were investigated in this study, including single-crystals of calcite and magnesite, and samples of dolomite, chalks and sandstones. A specially-designed batch reactor system, implementing the rotating disc technique, was used to obtain the intrinsic reaction rate at the solid/liquid interface, free of mass transfer effects. The effective area and mineralogy of the exposed surface was determined by a combination of surface characterisation techniques including XRD, SEM, EDX and optical microscopy. The

  3. Matrix acidification in carbonate reservoirs; Acidificacoes matriciais em reservatorios carbonaticos

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcio de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Carbonate reservoirs are characterized by great diversity of its properties, including permeability and porosity. When submitted to matrix acidification, if no effort is employed, acid will tend to consume carbonates where permeability and porosity are higher, further increasing conductivity of these sites and also increasing permeability and porosity contrast existing before acid effects on formation. That would give limited production as result of small effective producer zone extent, with probable underutilization of potential reservoirs productivity. To overcome this effect and to achieve greater coverage of treatments, divergence techniques should be applied, including associations of them. This paper presents divergence techniques performed in matrix acidification of Campos and Espirito Santo basins wells, which represent great structural diversity and, as consequence, a significant range of situations. Formations tests results are analyzed to verify diversion systems effectiveness, and how they contribute to the growth of productive potential. (author)

  4. Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals

    Science.gov (United States)

    Welch, N.; Crawshaw, J.

    2017-12-01

    Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.

  5. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin

    Directory of Open Access Journals (Sweden)

    Heng Fu

    2017-07-01

    Full Text Available The Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin are important oil and gas exploration targets in the basin, but their dissolution mechanisms are in controversy. In this paper, based on the integrated study of sedimentation, sequence and reservoir, together with microscopic analysis and macroscopic seismic data analysis, the carbonate karst reservoirs in the study area were divided into three types: dissolved pore-cavity limestone reservoir, pore-cavity dolomite reservoir and fracture-cavity siliceous reservoir, and their forming mechanisms were discussed respectively. Some findings were obtained. First, dissolved pore-cavity limestone reservoirs are distributed in the upper Yingshan Fm and Yijianfang Fm of the Ordovician vertically, while pore-cavity dolomite reservoirs are mainly developed in the Penglai Fm and lower Yingshan Fm of the Ordovician with great thickness. Second, dissolved pore-cavity limestone reservoirs were formed by karstification on the third-order sequence boundary (lowstand tract, while pore-cavity dolomite reservoirs were formed by deep burial dolomitization controlled by karstification on the third-order sequence boundary, both of which are distributed in the highstand tract below the third-order sequence boundary. Third, siliceous reservoirs are developed under the control of faulting, as a result of reworking of deep hydrothermal fluids along faults to the limestone, and the siliceous reservoirs and their hydrothermal solution fracture-cavity systems are distributed near faults. It is further predicted that, in addition to the three types of reservoir above, platform-margin reef-flat reservoirs are developed in the Ordovician on the northern slope of central Tarim Basin.

  6. Symposium Festschrift Hughes (Vernon W) to Celebrate his 70th birthday

    CERN Document Server

    1992-01-01

    The contents of this book are derived from a celebration of the 70th birthday of Vernon W Hughes. Professor Hughes' career has touched on several areas in modern physics ranging from precision measurements of the fundamental properties of atoms to measurements of spin structure functions of the proton via deep inelastic muon scattering at the world's highest energy fixed target machines. This observance of his 70th birthday brings together experimental and theoretical physicists who are leaders of the many fields in which he has made contributions.

  7. Page from the Log Book of the USS "Harriet Lane" and Painting by Thomas P. Rossiter, Related to the Prince of Wales's 1860 Visit to Mount Vernon

    Science.gov (United States)

    Potter, Lee Ann; Eder, Elizabeth K.; Hussey, Michael

    2011-01-01

    On 1860, Prince Albert Edward took a daylong excursion aboard the 270-foot revenue cutter USS "Harriet Lane" to Mount Vernon, the ancestral home of George Washington. The ceremonial visit to Mount Vernon was thought of at the time as not only a tribute to Washington as a man and leader, but as symbolic of reconciliation between England and its…

  8. Carbon flow dynamics in the pelagic community of the Sau Reservoir (Catalonia, NE Spain)

    Czech Academy of Sciences Publication Activity Database

    Comerma, M.; García, J. C.; Romero, M.; Armengol, J.; Šimek, Karel

    2003-01-01

    Roč. 504, - (2003), s. 87-98 ISSN 0018-8158. [Reservoir Limnology and Water Quality /4./. České Budějovice, 12.08.2002-16.08.2002] Institutional research plan: CEZ:AV0Z6017912 Keywords : reservoir * longitudinal plankton succession * carbon flow through microbial food webs Subject RIV: EE - Microbiology, Virology Impact factor: 0.720, year: 2003

  9. Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)

    Science.gov (United States)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2012-04-01

    Italy is one of the most important countries in the world with regard to high-medium enthalpy geothermal resources, a large part of which is already extracted at relatively low cost. High temperatures at shallow to medium depth occur within a wide belt, several hundred kilometre long, west of the Apennines mountain chain. This belt, affected by recent lithosphere extension, includes several geothermal fields, which are largely exploited for electricity generation. Between the Alps and Apennines ranges, the deeper aquifer, occurring in carbonate rocks of the Po Plain, can host medium enthalpy fluids, which are exploited for district heating. Such a general picture of the available geothermal resources has been well established through several geophysical investigations and drillings. Nevertheless, additional studies are necessary to evaluate future developments, especially with reference to the deep carbonate aquifer of the Po Plain. In this paper, we focus on the eastern sector of the plain and try to gain a better understanding of the thermal regime by using synergically geothermal methodologies and geological information. The analysis of the temperatures recorded to about 6 km depth in hydrocarbon wells supplies basic constraints to outline the thermal regime of the sedimentary basin and to investigate the occurrence and importance of hydrothermal processes in the carbonate layer. After correction for drilling disturbance, temperatures were analysed, together with geological information, through an inversion technique based on a laterally constant thermal gradient model. The inferred thermal gradient changes with depth; it is quite low within the carbonate layer, while is larger in the overlying, practically impermeable formations. As the thermal conductivity variation does not justify such a thermal gradient difference, the vertical change can be interpreted as due to convective processes occurring in the carbonate layer, acting as thermal reservoir. The

  10. Technical difficulties of logging while drilling in carbonate reservoirs and the countermeasures: A case study from the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shudong Zhang

    2015-12-01

    Full Text Available In the Sichuan Basin, carbonate reservoirs are characterized by deep burial depth and strong heterogeneity, so it is difficult to conduct structure steering, pore space reservoir tracking and trajectory control in the process of geosteering logging while drilling. In this paper, a series of corresponding techniques for structure, reservoir and formation tracking were proposed after analysis was conducted on multiple series of carbonate strata in terms of their geologic and logging response characteristics. And investigation was performed on the adaptabilities of the following logging technologies to geosteering while drilling, including gamma ray imaging while drilling, resistivity imaging while drilling, density imaging while drilling, gamma ray logging while drilling, resistivity logging while drilling, neutron logging while drilling and density logging while drilling. After while drilling information was thoroughly analyzed, the logging suites for four common types of complicated reservoirs (thin layered reservoirs, thick massive reservoirs, denuded karst reservoirs and shale gas reservoirs were optimized, and five logging combinations suitable for different formations and reservoirs were proposed, including gamma ray logging + porosity + resistivity imaging, gamma ray logging + resistivity imaging, gamma ray logging + porosity + resistivity logging, gamma ray imaging + resistivity logging, and gamma ray logging. Field application indicates that it is of great reference and application value to use this method for the first time to summarize logging while drilling combinations for different types of carbonate reservoirs.

  11. CarbonSAFE Rocky Mountain Phase I : Seismic Characterization of the Navajo Reservoir, Buzzard Bench, Utah

    Science.gov (United States)

    Haar, K. K.; Balch, R. S.; Lee, S. Y.

    2017-12-01

    The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage

  12. Professor Barrie Vernon-Roberts, AO, MD, BSc, PhD, FRCPath, FRCPA, FAOrthA (Hon), FRS.SA.

    Science.gov (United States)

    Rainsford, K D; Haynes, D R

    2013-08-01

    This issue of Inflammopharmacology contains papers that have been submitted to commemorate the life and work of Professor Barrie Vernon-Roberts, an outstanding clinical scientist in the field of bone pathology and its pharmacological regulation. This review briefly summarizes his major works and achievements as well as a list of his publications.

  13. Identification of carbonate reservoirs based on well logging data for boreholes drilled using oil base muds

    International Nuclear Information System (INIS)

    Abdukhalikov, Ya.N; Serebrennikov, V.S.

    1979-01-01

    Experiment on carbonate reservoir identification according to well logging data for boreholes drilled using oil base muds is described. Pulse neutron-neutron logging (PNNL) was widely used at the territory of Pripyat' hole to solve the task. To evaluate volumetric clayiness of carbonate rocks the dependence of gamma-logging, that is data of gamma-logging against clayey rocks built for every hollow, is used. Quantitative estimation of clayiness of dense and clayey carbonate rocks-non-reservoirs is carried out on the basis of the data of neutron-gamma and acoustic logging. Porosity coefficient and lithological characteristic of rocks are also determined according to the data of acoustic and neutron gamma-logging

  14. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2001-09-14

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been

  15. Validating predictions of evolving porosity and permeability in carbonate reservoir rocks exposed to CO2-brine

    Science.gov (United States)

    Smith, M. M.; Hao, Y.; Carroll, S.

    2017-12-01

    Improving our ability to better forecast the extent and impact of changes in porosity and permeability due to CO2-brine-carbonate reservoir interactions should lower uncertainty in long-term geologic CO2 storage capacity estimates. We have developed a continuum-scale reactive transport model that simulates spatial and temporal changes to porosity, permeability, mineralogy, and fluid composition within carbonate rocks exposed to CO2 and brine at storage reservoir conditions. The model relies on two primary parameters to simulate brine-CO2-carbonate mineral reaction: kinetic rate constant(s), kmineral, for carbonate dissolution; and an exponential parameter, n, relating porosity change to resulting permeability. Experimental data collected from fifteen core-flooding experiments conducted on samples from the Weyburn (Saskatchewan, Canada) and Arbuckle (Kansas, USA) carbonate reservoirs were used to calibrate the reactive-transport model and constrain the useful range of k and n values. Here we present the results of our current efforts to validate this model and the use of these parameter values, by comparing predictions of extent and location of dissolution and the evolution of fluid permeability against our results from new core-flood experiments conducted on samples from the Duperow Formation (Montana, USA). Agreement between model predictions and experimental data increase our confidence that these parameter ranges need not be considered site-specific but may be applied (within reason) at various locations and reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality

    Science.gov (United States)

    Jiang, Lei; Worden, Richard H.; Yang, Changbing

    2018-02-01

    Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.

  17. Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China.

    Science.gov (United States)

    Song, Kaishan; Wen, Zhidan; Shang, Yingxing; Yang, Hong; Lyu, Lili; Liu, Ge; Fang, Chong; Du, Jia; Zhao, Ying

    2018-04-04

    As a major fraction of carbon in inland waters, dissolved organic carbon (DOC) plays a crucial role in carbon cycling on a global scale. However, the quantity of DOC stored in lakes and reservoirs was not clear to date. In an attempt to examine the factors that determine the DOC storage in lakes and reservoirs across China, we assembled a large database (measured 367 lakes, and meta-analyzed 102 lakes from five limnetic regions; measured 144 reservoirs, and meta-analyzed 272 reservoirs from 31 provincial units) of DOC concentrations and water storages for lakes and reservoirs that are used to determine DOC storage in static inland waters. We found that DOC concentrations in saline waters (Mean/median ± S.D: 50.5/30.0 ± 55.97 mg/L) are much higher than those in fresh waters (8.1/5.9 ± 6.8 mg/L), while lake DOC concentrations (25.9/11.5 ± 42.04 mg/L) are much higher than those in reservoirs (5.0/3.8 ± 4.5 mg/L). In terms of lake water volume and DOC storage, the Tibet-Qinghai lake region has the largest water volume (552.8 km 3 ), 92% of which is saline waters, thus the largest DOC (13.39 Tg) is stored in these alpine lake region; followed by the Mengxin lake region, having a water volume of 99.4 km 3 in which 1.75 Tg DOC was stored. Compared to Mengxin lake region, almost the same amount of water was stored in East China lake region (91.9 km 3 ), however, much less DOC was stored in this region (0.43 Tg) due to the lower DOC concentration (Ave: 3.45 ± 2.68 mg/L). According to our investigation, Yungui and Northeast lake regions had water storages of 32.14 km 3 and 19.44 km 3 respectively, but relatively less DOC was stored in Yungui (0.13 Tg) than in Northeast lake region (0.19 Tg). Due to low DOC concentration in reservoirs, especially these large reservoirs having lower DOC concentration (V > 1.0 km 3 : 2.31 ± 1.48 mg/L), only 1.54 Tg was stored in a 485.1 km 3 volume of water contained

  18. Modeling of carbonate reservoir variable secondary pore space based on CT images

    Science.gov (United States)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  19. Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs.

    Science.gov (United States)

    Kawaguchi, Hideo; Sakuma, Takahiro; Nakata, Yuiko; Kobayashi, Hajime; Endo, Keita; Sato, Kozo

    2010-07-01

    To recover energy from carbon dioxide sequestered in geological reservoirs, the geochemical effects of acidic and substrate- and nutrient-limiting conditions on methane production by the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus were investigated in a simulated deep saline aquifer environment using formation water media retrieved from petroleum reservoirs. 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  1. Visioni vittoriane: il paesaggio fiorentino nelle opere di Janet Ross e Vernon Lee

    Directory of Open Access Journals (Sweden)

    Gabriele Corsani

    2015-11-01

    Full Text Available Fra l’ultimo scorcio dell’Ottocento e i primi decenni del Novecento Firenze e i suoi dintorni sono il soggetto privilegiato di una grande quantità di descrizioni, note di diario, racconti, opera di scrittori stranieri, in particolare inglesi, che si radicano nell’approdo elettivo di quei luoghi. Il testo presenta la traccia letteraria del paesaggio fiorentino nelle opere di Vernon Lee e Janet Ross, due tipiche rappresentanti di questa tendenza che hanno vissuto, attraverso vicende biografiche in qualche modo parallele, un’esperienza di intensa identificazione con il paesaggio fiorentino. Di Janet Ross, viene commentato Old Florence and Modern Tuscany, volume che raccoglie una serie di articoli pubblicati su alcune riviste inglesi e fornisce una efficace panoramica sull’interesse molto concreto di Janet Ross per il mondo rurale che la vede addirittura impegnata nella gestione della fattoria di Castagnolo, a Lastra a Signa. Più sfaccettato è il commento alle opere di Vernon Lee, di cui sono commentati passi da Vanitas. Polite Stories, Genius Loci, Hortus Vitae and Limbo, in virtù della maggiore ampiezza e complessità del suo mondo culturale. Ne sono cifra distintiva la associazione fra storia e realtà attraverso la dimensione del mistero, che risulta una delle chiavi di acccesso alla bellezza e alla vitalità del paesagggio e la capacità di cogliere il ritmo proprio dei luoghi e di entrare in reale sintonia con essi. 

  2. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai; Yan, Mi; Allen, Rebecca; Salama, Amgad; Lu, Ligang; Jordan, Kirk E.; Sun, Shuyu; Keyes, David E.

    2015-01-01

    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems

  3. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  4. Experimental reactivity with CO2 of clayey cap-rock and carbonate reservoir of the Paris basin

    International Nuclear Information System (INIS)

    Hubert, G.

    2009-01-01

    The constant increase in the quantity of carbon dioxide in the atmosphere is regarded as being the principal cause of the current global warming. The geological sequestration of CO 2 seems to be an ideal solution to reduce the increase of greenhouse gases (of which CO 2 ) in the atmosphere but only if the reservoir's cap-rock keep its integrity for several hundreds or thousands of years. Batch experimental simulations were conducted to observe the reactivity of a cap-rock made of clay and a carbonate reservoir with CO 2 at 80 C and 150 C for a pressure of 150 bar with an equilibrated water. The analytical protocol established allowed to compare the rocks before and after experimentations finding a very low reactivity, focusing on aluminium in phyllosilicates. Textural analysis shows that CO 2 does not affect the properties of adsorption and the specific surface. The study of carbonate reservoir by confocal microscopy has revealed phenomena of dissolution-precipitation which have no significant impact on chemistry and structure of the reservoir. The numerical simulations carried out on mineral reference as calcium montmorillonite or clinochlore show a significant reaction in the presence of CO 2 not achieved experimentally, probably due to lacunas in the thermodynamic databases or the kinetics of reactions. The simulations on Bure show no reaction on the major minerals confirming the results with batch experiments. (author)

  5. Integrated Analysis Seismic Inversion and Rockphysics for Determining Secondary Porosity Distribution of Carbonate Reservoir at “FR” Field

    Science.gov (United States)

    Rosid, M. S.; Augusta, F. F.; Haidar, M. W.

    2018-05-01

    In general, carbonate secondary pore structure is very complex due to the significant diagenesis process. Therefore, the determination of carbonate secondary pore types is an important factor which is related to study of production. This paper mainly deals not only to figure out the secondary pores types, but also to predict the distribution of the secondary pore types of carbonate reservoir. We apply Differential Effective Medium (DEM) for analyzing pore types of carbonate rocks. The input parameter of DEM inclusion model is fraction of porosity and the output parameters are bulk moduli and shear moduli as a function of porosity, which is used as input parameter for creating Vp and Vs modelling. We also apply seismic post-stack inversion technique that is used to map the pore type distribution from 3D seismic data. Afterward, we create porosity cube which is better to use geostatistical method due to the complexity of carbonate reservoir. Thus, the results of this study might show the secondary porosity distribution of carbonate reservoir at “FR” field. In this case, North – Northwest of study area are dominated by interparticle pores and crack pores. Hence, that area has highest permeability that hydrocarbon can be more accumulated.

  6. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Yang, Jinhai; Okwananke, Anthony; Tohidi, Bahman; Chuvilin, Evgeny; Maerle, Kirill; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2017-01-01

    Highlights: • Flue gas was injected for both methane recovery and carbon dioxide sequestration. • Kinetics of methane recovery and carbon dioxide sequestration was investigated. • Methane-rich gas mixtures can be produced inside methane hydrate stability zones. • Up to 70 mol% of carbon dioxide in the flue gas was sequestered as hydrates. - Abstract: Flue gas injection into methane hydrate-bearing sediments was experimentally investigated to explore the potential both for methane recovery from gas hydrate reservoirs and for direct capture and sequestration of carbon dioxide from flue gas as carbon dioxide hydrate. A simulated flue gas from coal-fired power plants composed of 14.6 mol% carbon dioxide and 85.4 mol% nitrogen was injected into a silica sand pack containing different saturations of methane hydrate. The experiments were conducted at typical gas hydrate reservoir conditions from 273.3 to 284.2 K and from 4.2 to 13.8 MPa. Results of the experiments show that injection of the flue gas leads to significant dissociation of the methane hydrate by shifting the methane hydrate stability zone, resulting in around 50 mol% methane in the vapour phase at the experimental conditions. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure generated methane-rich gas mixtures with up to 80 mol% methane. Meanwhile, carbon dioxide hydrate and carbon dioxide-mixed hydrates were formed while the methane hydrate was dissociating. Up to 70% of the carbon dioxide in the flue gas was converted into hydrates and retained in the silica sand pack.

  7. Application of sequence stratigraphy to carbonate reservoir prediction, Early Palaeozoic eastern Warburton basin, South Australia

    Energy Technology Data Exchange (ETDEWEB)

    Xiaowen S.; Stuart, W.J.

    1996-12-31

    The Early Palaeozoic Warburton Basin underlies the gas and oil producing Cooper and Eromanga Basins. Postdepositional tectonism created high potential fracture porosities, complicating the stratigraphy and making reservoir prediction difficult. Sequence stratigraphy integrating core, cuttings, well-log, seismic and biostratigraphic data has recognized a carbonate-dominated to mixed carbonate/siliciclastic supersequence comprising several depositional sequences. Biostratigraphy based on trilobites and conodonts ensures reliable well and seismic correlations across structurally complex areas. Lithofacies interpretation indicates sedimentary environments ranging from carbonate inner shelf, peritidal, shelf edge, deep outer shelf and slope to basin. Log facies show gradually upward shallowing trends or abrupt changes indicating possible sequence boundaries. With essential depositional models and sequence analysis from well data, seismic facies suggest general reflection configurations including parallel-continuous layered patterns indicating uniform neuritic shelf, and mounded structures suggesting carbonate build-ups and pre-existing volcanic relief. Seismic stratigraphy also reveals inclined slope and onlapping margins of a possibly isolated platform geometry. The potential reservoirs are dolomitized carbonates containing oomoldic, vuggy, intercrystalline and fracture porosities in lowstand systems tracts either on carbonate mounds and shelf crests or below shelf edge. The source rock is a deep basinal argillaceous mudstone, and the seal is fine-grained siltstone/shale of the transgressive system tract.

  8. Application of sequence stratigraphy to carbonate reservoir prediction, Early Palaeozoic eastern Warburton basin, South Australia

    Energy Technology Data Exchange (ETDEWEB)

    Xiaowen S.; Stuart, W.J.

    1996-01-01

    The Early Palaeozoic Warburton Basin underlies the gas and oil producing Cooper and Eromanga Basins. Postdepositional tectonism created high potential fracture porosities, complicating the stratigraphy and making reservoir prediction difficult. Sequence stratigraphy integrating core, cuttings, well-log, seismic and biostratigraphic data has recognized a carbonate-dominated to mixed carbonate/siliciclastic supersequence comprising several depositional sequences. Biostratigraphy based on trilobites and conodonts ensures reliable well and seismic correlations across structurally complex areas. Lithofacies interpretation indicates sedimentary environments ranging from carbonate inner shelf, peritidal, shelf edge, deep outer shelf and slope to basin. Log facies show gradually upward shallowing trends or abrupt changes indicating possible sequence boundaries. With essential depositional models and sequence analysis from well data, seismic facies suggest general reflection configurations including parallel-continuous layered patterns indicating uniform neuritic shelf, and mounded structures suggesting carbonate build-ups and pre-existing volcanic relief. Seismic stratigraphy also reveals inclined slope and onlapping margins of a possibly isolated platform geometry. The potential reservoirs are dolomitized carbonates containing oomoldic, vuggy, intercrystalline and fracture porosities in lowstand systems tracts either on carbonate mounds and shelf crests or below shelf edge. The source rock is a deep basinal argillaceous mudstone, and the seal is fine-grained siltstone/shale of the transgressive system tract.

  9. Experimental and numerical modeling of sulfur plugging in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, PO Box 17555, Al-Ain (United Arab Emirates)

    2000-05-01

    Sour gas, mainly in the form of hydrogen sulfide, is produced in large amounts from many oil and gas reservoirs in the United Arab Emirates. In addition to creating problems in production lines, the precipitation of elemental sulfur in vicinity of the wellbore is often reported to cause wellbore damage. While there have been several studies performed on the role of solid deposition in gas reservoirs, the role of sulfur deposition in oil reservoirs has not been investigated. This paper presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. Two separate sets of experiments, one for a gas phase system and another for a crude oil system, were conducted to investigate the deposition of elemental sulfur in (linear) carbonate cores. The gas flow tests were conducted with elemental sulfur being carried with nitrogen through limestone cores. Changes in gas flow rate were monitored while the injection pressure was held constant. A series of experiments generated valuable data for plugging with elemental sulfur. X-ray diffraction tests provided evidence of sulfur deposition along the cores. The oil flow tests were carried out to observe sulfur precipitation and plugging in a carbonate core. The crude oil was de-asphalted before conducting these tests in order to isolate the effect of asphaltene plugging. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in a phenomenological model that was incorporated in the wellbore numerical model. The data for the numerical model were obtained from both test tube and oil flow experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results)

  10. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and

  11. Integrated Modeling and Carbonate Reservoir Analysis, Upper Jurassic Smackover Formation, Fishpond Field, Southwest Alabama

    Science.gov (United States)

    Owen, Alexander Emory

    This field case study focuses on Upper Jurassic (Oxfordian) Smackover hydrocarbon reservoir characterization, modeling and evaluation at Fishpond Field, Escambia County, Alabama, eastern Gulf Coastal Plain of North America. The field is located in the Conecuh Embayment area, south of the Little Cedar Creek Field in Conecuh County and east of Appleton Field in Escambia County. In the Conecuh Embayment, Smackover microbial buildups commonly developed on Paleozoic basement paleohighs in an inner to middle carbonate ramp setting. The microbial and associated facies identified in Fishpond Field are: (F-1) peloidal wackestone, (F-2) peloidal packstone, (F-3) peloidal grainstone, (F-4) peloidal grainstone/packstone, (F-5) microbially-influenced wackestone, (F-6) microbially-influenced packstone, (F-7) microbial boundstone, (F-8) oolitic grainstone, (F-9) shale, and (F-10) dolomitized wackestone/packstone. The Smackover section consists of an alternation of carbonate facies, including F-1 through F-8. The repetitive vertical trend in facies indicates variations in depositional conditions in the area as a result of changes in water depth, energy conditions, salinity, and/or water chemistry due to temporal variations or changes in relative sea level. Accommodation for sediment accumulation also was produced by a change in base level due to differential movement of basement rocks as a result of faulting and/or subsidence due to burial compaction and extension. These changes in base level contributed to the development of a microbial buildup that ranges between 130-165 ft in thickness. The Fishpond Field carbonate reservoir includes a lower microbial buildup interval, a middle grainstone/packstone interval and an upper microbial buildup interval. The Fishpond Field has sedimentary and petroleum system characteristics similar to the neighboring Appleton and Little Cedar Creek Fields, but also has distinct differences from these Smackover fields. The characteristics of the

  12. Modelling of Salt Solubilities for Smart Water flooding in Carbonate Reservoirs using Extended UNIQUAC Model

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara

    recovery can increase that capture up to 25-30% of original oil in place (OOIP). But cost effective Enhanced Oil Recovery (EOR) techniques if implemented correctly canbe used to produce another 10-15% of the initially available hydrocarbons. Advanced water flooding (i.e. altering injection brine...... compositions by varying concentration of selected ions) is an enhanced oil recovery method which in alow cost, non-toxic manner increases oil recovery from various carbonate reservoirs. Dan and Halfdan are chalk reservoirs from the Danish North Sea, which are matured oil fields that have been flooded......For most oil reservoirs which were drilled with conventional methods, the expected initial recovery of available hydrocarbons maybe as low as 15% – thusleaving 85+% of hydrocarbons in the reservoir. Implementation of mechanical methods including pump jacks and initial gas injection or thermal...

  13. Total porosity of carbonate reservoir rocks by X-ray microtomography in two different spatial resolutions

    International Nuclear Information System (INIS)

    Nagata, Rodrigo; Appoloni, Carlos R.; Marques, Leonardo C.; Fernandes, Celso P.

    2011-01-01

    Carbonate reservoir rocks contain more than 50% of world's petroleum. To know carbonate rocks' structural properties is quite important to petroleum extraction. One of their main structural properties is the total porosity, which shows the rock's capacity to stock petroleum. In recent years, the X-ray microtomography had been used to analyze the structural parameters of reservoir rocks. Such nondestructive technique generates images of the samples' internal structure, allowing the evaluation of its properties. The spatial resolution is a measurement parameter that indicates the smallest structure size observable in a sample. It is possible to measure one sample using two or more different spatial resolutions in order to evaluate the samples' pore scale. In this work, two samples of the same sort of carbonate rock were measured, and in each measurement a different spatial resolution (17 μm and 7 μm) was applied. The obtained results showed that with the better resolution it was possible to measure 8% more pores than with the poorer resolution. Such difference provides us with good expectations about such approach to study the pore scale of carbonate rocks. (author)

  14. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Carbon-oxygen log applications in complex reservoir evaluation by neutron interactions from (D,T) accelerators

    International Nuclear Information System (INIS)

    Lochmann, M.J.; Berg, L.O.; Ivey, R.C.

    1983-01-01

    Granite Wash reservoirs in Oklahoma, Texas, Colorado and New Mexico have proven to be effective commercial producers of hydrocarbons. Substantial drilling activity continues to penetrate this formation either as a primary or secondary objective. A new technique to provide additional lithologic data to engineers and geologists will yield significant benefits in the evaluation and treatment of these reservoirs. This information can be obtained by data available from spectrum analysis through the use of tools such as the Carbon/Oxygen Log, Spectralog and NGS

  16. Facies analysis of an Upper Jurassic carbonate platform for geothermal reservoir characterization

    Science.gov (United States)

    von Hartmann, Hartwig; Buness, Hermann; Dussel, Michael

    2017-04-01

    The Upper Jurassic Carbonate platform in Southern Germany is an important aquifer for the production of geothermal energy. Several successful projects were realized during the last years. 3D-seismic surveying has been established as a standard method for reservoir analysis and the definition of well paths. A project funded by the federal ministry of economic affairs and energy (BMWi) started in 2015 is a milestone for an exclusively regenerative heat energy supply of Munich. A 3D-seismic survey of 170 square kilometer was acquired and a scientific program was established to analyze the facies distribution within the area (http://www.liag-hannover.de/en/fsp/ge/geoparamol.html). Targets are primarily fault zones where one expect higher flow rates than within the undisturbed carbonate sediments. However, since a dense net of geothermal plants and wells will not always find appropriate fault areas, the reservoir properties should be analyzed in more detail, e.g. changing the viewpoint to karst features and facies distribution. Actual facies interpretation concepts are based on the alternation of massif and layered carbonates. Because of successive erosion of the ancient land surfaces, the interpretation of reefs, being an important target, is often difficult. We found that seismic sequence stratigraphy can explain the distribution of seismic pattern and improves the analysis of different facies. We supported this method by applying wavelet transformation of seismic data. The splitting of the seismic signal into successive parts of different bandwidths, especially the frequency content of the seismic signal, changed by tuning or dispersion, is extracted. The combination of different frequencies reveals a partition of the platform laterally as well as vertically. A cluster analysis of the wavelet coefficients further improves this picture. The interpretation shows a division into ramp, inner platform and trough, which were shifted locally and overprinted in time by other

  17. Criteria for identification of carbonate reservoirs according to well logging data (carboniferous deposits of Astrakhan' vault taken as an example)

    International Nuclear Information System (INIS)

    Makarova, A.N.; Mitalev, I.A.

    1979-01-01

    Described are the criteria for identification of carbonate reservoirs according to well logging data (carboniferous deposits of Astrakhan' vault taken as an example). According to gamma logging and cavitymetry data clay areas (decreased readings of neutron-gamma logging opposite dense rocks) are distinguished in a well log. ''Reservoir-nonreserVoir'' boundary is relatively drawn on the basis of the relation between neutron-gamma logaing indications and average general porosity of carbonate rocks determined by accoustic and neutron gamma logging

  18. ‘The subjective inside us can turn into the objective outside’: Vernon Lee’s Psychological Aesthetics

    Directory of Open Access Journals (Sweden)

    Carolyn Burdett

    2011-06-01

    Full Text Available Normal 0 false false false EN-GB X-NONE X-NONE This essay argues that Vernon Lee’s psychological aesthetics importantly illuminate a transition between Victorian and Modernist ideas about the experience of beauty. It traces Lee’s discovery and adoption of the term ‘empathy’ as the key mechanism of aesthetic feeling, and her gradual and never quite certain decision that it must be understood as primarily a mental rather than a physical process. 

  19. An Efficient Upscaling Procedure Based on Stokes-Brinkman Model and Discrete Fracture Network Method for Naturally Fractured Carbonate Karst Reservoirs

    KAUST Repository

    Qin, Guan

    2010-01-01

    Naturally-fractured carbonate karst reservoirs are characterized by various-sized solution caves that are connected via fracture networks at multiple scales. These complex geologic features can not be fully resolved in reservoir simulations due to the underlying uncertainty in geologic models and the large computational resource requirement. They also bring in multiple flow physics which adds to the modeling difficulties. It is thus necessary to develop a method to accurately represent the effect of caves, fractures and their interconnectivities in coarse-scale simulation models. In this paper, we present a procedure based on our previously proposed Stokes-Brinkman model (SPE 125593) and the discrete fracture network method for accurate and efficient upscaling of naturally fractured carbonate karst reservoirs.

  20. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ikwuakor, K.C.

    1994-03-01

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  1. Numerical simulation of carbon dioxide effects in geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Moya, S.L.; Iglesias, E.R. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-03-01

    We developed and coded a new equation of state (EOS) for water-carbon dioxide mixtures and coupled it to the TOUGH numerical simulator. This EOS is valid up to 350{degrees}C and 500 bar. Unlike previous thermodynamical models, it rigorously considers the non-ideal behavior of both components in the gaseous mixture and formally includes the effect of the compressibility of the liquid phase. We refer to the coupling of this EOS with TOUGH as TOUGH-DIOX. To complement this enhancement of TOUGH, we added indexed output files for easy selection and interpretation of results. We validated TOUGH-DIOX against published results. Furthermore we used TOUGH-DIOX to explore and compare mass and energy inflow performance relationships of geothermal wells with/without carbon dioxide (CO{sub 2}). Our results include the effects of a broad range of fluid and formation properties, initial conditions and history of reservoir production. This work contributes with generalized dimensionless inflow performance relationships appropriate for geothermal use.

  2. Distribution and Thermal Maturity of Devonian Carbonate Reservoir Solid Bitumen in Desheng Area of Guizhong Depression, South China

    Directory of Open Access Journals (Sweden)

    Yuguang Hou

    2017-01-01

    Full Text Available The distribution of solid bitumen in the Devonian carbonate reservoir from well Desheng 1, Guizhong Depression, was investigated by optical microscope and hydrocarbon inclusions analysis. Vb and chemical structure indexes measured by bitumen reflectance, laser Raman microprobe (LRM, and Fourier transform infrared spectroscopy (FTIR were carried out to determine the thermal maturity of solid bitumen. Based on the solid bitumen thermal maturity, the burial and thermal maturity history of Devonian carbonate reservoir were reconstructed by basin modeling. The results indicate that the fractures and fracture-related dissolution pores are the main storage space for the solid bitumen. The equivalent vitrinite reflectance of solid bitumen ranges from 3.42% to 4.43% converted by Vb (% and LRM. The infrared spectroscopy analysis suggests that there are no aliphatic chains detected in the solid bitumen which is rich in aromatics C=C chains (1431–1440 cm−1. The results of Vb (%, LRM, and FTIR analysis demonstrate that the solid bitumen has experienced high temperature and evolved to the residual carbonaceous stage. The thermal evolution of Devonian reservoirs had experienced four stages. The Devonian reservoirs reached the highest reservoir temperature 210–260°C during the second rapid burial-warming stage, which is the main period for the solid bitumen formation.

  3. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on

  4. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic

  5. Interview with Vernon Haskie, Navajo jeweler, Lukachukai, Navajo Nation Reservation, AZ, USA, October 27, 2000 Entretien avec Vernon Haskie, Navajo, artiste joaillier, Lukachukai, réserve de la nation navajo, AZ, Etats-Unis

    Directory of Open Access Journals (Sweden)

    Gérard Selbach

    2009-10-01

    Full Text Available Vernon Haskie (born in 1968 became a full-time jeweler in 1998 after resigning from a job at the tribe’s phone company. What was a hobby for years is now a thriving career with numerous awards at the major Native arts exhibitions within a few years: the Best of Class at the 1999 and 2000 Santa Fe Indian Market, the Best of Show at the 2000 Heard Museum Guild Indian Fair and Market, the Best of Classification at the 2002 Heard Museum Guild Indian Fair and Market and a dozen others. Some of hi...

  6. Vernon Lee in the Vatican: the uneasy alliance of aestheticism and archaeology.

    Science.gov (United States)

    Evangelista, Stefano

    2009-01-01

    From the 1800s onward, aesthetic critics attempted to free the study of ancient Greek art from the frameworks of institutional education and professionalized criticism. In this process, aestheticism entered an uneasy alliance with archaeology, a discipline that was likewise challenging traditional modes of classical learning practiced in public schools and the old universities. In "The Child in the Vatican" (1881), Vernon Lee -- writing under the influence of Pater and from a position of cosmopolitan female amateurism -- examines the uses of archaeological science in the study of classical art. Her analysis of the sculptures of the Niobe Group at once relies on the archaeological method and asks readers to doubt scientific approaches to art that dim the sublime power of the art object.

  7. Application of probabilistic facies prediction and estimation of rock physics parameters in a carbonate reservoir from Iran

    International Nuclear Information System (INIS)

    Karimpouli, Sadegh; Hassani, Hossein; Nabi-Bidhendi, Majid; Khoshdel, Hossein; Malehmir, Alireza

    2013-01-01

    In this study, a carbonate field from Iran was studied. Estimation of rock properties such as porosity and permeability is much more challenging in carbonate rocks than sandstone rocks because of their strong heterogeneity. The frame flexibility factor (γ) is a rock physics parameter which is related not only to pore structure variation but also to solid/pore connectivity and rock texture in carbonate reservoirs. We used porosity, frame flexibility factor and bulk modulus of fluid as the proper parameters to study this gas carbonate reservoir. According to rock physics parameters, three facies were defined: favourable and unfavourable facies and then a transition facies located between these two end members. To capture both the inversion solution and associated uncertainty, a complete implementation of the Bayesian inversion of the facies from pre-stack seismic data was applied to well data and validated with data from another well. Finally, this method was applied on a 2D seismic section and, in addition to inversion of petrophysical parameters, the high probability distribution of favorable facies was also obtained. (paper)

  8. Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations

    Science.gov (United States)

    Jones, Kevin B.; Blondes, Madalyn S.

    2015-01-01

    “Unconventional reservoirs” for carbon dioxide (CO2) storage—that is, geologic reservoirs in which changes to the rock trap CO2 and therefore contribute to CO2 storage—including coal, shale, basalt, and ultramafic rocks, were the focus of a U.S. Geological Survey (USGS) workshop held March 28 and 29, 2012, at the National Conservation Training Center in Shepherdstown, West Virginia. The goals of the workshop were to determine whether a detailed assessment of CO2 storage capacity in unconventional reservoirs is warranted, and if so, to build a set of recommendations that could be used to develop a methodology to assess this storage capacity. Such an assessment would address only the technically available resource, independent of economic or policy factors. At the end of the workshop, participants agreed that sufficient knowledge exists to allow an assessment of the potential CO2 storage resource in coals, organic-rich shales, and basalts. More work remains to be done before the storage resource in ultramafic rocks can be meaningfully assessed.

  9. Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic Wafra case study

    KAUST Repository

    Katterbauer, Klemens

    2015-07-14

    Heavy oil recovery has been a major focus in the oil and gas industry to counter the rapid depletion of conventional reservoirs. Various techniques for enhancing the recovery of heavy oil were developed and pilot-tested, with steam drive techniques proven in most circumstances to be successful and economically viable. The Wafra field in Saudi Arabia is at the forefront of utilizing steam recovery for carbonate heavy oil reservoirs in the Middle East. With growing injection volumes, tracking the steam evolution within the reservoir and characterizing the formation, especially in terms of its porosity and permeability heterogeneity, are key objectives for sound economic decisions and enhanced production forecasts. We have developed an integrated reservoir history matching framework using ensemble based techniques incorporating seismic data for enhancing reservoir characterization and improving history matches. Examining the performance on a synthetic field study of the Wafra field, we could demonstrate the improved characterization of the reservoir formation, determining more accurately the position of the steam chambers and obtaining more reliable forecasts of the reservoir’s recovery potential. History matching results are fairly robust even for noise levels up to 30%. The results demonstrate the potential of the integration of full-waveform seismic data for steam drive reservoir characterization and increased recovery efficiency.

  10. Discontinuities Characteristics of the Upper Jurassic Arab-D Reservoir Equivalent Tight Carbonates Outcrops, Central Saudi Arabia

    Science.gov (United States)

    Abdlmutalib, Ammar; Abdullatif, Osman

    2017-04-01

    Jurassic carbonates represent an important part of the Mesozoic petroleum system in the Arabian Peninsula in terms of source rocks, reservoirs, and seals. Jurassic Outcrop equivalents are well exposed in central Saudi Arabia and which allow examining and measuring different scales of geological heterogeneities that are difficult to collect from the subsurface due to limitations of data and techniques. Identifying carbonates Discontinuities characteristics at outcrops might help to understand and predict their properties and behavior in the subsurface. The main objective of this study is to identify the lithofacies and the discontinuities properties of the upper Jurassic carbonates of the Arab D member and the Jubaila Formation (Arab-D reservoir) based on their outcrop equivalent strata in central Saudi Arabia. The sedimentologic analysis revealed several lithofacies types that vary in their thickness, abundances, cyclicity and vertical and lateral stacking patterns. The carbonates lithofacies included mudstone, wackestone, packstone, and grainstone. These lithofacies indicate deposition within tidal flat, skeletal banks and shallow to deep lagoonal paleoenvironmental settings. Field investigations of the outcrops revealed two types of discontinuities within Arab D Member and Upper Jubaila. These are depositional discontinuities and tectonic fractures and which all vary in their orientation, intensity, spacing, aperture and displacements. It seems that both regional and local controls have affected the fracture development within these carbonate rocks. On the regional scale, the fractures seem to be structurally controlled by the Central Arabian Graben System, which affected central Saudi Arabia. While, locally, at the outcrop scale, stratigraphic, depositional and diagenetic controls appear to have influenced the fracture development and intensity. The fracture sets and orientations identified on outcrops show similarity to those fracture sets revealed in the upper

  11. Interstitial radiation therapeutic techniques at Mount Vernon Hospital

    International Nuclear Information System (INIS)

    Denham, J.W.; Strickland, P.; Alderson, A.M.; Hudson, F.R.; Bennett, M.H.

    1982-01-01

    Retrospective analysis of 56 cases of carcinoma on the lateral border of the anterior two thirds of the tongue treated at Mount Vernon Hospital using radium needle implant alone yielded 5-year actuarial survivals of 75.3 per cent in 25 T1N0 cases and 81.8 per cent in 25 T2N0 cases. Five-year actuarial local recurrence of 17.5 per cent was recorded in the T1 group and 35 per cent in the T2 group. Local recurrences were attributed to failure of the implant to encompass extensions of the tumour along the lateral border or into the musculature of the tongue. Five-year actuarial local recurrence of 66.2 per cent was recorded in 18 patients with carcinoma of the breast treated by radium needle implant alone; 4 of these 9 local recurrences occurred at some distance from the treated area and could not be classed as marginal recurrences. A preliminary investigation carried out in 1981 indicated that significant improvements in source distribution, particularly at poorly accessible sites, could be achieved using afterloading techniques. In addition the use of 192 Ir as a source could result in improvements in staff protection. (Auth.)

  12. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II; ANNUAL

    International Nuclear Information System (INIS)

    Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

    2002-01-01

    The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs

  13. Types and characteristics of carbonate reservoirs and their implication on hydrocarbon exploration: A case study from the eastern Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Shiwei Huang

    2017-02-01

    Full Text Available Carbonate rocks are deposited in the Ordovician, Cambrian, and Sinian of eastern Tarim Basin with a cumulative maximum thickness exceeding 2000 m. They are the main carriers of oil and gas, and a great deal of natural gas has been found there in the past five years. Based on lithofacies and reservoir differences, natural gas exploration domains of eastern Tarim Basin can be classified into five types: Ordovician platform limestone; Ordovician platform dolomite; Cambrian platform margin mound shoal; Cambrian slope gravity flow deposits, and; Sinian dolomite. Carbonate reservoir characteristics of all the types were synthetically analyzed through observation on drilling core and thin sections, porosity and permeability measurement, and logging data of over 10 drilling wells. We find distribution of part of good fracture and cave reservoir in carbonate platform limestone of Ordovician. In the Ordovician, platform facies dolomite is better than limestone, and in the Cambrian, platform margin mound shoal dolomite has large stacking thickness. Good quality and significantly thick carbonate gravity deposit flow can be found in the Cambrian slope, and effective reservoir has also been found in Sinian dolomite. Commercial gas has been found in the limestone and dolomite of Ordovician in Shunnan and Gucheng areas. Exploration experiences from these two areas are instructive, enabling a deeper understanding of this scene.

  14. Geological storage of carbon dioxide in the coal seams: from material to the reservoir

    International Nuclear Information System (INIS)

    Nikoosokhan, S.

    2012-01-01

    CO 2 emissions into the atmosphere are recognized to have a significant effect on global warming. Geological storage of CO 2 is widely regarded as an essential approach to reduce the impact of such emissions on the environment. Moreover, injecting carbon dioxide in coal bed methane reservoirs facilitates the recovery of the methane naturally present, a process known as enhanced coal bed methane recovery (ECBM). But the swelling of the coal matrix induced by the preferential adsorption by coal of carbon dioxide over the methane in place leads to a closure of the cleat system (a set of small natural fractures) of the reservoir and therefore to a loss of injectivity. This PhD thesis is dedicated to a study of how this injectivity evolves in presence of fluids. We derive two poro-mechanical dual-porosity models for a coal bed reservoir saturated by a pure fluid. The resulting constitutive equations enable to better understand and model the link between the injectivity of a coal seam and the adsorption-induced swelling of coal. For both models, the pore space of the reservoir is considered to be divided into the macroporous cleats and the pores of the coal matrix. The two models differ by how adsorption of fluid is taken into account: the first model is restricted to surface adsorption, while the second model can be applied for adsorption in a medium with a generic pore size distribution and thus in a microporous medium such as coal, in which adsorption mostly occurs by micropore filling. The latter model is calibrated on two coals with different sorption and swelling properties. We then perform simulations at various scales (Representative Elementary Volume, coal sample, coal seam). In particular, we validate our model on experimental data of adsorption-induced variations of permeability of coal. We also perform simulations of seams from which methane would be produced (CBM) or of methane-free seams into which CO 2 would be injected. We study the effect of various

  15. Fish mercury development in relation to abiotic characteristics and carbon sources in a six-year-old, Brazilian reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Tuomola, Leena; Niklasson, Terese [Evolutionary Biology Centre and Department of Limnology, Uppsala University, Norbyvaegen 20, S-752 36 Uppsala (Sweden); Castro e Silva, Edinaldo de [Departamento de Quimica, Universidade Federal de Mato Grosso (UFMT), Av. Fernando C. Costa/sn, 78 090-900 Cuiaba-MT (Brazil); Hylander, Lars D. [Department of Earth Sciences, Air, Water and Landscape Science, Uppsala University, Villavaegen 16, S-752 36 Uppsala (Sweden)], E-mail: Lars.Hylander@hyd.uu.se

    2008-02-01

    Time series on fish mercury (Hg) development are rare for hydroelectric reservoirs in the tropics. In the central-western part of Brazil, a hydroelectric reservoir, called Lago Manso, was completed in 1999 after that background levels of fish Hg concentrations had been determined. The development for the first 3 years was studied in 2002. The objective of the present study was to determine development of fish Hg concentrations for a second three-year period after flooding. The bioaccumulation factor and certain abiotic and biotic factors, possibly affecting the availability and accumulation of Hg, were also examined. The results show that Hg levels in fish from Lago Manso have increased more than five times compared to the background levels observed before construction of the reservoir. At the same time, dissolved organic carbon has increased while dissolved oxygen has decreased indicating enhanced bioavailability of Hg. In the reservoir, Salminus brasiliensis had in average a Hg content of 1.1 {mu}g g{sup -1} f.w., Pseudoplatystoma fasciatum 1.2, Serrasalmus marginatus/spilopleura 0.9, and Brycon hilarii 0.6 {mu}g g{sup -1} f.w. The average fish Hg contents were higher downstream, except for B. hilarii. In the reservoir, the average Hg content of each species was in 2005 always over the consumption limit (0.55 {mu}g total Hg g{sup -1} f.w.) recommended by WHO. Therefore, the people living around Lago Manso should be informed of the health effects of Hg, and fish consumption recommendations should be carried out. The accumulation of Hg varies widely between species as shown by the bioaccumulation factor which ranges between 5.08 and 5.59 log units. The observed variation is explained by differences in diet and trophic position with piscivorous fish exhibiting the highest mean Hg concentration, followed by carnivorous and omnivorous species. Carbon isotope analyses imply that trophic position is not the only cause of the observed differences in Hg levels between

  16. Vernon Bermuda Workshop: A Course in Sub-tropical Island Ecology

    Science.gov (United States)

    Werdell, P. Jeremy

    2012-01-01

    More than 30 years ago, educators in central Connecticut developed the Vernon Bermuda Workshop as a means of introducing middle- and high-school students to subtropical island ecology. Each year, after months of classroom preparation, approximately 20 top students spend one week at the Bermuda Institute of Ocean Sciences (St. George's, Bermuda) studying the local flora and fauna in both the field and laboratory. The curriculum includes an additional array of activities, ranging from historical and ecological tours to spelunking, and culminates in a series of field-observation-related presentations. I am responsible for the meteorological and oceanographic components of the curriculum. In the field, my students collect time-series of biophysical variables over the course of a day, which they use to interpret diurnal patterns and interactions amongst the variables. I also add remote-sensing and phytoplankton biology components to the curriculum - in previous years, my students have studied time-series of Sea WIFS imagery collected at Bermuda during our trip. I have been an Instructor for this Workshop since 2003. The Workshop provides an outreach activity for GSFC Code 616.

  17. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    International Nuclear Information System (INIS)

    Hickman, T. Scott

    2003-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  18. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    International Nuclear Information System (INIS)

    Raj Kumar; Keith Brown; Hickman, T. Scott; Justice, James J.

    2000-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  19. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    International Nuclear Information System (INIS)

    Hickman, T. Scott; Justice, James J.

    2001-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  20. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  1. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Boomer, R.J.; Cole, R.; Kovar, M.; Prieditis, J.; Vogt, J.; Wehner, S.

    1999-02-24

    The application cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in capital-intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in a attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir.

  2. Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

    2000-03-16

    The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

  3. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  4. The Influence of Seal Properties on Pressure Buildup and Leakage of Carbon Dioxide from Sequestration Reservoirs (Invited)

    Science.gov (United States)

    Benson, S. M.; Chabora, E.

    2009-12-01

    The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.

  5. CO2 Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Annual report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, S.C.; Boomer, R.J.; Cole, R.; Preiditus, J.; Vogt, J.

    1996-09-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg/San Andres formation; a light oil, shallow shelf carbonate reservoir within the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico.

  6. Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere

    Science.gov (United States)

    Deshmukh, Chandrashekhar; Guérin, Frédéric; Vongkhamsao, Axay; Pighini, Sylvie; Oudone, Phetdala; Sopraseuth, Saysoulinthone; Godon, Arnaud; Rode, Wanidaporn; Guédant, Pierre; Oliva, Priscia; Audry, Stéphane; Zouiten, Cyril; Galy-Lacaux, Corinne; Robain, Henri; Ribolzi, Olivier; Kansal, Arun; Chanudet, Vincent; Descloux, Stéphane; Serça, Dominique

    2018-03-01

    Freshwater reservoirs are a significant source of CO2 to the atmosphere. CO2 is known to be emitted at the reservoir surface by diffusion at the air-water interface and downstream of dams or powerhouses by degassing and along the river course. In this study, we quantified total CO2 emissions from the Nam Theun 2 Reservoir (Lao PDR) in the Mekong River watershed. The study started in May 2009, less than a year after flooding and just a few months after the maximum level was first reached and lasted until the end of 2013. We tested the hypothesis that soils from the drawdown area would be a significant contributor to the total CO2 emissions.Total inorganic carbon, dissolved and particulate organic carbon and CO2 concentrations were measured in 4 pristine rivers of the Nam Theun watershed, at 9 stations in the reservoir (vertical profiles) and at 16 stations downstream of the monomictic reservoir on a weekly to monthly basis. CO2 bubbling was estimated during five field campaigns between 2009 and 2011 and on a weekly monitoring, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems in 2012 and 2013. Three field campaigns in 2010, 2011 and 2013 were dedicated to the soils description in 21 plots and the quantification of soil CO2 emissions from the drawdown area. On this basis, we calculated total CO2 emissions from the reservoir and carbon inputs from the tributaries. We confirm the importance of the flooded stock of organic matter as a source of carbon (C) fuelling emissions. We show that the drawdown area contributes, depending on the year, from 40 to 75 % of total annual gross emissions in this flat and shallow reservoir. Since the CO2 emissions from the drawdown zone are almost constant throughout the years, the large interannual variations result from the significant decrease in diffusive fluxes and downstream emissions between 2010 and 2013. This overlooked pathway in terms of gross emissions would require an in-depth evaluation

  7. Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere

    Directory of Open Access Journals (Sweden)

    C. Deshmukh

    2018-03-01

    Full Text Available Freshwater reservoirs are a significant source of CO2 to the atmosphere. CO2 is known to be emitted at the reservoir surface by diffusion at the air–water interface and downstream of dams or powerhouses by degassing and along the river course. In this study, we quantified total CO2 emissions from the Nam Theun 2 Reservoir (Lao PDR in the Mekong River watershed. The study started in May 2009, less than a year after flooding and just a few months after the maximum level was first reached and lasted until the end of 2013. We tested the hypothesis that soils from the drawdown area would be a significant contributor to the total CO2 emissions.Total inorganic carbon, dissolved and particulate organic carbon and CO2 concentrations were measured in 4 pristine rivers of the Nam Theun watershed, at 9 stations in the reservoir (vertical profiles and at 16 stations downstream of the monomictic reservoir on a weekly to monthly basis. CO2 bubbling was estimated during five field campaigns between 2009 and 2011 and on a weekly monitoring, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems in 2012 and 2013. Three field campaigns in 2010, 2011 and 2013 were dedicated to the soils description in 21 plots and the quantification of soil CO2 emissions from the drawdown area. On this basis, we calculated total CO2 emissions from the reservoir and carbon inputs from the tributaries. We confirm the importance of the flooded stock of organic matter as a source of carbon (C fuelling emissions. We show that the drawdown area contributes, depending on the year, from 40 to 75 % of total annual gross emissions in this flat and shallow reservoir. Since the CO2 emissions from the drawdown zone are almost constant throughout the years, the large interannual variations result from the significant decrease in diffusive fluxes and downstream emissions between 2010 and 2013. This overlooked pathway in terms of gross emissions would require

  8. An Efficient Upscaling Process Based on a Unified Fine-scale Multi-Physics Model for Flow Simulation in Naturally Fracture Carbonate Karst Reservoirs

    KAUST Repository

    Bi, Linfeng

    2009-01-01

    The main challenges in modeling fluid flow through naturally-fractured carbonate karst reservoirs are how to address various flow physics in complex geological architectures due to the presence of vugs and caves which are connected via fracture networks at multiple scales. In this paper, we present a unified multi-physics model that adapts to the complex flow regime through naturally-fractured carbonate karst reservoirs. This approach generalizes Stokes-Brinkman model (Popov et al. 2007). The fracture networks provide the essential connection between the caves in carbonate karst reservoirs. It is thus very important to resolve the flow in fracture network and the interaction between fractures and caves to better understand the complex flow behavior. The idea is to use Stokes-Brinkman model to represent flow through rock matrix, void caves as well as intermediate flows in very high permeability regions and to use an idea similar to discrete fracture network model to represent flow in fracture network. Consequently, various numerical solution strategies can be efficiently applied to greatly improve the computational efficiency in flow simulations. We have applied this unified multi-physics model as a fine-scale flow solver in scale-up computations. Both local and global scale-up are considered. It is found that global scale-up has much more accurate than local scale-up. Global scale-up requires the solution of global flow problems on fine grid, which generally is computationally expensive. The proposed model has the ability to deal with large number of fractures and caves, which facilitate the application of Stokes-Brinkman model in global scale-up computation. The proposed model flexibly adapts to the different flow physics in naturally-fractured carbonate karst reservoirs in a simple and effective way. It certainly extends modeling and predicting capability in efficient development of this important type of reservoir.

  9. Experimental and numerical modeling of sulfur plugging in a carbonate oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Al-Awadhy, F. [ADMA-OPCO, Abudhabi (United Arab Emirates); Kocabas, I.; Abou-Kassem, J.H. [UAE University, Al Ain (United Arab Emirates); Islam, M.R. [Dalhousie University, Halifax, NS (United States)

    2005-01-15

    Many oil and gas reservoirs in the United Arab Emirates produce large amounts of sour gas, mainly in the form of hydrogen sulfide. In addition to creating problems in the production line, wellbore damage is often reported due to the precipitation of elemental sulfur in the vicinity of the wellbore. While there have been several studies performed on the role of solid deposition in a gas reservoir, the role of sulfur deposition in oil reservoirs has not been investigated. This article presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. The experiments were conducted in a core (linear) system. Both analytical and numerical modelings were performed in a linear coordinate system. Data for the numerical model was obtained from both test tube and coreflood experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results). The crude oil was de-asphalted prior to conducting the experiment in order to isolate the effect of asphaltene plugging. A series of coreflood tests was carried out to observe sulfur precipitation and plugging in a carbonate rock. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in the phenomenological model and can be incorporated in the wellbore numerical model. (author)

  10. Prediction of abrupt reservoir compaction and surface subsidence due to pore collapse in carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Smits, R.M.M.; de Waal, A.; van Kooten, J.F.C.

    1986-01-01

    A new procedure has been developed to predict the abrupt in-situ compaction and the associated surface subsidence above high-porosity carbonate fields showing pore collapse. The approach is based on an extensive laboratory compaction study in which the effects of carbonate type, porosity, core preparation, pore saturant, horizontal to vertical stress ratio and loading rate on the pore collapse behaviour were investigated. For each carbonate type a trendline was established describing the relationship between the porosity after collapse and the vertical effective stress. This trendline concept, in combination with existing subsidence models, enables reservoir compaction and surface subsidence to be predicted on the basis of wireline porosity logs. Static and dynamic elastic constants were found to be uncorrelated during pore collapse. The position of the trendline depends strongly on carbonate type, pore saturant, loading rate and stress ratio. Therefore procedures are given to derive the correct in-situ trendline from laboratory compaction experiments.

  11. Prediction of abrupt reservoir compaction and surface subsidence caused by pore collapse in carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Smits, R.M.M.; De Waal, J.A.; Van Kootan, J.F.C.

    1988-06-01

    A new procedure has been developed to predict the abrupt in-situ compaction and the associated surface subsidence above high-porosity carbonate fields that show pore collapse. The approach is based on an extensive laboratory compaction study in which the effects of carbonate type, porosity, core preparation, pore saturant, horizontal/vertical stress ratio, and loading rate on pore-collapse behavior were investigated. For a number of carbonate types, a trendline was established that describes the relationship between the porosity after collapse and the vertical effective stress. This trendline concept, in combination with existing subsidence models, enables reservoir compaction and surface subsidence to be predicted on the basis of wireline porosity logs. Static and dynamic elastic constants were found to be uncorrelated during pore collapse. The position of the trendline depends strongly on carbonate type, pore saturant, loading rate, and stress ratio. Therefore, procedures are given to derive the correct in-situ trendline from laboratory compaction experiments.

  12. Reservoir effects in radiocarbon dating

    International Nuclear Information System (INIS)

    Head, M.J.

    1997-01-01

    Full text: The radiocarbon dating technique depends essentially on the assumption that atmospheric carbon dioxide containing the cosmogenic radioisotope 14 C enters into a state of equilibrium with all living material (plants and animals) as part of the terrestrial carbon cycle. Terrestrial reservoir effects occur when the atmospheric 14 C signal is diluted by local effects where systems depleted in 14 C mix with systems that are in equilibrium with the atmosphere. Naturally, this can occur with plant material growing close to an active volcano adding very old CO 2 to the atmosphere (the original 14 C has completely decayed). It can also occur in highly industrialised areas where fossil fuel derived CO 2 dilutes the atmospheric signal. A terrestrial reservoir effect can occur in the case of fresh water shells living in rivers or lakes where there is an input of ground water from springs or a raising of the water table. Soluble bicarbonate derived from the dissolution of very old limestone produces a 14 C dilution effect. Land snail shells and stream carbonate depositions (tufas and travertines) can be affected by a similar mechanism. Alternatively, in specific cases, these reservoir effects may not occur. This means that general interpretations assuming quantitative values for these terrestrial effects are not possible. Each microenvironment associated with samples being analysed needs to be evaluated independently. Similarly, the marine environment produces reservoir effects. With respect to marine shells and corals, the water depth at which carbonate growth occurs can significantly affect quantitative 14 C dilution, especially in areas where very old water is uplifted, mixing with top layers of water that undergo significant exchange with atmospheric CO 2 . Hence, generalisations with respect to the marine reservoir effect also pose problems. These can be exacerbated by the mixing of sea water with either terrestrial water in estuaries, or ground water where

  13. Integrated Sedimentological Approach to Assess Reservoir Quality and Architecture of Khuff Carbonates: Outcrop Analog, Central Saudi Arabia

    Science.gov (United States)

    Osman, Mutsim; Abdullatif, Osman

    2017-04-01

    The Permian to Triassic Khuff carbonate reservoirs (and equivalents) in the Middle East are estimated to contain about 38.4% of the world's natural gas reserves. Excellent exposed outcrops in central Saudi Arabia provide good outcrop equivalents to subsurface Khuff reservoirs. This study conduct high resolution outcrop scale investigations on an analog reservoir for upper Khartam of Khuff Formation. The main objective is to reconstruct litho- and chemo- stratigraphic outcrop analog model that may serve to characterize reservoir high resolution (interwell) heterogeneity, continuity and architecture. Given the fact of the limitation of subsurface data and toolsin capturing interwell reservoir heterogeneity, which in turn increases the value of this study.The methods applied integrate sedimentological, stratigraphic petrographic, petrophysical data and chemical analyses for major, trace and rare earth elements. In addition, laser scanning survey (LIDAR) was also utilized in this study. The results of the stratigraphic investigations revealed that the lithofacies range from mudstone, wackestone, packestone and grainstone. These lithofacies represent environments ranging from supratidal, intertidal, subtidal and shoal complex. Several meter-scale and less high resolution sequences and composite sequences within 4th and 5th order cycles were also recognized in the outcrop analog. The lithofacies and architectural analysis revealed several vertically and laterally stacked sequences at the outcrop as revealed from the stratigraphic sections and the lidar scan. Chemostratigraphy is effective in identifying lithofacies and sequences within the outcrop analog. Moreover, different chemical signatures were also recognized and allowed establishing and correlating high resolution lithofacies, reservoir zones, layers and surfaces bounding reservoirs and non-reservoir zones at scale of meters or less. The results of this high resolution outcrop analog study might help to understand

  14. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    NARCIS (Netherlands)

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.

    2013-01-01

    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture

  15. Water in chalk reservoirs: 'friend or foe?'

    International Nuclear Information System (INIS)

    Hjuler, Morten Leth

    2004-01-01

    Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively

  16. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  17. Responses of Microbial Community Composition to Temperature Gradient and Carbon Steel Corrosion in Production Water of Petroleum Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-12-01

    Full Text Available Oil reservoir production systems are usually associated with a temperature gradient and oil production facilities frequently suffer from pipeline corrosion failures. Both bacteria and archaea potentially contribute to biocorrosion of the oil production equipment. Here the response of microbial populations from the petroleum reservoir to temperature gradient and corrosion of carbon steel coupons were investigated under laboratory condition. Carbon steel coupons were exposed to production water from a depth of 1809 m of Jiangsu petroleum reservoir (China and incubated for periods of 160 and 300 days. The incubation temperatures were set at 37, 55, and 65°C to monitoring mesophilic, thermophilic and hyperthermophilic microorganisms associated with anaerobic carbon steel corrosion. The results showed that corrosion rate at 55°C (0.162 ± 0.013 mm year-1 and 37°C (0.138 ± 0.008 mm year-1 were higher than that at 65°C (0.105 ± 0.007 mm year-1, and a dense biofilm was observed on the surface of coupons under all biotic incubations. The microbial community analysis suggests a high frequency of bacterial taxa associated with families Porphyromonadaceae, Enterobacteriaceae, and Spirochaetaceae at all three temperatures. While the majority of known sulfate-reducing bacteria, in particular Desulfotignum, Desulfobulbus and Desulfovibrio spp., were predominantly observed at 37°C; Desulfotomaculum spp., Thermotoga spp. and Thermanaeromonas spp. as well as archaeal members closely related to Thermococcus and Archaeoglobus spp. were substantially enriched at 65°C. Hydrogenotrophic methanogens of the family Methanobacteriaceae were dominant at both 37 and 55°C; acetoclastic Methanosaeta spp. and methyltrophic Methanolobus spp. were enriched at 37°C. These observations show that temperature changes significantly alter the microbial community structure in production fluids and also affected the biocorrosion of carbon steel under anaerobic conditions.

  18. Sedimentary record of water column trophic conditions and sediment carbon fluxes in a tropical water reservoir (Valle de Bravo, Mexico).

    Science.gov (United States)

    Carnero-Bravo, Vladislav; Merino-Ibarra, Martín; Ruiz-Fernández, Ana Carolina; Sanchez-Cabeza, Joan Albert; Ghaleb, Bassam

    2015-03-01

    Valle de Bravo (VB) is the main water reservoir of the Cutzamala hydraulic system, which provides 40% of the drinking water consumed in the Mexico City Metropolitan Area and exhibits symptoms of eutrophication. Nutrient (C, N and P) concentrations were determined in two sediment cores to reconstruct the water column trophic evolution of the reservoir and C fluxes since its creation in 1947. Radiometric methods ((210)Pb and (137)Cs) were used to obtain sediment chronologies, using the presence of pre-reservoir soil layers in one of the cores as an independent chronological marker. Mass accumulation rates ranged from 0.12 to 0.56 g cm(-2) year(-1) and total organic carbon (TOC) fluxes from 122 to 380 g m(-2) year(-1). Total N ranged 4.9-48 g m(-2) year(-1), and total P 0.6-4.2 g m(-2) year(-1). The sedimentary record shows that all three (C, N and P) fluxes increased significantly after 1991, in good agreement with the assessed trophic evolution of VB and with historic and recent real-time measurements. In the recent years (1992-2006), the TOC flux to the bottom of VB (average 250 g m(-2) year(-1), peaks 323 g m(-2) year(-1)) is similar to that found in highly eutrophic reservoirs and impoundments. Over 1/3 of the total C burial since dam construction, circa 70,000 t, has occurred in this recent period. These results highlight the usefulness of the reconstruction of carbon and nutrient fluxes from the sedimentary record to assess carbon burial and its temporal evolution in freshwater ecosystems.

  19. Some open issues in the analysis of the storage and migration properties of fractured carbonate reservoirs

    Science.gov (United States)

    Agosta, Fabrizio

    2017-04-01

    Underground CO2 storage in depleted hydrocarbon reservoirs may become a common practice in the future to lower the concentration of greenhouse gases in the atmosphere. Results from the first experiments conducted in carbonate rocks, for instance the Lacq integrated CCS Pilot site, SW France, are quite exciting. All monitored parameters, such as the CO2 concentration at well sites, well pressures, cap rock integrity and environmental indicators show the long-term integrity of this type of geological reservoirs. Other positive news arise from the OXY-CFB-300 Compostilla Project, NW Spain, where most of the injected CO2 dissolved into the formation brines, suggesting the long-term security of this method. However, in both cases, the CO2- rich fluids partially dissolved the carbonate minerals during their migration through the fractured reservoir, modifying the overall pore volume and pressure regimes. These results support the growing need for a better understanding of the mechanical behavior of carbonate rocks over geological time of scales. In fact, it is well known that carbonates exhibit a variety of deformation mechanisms depending upon many intrinsic factors such as composition, texture, connected pore volume, and nature of the primary heterogeneities. Commonly, tight carbonates are prone to opening-mode and/or pressure solution deformation. The interplay between these two mechanisms likely affects the petrophysical properties of the fault damage zones, which form potential sites for CO2 storage due to their high values of both connected porosity and permeability. On the contrary, cataclastic deformation produces fault rocks that often form localized fluid barriers for cross-fault fluid flow. Nowadays, questions on the conditions of sealing/leakage of carbonate fault rocks are still open. In particular, the relative role played by bulk crushing, chipping, cementation, and pressure solution on connected porosity of carbonate fault rocks during structural

  20. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    Science.gov (United States)

    McLaughlin, J.F.; Frost, C.D.; Sharma, Shruti

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  1. Modeling and optimizing the design of matrix treatments in carbonate reservoirs with self-diverting acid systems

    International Nuclear Information System (INIS)

    Bulgakova, G T; Kharisov, R Ya; Sharifullin, A R; Pestrikov, A V

    2015-01-01

    Application of a self-diverting-acid based on viscoelastic surfactant (SDVA) is a promising technology for improving the efficacy of acid treatment in oil and gas-bearing carbonate reservoirs. In this study, we present a mathematical model for assessing SDVA flow and reaction with carbonate rock using the SDVA rheological characteristics. The model calculates the technological parameters for acidizing operations and the prediction of well productivity after acid treatment, in addition to technical and economic optimization of the acidizing process by modeling different acid treatment options with varying volumes, injection rates, process fluids stages and initial economic scenarios

  2. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    In a U.S. Geological Survey (USGS) study, recovery-factor estimates were calculated by using a publicly available reservoir simulator (CO2 Prophet) to estimate how much oil might be recovered with the application of a miscible carbon dioxide (CO2) enhanced oil recovery (EOR) method to technically screened oil reservoirs located in onshore and State offshore areas in the conterminous United States. A recovery factor represents the percentage of an oil reservoir’s original oil in place estimated to be recoverable by the application of a miscible CO2-EOR method. The USGS estimates were calculated for 2,018 clastic and 1,681 carbonate candidate reservoirs in the “Significant Oil and Gas Fields of the United States Database” prepared by Nehring Associates, Inc. (2012).

  3. Chemical and physical characteristics of water and sediment in Scofield Reservoir, Carbon County, Utah

    Science.gov (United States)

    Waddell, Kidd M.; Darby, D.W.; Theobald, S.M.

    1985-01-01

    Evaluations based on the nutrient content of the inflow, outflow, water in storage, and the dissolved-oxygen depletion during the summer indicate that the trophic state of Scofield Reservoir is borderline between mesotrophic and eutrophic and may become highly eutrophic unless corrective measures are taken to limit nutrient inflow.Sediment deposition in Scofield Reservoir during 1943-79 is estimated to be 3,000 acre-feet, and has decreased the original storage capacity of the reservoir by 4 percent. The sediment contains some coal, and age dating of those sediments (based on the radioisotope lead-210) indicates that most of the coal was deposited prior to about 1950.Scofield Reservoir is dimictic, with turnovers occurring in the spring and autumn. Water in the reservoir circulates completely to the bottom during turnovers. The concentration of dissolved oxygen decreases with depth except during parts of the turnover periods. Below an altitude of about 7,590 feet, where 20 percent of the water is stored, the concentration of dissolved oxygen was less than 2 milligrams per liter during most of the year. During the summer stratification period, the depletion of dissolved oxygen in the deeper layers is coincident with supersaturated conditions in the shallow layers; this is attributed to plant photosynthesis and bacterial respiration in the reservoir.During October 1,1979-August 31,1980, thedischargeweighted average concentrations of dissolved solids was 195 milligrams per liter in the combined inflow from Fish, Pondtown, and Mud Creeks, and was 175 milligrams per liter in the outflow (and to the Price River). The smaller concentration in the outflow was due primarily to precipitation of calcium carbonate in the reservoir about 80 percent of the decrease can be accounted for through loss as calcium carbonate.The estimated discharge-weighted average concentration of total nitrogen (dissolved plus suspended) in the combined inflow of Fish, Pondtown, and Mud Creeks was 1

  4. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai

    2015-10-26

    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems. In this framework, a parallel reservoir simulator, reservoir-simulation toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, whereas the MD simulations are performed to provide the required physical parameters. Technologies from several different fields are used to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large-scale CO2 sequestration for long-term storage in subsurface geological formations, such as depleted oil and gas reservoirs and deep saline aquifers, which has been proposed as one of the few attractive and practical solutions to reduce CO2 emissions and address the global-warming threat. Fine grids and accurate prediction of the properties of fluid mixtures under geological conditions are essential for accurate simulations. In this work, CO2 sequestration is presented as a first example for coupling reservoir simulation and MD, although the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical processes in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability is observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well-demonstrated with several experiments with hundreds of millions to one billion cells. To the best of our knowledge, the present work represents the first attempt to couple reservoir simulation and molecular simulation for large-scale modeling. Because of the complexity of

  5. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  6. Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries.

    Science.gov (United States)

    Selvan, Ramakrishnan Kalai; Zhu, Pei; Yan, Chaoi; Zhu, Jiadeng; Dirican, Mahmut; Shanmugavani, A; Lee, Yun Sung; Zhang, Xiangwu

    2018-03-01

    Biomass-derived porous carbon has been considered as a promising sulfur host material for lithium-sulfur batteries because of its high conductive nature and large porosity. The present study explored biomass-derived porous carbon as polysulfide reservoir to modify the surface of glass fiber (GF) separator. Two different carbons were prepared from Oak Tree fruit shells by carbonization with and without KOH activation. The KOH activated porous carbon (AC) provides a much higher surface area (796 m 2  g -1 ) than pyrolized carbon (PC) (334 m 2  g -1 ). The R factor value, calculated from the X-ray diffraction pattern, revealed that the activated porous carbon contains more single-layer sheets with a lower degree of graphitization. Raman spectra also confirmed the presence of sp 3 -hybridized carbon in the activated carbon structure. The COH functional group was identified through X-ray photoelectron spectroscopy for the polysulfide capture. Simple and straightforward coating of biomass-derived porous carbon onto the GF separator led to an improved electrochemical performance in Li-S cells. The Li-S cell assembled with porous carbon modified GF separator (ACGF) demonstrated an initial capacity of 1324 mAh g -1 at 0.2 C, which was 875 mAh g -1 for uncoated GF separator (calculated based on the 2nd cycle). Charge transfer resistance (R ct ) values further confirmed the high ionic conductivity nature of porous carbon modified separators. Overall, the biomass-derived activated porous carbon can be considered as a promising alternative material for the polysulfide inhibition in Li-S batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A novel viscoelastic surfactant suitable for use in high temperature carbonate reservoirs for diverted acidizing stimulation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Stuart; Zhou, Jian; Gadberry, Fred [AkzoNobel Surface Chemistry, Forth Worth, TX (United States); Nasr-El-Din, Hisham; Wang, Guanqun [Texas A and M University, College Station, TX (United States). Dept. of Petroleum Engineering

    2012-07-01

    Due to the low permeability of many carbonate hydrocarbon-bearing reservoirs, it is difficult to achieve economic hydrocarbon recovery from a well without secondary stimulation. Bullheading of strong acids, such as HCl is practiced in low temperature reservoirs, but as the bottom hole temperature (BHT) rises, the acid becomes increasingly corrosive, causing facial dissolution and sub-optimal wormhole network development. In the last decade, viscoelastic surfactants (VES) have been added to HCl acid systems to improve the stimulation of HT carbonate reservoirs. The VES form 'living polymers' or worm-like micelles as electrolyte concentration rises in the acid due to reaction with the reservoir. This leads to viscosification of the stimulation fluid. The viscosification slows further acid reaction in the region already contacted by the acid, and forces the acid to take an alternate path into the rock, leading to diversion of the acids further down the well to the harder to access toe or lower permeability zones. Until recently, the maximum BHT that such VES-based diverting systems could be used was up to about 250 deg F/120 deg C. Above that temperature, all viscous properties of the fluid are lost, destroying the mechanism of acid diversion. A recently developed novel viscoelastic surfactant provides nearly 100 deg F/55 deg C extension in the BHT range in which diverted acid treatments can be used. These fluids are able to maintain both viscosity up to about 375 deg F/190 deg C, with the elastic modulus predominating up to 350 deg F/175 deg C. It is the elasticity which is particularly important in acid diversion. These fluids can have their viscosity readily broken by in-situ hydrocarbons, dilution with water or by using a mutual solvent. The broken fluids are readily removed from the near-well bore, leaving the newly created wormhole network to produce the target hydrocarbons. The new VES is significantly more environmentally benign compared with current

  8. Reduced-Order Model for Leakage Through an Open Wellbore from the Reservoir due to Carbon Dioxide Injection

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-26

    Potential CO2 leakage through existing open wellbores is one of the most significant hazards that need to be addressed in geologic carbon sequestration (GCS) projects. In the framework of the National Risk Assessment Partnership (NRAP) which requires fast computations for uncertainty analysis, rigorous simulation of the coupled wellbore-reservoir system is not practical. We have developed a 7,200-point look-up table reduced-order model (ROM) for estimating the potential leakage rate up open wellbores in response to CO2 injection nearby. The ROM is based on coupled simulations using T2Well/ECO2H which was run repeatedly for representative conditions relevant to NRAP to create a look-up table response-surface ROM. The ROM applies to a wellbore that fully penetrates a 20-m thick reservoir that is used for CO2 storage. The radially symmetric reservoir is assumed to have initially uniform pressure, temperature, gas saturation, and brine salinity, and it is assumed these conditions are held constant at the far-field boundary (100 m away from the wellbore). In such a system, the leakage can quickly reach quasi-steady state. The ROM table can be used to estimate both the free-phase CO2 and brine leakage rates through an open well as a function of wellbore and reservoir conditions. Results show that injection-induced pressure and reservoir gas saturation play important roles in controlling leakage. Caution must be used in the application of this ROM because well leakage is formally transient and the ROM lookup table was populated using quasi-steady simulation output after 1000 time steps which may correspond to different physical times for the various parameter combinations of the coupled wellbore-reservoir system.

  9. Sedimentary mode and reservoir distribution of the Cambrian carbonate & evaporate paragenesis system in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Anna Xu

    2016-11-01

    Full Text Available The Cambrian carbonate & evaporite paragenesis system in the Sichuan Basin is made up of the Longwangmiao, Gaotai and Xixiangchi Fms. So far, great breakthrough has been made only in the Longwangmiao Fm instead of the latter two, and the Anyue Gasfield was discovered in the center of this basin. In this paper, therefore, the Cambrian carbonate & evaporite paragenesis system in the Sichuan Basin was analyzed in terms of its structural–sedimentary setting, sequence stratigraphic framework, sedimentary facies and the distribution of evaporites by using various geologic, logging and seismic data. Then, the geological model of sedimentary facies was established and the distribution range of favorable reservoirs was predicted. Based on these studies, the following results are obtained. Firstly, the palaeotectonic framework is characterized by the style of “one depression between two uplifts” in the setting of a large SE dipping slope, and the stratigraphic filling is in the structure of “onlapping at the bottom and truncation at the top” which is thin in the west and thick in the east. Secondly, three third-order sequence cycles which, on the whole, become shallow upward are developed from bottom to top, and gypsum-salt rocks are mainly located at the high system tract (HST of third-order sequences and concentrated in the Wanzhou–Yibin sag. Thirdly, the geological model of sedimentary facies is composed of three major sedimentary structural layers from bottom to top, namely the evaporative carbonate ramp, the evaporative diamictic restricted platform and the evaporative restricted platform. The sedimentary environment changes from the open to the closed and the penesaline for a long time, and then back to the open. The distribution of shoals changes from the pattern of “dual banks” in a large area to more scattered shoals and banded shoals, while the evaporative lagoon and tidal flat shrink. Fourthly, the reservoir distribution is

  10. Well-based stable carbon isotope leakage monitoring of an aquifer overlying the CO2 storage reservoir at the Ketzin pilot site, Germany

    Science.gov (United States)

    Nowak, Martin; Myrttinen, Anssi; Zimmer, Martin; van Geldern, Robert; Barth, Johannes A. C.

    2014-05-01

    At the pilot site for CO2 storage in Ketzin, a new well-based leakage-monitoring concept was established, comprising geochemical and hydraulic observations of the aquifer directly above the CO2 reservoir (Wiese et al., 2013, Nowak et al. 2013). Its purpose was to allow early detection of un-trapped CO2. Within this monitoring concept, we established a stable carbon isotope monitoring of dissolved inorganic carbon (DIC). If baseline isotope values of aquifer DIC (δ13CDIC) and reservoir CO2 (δ13CCO2) are known and distinct from each other, the δ13CDIC has the potential to serve as an an early indicator for an impact of leaked CO2 on the aquifer brine. The observation well of the overlying aquifer was equipped with an U-tube sampling system that allowed sampling of unaltered brine. The high alkaline drilling mud that was used during well drilling masked δ13CDIC values at the beginning of the monitoring campaign. However, subsequent monitoring allowed observing on-going re-equilibration of the brine, indicated by changing δ13CDIC and other geochemical values, until values ranging around -23 ‰ were reached. The latter were close to baseline values before drilling. Baselineδ13CDIC and δ13CCO2 values were used to derive a geochemical and isotope model that predicts evolution of δ13CDIC, if CO2 from the reservoir would leak into the aquifer. The model shows that equilibrium isotope fractionation would have to be considered if CO2 dissolves in the brine. The model suggests that stable carbon isotope monitoring is a suitable tool to assess the impact of injected CO2 in overlying groundwater aquifers. However, more data are required to close gaps of knowledge about fractionation behaviour within the CO2(g) - DIC system under elevated pressures and temperatures. Nowak, M., Myrttinen, A., Zimmer, M., Wiese, B., van Geldern, R., Barth, J.A.C., 2013. Well-based, Geochemical Leakage Monitoring of an Aquifer Immediately Above a CO2 Storage Reservoir by Stable Carbon

  11. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2016-01-01

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels

  12. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  13. Geothermal prospection in the Greater Geneva Basin (Switzerland and France). Impact of diagenesis on reservoir properties of the Upper Jurassic carbonate sediments

    Science.gov (United States)

    Makhloufi, Yasin; Rusillon, Elme; Brentini, Maud; Clerc, Nicolas; Meyer, Michel; Samankassou, Elias

    2017-04-01

    Diagenesis of carbonate rocks is known to affect the petrophysical properties (porosity, permeability) of the host rock. Assessing the diagenetic history of the rock is thus essential when evaluating any reservoir exploitation project. The Canton of Geneva (Switzerland) is currently exploring the opportunities for geothermal energy exploitation in the Great Geneva Basin (GGB) sub-surface. In this context, a structural analysis of the basin (Clerc et al., 2016) associated with reservoir appraisal (Brentini et al., 2017) and rock-typing of reservoir bodies of potential interest were conducted (Rusillon et al., 2017). Other geothermal exploitation projects elsewhere (e.g. Bavaria, south Germany, Paris Basin, France) showed that dolomitized carbonate rocks have good reservoir properties and are suitable for geothermal energy production. The objectives of this work are to (1) describe and characterize the dolomitized bodies in the GGB and especially their diagenetic history and (2) quantify the reservoir properties of those bodies (porosity, permeability). Currently, our study focuses on the Upper Jurassic sedimentary bodies of the GGB. Field and well data show that the dolomitization is not ubiquitous in the GGB. Results from the petrographical analyses of the Kimmeridgian cores (Humilly-2) and of field analogues (Jura, Saleve and Vuache mountains) display complex diagenetic histories, dependent of the study sites. The paragenesis exhibits several stages of interparticular calcite cementation as well as different stages of dolomitization and/or dedolomitization. Those processes seem to follow constrained path of fluid migrations through burial, faulting or exhumation during the basin's history. These complex diagenetic histories affected the petrophysical and microstructural properties via porogenesis (conservation of initial porosity, moldic porosity) and/or poronecrosis events. The best reservoir properties appear to be recorded in patch reef and peri

  14. Geologic storage of carbon dioxide and enhanced oil recovery. I. Uncertainty quantification employing a streamline based proxy for reservoir flow simulation

    International Nuclear Information System (INIS)

    Kovscek, A.R.; Wang, Y.

    2005-01-01

    Carbon dioxide (CO 2 ) is already injected into a limited class of reservoirs for oil recovery purposes; however, the engineering design question for simultaneous oil recovery and storage of anthropogenic CO 2 is significantly different from that of oil recovery alone. Currently, the volumes of CO 2 injected solely for oil recovery are minimized due to the purchase cost of CO 2 . If and when CO 2 emissions to the atmosphere are managed, it will be necessary to maximize simultaneously both economic oil recovery and the volumes of CO 2 emplaced in oil reservoirs. This process is coined 'cooptimization'. This paper proposes a work flow for cooptimization of oil recovery and geologic CO 2 storage. An important component of the work flow is the assessment of uncertainty in predictions of performance. Typical methods for quantifying uncertainty employ exhaustive flow simulation of multiple stochastic realizations of the geologic architecture of a reservoir. Such approaches are computationally intensive and thereby time consuming. An analytic streamline based proxy for full reservoir simulation is proposed and tested. Streamline trajectories represent the three-dimensional velocity field during multiphase flow in porous media and so are useful for quantifying the similarity and differences among various reservoir models. The proxy allows rational selection of a representative subset of equi-probable reservoir models that encompass uncertainty with respect to true reservoir geology. The streamline approach is demonstrated to be thorough and rapid

  15. Analysis of Flow Behavior for Acid Fracturing Wells in Fractured-Vuggy Carbonate Reservoirs

    Directory of Open Access Journals (Sweden)

    Mingxian Wang

    2018-01-01

    Full Text Available This study develops a mathematical model for transient flow analysis of acid fracturing wells in fractured-vuggy carbonate reservoirs. This model considers a composite system with the inner region containing finite number of artificial fractures and wormholes and the outer region showing a triple-porosity medium. Both analytical and numerical solutions are derived in this work, and the comparison between two solutions verifies the model accurately. Flow behavior is analyzed thoroughly by examining the standard log-log type curves. Flow in this composite system can be divided into six or eight main flow regimes comprehensively. Three or two characteristic V-shaped segments can be observed on pressure derivative curves. Each V-shaped segment corresponds to a specific flow regime. One or two of the V-shaped segments may be absent in particular cases. Effects of interregional diffusivity ratio and interregional conductivity ratio on transient responses are strong in the early-flow period. The shape and position of type curves are also influenced by interporosity coefficients, storativity ratios, and reservoir radius significantly. Finally, we show the differences between our model and the similar model with single fracture or without acid fracturing and further investigate the pseudo-skin factor caused by acid fracturing.

  16. Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.

    Science.gov (United States)

    Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin

    2016-10-20

    We report experimental measurements of the dissolution rate of several carbonate minerals in CO 2 -saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO 2 -saturated NaCl brines with molalities of up to 5 mol kg -1 . The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO 2 -saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO 2 -saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO 2 -injection into carbonate-mineral saline aquifers.

  17. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  18. Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates

    Science.gov (United States)

    Li, Hongbing; Zhang, Jiajia

    2018-04-01

    The pore structure in heterogeneous carbonate rock is usually very complex. This complex pore system makes the relationship between the velocity and porosity of the rock highly scattered, so that for the classical two-dimensional rock physics template (2D RPT) it is not enough to accurately describe the quantitative relationship between the rock elastic parameters of this kind of reservoir and its porosity and water saturation. Therefore it is possible to attribute the effect of pore type to that of the porosity or water saturation, and leads to great deviations when applying such a 2D RPT to predict the porosity and water saturation in seismic reservoir prediction and hydrocarbon detection. This paper first presents a method to establish a new three-dimensional rock physics template (3D RPT) by integrating the Gassmann equations and the porous rock physics model, and use it to characterize the quantitative relation between rock elastic properties and the reservoir parameters including the pore aspect ratio, porosity and water saturation, and to predict these parameters from the known elastic properties. The test results on the real logging and seismic inversion data show that the 3D RPT can accurately describe the variations of elastic properties with the porosity, water saturation and pore-structure parameters, and effectively improve the accuracy of reservoir parameters prediction.

  19. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  20. The carbon cycle and global warming

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Five land-use-based approaches can be used to slow the buildup of CO 2 in the atmosphere: slowing or stopping the loss of existing forests, thus preserving current carbon reservoirs; adding to the planet's vegetative cover through reforestation or other means, thus enlarging living terrestrial carbon reservoirs; increasing the carbon stored in nonliving carbon reservoirs such as agricultural soils; increasing the carbon stored in artificial reservoirs, including timber products; and substituting sustainable biomass energy sources for fossil fuel consumption, thus reducing energy-related carbon emissions. These approaches are all based on the same basic premise: adding to the planet's net carbon stores in vegetative cover or soil, or preventing any net loss, will help moderate global warming by keeping atmospheric CO 2 levels lower than they would otherwise be. Because biotic policy options appear capable of contributing significantly to the mitigation of global warming while also furthering many other public policy objectives, their role deserves careful consideration on a country-by-country basis

  1. Sedimentary mode and reservoir genesis of dual grain banks at the Lower Cambrian Longwangmiao Fm carbonate ramp in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jinhu Du

    2016-11-01

    Full Text Available The gas reservoir of the Lower Cambrian Longwangmiao Fm in the Sichuan Basin is a supergiant integral marine carbonate gas reservoir whose single scale is currently the largest in China. In order to figure out its sedimentary model and reservoir genesis, its geological structures and sedimentary settings and facies were analyzed comprehensively and the lithofacies paleographic map was plotted. It is revealed that the following sedimentary facies are successively developed in the Longwangmiao Fm from West Sichuan to Southeast Chongqing: diamictic tidal flat at the back ramp, grain bank (the upper bank at the inner/shallow ramp – interbank sea (depression, deeper open bay at the platform depression of inner ramp → evaporative lagoon → evaporative tidal flat, tempestite at the middle ramp – barrier beach – mud mound beach (the lower bank, and outer ramp – basin. Accordingly, the specific sedimentary model of dual grain banks in the Longwangmiao Fm carbonate ramp was established as follows. Firstly, in this model, dual grain banks are symmetrically developed with Wanzhou–Yibin platform depression as the axis, on whose dual sides the paleohighs have shallow water bodies with strong energy. Compared with the classical model, the new one has a new upper bank which is developed around the paleohighs covering an area of about 8 × 104 km2. Secondly, the upper bank is large for its paleogeomorphology being located at the highest position with the strongest water energy during deposition. Therefore, it is prone to dolomitization and meteoric dissolution respectively during contemporaneous–penecontemporaneous hot-dry and hot-humid periods, and especially the Caledonian–Early Hercynian denudation wedge out tends to undergo post-supergene multiphase karstification. Therefore, quality reservoirs are more developed on scale. Thirdly, the intergranular pores and vermes moldic pores were dissolved and enlarged due to the multiphase

  2. Comparison of the diagenetic and reservoir quality evolution between the anticline crest and flank of an Upper Jurassic carbonate gas reservoir, Abu Dhabi, United Arab Emirates

    Science.gov (United States)

    Morad, Daniel; Nader, Fadi H.; Gasparrini, Marta; Morad, Sadoon; Rossi, Carlos; Marchionda, Elisabetta; Al Darmaki, Fatima; Martines, Marco; Hellevang, Helge

    2018-05-01

    This petrographic, stable isotopic and fluid inclusion microthermometric study of the Upper Jurassic limestones of an onshore field, Abu Dhabi, United Arab Emirates (UAE) compares diagenesis in flanks and crest of the anticline. The results revealed that the diagenetic and related reservoir quality evolution occurred during three phases, including: (i) eogenesis to mesogenesis 1, during which reservoir quality across the field was either deteriorated or preserved by calcite cementation presumably derived from marine or evolved marine pore waters. Improvement of reservoir quality was due to the formation of micropores by micritization of allochems and creation of moldic/intragranular pores by dissolution of peloids and skeletal fragments. (ii) Obduction of Oman ophiolites and formation of the anticline of the studied field was accompanied by cementation by saddle dolomite and blocky calcite. High homogenization temperatures (125-175 °C) and high salinity (19-26 wt% NaCl eq) of the fluid inclusions, negative δ18OVPDB values (-7.7 to -2.9‰), saddle shape of dolomite, and the presence of exotic cements (i.e. fluorite and sphalerite) suggest that these carbonates were formed by flux of hot basinal brines, probably related to this tectonic compression event. (iii) Mesogenesis 2 during subsidence subsequent to the obduction event, which resulted in extensive stylolitization and cementation by calcite. This calcite cement occluded most of the remaining moldic and inter-/intragranular pores of the flank limestones (water zone) whereas porosity was preserved in the crest. This study contributes to: (1) our understanding of differences in the impact of diagenesis on reservoir quality evolution in flanks and crests of anticlines, i.e. impact of hydrocarbon emplacement on diagenesis, and (2) relating various diagenetic processes to burial history and tectonic events of foreland basins in the Arabian Gulf area and elsewhere.

  3. Facies and porosity origin of reservoirs: Case studies from the Cambrian Longwangmiao Formation of Sichuan Basin, China, and their implications on reservoir prediction

    Directory of Open Access Journals (Sweden)

    Anjiang Shen

    2018-02-01

    Full Text Available The dolostone of the Cambrian Longwangmiao Formation has been a significant gas exploration area in Sichuan Basin. In Gaoshiti-Moxi regions, a giant gas pool with thousands of billion cubic meters' reserve has been discovered. However, the origin of the reservoir and the distribution patterns are still disputed, eventually constraining the dolostone exploration of the Longwangmiao Formation. This paper focuses on the characteristics, origin, and distribution patterns of the dolostone reservoir in the Longwangmiao Formation based on: the outcrop geological survey, cores, thin-sections observation, reservoir geochemical characteristics study, and reservoir simulation experiments. As a result, two realizations were acquired: (1 The Cambrian Longwangmiao Formation could be divided into upper and lower part in Sichuan Basin. Based on the two parts of the Longwangmiao Formation, two lithofacies paleogeographic maps were generated. In addition, the carbonate slope sedimentary models were established. The grainstone shoals are mainly distributed in the shallow slope of the upper part in the Longwangmiao Formation. (2 The grainstone shoals are the developing basis of the dolostone reservoir in the Longwangmiao Formation. Moreover, the contemporaneous dissolution was a critical factor of grainstone shoal reservoir development in the Longwangmiao Formation. Controlled by the exposure surface, the dissolution vugs are not only extensively distributed, but also successively developed along the contemporaneous pore zones. Hence, the distribution patterns could be predicted. The geological understandings of the origin of dolostone reservoir in the Longwangmiao Formation show that the reservoir distributed in the areas of karstification in the Gaoshiti-Moxi regions, as well as the widespread grainstone shoals in the whole basin, are the potential exploration targets. Keywords: Sichuan Basin, Longwangmiao Formation, Carbonate slope, Dolograinstone shoal

  4. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    Science.gov (United States)

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    temperature, reservoir storage, reservoir elevation, specific conductance, dissolved oxygen, pH, unfiltered salinity, unfiltered total nitrogen, filtered total nitrogen, unfiltered nitrate plus nitrite, unfiltered phosphorus, filtered phosphorus, unfiltered carbon, carbon in suspended sediment, total hardness, unfiltered noncarbonate hardness, filtered noncarbonate hardness, unfiltered calcium, filtered calcium, unfiltered magnesium, filtered magnesium, unfiltered sodium, filtered sodium, unfiltered potassium, filtered potassium, filtered chloride, filtered sulfate, unfiltered fluoride, and filtered fluoride. When possible, USGS and Texas Commission on Environmental Quality water-quality properties and constituents were matched using the database parameter codes for individual physical properties and constituents, descriptions of each physical property or constituent, and their reporting units. This report presents a collection of delimited text files of source-aggregated, spatially pooled, depth-dependent, instantaneous water-quality data as well as instantaneous, daily, and monthly storage and elevation reservoir data.

  5. The freshwater reservoir effect in radiocarbon dating

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2013-01-01

    of magnitude and degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants, and animals, shows that age differences of up to 2000 14C years can occur within one river. The freshwater reservoir effect has also implications......The freshwater reservoir effect can result in anomalously old radiocarbon ages of samples from lakes and rivers. This includes the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. Water rich in dissolved ancient calcium carbonates, commonly known...... as hard water, is the most common reason for the freshwater reservoir effect. It is therefore also called hardwater effect. Although it has been known for more than 60 years, it is still less well-recognized by archaeologists than the marine reservoir effect. The aim of this study is to examine the order...

  6. Structural characterization and numerical simulations of flow properties of standard and reservoir carbonate rocks using micro-tomography

    Science.gov (United States)

    Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed

    2018-04-01

    With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.

  7. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  8. The applicability of C-14 measurements in the soil gas for the assessment of leakage out of underground carbon dioxide reservoirs

    Directory of Open Access Journals (Sweden)

    Chałupnik Stanisław

    2014-03-01

    Full Text Available Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage. Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to know if there is any escape of CO2 from underground gas reservoirs, created as a result of sequestration. Such information is crucial to ensure safety of the population in areas located above geological reservoirs. It is possible to assess the origin of carbon dioxide, if the measurement of radiocarbon 14C concentration in this gas is done. If CO2 contains no 14C, it means, that the origin of the gas is either geological or the gas has been produced as a result of combustion of fossil fuels, like coal. A lot of efforts are focused on the development of monitoring methods to ensure safety of CO2 sequestration in geological formations. A radiometric method has been tested for such a purpose. The main goal of the investigations was to check the application possibility of such a method. The technique is based on the liquid scintillation counting of samples. The gas sample is at first bubbled through the carbon dioxide adsorbent, afterwards the adsorbent is mixed with a dedicated cocktail and measured in a low-background liquid scintillation spectrometer Quantulus. The described method enables measurements of 14C in mine and soil gas samples.

  9. Prediction of total organic carbon content in shale reservoir based on a new integrated hybrid neural network and conventional well logging curves

    Science.gov (United States)

    Zhu, Linqi; Zhang, Chong; Zhang, Chaomo; Wei, Yang; Zhou, Xueqing; Cheng, Yuan; Huang, Yuyang; Zhang, Le

    2018-06-01

    There is increasing interest in shale gas reservoirs due to their abundant reserves. As a key evaluation criterion, the total organic carbon content (TOC) of the reservoirs can reflect its hydrocarbon generation potential. The existing TOC calculation model is not very accurate and there is still the possibility for improvement. In this paper, an integrated hybrid neural network (IHNN) model is proposed for predicting the TOC. This is based on the fact that the TOC information on the low TOC reservoir, where the TOC is easy to evaluate, comes from a prediction problem, which is the inherent problem of the existing algorithm. By comparing the prediction models established in 132 rock samples in the shale gas reservoir within the Jiaoshiba area, it can be seen that the accuracy of the proposed IHNN model is much higher than that of the other prediction models. The mean square error of the samples, which were not joined to the established models, was reduced from 0.586 to 0.442. The results show that TOC prediction is easier after logging prediction has been improved. Furthermore, this paper puts forward the next research direction of the prediction model. The IHNN algorithm can help evaluate the TOC of a shale gas reservoir.

  10. Pore facies analysis: incorporation of rock properties into pore geometry based classes in a Permo-Triassic carbonate reservoir in the Persian Gulf

    International Nuclear Information System (INIS)

    Rahimpour-Bonab, H; Aliakbardoust, E

    2014-01-01

    Pore facies analysis is a useful method for the classification of reservoir rocks according to pore geometry characteristics. The importance of this method is related to the dependence of the dynamic behaviour of the reservoir rock on the pore geometry. In this study, pore facies analysis was performed by the quantification and classification of the mercury injection capillary pressure (MICP) curves applying the multi-resolution graph-based clustering (MRGC) method. Each pore facies includes a limited variety of rock samples with different depositional fabrics and diagenetic histories, which are representative of one type of pore geometry. The present pore geometry is the result of the interaction between the primary rock fabric and its diagenetic overprint. Thus the variations in petrographic properties can be correlated with the pore geometry characteristics. Accordingly, the controlling parameters in the pore geometry characteristics were revealed by detailed petrographic analysis in each pore facies. The reservoir rock samples were then classified using the determined petrographic properties which control the pore system quality. This method is proposed for the classification of reservoir rocks in complicated carbonate reservoirs, in order to reduce the incompatibility of traditional facies analysis with pore system characteristics. The method is applicable where enough capillary pressure data is not available. (papers)

  11. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf carbonate reservoir. End of budget period report, August 3, 1994--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.R.; Hinterlong, G.; Watts, G.; Justice, J.; Brown, K.; Hickman, T.S.

    1997-12-01

    The Oxy West Welch project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in a lower quality shallow shelf carbonate reservoir. The research and design phase primarily involves advanced reservoir characterization and accelerating the production response. The demonstration phase will implement the reservoir management plan based on an optimum miscible CO{sub 2} flood as designed in the initial phase. During Budget Period 1, work was completed on the CO{sub 2} stimulation treatments and the hydraulic fracture design. Analysis of the CO{sub 2} stimulation treatment provided a methodology for predicting results. The hydraulic fracture treatment proved up both the fracture design approach a and the use of passive seismic for mapping the fracture wing orientation. Although the 3-D seismic interpretation is still being integrated into the geologic model and interpretation of borehole seismic is still underway, the simulator has been enhanced to the point of giving good waterflood history matches. The simulator-forecasted results for an optimal designed miscible CO{sub 2} flood in the demonstration area gave sufficient economics to justify continuation of the project into Budget Period 2.

  12. Microbial Food-Web Drivers in Tropical Reservoirs.

    Science.gov (United States)

    Domingues, Carolina Davila; da Silva, Lucia Helena Sampaio; Rangel, Luciana Machado; de Magalhães, Leonardo; de Melo Rocha, Adriana; Lobão, Lúcia Meirelles; Paiva, Rafael; Roland, Fábio; Sarmento, Hugo

    2017-04-01

    Element cycling in aquatic systems is driven chiefly by planktonic processes, and the structure of the planktonic food web determines the efficiency of carbon transfer through trophic levels. However, few studies have comprehensively evaluated all planktonic food-web components in tropical regions. The aim of this study was to unravel the top-down controls (metazooplankton community structure), bottom-up controls (resource availability), and hydrologic (water residence time) and physical (temperature) variables that affect different components of the microbial food web (MFW) carbon stock in tropical reservoirs, through structural equation models (SEM). We conducted a field study in four deep Brazilian reservoirs (Balbina, Tucuruí, Três Marias, and Funil) with different trophic states (oligo-, meso-, and eutrophic). We found evidence of a high contribution of the MFW (up to 50% of total planktonic carbon), especially in the less-eutrophic reservoirs (Balbina and Tucuruí). Bottom-up and top-down effects assessed through SEM indicated negative interactions between soluble reactive phosphorus and phototrophic picoplankton (PPP), dissolved inorganic nitrogen, and heterotrophic nanoflagellates (HNF). Copepods positively affected ciliates, and cladocerans positively affected heterotrophic bacteria (HB) and PPP. Higher copepod/cladoceran ratios and an indirect positive effect of copepods on HB might strengthen HB-HNF coupling. We also found low values for the degree of uncoupling (D) and a low HNF/HB ratio compared with literature data (mostly from temperate regions). This study demonstrates the importance of evaluating the whole size spectrum (including microbial compartments) of the different planktonic compartments, in order to capture the complex carbon dynamics of tropical aquatic ecosystems.

  13. Refined reservoir description to maximize oil recovery

    International Nuclear Information System (INIS)

    Flewitt, W.E.

    1975-01-01

    To assure maximized oil recovery from older pools, reservoir description has been advanced by fully integrating original open-hole logs and the recently introduced interpretive techniques made available through cased-hole wireline saturation logs. A refined reservoir description utilizing normalized original wireline porosity logs has been completed in the Judy Creek Beaverhill Lake ''A'' Pool, a reefal carbonate pool with current potential productivity of 100,000 BOPD and 188 active wells. Continuous porosity was documented within a reef rim and cap while discontinuous porous lenses characterized an interior lagoon. With the use of pulsed neutron logs and production data a separate water front and pressure response was recognized within discrete environmental units. The refined reservoir description aided in reservoir simulation model studies and quantifying pool performance. A pattern water flood has now replaced the original peripheral bottom water drive to maximize oil recovery

  14. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  15. CO{sub 2} huff-n-puff process in a light oil shallow carbonate reservoir. Annual report, January 1, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Prieditis, J.; Wehner, S.

    1998-01-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations; a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Miscible CO{sub 2} flooding is the process of choice for enhancing recovery of light oils and already accounts for over 12% of the Permian Basin`s daily production. There are significant probable reserves associated with future miscible CO{sub 2} projects. However, many are marginally economic at current market conditions due to large up-front capital commitments for a peak response which may be several years in the future. The resulting negative cash-flow is sometimes too much for an operator to absorb. The CO{sub 2} H-n-P process is being investigated as a near-term option to mitigate the negative cash-flow situation--allowing acceleration of inventoried miscible CO{sub 2} projects when coupled together.

  16. Diffusive emission of methane and carbon dioxide from two hydropower reservoirs in Brazil.

    Science.gov (United States)

    Marcelino, A A; Santos, M A; Xavier, V L; Bezerra, C S; Silva, C R O; Amorim, M A; Rodrigues, R P; Rogerio, J P

    2015-05-01

    The role of greenhouse gas emissions from freshwater reservoirs and their contribution to increase greenhouse gas concentrations in the atmosphere is currently under discussion in many parts of the world. We studied CO2 and CH4 diffusive fluxes from two large neotropical hydropower reservoirs with different climate conditions. We used floating closed-chambers to estimate diffusive fluxes of these gaseous species. Sampling campaigns showed that the reservoirs studied were sources of greenhouse gases to the atmosphere. In the Serra da Mesa Reservoir, the CH4 emissions ranged from 0.530 to 396.96 mg.m(-2).d(-1) and CO2 emissions ranged from -1,738.33 to 11,166.61 mg.m(-2).d(-1) and in Três Marias Reservoir the CH4 fluxes ranged 0.720 to 2,578.03 mg.m(-2).d(-1) and CO2 emission ranged from -3,037.80 to 11,516.64 to mg.m(-2).d(-1). There were no statistically significant differences of CH4 fluxes between the reservoirs, but CO2 fluxes from the two reservoirs studied were significantly different. The CO2 emissions measured over the periods studied in Serra da Mesa showed some seasonality with distinctions between the wet and dry transition season. In Três Marias Reservoir the CO2 fluxes showed no seasonal variability. In both reservoirs, CH4 emissions showed a tendency to increase during the study periods but this was not statistically significant. These results contributed to increase knowledge about the magnitude of CO2 and CH4 emission in hydroelectric reservoirs, however due to natural variability of the data future sampling campaigns will be needed to better elucidate the seasonal influences on the fluxes of greenhouse gases.

  17. Understanding the fracture role on hydrocarbon accumulation and distribution using seismic data: A case study on a carbonate reservoir from Iran

    Science.gov (United States)

    Karimpouli, Sadegh; Hassani, Hossein; Malehmir, Alireza; Nabi-Bidhendi, Majid; Khoshdel, Hossein

    2013-09-01

    The South Pars, the largest gas field in the world, is located in the Persian Gulf. Structurally, the field is part of the Qatar-South Pars arch which is a regional anticline considered as a basement-cored structure with long lasting passive folding induced by salt withdrawal. The gas-bearing reservoir belongs to Kangan and Dalan formations dominated by carbonate rocks. The fracture role is still unknown in gas accumulation and distribution in this reservoir. In this paper, the Scattering Index (SI) and the semblance methods based on scattered waves and diffraction signal studies, respectively, were used to delineate the fracture locations. To find the relation between fractures and gas distribution, desired facies containing the gas, were defined and predicted using a method based on Bayesian facies estimation. The analysis and combination of these results suggest that preference of fractures and/or fractured zones are negligible (about 1% of the total volume studied in this paper) and, therefore, it is hard to conceive that they play an important role in this reservoir. Moreover, fractures have no considerable role in gas distribution (less than 30%). It can be concluded from this study that sedimentary processes such as digenetic, primary porosities and secondary porosities are responsible for the gas accumulation and distribution in this reservoir.

  18. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?

    Science.gov (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François

    2017-08-01

    Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions

  19. An Experimental Study of Surfactant Alternating CO2 Injection for Enhanced Oil Recovery of Carbonated Reservoir

    Directory of Open Access Journals (Sweden)

    Asghar Gandomkar

    2016-10-01

    Full Text Available Core flooding experiments were conducted with the objective of evaluating near miscible surfactant alternating CO2 injection and the effect of surfactant concentrations on gas-oil and water displacements in porous media. The core samples were provided from a low permeability mixed wet oil reservoir at 156 °F and 1900 psia. In addition, very few studies of surfactant adsorption on carbonate minerals have been conducted. Hence, the surfactant adsorption on carbonate rock was determined by core flooding and crushed tests. It was found that for the crushed rock, the required equilibrium time is approximately five hours, while it is more than four days for the flow-through tests. Hysteresis effects demonstrated that the irreducible water saturations were 5 to 10% higher than the initial connate water saturation after drainage cycles during 5000 ppm surfactant solution. Furthermore, near-miscible surfactant alternating CO2 injection process led to a 4-17% increase in the recovery factor in comparison to water alternating gas process.

  20. Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

    2007-09-30

    This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite

  1. Impact of stylolitization on diagenesis of a Lower Cretaceous carbonate reservoir from a giant oilfield, Abu Dhabi, United Arab Emirates

    Science.gov (United States)

    Paganoni, Matteo; Al Harthi, Amena; Morad, Daniel; Morad, Sadoon; Ceriani, Andrea; Mansurbeg, Howri; Al Suwaidi, Aisha; Al-Aasm, Ihsan S.; Ehrenberg, Stephen N.; Sirat, Manhal

    2016-04-01

    Bed-parallel stylolites are a widespread diagenetic feature in Lower Cretaceous limestone reservoirs, Abu Dhabi, United Arab Emirates (UAE). Diagenetic calcite, dolomite, kaolin and small amounts of pyrite, fluorite, anhydrite and sphalerite occur along and in the vicinity of the stylolites. Petrographic observations, negative δ18OVPDB, fluid inclusion microthermometry, and enrichment in 87Sr suggest that these cements have precipitated from hot basinal brines, which migrated along the stylolites and genetically related microfractures (tension gashes). Fluid migration was presumably related to lateral tectonic compression events related to the foreland basin formation. The low solubility of Al3 + in formation waters suggests that kaolin precipitation was linked to derivation of organic acids during organic matter maturation, probably in siliciclastic source rocks. The mass released from stylolitization was presumably re-precipitated as macro- and microcrystalline calcite cement in the host limestones. The flanks of the oilfield (water zone) display more frequent presence and higher amplitude of stylolites, lower porosity and permeability, higher homogenization temperatures and more radiogenic composition of carbonates compared to the crest (oil zone). This indicates that oil emplacement retards diagenesis. This study demonstrates that stylolitization plays a crucial role in fluid flow and diagenesis of carbonate reservoirs during basin evolution.

  2. Smart Waterflooding in Carbonate Reservoirs

    DEFF Research Database (Denmark)

    Zahid, Adeel

    brine solutions regarding phase behavior and viscosity measurements. This difference is attributed to the difference in composition of the different crude oils. More experiments are carried out in order to understand mechanisms of the crude oil viscosity reduction and emulsion formation. We observed...... with and without aging. The total oil recovery, recovery rate and interaction mechanisms of ions with rock were studied for different injected fluids under different temperatures and wettability conditions. Experimental results demonstrate that the oil recovery mechanism under high salinity seawater flooding...... phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs, besides the mechanism of the rock wettability alteration. * Crude oil/brine interaction study suggests that viscosity reduction for crude oil in contact with brine...

  3. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Zhang, Yun, E-mail: y_zhang@scu.edu.cn [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Wu, Hao [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Li, Xiaodong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Bin, E-mail: edward.bwang@gmail.com [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China)

    2017-08-15

    Graphical abstract: Flexible three-dimensional electrode comprised of stringed N-doped hollow carbon spheres shows a synergistic sulfur confinement mechanism and a higher energy/power density for the promising lithium-sulfur batteries compared with traditional electrodes. - Highlights: • Hollow carbon beads on string structure was first prepared. • Flexible 3D electrodes as graded reservoirs for polysulfides were conducted. • Synergistic effect for enhanced polysulfides storage was claimed. - Abstract: Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li–S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li{sup +} ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g{sup −1} at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg{sup −1} and power density of 1901 Wh kg{sup −1}, which greatly improve the energy/power density of traditional lithium–sulfur batteries and will be promising for further commercial applications.

  4. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, S.C.

    1995-05-01

    It is anticipated that this project will show that the application of the CO{sub 2} Huff-n-Puff process in shallow shelf carbonates can be economically implemented to recover appreciable volumes of light oil. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. The selected site for the demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Work is nearing completion on the reservoir characterization components of the project. The near-term emphasis is to, (1) provide an accurate distribution of original oil-in-place on a waterflood pattern entity level, (2) evaluate past recovery efficiencies, (3) perform parametric simulations, and (4) forecast performance for a site specific field demonstration of the proposed technology. Macro zonation now exists throughout the study area and cross-sections are available. The Oil-Water Contact has been defined. Laboratory capillary pressure data was used to define the initial water saturations within the pay horizon. The reservoir`s porosity distribution has been enhanced with the assistance of geostatistical software. Three-Dimensional kriging created the spatial distributions of porosity at interwell locations. Artificial intelligence software was utilized to relate core permeability to core porosity, which in turn was applied to the 3-D geostatistical porosity gridding. An Equation-of-State has been developed and refined for upcoming compositional simulation exercises. Options for local grid-refinement in the model are under consideration. These tasks will be completed by mid-1995, prior to initiating the field demonstrations in the second budget period.

  5. The Worldwide Marine Radiocarbon Reservoir Effect: Definitions, Mechanisms, and Prospects

    Science.gov (United States)

    Alves, Eduardo Q.; Macario, Kita; Ascough, Philippa; Bronk Ramsey, Christopher

    2018-03-01

    When a carbon reservoir has a lower radiocarbon content than the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, that is, the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs, and the fate of atmospheric CO2, all of which impact Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects.

  6. An aerial radiological survey of the Vermont Yankee Nuclear Power Station and surrounding area, Vernon, Vermont

    International Nuclear Information System (INIS)

    Reiman, R.; Bluitt, C.M.

    1993-10-01

    An aerial radiological survey was conducted over the Vermont Yankee Nuclear Power Station in Vernon, Vermont, during the period August 7 through August 17, 1989. The survey was conducted at an altitude of 300 feet (91 meters) over a 65-square-mile (168-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Vermont Yankee Power Station and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 6 and 10 microroentgens per hour (μR/h) and were attributed to naturally occurring uranium, thorium, and radioactive potassium gamma emitters. The aerial data were compared to ground-based open-quotes benchmarkclose quotes exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system

  7. Sr and Nd isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA

    Science.gov (United States)

    Volkert, R.A.; Feigenson, M.D.; Patino, L.C.; Delaney, J.S.; Drake, Avery A.

    2000-01-01

    Voluminous late Mesoproterozoic monzonite through granite of the Vernon Supersuite underlies an area of approximately 1300 km2 in the Highlands of northern New Jersey. The Vernon Supersuite consists of hastingsite ?? biotite-bearing granitoids of the Byram Intrusive Suite (BIS) and hedenbergite-bearing granitoids of the Lake Hopatcong Intrusive Suite (LHIS). These rocks have similar major and trace element abundances over a range of SiO2 from 58 to 75 wt.%, are metaluminous to weakly peraluminous, and have a distinctive A-type chemistry characterized by high contents of Y, Nb, Zr, LREE, and Ga/Al ratios, and low MgO, CaO, Sr and HREE. Whole-rock Rb-Sr isochrons of BIS granite yield an age of 1116 ?? 41 Ma and initial 87Sr/86Sr ratio of 0.70389, and of LHIS granite an age of 1095 ?? 9 Ma and initial 87Sr/86Sr ratio of 0.70520. Both suites have similar initial 143Nd/144Nd ratios of 0.511267 to 0.511345 (BIS) and 0.511359 to 0.511395 (LHIS). Values of ??(Nd) are moderately high and range from +1.21 to +2.74 in the BIS and +2.24 +2.95 in the LHIS. Petrographic evidence, field relationships, geochemistry, and isotopic data support an interpretation of comagmatism and the derivation of both suites from a mantle-derived or a juvenile lower crustal parent with little crustal assimilation. Both suites crystallized under overlapping conditions controlled by P-T-f(H(2)O). Lake Hopatcong magma crystallized at a liquidus temperature that approached 900??C and a pressure of about 6 kbar, and remained relatively anhydrous throughout its evolution. Initial P-T conditions of the Byram magma were ??? 850??C and about 5.5 kbar. BIS magma was emplaced contemporaneous with, or slightly preceding LHIS magma, and both magmas were emplaced during a compressional tectonic event prior to granulite facies metamorphism that occurred in the Highlands between 1080 and 1030 Ma. (C) 2000 Elsevier Science B.V. All rights reserved.

  8. Reservoir diagenesis research of Silurian Longmaxi Formation in Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Lingming Kong

    2016-06-01

    Full Text Available The reservoir diagenesis of Silurian Longmaxi Formation in Sichuan Basin was studied based on a large number of thin section identification, scanning electron microscopy analysis, X-ray diffraction tests, and some other experiments. Seven diagenetic processes were identified, including compaction, cementation, clay mineral transformation, replacement, dissolution, organic matter thermal maturation, and tectonic disruption. Three kinds of cements (quartz, carbonate and sulfide were recognized, while the source material of quartz cements and the main factor of forming abundant carbonate cements were summed up. According to the single well analysis of the Well N3, it shows that the best, the suboptimal and the none shale reservoir sections were subjected to different diagenetic transformations. As to best shale reservoir, except for compaction, all the main inorganic diagenesis were significantly related to organic matter maturation. Through comprehensive analysis of diagenetic indicators, it is observed that the reservoir has already been in period B of middle diagenetic stage to late diagenetic stage. The inorganic diagenesis has a significant impact on shale reservoir, because it not only controls the conservation, development, and evolution of porosity, but also the mechanical property and the adsorption capacity of rocks. The organic diagenesis is the source material of shale gas, and it generates a large number of nanoporosity in organic matter, which increases the total porosity and the adsorption capacity of the reservoir.

  9. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Greenhouse gas emissions from hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.

    1994-01-01

    In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming

  11. Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir.

    Science.gov (United States)

    Cardoso, Simone J; Vidal, Luciana O; Mendonça, Raquel F; Tranvik, Lars J; Sobek, Sebastian; Fábio, Roland

    2013-01-01

    Substantial amounts of organic matter (OM) from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2). The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition, and dam) of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment organic carbon mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 and 48%, respectively) while the dam zone had the lowest allochthonous contribution (7%). The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m(-) (2) d(-) (1)) and the lowest in the dam (51.60 ± 26.80 mg C m(-) (2) d(-) (1)). Moreover, mineralization rates were significantly related to bacterial abundance (r (2) = 0.50, p hydroelectric reservoirs.

  12. Comparison of Gross Greenhouse Gas Fluxes from Hydroelectric Reservoirs in Brazil with Thermopower Generation

    Science.gov (United States)

    Rogerio, J. P.; Dos Santos, M. A.; Matvienko, B.; dos Santos, E.; Rocha, C. H.; Sikar, E.; Junior, A. M.

    2013-05-01

    Widespread interest in human impacts on the Earth has prompted much questioning in fields of concern to the general public. One of these issues is the extent of the impacts on the environment caused by hydro-based power generation, once viewed as a clean energy source. From the early 1990s onwards, papers and studies have been challenging this assumption through claims that hydroelectric dams also emit greenhouse gases, generated by the decomposition of biomass flooded by filling these reservoirs. Like as other freshwater bodies, hydroelectric reservoirs produce gases underwater by biology decomposition of organic matter. Some of these biogenic gases are effective in terms of Global Warming. The decomposition is mainly due by anaerobically regime, emitting methane (CH4), nitrogen (N2) and carbon dioxide (CO2). This paper compare results obtained from gross greenhouse fluxes in Brazilian hydropower reservoirs with thermo power plants using different types of fuels and technology. Measurements were carried in the Manso, Serra da Mesa, Corumbá, Itumbiara, Estreito, Furnas and Peixoto reservoirs, located in Cerrado biome and in Funil reservoir located at Atlantic forest biome with well defined climatologically regimes. Fluxes of carbon dioxide and methane in each of the reservoirs selected, whether through bubbles and/or diffusive exchange between water and atmosphere, were assessed by sampling. The intensity of emissions has a great variability and some environmental factors could be responsible for these variations. Factors that influence the emissions could be the water and air temperature, depth, wind velocity, sunlight, physical and chemical parameters of water, the composition of underwater biomass and the operational regime of the reservoir. Based in this calculations is possible to conclude that the large amount of hydro-power studied is better than thermopower source in terms of atmospheric greenhouse emissions. The comparisons between the reservoirs studied

  13. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  14. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir

    International Nuclear Information System (INIS)

    Jeandel, E.

    2008-12-01

    To limit emissions of greenhouse gases in the atmosphere, CO 2 geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO 2 . Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  15. Tailored ramp-loading via shock release of stepped-density reservoirs

    International Nuclear Information System (INIS)

    Prisbrey, Shon T.; Park, Hye-Sook; Remington, Bruce A.; Cavallo, Robert; May, Mark; Pollaine, Stephen M.; Rudd, Robert; Maddox, Brian; Comley, Andrew; Fried, Larry; Blobaum, Kerri; Wallace, Russ; Wilson, Mike; Swift, David; Satcher, Joe; Kalantar, Dan; Perry, Ted; Giraldez, Emilio; Farrell, Michael; Nikroo, Abbas

    2012-01-01

    The concept of a gradient piston drive has been extended from that of a single component reservoir, such as a high explosive, to that of a multi-component reservoir that utilizes low density foams and large shocks to achieve high pressures (∼3.5 mbar) and controlled pressure vs. time profiles on a driven sample. Simulated and experimental drives shaped through the use of multiple component (including carbonized resorcinol formaldehyde and SiO 2 foam) reservoirs are compared. Individual density layers in a multiple component reservoir are shown to correlate with velocity features in the measured drive which enables the ability to tune a pressure drive by adjusting the components of the reservoir. Pre-shot simulations are shown to be in rough agreement with the data, but post-shot simulations involving the use of simulated plasma drives were needed to achieve an exact match. Results from a multiple component reservoir shot (∼3.5 mbar) at the National Ignition Facility are shown.

  16. The Ladbroke Grove-Katnook carbon dioxide natural laboratory: a recent CO{sub 2} accumulation in a lithic sandstone reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Watson, M.N. [Adelaide Univ., SA (Australia). Australian School of Petroleum; Zwingmann, N. [CSIRO Petroleum, Bentley, WA (Australia); Lemon, N.M. [Santos Ltd., Adelaide, SA (Australia)

    2004-08-01

    The Ladbroke Grove and Katnook Gas Fields, within the western Otway Basin, southeastern South Australia, provide a natural laboratory to study the effects of CO{sub 2} on siliciclastic reservoirs. CO{sub 2} degassing from nearby volcanics has migrated into the methane accumulation of the Ladbroke Grove Field within the Pretty Hill Formation. CO{sub 2} levels in the Ladbroke Grove Field range from 26 to 57 mol% while Katnook has less than 1 mol%. In Ladbroke Grove, the CO{sub 2} has altered or dissolved most of the reactive minerals, somewhat constrained by the Pleistocene to Recent age of the CO{sub 2} influx. The developed late-stage kaolinite, quartz and less soluble carbonate are products of the reactions involving CO{sub 2} and reactive minerals. The major formation water types were identified using the geochemical code EQ3NR. Ladbroke Grove waters above the gas-water contact (GWC) have bicarbonate levels an order of magnitude higher than the other waters analysed. Below the GWC, Ladbroke Grove and Katnook formation waters have similar ionic compositions, however, pH levels in Ladbroke Grove are low relative to Katnook. The Ladbroke Grove Field has efficiently stored CO{sub 2} in a gaseous and aqueous phase since the influx began in the Pleistocene. In addition, due to the high amount of reactive minerals within the reservoir, mineralisation of ferroan carbonates has also occurred as a more permanent form of mineral storage of some of the CO{sub 2}. (author)

  17. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage.

    Science.gov (United States)

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu

    2018-03-20

    Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.

  18. Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest China

    Directory of Open Access Journals (Sweden)

    Zi-zhen Zhou

    2015-10-01

    Full Text Available The seasonal variation characteristics of the water quality of the Jinpen Reservoir and the impacts of rainfall runoff on the reservoir were investigated. Water quality monitoring results indicated that, during the stable stratification period, the maximum concentrations of total nitrogen, total phosphorus, ammonia nitrogen, total organic carbon, iron ion, and manganese ion in the water at the reservoir bottom on September 6 reached 2.5 mg/L, 0.12 mg/L, 0.58 mg/L, 3.2 mg/L, 0.97 mg/L, and 0.32 mg/L, respectively. Only heavy storm runoff can affect the main reservoir and cause the water quality to seriously deteriorate. During heavy storms, the stratification of the reservoir was destroyed, and the reservoir water quality consequently deteriorated due to the high-turbidity particulate phosphorus and organic matter in runoff. The turbidity and concentrations of total phosphorus and total organic carbon in the main reservoir increased to 265 NTU, 0.224 mg/L, and 3.9 mg/L, respectively. Potential methods of dealing with the water problems in the Jinpen Reservoir are proposed. Both in stratification and in storm periods, the use of measures such as adjusting intake height, storing clean water, and releasing turbid flow can be helpful to safeguarding the quality of water supplied to the water treatment plants.

  19. Reactivity of dolomite in water-saturated supercritical carbon dioxide: Significance for carbon capture and storage and for enhanced oil and gas recovery

    International Nuclear Information System (INIS)

    Wang Xiuyu; Alvarado, Vladimir; Swoboda-Colberg, Norbert; Kaszuba, John P.

    2013-01-01

    Highlights: ► Dolomite reactivity with wet and dry supercritical CO 2 were evaluated. ► Dolomite does not react with dry CO 2 . ► H 2 O-saturated supercritical CO 2 dissolves dolomite and precipitates carbonate mineral. ► Temperature/reaction time control morphology and extent of carbonate mineralization. ► Reaction with wet CO 2 may impact trapping, caprock integrity, and CCS/EOR injectivity. - Abstract: Carbon dioxide injection in porous reservoirs is the basis for carbon capture and storage, enhanced oil and gas recovery. Injected carbon dioxide is stored at multiple scales in porous media, from the pore-level as a residual phase to large scales as macroscopic accumulations by the injection site, under the caprock and at reservoir internal capillary pressure barriers. These carbon dioxide saturation zones create regions across which the full spectrum of mutual CO 2 –H 2 O solubility may occur. Most studies assume that geochemical reaction is restricted to rocks and carbon dioxide-saturated formation waters, but this paradigm ignores injection of anhydrous carbon dioxide against brine and water-alternating-gas flooding for enhanced oil recovery. A series of laboratory experiments was performed to evaluate the reactivity of the common reservoir mineral dolomite with water-saturated supercritical carbon dioxide. Experiments were conducted at reservoir conditions (55 and 110 °C, 25 MPa) and elevated temperature (220 °C, 25 MPa) for approximately 96 and 164 h (4 and 7 days). Dolomite dissolves and new carbonate mineral precipitates by reaction with water-saturated supercritical carbon dioxide. Dolomite does not react with anhydrous supercritical carbon dioxide. Temperature and reaction time control the composition, morphology, and extent of formation of new carbonate minerals. Mineral dissolution and re-precipitation due to reaction with water-saturated carbon dioxide may affect the contact line between phases, the carbon dioxide contact angle, and the

  20. Can introduction of hydraulic fracturing fluids induce biogenic methanogenesis in the shale reservoirs?

    Science.gov (United States)

    Sharma, S.; Wilson, T.; Wrighton, K. C.; Borton, M.; O'Banion, B.

    2017-12-01

    The hydraulic fracturing fluids (HFF) injected into the shale formation are composed primarily of water, proppant and some chemical additives ( 0.5- 2% by volume). The additives contain a lot of organic and inorganic compounds like ammonium sulfate, guar gum, boric acid, hydrochloric acid, citric acid, potassium carbonate, glutaraldehyde, ethylene glycols which serve as friction reducers, gelling agents, crosslinkers, biocides, corrosion/scale inhibitors, etc. The water and additives introduced into the formation ensue a variety of microbiogechmical reactions in the reservoir. For this study produced, water and gas samples were collected from several old and new Marcellus wells in SE Pennsylvania and NE West Virginia to better understand these microbe-water-rock interactions. The carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) in the produced fluids and CO2 in produced gas (δ13CCO2) are highly enriched with values > +10‰ and +14 ‰ V-PDB respectively. The injected hydraulic fracturing fluid had low δ13CDIC values of detectable carbon in them. The drilling mud and carbonate veins had δ13C values of -1.8 and < 2.0 ‰ V-PDB respectively. Therefore, the high δ13CDIC signatures in produced water are possibly due to the microbial utilization of lighter carbon (12C) by microbes or methanogenic bacteria in the reservoir. It is possible that introduction of C containing nutrients like guar, methanol, methylamines, etc. stimulates certain methanogen species in the reservoir to produce biogenic methane. Genomic analysis reveals that methanogen species like Methanohalophilus or Methanolobus could be the possible sources of biogenic methane in these shale reservoirs. The evidence of microbial methanogenesis raises the possibility of enhanced gas recovery from these shales using biological amendments.

  1. Hydrocarbon accumulation in deep fluid modified carbonate rock in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The activities of deep fluid are regionalized in the Tarim Basin. By analyzing the REE in core samples and crude oil, carbon isotope of carbon dioxide and inclusion temperature measurement in the west of the Tazhong Uplift in the western Tarim Basin, all the evidence confirms the existence of deep fluid. The deep fluid below the basin floor moved up into the basin through discordogenic fauit and volcanicity to cause corrosion and metaaomatosis of carbonate rock by exchange of matter and energy. The pore structure and permeability of the carbonate reservoirs were improved, making the carbonate reservoirs an excellent type of deeply buried modification. The fluorite ore belts discovered along the large fault and the volcanic area in the west of the Tazhong Uplift are the outcome of deep fluid action. Such carbonate reservoirs are the main type of reservoirs in the Tazhong 45 oilfield. The carbonate reservoirs in well YM 7 are improved obviously by thermal fluid dolomitization. The origin and territory of deep fluid are associated with the discordogenic fault and volcanicity in the basin. The discordogenic fault and volcanic area may be the pointer of looking for the deep fluid modified reservoirs. The primary characteristics of hydrocarbon accumulation in deep fluid reconstructed carbonate rock are summarized as accumulation near the large fault and volcano passage, late-period hydrocarbon accumulation after volcanic activity, and subtle trap reservoirs controlled by lithology.

  2. Characterization of oil and gas reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  3. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®.

    Science.gov (United States)

    Cinti, Stefano; Mazzaracchio, Vincenzo; Cacciotti, Ilaria; Moscone, Danila; Arduini, Fabiana

    2017-10-03

    Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M ® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  4. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-10-01

    Full Text Available Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  5. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe Sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China

    Science.gov (United States)

    Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang

    2018-05-01

    Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents ( δ13C ethane (C2) gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.

  6. On the evaluation of steam assisted gravity drainage in naturally fractured oil reservoirs

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Tohidi Hosseini

    2017-06-01

    Full Text Available Steam Assisted Gravity Drainage (SAGD as a successful enhanced oil recovery (EOR process has been applied to extract heavy and extra heavy oils. Huge amount of global heavy oil resources exists in carbonate reservoirs which are mostly naturally fractured reservoirs. Unlike clastic reservoirs, few studies were carried out to determine the performance of SAGD in carbonate reservoirs. Even though SAGD is a highly promising technique, several uncertainties and unanswered questions still exist and they should be clarified for expansion of SAGD methods to world wide applications especially in naturally fractured reservoirs. In this communication, the effects of some operational and reservoir parameters on SAGD processes were investigated in a naturally fractured reservoir with oil wet rock using CMG-STARS thermal simulator. The purpose of this study was to investigate the role of fracture properties including fracture orientation, fracture spacing and fracture permeability on the SAGD performance in naturally fractured reservoirs. Moreover, one operational parameter was also studied; one new well configuration, staggered well pair was evaluated. Results indicated that fracture orientation influences steam expansion and oil production from the horizontal well pairs. It was also found that horizontal fractures have unfavorable effects on oil production, while vertical fractures increase the production rate for the horizontal well. Moreover, an increase in fracture spacing results in more oil production, because in higher fracture spacing model, steam will have more time to diffuse into matrices and heat up the entire reservoir. Furthermore, an increase in fracture permeability results in process enhancement and ultimate recovery improvement. Besides, diagonal change in the location of injection wells (staggered model increases the recovery efficiency in long-term production plan.

  7. Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir

    Directory of Open Access Journals (Sweden)

    Simone Jaqueline Cardoso

    2013-04-01

    Full Text Available Substantial amounts of organic matter (OM from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2. The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition and dam of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment OC mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 % and 48 %, respectively while the dam zone had the lowest allochthonous contribution (7 %. The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m-2 d-1 and the lowest in the dam (51.60 ± 26.80 mg C m-2 d-1. Moreover, mineralization rates were significantly related to bacterial abundance (r2 = 0.50, p < 0.001 and pCO2 in the surface water of the reservoir (r2 = 0.73, p < 0.001. The results indicate that allochthonous OM has different contributions to sediment mineralization in the three zones of the reservoir. Further, the sediment mineralization, mediated by heterotrophic bacteria metabolism, significantly contributes to CO2 supersaturation in the water column, resulting in higher pCO2 in the river and transition zones in comparison with the dam zone, affecting greenhouse gas emission estimations from hydroelectric reservoirs.

  8. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir; Monitoring geochimique par couplage entre les gaz rares et les isotopes du carbone: etude d'un reservoir naturel

    Energy Technology Data Exchange (ETDEWEB)

    Jeandel, E

    2008-12-15

    To limit emissions of greenhouse gases in the atmosphere, CO{sub 2} geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO{sub 2}. Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  9. Source, composition, and environmental implication of neutral carbohydrates in sediment cores of subtropical reservoirs, South China

    Science.gov (United States)

    Duan, Dandan; Zhang, Dainan; Yang, Yu; Wang, Jingfu; Chen, Jing'an; Ran, Yong

    2017-09-01

    Neutral monosaccharides, algal organic matter (AOM), and carbon stable isotope ratios in three sediment cores of various trophic reservoirs in South China were determined by high-performance anion-exchange chromatography, Rock-Eval pyrolysis, and Finnigan Delta Plus XL mass spectrometry, respectively. The carbon isotopic compositions were corrected for the Suess effect. The concentrations of total neutral carbohydrates (TCHO) range from 0.51 to 6.4 mg g-1 at mesotrophic reservoirs, and from 0.83 to 2.56 mg g-1 at an oligotrophic reservoir. Monosaccharide compositions and diagnostic parameters indicate a predominant contribution of phytoplankton in each of the three cores, which is consistent with the results inferred from the corrected carbon isotopic data and C/N ratios. The sedimentary neutral carbohydrates are likely to be structural polysaccharides and/or preserved in sediment minerals, which are resistant to degradation in the sediments. Moreover, the monosaccharide contents are highly related to the carbon isotopic data, algal productivity estimated from the hydrogen index, and increasing mean air temperature during the past 60 years. The nutrient input, however, is not a key factor affecting the primary productivity in the three reservoirs. The above evidence demonstrates that some of the resistant monosaccharides have been significantly elevated by climate change, even in low-latitude regions.

  10. How the rock fabrics can control the physical properties - A contribution to the understanding of carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Duerrast, H.; Siegesmund, S. [Goettingen Univ. (Germany)

    1998-12-31

    The correlation between microfabrics and physical properties will be illustrated in detail on three dolomitic carbonate reservoir rocks with different porosity. For this study core segments from the Zechstein Ca2-layer (Permian) of the Northwest German Basin were kindly provided by the Preussag Energie GmbH, Lingen. The mineral composition was determined by using the X-ray diffraction method. Petrographic and detailed investigation of the microfabrics, including the distribution and orientation of the cracks were done macroscopally (core segments) and microscopally with the optical microscope and the Scanning Electron Microscope (thin sections in three orthogonally to each other oriented directions). Different kinds of petrophysical measurements were carried out, e.g. porosity, permeability, electrical conductivity, seismic velocities. (orig.)

  11. Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.

    Science.gov (United States)

    Eichmann, Shannon L; Burnham, Nancy A

    2017-09-14

    Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.

  12. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    Science.gov (United States)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  13. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  14. Modelling the impacts of barrier-island transgression and anthropogenic disturbance on blue carbon budgets

    Science.gov (United States)

    Theuerkauf, E. J.; Rodriguez, A. B.

    2017-12-01

    The size of backbarrier saltmarsh carbon reservoirs are dictated by transgressive processes, such as erosion and overwash, yet these processes are not included in blue carbon budgets. These carbon reservoirs are presumed to increase through time if marsh elevation is keeping pace with sea-level rise. However, changes in marsh width due to erosion and overwash can alter carbon budgets and reservoirs. To explore the impacts of these processes on transgressive barrier island carbon budgets and reservoirs we developed and tested a transect model. The model couples a carbon storage term driven by backbarrier marsh width and a carbon export term driven by ocean and backbarrier shoreline erosion. We tested the model using data collected from two transgressive barrier islands in North Carolina with different backbarrier settings. Core Banks is an undeveloped barrier island with a wide backbarrier marsh and lagoon, hence, landward migration of the island (rollover) is unimpeded. Barrier rollover is impeded at Onslow Beach as there is no backbarrier lagoon and the island is immediately adjacent to steeper mainland topography. Sediment cores were collected to determine carbon storage rates as well as the quantity of carbon exported from eroding marsh. Backbarrier marsh erosion rates, ocean shoreline erosion rates, and changes in marsh width were determined from aerial photographs. Output from the model indicated that hurricane erosion and overwash as well as human disturbance from the construction of the Intracoastal Waterway temporarily transitioned the Onslow Beach sites to carbon sources. Through time, the carbon reservoir at this barrier continued to decrease as carbon export outpaced carbon storage. The carbon reservoir will continue to exhaust as the ocean shoreline migrates landward given the inability for new marsh to form during island rollover. At Core Banks, barrier rollover is unimpeded and new saltmarsh can form during transgression. The Core Banks site only

  15. Quantifying Sources and Fluxes of Aquatic Carbon in U.S. Streams and Reservoirs Using Spatially Referenced Regression Models

    Science.gov (United States)

    Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2004-12-01

    Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on

  16. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  17. Reservoir characterization of the Upper Jurassic geothermal target formations (Molasse Basin, Germany): role of thermofacies as exploration tool

    Science.gov (United States)

    Homuth, S.; Götz, A. E.; Sass, I.

    2015-06-01

    The Upper Jurassic carbonates of the southern German Molasse Basin are the target of numerous geothermal combined heat and power production projects since the year 2000. A production-orientated reservoir characterization is therefore of high economic interest. Outcrop analogue studies enable reservoir property prediction by determination and correlation of lithofacies-related thermo- and petrophysical parameters. A thermofacies classification of the carbonate formations serves to identify heterogeneities and production zones. The hydraulic conductivity is mainly controlled by tectonic structures and karstification, whilst the type and grade of karstification is facies related. The rock permeability has only a minor effect on the reservoir's sustainability. Physical parameters determined on oven-dried samples have to be corrected, applying reservoir transfer models to water-saturated reservoir conditions. To validate these calculated parameters, a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used and calorimetric and thermal conductivity measurements under elevated temperature conditions are performed. Additionally, core and cutting material from a 1600 m deep research drilling and a 4850 m (total vertical depth, measured depth: 6020 m) deep well is used to validate the reservoir property predictions. Under reservoir conditions a decrease in permeability of 2-3 magnitudes is observed due to the thermal expansion of the rock matrix. For tight carbonates the matrix permeability is temperature-controlled; the thermophysical matrix parameters are density-controlled. Density increases typically with depth and especially with higher dolomite content. Therefore, thermal conductivity increases; however the dominant factor temperature also decreases the thermal conductivity. Specific heat capacity typically increases with increasing depth and temperature. The lithofacies-related characterization and prediction of reservoir

  18. Placing barrier-island transgression in a blue-carbon context

    Science.gov (United States)

    Theuerkauf, Ethan J.; Rodriguez, Antonio B.

    2017-07-01

    Backbarrier saltmarshes are considered carbon sinks; however, barrier island transgression and the associated processes of erosion and overwash are typically not included in coastal carbon budgets. Here, we present a carbon-budget model for transgressive barrier islands that includes a dynamic carbon-storage term, driven by backbarrier-marsh width, and a carbon-export term, driven by ocean and backbarrier shoreline erosion. To examine the impacts of storms, human disturbances and the backbarrier setting of a transgressive barrier island on carbon budgets and reservoirs, the model was applied to sites at Core Banks and Onslow Beach, NC, USA. Results show that shoreline erosion and burial of backbarrier marsh from washover deposition and dredge-spoil disposal temporarily transitioned each site into a net exporter (source) of carbon. The magnitude of the carbon reservoir was linked to the backbarrier setting of an island. Carbon reservoirs of study sites separated from the mainland by only backbarrier marsh (no lagoon) decreased for over a decade because carbon storage could not keep pace with erosion. With progressive narrowing of the backbarrier marsh, these barriers will begin to function more persistently as carbon sources until the reservoir is depleted at the point where the barrier welds with the mainland. Undeveloped barrier islands with wide lagoons are carbon sources briefly during erosive periods; however, at century time scales are net carbon importers (sinks) because new marsh habitat can form during barrier rollover. Human development on backbarrier saltmarsh serves to reduce the carbon storage capacity and can hasten the transition of an island from a sink to a source.

  19. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs

  20. Improved prediction of reservoir behavior through integration of quantitative geological and petrophysical data

    Energy Technology Data Exchange (ETDEWEB)

    Auman, J. B.; Davies, D. K.; Vessell, R. K.

    1997-08-01

    Methodology that promises improved reservoir characterization and prediction of permeability, production and injection behavior during primary and enhanced recovery operations was demonstrated. The method is based on identifying intervals of unique pore geometry by a combination of image analysis techniques and traditional petrophysical measurements to calculate rock type and estimate permeability and saturation. Results from a complex carbonate and sandstone reservoir were presented as illustrative examples of the versatility and high level of accuracy of this method in predicting reservoir quality. 16 refs., 5 tabs., 14 figs.

  1. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neural reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers, geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  2. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.

    1992-01-01

    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  3. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  4. Source, composition, and environmental implication of neutral carbohydrates in sediment cores of subtropical reservoirs, South China

    Directory of Open Access Journals (Sweden)

    D. Duan

    2017-09-01

    Full Text Available Neutral monosaccharides, algal organic matter (AOM, and carbon stable isotope ratios in three sediment cores of various trophic reservoirs in South China were determined by high-performance anion-exchange chromatography, Rock-Eval pyrolysis, and Finnigan Delta Plus XL mass spectrometry, respectively. The carbon isotopic compositions were corrected for the Suess effect. The concentrations of total neutral carbohydrates (TCHO range from 0.51 to 6.4 mg g−1 at mesotrophic reservoirs, and from 0.83 to 2.56 mg g−1 at an oligotrophic reservoir. Monosaccharide compositions and diagnostic parameters indicate a predominant contribution of phytoplankton in each of the three cores, which is consistent with the results inferred from the corrected carbon isotopic data and C∕N ratios. The sedimentary neutral carbohydrates are likely to be structural polysaccharides and/or preserved in sediment minerals, which are resistant to degradation in the sediments. Moreover, the monosaccharide contents are highly related to the carbon isotopic data, algal productivity estimated from the hydrogen index, and increasing mean air temperature during the past 60 years. The nutrient input, however, is not a key factor affecting the primary productivity in the three reservoirs. The above evidence demonstrates that some of the resistant monosaccharides have been significantly elevated by climate change, even in low-latitude regions.

  5. Seagrass meadows as a globally significant carbonate reservoir

    KAUST Repository

    Mazarrasa, I.; Marbà , N.; Lovelock, C. E.; Serrano, O.; Lavery, P. S.; Fourqurean, J. W.; Kennedy, H.; Mateo, M. A.; Krause-Jensen, D.; Steven, A. D. L.; Duarte, Carlos M.

    2015-01-01

    There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha−1, with an average of 654 ± 24 Mg PIC ha−1, exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of −8 ± 2 Mg PIC ha−1 per degree of latitude (general linear model, GLM; p < 0.0003). Using PIC concentrations and estimates of sediment accretion in seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 ± 31.05 g PIC m−2 yr−1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr−1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2

  6. Seagrass meadows as a globally significant carbonate reservoir

    KAUST Repository

    Mazarrasa, I.

    2015-08-24

    There has been growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the particulate organic carbon (POC) stocks and accumulation rates and ignored the particulate inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 403 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m of sediment ranged between 3 and 1660 Mg PIC ha−1, with an average of 654 ± 24 Mg PIC ha−1, exceeding those of POC reported in previous studies by about a factor of 5. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of −8 ± 2 Mg PIC ha−1 per degree of latitude (general linear model, GLM; p < 0.0003). Using PIC concentrations and estimates of sediment accretion in seagrass meadows, the mean PIC accumulation rate in seagrass sediments is found to be 126.3 ± 31.05 g PIC m−2 yr−1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top metre of sediment and accumulate between 22 and 75 Tg PIC yr−1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite the fact that these high rates of carbonate accumulation imply CO2

  7. Exploring a carbonate reef reservoir - nuclear magnetic resonance and computed microtomography confronted with narrow channel and fracture porosity

    Science.gov (United States)

    Fheed, Adam; Krzyżak, Artur; Świerczewska, Anna

    2018-04-01

    The complexity of hydrocarbon reservoirs, comprising numerous moulds, vugs, fractures and channel porosity, requires a specific set of methods to be used in order to obtain plausible petrophysical information. Both computed microtomography (μCT) and nuclear magnetic resonance (NMR) are nowadays commonly utilized in pore space investigation. The principal aim of this paper is to propose an alternative, quick and easily executable approach, enabling a thorough understanding of the complicated interiors of the carbonate hydrocarbon reservoir rocks. Highly porous and fractured Zechstein bioclastic packstones from the Brońsko Reef, located in West Poland were studied. Having examined 20 thin sections coming from two different well bores, 10 corresponding core samples were subjected to both μCT and NMR experiments. After a preliminary μCT-based image analysis, 9.4 [T] high-field zero echo time (ZTE) imaging, using a very short repetition time (RT) of 2 [μs] was conducted. Taking into consideration the risk of internal gradients' generation, the reliability of ZTE was verified by 0.6 [T] Single Point Imaging (SPI), during which such a phenomenon is much less probable. Both narrow channels and fractures of different apertures appeared to be common within the studied rocks. Their detailed description was therefore undertaken based on an additional tool - the spatially-resolved 0.05 [T] T2 profiling. According to the obtained results, ZTE seems to be especially suitable for studying porous and fractured carbonate rocks, as little disturbance to the signal appears. This can be confirmed by the SPI, indicating the negligible impact of the internal gradients on the registered ZTE images. Both NMR imaging and μCT allowed for locating the most porous intervals including well-developed mouldic porosity, as well as the contrasting impermeable structures, such as the stylolites and anhydrite veins. The 3D low-field profiling, in turn, showed the fracture aperture variations

  8. 11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China

    Science.gov (United States)

    Li, Siyue; Ye, Chen; Zhang, Quanfa

    2017-08-01

    Danjiangkou Reservoir, an important drinking water source, has become a hot spot internationally due to its draining catchment has been increasingly affected by anthropogenic activities. However, its natural water chemistry (major elements) received little attention though it is crucial for water quality and aquatic ecology. Major ions during 2004-2014 were determined using stoichiometry to explore their shifts and the driving factors in the Danjiangkou Reservoir. Results show significant differences in monthly, spatial and annual concentrations of major ions. Waters are controlled by carbonate weathering with the dominant ions of Ca2+ and HCO3- total contributing 74% to the solutes, which are consistent with regional geography. Carbonate dissolution was produced by sulfuric acid and carbonic acid in particular. The relative abundance of Ca2+ gradually decreases, Na+ + K+ abundance, however, has doubled in the recent 11 years. Population and human activities were the major drivers for several major ions, i.e., Cl- and Na+ concentrations were explained by population and GDP, and SO42- by GDP, industrial sewage and energy consumption. Estimation indicated that domestic salts and atmospheric deposition contributed 56% and 22% to Cl-, respectively. We conclude waters in the Reservoir are naturally controlled by rock weathering whilst some key elements largely contributed by anthropogenic activities.

  9. Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions Across Multiple Dissolution Regimes

    Science.gov (United States)

    Menke, H. P.; Bijeljic, B.; Andrew, M. G.; Blunt, M. J.

    2014-12-01

    Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. When supercritical CO2 mixes with brine in a reservoir, the acid generated has the potential to dissolve the surrounding pore structure. However, the magnitude and type of dissolution are condition dependent. Understanding how small changes in the pore structure, chemistry, and flow properties affect dissolution is paramount for successful predictive modelling. Both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes during supercritical CO2 injection in carbonate rocks of varying heterogeneity at high temperatures and pressures and various flow-rates. Three carbonate rock types were studied, one with a homogeneous pore structure and two heterogeneous carbonates. All samples are practically pure calcium carbonate, but have widely varying rock structures. Flow-rate was varied in three successive experiments by over an order of magnitude whlie keeping all other experimental conditions constant. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC. Tomographic images were taken at 30-second to 20-minute time-resolutions during a 2 to 4-hour injection period. A pore network was extracted using a topological analysis of the pore space and pore-scale flow modelling was performed directly on the binarized images with connected pathways and used to track the altering velocity distributions. Significant differences in dissolution type and magnitude were found for each rock type and flowrate. At the highest flow-rates, the homogeneous carbonate was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. Alternatively, the heterogeneous carbonates which formed wormholes at high flow rates. At low flow rates the homogeneous rock developed wormholes, while the heterogeneous samples showed evidence

  10. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Tom Beebe

    2003-05-05

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the seventh annual reporting period (8/3/00-8/2/01) covered by this report, work continued on interpretation of the interwell seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted and the acquired data processed and interpretation started. Only limited well work and facility construction were conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and six wells had experienced gas (CO{sub 2}) breakthrough.

  11. Wettability Alteration of Sandstone and Carbonate Rocks by Using ZnO Nanoparticles in Heavy Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Masoumeh Tajmiri

    2015-10-01

    Full Text Available Efforts to enhance oil recovery through wettability alteration by nanoparticles have been attracted in recent years. However, many basic questions have been ambiguous up until now. Nanoparticles penetrate into pore volume of porous media, stick on the core surface, and by creating homogeneous water-wet area, cause to alter wettability. This work introduces the new concept of adding ZnO nanoparticles by an experimental work on wettability alteration and oil recovery through spontaneous imbibition mechanism. Laboratory tests were conducted in two experimental steps on four cylindrical core samples (three sandstones and one carbonate taken from a real Iranian heavy oil reservoir in Amott cell. In the first step, the core samples were saturated by crude oil. Next, the core samples were flooded with nanoparticles and saturated by crude oil for about two weeks. Then, the core samples were immersed in distilled water and the amount of recovery was monitored during 30 days for both steps. The experimental results showed that oil recovery for three sandstone cores changed from 20.74, 4.3, and 3.5% of original oil in place (OOIP in the absence of nanoparticles to 36.2, 17.57, and 20.68% of OOIP when nanoparticles were added respectively. Moreover, for the carbonate core, the recovery changed from zero to 8.89% of OOIP by adding nanoparticles. By the investigation of relative permeability curves, it was found that by adding ZnO nanoparticles, the crossover-point of curves shifted to the right for both sandstone and carbonate cores, which meant wettability was altered to water- wet. This study, for the first time, illustrated the remarkable role of ZnO nanoparticles in wettability alteration toward more water-wet for both sandstone and carbonate cores and enhancing oil recovery.

  12. Radiocarbon constraints on the coupled growth of sediment and organic carbon reservoirs in fluvial systems

    Science.gov (United States)

    Torres, M. A.; Kemeny, P. C.; Fischer, W. W.; Lamb, M. P.

    2017-12-01

    Vast amounts of sediments are stored transiently in fluvial deposits as they move in rivers from source to sink. The timescale(s) of transient storage have the potential to set the cadence for biogeochemical reactions to occur in river sediments. However, the extent to which storage modulates the chemical composition of river sediments remains unclear. In case of the organic carbon (OC) cycle, transient sediment storage may leave an imprint in the radiocarbon (14C) content of riverine particulate OC (POC), offering a potential tool to trace the coupling of sediment storage and biogeochemical cycling in river systems. We investigated the modern and ancient budgets of sediments and POC in the Efi Haukadalsá River catchment in West Iceland to provide new empirical constraints on the role of sediment storage in the terrestrial OC cycle. This field site is attractive because the basaltic bedrock is free of rock-derived (i.e. "petrogenic") POC such that bulk 14C measurements can be interpreted more directly as constraints on catchment OC storage timescales. Additionally, Lake Haukadalsvatn at the outlet of the river catchment has captured sediment for nearly 13 ka, which offers a complementary record of the evolution of climate-sediment-OC linkages since deglaciation. New 14C measurements show that bulk POC in fine grained fluvial deposits within the Haukadalsá catchment is remarkably old (model ages between 1 and 10 ka). This evidence for "aged" POC in floodplain storage is consistent with previous measurements from Lake Haukadalsvatn, which show that POC is aged in the river system by thousands of years prior to deposition in the lake. Additionally, our estimate of the mean transit time of sediments through the river system matches the millennial-scale reservoir age of riverine POC derived from 14C, which implies a tight coupling between sediment storage and the OC cycle. We interpret the long-term increase in the 14C reservoir age of riverine POC over the last 10 ka

  13. Testing Urey's carbonate-silicate cycle using the calcium isotopic composition of sedimentary carbonates

    Science.gov (United States)

    Blättler, Clara L.; Higgins, John A.

    2017-12-01

    Carbonate minerals constitute a major component of the sedimentary geological record and an archive of a fraction of the carbon and calcium cycled through the Earth's surface reservoirs for over three billion years. For calcium, carbonate minerals constitute the ultimate sink for almost all calcium liberated during continental and submarine weathering of silicate minerals. This study presents >500 stable isotope ratios of calcium in Precambrian carbonate sediments, both limestones and dolomites, in an attempt to characterize the isotope mass balance of the sedimentary carbonate reservoir through time. The mean of the dataset is indistinguishable from estimates of the calcium isotope ratio of bulk silicate Earth, consistent with the Urey cycle being the dominant mechanism exchanging calcium among surface reservoirs. The variability in bulk sediment calcium isotope ratios within each geological unit does not reflect changes in the global calcium cycle, but rather highlights the importance of local mineralogical and/or diagenetic effects in the carbonate record. This dataset demonstrates the potential for calcium isotope ratios to help assess these local effects, such as the former presence of aragonite, even in rocks with a history of neomorphism and recrystallization. Additionally, 29 calcium isotope measurements are presented from ODP (Ocean Drilling Program) Site 801 that contribute to the characterization of altered oceanic crust as an additional sink for calcium, and whose distinct isotopic signature places a limit on the importance of this subduction flux over Earth history.

  14. Development of infill drilling recovery models for carbonates reservoirs using neural networks and multivariate statistical as a novel method

    International Nuclear Information System (INIS)

    Soto, R; Wu, Ch. H; Bubela, A M

    1999-01-01

    This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in west Texas. Development of the oil recovery forecast models help us to understand the relative importance of dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the database, forecast recoveries for possible new units in similar geological setting, and make operational (infill drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We have developed intelligent software (Soto, 1998), oilfield intelligence (01), as an engineering tool to improve the characterization of oil and gas reservoirs. 01 integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and inference engine modules. One of the challenges in this research was to identify the dominant and the optimum number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial water flooding, number of wells for primary recovery, number of infill wells over the initial water flooding, PRUR, IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum number of independent variables. We compared the results from neural network models with the non-parametric approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it retains a large variance of forecast results for a particular data set. We also used neural network concepts to develop recovery

  15. Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

    2012-05-01

    The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

  16. Assessment of Deep Seated Geothermal Reservoirs in Selected European Sedimentary Environments

    Science.gov (United States)

    Ungemach, Pierre; Antics, Miklos

    2014-05-01

    Europe at large enjoys a variety of sedimentary environments. They most often host dependable geothermal reservoirs thus favouring the farming of hot fluids, within the low to medium enthalpy range, among which geothermal district heating (GDH) and combined heat and power (CHP) undertakings hold a dominant share. Three selected reservoir settings, addressing carbonate and clastic deposits, the Central part of the Paris Basin, the Southern Germany Molasse Basin in the Münich area and the Netherland Basin respectively will be presented and the exploratory, modeling and development strategies discussed accordingly. Whereas 2D (reprocessed) and 3D seismics have become a standard in matching the distinctive (reef facies, an echelon faulting, carbonate platform layering) features of a deep buried karst and a key to drilling success in the Molasse Basin, thus emphasizing a leading exploratory rationale, the Netherland and Paris Basin instead benefit from a mature data base inherited from extensive hydrocarbon exploration campaigns, with concerns focused on reservoir modeling and sustainable management issues. As a result the lessons learned from the foregoing have enabled to build up a nucleus of expertise in the whole chain from resource identification to reservoir assessment and market penetration. The seismic risk, indeed a sensitive though somewhat emotional issue, which is requiring special attention and due microseismic monitoring from the geothermal community will also be commented.

  17. CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2018-03-01

    Full Text Available Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage. Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices. This strategy, however, depends on the injection strategy, reservoir characteristics and operational parameters. There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas. In this paper, an attempt was made to highlight the importance of residual gas on the capacity, injectivity, reservoir pressurization, and trapping mechanisms of storage sites through the use of numerical simulation. The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes. Therefore, it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium. Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose, more studies are required to confirm the finding presented in this paper.

  18. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR

  19. An insight into the mechanism and evolution of shale reservoir characteristics with over-high maturity

    Directory of Open Access Journals (Sweden)

    Xinjing Li

    2016-10-01

    Full Text Available Over-high maturity is one of the most vital characteristics of marine organic-rich shale reservoirs from the Lower Paleozoic in the south part of China. The organic matter (OM in shale gas reservoirs almost went through the entire thermal evolution. During this wide span, a great amount of hydrocarbon was available and numerous pores were observed within the OM including kerogen and solid bitumen/pyrobitumen. These nanopores in solid bitumen/pyrobitumen can be identified using SEM. The imaging can be dissected and understood better based on the sequence of diagenesis and hydrocarbon charge with the shape of OM and pores. In terms of the maturity process showed by the various typical cases, the main effects of the relationship between the reservoir porosity and organic carbon abundance are interpreted as follows: the change and mechanism of reservoirs properties due to thermal evolution are explored, such as gas carbon isotope from partial to complete rollover zone, wettability alteration from water-wet to oil-wet and then water-wet pore surface again, electrical resistivity reversal from the increasing to decreasing stage, and nonlinearity fluctuation of rock elasticity anisotropy. These indicate a possible evolution pathway for shale gas reservoirs from the Lower Paleozoic in the southern China, as well as the general transformation processes between different shale reservoirs in thermal stages.

  20. Lattice Boltzmann Simulations of Fluid Flow in Continental Carbonate Reservoir Rocks and in Upscaled Rock Models Generated with Multiple-Point Geostatistics

    Directory of Open Access Journals (Sweden)

    J. Soete

    2017-01-01

    Full Text Available Microcomputed tomography (μCT and Lattice Boltzmann Method (LBM simulations were applied to continental carbonates to quantify fluid flow. Fluid flow characteristics in these complex carbonates with multiscale pore networks are unique and the applied method allows studying their heterogeneity and anisotropy. 3D pore network models were introduced to single-phase flow simulations in Palabos, a software tool for particle-based modelling of classic computational fluid dynamics. In addition, permeability simulations were also performed on rock models generated with multiple-point geostatistics (MPS. This allowed assessing the applicability of MPS in upscaling high-resolution porosity patterns into large rock models that exceed the volume limitations of the μCT. Porosity and tortuosity control fluid flow in these porous media. Micro- and mesopores influence flow properties at larger scales in continental carbonates. Upscaling with MPS is therefore necessary to overcome volume-resolution problems of CT scanning equipment. The presented LBM-MPS workflow is applicable to other lithologies, comprising different pore types, shapes, and pore networks altogether. The lack of straightforward porosity-permeability relationships in complex carbonates highlights the necessity for a 3D approach. 3D fluid flow studies provide the best understanding of flow through porous media, which is of crucial importance in reservoir modelling.

  1. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China

    Science.gov (United States)

    Xi, Kelai; Cao, Yingchang; Jahren, Jens; Zhu, Rukai; Bjørlykke, Knut; Haile, Beyene Girma; Zheng, Lijing; Hellevang, Helge

    2015-12-01

    The Lower Cretaceous Quantou Formation in the southern Songliao Basin is the typical tight oil sandstone in China. For effective exploration, appraisal and production from such a tight oil sandstone, the diagenesis and reservoir quality must be thoroughly studied first. The tight oil sandstone has been examined by a variety of methods, including core and thin section observation, XRD, SEM, CL, fluorescence, electron probing analysis, fluid inclusion and isotope testing and quantitative determination of reservoir properties. The sandstones are mostly lithic arkoses and feldspathic litharenites with fine to medium grain size and moderate to good sorting. The sandstones are dominated by feldspar, quartz, and volcanic rock fragments showing various stages of disintegration. The reservoir properties are quite poor, with low porosity (average 8.54%) and permeability (average 0.493 mD), small pore-throat radius (average 0.206 μm) and high displacement pressure (mostly higher than 1 MPa). The tight sandstone reservoirs have undergone significant diagenetic alterations such as compaction, feldspar dissolution, quartz cementation, carbonate cementation (mainly ferrocalcite and ankerite) and clay mineral alteration. As to the onset time, the oil emplacement was prior to the carbonate cementation but posterior to the quartz cementation and feldspar dissolution. The smectite to illite reaction and pressure solution at stylolites provide a most important silica sources for quartz cementation. Carbonate cements increase towards interbedded mudstones. Mechanical compaction has played a more important role than cementation in destroying the reservoir quality of the K1q4 sandstone reservoirs. Mixed-layer illite/smectite and illite reduced the porosity and permeability significantly, while chlorite preserved the porosity and permeability since it tends to be oil wet so that later carbonate cementation can be inhibited to some extent. It is likely that the oil emplacement occurred

  2. Spatio-temporal variations of carbon dioxide and its gross emission regulated by artificial operation in a typical hydropower reservoir in China.

    Science.gov (United States)

    Li, Zhe; Zhang, Zengyu; Xiao, Yan; Guo, Jinsong; Wu, Shengjun; Liu, Jing

    2014-05-01

    Supersaturation and excess emission of greenhouse gases in freshwater reservoirs have received a great deal of attention in recent years. Although impoundment of reservoirs has been shown to contribute to the net emission of greenhouse gases, reservoir age, geographical distribution, submerged soil type and artificial regulation also have a great impact on their emissions. To examine how large scale reservoir operation impact the water column CO2 and its air-water interface flux, a field study was conducted in 2010 to evaluate potential ecological processes that regulate the partial pressure of CO2 (pCO2) in the water column in the Pengxi River backwater area (PBA), a typical tributary in the Three Gorges Reservoir, China. Measurements of total alkalinity (TA), pH and water temperature were applied to compute the pCO2. And this approach was also validated by calculation of pCO2 from the dissolved inorganic carbon data of samples. Partial least squares (PLS) regression was used to determine how the dynamics of the water pCO2 were related to the available variables. The estimated pCO2 in our sample ranged from 26 to 4,087 μatm in the surface water. During low water operation from July to early September, there was an obvious pCO2 stratification, and pCO2 in the surface was almost unsaturated. This phenomenon was also observed in the spring bloom during discharge period. Conversely, there was no significant pCO2 stratification and the entire water column was supersaturated during high water operation from November to the following February. Significant correlation was observed between the magnitude of pCO2, DO and chlorophyll a, suggesting that phytoplankton dynamics regulate pCO2 in the PBA. The average areal rate of CO2 emissions from the Pengxi River ranged from 18.06 to 48.09 mmol m(-2) day(-1), with an estimated gross CO2 emission from the water surface of 14-37 t day(-1) in this area in 2010. Photosynthesis and respiration rates by phytoplankton might be the

  3. Genesis and distribution pattern of carbonate cements in lacustrine deep-water gravity-flow sandstone reservoirs in the third member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China

    DEFF Research Database (Denmark)

    Yang, Tian; Cao, Yingchang; Friis, Henrik

    2018-01-01

    The lacustrine deep-water gravity-flow sandstone reservoirs in the third member of the Shahejie Formation are the main exploration target for hydrocarbons in the Dongying Sag, Eastern China. Carbonate cementation is responsible for much of the porosity and permeability reduction in the lacustrine...

  4. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  5. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  6. Computer Modeling of the Displacement Behavior of Carbon Dioxide in Undersaturated Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Ju Binshan

    2015-11-01

    Full Text Available The injection of CO2 into oil reservoirs is performed not only to improve oil recovery but also to store CO2 captured from fuel combustion. The objective of this work is to develop a numerical simulator to predict quantitatively supercritical CO2 flooding behaviors for Enhanced Oil Recovery (EOR. A non-isothermal compositional flow mathematical model is developed. The phase transition diagram is designed according to the Minimum Miscibility Pressure (MMP and CO2 maximum solubility in oil phase. The convection and diffusion of CO2 mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude and phase partitioning are considered. The governing equations are discretized by applying a fully implicit finite difference technique. Newton-Raphson iterative technique was used to solve the nonlinear equation systems and a simulator was developed. The performances of CO2 immiscible and miscible flooding in oil reservoirs are predicted by the new simulator. The distribution of pressure and temperature, phase saturations, mole fraction of each component in each phase, formation damage caused by asphaltene precipitation and the improved oil recovery are predicted by the simulator. Experimental data validate the developed simulator by comparison with simulation results. The applications of the simulator in prediction of CO2 flooding in oil reservoirs indicate that the simulator is robust for predicting CO2 flooding performance.

  7. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Burns; M. Nafi Toksoz

    2005-02-04

    Numerical modeling and field data tests are presented on the Transfer Function/Scattering Index Method for estimating fracture orientation and density in subsurface reservoirs from the ''coda'' or scattered energy in the seismic trace. Azimuthal stacks indicate that scattered energy is enhanced along the fracture strike direction. A transfer function method is used to more effectively indicate fracture orientation. The transfer function method, which involves a comparison of the seismic signature above and below a reservoir interval, effectively eliminates overburden effects and acquisition imprints in the analysis. The transfer function signature is simplified into a scattering index attribute value that gives fracture orientation and spatial variations of the fracture density within a field. The method is applied to two field data sets, a 3-D Ocean Bottom Cable (OBC) seismic data set from an offshore fractured carbonate reservoir in the Adriatic Sea and a 3-D seismic data set from an onshore fractured carbonate field in the Middle East. Scattering index values are computed in both fields at the reservoir level, and the results are compared to borehole breakout data and Formation MicroImager (FMI) logs in nearby wells. In both cases the scattering index results are in very good agreement with the well data. Field data tests and well validation will continue. In the area of technology transfer, we have made presentations of our results to industry groups at MIT technical review meetings, international technical conferences, industry workshops, and numerous exploration and production company visits.

  8. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    Science.gov (United States)

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  9. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  10. Fortescue reservoir development and reservoir studies

    Energy Technology Data Exchange (ETDEWEB)

    Henzell, S.T.; Hicks, G.J.; Horden, M.J.; Irrgang, H.R.; Janssen, E.J.; Kable, C.W.; Mitchell, R.A.H.; Morrell, N.W.; Palmer, I.D.; Seage, N.W.

    1985-03-01

    The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum. The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43/sup 0/ API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP. In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir. The model was validated by history matching an extensive suite of Repeat Formation Test (RFT) pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate. This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.

  11. Compaction of granular carbonates under conditions relevant to diagenesis and fault sealing. Geologica Ultraiectina (332)

    OpenAIRE

    Zhang, X.

    2010-01-01

    Carbonate reservoir rocks contain more than 60% of the world’s oil reserves and 40% of its gas reserves. The evolution of the reservoir quality, i.e. their porosity and permeability, is for a large part controlled by compaction due to pressure solution (chemical compaction). Pressure solution also forms an efficient mechanism of fault sealing in carbonate rocks. Moreover, during hydrocarbons production, and after injection of CO2 into carbonate reservoirs, pressure solution may lead to vertic...

  12. Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

    Directory of Open Access Journals (Sweden)

    S. Kurian

    2012-07-01

    Full Text Available Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC and liquid chromatography-mass spectrometry (LC-MS in two freshwater reservoirs (Tillari Dam and Selaulim Dam, which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the period of anoxia (summer, bacteriochlorophyll (BChl e isomers and isorenieratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll b-containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the anoxic compartment of Tillari Reservoir was estimated to be 2.27 gC m−2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m−2. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photo-autotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl e isomers was detected at 0.2% of the surface incident light. This shows that the vertical distribution of photo-autotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2

  13. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.

    2000-01-01

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  14. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  15. Computerized X-ray Microtomography Observations and Fluid Flow Measurements of the Effect of Effective Stress on Fractured Reservoir Seal Shale

    Science.gov (United States)

    Welch, N.; Crawshaw, J.; Boek, E.

    2014-12-01

    The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.

  16. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  17. Late-Holocene marine radiocarbon reservoir correction (ΔR) for the west coast of South Africa

    CSIR Research Space (South Africa)

    Dewar, G

    2012-06-01

    Full Text Available In order to calibrate radiocarbon ages based on samples with a marine carbon component it is important to know the marine carbon reservoir correction or ΔR value. This study measured the ΔR on both known-age pre-bomb marine shells and paired marine...

  18. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  19. Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic Wafra case study

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    reservoir history matching framework using ensemble based techniques incorporating seismic data for enhancing reservoir characterization and improving history matches. Examining the performance on a synthetic field study of the Wafra field, we could

  20. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-05-01

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres

  1. Identification of Detrital Carbonate in East Cepu High

    Science.gov (United States)

    Sari, R.; Andika, I. K.; Haris, A.; Miftah, A.

    2018-03-01

    East Cepu High is a part of horst – graben series which formed by extensional tectonic processes during Paleogene in North East Java Basin. Due to excellent paleogeography position, the carbonate build-up was growth very well and as the main reservoir in East Cepu High. Sea level change have important factor to provide variation of facies in each carbonate buildup, one of emerging facies is detrital carbonate. Detrital carbonate indicated by onlap horizon featured with carbonate build up body. Based on paleogeography, fluctuation of sea level change and sediment source, detrital carbonate formed in leeward area in lowstand or highstand phases. Distinguish between detrital carbonate facies with other facies, advanced seismic processing performed by using continuous wavelet transform (CWT) and seismic inversion. CWT is one method of spectral decomposition used to find the frequency that represent a facies. The result from seismic inversion will support the interpretation for facies distribution. As the result, seismic data which have interval frequency 10 – 45 Hz and Acoustic Impedance (AI) value above 35000 (from cross plot between acoustic impedance and gamma ray) can be interpreted as detrital carbonate. Based on seismic interpretation, detrital carbonate facies distributed along leeward area with geometrical spreading. The lateral facies change from detrital carbonate to shale was identified which causing this facies become potential as hydrocarbon reservoir with stratigraphic trap. Based on the earlier studies, North East Java Basin have a strong hydrocarbon migration to fill the reservoir, therefore the detrital carbonate have high chance to be a new hydrocarbon prospect in this area.

  2. Evaluation of Frasnian Shale reservoir, case studywell DAK-1, Ahnet ...

    African Journals Online (AJOL)

    The evaluation of unconventional reservoir in term of future exploration plan where the geochemical data are not unavailable making us different results from logging and Gas Data However this paper aim to define Potential zone throught the estimation of total organic carbon(TOC) using Δ log R Method and thermal ...

  3. Rates of CO2 Mineralization in Geological Carbon Storage.

    Science.gov (United States)

    Zhang, Shuo; DePaolo, Donald J

    2017-09-19

    Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of

  4. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs.

    Science.gov (United States)

    Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C

    2017-08-15

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The

  5. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  6. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    Science.gov (United States)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore

  7. A strategy for low cost development of incremental oil in legacy reservoirs

    Science.gov (United States)

    Attanasi, E.D.

    2016-01-01

    The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.

  8. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    Science.gov (United States)

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  9. Effect of stratification on segregation in carbon dioxide miscible flooding in a water-flooded oil reservoir

    International Nuclear Information System (INIS)

    Bhatti, A.A.; Mahmood, S.M.; Amjad, B.

    2013-01-01

    Oil reservoirs are subjected to tertiary recovery by deploying any enhanced oil recovery (EOR) technique for the recovery of left over oil. Amongst many EOR methods one of the widely applied worldwide is CO/sub 2/ flooding through miscible, near miscible or immiscible displacement processes. CO/sub 2/ flooding process responds to a number of reservoir and fluid characteristics. These characteristics have strong effect on overall efficiency of the displacement process. Better understanding of the effect of different characteristics on displacement process is important to plan an efficient displacement process. In this work, the effect of stratification resulting in gravity segregation of the injected fluid is studied in an oil reservoir which is water-flooded during secondary phase of recovery. Sensitivity analysis is performed through successive simulation on Eclipse 300 (compositional) reservoir simulator. Process involves the continuous CO/sub 2/ injection in an oil reservoir with more than 1/3rd of original oil in place left after water flooding. Reservoir model with four different permeability layers is studied. Four patterns by changing the arrangement of the permeabilities of the layers are analysed. The effect of different arrangement or stratification on segregation of CO/sub 2/ and ultimately on the incremental oil recovery, is investigated. It has been observed that out of four arrangements, upward fining pattern relatively overcame the issue of the segregation of CO/sub 2/ and consequently 33% more oil with half injection volume is recovered when compared with the downward fining pattern. (author)

  10. Modeling of the global carbon cycle - isotopic data requirements

    International Nuclear Information System (INIS)

    Ciais, P.

    1994-01-01

    Isotopes are powerful tools to constrain carbon cycle models. For example, the combinations of the CO 2 and the 13 C budget allows to calculate the net-carbon fluxes between atmosphere, ocean, and biosphere. Observations of natural and bomb-produced radiocarbon allow to estimate gross carbon exchange fluxes between different reservoirs and to deduce time scales of carbon overturning in important reservoirs. 18 O in CO 2 is potentially a tool to make the deconvolution of C fluxes within the land biosphere (assimilation vs respirations). The scope of this article is to identify gaps in our present knowledge about isotopes in the light of their use as constraint for the global carbon cycle. In the following we will present a list of some future data requirements for carbon cycle models. (authors)

  11. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy.

    Science.gov (United States)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-15

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0Raman peak area can be used for the determination of δ 13 C values within the relative errors range of 0.076% to 1.154% in 13 CO 2 / 12 CO 2 binary mixtures when F 12CO2 /F 13CO2 is 0.466972625. In addition, measurement of δ 13 C values by Micro-Laser Raman analysis were carried out on natural CO 2 gas from Shengli Oil-field at room temperature under different pressures. The δ 13 C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ 13 C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ 13 C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ 13 C values in natural CO 2 gas reservoirs. Copyright © 2018. Published by Elsevier B.V.

  12. Quantification of oil recovery efficiency, CO 2 storage potential, and fluid-rock interactions by CWI in heterogeneous sandstone oil reservoirs

    DEFF Research Database (Denmark)

    Seyyedi, Mojtaba; Sohrabi, Mehran; Sisson, Adam

    2017-01-01

    Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (CO...... for oil recovery and CO2 storage potential on heterogeneous cores. Since not all the oil reservoirs are homogenous, understanding the potential of CWI as an integrated EOR and CO2 storage scenario in heterogeneous oil reservoirs is essential....

  13. Seismic modeling of acid-gas injection in a deep saline reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ursenbach, C.P.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    Carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S) are common byproducts of the energy industry. As such, remediation studies are underway to determine the feasibility of sequestering these byproducts in subsurface reservoirs, including deep saline reservoirs. Acid gas injection at smaller gas wells holds promise. However, in order for such injection programs to work, the progress of the injection plume must be tracked. A modeling study of fluid substitution was carried out to gain insight into the ability of seismic monitoring to distinguish pre- and post-injection states of the reservoir medium. The purpose of this study was to carry out fluid substitution calculations for the modeling of an injection process. A methodology that may be applied or adapted to a variety of acid-gas injection scenarios was also developed. The general approach involved determining acoustic properties at reservoir temperature and pressure of relevant fluids; obtaining elastic properties of the reservoir rock for some reference saturated state, and the elastic properties of the mineral comprising it; and, determining the change in reservoir elastic properties due to fluid substitution via Gassmann's equation. Water, brine and non-aqueous acid gas were the 3 fluids of interest in this case. The feasibility of monitoring was judged by the sensitivity of travel times and reflection coefficients to fluid substitution. 4 refs., 2 figs.

  14. Photosynthetic carbon metabolism in freshwater phytoplankton

    International Nuclear Information System (INIS)

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic 14 C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies

  15. Petrofacies analysis - the petrophysical tool for geologic/engineering reservoir characterization

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.; Guy, W.J.; Gerlach, P.M. [Kansas Geological Survey, Lawrence, KS (United States)] [and others

    1997-08-01

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measures of a reservoir. The word {open_quotes}petrofacies{close_quotes} makes an explicit link between petroleum engineers concerns with pore characteristics as arbiters of production performance, and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information, where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations will be reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production such as bypassed pay behind pipe and in old exploration holes, or to assess zonation and continuity of the reservoir. Petrofacies analysis is applied in this example to distinguishing flow units including discrimination of pore type as assessment of reservoir conformance and continuity. The analysis is facilitated through the use of color cross sections and cluster analysis.

  16. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    Science.gov (United States)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  17. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  18. Megaporosity and permeability of Thalassinoides-dominated ichnofabrics in the Cretaceous karst-carbonate Edwards-Trinity aquifer system, Texas

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael C.

    2012-01-01

    Current research has demonstrated that trace fossils and their related ichnofabrics can have a critical impact on the fluid-flow properties of hydrocarbon reservoirs and groundwater aquifers. Most petroleum-associated research has used ichnofabrics to support the definition of depositional environments and reservoir quality, and has concentrated on siliciclastic reservoir characterization and, to a lesser degree, carbonate reservoir characterization (for example, Gerard and Bromley, 2008; Knaust, 2009). The use of ichnology in aquifer characterization has almost entirely been overlooked by the hydrologic community because the dynamic reservoir-characterization approach has not caught on with hydrologists and so hydrology is lagging behind reservoir engineering in this area (de Marsily and others, 2005). The objective of this research is to show that (1) ichnofabric analysis can offer a productive methodology for purposes of carbonate aquifer characterization, and (2) a clear relation can exist between ichnofabrics and groundwater flow in carbonate aquifers.

  19. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    Science.gov (United States)

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  20. Innovation-driven efficient development of the Longwangmiao Fm large-scale sulfur gas reservoir in Moxi block, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Xinhua Ma

    2016-03-01

    Full Text Available The Lower Cambrian Longwangmiao Fm gas reservoir in Moxi block of the Anyue Gas field, Sichuan Basin, is the largest single-sandbody integrated carbonate gas reservoir proved so far in China. Notwithstanding this reservoir's advantages like large-scale reserves and high single-well productivity, there are multiple complicated factors restricting its efficient development, such as a median content of hydrogen sulfide, low porosity and strong heterogeneity of fracture–cave formation, various modes of gas–water occurrences, and close relation between overpressure and stress sensitivity. Up till now, since only a few Cambrian large-scale carbonate gas reservoirs have ever been developed in the world, there still exists some blind spots especially about its exploration and production rules. Besides, as for large-scale sulfur gas reservoirs, the exploration and construction is costly, and production test in the early evaluation stage is severely limited, all of which will bring about great challenges in productivity construction and high potential risks. In this regard, combining with Chinese strategic demand of strengthening clean energy supply security, the PetroChina Southwest Oil & Gas Field Company has carried out researches and field tests for the purpose of providing high-production wells, optimizing development design, rapidly constructing high-quality productivity and upgrading HSE security in the Longwangmiao Fm gas reservoir in Moxi block. Through the innovations of technology and management mode within 3 years, this gas reservoir has been built into a modern large-scale gas field with high quality, high efficiency and high benefit, and its annual capacity is now up to over 100 × 108 m3, with a desirable production capacity and development indexes gained as originally anticipated. It has become a new model of large-scale gas reservoirs with efficient development, providing a reference for other types of gas reservoirs in China.

  1. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  2. CHARACTERIZATION OF SANDSTONE RESERVOIRS FOR ENHANCED OIL RECOVERY: THE PERMIAN UPPER MINNELUSA FORMATION, POWDER RIVER BASIN, WYOMING.

    Science.gov (United States)

    Schenk, C.J.; Schmoker, J.W.; Scheffler, J.M.

    1986-01-01

    Upper Minnelusa sandstones form a complex group of reservoirs because of variations in regional setting, sedimentology, and diagenetic alteration. Structural lineaments separate the reservoirs into northern and southern zones. Production in the north is from a single pay sand, and in the south from multi-pay sands due to differential erosion on top of the Upper Minnelusa. The intercalation of eolian dune, interdune, and sabkha sandstones with marine sandstones, carbonates, and anhydrites results in significant reservoir heterogeneity. Diagenetic alterations further enhance heterogeneity, because the degree of cementation and dissolution is partly facies-related.

  3. An Overview of Geologic Carbon Sequestration Potential in California

    Energy Technology Data Exchange (ETDEWEB)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  4. Large reservoirs: Chapter 17

    Science.gov (United States)

    Miranda, Leandro E.; Bettoli, Phillip William

    2010-01-01

    Large impoundments, defined as those with surface area of 200 ha or greater, are relatively new aquatic ecosystems in the global landscape. They represent important economic and environmental resources that provide benefits such as flood control, hydropower generation, navigation, water supply, commercial and recreational fisheries, and various other recreational and esthetic values. Construction of large impoundments was initially driven by economic needs, and ecological consequences received little consideration. However, in recent decades environmental issues have come to the forefront. In the closing decades of the 20th century societal values began to shift, especially in the developed world. Society is no longer willing to accept environmental damage as an inevitable consequence of human development, and it is now recognized that continued environmental degradation is unsustainable. Consequently, construction of large reservoirs has virtually stopped in North America. Nevertheless, in other parts of the world construction of large reservoirs continues. The emergence of systematic reservoir management in the early 20th century was guided by concepts developed for natural lakes (Miranda 1996). However, we now recognize that reservoirs are different and that reservoirs are not independent aquatic systems inasmuch as they are connected to upstream rivers and streams, the downstream river, other reservoirs in the basin, and the watershed. Reservoir systems exhibit longitudinal patterns both within and among reservoirs. Reservoirs are typically arranged sequentially as elements of an interacting network, filter water collected throughout their watersheds, and form a mosaic of predictable patterns. Traditional approaches to fisheries management such as stocking, regulating harvest, and in-lake habitat management do not always produce desired effects in reservoirs. As a result, managers may expend resources with little benefit to either fish or fishing. Some locally

  5. Mercury bioaccumulation in the food web of Three Gorges Reservoir (China): Tempo-spatial patterns and effect of reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Zhou, Qiong, E-mail: hainan@mail.hzau.edu.cn [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Yuan, Gailing; He, Xugang [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070 (China); Xie, Ping [College of Fisheries, Huazhong Agricultural University, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070 (China); Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)

    2015-09-15

    Tempo-spatial patterns of mercury bioaccumulation and tropho-dynamics, and the potential for a reservoir effect were evaluated in the Three Gorges Reservoir (TGR, China) from 2011 to 2012, using total mercury concentrations (THg) and stable isotopes (δ{sup 13}C and δ{sup 15}N) of food web components (seston, aquatic invertebrates and fish). Hg concentrations in aquatic invertebrates and fish indicated a significant temporal trend associated with regular seasonal water-level manipulation. This includes water level lowering to allow for storage of water during the wet season (summer); a decrease of water levels from September to June providing a setting for flood storage. Hg concentrations in organisms were the highest after flooding. Higher Hg concentrations in fish were observed at the location farthest from the dam. Hg concentrations in water and sediment were correlated. Compared with the reservoirs of United States and Canada, TGR had lower trophic magnification factors (0.046–0.066), that are explained primarily by organic carbon concentrations in sediment, and the effect of “growth dilution”. Based on comparison before and after the impoundment of TGR, THg concentration in biota did not display an obvious long-term reservoir effect due to (i) short time since inundation, (ii) regular water discharge associated with water-level regulation, and/or (iii) low organic matter content in the sediment. - Highlights: • Hg concentrations were measured in biota of the main stem of 3 Gorges Reservoir. • Fish Hg concentration post-flood period > pre-flood period > flood period. • Fish Hg concentrations were the highest farthest from the dam. • THg in fish 2 years after inundation were the same as before impoundment. • Low biomagnification was ascribed to low DOC content in the sediment.

  6. Area of Interest 1, CO2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, Peter [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Evans, James [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Dewers, Thomas [New Mexico Institute Of Mining And Technology, Socorro, NM (United States)

    2014-10-31

    Formation reservoir/caprock interface in order to extend our work to a reservoir/caprock pair this is currently being assessed for long-term carbon storage. These analyses indicate that interface features similar to those observed at the Utah sites 3 were not observed. Although not directly related to our main study topic, one byproduct of our investigation is documentation of exceptionally high degrees of heterogeneity in the pore-size distribution of the Mount Simon Sandstone. This suggests that the unit has a greater-than-normal potential for residual trapping of supercritical CO2.

  7. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1997-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  8. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain

    2018-01-15

    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1996-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  10. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.

    1994-12-01

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  11. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf

    2017-06-06

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  12. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    Science.gov (United States)

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the

  13. Deep-Water Resedimented Carbonate Exploration Play Types: Controls and Models

    Science.gov (United States)

    Minzoni, M.; Janson, X.; Kerans, C.; Playton, T.; Winefield, P.; Burgess, P. M.

    2016-12-01

    Deepwater resedimented deposits have been described in both modern and ancient carbonate sequences, many with good reservoir potential, for example the giant Cretaceous Poza Rica field in Mexico ( 40 MMBoe), the Mississippian Tangiz field in Kazakhstan, and several fields in the U.S. Permian basin (several Tcf gas). Nevertheless, carbonate slope and basin systems remain poorly understood when compared to their siliciclastic counterparts. Legacy published and unpublished work, combined with a global database of surface and sub-surface examples of resedimented carbonates, has highlighted that downslope resedimentation of carbonate material is in large part controlled by the evolution of the parent platform margin, which in turn is best characterized in terms of various controlling processes such as the carbonate factory type, tectonic setting, eustatic variations, and prevailing wind direction and ocean current patterns. Two generic play types emerge: (i) attached carbonate slope play -developed immediately adjacent to the parent carbonate platform and dominated by rock fall and platform collapse deposits or in situ boundstone; and (ii) detached carbonate slope play - deposited further from the platform margin via channelized turbidity currents and other mass-flow processes. High-rising, steep, bypass platform margins with collapse scars and grain-dominated factories have the highest potential to generate channelized and detached deep-water reservoirs with high initial porosity and permeability. Best reservoirs are aragonitic grainstones transported from the platform into the adjacent basin, and undergoing dissolution in submarine undersaturated water with early formation of secondary porosity to further enhance reservoir properties. Any exploration model aiming at identifying potential resedimented carbonate plays should be based on carbonate platform configurations and factory types favorable for re-sedimentation of large sedimentary bodies and preservation or

  14. Reservoir characterization using artificial neural network; Neural network wo mochiita choryuso tokusei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, N; Kozawa, T [Japan National Oil Corp., Tokyo (Japan); Nishikawa, N; Tani, A [Fuji Research Institute Corp., Tokyo (Japan)

    1997-05-27

    Neural network is used for the prediction of porosity and permeability using logging data as reservoir characteristics, and the validity of this method is verified. For the prediction of reservoir characteristics by the use of seismic survey data, composite seismic survey records obtained by density logging and acoustic logging are used to experiment the prediction of porosity and permeability continuous along lines of wells. A 3-output back propagation network is used for analysis. There is a possibility that this technique when optimized will improve on prediction accuracy. Furthermore, in the case of characteristics mapping, 3-dimensional seismic data is applied to a carbonate rock reservoir for predicting spatial porosity and permeability. This technique facilitates the comprehensive analysis of core data, well data, and seismic survey data, enabling the derivation of a high-precision spatial distribution of reservoir characteristics. Efforts will continue for further improvement on prediction accuracy. 6 refs., 7 figs., 3 tabs.

  15. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    Science.gov (United States)

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai

    2017-02-01

    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.

  16. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  17. Caprock Integrity during Hydrocarbon Production and CO2 Injection in the Goldeneye Reservoir

    Science.gov (United States)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert

    2016-04-01

    Carbon Capture and Storage (CCS) is a key technology for addressing climate change and maintaining security of energy supplies, while potentially offering important economic benefits. UK offshore, depleted hydrocarbon reservoirs have the potential capacity to store significant quantities of carbon dioxide, produced during power generation from fossil fuels. The Goldeneye depleted gas condensate field, located offshore in the UK North Sea at a depth of ~ 2600 m, is a candidate for the storage of at least 10 million tons of CO2. In this research, a fully coupled, full-scale model (50×20×8 km), based on the Goldeneye reservoir, is built and used for hydro-carbon production and CO2 injection simulations. The model accounts for fluid flow, heat transfer, and deformation of the fractured reservoir. Flow through fractures is defined as two-dimensional laminar flow within the three-dimensional poroelastic medium. The local thermal non-equilibrium between injected CO2 and host reservoir has been considered with convective (conduction and advection) heat transfer. The numerical model has been developed using standard finite element method with Galerkin spatial discretisation, and finite difference temporal discretisation. The geomechanical model has been implemented into the object-oriented Imperial College Geomechanics Toolkit, in close interaction with the Complex Systems Modelling Platform (CSMP), and validated with several benchmark examples. Fifteen major faults are mapped from the Goldeneye field into the model. Modal stress intensity factors, for the three modes of fracture opening during hydrocarbon production and CO2 injection phases, are computed at the tips of the faults by computing the I-Integral over a virtual disk. Contact stresses -normal and shear- on the fault surfaces are iteratively computed using a gap-based augmented Lagrangian-Uzawa method. Results show fault activation during the production phase that may affect the fault's hydraulic conductivity

  18. Size distribution of planktonic autotrophy and microheterotrophy in DeGray Reservoir, Arkansas

    International Nuclear Information System (INIS)

    Kimmel, B.L.; Groeger, A.W.

    1983-01-01

    Naturally occurring assemblages of phytoplankton and bacterioplankton were radiolabelled with sodium 14 C-bicarbonate and sodium 3 H-acetate and size fractionated to determine the size structure of planktonic autotrophy and microheterotrophy in DeGray Reservoir, an oligotrophic impoundment of the Caddo River in south-central Arkansas. Size distributions of autotrophy and microheterotrophy were remarkably uniform seasonally, vertically within the water column, and along the longitudinal axis of the reservoir despite significant changes in environmental conditions. Planktonic autotrophy was dominated by small algal cells with usually >50% of the photosynthetic carbon uptake accounted for by organisms 75% of the planktonic microheterotrophy. Longitudinal patterns in autotrophic and microheterotrophic activities associated with >3-μm and >1-μm size fractions, respectively, suggest an uplake to downlake shift from riverine to lacustrine environmental influences within the reservoir. 83 references, 7 figures

  19. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  20. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  1. How Reservoirs Alter DOM Amount and Composition: Sources, Sinks, and Transformations

    Science.gov (United States)

    Kraus, T. E.; Bergamaschi, B. A.; Hernes, P. J.; Doctor, D. H.; Kendall, C.; Losee, R. F.; Downing, B. D.

    2011-12-01

    Reservoirs are critical components of many water supply systems as they allow the storage of water when supply exceeds demand. However, during water storage biogeochemical processes can alter both the amount and composition of dissolved organic matter (DOM), which can in turn affect water quality. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also relevant as they affect DOM reactivity (e.g. persistence in the environment, removability during coagulation treatment, and potential to form toxic compounds during drinking water treatment). The composition of the DOM pool also provides information about the DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir (SLR), a large off-stream impoundment of the California State Water Project. We used an array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, optical properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C NMR. There were periods when the reservoir was i) a net source of DOM due to the predominance of algal production (summer), ii) a net sink due to the predominance of degradation (fall/winter), and iii) balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0-3.6 mg C/L), substantial changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Results suggest reservoirs have the potential to reduce DOM amount and reactivity via degradative processes, however, these benefits can be decreased or even negated by the production of algal-derived DOM.

  2. Air injection low temperature oxidation process for enhanced oil recovery from light oil reservoirs

    International Nuclear Information System (INIS)

    Tunio, A.H.; Harijan, K.

    2010-01-01

    This paper represents EOR (Enhanced Oil Recovery) methods to recover unswept oil from depleted light oil reservoirs. The essential theme here is the removal of oxygen at LTO (Low Temperature Oxidation) from the injected air for a light oil reservoir by means of some chemical reactions occurring between oil and oxygen. In-situ combustion process, HTO (High Temperature Oxidation) is not suitable for deep light oil reservoirs. In case of light oil reservoirs LTO is more suitable to prevail as comparative to HTO. Few laboratory experimental results were obtained from air injection process, to study the LTO reactions. LTO process is suitable for air injection rate in which reservoir has sufficiently high temperature and spontaneous reaction takes place. Out comes of this study are the effect of LTO reactions in oxygen consumption and the recovery of oil. This air injection method is economic compared to other EOR methods i.e. miscible hydrocarbon gas, nitrogen, and carbon dioxide flooding etc. This LTO air injection process is suitable for secondary recovery methods where water flooding is not feasible due to technical problems. (author)

  3. Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic

    Science.gov (United States)

    Mangerud, Jan; Bondevik, Stein; Gulliksen, Steinar; Karin Hufthammer, Anne; Høisæter, Tore

    2006-12-01

    In order to compare radiocarbon dates on marine and terrestrial samples the former have to be corrected for a reservoir age. We present reservoir ages from dating 21 whales collected 1860-1901 and recalculating dates of 23 molluscs collected 1857-1926. Most of the whales were caught along the coast of Norway, but one is from France and one from Iceland. We assume the former mainly lived in the North and equatorial Atlantic and in the Norwegian Sea. Whales feed only on pelagic organisms and will provide the reservoir age for the open ocean surface water. However, they travel long distances and will integrate the reservoir ages of the different water masses along their way. Molluscs (dated from Norway, Spitsbergen and Arctic Canada) are stationary and monitor the sea water passing their dwelling site, but some also take up carbon from particulate food or sediment pore water. Coastal water also often contains some continental carbon. We present two different views on how to analyze and interpret the data. Mangerud recommends to use reservoir ages based on a combination of the whale and mollusc dates, i.e. 380±30 and 360±30 yr relative to Intcal04 and British oak, respectively, and a Δ R value of 20±30 for the surface water in the N-Atlantic and Norwegian Sea. Bondevik and Gulliksen maintain that the reservoir age—and Δ R—along the Norwegian coast is latitude dependant, with Δ R-values increasing from -3±22 in the South to 105±24 at Spitsbergen. Whales, reflecting North Atlantic open ocean surface water have lower Δ R (7±11) than most molluscs.

  4. Mexican forest inventory expands continental carbon monitoring

    Science.gov (United States)

    Alberto Sandoval Uribe; Sean. P. Healey; Gretchen G. Moisen; Rigoberto Palafox Rivas; Enrique Gonzalez Aguilar; Carmen Lourdes Meneses Tovar; Ernesto S. Diaz Ponce Davalos; Vanessa Silva Mascorro

    2008-01-01

    The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel...

  5. Methane and CO2 emissions from China's hydroelectric reservoirs: a new quantitative synthesis.

    Science.gov (United States)

    Li, Siyue; Zhang, Quanfa; Bush, Richard T; Sullivan, Leigh A

    2015-04-01

    Controversy surrounds the green credentials of hydroelectricity because of the potentially large emission of greenhouse gases (GHG) from associated reservoirs. However, limited and patchy data particularly for China is constraining the current global assessment of GHG releases from hydroelectric reservoirs. This study provides the first evaluation of the CO2 and CH4 emissions from China's hydroelectric reservoirs by considering the reservoir water surface and drawdown areas, and downstream sources (including spillways and turbines, as well as river downstream). The total emission of 29.6 Tg CO2/year and 0.47 Tg CH4/year from hydroelectric reservoirs in China, expressed as CO2 equivalents (eq), corresponds to 45.6 Tg CO2eq/year, which is 2-fold higher than the current GHG emission (ca. 23 Tg CO2eq/year) from global temperate hydropower reservoirs. China's average emission of 70 g CO2eq/kWh from hydropower amounts to 7% of the emissions from coal-fired plant alternatives. China's hydroelectric reservoirs thus currently mitigate GHG emission when compared to the main alternative source of electricity with potentially far great reductions in GHG emissions and benefits possible through relatively minor changes to reservoir management and design. On average, the sum of drawdown and downstream emission including river reaches below dams and turbines, which is overlooked by most studies, represents the equivalent of 42% of the CO2 and 92% of CH4 that emit from hydroelectric reservoirs in China. Main drivers on GHG emission rates are summarized and highlight that water depth and stratification control CH4 flux, and CO2 flux shows significant negative relationships with pH, DO, and Chl-a. Based on our finding, a substantial revision of the global carbon emissions from hydroelectric reservoirs is warranted.

  6. X-ray microtomography application in pore space reservoir rock

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.F.S.; Lima, I. [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972, Rio de Janeiro (Brazil); Borghi, L. [Geology Department, Geosciences Institute, Federal University of Rio de Janeiro, Brazil. (Brazil); Lopes, R.T., E-mail: ricardo@lin.ufrj.br [Nuclear Instrumentation Laboratory, COPPE/UFRJ, P.O. Box 68509, 21.941-972, Rio de Janeiro (Brazil)

    2012-07-15

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. - Highlights: Black-Right-Pointing-Pointer This study is about porosity parameter in carbonate rocks by 3D X-Ray Microtomography. Black-Right-Pointing-Pointer This study has become useful as data input for modeling reservoir characterization. Black-Right-Pointing-Pointer This technique was able to provide pores, grains and mineralogical differences among the samples.

  7. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  8. Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)

    Science.gov (United States)

    Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.; Chang, R. Y.-W.; Karion, A.; Miller, J. B.; Sweeney, C.; Steiner, N.; Wofsy, S. C.; Miller, C. E.

    2015-04-01

    This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first 2 years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s-1 in 2012 and 0.3 m s-1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, better allowing for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF

  9. A furnace for firing carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Sudavskii, A M

    1979-12-05

    A furnace for firing carbon products is patented that consists of several chambers with a perforated hearth, which are interconnected by a lower and an upper reservoir with a locking fixture, and a flue. In order to intensify the firing process by increasing the specific hearth productivity, the flue is connected to the upper reservoir. A block diagram of the patented furnace is given, together with a description of its operation.

  10. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens

    2015-04-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  11. The Economics of Carbon Dioxide Removal: The Case against Free Disposal

    Science.gov (United States)

    Keller, D. P.; Rickels, W.; Quaas, M.; Oschlies, A.; Reith, F.

    2016-12-01

    Facing the challenge to keep the average global temperature increase below 2°C and to limit long-term climate change, removing carbon dioxide from the atmosphere (Carbon Dioxide Removal, CDR) and disposing of it in non-atmospheric carbon reservoirs is becoming increasingly necessary. The social cost of removing carbon into the terrestrial biosphere (e.g. by afforestation) or the ocean (e.g. by spreading olivine in coastal areas) arises from carbon-cycle feedbacks and saturation effects. Yet they are ignored in existing economic studies on CDR. Neglecting non-atmospheric social cost results in inconsistent estimates with regard to the share and timing of CDR measures in climate policy. Here, we use an intermediate-complexity earth system model, the University of Victoria (UVic) model, to calibrate a dynamic economic model, capturing the temperature feedback and saturation effect of terrestrial carbon uptake and the saturation effect of oceanic carbon uptake to obtain an improved understanding of the net social carbon value of terrestrial and oceanic CDR. We show that planning horizons beyond the year 2100 are required to properly reflect long-term scarcity issues of non-atmospheric carbon reservoirs in current carbon prices and that neglecting non-atmospheric social cost results in too low abatement efforts and in turn in too large and earlier application of CDR measures than if applied optimally. The figure shows the carbon prices for the different carbon reservoirs in the year 2100 in dependence of the planning horizon (for a climate policy aiming to limit global mean temperature increase to 2°C). The difference between the atmospheric and the non-atmospheric carbon prices indicates the benefits of the different CDR options.

  12. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  13. Trace metal mobilization in an experimental carbon sequestration scenario

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, Virginia [University of Wyoming, Geology and Geophysics, Laramie, WY. 82070 (United States); Kaszuba, John [University of Wyoming, Geology and Geophysics, Laramie, WY. 82070 (United States); Univeristy of Wyoming, School of Energy Resources, Larmaie, WY. 82070 (United States)

    2013-07-01

    Mobilizing trace metals with injection of supercritical CO{sub 2} into deep saline aquifers is a concern for geologic carbon sequestration. Hydrothermal experiments investigate the release of harmful metals from two zones of a sequestration injection reservoir: at the cap-rock-reservoir boundary and deeper within the reservoir, away from the cap-rock. In both systems, Cd, Cr, Cu, Pb, and Zn behave in a similar manner, increasing in concentration with injection, but subsequently decreasing in concentration over time. SEM images and geochemical models indicate initial dissolution of minerals and precipitation of Ca-Mg-Fe carbonates, metal sulfides (i.e. Fe, As, Ag, and Co sulfides), and anhydrite in both systems. The results suggest that Ba, Cu, and Zn will not be contaminants of concern, but Pb, Fe, and As may require careful attention. (authors)

  14. How reservoirs alter drinking water quality: Organic matter sources, sinks, and transformations

    Science.gov (United States)

    Kraus, Tamara E.C.; Bergamaschi, Brian A.; Hernes, Peter J.; Doctor, Daniel H.; Kendall, Carol; Downing, Bryan D.; Losee, Richard F.

    2011-01-01

    Within reservoirs, production, transformation, and loss of dissolved organic matter (DOM) occur simultaneously. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also important because they affect DOM reactivity with respect to disinfection by-product (DBP) formation. The composition of the DOM pool also provides insight into DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir, a large off-stream impoundment of the California State Water Project. We used a wide array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively), absorbance properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C nuclear magnetic resonance (NMR). There were periods when the reservoir was a net source of DOC due to the predominance of algal production (summer), a net sink due to the predominance of degradation (fall–winter), and balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0–3.6 mg C/L), changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Substantial changes in the propensity of the DOM pool to form THMs and HAAs illustrate that the DBP precursor pool was not directly coupled to bulk DOC concentration and indicate that algal production is an important source of DBP precursors. Results suggest reservoirs have the potential to attenuate DOM amount and reactivity with respect to DBP precursors via degradative processes; however, these benefits can be decreased or even negated by the production of algal-derived DOM.

  15. Application of an expert system to optimize reservoir performance

    International Nuclear Information System (INIS)

    Gharbi, Ridha

    2005-01-01

    The main challenge of oil displacement by an injected fluid, such as in Enhanced Oil Recovery (EOR) processes, is to reduce the cost and improve reservoir performance. An optimization methodology, combined with an economic model, is implemented into an expert system to optimize the net present value of full field development with an EOR process. The approach is automated and combines an economic package and existing numerical reservoir simulators to optimize the design of a selected EOR process using sensitivity analysis. The EOR expert system includes three stages of consultations: (1) select an appropriate EOR process on the basis of the reservoir characteristics, (2) prepare appropriate input data sets to design the selected EOR process using existing numerical simulators, and (3) apply the discounted-cash-flow methods to the optimization of the selected EOR process to find out under what conditions at current oil prices this EOR process might be profitable. The project profitability measures were used as the decision-making variables in an iterative approach to optimize the design of the EOR process. The economic analysis is based on the estimated recovery, residual oil in-place, oil price, and operating costs. Two case studies are presented for two reservoirs that have already been produced to their economic limits and are potential candidates for surfactant/polymer flooding, and carbon-dioxide flooding, respectively, or otherwise subject to abandonment. The effect of several design parameters on the project profitability of these EOR processes was investigated

  16. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.

    1977-12-14

    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  17. Carbon sequestration in a re-established wetland

    DEFF Research Database (Denmark)

    Philippsen, Bente; Hoffmann, Carl Christian; Olsen, Jesper

    , it was brought back to its original meandering course (between Brobyværk and Lyndelse, 4.6 km of straight channel were remeandered to 6 km of natural channel with 16 meander bows) and 125 ha of wetlands were restored. One of the expected benefits of this operation is the increased sequestration of carbon...... does not yield the time of deposition, but rather indicate the source of the carbon. A complicating factor are reservoir ages of plants contributing to the sediment organic matter. Therefore, we also radiocarbon dated aquatic and terrestrial vegetation. Surprisingly, not only aquatic, but also meadow...... plants such as soft rush, rough bluegrass and meadowsweet have considerable reservoir effects. CO2 from decaying vegetation seems to be an important carbon source for some meadow plants, mimicking a canopy effect in the open land....

  18. Methods to evaluate some reservoir characterization by means of the geophysical data in the strata of limestone and marl

    Directory of Open Access Journals (Sweden)

    V. M. Seidov

    2017-12-01

    Full Text Available As we know, the main goal of interpreting the materials of well logging, including the allocation of collectors and assessment of their saturation, are successfully achieved when the process of interpretation has a strong methodological support. This means, that it is justified by the necessary interpretational models and effective instructional techniques are used. They are based on structural and petrophysical models of reservoirs of the section investigated. The problem of studying the marl rocks with the help of the geophysical methods is not worked out properly. Many years of experience of studying limestone and marl rocks has made it possible to justify the optimal method of data interpretation of geophysical research wells in carbonate sections, which was represented by limestone and marl formations. A new method was developed to study marl rocks. It includes the following main studies: detection of reservoirs in the carbonate section according to the materials of geophysical studies of wells; determination of the geophysical parameters of each reservoir; assessment of the quality of well logging curves; introduction of amendments; selection of reference layers; the calculation of the relative double differencing parameters; the involvement of core data; identifying the lithological rock composition; the rationale for structural models of reservoirs; the definition of the block and of the total porosity; determination of argillaceous carbonate rocks; determination of the coefficient of water saturation of formations based on the type of the collector; setting a critical value for effective porosity, etc. This method was applied in the Eocene deposits of the Interfluve of the Kura and Iori, which is a promising object of hydrocarbons in Azerbaijan. The following conclusions have been made: this methodology successfully solves the problem of petrophysical characteristics of marl rocks; bad connection is observed between some of the

  19. Carbon sequestration potential for forage and pasture systems

    Science.gov (United States)

    Grassland soils represent a large reservoir of organic and inorganic carbon. Regionally, grasslands are annual CO2 sources or sinks depending on crop and soil management, current soil organic carbon (SOC) concentration and climate. Land management changes (LMC) impact SOC sequestration rate, the du...

  20. Mineral content prediction for unconventional oil and gas reservoirs based on logging data

    Science.gov (United States)

    Maojin, Tan; Youlong, Zou; Guoyue

    2012-09-01

    Coal bed methane and shale oil &gas are both important unconventional oil and gas resources, whose reservoirs are typical non-linear with complex and various mineral components, and the logging data interpretation model are difficult to establish for calculate the mineral contents, and the empirical formula cannot be constructed due to various mineral. The radial basis function (RBF) network analysis is a new method developed in recent years; the technique can generate smooth continuous function of several variables to approximate the unknown forward model. Firstly, the basic principles of the RBF is discussed including net construct and base function, and the network training is given in detail the adjacent clustering algorithm specific process. Multi-mineral content for coal bed methane and shale oil &gas, using the RBF interpolation method to achieve a number of well logging data to predict the mineral component contents; then, for coal-bed methane reservoir parameters prediction, the RBF method is used to realized some mineral contents calculation such as ash, volatile matter, carbon content, which achieves a mapping from various logging data to multimineral. To shale gas reservoirs, the RBF method can be used to predict the clay content, quartz content, feldspar content, carbonate content and pyrite content. Various tests in coalbed and gas shale show the method is effective and applicable for mineral component contents prediction

  1. Heavy-oil recovery in naturally fractured reservoirs with varying wettability by steam solvent co-injection

    Energy Technology Data Exchange (ETDEWEB)

    Al Bahlani, A. [Alberta Univ., Edmonton, AB (Canada); Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    Steam injection may not be an efficient oil recovery process in certain circumstances, such as in deep reservoirs, where steam injection may be ineffective because of hot-water flooding due to excessive heat loss. Steam injection may also be ineffective in oil-wet fractured carbonates, where steam channels through fracture zones without effectively sweeping the matrix oil. Steam flooding is one of the many solutions for heavy oil recovery in unconsolidated sandstones that is in commercial production. However, heavy-oil fractured carbonates are more challenging, where the recovery is generally limited only to matrix oil drainage gravity due to unfavorable wettability or thermal expansion if heat is introduced during the process. This paper proposed a new approach to improve steam/hot-water injection and efficiency for heavy-oil fractured carbonate reservoirs. The paper provided background information on oil recovery from fractured carbonates and provided a statement of the problem. Three phases were described, including steam/hot-waterflooding phase (spontaneous imbibition); miscible flooding phase (diffusion); and steam/hot-waterflooding phase (spontaneous imbibition or solvent retention). The paper also discussed core preparation and saturation procedures. It was concluded that efficient oil recovery is possible using alternate injection of steam/hot water and solvent. 43 refs., 1 tab., 13 figs.

  2. Assessment of managed aquifer recharge from Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2010

    Science.gov (United States)

    Heilweil, Victor M.; Marston, Thomas M.

    2011-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2009, total surface-water diversions of about 154,000 acre-feet to Sand Hollow Reservoir have allowed it to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir water-level altitude and nearby pumping from production wells. Between 2004 and 2009, a total of about 13,000 acre-feet of groundwater has been withdrawn by these wells for municipal supply. In addition, a total of about 14,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir.From 2002 through 2009, about 86,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water-quality sampling was conducted at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge moving through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2010, this recharge arrived at monitoring wells within about 1,000 feet of the reservoir.

  3. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian J. [University of Utah; Pan, Feng [University of Utah

    2014-09-24

    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperature and pressure conditions of EGS reservoirs.

  4. Evolution of pores and fractures in an unconventional Upper Carboniferous reservoir analogue, Westphalian D, W-Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, M.; Schurk, K.; Hilgers, C. [RWTH Aachen Univ. (Germany). Reservoir-Petrology, Energy and Mineral Resources Group (EMR); Koehrer, B. [Wintershall Holding GmbH, Barnstorf (Germany); Bertier, P. [RWTH Aachen Univ. (Germany). Inst. of Clay and Interface Mineralogy

    2013-08-01

    Uncertainties in reservoir characterization of tight gas sandstones can be significantly reduced by using quantitative data from outcrops. The active Piesberg quarry near Osnabrueck exposes Upper Carboniferous strata and therefore provides a reservoir outcrop analog to the gas-bearing tight gas fields in NW-Germany. This study focused on variations of sedimentary facies, porosity, diagenesis and structural inventory in the quarry. The Westphalian D strata at Piesberg consist of siliciclastic, coarse- to fine-grained sandstones with a strong cementation, intercalated with coal seams, siltstones and mudstones. Petrography shows shale-, mudstone and clay rip-up fragments squeezed into primary porosity during eodiagenesis. Sandstone types commonly show low porosities (<10 %) and very low permeabilities (<0.01 mD) mainly due to intense quartz cementation. Scarce authigenic carbonates are euhedral ankerites formed during burial. Secondary porosity resulted mostly from detrital carbonate leaching and limited dissolution of feldspars. Within a zone of up to several meters around faults, porosity is much higher. Feldspars are almost completely altered to illite and locally to kaolinite. Partly dissolved detrital carbonates show Fe-oxide margins around intragranular pores, indicative of Fe-rich compositions formed during telo-diagenesis. Both joints and faults were mapped throughout the quarry and strike, slip and throw of the latter were documented. Cemented fractures prevail around faults and may thus be associated with the structural and diagenetic evolution of the Upper Carboniferous of the Piesberg area. This study is embedded into a larger outcrop analog study of RWTH Aachen in cooperation with Wintershall. Its aim is to unravel the impact of structural diagenesis on the alteration and evolution of pore space and thus reservoir quality. Results can be used to develop datadriven exploration strategies and improved development options for analogous subsurface tight gas

  5. Optimizing and Quantifying CO2 Storage Resource in Saline Formations and Hydrocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Nicholas W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ayash, Scott C. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Azzolina, Nicholas A. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Peck, Wesley D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorecki, Charles D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ge, Jun [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Jiang, Tao [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Burton-Kelly, Matthew E. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Anderson, Parker W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Dotzenrod, Neil W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorz, Andrew J. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center

    2017-06-30

    In an effort to reduce carbon dioxide (CO2) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO2 storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO2 enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO2 storage efficiency. CO2 storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scale CO2 storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO2 storage in these types of systems. CO2 EOR occupies an important place in the realm of geologic storage of CO2, as it is likely to be the primary means of geologic CO2 storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO2 storage efficiency factors using a unique industry database of CO2 EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66

  6. Biocompetitive exclusion technology: A field system to control reservoir souring and increasing production

    Energy Technology Data Exchange (ETDEWEB)

    Sandbeck, K.A.; Hitzman, D.O.

    1995-12-31

    Biogenic formation of sulfide in reservoirs by Sulfate Reducing Bacteria (SRB) causes serious plugging, corrosion, and environmental safety problems. The production of sulfide can be decreased, and its concentration reduced, by the establishment and growth of an indigenous microbial population which results in a replacement of the SRB population. This approach to modify the reservoir ecology utilizing preexisting carbon sources coupled with the introduction of an alternate electron acceptor forms the basis of a new Biocompetitive Exclusion technology which has the potential to enhance oil recovery and decrease paraffin deposition and corrosion. Preliminary field results from an ongoing DOE-sponsored research program will be discussed.

  7. Profiles of Reservoir Properties of Oil-Bearing Plays for Selected Petroleum Provinces in the United States

    Science.gov (United States)

    Freeman, P.A.; Attanasi, E.D.

    2015-11-05

    Profiles of reservoir properties of oil-bearing plays for selected petroleum provinces in the United States were developed to characterize the database to be used for a potential assessment by the U.S. Geological Survey (USGS) of oil that would be technically recoverable by the application of enhanced oil recovery methods using injection of carbon dioxide (CO2-EOR). The USGS assessment methodology may require reservoir-level data for the purposes of screening conventional oil reservoirs and projecting CO2-EOR performance in terms of the incremental recoverable oil. The information used in this report is based on reservoir properties from the “Significant Oil and Gas Fields of the United States Database” prepared by Nehring Associates, Inc. (2012). As described by Nehring Associates, Inc., the database “covers all producing provinces (basins) in the United States except the Appalachian Basin and the Cincinnati Arch.”

  8. Evaluation of an Empirical Reservoir Shape Function to Define Sediment Distributions in Small Reservoirs

    Directory of Open Access Journals (Sweden)

    Bogusław Michalec

    2015-08-01

    Full Text Available Understanding and defining the spatial distribution of sediment deposited in reservoirs is essential not only at the design stage but also during the operation. The majority of research concerns the distribution of sediment deposition in medium and large water reservoirs. Most empirical methods do not provide satisfactory results when applied to the determination of sediment deposition in small reservoirs. Small reservoir’s volumes do not exceed 5 × 106 m3 and their capacity-inflow ratio is less than 10%. Long-term silting measurements of three small reservoirs were used to evaluate the method described by Rahmanian and Banihashemi for predicting sediment distributions in small reservoirs. Rahmanian and Banihashemi stated that their model of distribution of sediment deposition in water reservoir works well for a long duration operation. In the presented study, the silting rate was used in order to determine the long duration operation. Silting rate is a quotient of volume of the sediment deposited in the reservoir and its original volume. It was stated that when the silting rate had reached 50%, the sediment deposition in the reservoir may be described by an empirical reservoir depth shape function (RDSF.

  9. Carbonate porosity: some remarks; Porosidade em reservatorios carbonaticos: algumas consideracoes

    Energy Technology Data Exchange (ETDEWEB)

    Spadini, Adali Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao]. E-mail: spadini@petrobras.com.br; Marcal, Rosely de Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-05-01

    Carbonate rocks are the major reservoirs of the largest super-giants fields in the world, including the Ghawar Field in Saudi Arabia, where the producing oil reservoir is the late Jurassic Arab-D limestone with five million barrels per day. Despite the great susceptibility to early diagenesis, that can dramatically modify the porous media, porosity values of carbonates remain essentially the same as that of deposition before burial. Porosity loss is essentially a subsurface process with a drastic reduction below 2500 m of burial depth. The occurrence of good reservoirs deeply buried, sometimes below 4,000 m, indicate that porosity can be preserved in subsurface in response to a series of mechanisms such as early oil emplacement, framework rigidity, abnormal pore pressure, among others. Percolation of geothermal fluids is a process considered to be responsible for generation of porosity in subsurface resulting in some good reservoir rocks. In Campos Basin, areas with burial around 2000 m, petrophysical data show a cyclic distribution that coincides with the shoaling upward cycles typical of the Albian carbonates. The greatest permeabilities coincide with the grain stones of the top of the cycles while the peloidal/oncolite wackestones/pack stones at the base show low values, reflecting the depositional texture. These relationships indicate that preservation of depositional porosity was very effective. The preservation of high porosity values for all the facies are related to early oil entrance in the reservoirs. In some cases, the presence of porosities of almost 30% in fine-grained peloidal carbonates, 3000 m of burial, without any clear effective preservation mechanism, suggest that corrosive subsurface brines have played an important role in porosity evolution. In Santos Basin, where reservoirs are deeply buried, only the grain stones have preserved porosity. The associated low energy facies has virtually no porosity. In this case, the depositional texture

  10. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    NARCIS (Netherlands)

    Cole, J.; Prairie, Y.T.; Caraco, N.; McDowell, W.H.; Tranvil, L.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking

  11. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2012

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2013-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2011, surface-water diversions of about 199,000 acre-feet to Sand Hollow Reservoir have allowed the reservoir to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir altitude and nearby pumping from production wells. Between 2004 and 2011, a total of about 19,000 acre-feet of groundwater was withdrawn by these wells for municipal supply. In addition, a total of about 21,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2011, about 106,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water quality was sampled at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge as it moved through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2012, this recharge arrived at four monitoring wells located within about 1,000 feet of the reservoir. Changing geochemical conditions at five other monitoring wells could indicate other processes, such as changing groundwater levels and mobilization of vadose-zone salts, rather than arrival of reservoir recharge.

  12. Modeling reservoir geomechanics using discrete element method : Application to reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alassi, Haitham Tayseer

    2008-09-15

    Understanding reservoir geomechanical behavior is becoming more and more important for the petroleum industry. Reservoir compaction, which may result in surface subsidence and fault reactivation, occurs during reservoir depletion. Stress changes and possible fracture development inside and outside a depleting reservoir can be monitored using time-lapse (so-called '4D') seismic and/or passive seismic, and this can give valuable information about the conditions of a given reservoir during production. In this study we will focus on using the (particle-based) Discrete Element Method (DEM) to model reservoir geomechanical behavior during depletion and fluid injection. We show in this study that DEM can be used in modeling reservoir geomechanical behavior by comparing results obtained from DEM to those obtained from analytical solutions. The match of the displacement field between DEM and the analytical solution is good, however there is mismatch of the stress field which is related to the way stress is measured in DEM. A good match is however obtained by measuring the stress field carefully. We also use DEM to model reservoir geomechanical behavior beyond the elasticity limit where fractures can develop and faults can reactivate. A general technique has been developed to relate DEM parameters to rock properties. This is necessary in order to use correct reservoir geomechanical properties during modeling. For any type of particle packing there is a limitation that the maximum ratio between P- and S-wave velocity Vp/Vs that can be modeled is 3 . The static behavior for a loose packing is different from the dynamic behavior. Empirical relations are needed for the static behavior based on numerical test observations. The dynamic behavior for both dense and loose packing can be given by analytical relations. Cosserat continuum theory is needed to derive relations for Vp and Vs. It is shown that by constraining the particle rotation, the S-wave velocity can be

  13. Estimation of Bank Erosion Due To Reservoir Operation in Cascade (Case Study: Citarum Cascade Reservoir

    Directory of Open Access Journals (Sweden)

    Sri Legowo

    2009-11-01

    Full Text Available Sedimentation is such a crucial issue to be noted once the accumulated sediment begins to fill the reservoir dead storage, this will then influence the long-term reservoir operation. The sediment accumulated requires a serious attention for it may influence the storage capacity and other reservoir management of activities. The continuous inflow of sediment to the reservoir will decrease the capacity of reservoir storage, the reservoir value in use, and the useful age of reservoir. Because of that, the rate of the sediment needs to be delayed as possible. In this research, the delay of the sediment rate is considered based on the rate of flow of landslide of the reservoir slope. The rate of flow of the sliding slope can be minimized by way of each reservoir autonomous efforts. This effort can be performed through; the regulation of fluctuating rate of reservoir surface current that does not cause suddenly drawdown and upraising as well. The research model is compiled using the searching technique of Non Linear Programming (NLP.The rate of bank erosion for the reservoir variates from 0.0009 to 0.0048 MCM/year, which is no sigrificant value to threaten the life time of reservoir.Mean while the rate of watershed sediment has a significant value, i.e: 3,02 MCM/year for Saguling that causes to fullfill the storage capacity in 40 next years (from years 2008.

  14. Stromatolite laminae (Lagoa Vermelha, Brasil) as archives for reservoir age changes

    Science.gov (United States)

    Bruggmann, Sylvie; Vasconcelos, Crisogono; Hajdas, Irka

    2016-04-01

    As laminated biogenic or abiogenic sedimentary structures [1], stromatolites record environmental changes along growth profiles, revealing possible changes in reservoir ages due to input of older carbon. A modern stromatolite sample was collected in Lagoa Vermelha (100 km east of Rio de Janeiro, Brasil) an area known for upwelling of South Atlantic Central Water (SACW). 34 samples from a transect cutting the lamination were collected with a hand-driller for standard geochemistry and 14C AMS analyses. Shells collected in 2015 were analysed for estimation of the present-day reservoir age. 14C ages of laminae and the reservoir age were used to apply the age-depth model to the stromatolite transect with the OxCal depositional model (Marine13 calibration curve; [2]). Small-scale changes in the composition of laminae report environmental changes, e.g. upwelling. The well-laminated middle part (laminated boundstone; ca. 4cm) of the stromatolite transect was found to have grown in a short time period of less than 100 years (1163-1210 14C y BP), with four excursions towards older 14C ages (ca. 1200 14C y BP). To detect possible changes of marine 14C, calendar years assuming a stable modern reservoir age were used to simulate atmospheric 14C ages with the southern hemisphere IntCal13 atmospheric calibration curve [3]. The offset between the measured and simulated 14C ages indicates a variability of the reservoir age between -99 and 268 14C y with highest reservoir correction found for the layers with indication of environmental changes (e.g. upwelling). Thus, this simulation confirms the occurrence of older carbon and points out the sensitivity of stromatolites for changing reservoir ages. [1] M.A. Semikhatov, C.D. Gebelein, P. Cloud, S.M. Awramik, W.C. Benmore (1979). Stromatolite morphogenesis - progress and problems. Canadian Journal of Earth Sciences, 19:992-1015. [2] P.J. Reimer, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. Bronk Ramsey, C. E. Buck, H. Cheng, R

  15. Integrating geologic and engineering data into 3-D reservoir models: an example from norman wells field, NWT, Canada

    International Nuclear Information System (INIS)

    Yose, L.A.

    2004-01-01

    A case study of the Norman Wells field will be presented to highlight the work-flow and data integration steps associated with characterization and modeling of a complex hydrocarbon reservoir. Norman Wells is a Devonian-age carbonate bank ('reef') located in the Northwest Territories of Canada, 60 kilometers south of the Arctic Circle. The reservoir reaches a maximum thickness of 130 meters in the reef interior and thins toward the basin due to depositional pinch outs. Norman Wells is an oil reservoir and is currently under a 5-spot water injection scheme for enhanced oil recovery (EOR). EOR strategies require a detailed understanding of how reservoir flow units, flow barriers and flow baffles are distributed to optimize hydrocarbon sweep and recovery and to minimize water handling. Reservoir models are routinely used by industry to characterize the 3-D distribution of reservoir architecture (stratigraphic layers, depositional facies, faults) and rock properties (porosity. permeability). Reservoir models are validated by matching historical performance data (e.g., reservoir pressures, well production or injection rates). Geologic models are adjusted until they produce a history match, and model adjustments are focused on inputs that have the greatest geologic uncertainty. Flow simulation models are then used to optimize field development strategies and to forecast field performance under different development scenarios. (author)

  16. 3D modeling of carbonates petro-acoustic heterogeneities

    Science.gov (United States)

    Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie

    2015-04-01

    Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.

  17. Dolomitization of carbonated reservoirs of platforms. From geologic data to modeling. Example of the great Bahama bank; La dolomitisation des reservoirs carbonates de plate-forme. Des donnees geologiques a la modelisation. Exemple du Grand Banc des Bahamas

    Energy Technology Data Exchange (ETDEWEB)

    Caspard, E.

    2002-09-01

    Dolomitization has long been one of the most studied geological processes because of its economic interest (dolomitic rocks form a significant share of hydrocarbon reservoirs) as well as its academic interest, based on the fact that dolomite scarcely forms in current and recent marine environments whereas seawater is highly over-saturated; and that it is still not possible to synthesize it in laboratory under the same conditions. We used data collected by the University of Miami (Bahamas Drilling Project, ODP Leg 166) to understand the geological context of complete dolomitization of a Messinian 60 m thick reef unit. Classical methods of petrographic analysis of thin sections (optical microscopy, cathodoluminescence, scanning electron microscopy, in situ isotopic analyze using ionic microprobe) showed that the intensity of dolomitization is not controlled by the initial texture of the sediment, that the key parameter for dolomitization is the conservation of the initial mineralogy of magnesian bio-clasts, and that redox conditions, salinity and/or temperature of the precipitation fluid varied significantly during the process. Hydrodynamic modelling showed that during periods of high sea-level, Kohout thermal convection is a viable mechanism for driving marine fluids through the sediments. The key parameter for fluid circulations is the permeability anisotropy on the platform scale. Geochemical modelling showed that seawater is able to induce a complete dolomitization over durations of around one million years. Sensitivity tests showed that the critical parameter (as well as one of the less well-known) to describe diagenetic processes in carbonates is the water/rock reactions kinetics and in particular the precipitation kinetics of carbonate minerals. We finally propose that the dolomitization of the reef unit of the Unda well took place during the high sea-level period which extended over 1,1 My in the early Pliocene, according to the Kohout thermal convection

  18. Greenhouse gas (CO2 and CH4) emissions from a high altitude hydroelectric reservoir in the tropics (Riogrande II, Colombia)

    Science.gov (United States)

    Guérin, Frédéric; Leon, Juan

    2015-04-01

    Tropical hydroelectric reservoirs are considered as very significant source of methane (CH4) and carbon dioxide (CO2), especially when flooding dense forest. We report emissions from the Rio Grande II Reservoir located at 2000 m.a.s.l. in the Colombian Andes. The dam was built at the confluence of the Rio Grande and Rio Chico in 1990. The reservoir has a surface of 12 km2, a maximum depth of 40m and a residence time of 2.5 month. Water quality (temperature, oxygen, pH, conductivity), nitrate, ammonium, dissolved and particulate organic carbon (DOC and POC), CO2 and CH4 were monitored bi-monthly during 1.5 year at 9 stations in the reservoir. Diffusive fluxes of CO2 and CH4 and CH4 ebullition were measured at 5 stations. The Rio grande II Reservoir is weakly stratified thermally with surface temperature ranging from 20 to 24°C and a constant bottom temperature of 18°C. The reservoir water column is well oxygenated at the surface and usually anoxic below 10m depth. At the stations close to the tributaries water inputs, the water column is well mixed and oxygenated from the surface to the bottom. As reported for other reservoirs located in "clear water" watersheds, the concentrations of nutrients are low (NO3-10 mmol m-2 d-1) were observed during the dry season. Close to the tributaries water inputs where the water column is well mixed, the average diffusive flux is 8 mmol m-2 d-1. CH4 ebullition was 3.5 mmol m-2 d-1 and no ebullition was observed for a water depth higher than 5m. The zone under the influence of the water inputs from tributaries represents 25% of the surface of the reservoir but contributed half of total CH4 emissions from the reservoir (29MgC month-1). Ebullition contributed only to 12% of total CH4 emissions over a year but it contributed up to 60% during the dry season. CH4 emissions from the Rio Grande Reservoir contributed 30% of the total GHG emissions (38GgCO2eq y-1). Overall, this study show that the majority of CH4 emissions from this

  19. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  20. Criterion 5: Maintenance of forest contributions to global carbon cycles

    Science.gov (United States)

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Northern forests cover more than 42 percent of the region and are enormous reservoirs of carbon. Through photosynthesis, live trees emit oxygen in exchange for carbon dioxide they pull from the atmosphere. As a tree grows it stores carbon in wood above and below ground, and sequestered carbon comprises about half of its dry weight. Dead trees and down logs are also...

  1. Carbon Sequestration and Forest Management at DoD Installations: An Exploratory Study

    National Research Council Canada - National Science Library

    Barker, Jerry

    1995-01-01

    ... atmospheric carbon because many lands could be reforested, other lands could receive management practices that would improve tree growth, while additional lands support mature forests that are vast carbon reservoirs...

  2. Intelligent monitoring system for real-time geologic CO2 storage, optimization and reservoir managemen

    Science.gov (United States)

    Dou, S.; Commer, M.; Ajo Franklin, J. B.; Freifeld, B. M.; Robertson, M.; Wood, T.; McDonald, S.

    2017-12-01

    Archer Daniels Midland Company's (ADM) world-scale agricultural processing and biofuels production complex located in Decatur, Illinois, is host to two industrial-scale carbon capture and storage projects. The first operation within the Illinois Basin-Decatur Project (IBDP) is a large-scale pilot that injected 1,000,000 metric tons of CO2 over a three year period (2011-2014) in order to validate the Illinois Basin's capacity to permanently store CO2. Injection for the second operation, the Illinois Industrial Carbon Capture and Storage Project (ICCS), started in April 2017, with the purpose of demonstrating the integration of carbon capture and storage (CCS) technology at an ethanol plant. The capacity to store over 1,000,000 metric tons of CO2 per year is anticipated. The latter project is accompanied by the development of an intelligent monitoring system (IMS) that will, among other tasks, perform hydrogeophysical joint analysis of pressure, temperature and seismic reflection data. Using a preliminary radial model assumption, we carry out synthetic joint inversion studies of these data combinations. We validate the history-matching process to be applied to field data once CO2-breakthrough at observation wells occurs. This process will aid the estimation of permeability and porosity for a reservoir model that best matches monitoring observations. The reservoir model will further be used for forecasting studies in order to evaluate different leakage scenarios and develop appropriate early-warning mechanisms. Both the inversion and forecasting studies aim at building an IMS that will use the seismic and pressure-temperature data feeds for providing continuous model calibration and reservoir status updates.

  3. SILTATION IN RESERVOIRS

    African Journals Online (AJOL)

    Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1. Introduction. Sediment ... rendered water storage structures useless in less than 25 years. ... reservoir, thus reducing the space available for water storage and ...

  4. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Science.gov (United States)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  5. Optimal Operation of Hydropower Reservoirs under Climate Change: The Case of Tekeze Reservoir, Eastern Nile

    Directory of Open Access Journals (Sweden)

    Fikru Fentaw Abera

    2018-03-01

    Full Text Available Optimal operation of reservoirs is very essential for water resource planning and management, but it is very challenging and complicated when dealing with climate change impacts. The objective of this paper was to assess existing and future hydropower operation at the Tekeze reservoir in the face of climate change. In this study, a calibrated and validated Soil and Water Assessment Tool (SWAT was used to model runoff inflow into the Tekeze hydropower reservoir under present and future climate scenarios. Inflow to the reservoir was simulated using hydro-climatic data from an ensemble of downscaled climate data based on the Coordinated Regional climate Downscaling Experiment over African domain (CORDEX-Africa with Coupled Intercomparison Project Phase 5 (CMIP5 simulations under Representative Concentration Pathway (RCP4.5 and RCP8.5 climate scenarios. Observed and projected inflows to Tekeze hydropower reservoir were used as input to the US Army Corps of Engineer’s Reservoir Evaluation System Perspective Reservoir Model (HEC-ResPRM, a reservoir operation model, to optimize hydropower reservoir release, storage and pool level. Results indicated that climate change has a clear impact on reservoir inflow and showed increase in annual and monthly inflow into the reservoir except in dry months from May to June under RCP4.5 and RCP8.5 climate scenarios. HEC-ResPRM optimal operation results showed an increase in Tekeze reservoir power storage potential up to 25% and 30% under RCP4.5 and RCP8.5 climate scenarios, respectively. This implies that Tekeze hydropower production will be affected by climate change. This analysis can be used by water resources planners and mangers to develop reservoir operation techniques considering climate change impact to increase power production.

  6. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  7. Nagylengyel: an interesting reservoir. [Yugoslovia

    Energy Technology Data Exchange (ETDEWEB)

    Dedinszky, J

    1971-04-01

    The Nagylengyel oil field, discovered in 1951, has oil-producing formations mostly in the Upper-Triassic dolomites, in the Norian-Ractian transition formations, in the Upper-Cretaceous limestones and shales, and in the Miocene. The formation of the reservoir space occurred in many stages. A porous, cavernous fractured reservoir is developed in the Norian principal dolomite. A cavernous fractured reservoir exists in the Cretaceous limestone and in the Cretaceous shale and porous fractured reservoir is developed in the Miocene. The derivation of the model of the reservoir, and the conservative evaluation of the volume of the reservoir made it possible to use secondary recovery.

  8. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    Science.gov (United States)

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  9. Petroleum geological features and exploration prospect of deep marine carbonate rocks in China onshore: A further discussion

    Directory of Open Access Journals (Sweden)

    Zhao Wenzhi

    2014-10-01

    Full Text Available Deep marine carbonate rocks have become one of the key targets of onshore oil and gas exploration and development for reserves replacement in China. Further geological researches of such rocks may practically facilitate the sustainable, steady and smooth development of the petroleum industry in the country. Therefore, through a deep investigation into the fundamental geological conditions of deep marine carbonate reservoirs, we found higher-than-expected resource potential therein, which may uncover large oil or gas fields. The findings were reflected in four aspects. Firstly, there are two kinds of hydrocarbon kitchens which were respectively formed by conventional source rocks and liquid hydrocarbons cracking that were detained in source rocks, and both of them can provide large-scale hydrocarbons. Secondly, as controlled by the bedding and interstratal karstification, as well as the burial and hydrothermal dolomitization, effective carbonate reservoirs may be extensively developed in the deep and ultra-deep strata. Thirdly, under the coupling action of progressive burial and annealing heating, some marine source rocks could form hydrocarbon accumulations spanning important tectonic phases, and large quantity of liquid hydrocarbons could be kept in late stage, contributing to rich oil and gas in such deep marine strata. Fourthly, large-scale uplifts were formed by the stacking of multi-episodic tectonism and oil and gas could be accumulated in three modes (i.e., stratoid large-area reservoir-forming mode of karst reservoirs in the slope area of uplift, back-flow type large-area reservoir-forming mode of buried hill weathered crust karst reservoirs, and wide-range reservoir-forming mode of reef-shoal reservoirs; groups of stratigraphic and lithologic traps were widely developed in the areas of periclinal structures of paleohighs and continental margins. In conclusion, deep marine carbonate strata in China onshore contain the conditions for

  10. Seasonal assessment, treatment and removal of heavy metal concentrations in a tropical drinking water reservoir

    Directory of Open Access Journals (Sweden)

    Mustapha Moshood Keke

    2016-06-01

    Full Text Available Heavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.

  11. Geology of the Roswell artesian basin, New Mexico, and its relation to the Hondo Reservoir and Effect on artesian aquifer storage of flood water in Hondo Reservoir

    Science.gov (United States)

    Bean, Robert T.; Theis, Charles V.

    1949-01-01

    In the Roswell Basin in southeastern New Mexico artesian water is produced from cavernous zones in the carbonate rocks of the San Andres formation and the lower part of the Chalk Bluff formation, both of Permian age. The Hondo Reservoir, 9 miles west-southwest of Roswell, was completed by the U. S. Bureau of Reclamation in 1907, to store waters of the Rio Hondo for irrigation. The project was not successful, as the impounded water escaped rapidly through holes in the gypsum and limestone of the San Andres formation constituting its floor. Of 27,000 acre~feet that entered the reservoir between 1908 and 1913, only 1,100 acre-feet was drawn Ollt for use, the remainder escaping through the floor of the reservoir. Since 1939, plans have been drawn up by the State Engineer and by Federal agencies to utilize the reservoir to protect Roswell from floods. It has also been suggested that water from the Pecos River might be diverted into underground storage through the reservoir. Sinkholes in the Roswell Basin are largely clustered in areas where gypsum occurs in the bedrock. Collapse of strata is due to solution of underlying rock commonly containing gypsum. Domes occur in gypsiferous strata near Salt Creek. The Bottomless Lakes, sinkhole lakes in the escarpment on the east side of the Pecos, are believed to have developed in north-south hinge-line fractures opened when the westernmost beds in the escarpment collapsed. Collapse was due to solution and removal of gypsiferous rock by artesian water which now fills the lakes.

  12. Reservoir effects in a Stone Age fjord on Lolland, Denmark

    DEFF Research Database (Denmark)

    Philippsen, Bente

    2018-01-01

    to be known for accurate radiocarbon dating of samples with possible aquatic carbon sources, such as human bones or food residues on pottery. Therefore, this paper attempts at calculating the local reservoir effect for the study area. I will discuss the possibilities and limitations when analysing radiocarbon...... for building chronologies and for reconstructing the environment of the Stone Age fjord. Finally, I will discuss the pitfalls and uncertainties associated with radiocarbon dates for sea level reconstruction....

  13. Soils and Global Change in the Carbon Cycle over Geological Time

    Science.gov (United States)

    Retallack, G. J.

    2003-12-01

    sedimentary rocks; organic matter burial is an important long-term control on CO2 levels in the atmosphere (Berner and Kothavala, 2001). The magnitudes of carbon pools and fluxes involved provide a perspective on the importance of soils compared with other carbon reservoirs ( Figure 1). (6K)Figure 1. Pools and fluxes of reduced carbon (bold) and oxidized carbon (regular) in Gt in the pre-industrial carbon cycle (sources Schidlowski and Aharon, 1992; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Before industrialization, there was only 600 Gt (1 Gt=1015g) of carbon in CO2 and methane in the atmosphere, which is about the same amount as in all terrestrial biomass, but less than half of the reservoir of soil organic carbon. The ocean contained only ˜3 Gt of biomass carbon. The deep ocean and sediments comprised the largest reservoir of bicarbonate and organic matter, but that carbon has been kept out of circulation from the atmosphere for geologically significant periods of time (Schidlowski and Aharon, 1992). Humans have tapped underground reservoirs of fossil fuels, and our other perturbations of the carbon cycle have also been significant ( Vitousek et al., 1997b; see Chapter 8.10).Atmospheric increase of carbon in CO2 to 750 Gt C by deforestation and fossil fuel burning has driven ongoing global warming, but is not quite balanced by changes in the other carbon reservoirs leading to search for a "missing sink" of some 1.8±1.3 GtC, probably in terrestrial organisms, soils, and sediments of the northern hemisphere (Keeling et al., 1982; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Soil organic matter is a big, rapidly cycling reservoir, likely to include much of this missing sink.During the geological past, the sizes of, and fluxes between, these reservoirs have varied enormously as the world has alternated between greenhouse times of high carbon content of the atmosphere, and icehouse times of low carbon content of the atmosphere. Oscillations in the atmospheric

  14. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    Science.gov (United States)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  15. Carbon Sequestered, Carbon Displaced and the Kyoto Context

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1999-01-01

    The integrated system that embraces forest management, forest products, and land-use change impacts the global carbon cycle - and hence the net emission of the greenhouse gas carbon dioxide - in four fundamental ways. Carbon is stored in living and dead biomass, carbon is stored in wood products and landfills, forest products substitute in the market place for products made from other materials, and forest harvests can be used wholly or partially to displace fossil fuels in the energy sector. Implementation of the Kyoto Protocol to the United Nations Framework Convention on Climate Change would result in the creation of international markets for carbon dioxide emissions credits, but the current Kyoto text does not treat all carbon identically. We have developed a carbon accounting model, GORCAM, to examine a variety of scenarios for land management and the production of forest products. In this paper we explore, for two simple scenarios of forest management, the carbon flows that occur and how these might be accounted for under the Kyoto text. The Kyoto protocol raises questions about what activities can result in emissions credits, which carbon reservoirs will be counted, who will receive the credits, and how much credit will be available? The Kyoto Protocol would sometimes give credits for carbon sequestered, but it would always give credits when fossil-fuel carbon dioxide emissions are displaced

  16. Optimisation of decision making under uncertainty throughout field lifetime: A fractured reservoir example

    Science.gov (United States)

    Arnold, Dan; Demyanov, Vasily; Christie, Mike; Bakay, Alexander; Gopa, Konstantin

    2016-10-01

    Assessing the change in uncertainty in reservoir production forecasts over field lifetime is rarely undertaken because of the complexity of joining together the individual workflows. This becomes particularly important in complex fields such as naturally fractured reservoirs. The impact of this problem has been identified in previous and many solutions have been proposed but never implemented on complex reservoir problems due to the computational cost of quantifying uncertainty and optimising the reservoir development, specifically knowing how many and what kind of simulations to run. This paper demonstrates a workflow that propagates uncertainty throughout field lifetime, and into the decision making process by a combination of a metric-based approach, multi-objective optimisation and Bayesian estimation of uncertainty. The workflow propagates uncertainty estimates from appraisal into initial development optimisation, then updates uncertainty through history matching and finally propagates it into late-life optimisation. The combination of techniques applied, namely the metric approach and multi-objective optimisation, help evaluate development options under uncertainty. This was achieved with a significantly reduced number of flow simulations, such that the combined workflow is computationally feasible to run for a real-field problem. This workflow is applied to two synthetic naturally fractured reservoir (NFR) case studies in appraisal, field development, history matching and mid-life EOR stages. The first is a simple sector model, while the second is a more complex full field example based on a real life analogue. This study infers geological uncertainty from an ensemble of models that are based on the carbonate Brazilian outcrop which are propagated through the field lifetime, before and after the start of production, with the inclusion of production data significantly collapsing the spread of P10-P90 in reservoir forecasts. The workflow links uncertainty

  17. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated

  18. In-filled reservoirs serving as sediment archives to analyse soil organic carbon erosion – Taking a closer look at the Karoo rangelands

    DEFF Research Database (Denmark)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte

    The semi-arid rangelands of the Great Karoo region in South Africa, which are nowadays characterized by badlands on the foot slopes of upland areas and complex gully systems in valley bottoms, have experienced a number of environmental changes. With the settlement of European farmers in the late ......th century agricultural activities increased, leading to overgrazing which probably acted as a trigger to land degradation. As a consequence of higher water demands and shifting rainfall patterns, many dams and small reservoirs have been constructed to provide drinking water for cattle...... or to facilitate irrigation during dry periods. Most of these dams are now filled with sediment and many have become breached, revealing sediment archives that can be used to analyse land use changes as well as carbon erosion and deposition during the last ca. 100 years. In this ongoing project, a combination...

  19. Hidden cycle of dissolved organic carbon in the deep ocean.

    Science.gov (United States)

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.

  20. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  1. Sedimentological and Geomorphological Effects of Reservoir Flushing: The Cachi Reservoir, Costa Rica, 1996

    DEFF Research Database (Denmark)

    Brandt, Anders; Swenning, Joar

    1999-01-01

    Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs......Physical geography, hydrology, geomorphology, sediment transport, erosion, sedimentation, dams, reservoirs...

  2. Investigating Interactions between the Silica and Carbon Cycles during Precipitation and Early Diagenesis of Authigenic Clay/Carbonate-Mineral Associations in the Carbonate Rock Record

    Science.gov (United States)

    McKenzie, J. A.; Francisca Martinez Ruiz, F.; Sanchez-Roman, M.; Anjos, S.; Bontognali, T. R. R.; Nascimento, G. S.; Vasconcelos, C.

    2017-12-01

    The study of authigenic clay/carbonate-mineral associations within carbonate sequences has important implications for the interpretation of scientific problems related with rock reservoir properties, such as alteration of potential porosity and permeability. More specifically, when clay minerals are randomly distributed within the carbonate matrix, it becomes difficult to predict reservoir characteristics. In order to understand this mineral association in the geological record, we have undertaken a comparative study of specially designed laboratory experiments with modern environments, where clay minerals have been shown to precipitate together with a range of carbonate minerals, including calcite, Mg-calcite and dolomite. Two modern dolomite-forming environments, the Coorong lakes, South Australia and Brejo do Espinho Rio de Janeiro, Brazil, were selected for this investigation. For comparative evaluation, enrichment microbial culture experiments, using natural pore water from Brejo do Espinho as the growth medium to promote mineral precipitation, were performed under both aerobic and anaerobic conditions. To establish the environmental parameters and biological processes facilitating the dual mineral association, the experimental samples have been compared with the natural minerals using HRTEM measurements. The results demonstrate that the clay and carbonate minerals apparently do not co-precipitate, but the precipitation of the different minerals in the same sample has probably occurred under different environmental conditions with variable chemistries, e.g., hypersalinity versus normal salinity resulting from the changing ratio of evaporation versus precipitation. Thus, the investigated mineral association is not a product of diagenetic processes but of sequential in situ precipitation processes related to changes in the silica and carbon availability. Implications for ancient carbonate formations will be presented and discussed in the context of a specific

  3. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...

  4. Phenotypic plasticity in fish life-history traits in two neotropical reservoirs: Petit-Saut Reservoir in French Guiana and Brokopondo Reservoir in Suriname

    Directory of Open Access Journals (Sweden)

    Bernard de Mérona

    Full Text Available Fish species are known for their large phenotypic plasticity in life-history traits in relation to environmental characteristics. Plasticity allows species to increase their fitness in a given environment. Here we examined the life-history response of fish species after an abrupt change in their environment caused by the damming of rivers. Two reservoirs of different age, both situated on the Guiana Shield, were investigated: the young Petit-Saut Reservoir in French Guiana (14 years and the much older Brokopondo Reservoir in Suriname (44 years. Six life-history traits in 14 fish species were studied and compared to their value in the Sinnamary River prior to the completion of Petit-Saut Reservoir. The traits analyzed were maximum length, absolute and relative length at first maturation, proportion of mature oocytes in ripe gonad, batch fecundity and mean size of mature oocytes. The results revealed a general increase of reproductive effort. All species showed a decrease in maximum length. Compared to the values observed before the dam constructions, eight species had larger oocytes and three species showed an increased batch fecundity. These observed changes suggest a trend towards a pioneer strategy. The changes observed in Petit-Saut Reservoir also seemed to apply to the 30 years older Brokopondo Reservoir suggesting that these reservoirs remain in a state of immaturity for a long time.

  5. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  6. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir.

    Science.gov (United States)

    Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš

    2018-05-15

    Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can

  7. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.

    2005-01-01

    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  8. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  9. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  10. Advances in photonic reservoir computing

    Science.gov (United States)

    Van der Sande, Guy; Brunner, Daniel; Soriano, Miguel C.

    2017-05-01

    We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir's complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  11. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir.

    Science.gov (United States)

    Zheng, Hezhen; Lei, Xiaohui; Shang, Yizi; Duan, Yang; Kong, Lingzhong; Jiang, Yunzhong; Wang, Hao

    2018-03-01

    Danjiangkou Reservoir is the source reservoir of the Middle Route of the South-to-North Water Diversion Project (MRP). Any sudden water pollution accident in the reservoir would threaten the water supply of the MRP. We established a 3-D hydrodynamic and water quality model for the Danjiangkou Reservoir, and proposed scientific suggestions on the prevention and emergency management for sudden water pollution accidents based on simulated results. Simulations were performed on 20 hypothetical pollutant discharge locations and 3 assumed amounts, in order to model the effect of pollutant spreading under different reservoir operation types. The results showed that both the location and mass of pollution affected water quality; however, different reservoir operation types had little effect. Five joint regulation scenarios, which altered the hydrodynamic processes of water conveyance for the Danjiangkou and Taocha dams, were considered for controlling pollution dispersion. The results showed that the spread of a pollutant could be effectively controlled through the joint regulation of the two dams and that the collaborative operation of the Danjiangkou and Taocha dams is critical for ensuring the security of water quality along the MRP.

  12. Fracture properties from tight reservoir outcrop analogues with application to geothermal exploration

    Science.gov (United States)

    Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John

    2015-04-01

    In geothermal reservoirs, similar to other tight reservoirs, fluid flow may be intensely affected by fracture systems, in particular those associated with fault zones. When active (slipping) the fault core, that is, the inner part of a fault zone, which commonly consists of breccia or gouge, can suddenly develop high permeability. Fault cores of inactive fault zones, however, may have low permeabilities and even act as flow barriers. In the outer part of a fault zone, the damage zone, permeability depends mainly on the fracture properties, that is, the geometry (orientation, aperture, density, connectivity, etc.) of the fault-associated fracture system. Mineral vein networks in damage zones of deeply eroded fault zones in palaeogeothermal fields demonstrate their permeability. In geothermal exploration, particularly for hydrothermal reservoirs, the orientation of fault zones in relation to the current stress field as well as their internal structure, in particular the properties of the associated fracture system, must be known as accurately as possible for wellpath planning and reservoir engineering. Here we present results of detailed field studies and numerical models of fault zones and associated fracture systems in palaeogeo¬thermal fields and host rocks for geothermal reservoirs from various stratigraphies, lithologies and tectonic settings: (1) 74 fault zones in three coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (2) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); and (3) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone and limestone) in the Upper Rhine Graben shoulders. Whereas (1) represent palaeogeothermal fields with mineral veins, (2) and (3) are outcrop analogues of reservoir horizons from geothermal exploration. In the study

  13. Dilution limits dissolved organic carbon utilization in the deep ocean

    NARCIS (Netherlands)

    Arrieta, J.M.; Mayol, E.; Hansman, R.L.; Herndl, G.J.; Dittmar, T.; Duarte, C.M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An

  14. Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario

    Science.gov (United States)

    Marcon, V.; Kaszuba, J. P.

    2012-12-01

    Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a

  15. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Ian

    1989-12-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

  16. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  17. Climate Change Impacts on Sediment Quality of Subalpine Reservoirs: Implications on Management

    Directory of Open Access Journals (Sweden)

    Marziali Laura

    2017-09-01

    Full Text Available Reservoirs are characterized by accumulation of sediments where micropollutants may concentrate, with potential toxic effects on downstream river ecosystems. However, sediment management such as flushing is needed to maintain storage capacity. Climate change is expected to increase sediment loads, but potential effects on their quality are scarcely known. In this context, sediment contamination by trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn and organics (Polycyclic Aromatic Hydrocarbons PAHs, Polychlorinated Biphenyls PCBs and C > 12 hydrocarbons was analyzed in 20 reservoirs located in Italian Central Alps. A strong As and a moderate Cd, Hg and Pb enrichment was emphasized by Igeo, with potential ecotoxicological risk according to Probable Effect Concentration quotients. Sedimentation rate, granulometry, total organic carbon (TOC and altitude resulted as the main drivers governing pollutant concentrations in sediments. According to climate change models, expected increase of rainfall erosivity will enhance soil erosion and consequently the sediment flow to reservoirs, potentially increasing coarse grain fractions and thus potentially diluting pollutants. Conversely, increased weathering may enhance metal fluxes to reservoirs. Increased vegetation cover will potentially result in higher TOC concentrations, which may contrast contaminant bioavailability and thus toxicity. Our results may provide elements for a proper management of contaminated sediments in a climate change scenario aiming at preserving water quality and ecosystem functioning.

  18. Risk Assessment of Carbon Sequestration into A Naturally Fractured Reservoir at Kevin Dome, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Minh [Univ. of Wyoming, Laramie, WY (United States); Onishi, Tsubasa [Texas A & M Univ., College Station, TX (United States); Carey, James William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Will, Bob [Schlumberger, Houston, TX (United States); Zaluski, Wade [Schlumberger, Houston, TX (United States); Bowen, David [Montana State Univ., Bozeman, MT (United States); DeVault, Brian [Vecta Oil and Gas, Dallas, TX (United States); Duguid, Andrew [Battelle Memorial Inst., Columbus, OH (United States); Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-22

    In this report, we describe risk assessment work done using the National Risk Assessment Partnership (NRAP) applied to CO2 storage at Kevin Dome, Montana. Geologic CO2 sequestration in saline aquifers poses certain risks including CO2/brine leakage through wells or non-sealing faults into groundwater or to the land surface. These risks are difficult to quantify due to data availability and uncertainty. One solution is to explore the consequences of these limitations by running large numbers of numerical simulations on the primary CO2 injection reservoir, shallow reservoirs/aquifers, faults, and wells to assess leakage risks and uncertainties. However, a large number of full-physics simulations is usually too computationally expensive. The NRAP integrated assessment model (NRAP-IAM) uses reduced order models (ROMs) developed from full-physics simulations to address this issue. A powerful stochastic framework allows NRAPIAM to explore complex interactions among many uncertain variables and evaluate the likely performance of potential sequestration sites.

  19. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    OpenAIRE

    Haihan Zhang; Jingyu Jia; Shengnan Chen; Tinglin Huang; Yue Wang; Zhenfang Zhao; Ji Feng; Huiyan Hao; Sulin Li; Xinxin Ma

    2018-01-01

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal tr...

  20. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions

    International Nuclear Information System (INIS)

    Pinguelli Rosa, L.; Aurelio dos Santos, M.; Oliveira dos Santos, E.; Matvienko, B.; Sikar, E.

    2004-01-01

    This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion. The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed

  1. Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations

    Science.gov (United States)

    Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.

    2011-12-01

    HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of

  2. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants

    International Nuclear Information System (INIS)

    Santos, Marco Aurelio dos; Pinguelli Rosa, Luiz; Sikar, Bohdan; Sikar, Elizabeth; Santos, Ednaldo Oliveira dos

    2006-01-01

    This paper presents the findings of gross carbon dioxide and methane emissions measurements in several Brazilian hydro-reservoirs, compared to thermo power generation. The term 'gross emissions' means gas flux measurements from the reservoir surface without natural pre-impoundment emissions by natural bodies such as the river channel, seasonal flooding and terrestrial ecosystems. The net emissions result from deducting pre-existing emissions by the reservoir. A power dam emits biogenic gases such as CO 2 and CH 4 . However, studies comparing gas emissions (gross emissions) from the reservoir surface with emissions by thermo-power generation technologies show that the hydro-based option presents better results in most cases analyzed. In this study, measurements were carried in the Miranda, Barra Bonita, Segredo, Tres Marias, Xingo, and Samuel and Tucurui reservoirs, located in two different climatological regimes. Additional data were used here from measurements taken at the Itaipu and Serra da Mesa reservoirs. Comparisons were also made between emissions from hydro-power plants and their thermo-based equivalents. Bearing in mind that the estimated values for hydro-power plants include emissions that are not totally anthropogenic, the hydro-power plants studied generally posted lower emissions than their equivalent thermo-based counterparts. Hydro-power complexes with greater power densities (capacity/area flooded-W/m 2 ), such as Itaipu, Xingo, Segredo and Miranda, have the best performance, well above thermo-power plants using state-of-the-art technology: combined cycle fueled by natural gas, with 50% efficiency. On the other hand, some hydro-power complexes with low-power density perform only slightly better or even worse than their thermo-power counterparts

  3. Toyama Kametaro and Vernon Kellogg: silkworm inheritance experiments in Japan, Siam, and the United States, 1900-1912.

    Science.gov (United States)

    Onaga, Lisa

    2010-01-01

    Japanese agricultural scientist Toyama Kametaro's report about the Mendelian inheritance of silkworm cocoon color in Studies on the Hybridology of Insects (1906) spurred changes in Japanese silk production and thrust Toyama and his work into a scholarly exchange with American entomologist Vernon Kellogg. Toyama's work, based on research conducted in Japan and Siam, came under international scrutiny at a time when analyses of inheritance flourished after the "rediscovery" of Mendel's laws of heredity in 1900. The hybrid silkworm studies in Asia attracted the attention of Kellogg, who was concerned with how experimental biology would be used to study the causes of natural selection. He challenged Toyama's conclusions that Mendelism alone could explain the inheritance patterns of silkworm characters such as cocoon color because they had been subject to hundreds of years of artificial selection, or breeding. This examination of the intersection of Japanese sericulture and American entomology probes how practical differences in scientific interests, societal responsibilities, and silkworm materiality were negotiated throughout the processes of legitimating Mendelian genetics on opposite sides of the Pacific. The ways in which Toyama and Kellogg assigned importance to certain silkworm properties show how conflicting intellectual orientations arose in studies of the same organism. Contestation about Mendelism took place not just on a theoretical level, but the debate was fashioned through each scientist's rationale about the categorization of silkworm breeds and races and what counted as "natural". This further mediated the acceptability of the silkworm not as an experimental organism, but as an appropriately "natural" insect with which to demonstrate laws of inheritance. All these shed light on the challenges that came along with the use of agricultural animals to convincingly articulate new biological principles.

  4. Cesium reservoir and interconnective components

    International Nuclear Information System (INIS)

    1994-03-01

    The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW range. A thermionic converter must be supplied with cesium vapor for two reasons. Cesium atoms adsorbed on the surface of the emitter cause a reduction of the emitter work function to permit high current densities without excessive heating of the emitter. The second purpose of the cesium vapor is to provide space-charge neutralization in the emitter-collector gap so that the high current densities may flow across the gap unattenuated. The function of the cesium reservoir is to provide a source of cesium atoms, and to provide a reserve in the event that cesium is lost from the plasma by any mechanism. This can be done with a liquid cesium metal reservoir in which case it is heated to the desired temperature with auxiliary heaters. In a TFE, however, it is desirable to have the reservoir passively heated by the nuclear fuel. In this case, the reservoir must operate at a temperature intermediate between the emitter and the collector, ruling out the use of liquid reservoirs. Integral reservoirs contained within the TFE will produce cesium vapor pressures in the desired range at typical electrode temperatures. The reservoir material that appears to be the best able to meet requirements is graphite. Cesium intercalates easily into graphite, and the cesium pressure is insensitive to loading for a given intercalation stage. The goals of the cesium reservoir test program were to verify the performance of Cs-graphite reservoirs in the temperature-pressure range of interest to TFE operation, and to test the operation of these reservoirs after exposure to a fast neutron fluence corresponding to seven year mission lifetime. In addition, other materials were evaluated for possible use in the integral reservoir

  5. Water quality of Cedar Creek reservoir in northeast Texas, 1977 to 1984

    Science.gov (United States)

    Leibbrand, Norman F.; Gibbons, Willard J.

    1987-01-01

    Water in Cedar Creek Reservoir in northeast Texas had volume-weighted average concentrations of less than 140 milligrams per liter of dissolved solids, less than 30 milligrams per liter of dissolved sulfate, and less than 25 milligrams per liter of chloride between vh nuary 1977 and August 1984. The water was soft to moderately hard; the total hardness concentrations ranged from 55 to 75 milligrams per liter as calcium carbonate.

  6. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which

  7. Dietary reconstruction and reservoir correction of 14C dates on bones from pagan and early Christian graves in Iceland

    DEFF Research Database (Denmark)

    Sveinbjörnsdóttir, Árný E; Heinemeier, Jan; Arneborg, Jette

    2010-01-01

    between the excavation site and the seashore. We have radiocarbon dated 47 of these skeletons and used the carbon isotopic composition (?13C) to estimate and correct for the marine reservoir effect (the 14C difference between terrestrial and mixed marine organisms). The reservoir-corrected ages lie...... in the range of AD 780?1270 (68.2% probability). Reservoir age corrections were checked by comparing 14C dates of a horse (terrestrial diet), a dog (highly marine diet), and a human (mixed diet) from the same burial. The range in measured marine protein percentage in individual diet is from about 10% up to 55...... in AD 1211. Using our dietary reconstruction, his bones were about 17% marine, which is within the range of human skeletons from the same area, and the reservoir-corrected calibrated 14C age of the skeleton is in accord with the historical date....

  8. Paleokarst and reservoir porosity in the Ordovician Beekmantown Dolomite of the central Appalachian basin

    Science.gov (United States)

    Smosna, R.; Bruner, K.R.; Riley, R.A.

    2005-01-01

    A karst-unconformity play at the top of the Ordovician Beekmantown Dolomite is judged to have great petroleum potential in Ohio and adjacent states; wells have high ultimate reserves and large areas remain untested. To better understand the origin, development, and distribution of Beekmantown porosity, we conducted a petrologic-stratigraphic study of cores and thin sections from 15 oil and gas wells. The massive dolomite, characterized by a hypidiotopic-idiotopic texture, formed by the replacement of stacked peritidal carbonate cycles. Secondary porosity occurs at two scales: (1) mesoscopic - breccia porosity, solution-enlarged fractures, large vugs, and caverns, and (2) microscopic - intercrystalline, intracrystalline, molds, small vugs, and microfractures. Mesoscopic pores (providing the major storage capacity in this reservoir) were produced by intrastratal solution and collapse of carbonate layers, whereas microscopic pores (connecting the larger pores) generally formed by the leaching of individual carbonate grains and crystals. Most pore types developed during periods of subaerial exposure across the carbonate bank, tied to either the numerous, though brief falls of relative sea level during Beekmantown deposition or more importantly the prolonged Knox unconformity at the close of sedimentation. The distribution of reservoir-quality porosity is quite heterogeneous, being confined vertically to a zone immediately below the unconformity and best developed laterally beneath buried hills and noses of this erosion surface. The inferred, shallow flow of ground water in the Beekmantown karst, primarily below topographic highs and above a diagenetic base level close to the water table, led to this irregular distribution of porosity.

  9. Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States.

    Science.gov (United States)

    Wilson, Doyle C

    2018-04-15

    Heavy metal, nutrient, and hydrocarbon levels in and adjacent to Lake Havasu, a regionally significant water supply reservoir with a highly controlled, dynamic flow regime, are assessed in relation to possible stormwater runoff impacts from an arid urban center. Shallow groundwater and sediment analyses from ephemeral drainage (wash) mouths that convey stormwater runoff from Lake Havasu City, Arizona to the reservoir, provided contaminant control points and correlation ties with the reservoir environment. Fine-grain sediments tend to contain higher heavy metal concentrations whereas nutrients are more evenly distributed, except low total organic carbon levels from young wash mouth surfaces devoid of vegetation. Heavy metal and total phosphate sediment concentrations in transects from wash mouths into the reservoir have mixed and decreasing trends, respectively. Both series may indicate chemical depositional influences from urban runoff, yet no statistically significant concentration differences occur between specific wash mouths and corresponding offshore transects. Heavy metal pollution indices of all sediments indicate no discernible to minor contamination, indicating that runoff impacts are minimal. Nevertheless, several heavy metal concentrations from mid-reservoir sediment sites increase southward through the length of the reservoir. Continual significant water flow through the reservoir may help to disperse locally derived runoff particulates, which could mix and settle down gradient with chemical loads from upriver sources and local atmospheric deposition. Incorporating the shoreline environment with the reservoir investigation provides spatial continuity in assessing contaminant sources and distribution patterns. This is particularly acute in the investigation of energetic, flow-through reservoirs in which sources may be overlooked if solely analyzing the reservoir environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Computational Design of a Carbon Nanotube Fluorofullerene Biosensor

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2012-10-01

    Full Text Available Carbon nanotubes offer exciting opportunities for devising highly-sensitive detectors of specific molecules in biology and the environment. Detection limits as low as 10−11 M have already been achieved using nanotube-based sensors. We propose the design of a biosensor comprised of functionalized carbon nanotube pores embedded in a silicon-nitride or other membrane, fluorofullerene-Fragment antigen-binding (Fab fragment conjugates, and polymer beads with complementary Fab fragments. We show by using molecular and stochastic dynamics that conduction through the (9, 9 exohydrogenated carbon nanotubes is 20 times larger than through the Ion Channel Switch ICSTM biosensor, and fluorofullerenes block the nanotube entrance with a dissociation constant as low as 37 pM. Under normal operating conditions and in the absence of analyte, fluorofullerenes block the nanotube pores and the polymer beads float around in the reservoir. When analyte is injected into the reservoir the Fab fragments attached to the fluorofullerene and polymer bead crosslink to the analyte. The drag of the much larger polymer bead then acts to pull the fluorofullerene from the nanotube entrance, thereby allowing the flow of monovalent cations across the membrane. Assuming a tight seal is formed between the two reservoirs, such a biosensor would be able to detect one channel opening and thus one molecule of analyte making it a highly sensitive detection design.

  11. Simulation of Reservoir Sediment Flushing of the Three Gorges Reservoir Using an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Xueying Li

    2016-05-01

    Full Text Available Reservoir sedimentation and its effect on the environment are the most serious world-wide problems in water resources development and utilization today. As one of the largest water conservancy projects, the Three Gorges Reservoir (TGR has been controversial since its demonstration period, and sedimentation is the major concern. Due to the complex physical mechanisms of water and sediment transport, this study adopts the Error Back Propagation Training Artificial Neural Network (BP-ANN to analyze the relationship between the sediment flushing efficiency of the TGR and its influencing factors. The factors are determined by the analysis on 1D unsteady flow and sediment mathematical model, mainly including reservoir inflow, incoming sediment concentration, reservoir water level, and reservoir release. Considering the distinguishing features of reservoir sediment delivery in different seasons, the monthly average data from 2003, when the TGR was put into operation, to 2011 are used to train, validate, and test the BP-ANN model. The results indicate that, although the sample space is quite limited, the whole sediment delivery process can be schematized by the established BP-ANN model, which can be used to help sediment flushing and thus decrease the reservoir sedimentation.

  12. An Effective Reservoir Parameter for Seismic Characterization of Organic Shale Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Qin, Xuan; Zhang, Jinqiang; Liu, Xiwu; Han, De-hua; Geng, Jianhua; Xiong, Yineng

    2017-12-01

    Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.

  13. Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation

    Science.gov (United States)

    Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof

    2018-03-01

    Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.

  14. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    Energy Technology Data Exchange (ETDEWEB)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  15. Reservoir floodplains support distinct fish assemblages

    Science.gov (United States)

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs.

    Science.gov (United States)

    Hu, Ping; Tom, Lauren; Singh, Andrea; Thomas, Brian C; Baker, Brett J; Piceno, Yvette M; Andersen, Gary L; Banfield, Jillian F

    2016-01-19

    Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128 m (24 to 27°C) and 2,743 m (80 to 83°C) below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate- and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1), was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1) that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11), Atribacteria (OP9), candidate phyla TA06 and WS6, and Marinimicrobia (SAR406). The results presented here elucidate potential roles of organisms in oil reservoir biological processes. The activities of microorganisms in oil reservoirs impact petroleum resource quality and the global carbon cycle. We show that bacteria

  17. A rationale for reservoir management economics

    International Nuclear Information System (INIS)

    Hickman, T.S.

    1995-01-01

    Significant economic benefits can be derived from the application f reservoir management. The key elements in economical reservoir management are the efficient use of available resources and optimization of reservoir exploitation through a multidisciplined approach. This paper describes various aspects of and approaches to reservoir management and provides case histories that support the findings

  18. Size distribution of autotrophy and microheterotrophy in reservoirs: implications for foodweb structure

    International Nuclear Information System (INIS)

    Kimmel, B.L.

    1981-01-01

    Particle size is a primary determinant of resources available to consumers and of the efficiency of energy transfer through planktonic food chains. Dual radioisotopic labeling (with 14 C-bicarbonate and 3 H-acetate) and size fractionation of naturally-occurring phytoplankton-bacterioplankton assemblages were employed to examine the particle size distributions of planktonic autotrophy and microheterotrophy in four limnologically-dissimilar US reservoirs (Lake Mead, Arizona-Nevada, oligo-mesotrophic; Broken Bow Lake, Oklahoma, mesotrophic; Lake Texoma, Oklahoma-Texas, eutrophic; and Normandy Lake, Tennessee, eutrophic). Small nano- and ultraphytoplankton (< 8.0 μm) and free-living bacteria (< 3.0 μm) were primarly responsible for planktonic autotrophy and microheterotrophy, respecitvely, even in eutrophic conditions. Zooplankton grazing experiments indicated that (1) most grazing pressure occurs on 3.0 to 8.0 μm particles, (2) grazer limitation of the occurrence of attached bacteria amd microbial-detrital aggregates is unlikely, and (3) free-living bacteria are inefficiently harvested, relative to algae, by most reservoir zooplankton. Relative to autorophy, the microheterotrophic conversion of allochthonous dissolved organic matter and algal excretion products to bacterial biomass appears unlikely to be a significant source of organic carbon for planktonic grazers in most reservoirs

  19. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs.

    Science.gov (United States)

    Varjani, Sunita J; Gnansounou, Edgard

    2017-12-01

    Petroleum is produced by thermal decay of buried organic material over millions of years. Petroleum oilfield ecosystems represent resource of reduced carbon which favours microbial growth. Therefore, it is obvious that many microorganisms have adapted to harsh environmental conditions of these ecosystems specifically temperature, oxygen availability and pressure. Knowledge of microorganisms present in ecosystems of petroleum oil reservoirs; their physiological and biological properties help in successful exploration of petroleum. Understanding microbiology of petroleum oilfield(s) can be used to enhance oil recovery, as microorganisms in oil reservoirs produce various metabolites viz. gases, acids, solvents, biopolymers and biosurfactants. The aim of this review is to discuss characteristics of petroleum oil reservoirs. This review also provides an updated literature on microbial ecology of these extreme ecosystems including microbial origin as well as various types of microorganisms such as methanogens; iron, nitrate and sulphate reducing bacteria, and fermentative microbes present in petroleum oilfield ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  1. Exploration and reservoir characterization; Technology Target Areas; TTA2 - Exploration and reservoir characterisation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    In future, research within exploration and reservoir characterization will play an even more important role for Norway since resources are decreasing and new challenges like deep sea, harsh environment and last but not least environmental issues have to be considered. There are two major fields which have to be addressed within exploration and reservoir characterization: First, replacement of reserves by new discoveries and ultimate field recoveries in mature basins at the Norwegian Continental shelf, e.g. at the Halten Terrace has to be addressed. A wealth of data exists in the more mature areas. Interdisciplinary integration is a key feature of reservoir characterization, where available data and specialist knowledge need to be combined into a consistent reservoir description. A systematic approach for handling both uncertainties in data sources and uncertainties in basic models is needed. Fast simulation techniques are necessary to generate models spanning the event space, covering both underground based and model-based uncertainties. Second, exploration in frontier areas like the Barents Sea region and the deeper Voering Basin has to be addressed. The scarcity of wells in these frontier areas leads to uncertainties in the geological understanding. Basin- and depositional modelling are essential for predicting where source rocks and reservoir rocks are deposited, and if, when and which hydrocarbons are generated and trapped. Predictive models and improved process understanding is therefore crucial to meet these issues. Especially the challenges related to the salt deposits e.g. sub-salt/sub-basalt reservoir definitions in the Nordkapp Basin demands up-front research and technology developments. TTA2 stresses the need to focus on the development of new talents. We also see a strong need to push cooperation as far as possible in the present competitive environment. Projects that may require a substantial financial commitment have been identified. The following

  2. Seismic stratigraphy of Dinantian carbonates in the southern Netherlands and northern Belgium

    NARCIS (Netherlands)

    Reijmer, John J.G.; Ten Veen, Johan H.; Jaarsma, Bastiaan; Boots, Roy

    2017-01-01

    Due to their potential as a petroleum or geothermal system, the Dinantian carbonates of the Netherlands have recently attracted renewed interest because of the identified presence of excellent reservoir properties. This notion contrasts with the general assumption that these carbonates are tight.

  3. Assessing reservoir performance risk in CO2 storage projects

    International Nuclear Information System (INIS)

    Bowden, A.R.; Rigg, A.

    2005-01-01

    One of the main issues for researchers involved with geological storage of carbon dioxide (CO 2 ) has been the development of a proper methodology to assess and compare alternative CO 2 injection projects on the basis of risk. Consideration needs to be given to technical aspects, such as the risk of leakage and the effectiveness of the intended reservoir, as well as less tangible aspects such as the value and safety of geological storage of CO 2 , and potential impacts on the community and environment. The Geological Disposal of Carbon Dioxide (GEODISC), was a research program of the Australian Petroleum Cooperative Research Centre which identified 56 potential environmentally sustainable sites for CO 2 injection (ESSCIs) within Australia. Several studies were carried out, involving detailed evaluation of the suitability of 4 selected sites, including Dongara, Petrel, Gippsland and Carnarvon. The GEODISC program included a risk assessment research module which required a complete and quantified risk assessment of CO 2 injection as a storage option. Primary goals were to assess the risk of leakage, to assess the effectiveness of the intended reservoir, and to assess negative consequences to facilitate comparison of alternative sites. This paper discussed the background and risk assessment model. Key performance indicators (KPIs) were also developed to address the purpose of risk assessment. It was concluded that the RISQUE method is an appropriate approach and that potential injection projects can be measured against six KPIs including containment; effectiveness; self-funding potential; wider community benefits; community safety and community amenity. 6 refs., 3 tabs., 3 figs

  4. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs.

    Science.gov (United States)

    Orphan, V J; Taylor, L T; Hafenbradl, D; Delong, E F

    2000-02-01

    Recent investigations of oil reservoirs in a variety of locales have indicated that these habitats may harbor active thermophilic prokaryotic assemblages. In this study, we used both molecular and culture-based methods to characterize prokaryotic consortia associated with high-temperature, sulfur-rich oil reservoirs in California. Enrichment cultures designed for anaerobic thermophiles, both autotrophic and heterotrophic, were successful at temperatures ranging from 60 to 90 degrees C. Heterotrophic enrichments from all sites yielded sheathed rods (Thermotogales), pleomorphic rods resembling Thermoanaerobacter, and Thermococcus-like isolates. The predominant autotrophic microorganisms recovered from inorganic enrichments using H(2), acetate, and CO(2) as energy and carbon sources were methanogens, including isolates closely related to Methanobacterium, Methanococcus, and Methanoculleus species. Two 16S rRNA gene (rDNA) libraries were generated from total community DNA collected from production wellheads, using either archaeal or universal oligonucleotide primer sets. Sequence analysis of the universal library indicated that a large percentage of clones were highly similar to known bacterial and archaeal isolates recovered from similar habitats. Represented genera in rDNA clone libraries included Thermoanaerobacter, Thermococcus, Desulfothiovibrio, Aminobacterium, Acidaminococcus, Pseudomonas, Halomonas, Acinetobacter, Sphingomonas, Methylobacterium, and Desulfomicrobium. The archaeal library was dominated by methanogen-like rDNAs, with a lower percentage of clones belonging to the Thermococcales. Our results strongly support the hypothesis that sulfur-utilizing and methane-producing thermophilic microorganisms have a widespread distribution in oil reservoirs and the potential to actively participate in the biogeochemical transformation of carbon, hydrogen, and sulfur in situ.

  5. Key seismic exploration technology for the Longwangmiao Fm gas reservoir in Gaoshiti–Moxi area, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guangrong Zhang

    2016-10-01

    Full Text Available The dolomite reservoirs of the Lower Cambrian Longwangmiao Fm in the Gaoshiti–Moxi area, Sichuan Basin, are deeply buried (generally 4400–4900 m, with high heterogeneity, making reservoir prediction difficult. In this regard, key seismic exploration technologies were developed through researches. Firstly, through in-depth analysis on the existing geologic, drilling, seismic data and available research findings, basic surface and subsurface structures and geologic conditions within the study area were clarified. Secondly, digital seismic data acquisition technologies with wide azimuth, wide frequency band and minor bins were adopted to ensure even distribution of coverage of target formations through optimization of the 3D seismic geometry. In this way, high-accuracy 3D seismic data can be acquired through shallow, middle and deep formations. Thirdly, well-control seismic data processing technologies were applied to enhance the signal-to-noise ratio (SNR of seismic data for deep formations. Fourthly, a seismic response model was established specifically for the Longwangmiao Fm reservoir. Quantitative prediction of the reservoir was performed through pre-stack geo-statistics. In this way, plan distribution of reservoir thicknesses was mapped. Fifthly, core tests and logging data analysis were conducted to determine gas-sensitive elastic parameters, which were then used in pre-stack hydrocarbon detection to eliminate the multiple solutions in seismic data interpretation. It is concluded that application of the above-mentioned key technologies effectively promote the discovery of largescale marine carbonate gas reservoirs of the Longwangmiao Fm.

  6. DEPLETED HYDROCARBON RESERVOIRS AND CO2 INJECTION WELLS –CO2 LEAKAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2017-03-01

    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  7. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  8. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2013-02-01

    Full Text Available Anthropogenic activity has led to significant emissions of greenhouse gas (GHG, which is thought to play important roles in global climate changes. It remains unclear about the kinetics of GHG emissions, including carbon dioxide (CO2, methane (CH4 and nitrous Oxide (N2O from the Three Gorges Reservoir (TGR of China, which was formed after the construction of the famous Three Gorges Dam. Here we report monthly measurements for one year of the fluxes of these gases at multiple sites within the TGR region, including three major tributaries, six mainstream sites, two downstream sites and one upstream site. The tributary areas have lower CO2 fluxes than the main storage; CH4 fluxes in the tributaries and upper reach mainstream sites are relative higher. Overall, TGR showed significantly lower CH4 emission rates than most new reservoirs in temperate and tropical regions. We attribute this to the well-oxygenated deep water and high water velocities that may facilitate the consumption of CH4. TGR's CO2 fluxes were lower than most tropical reservoirs and higher than most temperate systems. This could be explained by the high load of labile soil carbon delivered through erosion to the Yangtze River. Compared to fossil-fuelled power plants of equivalent power output, TGR is a very small GHG emitter – annual CO2-equivalent emissions are approximately 1.7% of that of a coal-fired generating plant of comparable power output.

  9. Reservoir architecture and tough gas reservoir potential of fluvial crevasse-splay deposits

    NARCIS (Netherlands)

    Van Toorenenburg, K.A.; Donselaar, M.E.; Weltje, G.J.

    2015-01-01

    Unconventional tough gas reservoirs in low-net-to-gross fluvial stratigraphic intervals may constitute a secondary source of fossil energy to prolong the gas supply in the future. To date, however, production from these thin-bedded, fine-grained reservoirs has been hampered by the economic risks

  10. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  11. Advances in photonic reservoir computing

    Directory of Open Access Journals (Sweden)

    Van der Sande Guy

    2017-05-01

    Full Text Available We review a novel paradigm that has emerged in analogue neuromorphic optical computing. The goal is to implement a reservoir computer in optics, where information is encoded in the intensity and phase of the optical field. Reservoir computing is a bio-inspired approach especially suited for processing time-dependent information. The reservoir’s complex and high-dimensional transient response to the input signal is capable of universal computation. The reservoir does not need to be trained, which makes it very well suited for optics. As such, much of the promise of photonic reservoirs lies in their minimal hardware requirements, a tremendous advantage over other hardware-intensive neural network models. We review the two main approaches to optical reservoir computing: networks implemented with multiple discrete optical nodes and the continuous system of a single nonlinear device coupled to delayed feedback.

  12. Characterization of the deep microbial life in the Altmark natural gas reservoir

    Science.gov (United States)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    ., Adicdovorax sp., Ralstonia sp., Pseudomonas sp.), thiosulfate-oxidising bacteria (Diaphorobacter sp.) and biocorrosive thermophilic microorganisms, which have not previously been cultivated. Furthermore, several uncultivated microorganisms were found, that were similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that the quantification of those microorganisms as well as the determination of microbial activity was not yet possible. Microbial monitoring methods have to be further developed to study microbial activities under these extreme conditions to access their influence on the EGR technique and on enhancing the long term safety of the process by fixation of carbon dioxide by precipitation of carbonates. We thank GDF SUEZ for providing the data for the Rotliegend reservoir, sample material and supporting sampling campaigns. The CLEAN project is funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the GEOTECHNOLOGIEN Program.

  13. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.

    1990-01-01

    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  14. Fluid circulation and diagenesis of carbonated and sandstone reservoirs in the fronts and fore-lands of folded chains: the Salt Range case - Poswar (Pakistan); Circulation des fluides et diagenese des reservoirs carbonates et greseux dans les fronts de chaines plissees et leur avant pays: le cas du Salt Range - Poswar (Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Benchilla, L.

    2003-05-01

    The Salt Range-Poswar Province is located in the western foothills of the Himalayas, in northern Pakistan. It extends over 170 km from the Main Boundary Thrust (MBT) in the north to the Salt Range in the south. The Salt Range itself is dominantly an ENE-trending structure, but it comprises also a NNW-trending lateral ramp which connects to the west with the Surghar Range. The Salt Range constitutes the frontal part of a detached allochthonous thrust sheet. The sedimentary cover is indeed entirely detached from its substratum along Infracambrian salt horizons. Palaeozoic to Eocene platform series are well exposed in the hanging wall, whereas Neogene molasse has been extensively under-thrust in the footwall of this large over-thrust. The North Potwar Basin is bordered by the Khari-Murat Ridge and coeval back-thrusts in the south, by the northern flank of the Soan syncline in the southeast, and by the MBT in the north. In addition to Neogene outcrops, it also comprises a number of surface anticlines and thrust fronts along which the Eocene platform carbonates are exposed. The Datta Formation is the main Jurassic oil reservoir in the Potwar Basin. It is a fluvio-deltaic deposit which comprises large porous and permeable channels associated to many-calcareous interbeds. The formations crop out well in both the Nammal and Chichali Gorges. The oil field of Toot, located in the western part of the basin, is producing from this reservoir. The petrographic observations show that diagenesis occurred mainly early and was controlled by the fluvio-deltaic environment. (author)

  15. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) FTS: Results From the 2012/13 Alaska Campaigns

    Science.gov (United States)

    kurosu, T. P.; Miller, C. E.; Dinardo, S.

    2013-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is an aircraft-based Earth Venture 1 mission to study the carbon balance of the Alaskan Arctic ecosystem, with a particular focus on carbon release from melting permafrost. Operating from its base in Fairbanks, AK, the CARVE aircraft covers a range of principle flight paths in the Alaskan interior, the Yukon River valley, and northern Alaska coast around Barrow and Dead Horse. Flight paths are chosen to maximize ecosystem variability and and cover burn-recovery/regrowth sequences. CARVE observations cover the Arctic Spring/Summer/Fall seasons, with multiple flights per season and principle flight paths. Science operations started in 05/2012 and are currently envisaged to continue until 2015. The CARVE suite of instruments includes flask measurements and in situ gas analyzers for CO2, CH4 and CO observations, an active/passive L-band radar for surface conditions (freeze/thaw state), and a three-band polarizing Fourier Transform Spectrometer (FTS) for column measurements of CO2, CH4, CO, and interfering species (e.g., H2O). The FTS covers the spectral regions of 4,200-4,900 cm-1 (CH4, CO), 5,800-6,400 cm-1 (CO2), and 12,900-13,200 cm-1 (O2), with a spectral resolution of 0.2 cm-1. Aircraft-based FTS science observations in Alaska have been performed since 23-05-2012. First-version data products from all CARVE instruments derived from observations during the 2012 campaign were publicly released earlier in 2013. The FTS has performed well during flight conditions, particularly with respect to vibration damping. Outstanding challenges include the need for improved spectral and radiometric calibration, as well as compensating for low signal-to-noise spectra acquired under Alaskan flight conditions. We present results from FTS column observations of CO2, CH4, and CO, observed during the 2012 and 2013 campaigns, including preliminary comparisons of CARVE FTS measurements with satellite observations of CO2

  16. Impacts of forest to urban land conversion and ENSO phase on water quality of a public water supply reservoir

    Science.gov (United States)

    We used coupled watershed and reservoir models to evaluate the impacts of deforestation and ENSO phase on drinking water quality. Source water total organic carbon (TOC) is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs). The Environmental Flui...

  17. Permeability model of tight reservoir sandstones combining core-plug and miniperm analysis of drillcore; longyearbyen co2lab, Svalbard

    NARCIS (Netherlands)

    Magnabosco, Cara; Braathen, Alvar; Ogata, Kei

    2014-01-01

    Permeability measurements in Mesozoic, low-permeability sandstone units within the strata cored in seven drillholes near Longyearbyen, Svalbard, have been analysed to assess the presence of aquifers and their potentials as reservoirs for the storage of carbon dioxide. These targeted sandstones are

  18. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    Science.gov (United States)

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.

  19. An index of reservoir habitat impairment

    Science.gov (United States)

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  20. 4. International reservoir characterization technical conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  1. Comparison of Mercury in Water, Bottom Sediment, and Zooplankton in Two Front Range Reservoirs in Colorado, 2008-09

    Science.gov (United States)

    Mast, M. Alisa; Krabbenhoft, David P.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, conducted a study to investigate environmental factors that may contribute to the bioaccumulation of mercury in two Front Range reservoirs. One of the reservoirs, Brush Hollow Reservoir, currently (2009) has a fish-consumption advisory for mercury in walleye (Stizostedion vitreum), and the other, Pueblo Reservoir, which is nearby, does not. Water, bottom sediment, and zooplankton samples were collected during 2008 and 2009, and a sediment-incubation experiment was conducted in 2009. Total mercury concentrations were low in midlake water samples and were not substantially different between the two reservoirs. The only water samples with detectable methylmercury were collected in shallow areas of Brush Hollow Reservoir during spring. Mercury concentrations in reservoir bottom sediments were similar to those reported for stream sediments from unmined basins across the United States. Despite higher concentrations of fish-tissue mercury in Brush Hollow Reservoir, concentrations of methylmercury in sediment were as much as 3 times higher in Pueblo Reservoir. Mercury concentrations in zooplankton were at the low end of concentrations reported for temperate lakes in the Northeastern United States and were similar between sites, which may reflect the seasonal timing of sampling. Factors affecting bioaccumulation of mercury were assessed, including mercury sources, water quality, and reservoir characteristics. Atmospheric deposition was determined to be the dominant source of mercury; however, due to the proximity of the reservoirs, atmospheric inputs likely are similar in both study areas. Water-quality constituents commonly associated with elevated concentrations of mercury in fish (pH, alkalinity, sulfate, nutrients, and dissolved organic carbon) did not appear to explain differences in fish-tissue mercury concentrations between the reservoirs. Low methylmercury

  2. Compaction of granular carbonates under conditions relevant to diagenesis and fault sealing. Geologica Ultraiectina (332)

    NARCIS (Netherlands)

    Zhang, X.

    2010-01-01

    Carbonate reservoir rocks contain more than 60% of the world’s oil reserves and 40% of its gas reserves. The evolution of the reservoir quality, i.e. their porosity and permeability, is for a large part controlled by compaction due to pressure solution (chemical compaction). Pressure solution also

  3. Carbon dioxide narcosis due to inappropriate oxygen delivery: a case report.

    Science.gov (United States)

    Herren, Thomas; Achermann, Eva; Hegi, Thomas; Reber, Adrian; Stäubli, Max

    2017-07-28

    Oxygen delivery to patients with chronic obstructive pulmonary disease may be challenging because of their potential hypoxic ventilatory drive. However, some oxygen delivery systems such as non-rebreathing face masks with an oxygen reservoir bag require high oxygen flow for adequate oxygenation and to avoid carbon dioxide rebreathing. A 72-year-old Caucasian man with severe chronic obstructive pulmonary disease was admitted to the emergency department because of worsening dyspnea and an oxygen saturation of 81% measured by pulse oximetry. Oxygen was administered using a non-rebreathing mask with an oxygen reservoir bag attached. For fear of removing the hypoxic stimulus to respiration the oxygen flow was inappropriately limited to 4L/minute. The patient developed carbon dioxide narcosis and had to be intubated and mechanically ventilated. Non-rebreathing masks with oxygen reservoir bags must be fed with an oxygen flow exceeding the patient's minute ventilation (>6-10 L/minute.). If not, the amount of oxygen delivered will be too small to effectively increase the arterial oxygen saturation. Moreover, the risk of carbon dioxide rebreathing dramatically increases if the flow of oxygen to a non-rebreathing mask is lower than the minute ventilation, especially in patients with chronic obstructive pulmonary disease and low tidal volumes. Non-rebreathing masks (with oxygen reservoir bags) must be used cautiously by experienced medical staff and with an appropriately high oxygen flow of 10-15 L/minute. Nevertheless, arterial blood gases must be analyzed regularly for early detection of a rise in partial pressure of carbon dioxide in arterial blood in patients with chronic obstructive pulmonary disease and a hypoxic ventilatory drive. These patients are more safely managed using a nasal cannula with an oxygen flow of 1-2L/minute or a simple face mask with an oxygen flow of 5L/minute.

  4. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  5. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim; Katterbauer, Klemens

    2016-01-01

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie's parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  6. Hydrogeology and hydrogeochemistry at a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain)

    Science.gov (United States)

    Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia

    2014-08-01

    A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.

  7. The U. S. DOE Carbon Storage Program: Status and Future Directions

    Science.gov (United States)

    Damiani, D.

    2016-12-01

    The U.S. Department of Energy (DOE) is taking steps to reduce carbon dioxide (CO2) emissions through clean energy innovation, including carbon capture and storage (CCS) research. The Office of Fossil Energy Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from stationary sources. The Program is developing and advancing geologic storage technologies both onshore and offshore that will significantly improve the effectiveness of CCS, reduce the cost of implementation, and be ready for widespread commercial deployment in the 2025-2035 timeframe. The technology development and field testing conducted through this Program will be used to benefit the existing and future fleet of fossil fuel power generating and industrial facilities by creating tools to increase our understanding of geologic reservoirs appropriate for CO2 storage and the behavior of CO2 in the subsurface. The Program is evaluating the potential for storage in depleted oil and gas reservoirs, saline formations, unmineable coal, organic-rich shale formations, and basalt formations. Since 1997, DOE's Carbon Storage Program has significantly advanced the CCS knowledge base through a diverse portfolio of applied research projects. The Core Storage R&D research component focuses on analytic studies, laboratory, and pilot- scale research to develop technologies that can improve wellbore integrity, increase reservoir storage efficiency, improve management of reservoir pressure, ensure storage permanence, quantitatively assess risks, and identify and mitigate potential release of CO2 in all types of storage formations. The Storage Field Management component focuses on scale-up of CCS and involves field validation of technology options, including large-volume injection field projects at pre-commercial scale to confirm system performance and economics. Future research involves commercial-scale characterization for regionally significant storage locations

  8. The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Wesley K.; Hanks, Catherine L.; Whalen, Michael T.; Jensen1, Jerry; Shackleton, J. Ryan; Jadamec, Margarete A.; McGee, Michelle M.; Karpov1, Alexandre V.

    2001-07-23

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively underformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding on fracture patterns, (3) The influence of deformation on fluid flow, and (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics.

  9. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir.

    Science.gov (United States)

    Long, Yan; Liu, Changbao; Lin, Hengliang; Li, Ningning; Guo, Qingwei; Xie, Shuguang

    2017-06-01

    In the present study, we investigated the spatial change of sediment nitrite-dependent anaerobic methane-oxidizing (n-damo) organisms in the mesotrophic freshwater Gaozhou Reservoir (6 different sampling locations and 2 sediment depths (0-5 cm, 5-10 cm)), one of the largest drinking water reservoirs in China. The abundance of sediment n-damo bacteria was quantified using quantitative polymerase chain reaction assay, while the richness, diversity, and composition of n-damo pmoA gene sequences were characterized using clone library analysis. Vertical and horizontal changes in sediment n-damo bacterial abundance occurred in Gaozhou Reservoir, with 1.37 × 10 5 to 8.24 × 10 5 n-damo 16S rRNA gene copies per gram of dry sediment. Considerable horizontal and vertical variations of n-damo pmoA gene diversity (Shannon index = 0.32-2.50) and composition also occurred in this reservoir. Various types of sediment n-damo pmoA genes existed in Gaozhou Reservoir. A small proportion of n-damo pmoA gene sequences (19.1%) were related to those recovered from "Candidatus Methylomirabilis oxyfera". Our results suggested that sediment n-damo pmoA gene diversity might be regulated by nitrite, while n-damo pmoA gene richness might be governed by multiple environmental factors, including total organic carbon, total phosphorus, nitrite, and total nitrogen.

  10. Inland Waters and the North American Carbon Cycle

    Science.gov (United States)

    Butman, D. E.; Striegl, R. G.; Stackpoole, S. M.; del Giorgio, P.; Prairie, Y.; Pilcher, D.; Raymond, P. A.; Alcocer, J.; Paz, F.

    2016-12-01

    Inland aquatic ecosystems process, store, and release carbon to the atmosphere and coastal margins. The form of this carbon is a function of terrestrial and aquatic primary and secondary production, the weathering of materials in soils and subsurface environments, the hydrologic controls on the movement of carbon from land to inland waters, and the connectivity between streams, rivers, lakes, reservoirs and groundwater. The 2007 1st State of the Carbon Cycle reported fluxes for the continental United States (CONUS) only. Streams and rivers exported 30-40 Tg C yr-1 to coastal environments, and 17-25 Tg C yr-1 were buried in lake and reservoir sediments. Remarkably, the 2007 report did not quantify gas emissions, which represent over half of the total carbon fluxes through inland water in the US. Current research has shown that 71-149 Tg C yr-1 exits freshwater systems either through atmospheric emissions of carbon dioxide or as inorganic and organic carbon fluxes to the coast from the CONUS. These estimates did not include the Laurentian Great Lakes. Variation in the magnitude of these fluxes across regions of the CONUS has been linked to differences in precipitation and terrestrial net ecosystem production. Similar comprehensive assessments have not been done for Canada or Mexico. Here we provide, as part of the 2nd State of the Carbon Cycle report, estimates for the river coastal export and vertical emissions of carbon from inland waters of North America, and report major data gaps, and weaknesses in methodologies. These findings stress that strong international partnerships are needed to improve assessment, monitoring, and modeling of human impacts on the magnitude and timing of aquatic fluxes in the future.

  11. Microbial carbon pump and its significance for carbon sequestration in soils

    Science.gov (United States)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  12. Paragenetic evolution of reservoir facies, Middle Triassic Halfway Formation, PeeJay Field, northeastern British Columbia: controls on reservoir quality

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. L. [Alberta Univ., Dept. of Earth and Atmospheric Sciences, Edmonton, AB (Canada); Moslow, T. F. [Ulster Petroleum Ltd., Calgary, AB (Canada)

    1998-09-01

    Because of the obvious importance of reservoir quality to reservoir performance, diagenetic controls on reservoir quality of Middle Triassic reservoir facies are investigated by comparing two reservoir lithofacies. The implications of porosity structure on the efficiency of primary and secondary hydrocarbon recovery are also assessed. Halfway reservoir facies are composed of bioclastic grainstones (lithofacies G) and litharenites/sublitharenites (lithofacies H), both of which are interpreted as tidal inlet fills. Although paragenetic evolution was similar for the two reservoir facies, subtle differences in reservoir quality are discernible. These are controlled by sedimentary structures, porosity type, grain constituents, and degree of cementation. Reservoir quality in lithofacies G is a function of connectivity of the pore network. In lithofacies H, secondary granular porosity creates a more homogeneous interconnected pore system, wide pore throats and low aspect ratios. The high porosity and low permeability values of the bioclastic grainstones are suspected to cause inefficient flushing of hydrocarbons during waterflooding. However, it is suggested that recovery may be enhanced by induced hydraulic fracturing and acidization of lower permeability calcareous cemented zones. 52 refs., 15 figs.

  13. Porous media investigation before and after hydrochloric acid injection on a pre-salt carbonate coquinas sample.

    Science.gov (United States)

    Machado, A C; Teles, A P; Pepin, A; Bize-Forest, N; Lima, I; Lopes, R T

    2016-04-01

    Porous space characterization of carbonate rocks is an important aid in petroleum exploration from carbonate reservoir. In this study, X-ray microtomography technique was applied to evaluate total porosity of a coquina sample extracted from pre-salt reservoir, in Brazil, before and after acid injection. Two image processing program were used in order to assess performance. The results showed that microtomography has potential to compute porosity of coquina samples and provides information about rock porous network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  15. RAPID Assessment of Extreme Reservoir Sedimentation Resulting from the September 2013 Flood, North St. Vrain Creek, CO

    Science.gov (United States)

    Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.

    2014-12-01

    During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about

  16. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt

    Science.gov (United States)

    Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.

    2018-02-01

    3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.

  17. Deriving Area-storage Curves of Global Reservoirs

    Science.gov (United States)

    Mu, M.; Tang, Q.

    2017-12-01

    Basic information including capacity, dam height, and largest water area on global reservoirs and dams is well documented in databases such as GRanD (Global Reservoirs and Dams), ICOLD (International Commission on Large Dams). However, though playing a critical role in estimating reservoir storage variations from remote sensing or hydrological models, area-storage (or elevation-storage) curves of reservoirs are not publicly shared. In this paper, we combine Landsat surface water extent, 1 arc-minute global relief model (ETOPO1) and GRanD database to derive area-storage curves of global reservoirs whose area is larger than 1 km2 (6,000 more reservoirs are included). First, the coverage polygon of each reservoir in GRanD is extended to where water was detected by Landsat during 1985-2015. Second, elevation of each pixel in the reservoir is extracted from resampled 30-meter ETOPO1, and then relative depth and frequency of each depth value is calculated. Third, cumulative storage is calculated with increasing water area by every one percent of reservoir coverage area and then the uncalibrated area-storage curve is obtained. Finally, the area-storage curve is linearly calibrated by the ratio of calculated capacity over reported capacity in GRanD. The derived curves are compared with in-situ reservoir data collected in Great Plains Region in US, and the results show that in-situ records are well captured by the derived curves even in relative small reservoirs (several square kilometers). The new derived area-storage curves have the potential to be employed in global monitoring or modelling of reservoirs storage and area variations.

  18. Economics of Developing Hot Stratigraphic Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  19. Estimating Western U.S. Reservoir Sedimentation

    Science.gov (United States)

    Bensching, L.; Livneh, B.; Greimann, B. P.

    2017-12-01

    Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.

  20. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    Science.gov (United States)

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  1. Emissions from hydroelectric reservoirs and comparison of hydroelectricity, natural gas and oil

    International Nuclear Information System (INIS)

    Gagnon, L.; Chamberland, A.

    1993-01-01

    When reservoirs are created, a small fraction of the flooded organic matter decomposes into humic acids, carbon dioxide (CO 2 ), methane (CH 4 ), nitrogen, phosphorus, and other elements. The major greenhouse gases produced are CO 2 and CH 4 . For northern projects, Canadian studies on emissions from hydroelectric reservoirs have reached similar conclusions: Emissions, including methane, are less than 35 kg CO 2 equivalent per MWh. Using a typical project in northern Quebec as the basis for analysis, none of the studies dispute the considerable advantages of hydroelectricity regarding greenhouse gas emissions. Taking into account all components of energy systems, emissions of greenhouse gases from natural-gas power plants are 24 to 26 times greater than emissions from hydroelectric plants. The Freshwater Institute, in an article published in Ambio suggests that emissions from hydroelectric plants could be a significant source of greenhouse gases. This conclusion does not apply to most hydroelectric projects for two reasons: First, the Freshwater Institute's studies concerned flooded peatlands and shallow reservoirs that are not typical of most hydro projects; and second, the Institute analyzed a hydro project with a ratio of flooded area to energy production that is 6 to 10 times higher than typical projects in Canada. 7 refs, 4 tabs

  2. Encapsulated microsensors for reservoir interrogation

    Science.gov (United States)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  3. Thermodynamic analysis of a compressed carbon dioxide energy storage system using two saline aquifers at different depths as storage reservoirs

    International Nuclear Information System (INIS)

    Liu, Hui; He, Qing; Borgia, Andrea; Pan, Lehua; Oldenburg, Curtis M.

    2016-01-01

    Highlights: • A compressed CO_2 energy storage system using two storage reservoirs is presented. • Compressed CO_2 energy storage density is higher than that of CAES. • The effects of storage reservoir pressure on the system performance are studied. - Abstract: Compressed air energy storage (CAES) is one of the leading large-scale energy storage technologies. However, low thermal efficiency and low energy storage density restrict its application. To improve the energy storage density, we propose a two-reservoir compressed CO_2 energy storage system. We present here thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO_2 energy storage system under supercritical and transcritical conditions using a steady-state mathematical model. Results show that the transcritical compressed CO_2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO_2 energy storage. However, the configuration of supercritical compressed CO_2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of CAES, which is advantageous in terms of storage volume for a given power rating.

  4. CO/sub 2/ carbon cycle and climate interactions

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Maier-Reimer, E; Degens, E T; Kempe, S; Spitzy, A

    1984-03-01

    Past and expected emissions of anthropogenic CO/sub 2/ stimulate carbon cycle and climate research. Prognoses of future CO/sub 2/ levels depend on energy scenarios and on the reaction of the biosphere and hydrosphere to elevated atmospheric CO/sub 2/ concentrations. The reaction of the reservoirs vegetation, freshwater and oceans to disturbances of the carbon cycle is reviewed. For the oceans first results of a simple carbon cycle model implanted in a three-dimensional general circulation model are presented. This model allows experiments not possible with previous box models.

  5. Assessing reservoir performance risk in CO{sub 2} storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, A.R. [URS Corp., San Francisco, CA (United States); Rigg, A. [CRC for Greenhouse Gas Technologies, Canberra (Australia)

    2005-07-01

    One of the main issues for researchers involved with geological storage of carbon dioxide (CO{sub 2}) has been the development of a proper methodology to assess and compare alternative CO{sub 2} injection projects on the basis of risk. Consideration needs to be given to technical aspects, such as the risk of leakage and the effectiveness of the intended reservoir, as well as less tangible aspects such as the value and safety of geological storage of CO{sub 2}, and potential impacts on the community and environment. The Geological Disposal of Carbon Dioxide (GEODISC), was a research program of the Australian Petroleum Cooperative Research Centre which identified 56 potential environmentally sustainable sites for CO{sub 2} injection (ESSCIs) within Australia. Several studies were carried out, involving detailed evaluation of the suitability of 4 selected sites, including Dongara, Petrel, Gippsland and Carnarvon. The GEODISC program included a risk assessment research module which required a complete and quantified risk assessment of CO{sub 2} injection as a storage option. Primary goals were to assess the risk of leakage, to assess the effectiveness of the intended reservoir, and to assess negative consequences to facilitate comparison of alternative sites. This paper discussed the background and risk assessment model. Key performance indicators (KPIs) were also developed to address the purpose of risk assessment. It was concluded that the RISQUE method is an appropriate approach and that potential injection projects can be measured against six KPIs including containment; effectiveness; self-funding potential; wider community benefits; community safety and community amenity. 6 refs., 3 tabs., 3 figs.

  6. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins. Part 1. Evaluation of Phase 2 CO2 Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2. Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Bowersox, Richard [Univ. of Illinois, Champaign, IL (United States); Hickman, John [Univ. of Illinois, Champaign, IL (United States); Leetaru, Hannes [Univ. of Illinois, Champaign, IL (United States)

    2012-12-20

    Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO2 in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO2 storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO2 were present in the deep subsurface. Injection testing with brine and CO2 was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole – including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite – at 1152–2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO2 was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter.

  7. Massachusetts reservoir simulation tool—User’s manual

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  8. Developments and innovation in carbon dioxide (CO{sub 2}) capture and storage technology. Volume 2: Carbon dioxide (CO{sub 2}) storage and utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Mercedes Maroto-Valer, M. (ed.)

    2010-07-01

    This volume initially reviews geological sequestration of CO{sub 2}, from saline aquifer sequestration to oil and gas reservoir and coal bed storage, including coverage of reservoir sealing, and monitoring and modelling techniques used to verify geological sequestration of CO{sub 2}. Terrestrial and ocean sequestration are also reviewed, along with the environmental impact and performance assessments for these routes. The final section reviews advanced concepts for CO{sub 2} storage and utilization, such as industrial utilization, biofixation, mineral carbonation and photocatalytic reduction.

  9. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Hong-Yi; Leung, Lai-Yung; Yigzaw, Wondmagegn Y.; Zhao, Jianshi; Lu, Hui; Deng, Zhiqun; Demissie, Yonas; Bloschl, Gunter

    2017-10-01

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximum flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.

  10. Carbon Sequestration Potential in Mesozoic Rift Basins Offshore the US East Coast: Teaching Old Seismic Data New Tricks

    Science.gov (United States)

    Fortin, W.; Goldberg, D.; Hutchinson, D. R.; Slagle, A. L.

    2017-12-01

    Motivated by rising atmospheric CO2 levels and recent developments in sequestration and seismic processing technologies, studies addressing the feasibility of offshore carbon sequestration are ongoing. The subsurface off the US east coast offers a few potential storage reservoirs including sedimentary layers as well as buried Mesozoic rift basins. Marine seismic reflection data first identified these features in the 1970s and are now being revisited as potential sequestration reservoirs. The rift basins are of particular interest as storage reservoirs for CO2 in light of recent work showing the efficacy of mineralizing injected carbon in basaltic formations. The use of these data presents unique challenges, particularly due to their vintage. However, new data processing capabilities and seismic prestack waveform inversion techniques elevate the potential of the legacy data. Using state of the art processing techniques we identify previously un-imaged rift basins off the US east coast between Delaware and Massachusetts and update mapping related to the areal and volumetric extent of basaltic fill. Applying prestack waveform inversion to the reprocessed seismic data, we show that each rift basin has different basaltic properties and thereby distinct utilities as carbon storage reservoirs.

  11. The upland flooding experiment : assessing the impact of reservoir creation on the biogeochemical cycling of mercury in boreal forest uplands

    Energy Technology Data Exchange (ETDEWEB)

    Rolfhus, K.R. [Wisconsin Univ., Madison, WI (United States). Water Chemistry Program; Bodaly, R.A.; Fudge, R.J.P.; Huebert, D.; Paterson, M.J. [Department of Fisheries and Oceans, Ottawa, ON (Canada) Fresh Water Inst.; Hall, B.D.; St Louis, V.L. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Krabbenhoft, D.P. [U.S. Geological Survey (United States); Hurley, J.P. [Wisconsin Univ., Madison, WI (United States). Water Resources Inst.; Peech, K. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Entomology

    2000-07-01

    One of the major environmental problems associated with boreal hydroelectric reservoirs such as those found in Canada and other northern countries is the elevated concentrations of mercury (Hg) in fish. A flooding experiment was conducted in northern Ontario to study methyl mercury (MeHg) production/bioaccumulation and greenhouse gas dynamics in impoundments with flooded upland forests of different soil carbon content, moisture and vegetation. The study, entitled Upland Flooding Experiment (FLUDEX) took place in June 1999 at the Experimental Lakes Area (ELA) where three impoundments of 0.7 ha were flooded to a depth of 1 m using oligotrophic lake water. The hydraulic residence time was 10-14 days. Responses to flooding were compared among treatment reservoirs and to previously flooded wetlands. The study included researchers from Canada and the United States who characterized mercury species fluxes from soils, the overall reservoir mass balance for total Hg and MeHg, inorganic Hg and MeHg concentration in zooplankton, benthic invertebrates, emerging insects and fish. Carbon decomposition was also examined. Preliminary results, one year after inundation, show significantly high levels of MeHg concentration compared to the feed water and that of surrounding natural lakes. Outflow samples from the dry forest areas showed the highest concentrations of Hg and MeHg, with lower concentrations from the moist forest. The lowest levels were observed from the outflow from the driest forest reservoir. A rapid pulse of inorganic Hg appears to have been released during the first 2 weeks of flooding. Soil leaching was found to be the main mechanism or inorganic Hg supply while MeHg appears to have been supplied by in situ microbial methylation. It was also shown that forage fish introduced into the reservoir had significantly elevated concentrations of MeHg compared to fish in natural lakes.

  12. Reservoir characteristics and control factors of Carboniferous volcanic gas reservoirs in the Dixi area of Junggar Basin, China

    Directory of Open Access Journals (Sweden)

    Ji'an Shi

    2017-02-01

    Full Text Available Field outcrop observation, drilling core description, thin-section analysis, SEM analysis, and geochemistry, indicate that Dixi area of Carboniferous volcanic rock gas reservoir belongs to the volcanic rock oil reservoir of the authigenic gas reservoir. The source rocks make contact with volcanic rock reservoir directly or by fault, and having the characteristics of near source accumulation. The volcanic rock reservoir rocks mainly consist of acidic rhyolite and dacite, intermediate andesite, basic basalt and volcanic breccia: (1 Acidic rhyolite and dacite reservoirs are developed in the middle-lower part of the structure, have suffered strong denudation effect, and the secondary pores have formed in the weathering and tectonic burial stages, but primary pores are not developed within the early diagenesis stage. Average porosity is only at 8%, and the maximum porosity is at 13.5%, with oil and gas accumulation showing poor performance. (2 Intermediate andesite and basic basalt reservoirs are mainly distributed near the crater, which resembles the size of and suggests a volcanic eruption. Primary pores are formed in the early diagenetic stage, secondary pores developed in weathering and erosion transformation stage, and secondary fractures formed in the tectonic burial stage. The average porosity is at 9.2%, and the maximum porosity is at 21.9%: it is of the high-quality reservoir types in Dixi area. (3 The volcanic breccia reservoir has the same diagenetic features with sedimentary rocks, but also has the same mineral composition with volcanic rock; rigid components can keep the primary porosity without being affected by compaction during the burial process. At the same time, the brittleness of volcanic breccia reservoir makes it easily fracture under the stress; internal fracture was developmental. Volcanic breccia developed in the structural high part and suffered a long-term leaching effect. The original pore-fracture combination also made

  13. Reservoir Engineering Optimization Strategies for Subsurface CO{sub 2} Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mclntire, Blayde; McPherson, Brian

    2013-09-30

    The purpose of this report is to outline a methodology for calculating the optimum number of injection wells for geologic CCS. The methodology is intended primarily for reservoir pressure management, and factors in cost as well. Efficiency may come in many forms depending on project goals; therefore, various results are presented simultaneously. The developed methodology is illustrated via application in a case study of the Rocky Mountain Carbon Capture and Storage (RMCCS) project, including a CCS candidate site near Craig, Colorado, USA. The forecasting method provided reasonable estimates of cost and injection volume when compared to simulated results.

  14. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the

  15. Citrus stand ages regulate the fraction alteration of soil organic carbon under a citrus/Stropharua rugodo-annulata intercropping system in the Three Gorges Reservoir area, China.

    Science.gov (United States)

    Zhang, Yang; Ni, Jiupai; Yang, John; Zhang, Tong; Xie, Deti

    2017-08-01

    Soil carbon fractionation is a valuable indicator in assessing stabilization of soil organic matter and soil quality. However, limited studies have addressed how different vegetation stand ages under intercropping agroforestry systems, could affect organic carbon (OC) accumulation in bulk soil and its physical fractions. A field study thus investigated the impact of citrus plantation age (15-, 25-, and 45-year citrus) on the bulk soil organic carbon (SOC) and SOC fractions and yields of Stropharia rugoso-annulata (SRA) in the Three Gorges Reservoir area, Chongqing, China. Results indicated that the intercropping practice of SRA with citrus significantly increased the SOC by 57.4-61.6% in topsoil (0-10 cm) and by 24.8-39.9% in subsoil (10-30 cm). With a significantly higher enhancement under the 25-year citrus stand than the other two stands, all these citrus stands of three ages also resulted in a significant increase of free particulate OC (fPOC, 60.1-62.4% in topsoil and 34.8-46.7% in subsoil), intra-micro aggregate particulate OC (iPOC, 167.6-206.0% in topsoil and 2.77-61.09% in subsoil), and mineral-associated OC (MOC, 43.6-46.5% in topsoil and 26.0-51.5% in subsoil). However, there were no significant differences in yields of SRA under three citrus stands. Our results demonstrated that citrus stand ages did play an important role in soil carbon sequestration and fractionation under a citrus/SRA intercropping system, which could therefore provide a sustainable agroforestry system to enhance concurrently the SOC accumulation while mitigating farmland CO 2 emission.

  16. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly progress report, June 13, 1995--September 12, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.K.

    1995-09-12

    At this stage of the reservoir characterization research, the main emphasis is on the geostatistics and reservoir simulation. Progress is reported on geological analysis, reservoir simulation, and reservoir management.

  17. The Coupling Effect of Rainfall and Reservoir Water Level Decline on the Baijiabao Landslide in the Three Gorges Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Nenghao Zhao

    2017-01-01

    Full Text Available Rainfall and reservoir level fluctuation are two of the main factors contributing to reservoir landslides. However, in China’s Three Gorges Reservoir Area, when the reservoir water level fluctuates significantly, it comes at a time of abundant rainfall, which makes it difficult to distinguish which factor dominates the deformation of the landslide. This study focuses on how rainfall and reservoir water level decline affect the seepage and displacement field of Baijiabao landslide spatially and temporally during drawdown of reservoir water level in the Three Gorges Reservoir Area, thus exploring its movement mechanism. The monitoring data of the landslide in the past 10 years were analyzed, and the correlation between rainfall, reservoir water level decline, and landslide displacement was clarified. By the numerical simulation method, the deformation evolution mechanism of this landslide during drawdown of reservoir water level was revealed, respectively, under three conditions, namely, rainfall, reservoir water level decline, and coupling of the above two conditions. The results showed that the deformation of the Baijiabao landslide was the coupling effect of rainfall and reservoir water level decline, while the latter effect is more pronounced.

  18. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin

    Energy Technology Data Exchange (ETDEWEB)

    Rebscher, Dorothee; Oldenburg, Curtis M.

    2005-10-12

    Geologic carbon dioxide storage is one strategy for reducingCO2 emissions into the atmosphere. Depleted natural gas reservoirs are anobvious target for CO2 storage due to their proven record of gascontainment. Germany has both large industrial sources of CO2 anddepleting gas reservoirs. The purpose of this report is to describe theanalysis and modeling performed to investigate the feasibility ofinjecting CO2 into nearly depleted gas reservoirs in the Altmark area inNorth Germany for geologic CO2 storage with enhanced gasrecovery.

  19. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  20. Thermo-Compositional Evolution of a Brine Reservoir Beneath Ceres' Occator Crater and Implications for Cryovolcanism at the Surface

    Science.gov (United States)

    Quick, L. C.

    2017-12-01

    The Dawn spacecraft has imaged several putative cryovolcanic features on Ceres (Buczkowski et al., 2016; Ruesch et al., 2016), and several lines of evidence point to past cryovolcanic activity at Occator crater (De Sanctis et al., 2016; Krohn et al., 2016; Buczkowski et al., 2017; Nathues et al., 2017; Ruesch et al., 2017; Zolotov, 2017). Hence it is possible that cryovolcanism played a key role in delivering carbonate and/or chloride brines to Ceres' surface in the past. As any cryolavas delivered to the surface would have issued from a briny subsurface reservoir, or, cryomagma chamber, it is necessary to consider the thermal and compositional evolution of such a reservoir. The detection of a 200 km x 200 km negative Bouguer anomaly beneath Occator suggests the presence of a low-density region beneath the crater (Ermakov et al., 2017). If this region is a residual cryomagma chamber, excess pressures caused by its gradual freezing, or stresses produced by the Occator-forming impact, could have once facilitated the delivery of cryolavas to the Cerean surface. I have investigated the progressive solidification of a cryomagma chamber beneath Occator and implications for the changing compositions of cryolavas on Ceres. I will present the results of this study as well as discuss the dynamics and heat transfer associated with cryomagmatic ascent to the surface. Preliminary results suggest that a 200 km wide cryomagma chamber situated beneath Ceres' crust would take approximately 1 Gyr to completely crystallize. However, such a reservoir would be depleted in chloride and carbonate salts after only 54 Myr of cooling. If the reservoir contained NH3-bearing fluids, eruptions could proceed for another 100 Myr before increased reservoir crystallization rendered cryomagmatic fluids completely immobile. In addition, it is likely that cryomagmas delivered to Ceres' surface had viscosities < 108 Pa s, and were delivered in fractures with propagation speeds ≥ 10-5 m/s. I will

  1. Study of the reactive processes during CO2 injection into sedimentary reservoirs: Experimental quantification of the processes at meso-scale

    International Nuclear Information System (INIS)

    Luquot, L.

    2008-11-01

    In order to minimize CO 2 atmospheric concentration, a solution consists in sequestrating CO 2 in geological reservoirs. To estimate long term risks, it is necessary to quantify the couplings between reaction processes as well as structural and hydrodynamical modifications. We realised two experimental benches enabling injecting CO 2 -enriched-brine in conditions corresponding to in situ storage (T ≤ 200 C and P ≤ 200 bar) and developed an experimental protocol using X-Ray microtomography and fluid and rock analyses in order to measure the variations of physical and chemical parameters. The study of carbonated reservoirs near the injection well, allows quantifying different k-phi relationships depending on the dissolution processes and triggered by the local fluid chemical composition and initials conditions. Away from the injection well, we observe carbonate precipitation decreasing the permeability. The study of fractured cap-rock samples shows that alternative percolation of CO 2 -enriched-brine and CO 2 gas increases the fracture permeability. The study of silicated rocks indicates carbonate precipitation in zeolite sandstone and sintered dunite grains. Nevertheless, in zeolite sandstone we also observe the precipitation of clay particles located in the fluid pathways which decrease strongly the permeability. (author)

  2. Comparison of fluid geochemistry and microbiology of multiple organic-rich reservoirs in the Illinois Basin, USA: Evidence for controls on methanogenesis and microbial transport

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, M.E.; McIntosh, J.C.; Bates, B.L.; Kirk, M.F.; Martini, A.M. [University of Arizona, Tucson, AZ (United States)

    2011-04-01

    The Illinois Basin, USA, is an ideal location to investigate hydrogeochemical factors controlling methanogenesis as microbial methane accumulations occur: (1) in three organic-rich reservoirs of different geologic ages and organic matter types - Upper Devonian New Albany Shale (up to 900 m depth), Pennsylvanian coals (up to 600 m depth), and Quaternary glacial sediments (shallow aquifers); (2) across steep salinity gradients; and (3) with variable concentrations of SO{sub 4}{sup 2-}. For all three organic-rich reservoirs aqueous geochemical conditions are favorable for microbial methanogenesis, with near neutral pH, SO{sub 4}{sup 2-} concentrations {gt}2 mM, and Cl{sup -} concentrations {lt}3 M. Also, carbon isotopic fractionation of CH{sub 4}, CO{sub 2}, and DIC is consistent with microbial methanogenesis, and increased carbon isotopic fractionation with average reservoir depth corresponds to a decrease of groundwater flushing rates with average depth of reservoir. Plots of stable isotopes of water and Cl{sup -} show mixing between a brine endmember and freshwater, suggesting that meteoric groundwater recharge has affected all microbial methanogenic systems. Additionally, similar methanogenic communities are present in all three reservoirs with comparable cell counts (8.69E3-2.58E6 cells/mL). TRFLP results show low numbers of archaea species with only two dominant groups of base pairs in coals, shale, and limestone aquifers. These results compare favorably with other methanogen-containing deep subsurface environments. The matching of variations between methanogenic TRFLP data and conservative tracers suggests that deep circulation of meteoric waters influenced archaeal communities in the Illinois Basin.

  3. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    Science.gov (United States)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    the quantification of those microorganisms as well as the determination of microbial activity was not yet possible. Microbial monitoring methods have to be further developed to study microbial activities under these extreme conditions to access their influence on the EGR technique and on enhancing the long term safety of the process by fixation of carbon dioxide by precipitation of carbonates. We would like to thank GDF SUEZ for providing the data for the Rotliegend reservoir, sample material and enabling sampling campaigns. The CLEAN project is funded by the German Federal Ministry of Education and Research (BMBF) in the frame of the Geotechnologien Program.

  4. Mathematical and field analysis of longitudinal reservoir infill

    Science.gov (United States)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  5. Global Carbon Cycle of the Precambrian Earth

    DEFF Research Database (Denmark)

    Wiewióra, Justyna

    The carbon isotopic composition of distinct Archaean geological records provides information about the global carbon cycle and emergence of life on early Earth. We utilized carbon isotopic records of Greenlandic carbonatites, diamonds, graphites, marbles, metacarbonates and ultramafic rocks...... in the surface environment and recycled back into the mantle In the third manuscript we investigate the carbon cycle components, which have maintained the carbon isotope composition of the mantle constant through time. Assuming constant organic ratio of the total carbon burial (f), we show that increased.......1‰) and metacarbonate ( -6.1 ± 0.1‰ to +1.5 ± 0.0‰) rocks from the ~3.8 Ga Isua Supracrustal Belt as resulting from the Rayleigh distillation process, which affected the ultramafic reservoir with initial δ13C between -2‰ and 0‰. Due to its high primary δ13C signature, carbon in the Isuan magnesite was most likely...

  6. High resolution carbon isotope of Crassostrea cuttakensis: A proxy for seasonally varying carbon dynamics in a tropical delta-estuary system

    Science.gov (United States)

    Sreemany, Arpita

    2017-04-01

    The exponential increase in the atmospheric CO2 concentration and global temperature is becoming a major threat to the existence of the mankind. It has been proposed that the ˜2 ˚ C rise in the average global temperature may lead to a point of no-return where the balance between the climate and the ecosystem collapses. Therefore, detailed understanding of the major carbon reservoirs and their mutual interactions is needed for better future climate prediction. Among all the reservoirs, ocean holds ˜90 % of the exogenic carbon and promotes long term storage in sediments. However, the majority of the sedimentary carbon is of terrestrial origin and transported through rivers, which play an important role in carbon exchange between the atmosphere, terrestrial biosphere, and oceans. The transportation of organic carbon through river does not follow a simple conveyer belt model. Various organic and inorganic reactions (i.e., organic carbon degradation, inorganic carbon precipitation, primary production, community respiration) modify the state of the carbon to form a major sub-reservoir in the river, i.e., Dissolved Inorganic Carbon (DIC). So, identifying the source/s of the DIC is crucial to understand the carbon dynamics in the river. Stable carbon isotopic composition of the DIC (δ13CDIC) has long been extensively used to reveal the dominant source/s of the DIC. The majority of the large rivers, being situated in the tropical belts, show seasonal fluctuation in the DIC sources. However, seasonal sampling in the remotest reaches of these rivers hindered our thorough understanding of the seasonally varying source/s of DIC in these rivers. Many calcifying organisms precipitate their shell carbonate in equilibrium with water and hence likely to record the δ13CDICof ambient water in their shell. In this study, a living oyster (Crassostrea cuttakensis) was collected from Matla River, which is part of the Ganges Brahmaputra river delta system, and analyzed for its stable

  7. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    Science.gov (United States)

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  8. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  9. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Science.gov (United States)

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  10. Monitoring Reservoirs Using MERIS And LANDSAT Fused Images : A Case Study Of Polyfitos Reservoir - West Macedonia - Greece

    Science.gov (United States)

    Stefouli, M.; Charou, E.; Vasileiou, E.; Stathopoulos, N.; Perrakis, A.

    2012-04-01

    Research and monitoring is essential to assess baseline conditions in reservoirs and their watershed and provide necessary information to guide decision-makers. Erosion and degradation of mountainous areas can lead to gradual aggradation of reservoirs reducing their lifetime. Collected measurements and observations have to be communicated to the managers of the reservoirs so as to achieve a common / comprehensive management of a large watershed and reservoir system. At this point Remote Sensing could help as the remotely sensed data are repeatedly and readily available to the end users. Aliakmon is the longest river in Greece, it's length is about 297 km and the surface of the river basin is 9.210 km2.The flow of the river starts from Northwest of Greece and ends in Thermaikos Gulf. The riverbed is not natural throughout the entire route, because constructed dams restrict water and create artificial lakes, such as lake of Polyfitos, that prevent flooding. This lake is used as reservoir, for covering irrigational water needs and the water is used to produce energy from the hydroelectric plant of Public Power Corporation-PPC. The catchment basin of Polyfitos' reservoir covers an area of 847.76 km2. Soil erosion - degradation in the mountainous watershed of streams of Polyfitos reservoir is taking place. It has been estimated that an annual volume of sediments reaching the reservoir is of the order of 244 m3. Geomatic based techniques are used in processing multiple data of the study area. A data inventory was formulated after the acquisition of topographic maps, compilation of geological and hydro-geological maps, compilation of digital elevation model for the area of interest based on satellite data and available maps. It also includes the acquisition of various hydro-meteorological data when available. On the basis of available maps and satellite data, digital elevation models are used in order to delineate the basic sub-catchments of the Polyfytos basin as well as

  11. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Matthias G. Imhof; James W. Castle

    2005-02-01

    The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

  12. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  13. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  14. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  16. An environmental data base for all Hydro-Quebec reservoirs

    International Nuclear Information System (INIS)

    Demers, C.

    1988-01-01

    Hydro-Quebec has created two management positions specifically for reservoirs, namely Reservoir Ecology Advisor and Reservoir Management Advisor. To assist management decisions, a means was required of bringing together all existing environmental information for each reservoir operated by Hydro-Quebec, including storage reservoirs, auxiliary reservoirs and forebays. A relational database using Reflex software was developed on a network of Macintosh computers. The database contains five blocks of information: general information, and physical, physiochemical, biologic and socioeconomic characteristics for each reservoir. Data will be collected on over 100 sites, and the tool will form the basis for developing a medium-range study program on reservoir ecology. The program must take into account the physical, biological and socioeconomic aspects of the environment, as well as the concerns of management personnel operating the reservoirs, the local population, reservoir users, and various government departments. 2 figs

  17. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens; Hoteit, Ibrahim

    2014-01-01

    process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase

  18. Ecological operation for Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Wen-xian Guo

    2011-06-01

    Full Text Available The traditional operation of the Three Gorges Reservoir has mainly focused on water for flood control, power generation, navigation, water supply, and recreation, and given less attention to the negative impacts of reservoir operation on the river ecosystem. In order to reduce the negative influence of reservoir operation, ecological operation of the reservoir should be studied with a focus on maintaining a healthy river ecosystem. This study considered ecological operation targets, including maintaining the river environmental flow and protecting the spawning and reproduction of the Chinese sturgeon and four major Chinese carps. Using flow data from 1900 to 2006 at the Yichang gauging station as the control station data for the Yangtze River, the minimal and optimal river environmental flows were analyzed, and eco-hydrological targets for the Chinese sturgeon and four major Chinese carps in the Yangtze River were calculated. This paper proposes a reservoir ecological operation model, which comprehensively considers flood control, power generation, navigation, and the ecological environment. Three typical periods, wet, normal, and dry years, were selected, and the particle swarm optimization algorithm was used to analyze the model. The results show that ecological operation modes have different effects on the economic benefit of the hydropower station, and the reservoir ecological operation model can simulate the flood pulse for the requirements of spawning of the Chinese sturgeon and four major Chinese carps. According to the results, by adopting a suitable re-operation scheme, the hydropower benefit of the reservoir will not decrease dramatically while the ecological demand is met. The results provide a reference for designing reasonable operation schemes for the Three Gorges Reservoir.

  19. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    Science.gov (United States)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an

  20. Functional age as an indicator of reservoir senescence

    Science.gov (United States)

    Miranda, Leandro E.; Krogman, R. M.

    2015-01-01

    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  1. RECENT ADVANCES IN NATURALLY FRACTURED RESERVOIR MODELING

    OpenAIRE

    ORDOÑEZ, A; PEÑUELA, G; IDROBO, E. A; MEDINA, C. E

    2001-01-01

    Large amounts of oil reserves are contained in naturally fractured reservoirs. Most of these hydrocarbon volumes have been left behind because of the poor knowledge and/or description methodology of those reservoirs. This lack of knowledge has lead to the nonexistence of good quantitative models for this complicated type of reservoirs. The complexity of naturally fractured reservoirs causes the need for integration of all existing information at all scales (drilling, well logging, seismic, we...

  2. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  3. Freshwater Algal Bloom Prediction by Support Vector Machine in Macau Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie

    2012-01-01

    Full Text Available Understanding and predicting dynamic change of algae population in freshwater reservoirs is particularly important, as algae-releasing cyanotoxins are carcinogens that would affect the health of public. However, the high complex nonlinearity of water variables and their interactions makes it difficult to model the growth of algae species. Recently, support vector machine (SVM was reported to have advantages of only requiring a small amount of samples, high degree of prediction accuracy, and long prediction period to solve the nonlinear problems. In this study, the SVM-based prediction and forecast models for phytoplankton abundance in Macau Storage Reservoir (MSR are proposed, in which the water parameters of pH, SiO2, alkalinity, bicarbonate (HCO3 -, dissolved oxygen (DO, total nitrogen (TN, UV254, turbidity, conductivity, nitrate, total nitrogen (TN, orthophosphate (PO4 3−, total phosphorus (TP, suspended solid (SS and total organic carbon (TOC selected from the correlation analysis of the 23 monthly water variables were included, with 8-year (2001–2008 data for training and the most recent 3 years (2009–2011 for testing. The modeling results showed that the prediction and forecast powers were estimated as approximately 0.76 and 0.86, respectively, showing that the SVM is an effective new way that can be used for monitoring algal bloom in drinking water storage reservoir.

  4. Modeling Highly Buoyant Flows in the Castel Giorgio: Torre Alfina Deep Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Giorgio Volpi

    2018-01-01

    Full Text Available The Castel Giorgio-Torre Alfina (CG-TA, central Italy is a geothermal reservoir whose fluids are hosted in a carbonate formation at temperatures ranging between 120°C and 210°C. Data from deep wells suggest the existence of convective flow. We present the 3D numerical model of the CG-TA to simulate the undisturbed natural geothermal field and investigate the impacts of the exploitation process. The open source finite-element code OpenGeoSys is applied to solve the coupled systems of partial differential equations. The commercial software FEFLOW® is also used as additional numerical constraint. Calculated pressure and temperature have been calibrated against data from geothermal wells. The flow field displays multicellular convective patterns that cover the entire geothermal reservoir. The resulting thermal plumes protrude vertically over 3 km at Darcy velocity of about 7⁎10-8 m/s. The analysis of the exploitation process demonstrated the sustainability of a geothermal doublet for the development of a 5 MW pilot plant. The buoyant circulation within the geothermal system allows the reservoir to sustain a 50-year production at a flow rate of 1050 t/h. The distance of 2 km, between the production and reinjection wells, is sufficient to prevent any thermal breakthrough within the estimated operational lifetime. OGS and FELFOW results are qualitatively very similar with differences in peak velocities and temperatures. The case study provides valuable guidelines for future exploitation of the CG-TA deep geothermal reservoir.

  5. A bibliometric review of nitrogen research in eutrophic lakes and reservoirs.

    Science.gov (United States)

    Yao, Xiaolong; Zhang, Yunlin; Zhang, Lu; Zhou, Yongqiang

    2018-04-01

    The global application of nitrogen is far greater than phosphorus, and it is widely involved in the eutrophication of lakes and reservoirs. We used a bibliometric method to quantitatively and qualitatively evaluate nitrogen research in eutrophic lakes and reservoirs to reveal research developments, current research hotspots, and emerging trends in this area. A total of 2695 articles in the past 25years from the online database of the Scientific Citation Index Expended (SCI-Expanded) were analyzed. Articles in this area increased exponentially from 1991 to 2015. Although the USA was the most productive country over the past 25years, China achieved the top position in terms of yearly publications after 2010. The most active keywords related to nitrogen in the past 25years included phosphorus, nutrients, sediment, chlorophyll-a, carbon, phytoplankton, cyanobacteria, water quality, modeling, and stable isotopes, based on analysis within 5-year intervals from 1991 to 2015 as well as the entire past 25years. In addition, researchers have drawn increasing attention to denitrification, climate change, and internal loading. Future trends in this area should focus on: (1) nutrient amounts, ratios, and major nitrogen sources leading to eutrophication; (2) nitrogen transformation and the bioavailability of different nitrogen forms; (3) nitrogen budget, mass balance model, control, and management; (4) ecosystem responses to nitrogen enrichment and reduction, as well as the relationships between these responses; and (5) interactions between nitrogen and other stressors (e.g., light intensity, carbon, phosphorus, toxic contaminants, climate change, and hydrological variations) in terms of eutrophication. Copyright © 2017. Published by Elsevier B.V.

  6. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  7. Seismic prediction on the favorable efficient development areas of the Longwangmiao Fm gas reservoir in the Gaoshiti–Moxi area, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guangrong Zhang

    2017-05-01

    Full Text Available The Lower Cambrian Longwangmiao Fm gas reservoir in the Gaoshiti–Moxi area, the Sichuan Basin, is a super giant monoblock marine carbonate gas reservoir with its single size being the largest in China. The key to the realization of high and stable production gas wells in this gas reservoir is to identify accurately high-permeability zones where there are dissolved pores or dissolved pores are superimposed with fractures. However, high quality dolomite reservoirs are characterized by large burial depth and strong heterogeneity, so reservoir prediction is of difficult. In this paper, related seismic researches were carried out and supporting technologies were developed as follows. First, a geologic model was built after an analysis of the existing data and forward modeling was carried out to establish a reservoir seismic response model. Second, by virtue of well-oriented amplitude processing technology, spherical diffusion compensation factor was obtained based on VSP well logging data and the true amplitude of seismic data was recovered. Third, the resolution of deep seismic data was improved by using the well-oriented high-resolution frequency-expanding technology and prestack time migration data of high quality was acquired. And fourth, multiple shoal facies reservoirs were traced by using the global automatic seismic interpretation technology which is based on stratigraphic model, multiple reservoirs which are laterally continuous and vertically superimposed could be predicted, and the areal distribution of high quality reservoirs could be described accurately and efficiently. By virtue of the supporting technologies, drilling trajectory is positioned accurately, and the deployed development wells all have high yield. These technologies also promote the construction of a modern supergiant gas field of tens of billions of cubic meters.

  8. Reservoir sedimentation; a literature survey

    NARCIS (Netherlands)

    Sloff, C.J.

    1991-01-01

    A survey of literature is made on reservoir sedimentation, one of the most threatening processes for world-wide reservoir performance. The sedimentation processes, their impacts, and their controlling factors are assessed from a hydraulic engineering point of view with special emphasis on

  9. Configuration of Materially Retained Carbon in Our Society: A WIO-MFA-Based Approach for Japan.

    Science.gov (United States)

    Ohno, Hajime; Sato, Hirokazu; Fukushima, Yasuhiro

    2018-04-03

    To achieve the goals of Paris Agreement, global society is directing much effort in substantially reducing greenhouse gas (GHG) emissions. In addition to energy-related efforts, prevention of carbon release into the atmosphere with carbon capture and storage (CCS) and/or utilization of biomass resources is considered indispensable to achieving the global objective. In this study, considering carbon-containing goods as carbon reservoirs in our society similar to forests and reservoirs enabling CCS, the flow of materially utilized carbon was quantified by input-output-based material flow analysis (IO-MFA). As a result, in 2011, 6.3 Mt-C of petroleum-derived carbon and 7.9 Mt-C of wood-derived carbon were introduced to the Japanese society as end-use products (e.g., automobiles and constructions) in various forms (e.g., plastics and synthetic rubbers). The total amount (14.2 Mt-C) corresponded to 4.1% (52.1 Mt-CO 2 ) of annual CO 2 emission in Japan in 2011. Subsequently, by referring to the technology that can treat carbon in the target forms in end-of-life products, the recoverability of carbon as a material has been discussed with respect to each form and end-use of carbon. By numerically showing the necessity and potential of implementing appropriate technologies, this study provides scientific direction for policymakers to establish a quality carbon cycle in our society.

  10. Carbon isotope chemostratigraphy of the Llandovery in northern peri-Gondwana: new data from the Barrandian area, Czech Republic

    Directory of Open Access Journals (Sweden)

    Jiří Frýda

    2014-12-01

    Full Text Available The first complete δ13Corg record of the uppermost Hirnantian to lower Telychian strata of the Barrandian area (northern peri-Gondwana is presented based on 168 new samples. The new data from the study area reveal that the evolution of the Llandoverian organic carbon isotope reservoir was similar to that on other palaeoplates, but it differs from the development of the coeval carbonate carbon isotope reservoir in the absence of two δ13C excursions (i.e. the early Aeronian positive excursion in the upper part of the Demirastrites triangulatus graptolite Biozone and a negative excursion occurring close to the boundary between the Cystograptus vesiculosus and Coronograptus cyphus graptolite biozones.

  11. Data Compression of Hydrocarbon Reservoir Simulation Grids

    KAUST Repository

    Chavez, Gustavo Ivan

    2015-05-28

    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.

  12. The Alphabet Soup of HIV Reservoir Markers.

    Science.gov (United States)

    Sharaf, Radwa R; Li, Jonathan Z

    2017-04-01

    Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.

  13. Maqalika Reservoir: utilisation and sustainability of Maqalika Reservoir as a source of potable water supply for Maseru in Lesotho

    CSIR Research Space (South Africa)

    Letsie, M

    2008-07-01

    Full Text Available The storage of water in the Maqalika reservoir is gradually decreasing as sediment, carried by the natural catchment run-off, accumulates in the reservoir. Moreover, water pumped into the reservoir from the Caledon River (which is heavily sedimented...

  14. The Potosi Reservoir Model 2013c, Property Modeling Update

    Energy Technology Data Exchange (ETDEWEB)

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from this project as well as two other separately funded projects: the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) project funded through the American Recovery and Reinvestment Act. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the Verification Well #1 (VW1) and the Injection Well (CCS1), structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. The intention was for 2.2 million tons per annum (2 million tonnes per annum [MTPA]) of CO2 to be injected for 20 years. In the Task Error! Reference source not found., the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010") was re-run using a new injection scenario of 3.5 million tons per annum (3.2 MTPA) for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. The models size was insufficient to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 by 30 mi (48 by 48 km), while preserving all

  15. Naturally fractured reservoirs-yet an unsolved mystery

    International Nuclear Information System (INIS)

    Zahoor, M.K.

    2013-01-01

    Some of the world's most profitable reservoirs are assumed to be naturally fractured reservoirs (NFR). Effective evaluation, prediction and planning of these reservoirs require an early recognition of the role of natural fractures and then a comprehensive study of factors which affect the flowing performance through these fractures is necessary. As NFRs are the combination of matrix and fractures mediums so their analysis varies from non-fractured reservoirs. Matrix acts as a storage medium while mostly fluid flow takes place from fracture network. Many authors adopted different approaches to understand the flow behavior in such reservoirs. In this paper a broad review about the previous work done in naturally fractured reservoirs area is outlined and a different idea is initiated for the NFR simulation studies. The role of capillary pressure in natural fractures is always been a key factor for accurate recovery estimations. Also recovery through these reservoirs is dependent upon grid block shape while doing NFR simulation. Some authors studied above mentioned factors in combination with other rock properties to understand the flow behavior in such reservoirs but less emphasis was given for checking the effects on recovery estimations by the variations of only fracture capillary pressures and grid block shapes. So there is need to analyze the behavior of NFR for the mentioned conditions. (author)

  16. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  17. Non-Markovian reservoir-dependent squeezing

    International Nuclear Information System (INIS)

    Paavola, J

    2010-01-01

    The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analysed analytically. Comparison of squeezing dynamics for ohmic, sub-ohmic and super-ohmic environments is done, showing a clear connection between the squeezing-non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.

  18. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf; Saad, Bilal; Negara, Ardiansyah; Sun, Shuyu

    2017-01-01

    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically

  19. Effects of water-supply reservoirs on streamflow in Massachusetts

    Science.gov (United States)

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The

  20. Tenth workshop on geothermal reservoir engineering: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  1. Limno-reservoirs as a new landscape, environmental and touristic resource: Pareja Limno-reservoir as a case of study (Guadalajara, Spain)

    Science.gov (United States)

    Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.

    2012-04-01

    A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.

  2. Get better cased well data with the carbon/oxygen log

    International Nuclear Information System (INIS)

    Fertl, W.H.; Frost, E.

    1982-01-01

    Using case studies from heavy oil environments in the U.S. and Canada, it is shown how the continuous carbon/oxygen log, a type of pulsed neutron log, has proven an effective cased-hole reservoir evaluation and monitoring device. The article is a follow-up to one last month that detailed how the C/O log operates and reviewed case studies of its use in sandstone and carbonate environments

  3. A database and probabilistic assessment methodology for carbon dioxide enhanced oil recovery and associated carbon dioxide retention in the United States

    Science.gov (United States)

    Warwick, Peter D.; Verma, Mahendra K.; Attanasi, Emil; Olea, Ricardo A.; Blondes, Madalyn S.; Freeman, Philip; Brennan, Sean T.; Merrill, Matthew; Jahediesfanjani, Hossein; Roueche, Jacqueline; Lohr, Celeste D.

    2017-01-01

    The U.S. Geological Survey (USGS) has developed an assessment methodology for estimating the potential incremental technically recoverable oil resources resulting from carbon dioxide-enhanced oil recovery (CO2-EOR) in reservoirs with appropriate depth, pressure, and oil composition. The methodology also includes a procedure for estimating the CO2 that remains in the reservoir after the CO2-EOR process is complete. The methodology relies on a reservoir-level database that incorporates commercially available geologic and engineering data. The mathematical calculations of this assessment methodology were tested and produced realistic results for the Permian Basin Horseshoe Atoll, Upper Pennsylvanian-Wolfcampian Play (Texas, USA). The USGS plans to use the new methodology to conduct an assessment of technically recoverable hydrocarbons and associated CO2 sequestration resulting from CO2-EOR in the United States.

  4. Mineralogical controls on porosity and water chemistry during O_2-SO_2-CO_2 reaction of CO_2 storage reservoir and cap-rock core

    International Nuclear Information System (INIS)

    Pearce, Julie K.; Golab, Alexandra; Dawson, Grant K.W.; Knuefing, Lydia; Goodwin, Carley; Golding, Suzanne D.

    2016-01-01

    Reservoir and cap-rock core samples with variable lithology's representative of siliciclastic reservoirs used for CO_2 storage have been characterized and reacted at reservoir conditions with an impure CO_2 stream and low salinity brine. Cores from a target CO_2 storage site in Queensland, Australia were tested. Mineralogical controls on the resulting changes to porosity and water chemistry have been identified. The tested siliciclastic reservoir core samples can be grouped generally into three responses to impure CO_2-brine reaction, dependent on mineralogy. The mineralogically clean quartzose reservoir cores had high porosities, with negligible change after reaction, in resolvable porosity or mineralogy, calculated using X-ray micro computed tomography and QEMSCAN. However, strong brine acidification and a high concentration of dissolved sulphate were generated in experiments owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block pore throats and reduce permeability. The reaction of the impure CO_2-brine with calcite-cemented cap-rock core samples caused the largest porosity changes after reaction through calcite dissolution; to the extent that one sample developed a connection of open pores that extended into the core sub-plug. This has the potential to both favor injectivity but also affect CO_2 migration. The dissolution of calcite caused the buffering of acidity resulting in no significant observable silicate dissolution. Clay-rich cap-rock core samples with minor amounts of carbonate minerals had only small changes after reaction. Created porosity appeared mainly disconnected. Changes were instead associated with decreases in density from Fe-leaching of chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded sandstone and shale core also developed increased porosity parallel to bedding through dissolution of carbonates and reactive silicates in the sandy layers. Tight interbedded cap

  5. Design Techniques and Reservoir Simulation

    Directory of Open Access Journals (Sweden)

    Ahad Fereidooni

    2012-11-01

    Full Text Available Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to the preliminary prediction of the process without any application of numerical simulation. In the current work, seven rock/fluid reservoir properties are considered as screening parameters and those parameters having the most considerable effect on the process are determined using the combination of experimental design techniques and reservoir simulations. Therefore, the statistical significance of the main effects and interactions of screening parameters are analyzed utilizing statistical inference approaches. Finally, the influential parameters are employed to create a simple statistical model which allows the preliminary prediction of nitrogen injection in terms of a recovery factor without resorting to numerical simulations.

  6. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency. A Reservoir Simulation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Okwen, Roland [University of Illinois, Champaign, IL (United States); Frailey, Scott [University of Illinois, Champaign, IL (United States); Leetaru, Hannes [University of Illinois, Champaign, IL (United States); Moulton, Sandy [Illinois State Geological Survey, Champaign, IL (United States)

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef, fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to

  7. The Contemporary Carbon Cycle

    Science.gov (United States)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33

  8. Stretch due to Penile Prosthesis Reservoir Migration

    Directory of Open Access Journals (Sweden)

    E. Baten

    2016-03-01

    Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.

  9. Physical Model-Based Investigation of Reservoir Sedimentation Processes

    Directory of Open Access Journals (Sweden)

    Cheng-Chia Huang

    2018-03-01

    Full Text Available Sedimentation is a serious problem in the operations of reservoirs. In Taiwan, the situation became worse after the Chi-Chi Earthquake recorded on 21 September 1999. The sediment trap efficiency in several regional reservoirs has been sharply increased, adversely affecting the operations on water supplies. According to the field record, the average annual sediment deposition observed in several regional reservoirs in Taiwan has been increased. For instance, the typhoon event recorded in 2008 at the Wushe Reservoir, Taiwan, produced a 3 m sediment deposit upstream of the dam. The remaining storage capacity in the Wushe Reservoir was reduced to 35.9% or a volume of 53.79 million m3 for flood water detention in 2010. It is urgent that research should be conducted to understand the sediment movement in the Wushe Reservoir. In this study, a scale physical model was built to reproduce the flood flow through the reservoir, investigate the long-term depositional pattern, and evaluate sediment trap efficiency. This allows us to estimate the residual life of the reservoir by proposing a modification of Brune’s method. It can be presented to predict the lifespan of Taiwan reservoirs due to higher applicability in both the physical model and the observed data.

  10. Reservoir Operating Rule Optimization for California's Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.

  11. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  12. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4

    Directory of Open Access Journals (Sweden)

    R. E. Zeebe

    2012-01-01

    Full Text Available The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR's configuration of ocean geometry is flexible and allows for easy switching between modern and paleo-versions. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  13. The geographic concentration of blue carbon in the continental US

    Science.gov (United States)

    Feagin, R. A.; Hinson, A.

    2014-12-01

    Salt water wetlands have the potential to be bought and sold as relatively rich reservoirs of carbon in the context of sequestration projects. However, little is known about the geographic distribution of this potential, and no coarse scale investigation has addressed this ecosystem service at the continental scale. Our objective was to determine blue carbon stocks and flux in coastal wetland soils in the United States and categorize the potential for projects by estuarine basin, state, and wetland type. We linked National Wetlands Inventory (NWI) data with the Soil Survey Geographic Database (SSURGO) through spatial analysis within a Geographic Information System (GIS). We then calculated and mapped soil organic carbon across the continental US. Results were filtered by state, estuarine basin, wetland type, and accumulation rate, and ranking lists for each categorization were produced. The results showed that belowground carbon accumulation is concentrated in specific regions, with the richest and largest reservoirs in the Gulf and Atlantic southeastern estuaries, for example mangrove zones in Florida. Salt marshes on the southern Pacific Coast were relatively low in carbon due to small areas of coverage and the presence of sandy and inorganic soil. The geomorphic position of a wetland within a given estuary, for example on an exposed barrier island versus recessed towards inflowing headwaters, accounted for a greater degree of soil carbon variation than the wetland type, for example woody mangroves versus herbaceous marshes. The potential of a blue carbon sequestration project in relation to its location could be influential in determining wetland policy, conservation, and restoration in the coming decades.

  14. Climate variability and sedimentation of a hydropower reservoir

    International Nuclear Information System (INIS)

    Riedel, M.

    2008-01-01

    As part of the relicensing of a large Hydroelectric Project in the central Appalachians, large scale watershed and reservoir sedimentation models were developed to forecast potential sedimentation scenarios. The GIS based watershed model was spatially explicit and calibrated to long term observed data. Potential socio/economic development scenarios were used to construct future watershed land cover scenarios. Climatic variability and potential change analysis were used to identify future climate regimes and shifts in precipitation and temperature patterns. Permutations of these development and climate changes were forecasted over 50 years and used to develop sediment yield regimes to the project reservoir. Extensive field work and reservoir survey, including current and wave instrumentation, were used to characterize the project watershed, rivers and reservoir hydrodynamics. A fully 3 dimensional hydrodynamic reservoir sedimentation model was developed for the project and calibrated to observed data. Hydrologic and sedimentation results from watershed forecasting provided boundary conditions for reservoir inputs. The calibrated reservoir model was then used to forecast changes in reservoir sedimentation and storage capacity under different future climate scenarios. Results indicated unique zones of advancing sediment deltas and temporary storage areas. Forecasted changes in reservoir bathymetry and sedimentation patterns were also developed for the various climate change scenarios. The warmer and wetter scenario produced sedimentation impacts similar to extensive development under no climate change. The results of these analyses are being used to develop collaborative watershed and soil conservation partnerships to reduce future soil losses and reservoir sedimentation from projected development. (author)

  15. 33 CFR 110.77 - Amistad Reservoir, Tex.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Amistad Reservoir, Tex. 110.77... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.77 Amistad Reservoir, Tex. (a) Diablo East, Tex. That portion of the Amistad Reservoir enclosed by a line connecting the following points, excluding a 300-foot...

  16. Carbon storage in permafrost and soils of the mammoth tundra-steppe biome: role in the global carbon budget

    Science.gov (United States)

    N.S. Zimov; S.A. Zimov; A.E. Zimova; G.M. Zimova; V.I. Chuprynin; F.S. Chapin

    2009-01-01

    During the Last Glacial Maximum (LGM), atmospheric CO2 concentration was 80-100 ppmv lower than in preindustrial times. At that time steppe-tundra was the most extensive biome on Earth. Some authors assume that C storage in that biome was very small, similar to today's deserts, and that the terrestrial carbon (C) reservoir increased at the...

  17. Method of extracting heat from dry geothermal reservoirs

    Science.gov (United States)

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  18. Origin of late pleistocene formation water in Mexican oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    2004-07-01

    Brine water invasion into petroleum reservoirs, especially in sedimentary basins, are known from a variety of global oil field, such as the Western Canada sedimentary basin and, the central Mississippi Salt Dome basin (Kharaka et al., 1987). The majority of oil wells, especially in the more mature North American fields, produce more water than they do oil (Peachey et al., 1998). In the case of Mexican oil fields, increasing volumes of invading water into the petroleum wells were detected during the past few years. Major oil reserves in the SE-part of the Gulf of Mexico are economically affected due to decreases in production rate, pipeline corrosion and well closure. The origin of deep formation water in many sedimentary basins is still controversial: Former hypothesis mainly in the 60's, explained the formation of formation water by entrapment of seawater during sediment deposition. Subsequent water-rock interaction processes explain the chemical evolution of hydrostatic connate water. More recent hydrodynamic models, mainly based on isotopic data, suggest the partial migration of connate fluids, whereas the subsequent invasion of surface water causes mixing processes (Carpenter 1978). As part of the presented study, a total of 90 oil production wells were sampled from 1998 to 2004 to obtain chemical (Major and trace elements) and isotopic composition ({sup 2}H, {sup 13}C, {sup 14}C, {sup 18}O {sup 36}Cl, {sup 37}Cl, {sup 87}Sr, {sup 129}I, tritium) of deep formation water at the Mexican Gulf coast. Samples were extracted from carbonate-type reservoirs of the oil fields Luna, Samaria-Sitio Grande, Jujo-Tecominoac (on-shore), and Pol-Chuc (off-shore, including Abkatun, Batab, Caan, and Taratunich) at a depth between 2,900 m b.s.l. and 6,100 m b.s.l. During the field work, the influence of atmospheric contamination e.g. by CO{sub 2}-atmospheric input was avoided by using an interval sampler to get in-situ samples from the extraction zone of selected bore holes

  19. Fracture characterization and discrimination criteria for karst and tectonic fractures in the Ellenburger Group, West Texas: Implications for reservoir and exploration models

    Energy Technology Data Exchange (ETDEWEB)

    Hoak, T.E. [Science Applications International Corp., Germantown, MD (United States)]|[Kestrel Geoscience, Littleton, CO (United States); Sundberg, K.R. [Phillips Petroleum Co., Bartlesville, OK (United States); Deyhim, P. [Oklahoma State Univ., Stillwater, OK (United States); Ortoleva, P. [Indiana Univ., Bloomington, IN (United States). Lab. for Computational Geodynamics

    1998-12-31

    In the Ellenburger Group fractured dolomite reservoirs of West Texas, it is extremely difficult to distinguish between multiple phases of karst-related fracturing, modifications to the karst system during burial, and overprinting tectonic fractures. From the analyses of drill core, the authors developed criteria to distinguish between karst and tectonic fractures. In addition, they have applied these criteria within the context of a detailed diagenetic cement history that allows them to further refine the fracture genesis and chronology. In these analyses, the authors evaluated the relationships between fracture intensity, morphologic attributes, host lithology, fracture cement, and oil-staining. From this analysis, they have been able to characterize variations in Ellenburger tectonic fracture intensity by separating these fractures from karst-related features. In general, the majority of fracturing in the Ellenburger is caused by karst-related fracturing although a considerable percentage is caused by tectonism. These findings underscore the importance of considering the complete geologic evolution of a karst reservoir during exploration and field development programs. The authors have been able to more precisely define the spatial significance of the fracture data sets by use of oriented core from Andector Field. They have also demonstrated the importance of these results for exploration and reservoir development programs in West Texas, and the potential to extrapolate these results around the globe. Given the historic interest in the large hydrocarbon reserves in West Texas carbonate reservoirs, results of this study will have tremendous implications for exploration and production strategies targeting vuggy, fractured carbonate systems not only in West Texas, but throughout the globe.

  20. Quantification of Libby Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1988-1996 Methods and Data Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Steven Ray

    1998-03-01

    The Libby Reservoir study is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. This report summarizes the data collected from Libby Reservoir during 1988 through 1996.