WorldWideScience

Sample records for carbonate minerals

  1. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  2. Carbon Mineral Ecology: Predicting the Undiscovered Minerals of Carbon

    Science.gov (United States)

    Hazen, R. M.; Hummer, D. R.; Downs, R. T.; Hystad, G.; Golden, J.

    2015-12-01

    The diversity and distribution of Earth's minerals through deep time reflects key events in our planet's crustal evolution. Studies in mineral ecology exploit mineralogical databases to document diversity-distribution relationships of minerals, which reveal that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to Large Number of Rare Events (LNRE) distributions. LNRE models facilitate prediction of total mineral diversity, and thus point to minerals that exist on Earth but have not yet been discovered and described. Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium. The majority of these as yet undescribed minerals are predicted to be hydrous carbonates, many of which may have been overlooked because they are colorless, poorly crystalized, and/or water-soluble. We propose the identities of plausible as yet undescribed carbon minerals, as well as search strategies for their discovery. Some of these minerals will be natural examples of known synthetic compounds, including carbides such as calcium carbide (CaC2), crystalline hydrocarbons such as pyrene (C16H10), and numerous oxalates, anhydrous carbonates, and hydrous carbonates. Many other missing carbon minerals will be isomorphs of known carbon minerals, notably of the more than 100 different hydrous carbonate structures. An understanding of Earth's "missing" minerals provides a more complete picture of geochemical processes that influence crustal evolution.

  3. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  4. Mineralization of Carbon Dioxide: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O' Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  5. Microbially mediated carbon mineralization: Geoengineering a carbon-neutral mine

    Science.gov (United States)

    Power, I. M.; McCutcheon, J.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2013-12-01

    Ultramafic and mafic mine tailings are a potentially valuable feedstock for carbon mineralization, affording the mining industry an opportunity to completely offset their carbon emissions. Passive carbon mineralization has previously been documented at the abandoned Clinton Creek asbestos mine, and the active Diavik diamond mine and Mount Keith nickel mine, yet the majority of tailings remain unreacted. Examples of microbe-carbonate interactions at each mine suggest that biological pathways could be harnessed to promote carbon mineralization. In suitable environmental conditions, microbes can mediate geochemical processes to accelerate mineral dissolution, increase the supply of carbon dioxide (CO2), and induce carbonate precipitation, all of which may accelerate carbon mineralization. Tailings mineralogy and the availability of a CO2 point source are key considerations in designing tailings storage facilities (TSF) for optimizing carbon mineralization. We evaluate the efficacy of acceleration strategies including bioleaching, biologically induced carbonate precipitation, and heterotrophic oxidation of waste organics, as well as abiotic strategies including enhancing passive carbonation through modifying tailings management practices and use of CO2 point sources (Fig. 1). With the aim of developing carbon-neutral mines, implementation of carbon mineralization strategies into TSF design will be driven by economic incentives and public pressure for environmental sustainability in the mining industry. Figure 1. Schematic illustrating geoengineered scenarios for carbon mineralization of ultramafic mine tailings. Scenarios A and B are based on non-point and point sources of CO2, respectively.

  6. Multiphase Sequestration Geochemistry: Model for Mineral Carbonation

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.; Hu, Jian Z.; Hoyt, David W.; Felmy, Andrew R.; Rosso, Kevin M.; Wurstner, Signe K.

    2011-04-01

    Carbonation of formation minerals converts low viscosity supercritical CO2 injected into deep saline reservoirs for geologic sequestration into an immobile form. Until recently the scientific focus of mineralization reactions with reservoir rocks has been those that follow an aqueous-mediated dissolution/precipitation mechanism, driven by the sharp reduction in pH that occurs with CO2 partitioning into the aqueous phase. For sedimentary basin formations the kinetics of aqueous-mediated dissolution/precipitation reactions are sufficiently slow to make the role of mineralization trapping insignificant over a century period. For basaltic saline formations aqueous-phase mineralization progresses at a substantially higher rate, making the role of mineralization trapping significant, if not dominant, over a century period. The overlooked mineralization reactions for both sedimentary and basaltic saline formations, however, are those that occur in liquid or supercritical CO2 phase; where, dissolved water appears to play a catalyst role in the formation of carbonate minerals. A model is proposed in this paper that describes mineral carbonation over sequestration reservoir conditions ranging from dissolved CO2 in aqueous brine to dissolved water in supercritical CO2. The model theory is based on a review of recent experiments directed at understanding the role of water in mineral carbonation reactions of interest in geologic sequestration systems occurring under low water contents.

  7. Cyanobacteria as Biocatalysts for Carbonate Mineralization

    Directory of Open Access Journals (Sweden)

    Christer Jansson

    2012-10-01

    Full Text Available Microbial carbonate mineralization is widespread in nature and among microorganisms, and of vast ecological and geological importance. However, our understanding of the mechanisms that trigger and control processes such as calcification, i.e., mineralization of CO2 to calcium carbonate (CaCO3, is limited and literature on cyanobacterial calcification is oftentimes bewildering and occasionally controversial. In cyanobacteria, calcification may be intimately associated with the carbon dioxide-(CO2 concentrating mechanism (CCM, a biochemical system that allows the cells to raise the concentration of CO2 at the site of the carboxylating enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco up to 1000-fold over that in the surrounding medium. A comprehensive understanding of biologically induced carbonate mineralization is important for our ability to assess its role in past, present, and future carbon cycling, interpret paleontological data, and for evaluating the process as a means for biological carbon capture and storage (CCS. In this review we summarize and discuss the metabolic, physiological and structural features of cyanobacteria that may be involved in the reactions leading to mineral formation and precipitation, present a conceptual model of cyanobacterial calcification, and, finally, suggest practical applications for cyanobacterial carbonate mineralization.

  8. Estimation of palaeohydrochemical conditions using carbonate minerals

    Science.gov (United States)

    Amamiya, H.; Mizuno, T.; Iwatsuki, T.; Yuguchi, T.; Murakami, H.; Saito-Kokubu, Y.

    2014-12-01

    The long-term evolution of geochemical environment in deep underground is indispensable research subject for geological disposal of high-level radioactive waste, because the evolution of geochemical environment would impact migration behavior of radionuclides in deep underground. Many researchers have made efforts previously to elucidate the geochemical environment within the groundwater residence time based on the analysis of the actual groundwater. However, it is impossible to estimate the geochemical environment for the longer time scale than the groundwater residence time in this method. In this case, analysis of the chemical properties of secondary minerals are one of useful method to estimate the paleohydrochemical conditions (temperature, salinity, pH and redox potential). In particular, carbonate minerals would be available to infer the long-term evolution of hydrochemical for the following reasons; -it easily reaches chemical equilibrium with groundwater and precipitates in open space of water flowing path -it reflects the chemical and isotopic composition of groundwater at the time of crystallization We reviewed the previous studies on carbonate minerals and geochemical conditions in deep underground and estimated the hydrochemical characteristics of past groundwater by using carbonate minerals. As a result, it was found that temperature and salinity of the groundwater during crystallization of carbonate minerals were evaluated quantitatively. On the other hand, pH and redox potential can only be understood qualitatively. However, it is suggested that the content of heavy metal elements such as manganese, iron and uranium, and rare earth elements in the carbonate minerals are useful indicators for estimating redox potential. This study was carried out under a contract with METI (Ministry of Economy, Trade and Industry) as part of its R&D supporting program for developing geological disposal technology.

  9. Carbon dioxide sequestration by direct aqueous mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    Carbon dioxide sequestration by an ex-situ, direct aqueous mineral carbonation process has been investigated over the past two years. This process was conceived to minimize the steps in the conversion of gaseous CO2 to a stable solid. This meant combining two separate reactions, mineral dissolution and carbonate precipitation, into a single unit operation. It was recognized that the conditions favorable for one of these reactions could be detrimental to the other. However, the benefits for a combined aqueous process, in process efficiency and ultimately economics, justified the investigation. The process utilizes a slurry of water, dissolved CO2, and a magnesium silicate mineral, such as olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. These minerals were selected as the reactants of choice for two reasons: (1) significant abundance in nature; and (2) high molar ratio of the alkaline earth oxides (CaO, MgO) within the minerals. Because it is the alkaline earth oxide that combines with CO2 to form the solid carbonate, those minerals with the highest ratio of these oxides are most favored. Optimum results have been achieved using heat pretreated serpentine feed material, sodium bicarbonate and sodium chloride additions to the solution, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was achieved in 30 minutes. Future studies are intended to investigate various mineral pretreatment options, the carbonation solution characteristics, alternative reactants, scale-up to a continuous process, geochemical modeling, and process economics.

  10. Mineral Carbonation Employing Ultramafic Mine Waste

    Science.gov (United States)

    Southam, G.; McCutcheon, J.; Power, I. M.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.

    2014-12-01

    Carbonate minerals are an important, stable carbon sink being investigated as a strategy to sequester CO2 produced by human activity. A natural playa (Atlin, BC, CAN) that has demonstrated the ability to microbially-accelerate hydromagnesite formation was used as an experimental model. Growth of microbial mats from Atlin, in a 10 m long flow-through bioreactor catalysed hydromagnesite precipitation under 'natural' conditions. To enhance mineral carbonation, chrysotile from the Clinton Creek Asbestos Mine (YT, CAN) was used as a target substrate for sulphuric acid leaching, releasing as much as 94% of the magnesium into solution via chemical weathering. This magnesium-rich 'feedstock' was used to examine the ability of the microbialites to enhance carbonate mineral precipitation using only atmospheric CO2 as the carbon source. The phototrophic consortium catalysed the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] accompanied by magnesite [MgCO3], aragonite [CaCO3], and minor dypingite [Mg5(CO3)4(OH)2·5H2O]. Scanning Electron Microscopy-Energy Dispersive Spectroscopy indicated that cell exteriors and extracellular polymeric substances (EPS) served as nucleation sites for carbonate precipitation. In many cases, entire cyanobacteria filaments were entombed in magnesium carbonate coatings, which appeared to contain a framework of EPS. Cell coatings were composed of small crystals, which intuitively resulted from rapid crystal nucleation. Excess nutrient addition generated eutrophic conditions in the bioreactor, resulting in the growth of a pellicle that sealed the bioreactor contents from the atmosphere. The resulting anaerobic conditions induced fermentation and subsequent acid generation, which in turn caused a drop in pH to circumneutral values and a reduction in carbonate precipitation. Monitoring of the water chemistry conditions indicated that a high pH (> 9.4), and relatively high concentrations of magnesium (> 3000 ppm), compared with the natural

  11. Novel biological approaches to carbon mineralization

    Science.gov (United States)

    Power, Ian; Kenward, Paul; Harrison, Anna; Dipple, Gregory; Raudsepp, Mati; Wilson, Siobhan; Southam, Gordon

    2015-04-01

    Innovative approaches for accelerating and manipulating fundamental geochemical processes are necessary to develop carbon mineralization as a viable strategy for the mitigation of greenhouse gas emissions. Mg-carbonate formation is of interest for both ex situ and in situ CO2 sequestration strategies1. Accordingly, we have investigated approaches to accelerate these water-rock reactions that produce Mg-carbonate minerals using biological approaches. For instance, CO2-limited conditions are encountered in many systems relevant to CO2 sequestration and represent a severe limitation on carbon mineralization. In carbonation experiments, the supply of CO2 was increased with the use of carbonic anhydrase, an enzyme that catalyzes the hydration of aqueous CO2. The presence of carbonic anhydrase had a dramatic impact on carbonation rates of brucite [Mg(OH)2]2, a mineral of interest for carbon sequestration3. In a CO2-rich aqueous environment, cyanobacteria were able to induce hydrated Mg-carbonate precipitation in microcosm experiments through the alkalinization of their microenvironment and concentration of cations on their cell membranes, which also provide regularly spaced, chemically identical sites for mineral nucleation4. In both lines of investigation, the resulting precipitates were metastable hydrated Mg-carbonate minerals rather then magnesite [MgCO3], the most stable Mg-carbonate and therefore the preferred product forsequestering CO2. Consequently, we have investigated approaches to improve magnesite precipitation rate in these low temperature environments. Inopportunely, rates of magnesite precipitation are severely limited at temperatures below 60 ° C due to the strong hydration of Mg2+ ions in solution5. Yet, carboxyl functional groups (R-COOH) are able to cause desolvation of Mg2+ ions6,7. In microcosm experiments using polystyrene microspheres with a high density of carboxyl groups, we were able to precipitate magnesite at room temperature from slightly

  12. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  13. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  14. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus

  15. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our second year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. As our second year progress is intimately related to our earlier work, the report is presented in that context to provide better overall understanding of the progress made. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly

  16. Mineral CO2 sequestration by steel slag carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.

    2005-01-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feeds

  17. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  18. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus

  19. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    Science.gov (United States)

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  20. The response of gross nitrogen mineralization to labile carbon inputs

    Science.gov (United States)

    Bengtson, Per

    2014-05-01

    Input of labile carbon sources to forest soils commonly result in priming, i.e. an increase in the microbial decomposition of soil organic matter. Efforts aimed at quantifying the extent of priming have, to date, largely focused on soil organic matter decomposition manifested as soil respiration. Less is known about how gross nitrogen mineralization responds to input of labile carbon. It is often assumed that increased priming results in decreased soil carbon stocks. However, microbial mineralization of organic nitrogen into plant available forms is a major factor limiting primary production in forests. If increased decomposition of soil organic matter in response to labile carbon is accompanied by a concurrent increased nitrogen mineralization, this could result in elevated primary production and higher rates of plant derived organic matter input to soils. Therefore, in order to fully understand the effect of priming on net ecosystem exchange and soil carbon stocks, it is vital to consider if increased decomposition of soil organic matter caused by priming also results in increased nitrogen mineralization. Here I present the results from a series of experiments aimed at determining if, and to which extent, gross nitrogen mineralization is stimulated by input of labile carbon. The results suggest that it is by no means uncommon to find an increase in gross N mineralization rates in response to labile carbon inputs. The magnitude of the increase seems dependent on the nitrogen status of the soil, as well as the concentration and rate of labile carbon inputs. However, continuous input of labile carbon sources that also contains nitrogen, e.g. amino acids, seems to inhibit rather than increase the mineralization of organic nitrogen. These findings suggest that there is a potential for a positive feedback between priming and primary production that needs to be considered in order to fully understand the influence of priming on net ecosystem exchange and soil carbon

  1. Carbon and nitrogen mineralization are decoupled in organo-mineral fractions

    Science.gov (United States)

    Bimüller, Carolin; Mueller, Carsten W.; von Lützow, Margit; Kreyling, Olivia; Kölbl, Angelika; Haug, Stephan; Schloter, Michael; Kögel-Knabner, Ingrid

    2015-04-01

    To improve our comprehension how carbon and nitrogen mineralization are linked in soils, we used a controlled laboratory mineralization approach and compared carbon and nitrogen dynamics in the bulk soil and in soil fractions. Topsoil of a Rendzic Leptosol from a beech forest site near Tuttlingen, Germany, was fractionated into three particle size classes: sand (2000 to 20 µm), silt (20 to 2 µm), and clay (nitrogen mineralization dynamics, and assessed carbon respiration as well as nitrogen mineralization and microbial biomass carbon and nitrogen contents. Soil organic matter in the incubated fractions was considered by a subsequent density fractionation. The chemical composition of selected samples was qualitatively evaluated by 13C-NMR spectroscopy. When summing up the mineralization rates of the single fractions, the values for respired carbon equaled the bulk soil, whereas the mathematical recombination of mineral nitrogen in all fractions was significantly less than in bulk soil. Hence, carbon mineralization was not affected by the damage of the aggregated soil structure via fractionation, whereas nitrogen mineralization was reduced. Fractionation increased the surface area providing accessory mineral surfaces, which allowed new binding of especially nitrogen-rich compounds, besides ammonium fixation via cation exchange. Density fractionation revealed that organic matter in the sand fraction contained mainly particulate organic matter present as light material comprising partly decomposed plant remnants. The organic matter in the clay fraction was mostly adsorbed on mineral surfaces. Organic matter in the sand and in the clay fraction was dominated by O/N-alkyl C indicating low recalcitrance, but the C/N ratio of organic matter narrowed with decreasing particle size. These results also imply that the C/N ratio as well as the alkyl C to O/N-alkyl C ratio are not suitable to draw conclusions regarding biological decomposability of plant residues when

  2. A literature review of actinide-carbonate mineral interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stout, D.L. [Missouri Univ., Columbia, MO (United States). Dept. of Geological Sciences; Carroll, S.A. [Lawrence Livermore National Lab., CA (United States)

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage.

  3. Effect of sterilization on mineralization of straw and black carbon

    DEFF Research Database (Denmark)

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    The study was aimed at investigating the role of microorganisms in the degradation of BC (black carbon). CO evolution was measured under sterilized and non-sterilized soil using BC and straw amendments. Black carbon and straw were produced from homogenously C labelled roots of barley (Hordeum vul...... abiotic source must also be present perhaps abiotic mineralization of labile BC components....

  4. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization.

    Science.gov (United States)

    Zhang, Weixin; Hendrix, Paul F; Dame, Lauren E; Burke, Roger A; Wu, Jianping; Neher, Deborah A; Li, Jianxiong; Shao, Yuanhu; Fu, Shenglei

    2013-01-01

    A recent review concluded that earthworm presence increases CO₂ emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO₂ emission nor in stabilized carbon would entirely reflect the earthworms' contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon mineralization and carbon stabilization. Earthworms accelerate carbon activation and induce unequal amplification of carbon stabilization compared with carbon mineralization, which generates an earthworm-mediated 'carbon trap'. We introduce the new concept of sequestration quotient to quantify the unequal processes. The patterns of CO₂ emission and net carbon sequestration are predictable by comparing sequestration quotient values between treatments with and without earthworms. This study clarifies an ecological mechanism by which earthworms may regulate the terrestrial carbon sink.

  5. Catalysis of carbon monoxide methanation by deep sea manganate minerals

    Science.gov (United States)

    Cabrera, A. L.; Maple, M. B.; Arrhenius, G.

    1990-01-01

    The catalytic activity of deep sea manganese nodule minerals for the methanation of carbon monoxide was measured with a microcatalytic technique between 200 and 460 degrees C. The manganate minerals were activated at 248 degrees C by immersion into a stream of hydrogen in which pulses of carbon monoxide were injected. Activation energies for the methanation reaction and hydrogen desorption from the manganate minerals were obtained and compared with those of pure nickel. Similar energy values indicate that the activity of the nodule materials for the reaction appears to be related to the amount of reducible transition metals present in the samples (ca. 11 wt.-%). Since the activity of the nodule minerals per gram is comparable to that of pure nickel, most of the transition metal ions located between manganese oxide layers appear to be exposed and available to catalyze the reaction.

  6. The utilisation of fly ash in CO2 mineral carbonation

    Directory of Open Access Journals (Sweden)

    Jaschik Jolanta

    2016-03-01

    Full Text Available The fixation of CO2 in the form of inorganic carbonates, also known as mineral carbonation, is an interesting option for the removal of carbon dioxide from various gas streams. The captured CO2 is reacted with metal-oxide bearing materials, usually naturally occurring minerals. The alkaline industrial waste, such as fly ash can also be considered as a source of calcium or magnesium. In the present study the solubility of fly ash from conventional pulverised hard coal fired boilers, with and without desulphurisation products, and fly ash from lignite fluidised bed combustion, generated by Polish power stations was analysed. The principal objective was to assess the potential of fly ash used as a reactant in the process of mineral carbonation. Experiments were done in a 1 dm3 reactor equipped with a heating jacket and a stirrer. The rate of dissolution in water and in acid solutions was measured at various temperatures (20 - 80ºC, waste-to-solvent ratios (1:100 - 1:4 and stirrer speeds (300 - 1100 min-1. Results clearly show that fluidised lignite fly ash has the highest potential for carbonation due to its high content of free CaO and fast kinetics of dissolution, and can be employed in mineral carbonation of CO2.

  7. Bioleaching of serpentine group mineral by fungus Talaromyces flavus: application for mineral carbonation

    Science.gov (United States)

    Li, Z.; Lianwen, L.; Zhao, L.; Teng, H.

    2011-12-01

    Many studies of serpentine group mineral dissolution for mineral carbonation have been published in recent years. However, most of them focus mainly on either physical and chemical processes or on bacterial function, rather than fungal involvement in the bioleaching of serpentine group mineral. Due to the excessive costs of the magnesium dissolution process, finding a lower energy consumption method will be meaningful. A fungal strain Talaromyces flavus was isolated from serpentinic rock of Donghai (China). No study of its bioleaching ability is currently available. It is thus of great significance to explore the impact of T. flavus on the dissolution of serpentine group mineral. Serpentine rock-inhabiting fungi belonging to Acremonium, Alternaria, Aspergillus, Botryotinia, Cladosporium, Clavicipitaceae, Cosmospora, Fusarium, Monascus, Paecilomyces, Penicillium, Talaromyces, Trichoderma were isolated. These strains were chosen on the basis of resistance to magnesium and nickel characterized in terms of minimum inhibiting concentration (MIC). Specifically, the strain Talaromyces flavus has a high tolerance to both magnesium (1 mol/L) and nickel (10 mM/L), and we examine its bioleaching ability on serpentine group mineral. Contact and separation experiments (cut-off 8 000-14 000 Da), as well as three control experiments, were set up for 30 days. At least three repeated tests were performed for each individual experiment. The results of our experiments demonstrate that the bioleaching ability of T. flavus towards serpentine group mineral is evident. 39.39 wt% of magnesium was extracted from lizardite during the bioleaching period in the contact experiment, which showed a dissolution rate at about a constant 0.126 mM/d before reaching equilibrium in 13 days. The amount of solubilized Mg from chrysotile and antigorite were respectively 37.79 wt% and 29.78 wt% in the contact experiment. These results make clear the influence of mineral structure on mineral bioleaching

  8. Black Carbon, The Pyrogenic Clay Mineral?

    Science.gov (United States)

    Most soils contain significant amounts of black carbon, much of which is present as discrete particles admixed with the coarse clay fraction (0.2–2.0 µm e.s.d.) and can be physically separated from the more abundant diffuse biogenic humic materials. Recent evidence has shown that naturally occurring...

  9. Mineralization of Calcium Carbonate on Multifunctional Peptide Assembly Acting as Mineral Source Supplier and Template.

    Science.gov (United States)

    Murai, Kazuki; Kinoshita, Takatoshi; Nagata, Kenji; Higuchi, Masahiro

    2016-09-13

    Crystal phase and morphology of biominerals may be precisely regulated by controlled nucleation and selective crystal growth through biomineralization on organic templates such as a protein. We herein propose new control factors of selective crystal growth by the biomineralization process. In this study, a designed β-sheet Ac-VHVEVS-CONH2 peptide was used as a multifunctional template that acted as mineral source supplier and having crystal phase control ability of calcium carbonate (CaCO3) during a self-supplied mineralization. The peptides formed three-dimensional nanofiber networks composed of assembled bilayer β-sheets. The assembly hydrolyzed urea molecules to one carbonate anion and two ammonium cations owing to a charge relay effect between His and Ser residues under mild conditions. CaCO3 was selectively mineralized on the peptide assembly using the generated carbonate anions on the template. Morphology of the obtained CaCO3 was fiber-like structure, similar to that of the peptide template. The mineralized CaCO3 on the peptide template had aragonite phase. This implies that CaCO3 nuclei, generated using the carbonate anions produced by the hydrolysis of urea on the surface of the peptide assembly, preferentially grew into aragonite phase, the growth axis of which aligned parallel to the direction of the β-sheet fiber axis.

  10. Cost Evaluation of CO2 Sequestration by Aqueous Mineral Carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2007-01-01

    A cost evaluation of CO2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO3) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a

  11. Microbial Surfaces and their Effects on Carbonate Mineralization

    Science.gov (United States)

    Cappuccio, J. A.; Pillar, V. D.; Lui, G. V.; Ajo-Franklin, C.

    2011-12-01

    Geologic carbon dioxide sequestration, the underground storage of carbon dioxide (CO2), will be an essential component of climate change mitigation. Carbonate minerals are a promising form of stable CO2 storage, but their geologic formation is slow. Many microbes can increase the rate of carbonate mineral formation; however the mechanisms of such mineralization are largely unknown. Hypothesized mechanisms include metabolic processes that alter pH and supersaturation, as well as cell surface properties that induce mineral nucleation. This work systematically investigates these mechanisms by allowing calcium carbonate (CaCO3) to form in the presence or absence of microbes with various surfaces features included Escherichia coli, Synechocystis sp. PCC 6803, Caulobacter vibrioides, and Lysinibacilllus sphaericus. Surprisingly, formation of stable crystalline CaCO3 was accelerated by the presence of all microbes relative to abiotic solutions. This rate acceleration also occurred for metabolically inactive bacteria, indicating that metabolic activity was not the operating mechanism. Rather, since the CaCO3 crystals increased in number as the cell density increased, these results indicate that many bacterial species accelerate the nucleation of CaCO3 crystals. To understand the role of specific biomolecules on nucleation, we used genetic mutants with altered lipopolysaccharides (LPS) and crystalline surface layer proteins (S-layers). Bacterial surface charge and cation binding was assessed using zeta potential measurements and correlated to the bacterial surface chemistry and biomineralization experiments with varying Ca2+ concentrations. From these results, we postulate that the S-layer surfaces can selectively attract Ca2+ ions, serving as nucleation sites for CaCO3, thereby accelerating crystal formation. These observations provide substantive evidence for a non-specific nucleation mechanism, and stress the importance of microbes, even dead ones, on the rate of

  12. Sequestration of Martian CO2 by mineral carbonation

    Science.gov (United States)

    Tomkinson, Tim; Lee, Martin R.; Mark, Darren F.; Smith, Caroline L.

    2013-10-01

    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2.

  13. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    Science.gov (United States)

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  14. Elemental composition of extant microbialites: mineral and microbial carbon

    Science.gov (United States)

    Valdespino-Castillo, P. M.; Falcón, L. I.; Holman, H. Y. N.; Merino-Ibarra, M.; García-Guzmán, M.; López-Gómez, L. M. D. R.; Martínez, J.; Alcantara-Hernandez, R. J.; Beltran, Y.; Centeno, C.; Cerqueda-Garcia, D.; Pi-Puig, T.; Castillo, F. S.

    2015-12-01

    Microbialites are the modern analogues of ancient microbial consortia. Their existence extends from the Archaean (~3500 mya) until present and their lithified structure evidences the capacity of microbial communities to mediate mineral precipitation. Living microbialites are a useful study model to test the mechanisms involved in carbonates and other minerals precipitation. Here, we studied the chemical composition, the biomass and the microbial structure of extant microbialites. All of these were found in Mexico, in water systems of different and characteristic ionic firms. An elemental analysis (C:N) of microbial biomass was performed and total P was determined. To explore the chemical composition of microbialites as a whole, X-ray diffraction analyses were performed over dry microbialites. While overall inorganic carbon content (carbonates) represented >70% of the living layer, a protocol of inorganic carbon elimination was performed for each sample resulting in organic matter contents between 8 and 16% among microbialites. Stoichiometric ratios of C:N:P in microbialite biomass were different among samples, and the possibility of P limitation was suggested mainly for karstic microbialites, N limitation was suggested for all samples and, more intensively, for soda system microbialites. A differential capacity for biomass allocation among microbialites was observed. Microbialites showed, along the biogeographic gradient, a diverse arrangement of microbial assemblages within the mineral matrix. While environmental factors such as pH and nitrate concentration were the factors that defined the general structure and diversity of these assemblages, we intend to test if the abundance of major ions and trace metals are also defining microbialite characteristics (such as microbial structure and biomass). This work contributes to define a baseline of the chemical nature of extant microbial consortia actively participating in mineral precipitation processes.

  15. Effects of carbon substrate lability on carbon mineralization dynamics of tropical peat

    Science.gov (United States)

    Jauhiainen, Jyrki; Silvennoinen, Hanna; Könönen, Mari; Limin, Suwido; Vasander, Harri

    2016-04-01

    Extensive draining at tropical ombrotrophic peatlands in Southeast Asia has made them global 'hot spots' for greenhouse gas emissions. Management practises and fires have led to changed substrate status, which affects microbial processes. Here, we present the first data on how management practises affect carbon (C) mineralization processes at these soils. We compared the carbon mineralization potentials of pristine forest soils to those of drained fire affected soils at various depths, with and without additional labile substrates (glucose, glutamate and NO3-N) and in oxic and anoxic conditions by dedicated ex situ experiments. Carbon mineralization (CO2 and CH4 production) rates were higher in the pristine site peat, which contains more labile carbon due to higher input via vegetation. Production rates decreased with depth together with decreasing availability of labile carbon. Consequently, the increase in production rates after labile substrate addition was relatively modest from pristine site as compared to the managed site and from the top layers as compared to deeper layers. Methanogenesis had little importance in total carbon mineralization. Adding labile C and N enhanced heterotrophic CO2 production more than the sole addition of N. Surprisingly, oxygen availability was not an ultimate requirement for substantial CO2 production rates, but anoxic respiration yielded comparable rates, especially at the pristine soils. Flooding of these sites will therefore reduce, but not completely cease, peat carbon loss. Reintroduced substantial vegetation and fertilization in degraded peatlands can enrich recalcitrant peat with simple C and N compounds and thus increase microbiological activity.

  16. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    Science.gov (United States)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  17. Research status on the sequestration of carbon dioxide by direct aqueous mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Gerdemann, Stephen J.; Rush, Gilbert E.; Walters, Richard P.; Turner, Paul C.

    2001-01-01

    Direct aqueous mineral carbonation has been investigated as a process to convert gaseous CO2 into a geologically stable, solid final form. The process utilizes a solution of distilled water, or sodium bicarbonate (NaHCO3), sodium chloride (NaCl), and water, mixed with a mineral reactant, such as olivine (Mg2SiO4) or serpentine [Mg3Si2O5(OH)4]. Carbon dioxide is dissolved into this slurry, by diffusion through the surface and gas dispersion within the aqueous phase. The process includes dissolution of the mineral and precipitation of magnesium carbonate (MgCO3) in a single unit operation. Mineral reactivity has been increased by pretreatment of the minerals. Thermal activation of serpentine can be achieved by heat pretreatment at 630 C. Carbonation of the thermally activated serpentine, using the bicarbonate-bearing solution, at T=155 C, PCO2=185 atm, and 15% solids, achieved 78% stoichiometric conversion of the silicate to the carbonate in 30 minutes. Recent studies have investigated mechanical activation as an alternative to thermal treatment. The addition of a high intensity attrition grinding step to the size reduction circuit successfully activated both serpentine and olivine. Over 80% stoichiometric conversion of the mechanically activated olivine was achieved in 60 minutes, using the bicarbonate solution at T=185 C, PCO2=150 atm, and 15% solids. Significant carbonation of the mechanically activated minerals, at up to 66% stoichiometric conversion, has also been achieved at ambient temperature (25 C) and PCO2 ={approx}10 atm.

  18. Carbon Dioxide Sequestration by Direct Mineral Carbonation: Results from Recent Studies and Current Status

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Rush, G.E.; Walters, Richard P.; Turner, Paul C.

    2001-01-01

    Direct mineral carbonation has been investigated as a process to convert gaseous CO2 into a geologically stable, solid final form. The process utilizes a solution of sodium bicarbonate (NaHCO3), sodium chloride (NaCl), and water, mixed with a mineral reactant, such as olivine (Mg2SiO4) or serpentine [Mg3Si2O5(OH)4]. Carbon dioxide is dissolved into this slurry, by diffusion through the surface and gas dispersion within the aqueous phase. The process includes dissolution of the mineral and precipitation of magnesium carbonate (MgCO3) in a single unit operation. Optimum results have been achieved using heat pretreated serpentine feed material, with a surface area of roughly 19 m2 per gram, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% stoichiometric conversion of the silicate to the carbonate was achieved in 30 minutes. Studies suggest that the mineral dissolution rate is primarily surface controlled, while the carbonate precipitation rate is primarily dependent on the bicarbonate concentration of the slurry. Current studies include further examination of the reaction pathways, and an evaluation of the resource potential for the magnesium silicate reactant, particularly olivine. Additional studies include the examination of various pretreatment options, the development of a continuous flow reactor, and an evaluation of the economic feasibility of the process.

  19. Mineral Influence on Microbial Survival During Carbon Sequestration

    Science.gov (United States)

    Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

    2012-12-01

    CO2 sequestered in a deep saline aquifer will perturb subsurface biogeochemistry by acidifying the groundwater and accelerating mineral diagenesis. Subsurface microbial communities heavily influence geochemistry through their metabolic processes, such as with dissimilatory iron reducing bacteria (DIRB). However, CO2 also acts as a sterilant and will perturb these communities. We investigated the role of mineralogy and its effect on the survival of microbes at high PCO2 conditions using the model DIRB Shewanella oneidensis MR-1. Batch cultures of Shewanella were grown to stationary phase and exposed to high PCO2 using modified Parr reactors. Cell viability was then determined by plating cultures after exposure. Results indicate that at low PCO2 (2 bar), growth and iron reduction are decreased and cell death occurs within 1 hour when exposed to CO2 pressures of 10 bar or greater. Further, fatty acid analysis indicates microbial lipid degradation with C18 fatty acids being the slowest lipids to degrade. When cultures were grown in the presence of rocks or minerals representative of the deep subsurface such as carbonates and silicates and exposed to 25 bar CO2, survival lasted beyond 2 hours. The most effective protecting substratum was quartz sandstone, with cultures surviving beyond 8 hours of CO2 exposure. Scanning electron microscope images reveal biofilm formation on the mineral surfaces with copious amounts of extracellular polymeric substances (EPS) present. EPS from these biofilms acts as a reactive barrier to the CO2, slowing the penetration of CO2 into cells and resulting in increased survival. When biofilm cultures were grown with Al and As to simulate the release of toxic metals from minerals such as feldspars and clays, survival time decreased, indicating mineralogy may also enhance microbial death. Biofilms were then grown on iron-coated quartz sand to determine conversely what influence biofilms may have on mineral dissolution during CO2 perturbation

  20. Organic carbon production, mineralization and preservation on the Peruvian margin

    Directory of Open Access Journals (Sweden)

    A. W. Dale

    2014-09-01

    Full Text Available Carbon cycling in Peruvian margin sediments (11° S and 12° S was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC content was lowest on the inner shelf and at the deep oxygenated stations (< 5% and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15–20%. The organic carbon burial efficiency (CBE was unexpectedly low on the inner shelf (< 20% when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%. Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09. Yet, mean POC burial rates were 2–5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  1. A Quantitative Investigation of CO2 Sequestration by Mineral Carbonation

    CERN Document Server

    Mohammad, Muneer

    2015-01-01

    Anthropogenic activities have led to a substantial increase in carbon dioxide (CO2), a greenhouse gas (GHG), contributing to heightened concerns of global warming. In the last decade alone CO2 emissions increased by 2.0 ppm/yr. globally. In the year 2009, United States and China contributed up to 43.4% of global CO2 emissions. CO2 capture and sequestration have been recognized as promising solutions to mitigate CO2 emissions from fossil fuel based power plants. Typical techniques for carbon capture include post-combustion capture, pre-combustion capture and oxy-combustion capture, which are under active research globally. Mineral carbonation has been investigated as a suitable technique for long term storage of CO2. Sequestration is a highly energy intensive process and the additional energy is typically supplied by the power plant itself. This leads to a reduction in net amount of CO2 captured because of extra CO2 emitted. This paper presents a quantitative analysis of the energy consumption during sequestra...

  2. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  3. Shungites: origin and classification of a new carbon mineral resource

    Energy Technology Data Exchange (ETDEWEB)

    Ivankin, P.F.; Galdobina, L.P.; Kalinin, Yu.K.

    1987-10-01

    The discovery of a new mineral resource in Karelia-shungite- and the confirmation of the finding in the geological literature have a long history. In 1876, local peasants found black stones near the village of Shun'ga, which were taken to be coal and called Olenets anthracite. A discussion began on the nature of this strange anthracite, which did not burn in furnaces. The found of the Karelian geological school, A.A. Inostrantsev, was the first to doubt that Olenets anthracite was really coal, and he named it shungite. Shungites, very unusual, barely combustible high-carbon rocks, have a variety of potential uses. Although details remain obscure, the authors propose a metasomatic origin involving migration and reduction of carbonaceous compounds driven by igneous intrusions. 10 references.

  4. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengrong [Yale Univ., New Haven, CT (United States); Qiu, Lin [Yale Univ., New Haven, CT (United States); Zhang, Shuang [Yale Univ., New Haven, CT (United States); Bolton, Edward [Yale Univ., New Haven, CT (United States); Bercovici, David [Yale Univ., New Haven, CT (United States); Ague, Jay [Yale Univ., New Haven, CT (United States); Karato, Shun-Ichiro [Yale Univ., New Haven, CT (United States); Oristaglio, Michael [Yale Univ., New Haven, CT (United States); Zhu, Wen-Iu [Univ. of Maryland, College Park, MD (United States); Lisabeth, Harry [Univ. of Maryland, College Park, MD (United States); Johnson, Kevin [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  5. Energy Consumption and Net CO2 Sequestration of Aqueous Mineral Carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.; Ruijg, G.J.

    2006-01-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in

  6. Where is mineral ballast important for surface export of particulate organic carbon in the ocean?

    OpenAIRE

    2014-01-01

    Correlations between particulate organic carbon (POC) and mineral fluxes in the deep ocean have inspired the inclusion of “ballast effect” parameterizations in carbon cycle models. A recent study demonstrated regional variability in the effect of ballast minerals on the flux of POC in the deep ocean. We have undertaken a similar analysis of shallow export data from the Arctic, Atlantic, and Southern Oceans. Mineral ballasting is of greatest importance in the high-latitude North Atlantic, wher...

  7. Energy and economic considerations for ex-situ and aqueous mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Rush, G.E.; Gerdemann, Stephen J.; Penner, L.R.

    2004-01-01

    Due to the scale and breadth of carbon dioxide emissions, and speculation regarding their impact on global climate, sequestration of some portion of these emissions has been under increased study. A practical approach to carbon sequestration will likely include several options, which will be driven largely by the energy demand and economics of operation. Aqueous mineral carbonation of calcium and magnesium silicate minerals has been studied as one potential method to sequester carbon dioxide. Although these carbonation reactions are all thermodynamically favored, they occur at geologic rates of reaction. Laboratory studies have demonstrated that these rates of reaction are accelerated with increasing temperature, pressure, and particle surface area. Mineral-specific activation methods were identified, however, each of these techniques incurs energy as well as economic costs. An overview of the mineral availability, pretreatment options and energy demands, and process economics is provided.

  8. Some results from a study of carbon minerals by the thermal method

    Energy Technology Data Exchange (ETDEWEB)

    Otakuziyev, E.; Kasymov, A.K.; Miralimova, N.M.

    1979-01-01

    Using the optimum technique of thermal analysis in carbon-containing shales and hornfels of ancient deposits of the Kyzylkum and Zirabulak-Ziaetdinsk mountains, four groups are revealed of mineral form of carbon, corresponding to the kerite-oxykeriteanthraxolite-shungite-graphite series. Interpretation of the thermograms obtained shows the varying degree of metamorphism of the carbon-containing rock of the areas studied.

  9. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils

    NARCIS (Netherlands)

    Hanke, A.; Cerli, C.; Muhr, J.; Borken, W.; Kalbitz, K.

    2013-01-01

    Paddy soils are subjected to periodically changing redox conditions. In order to understand better the redox control on long-term carbon turnover, we assessed carbon mineralization and dissolved organic carbon (DOC) of paddy topsoils sampled along a chronosequence spanning 2000 years of rice cultiva

  10. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2002-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (1) its structural and chemical simplicity, (2) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (3) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This final report covers the overall progress of this grant.

  11. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  12. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    Science.gov (United States)

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  13. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengrong [Yale Univ., New Haven, CT (United States); Qiu, Lin [Yale Univ., New Haven, CT (United States); Zhang, Shuang [Yale Univ., New Haven, CT (United States); Bolton, Edward [Yale Univ., New Haven, CT (United States); Bercovici, David [Yale Univ., New Haven, CT (United States); Ague, Jay [Yale Univ., New Haven, CT (United States); Karato, Shun-Ichiro [Yale Univ., New Haven, CT (United States); Oristaglio, Michael [Yale Univ., New Haven, CT (United States); Zhu, Wen-Iu [Univ. of Maryland, College Park, MD (United States); Lisabeth, Harry [Univ. of Maryland, College Park, MD (United States); Johnson, Kevin [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  14. Influence of exopolymeric materials on bacterially induced mineralization of carbonates.

    Science.gov (United States)

    Bains, Amrita; Dhami, Navdeep Kaur; Mukherjee, Abhijit; Reddy, M Sudhakara

    2015-04-01

    Microbially induced calcium carbonate precipitation is an immensely growing technology for restoration and remediation of building materials. The investigation on role of exopolymeric substances and biofilms in microbially induced calcium carbonate precipitation suggested that these exopolymeric materials play major role in carbonate precipitation in Bacillus megaterium SS3 along with enzymes urease and carbonic anhydrase. The concentration of EPS directly affects the precipitation of carbonate precipitates which might be due to capturing of Ca(2+) ions by acting as nucleation site. Components of the media and presence of calcium also play crucial role in production of exopolymeric substances along with affecting the morphology of carbonate precipitates.

  15. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  16. Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.

    2015-12-01

    Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.

  17. Sequestering CO(2) by mineral carbonation: stability against acid rain exposure.

    Science.gov (United States)

    Allen, Daniel J; Brent, Geoff F

    2010-04-01

    Mineral carbonation is a potentially attractive alternative to storage of compressed CO(2) in underground repositories, known as geosequestration. Processes for the conversion of basic ores, such as magnesium silicates, to carbonates have been proposed by various researchers, with storage of the carbonate as backfill in the original mine representing a solid carbon sink. The stability of such carbon sinks against acid rain and other sources of strong acids is examined here. It is acknowledged that in the presence of strong acid, carbonates will dissolve and release carbon dioxide. A sensitivity analysis covering annual average rainfall and pH that may be encountered in industrialized areas of the United States, China, Europe, and Australia was conducted to determine maximum CO(2) rerelease rates from mineral carbonation carbon sinks. This analysis is based on a worst-case premise that is equivalent to assuming infinitely rapid kinetics of dissolution of the carbonate. The analysis shows that under any likely conditions of pH and rainfall, leakage rates of stored CO(2) are negligible. This is illustrated in a hypothetical case study under Australian conditions. It is thus proposed that sequestration by mineral carbonation can be considered to be permanent on practical human time scales. Other possible sources of acid have also been considered.

  18. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Ren Dongni; Li Zhuo; Gao Yonghua; Feng Qingling, E-mail: biomater@mail.tsinghua.edu.c [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH{sub 2} and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH{sub 2} and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.

  19. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification.

    Science.gov (United States)

    Rodríguez-Navarro, Alejandro B; Marie, Pauline; Nys, Yves; Hincke, Maxwell T; Gautron, Joel

    2015-06-01

    Avian eggshell mineralization is the fastest biogenic calcification process known in nature. How this is achieved while producing a highly crystalline material composed of large calcite columnar single crystals remains largely unknown. Here we report that eggshell mineral originates from the accumulation of flat disk-shaped amorphous calcium carbonate (ACC) particles on specific organic sites on the eggshell membrane, which are rich in proteins and sulfated proteoglycans. These structures known as mammillary cores promote the nucleation and stabilization of a amorphous calcium carbonate with calcitic short range order which predetermine the calcite composition of the mature eggshell. The amorphous nature of the precursor phase was confirmed by the diffuse scattering of X-rays and electrons. The nascent calcitic short-range order of this transient mineral phase was revealed by infrared spectroscopy and HRTEM. The ACC mineral deposited around the mammillary core sites progressively transforms directly into calcite crystals without the occurrence of any intermediate phase. Ionic speciation data suggest that the uterine fluid is equilibrated with amorphous calcium carbonate, throughout the duration of eggshell mineralization process, supporting that this mineral phase is constantly forming at the shell mineralization front. On the other hand, the transient amorphous calcium carbonate mineral deposits, as well as the calcite crystals into which they are converted, form by the ordered aggregation of nanoparticles that support the rapid mineralization of the eggshell. The results of this study alter our current understanding of avian eggshell calcification and provide new insights into the genesis and formation of calcium carbonate biominerals in vertebrates.

  20. Development of models for predicting carbon mineralization and associated phytotoxicity in compost-amended soil.

    Science.gov (United States)

    Aslam, Danielle N; Vandergheynst, Jean S; Rumsey, Thomas R

    2008-12-01

    Phytotoxicity of compost-amended soil is related to carbon mineralization associated with compost decomposition. The objective of this research was to determine if compost carbon mineralization potential, estimated using compost respiration rate measurements, could be combined with carbon mineralization kinetic models to predict phytotoxicity of compost-amended soil. First-order, second-order, and Monod kinetic models that include compost carbon mineralization potential, compost amendment rate, incubation time, and temperature were developed and compared for their ability to predict carbon mineralization kinetics. Experiments utilized two soil types amended with 0%, 5%, and 50% (v/v) food waste and green waste composts, incubated at 20 degrees C, 25 degrees C, 30 degrees C, 35 degrees C, and 45 degrees C for model development and under a diurnal temperature cycle from 20 degrees C to 30 degrees C for model validation. For most cases, a first-order model had an equivalent or better fit to the data than the other models. Mineralizable carbon estimated using the first-order model was significantly correlated to the probability of phytotoxicity in compost-amended soil.

  1. Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Teng, H. Henry [PI, The George Washington University; Xu, Huifang [Co-PI, University of Wisconsin-Madison

    2013-07-17

    We have approached the long-standing geochemical question why anhydrous high-Mg carbonate minerals (i.e., magnesite and dolomite) cannot be formed at ambient conditions from a new perspective by exploring the formation of MgCO{sub 3} and Mg{sub x}Ca{sub (1-x)}CO{sub 3} in non-aqueous solutions. Data collected from our experiments in this funding period suggest that a fundamental barrier, other than cation hydration, exists that prevents Mg{sup 2+} and CO{sub 3}{sup 2-} ions from forming long-range ordered structures. We propose that this barrier mainly stems from the lattice limitation on the spatial configuration of CO{sub 3} groups in magnesite crystals. On the other hand, the measured higher distribution coefficients of Mg between magnesian calcites formed in the absence and presence of water give us a first direct proof to support and quantify the cation hydration effect.

  2. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    Science.gov (United States)

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  3. Organo-mineral complexation alters carbon and nitrogen cycling in stream microbial assemblages

    Science.gov (United States)

    Hunter, William Ross; Wanek, Wolfgang; Prommer, Judith; Mooshammer, Maria; Battin, Tom

    2014-05-01

    Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. microbial utilization as organic carbon (C) and nitrogen (N) sources. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and streamwater sampled from the Oberer Seebach stream (Austria), tracing assimilation and mineralization of 13C and 15N labels from mineral-sorbed and dissolved amino acids. Here we present data on the effects of organo-mineral sorption upon amino acid mineralization and its C:N stoichiometry. Organo-mineral sorption had a significant effect upon microbial activity, restricting C and N mineralization by both the biofilm and streamwater treatments. Distinct differences in community response were observed, with both dissolved and mineral-stabilized amino acids playing an enhanced role in the metabolism of the streamwater microbial community. Mineral-sorption of amino acids differentially affected C & N mineralization and reduced the C:N ratio of the dissolved amino acid pool. The present study demonstrates that organo-mineral complexes restrict microbial degradation

  4. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  5. Mineralogy and Geochemical Processes of Carbonate Mineral-rich Sulfide Mine Tailings, Zimapan, Mexico

    Science.gov (United States)

    McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.

    2009-12-01

    Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in

  6. Mineral replacements during carbonation of peridotite: implications for carbon dioxide sequestration in ultramafic rocks

    Science.gov (United States)

    Beinlich, Andreas; Hövelmann, Jörn; Plümper, Oliver; Austrheim, Hâkon

    2010-05-01

    , together with poorly crystalline serpentine and extremely fine grained talc. Hydrothermal batch experiments (130-160 bar PCO2; 200° C; 1-3 weeks reaction time) show that the alteration product after olivine is the favorable site of reaction presumably due to the large reactive surface area. In contrast, the olivine relicts have reacted to a significantly lesser extend, whereas the serpentine veins remain virtually unreacted. The dissolution of the compartment fillings is followed by nucleation and growth of calcite crystals also revealing that precipitation of calcite is strongly favored over magnesite as soon as the system contains Ca. The preferred precipitation of calcite is also supported by geochemical modeling (using Phreeqc), which shows that the Mg-bearing carbonates (dolomite, magnesite) only form if the fluid is sufficiently depleted in Ca. The compositional and textural differences between different samples as well as different run products from experiments indicate that the described clasts evolved from peridotite due to extreme mobilization of Mg, development of secondary porosity, and infill of carbonates. Mg removed from the clasts is partly consumed by replacement reactions in the vicinity of the clasts where Fe-minerals (almandine) are altered to Mg-minerals (talc). For basins containing abundant peridotite clasts, the outlined process will influence the CO2 and MgO budget. References: IPCC Special report: Carbon Dioxide Capture and Storage, Summary for Policymakers, 2005.

  7. Carbon and mineral transport by the Caroni River

    Energy Technology Data Exchange (ETDEWEB)

    Paolini, J.

    Seasonal variations of several physicochemical parameters of surface water samples collected during the years 1983-1984 from the Caroni River at Paso de Caruachi are showed. The waters of the Caroni River are slightly acidic (pH 6.32), of low ionic content (8.9 uS) and have a high content of dissolved organic carbon (5.87 mg/1). Sediment concentration is very low, but with a high amount of organic carbon. The transport of total carbon -organic and inorganic- and dissolved salts were estimated in 1.04 x 10/sup 6/ ton C/year and 0.80 x 10/sup 6/ ton/year, respectively.

  8. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Larry R.; O' Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism.

  9. A Quantitative Investigation of CO2 Sequestration by Mineral Carbonation

    OpenAIRE

    Mohammad, Muneer; Ehsani, Mehrdad

    2015-01-01

    Anthropogenic activities have led to a substantial increase in carbon dioxide (CO2), a greenhouse gas (GHG), contributing to heightened concerns of global warming. In the last decade alone CO2 emissions increased by 2.0 ppm/yr. globally. In the year 2009, United States and China contributed up to 43.4% of global CO2 emissions. CO2 capture and sequestration have been recognized as promising solutions to mitigate CO2 emissions from fossil fuel based power plants. Typical techniques for carbon c...

  10. Soil carbon mineralization following biochar addition associated with external nitrogen

    Directory of Open Access Journals (Sweden)

    Rudong Zhao

    2015-12-01

    Full Text Available Biochar has been attracting increasing attention for its potentials of C sequestration and soil amendment. This study aimed to understand the effects of combining biochar with additional external N on soil C mineralization. A typical red soil (Plinthudults was treated with two biochars made from two types of plantation-tree trunks (soil-biochar treatments, and was also treated with external N (soil-biochar-N treatments. All treatments were incubated for 42 d. The CO2-C released from the treatments was detected periodically. After the incubation, soil properties such as pH, microbial biomass C (MBC, and microbial biomass N (MBN were measured. The addition of biochar with external N increased the soil pH (4.31-4.33 compared to the soil treated with external N only (4.21. This was not observed in the comparison of soil-biochar treatments (4.75-4.80 to soil only (4.74. Biochar additions (whether or not they were associated with external N increased soil MBC and MBN, but decreased CO2-C value per unit total C (added biochar C + soil C according to the model fitting. The total CO2-C released in soil-biochar treatments were enhanced compared to soil only (i.e., 3.15 vs. 2.57 mg and 3.23 vs. 2.45 mg, which was attributed to the labile C fractions in the biochars and through soil microorganism enhancement. However, there were few changes in soil C mineralization in soil-biochar-N treatments. Additionally, the potentially available C per unit total C in soil-biochar-N treatments was lower than that observed in the soil-biochar treatments. Therefore, we believe in the short term, that C mineralization in the soil can be enhanced by biochar addition, but not by adding external N concomitantly.

  11. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  12. DEVELOPMENT OF A CO2 SEQUESTRATION MODULE BY INTEGRATING MINERAL ACTIVATION AND AQUEOUS CARBONATION

    Energy Technology Data Exchange (ETDEWEB)

    M. Mercedes Maroto-Valer; John M. Andresen; George Alexander

    2004-11-15

    Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw minerals, the permanent storage of CO{sub 2} in solid form as carbonates, and the overall reaction being exothermic. However, the primary drawback to mineral carbonation is the reaction kinetics. To accelerate the reaction, aqueous carbonation processes are preferred, where the minerals are firstly dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface controlled. In order to accelerate the dissolution process, the serpentine can be ground to very fine particle size (<37 {micro}m), but this is a very energy intensive process. Alternatively, magnesium could be chemically extracted in aqueous solution. Phase I showed that chemical surface activation helps to dissolve the magnesium from the serpentine minerals (particle size {approx}100 {micro}m), and furthermore, the carbonation reaction can be conducted under mild conditions (20 C and 650 psig) compared to previous studies that required >185 C, >1850 psig and <37 {micro}m particle size. Phase I also showed that over 70% of the magnesium can be extracted at ambient temperature leaving amorphous SiO{sub 2} with surface areas {approx} 330m{sup 2}/g. The overall objective of Phase 2 of this research program is to optimize the active carbonation process developed in Phase I in order to design an integrated CO{sub 2} sequestration module. During the current reporting period, Task 1 ''Mineral activation'' was initiated and focused on a parametric study to optimize the operation conditions for the mineral activation, where serpentine and sulfuric acid were reacted, as following the results from Phase 1. Several experimental factors were outlined as having a potential influence on the mineral activation. This study has focused to date on the effects of varying the acid

  13. The Effects of Glyphosate Isopropylamine and Trifluralin on the Carbon Mineralization of Olive Tree Soils

    OpenAIRE

    ESER, Feruze; SAĞLIKER, Hüsniye AKA; DARICI, Cengiz

    2007-01-01

    Glyphosate isopropylamine and trifluralin are herbicides widely used in Turkish agriculture. The recommended field dose (RFD) (480 g of active ingredient l-1 for both glyphosate and trifluralin) and 2 x RFD of these herbicides were added to the soil of olive trees (Olea europaea L., Oleaceae) growing on the Çukurova University Campus (Adana) under Mediterranean climate conditions in order to determine their effects on soil microbial activity as measured by carbon mineralization. Carbon minera...

  14. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping.

    Science.gov (United States)

    Mitchell, Andrew C; Dideriksen, Knud; Spangler, Lee H; Cunningham, Alfred B; Gerlach, Robin

    2010-07-01

    The potential of microorganisms for enhancing carbon capture and storage (CCS) via mineral-trapping (where dissolved CO(2) is precipitated in carbonate minerals) and solubility trapping (as dissolved carbonate species in solution) was investigated. The bacterial hydrolysis of urea (ureolysis) was investigated in microcosms including synthetic brine (SB) mimicking a prospective deep subsurface CCS site with variable headspace pressures [p(CO(2))] of (13)C-CO(2). Dissolved Ca(2+) in the SB was completely precipitated as calcite during microbially induced hydrolysis of 5-20 g L(-1) urea. The incorporation of carbonate ions from (13)C-CO(2) ((13)C-CO(3)(2-)) into calcite increased with increasing p((13)CO(2)) and increasing urea concentrations: from 8.3% of total carbon in CaCO(3) at 1 g L(-1) to 31% at 5 g L(-1), and 37% at 20 g L(-1). This demonstrated that ureolysis was effective at precipitating initially gaseous [CO(2)(g)] originating from the headspace over the brine. Modeling the change in brine chemistry and carbonate precipitation after equilibration with the initial p(CO(2)) demonstrated that no net precipitation of CO(2)(g) via mineral-trapping occurred, since urea hydrolysis results in the production of dissolved inorganic carbon. However, the pH increase induced by bacterial ureolysis generated a net flux of CO(2)(g) into the brine. This reduced the headspace concentration of CO(2) by up to 32 mM per 100 mM urea hydrolyzed because the capacity of the brine for carbonate ions was increased, thus enhancing the solubility-trapping capacity of the brine. Together with the previously demonstrated permeability reduction of rock cores at high pressure by microbial biofilms and resilience of biofilms to supercritical CO(2), this suggests that engineered biomineralizing biofilms may enhance CCS via solubility-trapping, mineral formation, and CO(2)(g) leakage reduction.

  15. Impacts of diffusive transport on carbonate mineral formation from magnesium silicate-CO2-water reactions.

    Science.gov (United States)

    Giammar, Daniel E; Wang, Fei; Guo, Bin; Surface, J Andrew; Peters, Catherine A; Conradi, Mark S; Hayes, Sophia E

    2014-12-16

    Reactions of CO2 with magnesium silicate minerals to precipitate magnesium carbonates can result in stable carbon sequestration. This process can be employed in ex situ reactors or during geologic carbon sequestration in magnesium-rich formations. The reaction of aqueous CO2 with the magnesium silicate mineral forsterite was studied in systems with transport controlled by diffusion. The approach integrated bench-scale experiments, an in situ spectroscopic technique, and reactive transport modeling. Experiments were performed using a tube packed with forsterite and open at one end to a CO2-rich solution. The location and amounts of carbonate minerals that formed were determined by postexperiment characterization of the solids. Complementing this ex situ characterization, (13)C NMR spectroscopy tracked the inorganic carbon transport and speciation in situ. The data were compared with the output of reactive transport simulations that accounted for diffusive transport processes, aqueous speciation, and the forsterite dissolution rate. All three approaches found that the onset of magnesium carbonate precipitation was spatially localized about 1 cm from the opening of the forsterite bed. Magnesite was the dominant reaction product. Geochemical gradients that developed in the diffusion-limited zones led to locally supersaturated conditions at specific locations even while the volume-averaged properties of the system remained undersaturated.

  16. On the neutralization of acid rock drainage by carbonate and silicate minerals

    Science.gov (United States)

    Sherlock, E. J.; Lawrence, R. W.; Poulin, R.

    1995-02-01

    The net result of acid-generating and-neutralizing reactions within mining wastes is termed acid rock drainage (ARD). The oxidation of sulfide minerals is the major contributor to acid generation. Dissolution and alteration of various minerals can contribute to the neutralization of acid. Definitions of alkalinity, acidity, and buffer capacity are reviewed, and a detailed discussion of the dissolution and neutralizing capacity of carbonate and silicate minerals related to equilibium conditions, dissolution mechanism, and kinetics is provided. Factors that determine neutralization rate by carbonate and silicate minerals include: pH, PCO 2, equilibrium conditions, temperature, mineral composition and structure, redox conditions, and the presence of “foreign” ions. Similar factors affect sulfide oxidation. Comparison of rates shows sulfides react fastest, followed by carbonates and silicates. The differences in the reaction mechanisms and kinetics of neutralization have important implications in the prediction, control, and regulation of ARD. Current static and kinetic prediction methods upon which mine permitting, ARD control, and mine closure plans are based do not consider sample mineralogy or the kinetics of the acid-generating and-neutralizing reactions. Erroneous test interpretations and predictions can result. The importance of considering mineralogy for site-specific interpretation is highlighted. Uncertainty in prediction leads to difficulties for the mine operator in developing satisfactory and cost-effective control and remediation measures. Thus, the application of regulations and guidelines for waste management planning need to beflexible.

  17. A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate, and oxyhydroxide minerals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Felmy, Andrew R.; Clark, Sue B.

    2008-11-03

    In this work we have applied liquid-helium temperature (LHeT) time-resolved laser-induced fluorescence spectroscopy (TRLIF) to characterize a series of natural and synthetic minerals of uranium carbonate, phosphate and oxyhydroxides including rutherfordine, zellerite, liebigite, phosphuranylite, meta-autunite, meta-torbernite, uranyl phosphate, sodium-uranyl-phosphate, bequerelite, clarkeite, curite, schoepite and compregnacite, and compared their spectral characteristics among these minerals as well as our previously published data on uranyl silicates. For the carbonate minerals, the fluorescence spectra depend on the stoichiometry of the mineral. For the phosphate minerals the fluorescence spectra closely resemble each other despite the differences in their composition and structure. For all uranium oxyhydroxides, the fluorescence spectra are largely red-shifted as compared with those of the uranium carbonates and phosphates and their vibronic bands are broadened and less resolved. The much enhanced spectra resolution at LHeT allows more accurate calculation of the O=U=O symmetrical stretch frequency, ν1, corresponding to the average spacing of the vibronic peaks of the fluorescence spectra and the spectral origin as reflected by the position of the first vibronic band. It was found that both the average ν1 and λ1 values correlate well with the average basicity of the inorganic anion.

  18. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.

    Science.gov (United States)

    Tenney, Craig M; Cygan, Randall T

    2014-01-01

    Capture and subsequent geologic storage of CO2 in deep brine reservoirs plays a significant role in plans to reduce atmospheric carbon emission and resulting global climate change. The interaction of CO2 and brine species with mineral surfaces controls the ultimate fate of injected CO2 at the nanoscale via geochemistry, at the pore-scale via capillary trapping, and at the field-scale via relative permeability. We used large-scale molecular dynamics simulations to study the behavior of supercritical CO2 and aqueous fluids on both the hydrophilic and hydrophobic basal surfaces of kaolinite, a common clay mineral. In the presence of a bulk aqueous phase, supercritical CO2 forms a nonwetting droplet above the hydrophilic surface of kaolinite. This CO2 droplet is separated from the mineral surface by distinct layers of water, which prevent the CO2 droplet from interacting directly with the mineral surface. Conversely, both CO2 and H2O molecules interact directly with the hydrophobic surface of kaolinite. In the presence of bulk supercritical CO2, nonwetting aqueous droplets interact with the hydrophobic surface of kaolinite via a mixture of adsorbed CO2 and H2O molecules. Because nucleation and precipitation of minerals should depend strongly on the local distribution of CO2, H2O, and ion species, these nanoscale surface interactions are expected to influence long-term mineralization of injected carbon dioxide.

  19. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Science.gov (United States)

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P organic carbon in the limestone soil from forest land (SL) under the variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P soil organic carbon in both temperature treatments, which implied that controlling DOC production was an important way for the temperature influence of SOC mineralization. During the incubation

  20. Benthic Carbon mineralization and nutrient turnover in a Scottish Sea Loch

    DEFF Research Database (Denmark)

    Glud, Ronnie N.; Berg, Peter; Stahl, Henrik

    2016-01-01

    Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated by the b...

  1. Carbon Mineralization in Two Ultisols Amended with Different Sources and Particle Sizes of Pyrolyzed Biochar

    Science.gov (United States)

    Biochar produced during pyrolysis has the potential to enhance soil fertility and reduce greenhouse gas emissions. The influence of biochar properties (e.g., particle size) on both short- and long-term carbon (C) mineralization of biochar remains unclear. There is minimal informa...

  2. Mineralization of organic carbon on and in the sediment of Lake Grevelingen

    Science.gov (United States)

    Lindeboom, H. J.; De Klerk, H. A. J.; Sandee, A. J. J.

    Within the framework of a research project on the carbon cycle in saline Lake Grevelingen a study of the mineralization on and in the sediment was made. The oxygen uptake by the sediment was measured using the bell jar method at 6 sampling stations. Applying a C over O 2 conversion factor of 0.29, it was calculated that 330 g·m -2 is mineralized in the sediment of the lake annually. By means of biomass estimates of the macroflora and fauna inside the bell jars and regression analysis, the contribution of these organisms to the carbon mineralization rate was calculated to be 70 and 95 g·m -2·a -1, respectively. The effect of oxygen gradients and apparent diffusion coefficients upon the oxygen uptake rate was studied with microelectrodes. This indicated that bioturbation is a major factor influencing the oxygen uptake rate. A good correlation between this rate and temperature was found.

  3. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  4. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.; Rahayu, S.

    2015-01-01

    Sustainability criteria for palm oil production guide new planting toward non-forest land cover on mineral soil, avoiding carbon debts caused by forest and peat conversion. Effects on soil carbon stock (soil Cstock) of land use change trajectories from forest and non-forest to oil palm on mineral so

  5. Development of a CO2 Sequestration Module by Integrating Mineral Activation and Aqueous Carbonation

    Energy Technology Data Exchange (ETDEWEB)

    George Alexander; Parvana Aksoy; John Andresen; Mercedes Maroto-Valer; Harold Schobert

    2006-08-14

    Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw materials and the permanent storage of CO{sub 2} in solid form as carbonates. The sequestration of CO{sub 2} through the employment of magnesium silicates--olivine and serpentine--is beyond the proof of concept stage. For the work done in this project, serpentine was chosen as the feedstock mineral due to its abundance and availability. Although the reactivity of olivine is greater than that of serpentine, physical and chemical treatments have been shown to increase greatly the reactivity of serpentine. The primary drawback to mineral carbonation is reaction kinetics. To accelerate the carbonation, aqueous processes are preferred, where the minerals are first dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface-controlled. The relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has been investigated. To accelerate the dissolution process, the mineral can be ground to very fine particle size, <37 {micro}m, but this is a very energy-intensive process. Previous work in our laboratory showed that chemical surface activation helps to dissolve magnesium from the serpentine (of particle size {approx} 100 {micro}m) and that the carbonation reaction can be conducted under mild conditions (20 C and 4.6 MPa) compared to previous studies that required >185 C, >13 MPa, and <37 {micro}m particle size. This work also showed that over 70% of the magnesium can be extracted at ambient temperature, leaving an amorphous silica with surface area of about 330 m{sup 2}/g. The overall objective of this research program is to optimize the active carbonation

  6. Organic carbon concentrations and stocks in Romanian mineral forest soils

    Directory of Open Access Journals (Sweden)

    Lucian C. Dincă

    2012-12-01

    Full Text Available Estimating soils organic carbon stock and its change in time is an actual concern for scientists and climate change policy makers. The present article firstly focus on determination of C stocks in Romania on forest soil types, as well as development of the spatial distribution mapping using a Geographic Information System (GIS and also the secondly on the quantification of uncertainty associated with currently available data on C concentration on forest soils geometrical layers. Determination of C stock was done based on forest management plans database created over 2000-2006. Unlike original database, the data for this study was harmonized on following depths: 0-10 cm, 10-20 cm, 20-40 cm, and > 40 cm. Then, the obtained values were grouped by soil types, resulting average values for the main forest soils from Romania. A soil area weighted average value of 137 t/ha is calculated for Romania, in the range of estimations for other European geographic and climatic areas. The soils that have the largest amount of organic carbon are andosols, vertisols, entic and haplic podzols, whereas the ones that have the smallest values of organic carbon are solonetz and solonchaks. Although current assessment relies on very large number of samples from the forest management planning database, the variability of C concentration remains very large, ~40-50% for coefficient the variation and ~100% of the average, when defining the range of 95% of entire soil population, rather showing the variability than uncertainty of the average estimated. Best fit for C concentration on geometric layers in any forest soil is asymmetric, associated with log-normal distributions.

  7. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia.

    Science.gov (United States)

    Knoblauch, Christian; Beer, Christian; Sosnin, Alexander; Wagner, Dirk; Pfeiffer, Eva-Maria

    2013-04-01

    The currently observed Arctic warming will increase permafrost degradation followed by mineralization of formerly frozen organic matter to carbon dioxide (CO2 ) and methane (CH4 ). Despite increasing awareness of permafrost carbon vulnerability, the potential long-term formation of trace gases from thawing permafrost remains unclear. The objective of the current study is to quantify the potential long-term release of trace gases from permafrost organic matter. Therefore, Holocene and Pleistocene permafrost deposits were sampled in the Lena River Delta, Northeast Siberia. The sampled permafrost contained between 0.6% and 12.4% organic carbon. CO2 and CH4 production was measured for 1200 days in aerobic and anaerobic incubations at 4 °C. The derived fluxes were used to estimate parameters of a two pool carbon degradation model. Total CO2 production was similar in Holocene permafrost (1.3 ± 0.8 mg CO2 -C gdw(-1) aerobically, 0.25 ± 0.13 mg CO2 -C gdw(-1) anaerobically) as in 34 000-42 000-year-old Pleistocene permafrost (1.6 ± 1.2 mg CO2 -C gdw(-1) aerobically, 0.26 ± 0.10 mg CO2 -C gdw(-1) anaerobically). The main predictor for carbon mineralization was the content of organic matter. Anaerobic conditions strongly reduced carbon mineralization since only 25% of aerobically mineralized carbon was released as CO2 and CH4 in the absence of oxygen. CH4 production was low or absent in most of the Pleistocene permafrost and always started after a significant delay. After 1200 days on average 3.1% of initial carbon was mineralized to CO2 under aerobic conditions while without oxygen 0.55% were released as CO2 and 0.28% as CH4 . The calibrated carbon degradation model predicted cumulative CO2 production over a period of 100 years accounting for 15.1% (aerobic) and 1.8% (anaerobic) of initial organic carbon, which is significantly less than recent estimates. The multiyear time series from the incubation experiments helps to more reliably constrain projections of future

  8. Carbon and Nitrogen Mineralization in Soil Combining Sewage Sludge and Straw

    Directory of Open Access Journals (Sweden)

    Sandro José Giacomini

    2015-10-01

    Full Text Available ABSTRACT The combined incorporation of sewage sludge (SS and oat straw (OS to the soil can increase straw carbon mineralization and microbial nitrogen immobilization. This hypothesis was tested in two laboratory experiments, in which SS was incorporated in the soil with and without OS. One treatment in which only straw was incorporated and a control with only soil were also evaluated. The release of CO2 and mineral N in the soil after organic material incorporation was evaluated for 110 days. The cumulative C mineralization reached 30.1 % for SS and 54.7 % for OS. When these organic materials were incorporated together in the soil, straw C mineralization was not altered. About 60 % of organic N in the SS was mineralized after 110 days. This N mineralization index was twice as high as that defined by Resolution 375/2006 of the National Environmental Council. The combined incorporation of SS and OS in the soil caused an immobilization of microbial N of 5.9 kg Mg-1 of OS (mean 3.5 kg Mg-1. The results of this study indicated that SS did not increase straw C mineralization, but the SS rate should be adjusted to compensate for the microbial N immobilization caused by straw.

  9. Water-rock interaction during mineral carbonation and volcanic ash weathering

    OpenAIRE

    Helgi Arnar Alfreðsson 1984

    2015-01-01

    The reduction of atmospheric carbon dioxide (CO2) is considered one of the greatest challenges of this century. Carbon capture and storage (CCS) is one of the means proposed to lower the atmospheric CO2 content. The aim of the CarbFix project in Iceland was to design and test a CO2 re-injection system, in which CO2 from the Hellisheidi geothermal power plant was injected, fully dissolved in water, into basaltic rocks. In this way the carbon is mineralized upon basalt dissolution by the precip...

  10. Developments in CO2 mineral carbonation of oil shale ash.

    Science.gov (United States)

    Uibu, M; Velts, O; Kuusik, R

    2010-02-15

    Solid waste and atmospheric emissions originating from power production are serious problems worldwide. In the Republic of Estonia, the energy sector is predominantly based on combustion of a low-grade carbonaceous fossil fuel: Estonian oil shale. Depending on the combustion technology, oil shale ash contains 10-25% free lime. To transport the ash to wet open-air deposits, a hydraulic system is used in which 10(7)-10(8) cubic meters of Ca(2+)-ion-saturated alkaline water (pH level 12-13) is recycled between the plant and sedimentation ponds. The goals of the current work were to design an ash-water suspension carbonation process in a continuous mode laboratory-scale plant and to search for potential means of intensifying the water neutralization process. The carbonation process was optimized by cascading reactor columns in which the pH progressed from alkaline to almost neutral. The amount of CO(2) captured from flue gases can reach 1-1.2 million ton at the 2007 production level of the SC Narva Power Plants. Laboratory-scale neutralization experiments were carried out to compare two reactor designs. Sedimentation of PCC particles of rhombohedral crystalline structure was demonstrated and their main characteristics were determined. A new method providing 50x greater specific intensity is also discussed.

  11. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Baath, Erland

    2007-01-01

    Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim...... was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon...... the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate...

  12. Fundamental Science Tools for Geologic Carbon Sequestration and Mineral Carbonation Chemistry: In Situ Magic Angle Spinning (MAS) Nuclear Magnetic Resonance

    Science.gov (United States)

    Hoyt, D. W.; Turcu, R. V.; Sears, J. A.; Rosso, K. M.; Burton, S. D.; Kwak, J.; Felmy, A. R.; Hu, J.

    2010-12-01

    GCS is one of the most promising ways of mitigating atmospheric greenhouse gases. Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly reactions occurring in low-water supercritical CO2(scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof. However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures. Our high pressure MAS rotor has successfully maintained scCO2 conditions with minimal leakage over a period of 72 hours. Mineral carbonation reactions of a model magnesium silicate (forsterite) reacted with 96 bars scCO2 containing varying amounts of H2O (both below and above saturation of the scCO2) were investigated at 50○C. Figure 1 shows typical in situ 13C MAS NMR spectra demonstrating that the peaks corresponding to the reactants, intermediates, and the magnesium carbonation products are all observed in a single spectrum. For example, the scCO2 peak is located at 126.1 ppm. Reaction intermediates include the aqueous species HCO3-(160 ppm), partially hydrated/hydroxylated magnesium carbonates(166-168 ppm), and can easily be distinguished from final product magnesite(170 ppm). The new capability and this model mineral carbonation process will be overviewed in

  13. Carbonate Mineral Formation on Mars: Clues from Stable Isotope Variation Seen in Cryogenic Laboratory Studies of Carbonate Salts

    Science.gov (United States)

    Socki, Richard; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K.

    2013-01-01

    The geologic history of water on the planet Mars is intimately connected to the formation of carbonate minerals through atmospheric CO2 and its control of the climate history of Mars. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms readily when a rise in pH occurs as a result of carbon dioxide degassing quickly from freezing Ca-bicarbonate-rich water solutions. This is a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lakebeds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. We report here the results of a series of laboratory experiments that were conducted to simulate potential cryogenic carbonate formation on the planet Mars. These results indicate that carbonates grown under martian conditions (controlled atmospheric pressure and temperature) show enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values with average delta13C(DIC-CARB) values of 20.5%0 which exceed the expected equilibrium fractionation factor of [10(sup 3) ln alpha = 13%0] at 0 degC. Oxygen isotopes showed a smaller enrichment with delta18O(H2O-CARB) values of 35.5%0, slightly exceeding the equilibrium fractionation factor of [10(sup 3) ln alpha = 34%0 ] at 0degC. Large kinetic carbon isotope effects during carbonate precipitation could substantially affect the carbon isotope evolution of CO2 on Mars allowing for more efficient removal of 13C from the Noachian atmosphere enriched by atmospheric loss. This mechanism would be consistent with the observations of large carbon isotope variations in martian materials despite the

  14. Carbon- and Sulfur-bearing Minerals in the Martian Meteorite ALH 84001

    Science.gov (United States)

    Romanek, C. S.; Thomas, K. L.; Gibson, E. K., Jr.; McKay, D. S.; Socki, R. A.

    1995-09-01

    Unusual carbonate minerals in ALH 84001 [1] provide insights into surficial processes that may have occurred on Mars, but despite detailed geochemical studies [2-4] carbonate petrogenesis has yet to be fully-characterized. High-resolution TEM and SEM analyses were performed on C- and S-bearing mineral grains to better constrain the nature and timing of carbonate mineralization events. Morphological elements: C- and S-bearing minerals in ALH 84001 commonly occur as spheroidal aggregates or fine-grained vug-filling structures. Spheroids are either orange or black, ~150 micrometers (+/- 50 micrometers) in diameter and highly-flattened (10-30 micrometers thick). Orange spheroids have limpid amber-colored cores and white to translucent mantles which are sometimes bound by thin black rims (White mantles of the orange spheroids are composed of nearly pure MgCO3 (Harvey and McSween (1995) LPS XXVI, 555. [5] Marshall D. J. (1988) Cathodoluminescence of Geologic Materials, Unwin Hyman. [6] Mucci A. and Morse J. W. (1990) Aquatic Sci., 3, 217. [7] Mozley P. S. and Carothers W. W. (1992) J. Sed. Petrol., 62, 681.

  15. A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate and oxyhydroxide minerals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Zachara, J.M.; Liu, C.; Gassman, P.L.; Felmy, A.R. [Pacific Northwest National Lab., Richland, WA (United States); Clark, S.B. [Washington State Univ., Pullman, WA (United States)

    2008-07-01

    In this work we applied time-resolved laser-induced fluorescence spectroscopy (TRLIF) at both room temperature (RT) and near liquid-helium temperature (6 K) to characterize a series of natural and synthetic minerals of uranium carbonate, phosphate and oxyhydroxides including rutherfordine, zellerite, liebigite, phosphuranylite, meta-autunite, meta-torbernite, uranyl phosphate, sodium-uranyl-phosphate, becquerelite, schoepite, meta-schoepite, dehydrated schoepite and compreignacite, and have compared the spectral characteristics among these minerals as well as our previously published data on uranyl silicates. For the carbonate minerals, the fluorescence spectra of rutherfordine showed significant difference from those of zellerite and liebigite. The fluorescence spectra of the phosphate minerals closely resemble each other despite the differences in their composition and structure. For all uranium oxyhydroxides, the fluorescence spectra are largely red-shifted as compared to those of the uranium carbonates and phosphates and their vibronic bands are broad and less resolved at RT. The enhanced spectra resolution at 6 K allows more accurate determination of the fluorescence band origin and offers a complemental method to measure the O=U=O symmetrical stretch frequency, {nu}{sub 1}, from the spacings of the vibronic bands of the fluorescence spectra. The average {nu}{sub 1} values appear to be inversely correlated with the average pK{sub a} values of the anions. (orig.)

  16. Carbon uptake, microbial community structure, and mineralization of layered mats from Imperial Geyser, Yellowstone National Park

    Science.gov (United States)

    Woycheese, K. M.; Grabenstatter, J.; Haddad, A.; Ricci, J. N.; Johnson, H.; Berelson, W.; Spear, J. R.; Caporaso, J. G.; International Geobiology Course 2011

    2011-12-01

    Layered microbial mats provide an analog for early microbial communities, and remain one of the few microbiological structures consistently preserved in the geologic record. Despite this, growth rates, metabolic capabilities, and methods of mineralization in modern communities are poorly understood. Imperial Geyser, an alkaline siliceous hot spring in Yellowstone National Park, provides a useful setting to study these parameters. Mat and water samples (T = 64-40 °C) were collected for 13C analysis and 13C-spiked bicarbonate and acetate incubation experiments. Carbon isotopes were measured for the stream water, pore water and biomass. We experimentally determined rates of bicarbonate uptake, acetate uptake and mineral content. Bicarbonate uptake rates ranged from 0 - 0.4% per day, while acetate uptake rates ranged from 0 - 2.0% per day. These results indicate that the mat biomass is capable of turnover in about 300 days resulting in potential growth rates of 1-2 cm/year. Organic carbon content (% dry weight) ranged from 2 to 16%, and decreased with depth in the mat. The mineral content of these mats is predominantly amorphous SiO2. An inverse correlation between mineral percent and bicarbonate uptake rate was observed, suggesting that there may be a link between metabolism and the prevention of mineralization. Comparing the 13C and carbon uptake rates with 16S rDNA pyrosequencing data we were able to hypothesize the carbon fixation pathways and heterotrophic interactions occurring in this environment. In general, two patterns of 13C values were observed. The first pattern was characterized by increased heterotrophy with depth. In the other, preliminary evidence supporting a photoheterotrophic lifestyle for Roseiflexus spp. was found.

  17. Experimental Investigation and Simplistic Geochemical Modeling of CO2 Mineral Carbonation Using the Mount Tawai Peridotite

    Directory of Open Access Journals (Sweden)

    Omeid Rahmani

    2016-03-01

    Full Text Available In this work, the potential of CO2 mineral carbonation of brucite (Mg(OH2 derived from the Mount Tawai peridotite (forsterite based (Mg2SiO4 to produce thermodynamically stable magnesium carbonate (MgCO3 was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO3 is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO2 gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year with the bulk of the carbon partitioning into magnesite and that very little remains in solution.

  18. Implications of carbon saturation model structure for simulated nitrogen mineralization dynamics

    Directory of Open Access Journals (Sweden)

    C. M. White

    2014-06-01

    Full Text Available Carbon (C saturation theory suggests that soils have a~limited capacity to stabilize organic C and that this capacity may be regulated by intrinsic soil properties such as clay content and mineralogy. While C saturation theory has advanced our ability to predict soil C stabilization, we only have a weak understanding of how C saturation affects N cycling. In biogeochemical models, C and N cycling are tightly coupled, with C decomposition and respiration driving N mineralization. Thus, changing model structures from non-saturation to C saturation dynamics can change simulated N dynamics. Carbon saturation models proposed in the literature calculate a theoretical maximum C storage capacity of saturating pools based on intrinsic soil properties, such as clay content. The extent to which current C stocks fill the storage capacity of the pool is termed the C saturation ratio, and this ratio is used to regulate either the efficiency or the rate of C transfer from donor to receiving pools. In this study, we evaluated how the method of implementing C saturation and the number of pools in a model affected net N mineralization from decomposing plant residues. In models that use the C saturation ratio to regulate transfer efficiency, C saturation affected N mineralization, while in those in which the C saturation ratio regulates transfer rates, N mineralization was independent of C saturation. When C saturation ratio regulates transfer efficiency, as the saturation ratio increases, the threshold C : N ratio at which positive net N mineralization occurs also increases because more of the C in the residue is respired. In a single-pool model where C saturation ratio regulated the transfer efficiency, predictions of N mineralization from residue inputs were unrealistically high, missing the cycle of N immobilization and mineralization typically seen after the addition of high C : N inputs to soils. A more realistic simulation of N mineralization was achieved

  19. Carbon mineralization and carbonate preservation in modern cold-water coral reef sediments on the Norwegian shelf

    Directory of Open Access Journals (Sweden)

    L. M. Wehrmann

    2009-04-01

    Full Text Available Cold-water coral ecosystems are considered hot-spots of biodiversity and biomass production and may be a regionally important contributor to carbonate production. The impact of these ecosystems on biogeochemical processes and carbonate preservation in associated sediments were studied at Røst Reef and Traenadjupet Reef, two modern (post-glacial cold-water coral reefs on the Mid-Norwegian shelf. Sulfate and iron reduction as well as carbonate dissolution and precipitation were investigated by combining pore-water geochemical profiles, steady state modeling, as well as solid phase analyses and sulfate reduction rate measurements on gravity cores of up to 3.25 m length. Low extents of sulfate depletion and dissolved inorganic carbon (DIC production, combined with sulfate reduction rates not exceeding 3 nmol S cm−3 d−1, suggested that overall anaerobic carbon mineralization in the sediments was low. These data showed that the coral fragment-bearing siliciclastic sediments were effectively decoupled from the productive pelagic ecosystem by the complex reef surface framework. Organic matter being mineralized by sulfate reduction was calculated to consist of 57% carbon bound in CH2O groups and 43% carbon in -CH2- groups. Methane concentrations were below 1 μM, and failed to support the hypothesis of a linkage between the distribution of cold-water coral reefs and the presence of hydrocarbon seepage. Reductive iron oxide dissolution linked to microbial sulfate reduction buffered the pore-water carbonate system and inhibited acid-driven coral skeleton dissolution. A large pool of reactive iron was available leading to the formation of iron sulfide minerals. Constant pore-water Ca2+, Mg2+ and Sr2+ concentrations in most cores and decreasing Ca2+ and Sr2+ concentrations with depth in core 23–18 GC indicated diagenetic carbonate precipitation. This was

  20. Carbon mineralization and carbonate preservation in modern cold-water coral reef sediments on the Norwegian shelf

    Directory of Open Access Journals (Sweden)

    L. M. Wehrmann

    2008-12-01

    Full Text Available Cold-water coral ecosystems are considered hot-spots of biodiversity and biomass production and may be a regionally important contributor to carbonate production. The impact of these ecosystems on biogeochemical processes and carbonate preservation in associated sediments were studied at Røst Reef and Traenadjupet Reef, two modern (post-glacial cold-water coral reefs on the Mid-Norwegian shelf. Sulfate and iron reduction as well as carbonate dissolution and precipitation were investigated by combining pore-water geochemical profiles, steady state modeling, as well as solid phase analyses and sulfate reduction rate measurements on gravity cores of up to 3.2 m length. Low extents of sulfate depletion and dissolved inorganic carbon (DIC production, combined with sulfate reduction rates not exceeding 3 nmolS cm−3 d−1, suggested that overall anaerobic carbon mineralization in the sediments was low. These data showed that the coral fragment-bearing siliciclastic sediments were effectively decoupled from the productive pelagic ecosystem by the complex reef surface framework. Organic matter being mineralized by sulfate reduction was calculated to consist of 57% carbon bound in –CH2O– groups and 43% carbon in –CH2– groups. Methane concentrations were below 1 μM, and failed to support the hypothesis of a linkage between the distribution of cold-water coral reefs and the presence of hydrocarbon seepage. Iron reduction linked to microbial sulfate reduction buffered the pore-water carbonate system and inhibited acid driven coral skeleton dissolution. A large pool of reactive iron was available leading to the formation of iron sulfide minerals. Constant pore-water Ca2+, Mg2+ and Sr2+ concentrations in most cores and decreasing Ca2+ and Sr2+ concentrations with depth in core 23-18 GC indicated diagenetic carbonate precipitation. This was consistent

  1. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.

    Science.gov (United States)

    Marchal, Geoffrey; Smith, Kilian E C; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G

    2013-10-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg(-1)) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase.

  2. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya

    Directory of Open Access Journals (Sweden)

    F. Dehairs

    2004-08-01

    Full Text Available The origin of carbon substrates used by in situ sedimentary bacterial communities was investigated in an intertidal mangrove ecosystem and in adjacent seagrass beds in Gazi bay (Kenya by δ13C analysis of bacteria-specific PLFA (phospholipid fatty acids and bulk organic carbon. Export of mangrove-derived organic matter to the adjacent seagrass-covered bay was evident from sedimentary total organic carbon (TOC and δ13CTOC data. PLFA δ13C data indicate that the substrate used by bacterial communities varied strongly and that exported mangrove carbon was a significant source for bacteria in the adjacent seagrass beds. Within the intertidal mangrove forest, bacterial PLFA at the surface layer (0-1 cm typically showed more enriched δ13C values than deeper (up to 10 cm sediment layers, suggesting a contribution from microphytobenthos and/or inwelled seagrass material. Under the assumption that seagrasses and mangroves are the dominant potential end-members, the estimated contribution of mangrove-derived carbon to benthic mineralization in the seagrass beds (16-74% corresponds fairly well to the estimated contribution of mangrove C to the sedimentary organic matter pool (21-71% across different seagrass sites. Based on these results and a compilation of literature data, we suggest that allochtonous carbon trapped in seagrass beds may often represent a significant fraction of the substrate for benthic mineralization - both in cases where seagrass C dominates the sediment TOC pool and in cases where external inputs are significant. Hence, it is likely that community respiration data systematically overestimate the role of mineralization in the overall seagrass C budget.

  3. Prediction of soil organic carbon concentration and soil bulk density of mineral soils for soil organic carbon stock estimation

    Science.gov (United States)

    Putku, Elsa; Astover, Alar; Ritz, Christian

    2016-04-01

    Soil monitoring networks provide a powerful base for estimating and predicting nation's soil status in many aspects. The datasets of soil monitoring are often hierarchically structured demanding sophisticated data analyzing methods. The National Soil Monitoring of Estonia was based on a hierarchical data sampling scheme as each of the monitoring site was divided into four transects with 10 sampling points on each transect. We hypothesized that the hierarchical structure in Estonian Soil Monitoring network data requires a multi-level mixed model approach to achieve good prediction accuracy of soil properties. We used this database to predict soil bulk density and soil organic carbon concentration of mineral soils in arable land using different statistical methods: median approach, linear regression and mixed model; additionally, random forests for SOC concentration. We compared the prediction results and selected the model with the best prediction accuracy to estimate soil organic carbon stock. The mixed model approach achieved the best prediction accuracy in both soil organic carbon (RMSE 0.22%) and bulk density (RMSE 0.09 g cm-3) prediction. Other considered methods under- or overestimated higher and lower values of soil parameters. Thus, using these predictions we calculated the soil organic carbon stock of mineral arable soils and applied the model to a specific case of Tartu County in Estonia. Average estimated SOC stock of Tartu County is 54.8 t C ha-1 and total topsoil SOC stock 1.8 Tg in humus horizon.

  4. Mineral Sequestration of Carbon Dixoide in a Sandstone-Shale System

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2004-07-09

    A conceptual model of CO2 injection in bedded sandstone-shale sequences has been developed using hydrogeologic properties and mineral compositions commonly encountered in Gulf Coast sediments. Numerical simulations were performed with the reactive fluid flow and geochemical transport code TOUGHREACT to analyze mass transfer between sandstone and shale layers and CO2 immobilization through carbonate precipitation. Results indicate that most CO2 sequestration occurs in the sandstone. The major CO2 trapping minerals are dawsonite and ankerite. The CO2 mineral-trapping capacity after 100,000 years reaches about 90 kg per cubic meter of the medium. The CO2 trapping capacity depends on primary mineral composition. Precipitation of siderite and ankerite requires Fe+2 supplied mainly by chlorite and some by hematite dissolution and reduction. Precipitation of dawsonite requires Na+ provided by oligoclase dissolution. The initial abundance of chlorite and oligoclase therefore affects the CO2 mineral trapping capacity. The sequestration time required depends on the kinetic rate of mineral dissolution and precipitation. Dawsonite reaction kinetics is not well understood, and sensitivity regarding the precipitation rate was examined. The addition of CO2 as secondary carbonates results in decreased porosity. The leaching of chemical constituents from the interior of the shale causes slightly increased porosity. The limited information currently available for the mineralogy of natural high-pressure CO2 gas reservoirs is also generally consistent with our simulation. The ''numerical experiments'' give a detailed understanding of the dynamic evolution of a sandstone-shale geochemical system.

  5. Calibrating the ChemCam LIBS for carbonate minerals on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Roger C [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Ollila, Ann M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Lanza, Nina [Los Alamos National Laboratory; Newsom, Horton E [Los Alamos National Laboratory

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  6. Organo-mineral complexation alters carbon and nitrogen cycling in stream microbial assemblages

    OpenAIRE

    Hunter, William Ross; Wanek, Wolfgang; Prommer, Judith; Mooshammer, Maria; Battin, Tom

    2014-01-01

    Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use potential as organic carbon (C...

  7. Calibrating the ChemCam LIBS for Carbonate Minerals on Mars

    Science.gov (United States)

    Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  8. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior

    DEFF Research Database (Denmark)

    Li, Jiying; Crowe, Sean Andrew; Miklesh, David;

    2012-01-01

    penetration is explained by low sedimentation rates (0.01–0.04 cm yr−1), high solubility of oxygen in freshwater, and a shallow (∼ 2 cm) bioturbation zone. In response mainly to oxygen variations in the bottom waters, the sediment oxygen penetration varied seasonally by as much as several centimeters......, suggesting that temporal variability in deeply oxygenated sediments may be greater than previously acknowledged. The oxygen uptake rates (4.4–7.7 mmol m−2 d−1, average 6.1 mmol m−2 d−1) and carbon mineralization efficiency (∼ 90% of deposited carbon) were similar to those in marine hemipelagic and pelagic...

  9. Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations.

    Science.gov (United States)

    Yuen, Yeo Tze; Sharratt, Paul N; Jie, Bu

    2016-11-01

    Numerous carbon dioxide mineralization (CM) processes have been proposed to overcome the slow rate of natural weathering of silicate minerals. Ten of these proposals are mentioned in this article. The proposals are described in terms of the four major areas relating to CM process design: pre-treatment, purification, carbonation, and reagent recycling operations. Any known specifics based on probable or representative operating and reaction conditions are listed, and basic analysis of the strengths and shortcomings associated with the individual process designs are given in this article. The processes typically employ physical or chemical pseudo-catalytic methods to enhance the rate of carbon dioxide mineralization; however, both methods have its own associated advantages and problems. To examine the feasibility of a CM process, three key aspects should be included in the evaluation criteria: energy use, operational considerations as well as product value and economics. Recommendations regarding the optimal level of emphasis and implementation of measures to control these aspects are given, and these will depend very much on the desired process objectives. Ultimately, a mix-and-match approach to process design might be required to provide viable and economic proposals for CM processes.

  10. Priming effects of leaves of Laurus nobilis L. and 1,8-cineole on carbon mineralization

    Directory of Open Access Journals (Sweden)

    Burak Kocak

    2016-03-01

    Full Text Available Plant secondary compounds can have stimulating effect on C cycling and change its rate in soils. We examined how leaves of bay laurel (Laurus nobilis L.; Lauraceae and 1,8-cineole (CIN, one of its constituents, affect soil C mineralization and its rate. Leaves and soil samples of bay laurel were taken from Cukurova University Campus (Adana, Turkey growing naturally under Mediterranean climate conditions. Leaves and CIN were considered as the two forms of organic C sources. After determining the level of 1,8-cineole in leaves by gas chromatography-mass spectrometry, soils were mixed with powdered leaves and 1,8-cineole based on their C contents at same and half doses of soil organic C level. Carbon mineralization of all soils was determined over 54 d (28 °C, 80% field capacity. While 1,8-cineole was found as a major constituent of leaves (65% of essential oil, all doses of leaves and CIN increased soil microbial activity. There were significant differences for C mineralization rate between control and all applications (P < 0.05. High C levels of all treatments decreased C mineralization rate compared to control soils. In summary, all treatments stimulated C mineralization and it is possible to conclude that soil microorganisms adapted to use CIN as an energy source.

  11. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    Science.gov (United States)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  12. Factors contributing to the formation of carbonated mineral water systems in Serbia

    Directory of Open Access Journals (Sweden)

    Marinković Goran

    2012-01-01

    Full Text Available There are more than 65 occurrences of carbonated mineral water (CMW within the territory of Serbia. More than 93 % of these systems are found in the geotectonic unit referred to as the Vardar Zone and on the fringes of nearby units. To the east, west and north of the Vardar Zone, CMWs are either rare or nonexistent. The area featuring CMWs is characterized by Tertiary magmatism, a complex geology and deep neotectonic structures. Based on δ13C values of CO2 and HCO3 - in several CMWs in Serbia, and also in carbonates and CO2 from liquid inclusions in several hydrothermal deposits around the world, it was concluded that CO2 in the lithosphere of Serbia could originate from hydrothermal carbonates, and carbonates from sedimentary, metamorphic and magmatic rocks. The findings clearly showed that the main generators of CO2 are located in the Vardar Zone and that CO2 degasification is accomplished through temperature metamorphosis of carbonates (dolomite, calcite. Based on the carbonate transformation temperatures and the temperature conditions in the lithosphere of Serbia, the CO2 might be the result of temperature-induced carbonate transformation below a depth of 3 km. Therefore, the conclusion of the study of CMWs in Serbia is that the formation of CMW systems in the lithosphere depends on the geochemical, temperature, and the magmatic and structural-neotectonic conditions.

  13. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    Energy Technology Data Exchange (ETDEWEB)

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at

  14. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization

    Science.gov (United States)

    A recent review concluded that earthworm presence increases CO2 emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO2 emission nor in stabilized carbon...

  15. Normalization of stable isotope data for carbonate minerals: implementation of IUPAC guideline

    Science.gov (United States)

    Kim, Sang-Tae; Coplen, Tyler B.; Horita, Juske

    2015-01-01

    Carbonate minerals provide a rich source of geochemical information because their δ13C and δ18O values provide information about surface and subsurface Earth processes. However, a significant problem is that the same δ18O value is not reported for the identical carbonate sample when analyzed in different isotope laboratories in spite of the fact that the International Union of Pure and Applied Chemistry (IUPAC) has provided reporting guidelines for two decades. This issue arises because (1) the δ18O measurements are performed on CO2 evolved by reaction of carbonates with phosphoric acid, (2) the acid-liberated CO2 is isotopically fractionated (enriched in 18O) because it contains only two-thirds of the oxygen from the solid carbonate, (3) this oxygen isotopic fractionation factor is a function of mineralogy, temperature, concentration of the phosphoric acid, and δ18O value of water in the phosphoric acid, (4) researchers may use any one of an assortment of oxygen isotopic fractionation factors that have been published for various minerals at various reaction temperatures, and (5) it sometimes is not clear how one should calculate δ18OVPDB values on a scale normalized such that the δ18O value of SLAP reference water is −55.5 ‰ relative to VSMOW reference water.

  16. The crystal chemistry and the compressibility of silicate-carbonate minerals:Spurrite, galuskinite and tilleyite

    Institute of Scientific and Technical Information of China (English)

    Jing Gao; Xiang Wu; Shan Qin

    2015-01-01

    Spurrite Ca5(SiO4)2(CO3), galuskinite Ca7(SiO4)3(CO3) and tilleyite Ca5(Si2O7)(CO3)2 are three representa-tive minerals formed in high-temperature skarns in the silicate-carbonate system. Their crystal chemistry and compressibility have been investigated using first-principles theoretical simulation. These minerals are structurally described as the combination of interwoven layers constituted by Ca polyhedra and Si polyhedra, with the [CO3] triangles being“separators”to depolymerize the SieCa aggregations. With the effect of pressure, the Si polyhedra and the [CO3] groups present rigid behaviors whereas the CaeO bonds undergo considerable compression. Several pressure-induced abnormities in the lattice parameter vari-ations have been identified, revealing the existence of subtle changes in the compression process. Isothermal equations of state parameters are obtained:K0 ¼ 71.1(1) GPa, V0 ¼ 1003.31(4) Å3 and K00 ¼ 5.4(1) for spurrite; K0 ¼ 75.0(1) GPa, V0 ¼ 1360.30(7) Å3, K00 ¼ 5.4(1) for galuskinite, and K0 ¼ 69.7(3) GPa, V0 ¼ 1168.90(2) Å3 and K00 ¼ 4.0(1) for tilleyite. These compounds have similar K0 values to calcite CaCO3 but are much more compressible than larnite b-Ca2SiO4. Generally for these minerals, the bulk modulus exhibits a negative correlation with the [CO3] proportion. The structural and compressional properties of silicate-carbonate minerals compared with silicates and carbonates are expected to be a guide for further investigations on Si polyhedra and [CO3] coexistent phases.

  17. Carbon Dioxide Mineralization in the Presence of Convective Mixing and the Capillary Transition Zone

    Science.gov (United States)

    Elenius, M. T.; Farshidi, S.; Voskov, D.; Tchelepi, H.

    2015-12-01

    Dissolution of carbon dioxide (CO2) is one of the major trapping mechanisms for carbon storage in saline aquifers. Due to a small density increase when CO2 dissolves in brine, convection cells may establish and greatly enhance the rate at which CO2 is dissolved. This important and complex process has been then a topic of large interest in the community over the last decade. We have previously shown that there is an interaction between the Capillary Transition Zone (CTZ) in the CO2 plume, and convective mixing, and that this causes significantly enhanced dissolution rates compared to a scenario that most authors have used with no flow across this interface. The rate of dissolution from the plume may also be affected by mineral reactions. Andres and Cardoso [1] showed that for the mineralization of CO2 due to silicate dissolution followed by precipitation of carbonate and clay, there is a threshold reaction rate above which convection does not appear. However, they do not account for the CTZ or depletion of the silicate. We study the impact of the CTZ on convective mixing, in a system that features mineralization of CO2. The reactivity is enhanced with CO2 concentration and with the amount of silicate (anorthite). Results from linear stability analysis and numerical simulations support each other. The rate of CO2 dissolution can be an order of magnitude enhanced by mineralization, when the CTZ and depletion of the anorthite are accounted for. Limiting reaction rates for convection are established as a function of the characteristics of the CTZ.[1] Andres, J.T.H. and Cardoso, S.S.S. 2011. Onset of convection in a porous medium in the presence of chemical reaction. Physical Review E (83), 046312.

  18. CO2 Energy Reactor - Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

    Directory of Open Access Journals (Sweden)

    Rafael M Santos

    2016-02-01

    Full Text Available To overcome the challenges of mineral CO2 sequestration, Innovation Concepts B.V. is developing a unique proprietary Gravity Pressure Vessel (GPV reactor technology, and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In this paper, a perspective on the status of this technology and outlook for the future is provided. To date, laboratory-scale tests of the envisioned process have been performed in a tubular rocking autoclave reactor. The mineral of choice has been olivine (~Mg1.6Fe2+0.4(SiO4 + ppm Ni/Cr, although asbestos, steel slags and oil shale residues are also under investigation. The effect of several process parameters on reaction extent and product properties have been tested: CO2 pressure, temperature, residence time, additives (buffers, lixiviants, chelators, oxidizers, solids loading, and mixing rate. The products (carbonates, amorphous silica and chromite have been physically separated (based on size, density and magnetic properties, characterized (for chemistry, mineralogy and morphology and tested in intended applications (as pozzolanic carbon-negative building material. Economically, it is found that product value is the main driver for mineral carbonation, rather than, or in addition to, the sequestered CO2. The approach of using a GPV and focusing on valuable reaction products could thus make CO2 mineralization a feasible and sustainable industrial process.

  19. Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash.

    Science.gov (United States)

    Sun, Yong; Parikh, Vinay; Zhang, Lian

    2012-03-30

    The use of an industry waste, brown coal fly ash collected from the Latrobe Valley, Victoria, Australia, has been tested for the post-combustion CO(2) capture through indirect minersalization in acetic acid leachate. Upon the initial leaching, the majority of calcium and magnesium in fly ash were dissolved into solution, the carbonation potential of which was investigated subsequently through the use of a continuously stirred high-pressure autoclave reactor and the characterization of carbonation precipitates by various facilities. A large CO(2) capture capacity of fly ash under mild conditions has been confirmed. The CO(2) was fixed in both carbonate precipitates and water-soluble bicarbonate, and the conversion between these two species was achievable at approximately 60°C and a CO(2) partial pressure above 3 bar. The kinetic analysis confirmed a fast reaction rate for the carbonation of the brown coal ash-derived leachate at a global activation energy of 12.7 kJ/mol. It is much lower than that for natural minerals and is also very close to the potassium carbonate/piperazine system. The CO(2) capture capacity of this system has also proven to reach maximum 264 kg CO(2)/ton fly ash which is comparable to the natural minerals tested in the literature. As the fly ash is a valueless waste and requires no comminution prior to use, the technology developed here is highly efficient and energy-saving, the resulting carbonate products of which are invaluable for the use as additive to cement and in the paper and pulp industry.

  20. Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils

    Science.gov (United States)

    Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muñoz, M.

    2014-05-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

  1. Mineral sequestration of CO{sub 2} by aqueous carbonation of coal combustion fly-ash

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Hernandez, G. [LGIT, University of Grenoble and CNRS, BP 53 X, 38420 Grenoble Cedex 9 (France)], E-mail: German.MONTES-HERNANDEZ@obs.ujf-grenoble.fr; Perez-Lopez, R. [LGIT, University of Grenoble and CNRS, BP 53 X, 38420 Grenoble Cedex 9 (France); Department of Geology, University of Huelva, Campus ' El Carmen' , 21071, Huelva (Spain); Renard, F. [LGCA, University of Grenoble and CNRS, BP 53 X, 38420 Grenoble Cedex 9 (France); Physics of Geological Processes, University of Oslo (Norway); Nieto, J.M. [Department of Geology, University of Huelva, Campus ' El Carmen' , 21071, Huelva (Spain); Charlet, L. [LGIT, University of Grenoble and CNRS, BP 53 X, 38420 Grenoble Cedex 9 (France)

    2009-01-30

    The increasing CO{sub 2} concentration in the Earth's atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. A technology that could possibly contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term geological storage) or the ex-situ mineral sequestration (controlled industrial reactors) of CO{sub 2}. In the present study, we propose to use coal combustion fly-ash, an industrial waste that contains about 4.1 wt.% of lime (CaO), to sequester carbon dioxide by aqueous carbonation. The carbonation reaction was carried out in two successive chemical reactions, first, the irreversible hydration of lime. CaO + H{sub 2}O {yields} Ca(OH){sub 2} second, the spontaneous carbonation of calcium hydroxide suspension. Ca(OH){sub 2} + CO{sub 2} {yields} CaCO{sub 3} + H{sub 2}O A significant CaO-CaCO{sub 3} chemical transformation (approximately 82% of carbonation efficiency) was estimated by pressure-mass balance after 2 h of reaction at 30 deg. C. In addition, the qualitative comparison of X-ray diffraction spectra for reactants and products revealed a complete CaO-CaCO{sub 3} conversion. The carbonation efficiency of CaO was independent on the initial pressure of CO{sub 2} (10, 20, 30 and 40 bar) and it was not significantly affected by reaction temperature (room temperature '20-25', 30 and 60 deg. C) and by fly-ash dose (50, 100, 150 g). The kinetic data demonstrated that the initial rate of CO{sub 2} transfer was enhanced by carbonation process for our experiments. The precipitate calcium carbonate was characterized by isolated micrometric particles and micrometric agglomerates of calcite (SEM observations). Finally, the geochemical modelling using PHREEQC software indicated that the final solutions (i.e. after reaction) are supersaturated with respect to calcium carbonate (0.7 {<=} saturation index {<=} 1.1). This experimental study demonstrates that 1 ton of fly-ash could sequester

  2. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  3. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  4. Reflectance spectroscopy of oxalate minerals and relevance to Solar System carbon inventories

    Science.gov (United States)

    Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.

    2016-11-01

    The diversity of oxalate formation mechanisms suggests that significant concentrations of oxalic acid and oxalate minerals could be widely distributed in the Solar System. We have carried out a systematic study of the reflectance spectra of oxalate minerals and oxalic acid, covering the 0.2-16 μm wavelength region. Our analyses show that oxalates exhibit unique spectral features that enable discrimination between oxalate phases and from other commonly occurring compounds, including carbonates, in all regions of the spectrum except for the visible. Using these spectral data, we consider the possible contribution of oxalate minerals to previously observed reflectance spectra of many objects throughout the Solar System, including satellites, comets, and asteroids. We find that polycarboxylic acid dimers and their salts may explain the reflectance spectra of many carbonaceous asteroids in the 3 μm spectral region. We suggest surface concentration of these compounds may be a type of space weathering from the photochemical and oxidative decomposition of the organic macromolecular material found in carbonaceous chondrites. The stability and ubiquity of these minerals on Earth, in extraterrestrial materials, and in association with biological processes make them useful for many applications in Earth and planetary sciences.

  5. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010 for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg−1y−1 when produced in mineral soils and 0.46 kg CO2e kg−1y−1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.

  6. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  7. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg;

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... after planting the six tree species had different profiles in terms of litterfall, forest floor and mineral soil C and N attributes. Three groups were identified: (1) ash, maple and lime, (2) beech and oak, and (3) spruce. There were significant differences in forest floor and soil C and N contents...... and C/N ratios, also among the five deciduous tree species. The influence of tree species was most pronounced in the forest floor, where C and N contents increased in the order ash = lime = maple

  8. Carbonate Mineral Formation under the Influence of Limestone-Colonizing Actinobacteria: Morphology and Polymorphism.

    Science.gov (United States)

    Cao, Chengliang; Jiang, Jihong; Sun, Henry; Huang, Ying; Tao, Faxiang; Lian, Bin

    2016-01-01

    Microorganisms and their biomineralization processes are widespread in almost every environment on earth. In this work, Streptomyces luteogriseus DHS C014, a dominant lithophilous actinobacteria isolated from microbial mats on limestone rocks, was used to investigate its potential biomineralization to allow a better understanding of bacterial contributions to carbonate mineralization in nature. The ammonium carbonate free-drift method was used with mycelium pellets, culture supernatant, and spent culture of the strain. Mineralogical analyses showed that hexagonal prism calcite was only observed in the sub-surfaces of the mycelium pellets, which is a novel morphology mediated by microbes. Hemispheroidal vaterite appeared in the presence of spent culture, mainly because of the effects of soluble microbial products (SMP) during mineralization. When using the culture supernatant, doughnut-like vaterite was favored by actinobacterial mycelia, which has not yet been captured in previous studies. Our analyses suggested that the effects of mycelium pellets as a molecular template almost gained an advantage over SMP both in crystal nucleation and growth, having nothing to do with biological activity. It is thereby convinced that lithophilous actinobacteria, S. luteogriseus DHS C014, owing to its advantageous genetic metabolism and filamentous structure, showed good biomineralization abilities, maybe it would have geoactive potential for biogenic carbonate in local microenvironments.

  9. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya

    Directory of Open Access Journals (Sweden)

    S. Bouillon

    2004-01-01

    Full Text Available The origin of carbon substrates used by in situ sedimentary bacterial communities was investigated in an intertidal mangrove ecosystem and in adjacent seagrass beds in Gazi bay (Kenya by δ13C analysis of bacteria-specific PLFA (phospholipid fatty acids and bulk organic carbon. Export of mangrove-derived organic matter to the adjacent seagrass-covered bay was evident from sedimentary total organic carbon (TOC and δ13CTOC data. PLFA δ13C data indicate that the substrate used by bacterial communities varied strongly and that exported mangrove carbon was a significant source for bacteria in the adjacent seagrass beds. Within the intertidal mangrove forest, bacterial PLFA at the surface layer (0-1cm typically showed more enriched δ13C values than deeper (up to 10cm sediment layers, suggesting a contribution from microphytobenthos and/or inwelled seagrass material. Under the simplifying assumption that seagrasses and mangroves are the dominant potential end-members, the estimated contribution of mangrove-derived carbon to benthic mineralization in the seagrass beds (16-74% corresponds fairly well to the estimated contribution of mangrove C to the sedimentary organic matter pool (21-71% across different seagrass sites. Based on the results of this study and a compilation of literature data, we suggest that trapping of allochtonous C is a common feature in seagrass beds and often represents a significant source of C for sediment bacteria - both in cases where seagrass C dominates the sediment TOC pool and in cases where external inputs are significant. Hence, it is likely that data on community respiration rates systematically overestimate the role of in situ mineralization as a fate of seagrass production.

  10. Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong; Parikh, Vinay [Department of Chemical Engineering, Monash University, Wellington Road, Clayton, GPO Box 36, Victoria 3800 (Australia); Zhang, Lian, E-mail: lian.zhang@monash.edu [Department of Chemical Engineering, Monash University, Wellington Road, Clayton, GPO Box 36, Victoria 3800 (Australia)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The indirect CO{sub 2} mineralization by brown coal fly ash has been tested. Black-Right-Pointing-Pointer A large CO{sub 2} capture capacity of fly ash under mild conditions was achieved. Black-Right-Pointing-Pointer The kinetic analysis confirmed a fast reaction rate with low activation energy. Black-Right-Pointing-Pointer The fly ash based capture process is highly efficient and cost-effective. - Abstract: The use of an industry waste, brown coal fly ash collected from the Latrobe Valley, Victoria, Australia, has been tested for the post-combustion CO{sub 2} capture through indirect minersalization in acetic acid leachate. Upon the initial leaching, the majority of calcium and magnesium in fly ash were dissolved into solution, the carbonation potential of which was investigated subsequently through the use of a continuously stirred high-pressure autoclave reactor and the characterization of carbonation precipitates by various facilities. A large CO{sub 2} capture capacity of fly ash under mild conditions has been confirmed. The CO{sub 2} was fixed in both carbonate precipitates and water-soluble bicarbonate, and the conversion between these two species was achievable at approximately 60 Degree-Sign C and a CO{sub 2} partial pressure above 3 bar. The kinetic analysis confirmed a fast reaction rate for the carbonation of the brown coal ash-derived leachate at a global activation energy of 12.7 kJ/mol. It is much lower than that for natural minerals and is also very close to the potassium carbonate/piperazine system. The CO{sub 2} capture capacity of this system has also proven to reach maximum 264 kg CO{sub 2}/tonne fly ash which is comparable to the natural minerals tested in the literature. As the fly ash is a valueless waste and requires no comminution prior to use, the technology developed here is highly efficient and energy-saving, the resulting carbonate products of which are invaluable for the use as additive to

  11. [Characteristics of soil organic carbon mineralization at different temperatures in paddy soils under long-term fertilization].

    Science.gov (United States)

    Lin, Shan; Chen, Tao; Zhao, Jin-Song; Xiang, Rong-Biao; Hu, Rong-Gui; Zhang, Shui-Qing; Wang, Mi-Lan; Lu, Zhao-Qi

    2014-05-01

    Dynamics of soil organic carbon mineralization affected by long-term fertilizations and temperature in relation to different soil carbon fractions were investigated in paddy soils. Soil samples were collected from the plough layer of 3 long-term national experimental sites in Xinhua, Ningxiang and Taojiang counties of Hunan Province. Mineralization of soil organic C was estimated by 33-day aerobic incubation at different temperatures of 10, 20 and 30 degrees C. The results showed that the rates of CO2 production were higher during the earlier phase (0-13 d) in all treatments, and then decreased according to a logarithm function. Higher incubation temperature strengthened C mineralization in the different treatments. The quantities of cumulative CO2 production in NPK with manure or straw treatments were greater than in inorganic fertilizers treatments. The Q10 values in the different soil treatments ranged from 1.01-1.53. There were significantly positive correlations between the Q10 values and soil total organic carbon (TOC), easy oxidation organic carbon (EOOC), humic acid carbon (C(HA)), fulvic acid carbon (CFA). The cumulative amount of mineralized C was significantly positively correlated with microbial biomass carbon (MBC) at 10 and 20 degrees C, but not significantly at 30 degrees C. Significant correlations were found between the cumulative amount of mineralized C and different soil carbon fractions and C(HA)/C(FA). The correlations of differ- ent soil carbon fractions with the ratio of cumulative mineralized C to TOC were negatively correlated at 10 degrees C, but not significantly at 20 and 30 degrees C. These results suggested that the application of NPK with manure or straw would be helpful to increase the sequestration of C in paddy soils and reduce its contribution of CO2 release in the atmosphere.

  12. Topsoil organic carbon mineralization and CO2 evolution of three paddy soils from South China and the temperature dependence

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xu-hui; LI Lian-qing; PAN Gen-xing

    2007-01-01

    Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade.Although the virtual influence of temperature effect is still in great debate,little is known on the mineralization of organic carbon(SOC) of paddy soils of China under warming.SOC mineralization of three major types of China's paddy soils is studied through laboratory incubation for 114 d under soil moisture regime of 70% water holding capacity at 20℃ and 25℃ respectively.The carbon that mineralized as CO2 evolved was measured every day in the first 32 d and every two days in the following days.Carbon mineralized during the 114 d incubation ranged from 3.51 to 9.22 mg CO2-C/gC at 20℃ and from 4.24 to 11.35 mg CO2-C/gC at 25℃ respectively;and a mineralizable C pool in the range of 0.24 to 0.59 gC/kg.varying with difierent soils.The whole course of C mineralization in the 114 d incubation could be divided into three stages of varying rates,representing the three subpools of the total mineralizable C:very actively mineralized C at 1-23 d,actively mineralized C at 24-74 d and a slowly mineralized pool with low and more or 1ess stabilized C mineralization rate at 75-114 d.The calculated Ω10 values ranged from 1.0 to 2.4,varying with the soil types and N status.Neither the total SOC pool nor the labile C pool could account for the total mineralization potential of the soils studied,despite a well correlation of labile C with the shortly and actively mineralized C,which were shown in sensitive response to soil wanning.However,the portion of microbial C pool and the soil C/N ratio controlled the C mineralization and the temperature dependence,Therefore,C sequestration may not result in an increase of C mineralization proportionally.The relative control of C bioavailability and microbial metabolic activity on C mineralization with respect to stabilization of sequestered C in the paddy soils of China is to be further studied.

  13. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    Science.gov (United States)

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  14. Oxic and anoxic mineralization of simple carbon substrates in peat at low temperatures

    Science.gov (United States)

    Segura, Javier; Sparrman, Tobias; Nilsson, Mats; Schleucher, Jürgen; Öquist, Mats

    2016-04-01

    Northern peatlands store approximately one-quarter of the world's soil carbon and typically act as net carbon sinks. However a large fraction of the carbon fixed during the growing season can be emitted back to the atmosphere during winter as CO2 and CH4, despite low temperatures and frozen conditions, making low temperature biogeochemical processes crucial for the long-term net ecosystem carbon balance. However, the metabolic processes driving carbon mineralization under winter conditions are poorly understood and whether or not peat microbial communities can maintain metabolic activity at temperatures below freezing is uncertain. Here we present results from an incubation study aimed at elucidating the potential of peat microbial communities to mineralize simple carbon substrates to CO2 and CH4 at low temperatures. Peat samples from the acrotelm were amended with [13C]- glucose and incubated at -5 °C, -3 °C, +4 °C, and +9 °C under both oxic and anoxic conditions, and rates of CO2 and CH4 production were determined. In addition, incorporation of the labelled substrate into phospholipid fatty acids (PLFAs) were determined to account for microbial growth during mineralization and the metabolic partitioning between catabolic and anabolic activity. Biogenic [13C]-CO2 was produced from the added substrate in peat samples incubated both under oxic and anoxic conditions. Under oxic conditions the production rates were 3.5, 2.3, 0.3 and 0.07 mg CO2 g SOM-1day-1 at +9 °C, +4 °C, -3 °C and -5 °C, respectively, and corresponding rates for anoxic conditions were 1.1, 1.0, 0.03 and 0.01 mg CO2 g SOM-1day-1. Consequently the observed Q10 values of the temperature sensitivity under both oxic and anoxic conditions increased dramatically upon soil freezing. However, anoxic mineralization appears less sensitive to temperature as compared to when oxygen is present. Methane was also produced and detected across the range of the incubation temperatures in the anoxic

  15. Factors driving carbon mineralization priming effect in a soil amended with different types of biochar

    Science.gov (United States)

    Cely, P.; Tarquis, A. M.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G.

    2014-03-01

    The effect of biochar on soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on soil CO2 emissions and in different physicochemical properties. For this purpose, a sandy-loam soil was amended with the three biochars (BI, BII and BIII) at a rate of 8 wt % and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving's from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients (r2) greater than 0.97. Results shown a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related with different biochar properties such as ash content, volatile matter, fixed carbon, organic carbon oxidised with dichromate, soluble carbon and metal and phenolic substances content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

  16. Factors driving carbon mineralization priming effect in a soil amended with different types of biochar

    Directory of Open Access Journals (Sweden)

    P. Cely

    2014-03-01

    Full Text Available The effect of biochar on soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on soil CO2 emissions and in different physicochemical properties. For this purpose, a sandy-loam soil was amended with the three biochars (BI, BII and BIII at a rate of 8 wt % and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving's from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients (r2 greater than 0.97. Results shown a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related with different biochar properties such as ash content, volatile matter, fixed carbon, organic carbon oxidised with dichromate, soluble carbon and metal and phenolic substances content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

  17. Evolution of multi-mineral formation evaluation using LWD data in complex carbonates offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, Paolo; Borovskaya, Irina [Schlumberger, Houston, TX (United States)

    2012-07-01

    Petrophysical Formation Evaluation using Logging While Drilling (LWD) measurements is a new requisite when drilling in carbonates reservoirs offshore Brazil. These reservoirs are difficult to characterize due to an unusual mixture of the minerals constituting the matrix and affecting rock texture. As wells are getting deeper and more expensive, an early identification of the drilled targets potential is necessary for valuable decisions. Brazil operators have been especially demanding towards service providers, pushing for development of suitable services able to positively identify and quantify not only the presence of hydrocarbons but also their flowing capability. In addition to the standard gamma ray / resistivity / porosity and density measurements, three new measurements have proven to be critical to evaluate complex carbonate formations: Nuclear Magnetic Resonance (NMR), Spectroscopy and Capture Cross-Section (sigma). Under appropriate logging conditions, NMR data provides lithology independent porosity, bound and free fluids fractions, reservoir texture and permeability. Capture Spectroscopy allows assessment of mineral composition in terms of calcite, dolomite, quartz and clay fractions, and in addition highlights presence of other heavier minerals. Finally, sigma allows performing a volumetric formation evaluation without requiring custom optimization of the classical exponents used in all forms of resistivity saturation equations. All these new measurements are inherently statistical and if provided by wireline after drilling the well they may result in significant usage of rig time. When acquired simultaneously while drilling they have three very clear advantages: 1) no extra rig time, 2) improved statistics due to long formation exposure (drilling these carbonates is a slow process and rate of penetration (ROP) rarely exceeds 10 m/hr), 3) less invasion effect and better hole condition. This paper describes the development of two LWD tools performing the

  18. Natural and artificial (90Sr radionuclides in some carbonated mineral waters used in Serbia

    Directory of Open Access Journals (Sweden)

    Janković Marija M.

    2013-01-01

    Full Text Available A radiological characterization of 7 different carbonated mineral water samples collected in the local supermarkets in the area of Belgrade (produced in Serbia was carried out. Analysis included determination of gross alpha and gross beta activities. The obtained results showed that the natural activity concentrations of alpha and beta emitting radionuclides in carbonated mineral water samples were within World Health Organization recommended levels, except for the Heba Strong and Kiseljak samples where the beta activity exceeds 1 Bq/L. For these two water samples gamma spectrometry analysis was performed as well as determination of 90Sr by oxalic method. The instrumentation used to count the gross alpha and gross beta activities, as well as for 90Sr, was a/b low level proportional counter Thermo Eberline FHT 770 T. Gamma spectrometric measurements were performed using a HPGe Canberra detector with a counting efficiency of 20%. The annual effective dose equivalent due to ingestion of investigated waters was calculated for age group >17, and obtained values are lower than 0.1 mSv recommended reference level. Finally, a comparison of the investigated waters with worldwide data was made. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  19. Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium.

    Science.gov (United States)

    Yahya, Adibah; Hallberg, Kevin B; Johnson, D Barrie

    2008-04-01

    A novel iron-oxidizing, moderately thermophilic, acidophilic bacterium (strain "GSM") was isolated from mineral spoil taken from a gold mine in Montana. Biomolecular analysis showed that it was most closely related to Alicyclobacillus tolerans, although the two bacteria differed in some key respects, including the absence (in strain GSM) of varpi-alicyclic fatty acids and in their chromosomal base compositions. Isolate GSM was able to grow in oxygen-free media using ferric iron as terminal electron acceptor confirming that it was a facultative anaerobe, a trait not previously described in Alicyclobacillus spp.. The acidophile used both organic and inorganic sources of energy and carbon, although growth and iron oxidation by isolate GSM was uncoupled in media that contained both fructose and ferrous iron. Fructose utilization suppressed iron oxidation, and oxidation of ferrous iron occurred only when fructose was depleted. In contrast, fructose catabolism was suppressed when bacteria were harvested while actively oxidizing iron, suggesting that both ferrous iron- and fructose-oxidation are inducible in this acidophile. Isolate GSM accelerated the oxidative dissolution of pyrite in liquid media either free of, or amended with, organic carbon, although redox potentials were significantly different in these media. The potential of this isolate for commercial mineral processing is discussed.

  20. Conventional intensive logging promotes loss of organic carbon from the mineral soil.

    Science.gov (United States)

    Dean, Christopher; Kirkpatrick, James B; Friedland, Andrew J

    2017-01-01

    There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short-term empirical studies, longer-term empirical studies and long-term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long-term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer-term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short-term SOC flux varies around zero. The long-term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long-term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil-like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in

  1. Carbon mineralization in mine tailing ponds amended with pig slurries and marble wastes

    Directory of Open Access Journals (Sweden)

    Raul Zornoza

    2012-07-01

    Full Text Available Effective application of organic residues to reclaim soils requires the optimization of the waste management to minimize CO2 emissions and optimize soil C sequestration efficiency. In this study, the short-term effects of pig slurry amendment alone and together with marble waste on organic matter mineralization in two tailing ponds from Cartagena-La Unión Mining District (SE Spain were investigated in a field remediation experiment. The treatments were: marble waste (MW, pig slurry (PS, marble waste + pig slurry (MW+PS, and control. Soil carbon mineralization was determined using a static chamber method with alkali absorption during 70 days. Soil respiration rates in all plots were higher the first days of the experiment owing to higher soil moisture and higher mean air temperature. MW plots followed the same pattern than control plots, with similar respiration rates. The addition of pig slurry caused a significant increase in the respiration rates, although in MW+PS plots, respiration rates were lower than in PS plots. The cumulative quantities of C-CO2 evolved from the pig slurry mineralization were fitted to a first-order kinetic model explaining 90% of the data. This model implies the presence of only one mineralisable pool (C0. The values of the index C0*constant rate/added C were similar for PS plots in both tailing ponds, but lower in the MW+PS treatment, suggesting that the application of marble reduces the degradability of the organic compounds present in the pig slurry. Thus, the application of marble wastes contributes to slow down the loss of organic matter by mineralization.

  2. Isotopic fractionation of Mg 2+(aq), Ca 2+(aq), and Fe 2+(aq) with carbonate minerals

    Science.gov (United States)

    Rustad, James R.; Casey, William H.; Yin, Qing-Zhu; Bylaska, Eric J.; Felmy, Andrew R.; Bogatko, Stuart A.; Jackson, Virgil E.; Dixon, David A.

    2010-11-01

    Density-functional electronic structure calculations are used to compute the equilibrium constants for 26Mg/ 24Mg and 44Ca/ 40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 10 3ln ( K) at 25 °C, of -5.3, -1.1, and +1.2 for 26Mg/ 24Mg exchange between calcite (CaCO 3), magnesite (MgCO 3), and dolomite (Ca 0.5Mg 0.5CO 3), respectively, and Mg 2+(aq), with positive values indicating enrichment of the heavy isotope in the mineral phase. For 44Ca/ 40Ca exchange between calcite and Ca 2+(aq) at 25 °C, the calculations predict values of +1.5 for Ca 2+(aq) in 6-fold coordination and +4.1 for Ca 2+(aq) in 7-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as M(CO)610- and M(HO)62+ embedded in a set of fixed atoms representing the second-shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe 3+-hematite and Fe 2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe 3+(aq) and Fe 2+(aq) species.

  3. Isotopic Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with Carbonate Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, James R.; Casey, William H.; Yin, Qing-Zhu; Bylaska, Eric J.; Felmy, Andrew R.; Bogatko, Stuart A.; Jackson, Virgil E.; Dixon, David A.

    2010-11-15

    Density functional electronic structure calculations are used to compute the equilibrium constant (the isotope fractionation factor) for 26Mg/24Mg and 44Ca/40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 103ln(K) at 25 °C, of -5.3, -1.1, and +1.1 for 26Mg/24Mg exchange between calcite (CaCO3), magnesite (MgCO3), and dolomite (Ca0.5Mg0.5CO3), respectively, and Mg2+(aq), with positive values indicating enrichment in the mineral phase. For 44Ca/40Ca exchange between calcite and Ca2+(aq), the calculations predict values of +1.5 for Ca2+(aq) in six-fold coordination and +4.1 for Ca2+(aq) in seven-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as M(CO3)610- and M2+(H2O)6 embedded in a set of fixed atoms representing the 2nd shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using 2 the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe3+-hematite and Fe2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe3+(aq) and Fe2+(aq) species.

  4. Carbon and nitrogen pools and mineralization rates in boreal forest soil after stump harvesting

    Science.gov (United States)

    Kaarakka, Lilli; Hyvönen, Riitta; Strömgren, Monika; Palviainen, Marjo; Persson, Tryggve; Olsson, Bengt A.; Helmisaari, Heljä-Sisko

    2016-04-01

    The use of forest-derived biomass has steadily increased in the Finland and Sweden during the past decades. Thus, more intensive forest management practices are becoming more common in the region, such as whole-tree harvesting, both above- and belowground. Stump harvesting causes a direct removal of carbon (C) in the form of biomass from the stand and can cause extensive soil disturbance, which in turn can result in increased C mineralization. In this study, the effects of stump harvesting on soil C and nitrogen (N) mineralization, and soil surface disturbance were studied at two different clear-felled Norway spruce (Picea abies) stands in Central Finland. The treatments were conventional stem-only harvesting combined with mounding (WTH) and stump harvesting (i.e. complete tree harvesting) combined with mounding (WTH+S). Logging residues were removed from all study sites. Soil samples down to a depth of 20 cm were systematically collected from the different soil disturbance surfaces (undisturbed soil, the mounds and the pits) 12-13 years after final harvest. Soil samples were incubated in the laboratory to determine the C and N mineralization rates. In addition, total C and N pools were estimated for each disturbance class and soil layer. Soil C and N pools were lower following stump harvesting, however, no statistically significant treatment effect was detected. Instead, C mineralization responses to treatment intensity was site-specific. C/N-ratio and organic matter content were significantly affected by harvest intensity. The observed changes in C and N pools appear to be related to the intrinsic variation of the surface disturbance and soil characteristics, and harvesting per se, rather than treatment intensity. Long-term studies are however needed to draw long-term conclusions whether stump harvesting significantly changes soil C and nutrient dynamics.

  5. Negative CO2 emissions via subsurface mineral carbonation in fractured peridotite

    Science.gov (United States)

    Kelemen, P. B.; Matter, J.

    2014-12-01

    Uptake of CO2 from surface water via mineral carbonation in peridotite can be engineered to achieve negative CO2 emissions. Reaction with peridotite, e.g., CO2 + olivine (A), serpentine (B) and brucite (C), forms inert, non-toxic, solid carbonates such as magnesite. Experimental studies show that A can be 80% complete in a few hours with 30 micron powders and elevated P(CO2) [1,2,3]. B is slower, but in natural systems the rate of B+C is significant [4]. Methods for capture of dilute CO2 via mineral carbonation [4,5,6,7] are not well known, though CO2 storage via mineral carbonation has been discussed for decades [8,9]. Where crushed peridotite is available, as in mine tailings, increased air or water flow could enhance CO2 uptake at a reasonable cost [4,5]. Here we focus on enhancing subsurface CO2 uptake from surface water flowing in fractured peridotite, in systems driven by thermal convection such as geothermal power plants. Return of depleted water to the surface would draw down CO2 from the air [6,7]. CO2 uptake from water, rate limited by flow in input and output wells, could exceed 1000 tons CO2/yr [7]. If well costs minus power sales were 0.1M to 1M and each system lasts 10 years this costs Spain, Morocco, USA, etc. This would be a regional contribution, used in parallel with other methods elsewhere. To achieve larger scale is conceivable. There is a giant mass of seafloor peridotite along slow-spreading mid-ocean ridges. Could robotic drills enhance CO2 uptake at a reasonable cost, while fabric chimneys transport CO2-depleted water to the sea surface? Does anyone know James Cameron's phone number? [1] O'Connor et al DOE Report 04 [2] Chizmeshya et al DOE Report 07 [3] Gadikota et al Phys Chem Chem Phys 14 [4] Wilson et al IJGHGC 14 [5] Schuiling & Krijgsman Climate Change 06 [6] Kelemen & Matter PNAS 08 [7] Kelemen et al AREPS 11 [8] Seifritz Nature 90 [9] Lackner et al Energy 95

  6. AMBIENT CARBONATION of MINING RESIDUES: Understanding the Mechanisms and Optimization of Direct Carbon Dioxide Mineral Sequestration

    Science.gov (United States)

    Assima, G. P.; Larachi, F.; Molson, J. W.; Beaudoin, G.

    2013-12-01

    The huge amounts (GTs) of ultramafic mining residues (UMRs) produced by mining activities around the world and accumulated in multi-square-kilometer stockpiles are stimulating a vivid interest regarding their possible use as a stable and permanent sink for CO2. Virtually costless and often found crushed and / or ground, UMRs are being considered as ideal candidates for atmospheric CO2 mitigation. The present work, therefore, explores the potential of several UMRs available in Quebec (Thetford Mines, Asbestos, Nunavik, Amos, Otish Mountains), for carbonation under ambient conditions, as a cost-effective alternative to remove low-concentration CO2 from the atmosphere and alleviate global warming. Several experimental reactors have been built to specifically simulate various climatic changes at the laboratory scale. The impact of various environmental conditions to which the residues are subjected to in their storage location, including temperature variations, precipitation, flooding, drought, changing water saturation, oxygen gradient and CO2 diffusion have been thoroughly studied. Dry and heavy-rain periods are unsuitable for efficient CO2 sequestration. Low liquid saturation within UMRs pores favors carbonation by combining fast percolation of gaseous CO2, rapid dissemination of CO2 dissolved species and creation of highly reactive sites throughout the mining residue pile. Partly saturated samples were also found to exhibit lower gaseous CO2 breakthrough times across the mining residues. Warm periods significantly accelerate the rate of CO2 uptake as compared to cold periods, which, in contrast are characterized by heat generation levels that could possibly be exploited by low temperature geothermal systems. A temperature rise from 10 to 40 °C was accompanied by a ten-fold increase in initial reaction rate. The carbonation reaction caused a rise in UMRs temperature up to 4.9°C during experiments at a 10°C. The presence of oxygen in the reaction medium induces

  7. [Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou province].

    Science.gov (United States)

    Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei

    2015-03-01

    Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.

  8. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    Science.gov (United States)

    Lind, Saara E.; Shurpali, Narasinha J.; Peltola, Olli; Mammarella, Ivan; Hyvönen, Niina; Maljanen, Marja; Räty, Mari; Virkajärvi, Perttu; Martikainen, Pertti J.

    2016-03-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinacea L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured from July 2009 until the end of 2011 using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the study period from July 2009 until the end of 2011, cumulative NEE was -575 g C m-2. Carbon balance and its regulatory factors were compared to the published results of a comparison site on drained organic soil cultivated with RCG in the same climate. On this mineral soil site, the RCG had higher capacity to take up CO2 from the atmosphere than on the comparison site.

  9. Mineral inclusions in sublithospheric diamonds from Juina, Brazil: Subducted protoliths, carbonated melts and protokimberlite magmatism

    Science.gov (United States)

    Walter, Michael; Bulanova, Galina; Smith, Chris; Armstrong, Lora; Kohn, Simon; Blundy, Jon; Gobbo, Luiz

    2010-05-01

    A suite of Type II Diamonds from the Cretaceous Collier 4 kimberlite pipe, Juina Kimberlite Field, Brazil, include syngenetic mineral inclusions comprising a remarkable range of compositions that include calcium- and titanium-rich perovskite, Ca-rich majoritic garnet, olivine, TAPP phase, CAS phase, K-hollandite phase, SiO2, FeO, native iron, low-Ni sulphides, and Ca-Mg carbonate. The diamonds also exhibit a range in carbon isotopic composition (δ13C ) that effectively spans that observed in the global diamond population. Diamonds with heavy, mantle-like δ13C (-5 to -10) contain mineral inclusions indicating a transition zone origin from mafic protoliths. Diamonds with intermediate δ13C (-12 to -15) contain inclusions with chemistry indicating crystallization from near-primary and differentiated carbonated melts derived from oceanic crust in the deep upper mantle or transition zone. Diamonds with extremely light δ13C (~ -25) host inclusions with chemistry akin to high pressure-temperature phases expected to form in the transition zone from subducted pelagic sediments. Collectively, the Collier 4 diamonds and their inclusions indicate multi-stage growth histories in dynamically changing chemical environments. A 206Pb/238U age of 101±7 Ma on a CaTiSi-perovskite inclusion is close to the kimberlite emplacement time (93.1 ±1.5 Ma). This young inclusion age, together with the chemical and isotopic characteristics indicating the role of subducted materials, suggest a model in which the generation of sublithospheric diamonds and their inclusions, and the proto-kimberlite magmas, are related genetically to the interaction of subducted lithosphere and a Cretaceous plume.

  10. Calculating carbon mass balance from unsaturated soil columns treated with CaSO₄₋minerals: test of soil carbon sequestration.

    Science.gov (United States)

    Han, Young-Soo; Tokunaga, Tetsu K

    2014-12-01

    Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment.

  11. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    Science.gov (United States)

    Sturchio, N. C.; Keith, T. E. C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface ( in situ temperatures ranging from 81 to 199°C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The δ 18O values of the thirty-two analyzed silica samples (quartz, chalcedony, α-cristobalite, and β-cristobalite) range from -7.5 to +2.8‰ . About one third of the silica 7samples have δ 18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7‰) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have δ 18O values higher (by 3.5 to 7.9‰) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with

  12. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg(-1) soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg(-1) soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions.

  13. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    Soil organic carbon (SOC) concentration is an essential factor in biomass production and soil functioning. SOC concentration values are often obtained by prediction but the prediction accuracy depends much on the method used. Currently, there is a lack of evidence in the soil science literature...... as to the advantages and shortcomings of the different commonly used prediction methods. Therefore, we compared and evaluated the merits of the median approach, analysis of covariance, mixed models and random forests in the context of prediction of SOC concentrations of mineral soils under arable management in the A......-horizon. Three soil properties were used in all of the developed models: soil type, physical clay content (particle size

  14. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    Directory of Open Access Journals (Sweden)

    Jeanette eWhitaker

    2014-12-01

    Full Text Available Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C balance of these ecosystems by altering decomposition processes e.g. ‘positive priming effects’ that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding 13C labelled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesised that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils.

  15. Single-walled carbon nanotubes functionalized with sodium hyaluronate enhance bone mineralization

    Directory of Open Access Journals (Sweden)

    M.A. Sá

    2016-01-01

    Full Text Available The aim of this study was to evaluate the effects of sodium hyaluronate (HY, single-walled carbon nanotubes (SWCNTs and HY-functionalized SWCNTs (HY-SWCNTs on the behavior of primary osteoblasts, as well as to investigate the deposition of inorganic crystals on titanium surfaces coated with these biocomposites. Primary osteoblasts were obtained from the calvarial bones of male newborn Wistar rats (5 rats for each cell extraction. We assessed cell viability using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-2H-tetrazolium bromide assay and by double-staining with propidium iodide and Hoechst. We also assessed the formation of mineralized bone nodules by von Kossa staining, the mRNA expression of bone repair proteins, and the deposition of inorganic crystals on titanium surfaces coated with HY, SWCNTs, or HY-SWCNTs. The results showed that treatment with these biocomposites did not alter the viability of primary osteoblasts. Furthermore, deposition of mineralized bone nodules was significantly increased by cells treated with HY and HY-SWCNTs. This can be partly explained by an increase in the mRNA expression of type I and III collagen, osteocalcin, and bone morphogenetic proteins 2 and 4. Additionally, the titanium surface treated with HY-SWCNTs showed a significant increase in the deposition of inorganic crystals. Thus, our data indicate that HY, SWCNTs, and HY-SWCNTs are potentially useful for the development of new strategies for bone tissue engineering.

  16. Single-walled carbon nanotubes functionalized with sodium hyaluronate enhance bone mineralization.

    Science.gov (United States)

    Sá, M A; Ribeiro, H J; Valverde, T M; Sousa, B R; Martins-Júnior, P A; Mendes, R M; Ladeira, L O; Resende, R R; Kitten, G T; Ferreira, A J

    2016-02-01

    The aim of this study was to evaluate the effects of sodium hyaluronate (HY), single-walled carbon nanotubes (SWCNTs) and HY-functionalized SWCNTs (HY-SWCNTs) on the behavior of primary osteoblasts, as well as to investigate the deposition of inorganic crystals on titanium surfaces coated with these biocomposites. Primary osteoblasts were obtained from the calvarial bones of male newborn Wistar rats (5 rats for each cell extraction). We assessed cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and by double-staining with propidium iodide and Hoechst. We also assessed the formation of mineralized bone nodules by von Kossa staining, the mRNA expression of bone repair proteins, and the deposition of inorganic crystals on titanium surfaces coated with HY, SWCNTs, or HY-SWCNTs. The results showed that treatment with these biocomposites did not alter the viability of primary osteoblasts. Furthermore, deposition of mineralized bone nodules was significantly increased by cells treated with HY and HY-SWCNTs. This can be partly explained by an increase in the mRNA expression of type I and III collagen, osteocalcin, and bone morphogenetic proteins 2 and 4. Additionally, the titanium surface treated with HY-SWCNTs showed a significant increase in the deposition of inorganic crystals. Thus, our data indicate that HY, SWCNTs, and HY-SWCNTs are potentially useful for the development of new strategies for bone tissue engineering.

  17. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Brent Constantz; Randy Seeker; Martin Devenney

    2010-06-30

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  18. Effect of reactive surface area of minerals on mineralization and carbon dioxide trapping in a depleted gas reservoir

    NARCIS (Netherlands)

    Bolourinejad, P.; Shoeibi Omrani, P.; Herber, R.

    2014-01-01

    In this study, a long-term (up to 1000 years) geochemical modelling of subsurface CO2 storage was carried out on sandstone reservoirs of depleted gas fields in northeast Netherlands. It was found that mineral dissolution/precipitation has only a minor effect on reservoir porosity. In order to valida

  19. Analysis of Tribological Behavior of Carbon Nanotube Based Industrial Mineral Gear Oil 250 cSt Viscosity

    Directory of Open Access Journals (Sweden)

    Shubrajit Bhaumik

    2014-01-01

    Full Text Available The paper investigates the exceptional antiwear and extreme pressure properties of multiwalled carbon nanotube based mineral oil. Different samples of oil containing varying proportions of MWNT (MWNT and graphite were prepared. The samples were tested for their antiwear and load bearing capacity according to ASTM G99 and ASTM D-2783 standards. After pass load test in four ball tester the rubbed surfaces were investigated with Scanning Electron Microscope (SEM images. The wear test results show a decrease wear by 70–75% in case of multiwalled nanotube based mineral oil as compared with pure mineral oil. Furthermore, it has been observed that the load bearing capacity in case of multiwalled carbon nanotube based mineral oil increases by 20% as compared to pure mineral oil. A comparison in the antiwear and load bearing capacity properties of graphite and nanotube based mineral oil was studied which showed the inefficiency of graphite based lubricant over MWNT based oil. Thus, the finding would be helpful in developing new nanoparticle based lubricants.

  20. Mesocosm-Scale Experimental Quantification of Plant-Fungi Associations on Carbon Fluxes and Mineral Weathering

    Science.gov (United States)

    Andrews, M. Y.; Palmer, B.; Leake, J. R.; Banwart, S. A.; Beerling, D. J.

    2009-12-01

    The rise of land plants in the Paleozoic is classically implicated as driving lower atmospheric CO2 levels through enhanced weathering of Ca and Mg bearing silicate minerals. However, this view overlooks the fact that plants coevolved with associated mycorrhizal fungi over this time, with many of the weathering processes usually ascribed to plants actually being driven by the combined activities of roots and mycorrhizal fungi. Here we present initial results from a novel mesocosm-scale laboratory experiment designed to allow investigation of plant-driven carbon flux and mineral weathering at different soil depths under ambient (400 ppm) and elevated (1500 ppm) atmospheric CO2. Four species of plants were chosen to address evolutionary trends in symbiotic mycorrhizal association and rooting depth on biologically driven silicate weathering under the different CO2 regimes. Gymnosperms were used to investigate potential differences in weathering capabilities of two fungal symbioses: Sequoia sempervirens and Metasequoia glyptostroboides (arbuscular mycorrhizal, AM) and Pinus sylvestris (ectomycorrhizal, EM), and the shallow rooted ancient fern, Osmunda regalis, used to provide a contrast to the three more deeply rooted trees. Plants were grown in a cylindrical mesocosm with four horizontal inserts at each depth. These inserts are a mesh-covered dual-core unit whereby an inner core containing silicate minerals can be rotated within an outer core. The mesh excludes roots from the cylinders allowing fungal-rock pairings to be examined at each depth. Each core contains either basalt or granite, each with severed (rotated cores) or intact (static cores) mycorrhizae. This system provides a unique opportunity to examine the ability of a plant to weather minerals with and without its symbiotic fungi. Preliminary results indicate marked differences in nutritional and water requirements, and response to elevated CO2 between the species. The bulk solution chemistries (p

  1. An economic analysis of the Jim Bridger Power Plant carbon dioxide mineralization process

    Science.gov (United States)

    Christensen, Mikol Hans

    Concerns for rising levels of CO2 in the atmosphere have lead to a myriad of schemes to reduce emissions. Many of these are complicated, expensive, and untried. Coal-fired electrical generation accounts for about 49 percent of U.S. electricity generation. Shifting generation capacity away from coal is the goal of many, yet as this statistic shows, the U.S. has a heavy dependency on coal-fired base-load generation. What is needed is a way to retrofit existing coal fired power plants to mitigate at least some of the giga-tonnes of CO2 released annually. Carbon Capture and Storage in association with greenhouse gases are a major concern in the world today. This thesis is an outgrowth of a research partnership between the University of Wyoming and the Jim Bridger Power Plant (Rocky Mountain Power) to develop a process for capture and mineralization of flue gas carbon dioxide (CO 2) using an accelerated mineral carbonization process with fly ash particles as the absorbent. This process may have several advantages over other approaches because it is an environmentally acceptable, single step process occurring at near ambient pressures and temperatures that can compliment conventional CCS processes. In addition the use of fly ash particles as an absorbent avoids the costs of processing or engineering an absorbent. The purpose of this thesis is to evaluate the capture costs and economic feasibility of the mineralization process. Two models were used to estimate the capture costs and economic feasibility of the Jim Bridger Power Plant CO2 Mineralization Project (JBP). The first was a cost of capture model which was used to estimate CO2 capture costs and how changes in the CO2 to ash capture ratio and quantities of CO2 captured affect capture costs. The second was a financial feasibility model which considered the time value of money. This second model considered the net present value (NPV) and internal rate of return (IRR) for the process using different pricing scenarios

  2. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

  3. Experimental Study on Hydrocarbon Formation Due to Reactions Between Carbonates and Water or Water—Bearing Minerals in Deep Earth

    Institute of Scientific and Technical Information of China (English)

    翁克难; 汪本善; 等

    1999-01-01

    In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth,experimental research on reactions between carbonates and water or waterbearing minerals was carried out at the pressure of about 1GPa and the temperature range of 800-1500℃.The reactions took place in an open and nonequilibrium state.Chromatographic analyses of the gas products indicate that in the experiments there were generated CH4-dominated hydrocarbons,along with some CO2 and CO.Accordingly,we think there is no essential distinction between free-state water and hydroxy in the minerals in the process of hydrocarbon formation.This study indicates that reactions between carbonates and water or water-bearing minerals should be an important factor leading to the formation of abiogenetic hydrocarbons at the Earth's depth.

  4. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater

    Directory of Open Access Journals (Sweden)

    K. Kolo

    2005-04-01

    Full Text Available This study investigates the in vitro formation of Ca-oxalates and glushinskite through fungal interaction with carbonate substrates and seawater. In the first experiment, thin-sections prepared from dolomitic rock samples of Terwagne Formation (Carboniferous, Viséan, northern France served as substrates. The thin sections placed in Petri dishes were exposed to fungi grown from naturally existing airborne spores. In the second experiment, fungal growth and mineral formation was monitored using only standard seawater (SSW as substrate. Fungal growth media consisted of a high protein/carbohydrates and sugar diet with demineralised water for irrigation. Fungal growth process reached completion under uncontrolled laboratory conditions. The fungal interaction and attack on the carbonate substrates resulted in the formation of Ca-oxalates (weddellite CaC2O4·2(H2O, whewellite (CaC2O4·(H2O and glushinskite MgC2O4·2(H2O associated with the destruction of the original substrate and its replacement by the new minerals. The seawater substrate resulted also in the formation of glushinskite and Ca-oxalates. Both of Ca and Mg were mobilized from the experimental substrates by fungi. The newly formed minerals and textural changes caused by fungal attack on the carbonate substrate were investigated using light and scanning electron microscopy (SEM-EDX, x-ray diffraction (XRD and Raman spectroscopy. The results document the role of microorganisms in biomineralization, neo-mineral formation and sediment diagenesis. They also reveal the capacity of living fungi to interact with liquid substrates and precipitate new minerals. This work is the first report on the in vitro formation of the mineral glushinskite through fungal-carbonate and sea water substrates interactions processes.

  5. Incorporation of Np(V) and U(VI) in Carbonate and Sulfate Minerals Crystallized from Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Balboni, Enrica; Morrison, Jessica M.; Wang, Zheming; Engelhard, Mark H.; Burns, Peter C.

    2015-02-15

    The neptunyl Np(V)O2 + and uranyl U(VI)O2 2+ ions are soluble in groundwater, although their interaction with minerals in the subsurface may impact their mobility. One mechanism for the immobilization of actinyl ions in the subsurface is coprecipitation in low-temperature minerals that form naturally, or that are induced to form as part of a remediation strategy. Important differences in the crystal-chemical behavior of the Np(V) neptunyl and U(VI) uranyl ions suggest their behavior towards incorporation into growing crystals may differ significantly. Using a selection of low temperature minerals synthesized in aqueous systems under ambient conditions, this study examines the factors that impact the structural incorporation of the Np(V) neptunyl and U(VI) uranyl ions in carbonate and sulfate minerals.

  6. Stable isotopes of carbon dioxide in soil gas over massive sulfide mineralization at Crandon, Wisconsin

    Science.gov (United States)

    Alpers, C.N.; Dettman, D.L.; Lohmann, K.C.; Brabec, D.

    1990-01-01

    rule out the possible mechanism of carbonate dissolution driven by pyrite oxidation, as proposed by Lovell et al. (1983) and McCarthy et al. (1986). Further work is needed on seasonal and daily variations of CO2 concentrations and stable isotope ratios in various hydrogeologic and ecologic settings so that more effective sampling strategies can be developed for mineral exploration using soil gases. ?? 1990.

  7. Soil Organic Carbon and Its Fractions Across Vegetation Types: Effects of Soil Mineral Surface Area and Microaggregates

    Institute of Scientific and Technical Information of China (English)

    WU Qing-Biao; WANG Xiao-Ke; OUYANG Zhi-Yun

    2009-01-01

    Soil organic carbon (SOC) can act as a sink or source of atmospheric carbon dioxide;therefore,it is important to understand the amount and composition of SOC in terrestrial ecosystems,the spatial variation in SOC,and the underlying mechanisms that stabilize SOC.In this study,density fractionation and acid hydrolysis were used to assess the spatial variation in SOC,the heavy fraction of organic carbon (HFOC),and the resistant organic carbon (ROC) in soils of the southern Hulun Buir region,northeastern China,and to identify the major factors that contribute to this variation.The results showed that as the contents of clay and silt particles (0-50 μm) increased,both methylene blue (MB) adsorption by soil minerals and microaggregate contents increased in the 0-20 and 20-40 cm soil layers (P<0.05).Although varying with vegetation types,SOC,HFOC,and ROC contents increased significantly with the content of clay and silt particles,MB adsorption by soil minerals,and microaggregate content (P<0.05),suggesting that soil texture,the MB adsorption by soil minerals,and microaggregate abundance might be important factors influencing the spatial heterogeneity of carbon contents in soils of the southern Hulun Buir region.

  8. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater

    Directory of Open Access Journals (Sweden)

    K. Kolo

    2005-01-01

    Full Text Available This study investigates the in vitro formation of Ca-oxalates and glushinskite through fungal interaction with carbonate substrates and seawater as a process of biologically induced metal recycling and neo-mineral formation. The study also emphasizes the role of the substrates as metal donors. In the first experiment, thin sections prepared from dolomitic rock samples of Terwagne Formation (Carboniferous, Viséan, northern France served as substrates. The thin sections placed in Petri dishes were exposed to fungi grown from naturally existing airborne spores. In the second experiment, fungal growth and mineral formation was monitored using only standard seawater (SSW as a substrate. Fungal growth media consisted of a high protein/carbohydrates and sugar diet with demineralized water for irrigation. Fungal growth process reached completion under uncontrolled laboratory conditions. The newly formed minerals and textural changes caused by fungal attack on the carbonate substrates were investigated using light and scanning electron microscopy (SEM-EDX, x-ray diffraction (XRD and Raman spectroscopy. The fungal interaction and attack on the dolomitic and seawater substrates resulted in the formation of Ca-oxalates (weddellite CaC2O4·2(H2O, whewellite (CaC2O4·(H2O and glushinskite MgC2O4·2(H2O associated with the destruction of the original hard substrates and their replacement by the new minerals. Both of Ca and Mg were mobilized from the experimental substrates by fungi. This metal mobilization involved a recycling of substrate metals into newly formed minerals. The biochemical and diagenetic results of the interaction strongly marked the attacked substrates with a biological fingerprint. Such fingerprints are biomarkers of primitive life. The formation of glushinskite is of specific importance that is related, besides its importance as a biomineral bearing a recycled Mg, to the possibility of its transformation through diagenetic pathway into an

  9. Microbes residing in young organic rich Alaskan soils contain older carbon than those residing in old mineral high Arctic soils

    Science.gov (United States)

    Ziolkowski, L. A.; Slater, G. F.; Onstott, T. C.; Whyte, L.; Townsend-Small, A.

    2013-12-01

    Arctic soils range from very organic rich to low carbon and mineral-dominated soils. At present, we do not yet fully understand if all carbon in the Arctic is equally vulnerable to mineralization in a warmer climate. Many studies have demonstrated that ancient carbon is respired when permafrost has thawed, yet our understanding of the active layer and permafrost carbon dynamics is still emerging. In an effort to remedy this disconnect between our knowledge of surface fluxes and below ground processes, we used radiocarbon to examine the microbial carbon dynamics in soil cores from organic rich soils near Barrow, Alaska and mineral soils from the Canadian high Arctic. Specifically, we compared the microbial community using lipid biomarkers, the inputs of carbon using n-alkanes and measured the 14C of both the bulk organic carbon and of the microbial lipids. In theory, the microbial lipids (phospholipid fatty acids, PLFA) represent the viable microbial community, as these lipids are hydrolyzed quickly after cell death. Variations in the PLFA distributions suggested that different microbial communities inhabit organic rich Alaskan soils and those of the Canadian high Arctic. When the PLFA concentrations were converted to cellular concentration, they were within the same order of magnitude (1 to 5 x 108 cells/g dry soil) with slightly higher cell concentrations in the organic rich Alaskan soils. When these cellular concentrations were normalized to the organic carbon content, the Canadian high Arctic soils contained a greater proportion of microbes. Although bulk organic carbon 14C of Alaskan soils indicated more recent carbon inputs into the soil than the Canadian high Arctic soils, the 14C of the PLFA revealed the opposite. For corresponding depth horizons, microbes in Alaskan soils were consuming carbon 1000 to 1500 years older than those in the Canadian high Arctic. Differences between the 14C content of bulk organic carbon and the microbial lipids were much smaller

  10. The accumulation of organic carbon in mineral soils by afforestation of abandoned farmland.

    Science.gov (United States)

    Wei, Xiaorong; Qiu, Liping; Shao, Mingan; Zhang, Xingchang; Gale, William J

    2012-01-01

    The afforestation of abandoned farmland significantly influences soil organic carbon (OC). However, the dynamics between OC inputs after afforestation and the original OC are not well understood. To learn more about soil OC dynamics after afforestation of farmland, we measured the soil OC content in paired forest and farmland plots in Shaanxi Province, China. The forest plots had been established on farmland 18, 24, 48, 100, and 200 yr previously. The natural (13)C abundance of soil organic matter was also analyzed to distinguish between crop- and forest-derived C in the afforested soils. We observed a nonlinear accumulation of total OC in the 0-80 cm depth of the mineral soil across time. Total soil OC accumulated more rapidly under forest stands aged 18 to 48 yr than under forest stands aged 100 or 200 yrs. The rate of OC accumulation was also greater in the 0-10 cm depth than in the 10-80 cm depth. Forest-derived OC in afforested soils also accumulated nonlinearly across time, with the greatest increase in the 0-20 cm depth. Forest-derived OC in afforest soils accounted for 52-86% of the total OC in the 0-10 cm depth, 36-61% of the total OC in the 10-20 cm depth, and 11-50% of the total OC in the 20-80 cm depth. Crop-derived OC concentrations in the 0-20 cm depth decreased slightly after afforestation, but there was no change in crop-derived OC concentrations in the 20-80 cm depth. The results of our study support the claim that afforestation of farmland can sequester atmospheric CO(2) by increasing soil OC stocks. Changes in the OC stocks of mineral soils after afforestation appear to be influenced mainly by the input of forest-derived C rather than by the loss of original OC.

  11. The distribution of secondary mineral phases along an eroding hillslope and its effect on carbon stabilization mechanisms and the fate of soil carbon fractions

    Science.gov (United States)

    Doetterl, Sebastian; Cornelis, Jean-Thomas; Opfergelt, Sophie; Boeckx, Pascal; Bodé, Samuel; Six, Johan; Van Oost, Kristof

    2014-05-01

    Soil redistribution processes can change soil carbon (C) dynamics drastically by moving carbon from high decomposition and re-sequestration environments at the eroding hillslope to low decomposition and burial at the depositional footslope and valley basin. This leads to not only spatially diverse soil carbon storage throughout the landscape, but also to qualitative changes of the transported carbon and the mineral phase. The interaction between those parameters and the effect on stabilization mechanisms for soil C are still a matter of debate. Here, we present an analysis that aims to clarify the bio/geo-chemical and mineralogical components involved in stabilizing C at various depths along an eroding cropped slope and how this affects the abundance of microbial derived carbon. We use the results of an incubation experiment combined with the abundance of amino sugars in different isolated soil C fractions as a tracer for the stability of the respective fraction. We applied further (i) a sequential extraction of the reactive soil phase using pyrophosphate, oxalate and dithionite-citrate-bicarbonate, and (ii) a qualitative analysis of the clay mineralogy, to analyze the changes in the mineral phase for the different isolated fractions along the slope transect. Our results emphasize the importance of physical protection within microaggregates to stabilize buried, chemically labile C. Our data further indicates that the stability of these aggregates is related to the presence of organo-mineral associations and poorly crystalline minerals. However, decreasing contents of these minerals with depth indicate a temporal limitation of this stabilization mechanism. Non-expandable clay minerals experience a relative enrichment at the depositional site while expandable clay minerals experience the same at the eroding site. These changes in clay mineralogy along the slope are partly responsible for the abundance of silt and clay associated C and the effectiveness of the clay

  12. [Seasonal dynamics of soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, China].

    Science.gov (United States)

    Gao, Fei; Lin, Wei; Cui, Xiao-yang

    2016-01-01

    To investigate the seasonal dynamics of soil organic carbon (SOC) mineralization in Xiaoxing'an Mountain, we incubated soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in different seasons in the laboratory and measured the SOC mineralization rate and cumulative SOC mineralization (Cm). We employed simultaneous reaction model to describe C mineralization kinetics and estimated SOC mineralization parameters including soil easily mineralizable C (C1), potentially mineralizable C (C₀). We also analyzed the relations between Cm, C₁and their influencing factors. Results showed that the incubated SOC mineralization rate and Cm for 0-5 cm soil layer decreased from early spring to late autumn, while for 5-10 cm soil layer the seasonal variation was not statistically significant for both forest types. The C₁ in 0-5 and 5-10 cm soil layers varied from 42.92-92.18 and 19.23-32.95 mg kg⁻¹, respectively, while the C₀ in 0-5 and 5-10 cm soil layers varied from 863.92-3957.15 and 434.15-865.79 mg · kg⁻¹, respec- tively. Both C₁ and C₀ decreased from early spring to late autumn. The proportions of C₀ in SOC for two forest types were 0.74%-2.78% and 1.11%-1.84% in 0-5 and 5-10 cm soil layers, respectively, and decreased from early spring to late autumn, indicating that SOC tended to become more stable as a whole from spring to autumn. The Cm and C₀ were significantly positively correlated to in situ soil water content and hot water-extractable carbohydrate content, but were not correlated to in situ soil temperature and cool water-extractable carbohydrate content. We concluded that soil labile organic carbon, soil physical and chemical properties contributed to the seasonal dynamics of SOC mineralization in the forests.

  13. Development of a technology for obtaining flotation reagent oxane-3 for carbon mineral raw materials of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Sergey Kalugin

    2014-12-01

    Full Text Available The paper represents the results of development of a technology for obtaining oxane-3 and its application for enrichment of carbon mineral raw materials. Studies on enrichment of a shungite rock showed that the increase of a pulp temperature to 30°C significantly improves the characteristics and rate of the flotation process. Measured indicators of a shungite rock enrichment using Flotol B were lower in comparison with an enrichment by oxane-3. For schungite mineral, it was established that the obtained heterocyclic compound can replace existing industrial flotation reagents in enrichment processes.

  14. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetical...

  15. Substrate quality alters the microbial mineralization of added substrate and soil organic carbon

    Science.gov (United States)

    Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

    2014-09-01

    The rate and extent of decomposition of soil organic carbon (SOC) is dependent, among other factors, on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial decomposition of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days were sufficient to model the decomposition of simple substrates (glucose and starch) with three pools, but were insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality exerts considerable control on the microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and complex substrates.

  16. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    Directory of Open Access Journals (Sweden)

    M. H. Iversen

    2010-09-01

    Full Text Available Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted, Skeletonema costatum aggregates (opal ballasted, and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted. Overall average carbon-specific respiration rate was ~0.13 d−1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study vary between 0.08 d−1 and 0.20 d−1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m−1 and 0.0030 m−1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  17. Mineral Carbonation in Wet Supercritical CO2: An in situ High-Pressure Magic Angle Spinning Nuclear Magnetic Resonance Study

    Science.gov (United States)

    Turcu, R. V.; Hoyt, D. H.; Sears, J. A.; Rosso, K. M.; Felmy, A. R.; Hu, J. Z.

    2011-12-01

    Understanding the mechanisms and kinetics of mineral carbonation reactions relevant to sequestering carbon dioxide as a supercritical fluid (scCO2) in geologic formations is crucial for accurately predicting long-term storage risks. In situ probes that provide molecular-level information at geologically relevant temperatures and pressures are highly desirable and challenging to develop. Magic angle spinning nuclear magnetic resonance (MAS NMR) is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, a supercritical state, or a mixture thereof. However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS sample rotor. In this work, we report development of a unique high pressure MAS NMR capability capable of handling fluid pressure exceeding 170 bars and temperatures up to 80°C, and its application to mineral carbonation in scCO2 under geologically relevant temperatures and pressures. Mineral carbonation reactions of the magnesium silicate mineral forsterite and the magnesium hydroxide brucite reacted with scCO2 (up to 170 bar) and containing variable content of H2O (at, below, and above saturation in scCO2) were investigated at 50 to 70°C. In situ 13C MAS NMR spectra show peaks corresponding to the reactants, intermediates, and the magnesium carbonation products in a single spectrum. For example, Figure 1 shows the reaction dynamics, i.e., the formation and conversion of reaction intermediates, i.e., HCO3- and nesquehonite, to magnesite as a function of time at 70°C. This capability offers a significant advantage over traditional ex situ 13C MAS experiments on similar systems, where, for example, CO2 and HCO3- are not directly observable.

  18. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen P.; Tallant, David Robert

    2013-09-01

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for

  19. Carbonate mineral saturation states in the East China Sea: present conditions and future scenarios

    Directory of Open Access Journals (Sweden)

    W.-C. Chou

    2013-10-01

    Full Text Available To assess the impact of rising atmospheric CO2 and eutrophication on the carbonate chemistry of the East China Sea shelf waters, saturation states (Ω for two important biologically relevant carbonate minerals – calcite (Ωc and aragonite (Ωa – were calculated throughout the water column from dissolved inorganic carbon (DIC and total alkalinity (TA data collected in spring and summer of 2009. Results show that the highest Ωc (∼9.0 and Ωa (∼5.8 values were found in surface water of the Changjiang plume area in summer, whereas the lowest values (Ωc = ∼2.7 and Ωa = ∼1.7 were concurrently observed in the bottom water of the same area. This divergent behavior of saturation states in surface and bottom waters was driven by intensive biological production and strong stratification of the water column. The high rate of phytoplankton production, stimulated by the enormous nutrient discharge from the Changjiang, acts to decrease the ratio of DIC to TA, and thereby increases Ω values. In contrast, remineralization of organic matter in the bottom water acts to increase the DIC to TA ratio, and thus decreases Ω values. The projected result shows that continued increases of atmospheric CO2 under the IS92a emission scenario will decrease Ω values by 40–50% by the end of this century, but both the surface and bottom waters will remain supersaturated with respect to calcite and aragonite. Nevertheless, superimposed on such Ω decrease is the increasing eutrophication, which would mitigate or enhance the Ω decline caused by anthropogenic CO2 uptake in surface and bottom waters, respectively. Our simulation reveals that, under the combined impact of eutrophication and augmentation of atmospheric CO2, the bottom water of the Changjiang plume area will become undersaturated with respect to aragonite (Ωa = ∼0.8 by the end of this century, which would threaten the health of the benthic ecosystem.

  20. Residence time, mineralization processes and groundwater origin within a carbonate coastal aquifer with a thick unsaturated zone

    Science.gov (United States)

    Santoni, S.; Huneau, F.; Garel, E.; Vergnaud-Ayraud, V.; Labasque, T.; Aquilina, L.; Jaunat, J.; Celle-Jeanton, H.

    2016-09-01

    This study aims at establishing groundwater residence times, identifying mineralization processes and determining groundwater origins within a carbonate coastal aquifer with thick unsaturated zone and lying on a granitic depression. A multi-tracer approach (major ions, SiO2, Br-, Ba+, Sr2+, 18O, 2H, 13C, 3H, Ne, Ar) combined with a groundwater residence time determination using CFCs and SF6 allows defining the global setting of the study site. A typical mineralization conditioned by the sea sprays and the carbonate matrix helped to validate the groundwater weighted residence times from using a binary mixing model. Terrigenic SF6 excesses have been detected and quantified, which permits to identify a groundwater flow from the surrounding fractured granites towards the lower aquifer principally. The use of CFCs and SF6 as a first hydrogeological investigation tool is possible and very relevant despite the thick unsaturated zone and the hydraulic connexion with a granitic environment.

  1. Soil moisture influenced the interannual variation in temperature sensitivity of soil organic carbon mineralization in the Loess Plateau

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2015-01-01

    Full Text Available Temperature sensitivity of SOC mineralization (Q10 determines how strong the feedback from global warming may be on the atmospheric CO2 concentration, thus understanding the factors influencing the interannual variation in Q10 is important to accurately estimate the local soil carbon cycle. In situ SOC mineralization was measured using an automated CO2 flux system (Li-8100 in long-term bare fallow soil in the Loess Plateau (35° 12' N, 107° 40' E in Changwu, Shaanxi, China form 2008 to 2013. The results showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C m−2 y−1 (mean =253 g C m−2 y−1; CV =13%, annual Q10 ranged from 1.48 to 1.94 (mean =1.70; CV =10%, and annual soil moisture content ranged from 38.6 to 50.7% WFPS (mean =43.8% WFPS; CV =11%, which were mainly affected by the frequency and distribution of precipitation. Annual Q10 showed a negative quadratic correlation with soil moisture. In conclusion, understanding of the relationships between interannual variation in Q10 of SOC mineralization, soil moisture and precipitation is important to accurately estimate the local carbon cycle, especially under the changing climate.

  2. Analysis of Tribological Behavior of Carbon Nanotube Based Industrial Mineral Gear Oil 250 cSt Viscosity

    OpenAIRE

    Shubrajit Bhaumik; Prabhu, S.; Kingsly Jeba Singh

    2014-01-01

    The paper investigates the exceptional antiwear and extreme pressure properties of multiwalled carbon nanotube based mineral oil. Different samples of oil containing varying proportions of MWNT (MWNT) and graphite were prepared. The samples were tested for their antiwear and load bearing capacity according to ASTM G99 and ASTM D-2783 standards. After pass load test in four ball tester the rubbed surfaces were investigated with Scanning Electron Microscope (SEM) images. The wear test results s...

  3. Inventario mundial de la calidad del carbon mineral (WoCQI) [The world coal quality inventory (WoCQI)

    Science.gov (United States)

    Finkelman, R.B.; Lovern, V.S.

    2001-01-01

    Los oficiales encargados de la politica comercial de cada pais requieren informacion clara y precisa sobre el recurso del carbon mineral, particularmente sobre sus propiedades y caracteristicas, para tomar decisiones bien fundamentadas con respecto al mejor uso de los recursos naturales, necesidades de importacion y oportunidades de exportacion, objetivos de politica interna y externa, oportunidades de transferencia tecnologica, posibilidades de inversion externa, estudios ambientales y de salud, y asuntos relacionados con el uso de productos secundarios y su disposicion.

  4. New strategies for submicron characterization the carbon binding of reactive minerals in long-term contrasting fertilized soils: implications for soil carbon storage

    Science.gov (United States)

    Xiao, Jian; He, Xinhua; Hao, Jialong; Zhou, Ying; Zheng, Lirong; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2016-06-01

    Mineral binding is a major mechanism for soil carbon (C) stabilization. However, the submicron information about the in situ mechanisms of different fertilization practices affecting organo-mineral complexes and associated C preservation remains unclear. Here, we applied nano-scale secondary ion mass spectrometry (NanoSIMS), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure spectroscopy (XAFS) to examine differentiating effects of inorganic versus organic fertilization on interactions between highly reactive minerals and soil C preservation. To examine such interactions, soils and their extracted colloids were collected during a 24-year long-term fertilization period (1990-2014) (no fertilization, control; chemical nitrogen (N), phosphorus (P), and potassium (K) fertilization, NPK; and NPK plus swine manure fertilization, NPKM). The results for different fertilization conditions showed a ranked soil organic matter concentration with NPKM > NPK > control. Meanwhile, oxalate-extracted Al (Alo), Fe (Feo), short-range ordered Al (Alxps), Fe (Fexps), and dissolved organic carbon (DOC) ranked with NPKM > control > NPK, but the ratios of DOC / Alxps and DOC / Fexps ranked with NPKM > NPK > control. Compared with the NPK treatment, the NPKM treatment enhanced the C-binding loadings of Al and Fe minerals in soil colloids at the submicron scale. Furthermore, a greater concentration of highly reactive Al and Fe minerals was presented under NPKM than under NPK. Together, these submicron-scale findings suggest that both the reactive mineral species and their associations with C are differentially affected by 24-year long-term inorganic and organic fertilization.

  5. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Science.gov (United States)

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  6. Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar.

    Science.gov (United States)

    Darby, Ian; Xu, Cheng-Yuan; Wallace, Helen M; Joseph, Stephen; Pace, Ben; Bai, Shahla Hosseini

    2016-06-01

    This study aims to examine the effects of different organic treatments including compost (generated from cattle hide waste and plant material), compost mixed with biochar (compost + biochar) and a new formulation of organo-mineral biochar (produced by mixing biochar with clay, minerals and chicken manure) on carbon (C) nitrogen (N) cycling. We used compost at the rate of 20 t ha(-1), compost 20 t ha(-1) mixed with 10 t ha(-1) biochar (compost + biochar) and organo-mineral biochar which also contained 10 t ha(-1) biochar. Control samples received neither of the treatments. Compost and compost + biochar increased NH4 (+) -N concentrations for a short time, mainly due to the release of their NH4 (+) -N content. Compost + biochar did not alter N cycling of the compost significantly but did significantly increase CO2 emission compared to control. Compost significantly increased N2O emission compared to control. Compost + biochar did not significantly change N supply and also did not decrease CO2 and N2O emissions compared to compost, suggesting probably higher rates of biochar may be required to be added to the compost to significantly affect compost-induced C and N alteration. The organo-mineral biochar had no effect on N cycling and did not stimulate CO2 and N2O emission compared to the control. However, organo-mineral biochar maintained significantly higher dissolved organic carbon (DOC) than compost and compost + biochar from after day 14 to the end of the incubation. Biochar used in organo-mineral biochar had increased organic C adsorption which may become available eventually. However, increased DOC in organo-mineral biochar probably originated from both biochar and chicken manure which was not differentiated in this experiment. Hence, in our experiment, compost, compost + biochar and organo-mineral biochar affected C and N cycling differently mainly due to their different content.

  7. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    Science.gov (United States)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  8. A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems

    Science.gov (United States)

    Zhu, Chen; Yao, Xizhi; Zhao, Liang; Teng, H. Henry

    2016-11-01

    Despite the availability of various reactors designed to study gas-liquid reactions, no appropriate devices are available to accurately investigate triple-phased mineral carbonation reactions involving CO2 gas, aqueous solutions (containing divalent cations), and carbonate minerals. This report presents a composite reactor that combines a modified conventional wetted-wall column, a pH control module, and an attachment to monitor precipitation reactions. Our test and calibration experiments show that the absorption column behaved largely in agreement with theoretical predictions and previous observations. Experimental confirmation of CO2 absorption in NaOH and ethanolamine supported the effectiveness of the column for gas-liquid interaction. A test run in the CO2-NH3-MgCl2 system carried out for real time investigation of the relevant carbonation reactions shows that the reactor's performance closely followed the expected reaction path reflected in pH change, the occurrence of precipitation, and the rate of NH3 addition, indicating the appropriateness of the composite device in studying triple-phase carbonation process.

  9. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics

    Science.gov (United States)

    Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Natarajan, Suresh K.; Vuilleumier, Rodolphe; Mauri, Francesco

    2015-08-01

    The theoretical determination of the isotopic fractionation between an aqueous solution and a mineral is of utmost importance in Earth sciences. While for crystals, it is well established that equilibrium isotopic fractionation factors can be calculated using a statistical thermodynamic approach based on the vibrational properties, several theoretical methods are currently used to model ions in aqueous solution. In this work, we present a systematic study to determine the reduced partition function ratio (β-factor) of aqueous Mg2+ using several levels of theory within the simulations. In particular, using an empirical force field, we compare and discuss the performance of the exact results obtained from path integral molecular dynamics (PIMD) simulations, with respect to the more traditional methods based on vibrational properties and the cluster approximation. The results show the importance of including configurational disorder for the estimation of the equilibrium isotope fractionation factor. We also show that using the vibrational frequencies computed from snapshots taken from equilibrated classical molecular dynamics represents a good approximation for the study of aqueous ions. Based on these conclusions, the β-factor of aqueous Mg2+ have been estimated from a Car-Parrinello molecular dynamics (CPMD) simulation with an ab initio force field, and combined with the β-factors of carbonate minerals (magnesite, dolomite, calcite and aragonite). Mg β-factor of Mg-bearing aragonite, calculated here for the first time, displays a lower value than the three other carbonate minerals. This is explained by a strong distortion of the cationic site leading to a decrease of the coordination number during Ca-Mg substitution. Overall, the equilibrium magnesium isotope fractionation factors between aqueous Mg2+ and carbonate minerals that derive from this methodological study support the previous theoretical results obtained from embedded cluster models.

  10. Capacity of microorganisms to decompose organic carbon affected by an increasing content of reactive mineral phases in a podzolic soil chronosequence

    Science.gov (United States)

    Vermeire, Marie-Liesse; Doetterl, Sebastian; Bode, Samuel; Delmelle, Pierre; Van Oost, Kristof; Cornelis, Jean-Thomas

    2014-05-01

    Soil organic matter stabilization has received considerable interest in the last decades due to the importance of the soil organic carbon (SOC) pool in the global C budget. There is increasing evidence that the formation of organo-mineral associations play a major role in the mechanisms of organic carbon stabilization, indicating that the persistence of organic matter in soils relates primarily to soil physico-chemical and biological conditions than to intrinsic recalcitrance. Al and Fe oxy-hydroxides and short-range ordered aluminosilicates are known for their high capacity to sorb organic carbon. However, the impact of the evolution of these reactive mineral phases over short time scale on the distribution of microorganisms and their ability to decompose SOC is still poorly understood. To further study the short-term evolution of organo-mineral associations, we investigated a 500-year podzolic soil chronosequence which is characterized by an increasing amount of secondary reactive mineral phases with pedogenesis and soil age, and thus by increased organo-mineral associations. In order to determine the impact of these secondary mineral phases on the degradation of SOC by microorganisms, an incubation experiment was carried out using soil horizons up to 1m deep from 6 profiles of different ages along the chronosequence. Furthermore, we used amino sugars and phospholipid fatty acids as tracers of dead and living microbial biomass, respectively, in the incubated samples. Our results show that SOC mineralization was significantly lower in the illuvial Bh/Bhs horizons (which contain more reactive mineral phases) compared to the surface E horizons (depleted in reactive mineral phases), although the content in amino sugars is similar in these horizons. In the deeper Bw and BC horizons, as well as in the young profiles (organo-mineral associations, SOC mineralization rates were the highest. These findings suggest that stabilization of OC through organo-mineral

  11. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption; Influencia del tamano de particula de carbon mineral activado sobre la adsorcion de fenol y clorofenol

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, A

    2001-07-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  12. The Formation of Carbonate Minerals and the Mobility of Heavy Metals during Water-CO2-Mafic Rock Interactions

    DEFF Research Database (Denmark)

    Olsson, Jonas

    are consistent with values of controlled laboratory experiments from the literature for Ba, Cd, Co, Cu, Mg, Mn, Na, Ni, Sr and Zn. The calcium carbonates also scavenge other elements, including rare earth elements (REE) and the toxic metals As and Pb. This and the next study can be considered natural analogues...... minerals, the reaction products are known to be manifold and reflect the complex composition of the basaltic material. Formation of secondary products, such aluminium and iron (hydr)oxides, are considered undesirable, because (1) they consume the cations that could be used to sequester CO2, thus compete...... with the process of carbonation, and (2) they can form a passivating layer, which inhibit dissolution of the basaltic material and slow down the carbonation process. The purpose of this thesis was to identify formation products, relevant to CarbFix, and assess their ability to immobilize toxic metals released from...

  13. Ultra-fine grinding and mechanical activation of mine waste rock using a high-speed stirred mill for mineral carbonation

    Institute of Scientific and Technical Information of China (English)

    Jia-jie Li; Michael Hitch

    2015-01-01

    CO2 sequestration by mineral carbonation can permanently store CO2 and mitigate climate change. However, the cost and reaction rate of mineral carbonation must be balanced to be viable for industrial applications. In this study, it was attempted to reduce the carbonation costs by using mine waste rock as a feed stock and to enhance the reaction rate using wet mechanical activation as a pre-treatment method. Slurry rheological properties, particle size distribution, specific surface area, crystallinity, and CO2 sequestration reaction efficiency of the initial and mechanically activated mine waste rock and olivine were characterized. The results show that serpentine acts as a catalyst, in-creasing the slurry yield stress, assisting new surface formation, and hindering the size reduction and structure amorphization. Mechanically activated mine waste rock exhibits a higher carbonation conversion than olivine with equal specific milling energy input. The use of a high-speed stirred mill may render the mineral carbonation suitable for mining industrial practice.

  14. Environmental benefits of using magnesium carbonate minerals as new wildfire retardants instead of commercially available, phosphate-based compounds.

    Science.gov (United States)

    Liodakis, S; Tsoukala, M

    2010-10-01

    A serial batch leaching experiment has been carried out to evaluate the release of elements from the ash of Pinus halepensis needles burned under two test conditions-with and without treatment of the forest species with the carbonate minerals (huntite and hydromagnesite) in aqueous solution (pH 6). The ash (before and after leaching) and leachates were analyzed using atomic absorption spectroscopy and X-ray diffraction. Compared with data from samples treated with the commercially available, phosphate-based fire retardant diammonium phosphate (DAP), we found that use of huntite or hydromagnesite was much more successful in obstructing the release of the toxic elements present in the ash, probably because of the alkaline conditions resulting from decomposition of the minerals during burning. In contrast, DAP tended to be more able to facilitate the extraction of some toxic metals (e.g., Zn, Cu, Mn), probably because of the acidic conditions resulting from its decomposition to phosphoric acid. Data from this study thus lend strong support to the use of magnesium carbonate minerals as new wildfire retardants, because they were shown to be more friendly to the environment (e.g., soil, ground, and underground water streams) than those currently in use (e.g., phosphate or sulfate salt type).

  15. Mineral associated and aggregate-occluded soil carbon decreased with increasing nitrogen and residue input for three decades

    Science.gov (United States)

    Shahbaz, Muhammad; Kuzyakov, Yakov; Heitkamp, Felix

    2016-04-01

    Cropland soils may be a source or sink for atmospheric CO2. Therefore, effects of cropland management and fertilization on soil organic carbon (SOC) can be assessed best in long-term experiments. Generally, it is assumed that change in SOC is linearly related to C-input into the soil. However, recently it has been shown that residue incorporation resulted to only small extents in the increase of SOC levels. This gives rise to environmental concerns regarding the efficient use of crop residue. Such concerns are also applicable for the well designed and documented long-term experiment of Puch, Germany, in a silt-loam soil. The crop rotation is winter barley - winter wheat - silage maize. Five organic amendments were combined with N-fertiliser rates. The levels of organic amendments are unamended control (CON), straw was removed; farmyard manure (FYM), straw was removed; straw incorporation (STR); slurry application (SLU), straw was removed; and straw incorporation combined with slurry application (STSL). Three levels of mineral fertilizer application were selected: no nitrogen (N0); medium, 100 kg N ha-1year-1 (N2); and high, 200 kg N ha-1 year-1 (N4). These treatments resulted in a wide range of mean annual carbon input (1 - 5 t C ha-1 year-1). We hypothesize that the amount of soil carbon stored in different fractions will increase with C-input, but the effect will decrease in the order free light fraction (f-LF), occluded light fraction (o-LF) and heavy mineral-associated fraction (HF). Soil samples were fractionated by density using sodium polytungstate (1.6 g cm-3). Compared to the starting value SOC was lost in STR and CON and increased in SLU and STSL, whereas FYM showed no differences to initial carbon stocks. However, N additions resulted in only slightly increase in SOC contents with reference to C-input. The lower amount of o-LF carbon in CON and STR demonstrated the low ability of crop residue in comparison to animal manures to build up SOC contents

  16. Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China

    Science.gov (United States)

    Zhu, Xiangyu; Wang, Rucheng; Lu, Xiancai; Liu, Huan; Li, Juan; Ouyang, Bingjie; Lu, Jianjun

    2015-02-01

    The formation and dissolution of arsenic minerals commonly controls the mobility of As in sulfide mines. Here, we present the results of research based on X-ray powder diffraction (XRD), Raman microprobe spectrum, scanning electron microscope (SEM), and transmission electron microscope (TEM) analyses, Scanning transmission X-ray microscope (STXM) and X-ray absorption fine structure (XAFS) analyses to further understand the weathering of orpiment- and realgar-bearing tailings from the Shimen realgar deposit, the largest realgar deposit in Asia. These analyses indicate that four different types of As-bearing secondary minerals are present in the tailings, including arsenic oxides, arsenates, As-gypsum, and As-Fe minerals, and that arsenic in the tailings is present in +3 and +5 valence states. The precipitation of arsenates is attributed to the interaction between As-enriched run-off waters and carbonate minerals. The Ca-arsenates in the tailings are dominantly weilite and pharmacolite, both of which have Ca/As atomic ratios of 1. In addition, SO4 2-/HAsO4 2- substitution in gypsum is another important mechanism of arsenic precipitation.

  17. Slowing the rate of loss of mineral wetlands on human dominated landscapes - Diversification of farmers markets to include carbon (Invited)

    Science.gov (United States)

    Creed, I. F.; Badiou, P.; Lobb, D.

    2013-12-01

    Canada is the fourth-largest exporter of agriculture and agri-food products in the world (exports valued at 28B), but instability of agriculture markets can make it difficult for farmers to cope with variability, and new mechanisms are needed for farmers to achieve economic stability. Capitalizing on carbon markets will help farmers achieve environmentally sustainable economic performance. In order to have a viable carbon market, governments and industries need to know what the carbon capital is and what potential there is for growth, and farmers need financial incentives that will not only allow them to conserve existing wetlands but that will also enable them to restore wetlands while making a living. In southern Ontario, farmers' needs to maximize the return on investment on marginal lands have resulted in loss of 70-90% of wetlands, making this region one of the most threatened region in terms of wetland degradation and loss in Canada. Our project establishes the role that mineral wetlands have in the net carbon balance by contributing insight into the potential benefits to carbon management provided by wetland restoration efforts in these highly degraded landscapes. The goal was to establish the magnitude of carbon offsets that could be achieved through wetland conservation (securing existing carbon stocks) and restoration (creating new carbon stocks). The experimental design was to focus on (1) small (0.2-2.0 ha) and (2) isolated (no inflow or outflow) mineral wetlands with the greatest restoration potential that included (3) a range of restoration ages (drained (0 yr), 3 yr, 6 yr, 12 yr, 20 yr, 35 yr, intact marshes) to capture potential changes in rates of carbon sequestration with restoration age of wetland. From each wetland, wetland soil carbon pools samples were collected at four positions: centre of wetland (open-water); emergent vegetation zone; wet meadow zone where flooding often occurs (i.e., high water mark); and upland where flooding rarely

  18. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-01-01

    investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m−2 yr−1) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60......% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously......: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments...

  19. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization.

    Science.gov (United States)

    Coucheney, Elsa; Strömgren, Monika; Lerch, Thomas Z; Herrmann, Anke M

    2013-12-01

    Boreal ecosystems store one-third of global soil organic carbon (SOC) and are particularly sensitive to climate warming and higher nutrient inputs. Thus, a better description of how forest managements such as nutrient fertilization impact soil carbon (C) and its temperature sensitivity is needed to better predict feedbacks between C cycling and climate. The temperature sensitivity of in situ soil C respiration was investigated in a boreal forest, which has received long-term nutrient fertilization (22 years), and compared with the temperature sensitivity of C mineralization measured in the laboratory. We found that the fertilization treatment increased both the response of soil in situ CO2 effluxes to a warming treatment and the temperature sensitivity of C mineralization measured in the laboratory (Q10). These results suggested that soil C may be more sensitive to an increase in temperature in long-term fertilized in comparison with nutrient poor boreal ecosystems. Furthermore, the fertilization treatment modified the SOC content and the microbial community composition, but we found no direct relationship between either SOC or microbial changes and the temperature sensitivity of C mineralization. However, the relation between the soil C:N ratio and the fungal/bacterial ratio was changed in the combined warmed and fertilized treatment compared with the other treatments, which suggest that strong interaction mechanisms may occur between nutrient input and warming in boreal soils. Further research is needed to unravel into more details in how far soil organic matter and microbial community composition changes are responsible for the change in the temperature sensitivity of soil C under increasing mineral N inputs. Such research would help to take into account the effect of fertilization managements on soil C storage in C cycling numerical models.

  20. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories

    NARCIS (Netherlands)

    Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H.; Waal, de R.W.

    2008-01-01

    Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many count

  1. Visible–Near-Infrared Spectroscopy Can Predict the Clay/Organic Carbon and Mineral Fines/Organic Carbon Ratios

    DEFF Research Database (Denmark)

    Hermansen, Cecilie; Knadel, Maria; Møldrup, Per;

    2016-01-01

    The ratios of mineral fines (... of preferential flow, water repellency, and chemical adsorption. Conventional texture and OC measurements are time consuming and expensive, and visible–near-infrared (vis-NIR) spectroscopy may provide a fast and inexpensive alternative for obtaining the n- and m-ratios. In this study, a total of 480 soil samples...

  2. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar

    Science.gov (United States)

    Cely, P.; Tarquis, A. M.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G.

    2014-06-01

    The effect of biochar on the soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on physicochemical properties and CO2 emissions of a sandy loam soil. For this purpose, soil was amended with three different biochars (BI, BII and BIII) at a rate of 8 wt% and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients (r2) greater than 0.97. Results show a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related to different biochar properties such as carbon content, carbon aromaticity, volatile matter, fixed carbon, easily oxidized organic carbon or metal and phenolic substance content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

  3. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism

    Science.gov (United States)

    Bulanova, Galina P.; Walter, Michael J.; Smith, Chris B.; Kohn, Simon C.; Armstrong, Lora S.; Blundy, Jon; Gobbo, Luiz

    2010-10-01

    We report on a suite of diamonds from the Cretaceous Collier 4 kimberlite pipe, Juina, Brazil, that are predominantly nitrogen-free type II crystals showing complex internal growth structures. Syngenetic mineral inclusions comprise calcium- and titanium-rich phases with perovskite stoichiometry, Ca-rich majoritic-garnet, clinopyroxene, olivine, TAPP phase, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca-Mg-carbonate. We divide the diamonds into three groups on the basis of the carbon isotope compositions (δ13C) of diamond core zones. Group 1 diamonds have heavy, mantle-like δ13C (-5 to -10‰) with mineral inclusions indicating a transition zone origin from mafic protoliths. Group 2 diamonds have intermediate δ13C (-12 to -15‰), with inclusion compositions indicating crystallization from near-primary and differentiated carbonated melts derived from oceanic crust in the deep upper mantle or transition zone. A 206Pb/238U age of 101 ± 7 Ma on a CaTiSi-perovskite inclusion (Group 2) is close to the kimberlite emplacement time (93.1 ± 1.5 Ma). Group 3 diamonds have extremely light δ13C (-25‰), and host inclusions have compositions akin to high-pressure-temperature phases expected to be stable in pelagic sediments subducted to transition zone depths. Collectively, the Collier 4 diamonds and their inclusions indicate multi-stage, polybaric growth histories in dynamically changing chemical environments. The young inclusion age, the ubiquitous chemical and isotopic characteristics indicative of subducted materials, and the regional tectonic history, suggest a model in which generation of sublithospheric diamonds and their inclusions, and the proto-kimberlite magmas, are related genetically, temporally and geographically to the interaction of subducted lithosphere and a Cretaceous plume.

  4. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin [Calera Corporation, Moss Landing, CA (United States); Gilliam, Ryan [Calera Corporation, Moss Landing, CA (United States); Seeker, Randy [Calera Corporation, Moss Landing, CA (United States)

    2015-06-30

    The objective of this project was to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updated Techno-Economic Analysis and CO2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.

  5. In vitro mineralization of MC3T3-E1 osteoblast-like cells on collagen/nano-hydroxyapatite scaffolds coated carbon/carbon composites.

    Science.gov (United States)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2016-02-01

    Collagen/nano-hydroxyapatite (collagen/nHA) scaffolds were successfully prepared on carbon/carbon composites as bioactive films using the layer-by-layer coating method. Surface characterizations of collagen/nHA scaffolds were detected by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Compressive strengths of the scaffolds were evaluated by a universal test machine. In vitro biological performances were determined using scaffolds seeded with MC3T3-E1 osteoblasts-like cells and cultured in mineralization medium for up to 21 days. In addition, cellular morphologies and several related gene expressions of MC3T3-E1 cells in the scaffolds were also evaluated. Chemical and morphological analysis showed that the scaffolds had uniform pore sizes and unified phase composition. Mechanical testing indicated that the collagen/nHA scaffolds had the highest compressive strength in 50% of strain condition when the proportion of collagen and nano-hydroxyapatite was 1:3. Cellular morphology observations and cytology tests indicated that MC3T3-E1 cells were adhered on these scaffolds and proliferated. SEM photographs and gene expressions showed that mineralized MC3T3-E1 cells and newly formed extra cellular matrix (ECM) filled up the pores of the scaffolds after the 3-week mineralization inducement. Nano-sized apatite particles were secreted from MC3T3-E1 cells and combined with the reconstructed ECM. Collectively, collagen/nHA scaffolds provided C/C composites with a biomimetic surface for cell adhesion, proliferation and mineralized extra cellular matrices formation.

  6. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere.

    Science.gov (United States)

    Watanabe, Nobuhisa; Takata, Mitsuyasu; Takemine, Shusuke; Yamamoto, Katsuya

    2015-09-11

    Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage.

  7. Carbon mineralization dynamics in soils amended with meat meals under laboratory conditions.

    Science.gov (United States)

    Cayuela, M L; Sinicco, T; Fornasier, F; Sanchez-Monedero, M A; Mondini, C

    2008-01-01

    Meat and bone meal (MBM) is obtained from the wastes produced during slaughtering operations. Its high concentration of N and P makes it interesting as an organic fertiliser but its use in soil has been barely studied previously. In this work four laboratory experiments were performed to study the influence of different variables (MBM composition, rate of application, temperature of incubation and the type of soil) on C mineralization dynamics of MBM in agricultural soils. The total CO2-C evolved (as % of added C) after 2 weeks ranged between 10% and 20%. The kinetics of mineralization were rapid, with C evolved as CO2 within the first 4 days representing more than 50% of total C mineralized. A linear correlation was found between the rate of application (added-C) and CO2-C evolved (r2: 0.997; PQ10 (20-25 degrees C)) and it was found to be related to the soil properties. Finally, the mineralization process was found to be highly dependent upon the different soil factors, although no simple linear correlation was found between mineralization and soil properties.

  8. Soil carbon stocks, mineralization rates, and CO{sub 2} effluxes under 10 tree species on contrasting soil types

    Energy Technology Data Exchange (ETDEWEB)

    Ladegaard-Pedersen, P.; Elberling, B. [Copenhagen Univ., Copenhagen (Denmark). Inst. of Geography; Vesterdal, L. [Danish Centre for Forest, Landscape and Planning, Horsholm (Denmark)

    2005-06-01

    Forest ecosystems, particularly younger forest ecosystems, are potential sinks for carbon. This study evaluated soil carbon dioxide (CO{sub 2}) effluxes in relation to soil organic carbon (SOC) content in temperate forests. In this study, 10 even-aged first generation monoculture stands at 3 sites along a gradient in soil fertility were examined. Results from laboratory experiments were used to determine SOC stocks and the mineralization rate of organic matter in O and A horizons, measured as CO{sub 2} production per unit soil carbon. The goal was to quantify the variation in soil carbon dioxide effluxes and potential accumulation of SOC in forest soils for a variety of tree species planted on contrasting soil types. SOC stocks varied greatly between tree species, but were most influenced by soil types. SOC stocks were much higher for stands on low-fertility sandy soils than stands on fertile loamy soils. Soil CO{sub 2} effluxes were measured twice in 2002. Variability within temperature adjusted fluxes did not clearly depend on tree species or soil type. Laboratory results showed that potential carbon dioxide rates were affected by site. They also doubled for soils from nutrient rich sites compared to nutrient poor sites. Therefore, the combined effect of contrasting CO{sub 2} production rates and stocks of soil carbon could explain the similar CO{sub 2} effluxes measured in the field. It was concluded that SOC sequestration in future afforestation projects would depend on soil type and tree species. SOC storage may increase with afforestation given the appropriate selection of tree species. 37 refs., 1 tab., 4 figs.

  9. The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest.

    Science.gov (United States)

    Wang, Hui; Xu, Wenhua; Hu, Guoqing; Dai, Weiwei; Jiang, Ping; Bai, Edith

    2015-08-01

    The priming effect (PE) is one of the most important interactions between C input and output in soils. Here we aim to quantify patterns of PE in response to six addition rates of (13)C-labeled water-soluble C (WSC) and determine if these patterns are different between soil organic and mineral layers in a temperate forest. Isotope mass balance was used to distinguish WSC derived from SOC-derived CO2 respiration. The relative PE was 1.1-3.3 times stronger in the mineral layer than in the organic layer, indicating higher sensitivity of the mineral layer to WSC addition. However, the magnitude of cumulative PE was significantly higher in the organic layer than in the mineral layer due to higher SOC in the organic layer. With an increasing WSC addition rate, cumulative PE increased for both layers, but tended to level off when the addition rate was higher than 400 mg C kg(-1) soil. This saturation effect indicates that stimulation of soil C loss by exogenous substrate would not be as drastic as the increase of C input. In fact, we found that the mineral layer with an WSC addition rate of 160-800 mg C kg(-1) soil had net C storage although positive PE was observed. The addition of WSC basically caused net C loss in the organic layer due to the high magnitude of PE, pointing to the importance of the organic layer in C cycling of forest ecosystems. Our findings provide a fundamental understanding of PE on SOC mineralization of forest soils and warrant further in situ studies of PE in order to better understand C cycling under global climate change.

  10. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    Science.gov (United States)

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  11. Trace level determination of beryllium in natural and flavored mineral waters after pre-concentration using activated carbon.

    Science.gov (United States)

    Kılınç, Ersin; Bakırdere, Sezgin; Yaman, Mehmet

    2011-04-01

    The concentrations of beryllium (Be) in natural and flavored mineral water samples were determined by flame atomic absorption spectrophotometer (FAAS) after pre-concentration based on the complexation of Be(+2) with a mixture of acetylacetone (pentane-2,4-dione) plus morin (3,5,7,2',4'-pentaoxyflavone) and adsorption on activated carbon. The adsorbed complex was eluted with 1.5 ml of 2.0 M HNO(3) and evaporated to dryness. After adding 1.5 ml of 2 M HNO(3) and centrifuging, Be in acid solution was determined by FAAS. To remove a number of metals present in water, EDTA was used as a chelating agent. Beryllium in mineral water samples was pre-concentrated by 500-fold, taking 750 ml as initial sample and 1.5 ml as the final volume. The relative standard deviations were sufficiently low for practical purposes and recoveries were up to 85%. Spiking experiments were performed in real samples to establish accuracy and recoveries. The limits of detection and quantification were 0.01 and 0.03 ng ml(-1), respectively. Twenty samples were analyzed for their beryllium content using optimum parameters. The highest concentration of beryllium was found to be 0.94 ± 0.15 ng ml(-1) in a natural mineral water, while beryllium was not detected in five samples.

  12. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, P. B.

    2010-01-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the 13C values of CH4 and C2H6 were -50.3% and -39.3% (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a (sigma)C-13 value of -19.2%, which was 3.2% heavier than its source, formic acid. The (sigma)C-13 difference between CO2 and CH4 was 31.1%, which was higher than the value of 9.4% calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1%) observed in similar experiments previously performed at 400 C and 50 MPa with longer reaction times. CH4 is 11.0% less enriched in C-13 than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which confirms

  13. Natural Mineral-marine Manganese Nodule as a Novel Catalyst for the Synthesis of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Multi-walled carbon nanotubes were fabricated by the pyrolysis of acetylene with naturally occurring marine manganese nodules as a novel catalyst at an elevated temperature.The nanotube product was examined by transmission electron microscopy.The method is expected to be the simplest one to synthesize carbon nanotubes due to unnecessary synthesis of catalyst.

  14. Trace-Element Analyses of Carbonate Minerals in the Gunflint Banded Iron Formation

    Science.gov (United States)

    Pun, Aurora; Papike, James J.; Shearer, C. K.

    2002-01-01

    We report on the petrography, mineralogy and trace-element abundances of individual carbonate grains in the Early Proterozoic Gunflint BIF (Banded Iron Formation). Trace-element data may be used as environmental recorders of the fluid evolution from which the various carbonate phases precipitated. Additional information is contained in the original extended abstract.

  15. Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Harrison, Robert; Stupak, Inge

    2016-01-01

    Roots mobilize nutrients via deep soil penetration and rhizosphere processes inducing weathering of primary minerals. These processes contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long-te...

  16. Optimization of Calcium Carbonate Precipitation for Carbonate Mineralization Bacteria%碳酸盐矿化菌诱导碳酸钙沉淀条件的优化

    Institute of Scientific and Technical Information of China (English)

    竹文坤; 罗学刚

    2012-01-01

    The effects of temperature, pH value, precipitation time, reaccant concentration, the crystal formation additive on the yield of calcium carbonate precipitation induced by carbonate mineralization bacteria were investigated through single-factor and orthogonal tests. The morphology, thermal property, elements and structure of the calcium carbonate were characterized by scanning electron microscopic (SEM) and flouner transform infrared spectroscopy (IR), energy dispersive spectroscopy (EDS), thermal analyzer (TG) and powder X-ray diffraction (XRD). The results showed that the optimum conditions of calcium carbonate precipitation induced by carbonate mineralization bacteria were temperature of 40 ℃, pH value of 8, time of 3 d, Ca2+ concentration of 1.5 mol/L and Mg2+ concentration of 0.05 mol/L. Precipitation sediment contain mainly C, O, Ca elements and a little of organic matter, its crystal structure, morphology and packing density were changed by different external conditions, in order to improve the yield of calcium carbonate precipitation, and to provide bases for the efficiency of microbial remediation technology.%通过单因素及正交试验研究了温度、pH值、沉淀时间、反应物浓度和成核剂5个因素对微生物诱导CaCO3沉淀量的影响,以期提高微生物沉积碳酸钙的产率,为微生物修复技术的时效性提供参考.采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、热分析仪(TG)、能谱分析(EDS)对CaCO3样品形貌、结构、热性质、元素等进行表征分析.结果表明,沉淀物质主要含有C、O、Ca元素和少量有机质,其晶型、形貌和堆积密度随外界条件改变而不同.微生物诱导CaCO3沉淀的最佳外界条件是:pH值为8,Mg2+浓度0.05 mol/L,温度40℃,沉淀时间3d,Ca2+浓度1.5 mol/L.

  17. Carbon Sequestration and Nitrogen Mineralization in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation

    Science.gov (United States)

    Shin, Joung-Du; Lee, Sun-Ill; Park, Wu-Gyun; Choi, Yong-Su; Hong, Seong-Gil; Park, Sang-Won

    2014-05-01

    Objectives of this study were to estimate the carbon sequestration and to evaluate nitrogen mineralization and nitrification in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil used in this study was clay loam types, and application rates of chemical fertilizer and bio-char were recommended amount after soil test and 2 % to soil weight, respectively. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of non-application, cow manure compost, pig manure compost, swine digestate from aerobic digestion system, their bio-char cooperation. For the experimental results, residual amount of inorganic carbon was ranged from 51 to 208kg 10a-1 in soil only cooperated with different organic composts. However it was estimated to be highest at 208kg 10a-1 in the application plot of pig manure compost. In addition to bio-char application, it was ranged from 187.8 to 286kg 10a-1, but was greatest accumulated at 160.3kg 10a-1 in the application plot of cow manure compost. For nitrogen mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char compared to the only application plots of different organic composts except for 71 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For the loss of total inorganic carbon (TIC) by run-off water, it was ranged from 0.18 to 0.36 kg 10a-1 in the different treatment plots. Also, with application of bio-char, total nitrogen was estimated to be reduced at 0.42(15.1%) and 0.38(11.8%) kg 10a-1 in application plots of the pig manure compost and aerobic digestate, respectively.

  18. Oxygen spectroscopy and polarization-dependent imaging contrast (PIC)-mapping of calcium carbonate minerals and biominerals.

    Science.gov (United States)

    DeVol, Ross T; Metzler, Rebecca A; Kabalah-Amitai, Lee; Pokroy, Boaz; Politi, Yael; Gal, Assaf; Addadi, Lia; Weiner, Steve; Fernandez-Martinez, Alejandro; Demichelis, Raffaella; Gale, Julian D; Ihli, Johannes; Meldrum, Fiona C; Blonsky, Adam Z; Killian, Christopher E; Salling, C B; Young, Anthony T; Marcus, Matthew A; Scholl, Andreas; Doran, Andrew; Jenkins, Catherine; Bechtel, Hans A; Gilbert, Pupa U P A

    2014-07-17

    X-ray absorption near-edge structure (XANES) spectroscopy and spectromicroscopy have been extensively used to characterize biominerals. Using either Ca or C spectra, unique information has been obtained regarding amorphous biominerals and nanocrystal orientations. Building on these results, we demonstrate that recording XANES spectra of calcium carbonate at the oxygen K-edge enables polarization-dependent imaging contrast (PIC) mapping with unprecedented contrast, signal-to-noise ratio, and magnification. O and Ca spectra are presented for six calcium carbonate minerals: aragonite, calcite, vaterite, monohydrocalcite, and both hydrated and anhydrous amorphous calcium carbonate. The crystalline minerals reveal excellent agreement of the extent and direction of polarization dependences in simulated and experimental XANES spectra due to X-ray linear dichroism. This effect is particularly strong for aragonite, calcite, and vaterite. In natural biominerals, oxygen PIC-mapping generated high-magnification maps of unprecedented clarity from nacre and prismatic structures and their interface in Mytilus californianus shells. These maps revealed blocky aragonite crystals at the nacre-prismatic boundary and the narrowest calcite needle-prisms. In the tunic spicules of Herdmania momus, O PIC-mapping revealed the size and arrangement of some of the largest vaterite single crystals known. O spectroscopy therefore enables the simultaneous measurement of chemical and orientational information in CaCO3 biominerals and is thus a powerful means for analyzing these and other complex materials. As described here, PIC-mapping and spectroscopy at the O K-edge are methods for gathering valuable data that can be carried out using spectromicroscopy beamlines at most synchrotrons without the expense of additional equipment.

  19. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2013-03-01

    Full Text Available Conceptual models suggest that stability of organic carbon (OC in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF were analysed for OC, total nitrogen (TN, δ14C, and Δ14C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and positive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and

  20. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.

    2015-01-01

    The carbon (C) footprint of palm oil production is needed to judge emissions from potential biofuel use. Relevance includes wider sustainable palm oil debates. Within life cycle analysis, aboveground C debt is incurred if the vegetation replaced had a higher C stock than oil palm plantations. Our st

  1. Carbon and nitrogen stocks and nitrogen mineralization in organically managed soils amended with composted manures.

    Science.gov (United States)

    Romanyà, Joan; Arco, Noèlia; Solà-Morales, Ignasi; Armengot, Laura; Sans, Francesc Xavier

    2012-01-01

    The use of composted manures and of legumes in crop rotations may control the quality and quantity of soil organic matter and may affect nutrient retention and recycling. We studied soil organic C and N stocks and N mineralization in organically and conventionally managed dryland arable soils. We selected 13 extensive organic fields managed organically for 10 yr or more as well as adjacent fields managed conventionally. Organic farmers applied composted manures ranging from 0 to 1380 kg C ha yr and incorporated legumes in crop rotations. In contrast, conventional farmers applied fresh manures combined with slurries and/or mineral fertilizers ranging from 200 to 1900 kg C ha yr and practiced a cereal monoculture. Despite the fact that the application of organic C was similar in both farming systems, organically managed soils showed higher C and similar N content and lower bulk density than conventionally managed soils. Moreover, organic C stocks responded to the inputs of organic C in manures and to the presence of legumes only in organically managed soils. In contrast, stocks of organic N increased with the inputs of N or C in both farming systems. In organically managed soils, organic N stocks were less mineralizable than in conventional soils. However, N mineralization in organic soils was sensitive to the N fixation rates of legumes and to application rate and C/N ratio of the organic fertilizers.

  2. [Characteristics and Coupling Relationship of Soil Carbon and Nitrogen Transformation During In-situ Mineralization Cultivation in Forestlands in the Mountain Area of Southern Ningxia].

    Science.gov (United States)

    Ni, Yin-xia; Huang, Yi-mei; Niu, Dan; Zhao, Tong; Yan, Hao; Jiang, Yue-li

    2015-09-01

    The study aimed to investigate the characteristics and relationship between soil carbon and nitrogen transformation of artificial forestlands, which is one type of vegetation restoration in the mountain area of Southern Ningxia. Soil samples were collected every two months in a year from three forestlands, and the characteristics of soil organic carbon, dissolved carbon, microbial biomass carbon, organic nitrogen, inorganic nitrogen, soil ammonification, nitrification and mineralization rates, microbial immobilization rates and coupling of soil carbon and nitrogen were studied by the in-situ closed-top PVC tube incubation methods. The results showed that: in the process of in-situ incubation, the most obvious changes of carbon and nitrogen were in 61-120 days which was mainly affected by soil moisture; There were significantly positive correlations between the soil organic carbon and the total nitrogen, microbial biomass carbon and microbial biomass nitrogen, dissolved carbon and dissolved nitrogen; Transformation rates of soil organic carbon had significant effects on the soil ammonification, nitrification and microbial immobilization rates. It can be well simulated by model of linear regression equation; Microbial quotient, MBN/SON were significantly increased in soil of Caragana korshinskii land. Net nitrification rates, net mineralization rates in Caragana korshinskii land were significantly higher than that in Prunus davidiana and Prunus mandshurica lands.

  3. Geochemical Evidence for Subduction in the Early Archaean from Quartz-Carbonate-Fuchsite Mineralization, Isua Supracrustal Belt, West Greenland

    Science.gov (United States)

    Pope, E. C.; Rosing, M. T.; Bird, D. K.

    2011-12-01

    Quartz, carbonate and fuchsite (chromian muscovite) is a common metasomatic assemblage observed in orogenic gold systems, both in Phanerozoic convergent margin settings, and within supracrustal and greenstone belts of Precambrian rocks. Geologic and geochemical observations in younger orogenic systems suggest that ore-forming metasomatic fluids are derived from subduction-related devolitilization reactions, implying that orogenic Au-deposits in Archaean and Proterozoic supracrustal rock suites are related to subduction-style plate tectonics beginning early in Earth history. Justification of this metasomatic-tectonic relationship requires that 1) Phanerozoic orogenic Au-deposits form in subduction-zone environments, and 2) the geochemical similarity of Precambrian orogenic deposits to their younger counterparts is the result of having the same petro-genetic origin. Hydrogen and oxygen isotope compositions of fuchsite and quartz from auriferous mineralization in the ca. 3.8 Ga Isua Supracrustal Belt (ISB) in West Greenland, in conjunction with elevated concentrations of CO2, Cr, Al, K and silica relative to protolith assemblages, suggest that this mineralization shares a common petro-tectonic origin with Phanerozoic orogenic deposits and that this type of metasomatism is a unique result of subduction-related processes. Fuchsite from the ISB has a δ18O and δD of +7.7 to +17.9% and -115 to -61%, respectively. δ18O of quartz from the same rocks is between +10.3 and +18.6%. Muscovite-quartz oxygen isotope thermometry indicates that the mineralization occurred at 560 ± 90oC, from fluids with a δD of -73 to -49% and δ18O of +8.8 to +17.2%. Calculation of isotopic fractionation during fluid-rock reactions along hypothetical fluid pathways demonstrates that these values, as well as those in younger orogenic deposits, are the result of seawater-derived fluids liberated from subducting lithosphere interacting with ultramafic rocks in the mantle wedge and lower crust

  4. Equilibrium of Groundwater with Carbonate Minerals of the Water-Bearing Rocks under Anthropogenic Impact (by the example of Kishinev, Moldova)

    Science.gov (United States)

    Timoshenkova, A. N.; Pasechnik, E. Yu; Tokarenko, O. G.

    2014-08-01

    The paper presents calculation results of equilibrium of groundwater in Kishenev with a variety of secondary carbonate minerals. It is shown that the groundwater-rock system is in equilibrium with some minerals, such as calcite, magnesite, dolomite, siderite, but at the same time is not in equilibrium with strontianite. It indicates that secondary mineral precipitation is possible. Specific nitrate chemical water type, which is rarely observed in nature and characterized by the presence of anthropogenic impact in this territory, in some cases is of higher saturation as compared to calcite, dolomite and magnesite due to the fact that nitrate ion content increases with the increase of calcium content.

  5. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  6. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    Science.gov (United States)

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques.

  7. MINERALIZATION STUDY OF RENAL RATS FOLLOWING OVARYOHYSTERECTOMY AND ADMINISTRATION HIGH DOSE CALCIUM CARBONATE

    OpenAIRE

    Wiwik Misaco Yuniarti; Ira Sari Yudaniayanti; Nusdianto Triakoso

    2008-01-01

    The aim of this study was to determine the effect of high dose calcium carbonate in rat (Rattus norvegicus) following ovaryohysterectomy. A total of twenty female rats at 13 week-old were used in this study. Following ovaryohitectomy, the animals were randomized in four treatment groups. Group P0 were :fed with standard food only P1, P2 and P2 groups treated with standard food but supplemented calcium carbonate respectively at the dose of 75 mg per animal per day, 225 mg per animal per day , ...

  8. Influence of seasonal and geochemical changes on the geomicrobiology of an iron carbonate mineral water spring.

    Science.gov (United States)

    Hegler, Florian; Lösekann-Behrens, Tina; Hanselmann, Kurt; Behrens, Sebastian; Kappler, Andreas

    2012-10-01

    Fuschna Spring in the Swiss Alps (Engadin region) is a bicarbonate iron(II)-rich, pH-neutral mineral water spring that is dominated visually by dark green microbial mats at the side of the flow channel and orange iron(III) (oxyhydr)oxides in the flow channel. Gradients of O(2), dissolved iron(II), and bicarbonate establish in the water. Our goals were to identify the dominating biogeochemical processes and to determine to which extent changing geochemical conditions along the flow path and seasonal changes influence mineral identity, crystallinity, and microbial diversity. Geochemical analysis showed microoxic water at the spring outlet which became fully oxygenated within 2.3 m downstream. X-ray diffraction and Mössbauer spectroscopy revealed calcite (CaCO(3)) and ferrihydrite [Fe(OH)(3)] to be the dominant minerals which increased in crystallinity with increasing distance from the spring outlet. Denaturing gradient gel electrophoresis banding pattern cluster analysis revealed that the microbial community composition shifted mainly with seasons and to a lesser extent along the flow path. 16S rRNA gene sequence analysis showed that microbial communities differ between the flow channel and the flanking microbial mat. Microbial community analysis in combination with most-probable-number analyses and quantitative PCR (qPCR) showed that the mat was dominated by cyanobacteria and the channel was dominated by microaerophilic Fe(II) oxidizers (1.97 × 10(7) ± 4.36 × 10(6) 16S rRNA gene copies g(-1) using Gallionella-specific qPCR primers), while high numbers of Fe(III) reducers (10(9) cells/g) were identified in both the mat and the flow channel. Phototrophic and nitrate-reducing Fe(II) oxidizers were present as well, although in lower numbers (10(3) to 10(4) cells/g). In summary, our data suggest that mainly seasonal changes caused microbial community shifts, while geochemical gradients along the flow path influenced mineral crystallinity.

  9. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg−1) was measured in three soils amended with activated carbon (AC...

  10. Multi-Walled Carbon Nanotubes Promote Cementoblast Differentiation and Mineralization through the TGF-β/Smad Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Lu Li

    2015-02-01

    Full Text Available Excretion of cementum by cementoblasts on the root surface is a process indispensable for the formation of a functional periodontal ligament. This study investigated whether carboxyl group-functionalized multi-walled carbon nanotubes (MWCNT-COOH could enhance differentiation and mineralization of mammalian cementoblasts (OCCM-30 and the possible signaling pathway involved in this process. Cementoblasts were incubated with various doses of MWCNT-COOH suspension. Cell viability was detected, and a scanning electron microscopy (SEM observed both the nanomaterials and the growth of cells cultured with the materials. Alizarin red staining was used to investigate the formation of calcium deposits. Real-time PCR and western blot were used to detect cementoblast differentiation and the underlying mechanisms through the expression of the osteogenic genes and the downstream effectors of the TGF-β/Smad signaling. The results showed that 5 µg/mL MWCNT-COOH had the most obvious effects on promoting differentiation without significant toxicity. Alp, Ocn, Bsp, Opn, Col1 and Runx2 gene expression was up-regulated. Smad2 and Smad3 mRNA was up-regulated, while Smad7 was first down-regulated on Day 3 and later up-regulated on Day 7. The elevated levels of phospho-Smad2/3 were also confirmed by western blot. In sum, the MWCNT-COOH promoted cementoblast differentiation and mineralization, at least partially, through interactions with the TGF-β/Smad pathway.

  11. The Effects of Three Mineral Nitrogen Sources and Zinc on Maize and Wheat Straw Decomposition and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    Ogunniyi Jumoke Esther; GUO Chun-hui; TIAN Xiao-hong; LI Hong-yun; ZHOU Yang-xue

    2014-01-01

    highest total organic carbon (TOC) concentration (11.59 mg kg-1). The incorporation of wheat straw resulted in higher microbial biomass accumulation in soils relative to that of the maize straw application. The results demonstrate that mineral N sources can affect the ability of microorganisms to decompose straw, as well as the soil carbon concentrations.

  12. Carbon foam derived from pitches modified with mineral acids by a low pressure foaming process

    Energy Technology Data Exchange (ETDEWEB)

    Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Krzesinska, M.; Pusz, S.; Majewska, J.; Tzvetkov, P. [Bulgarian Academy of Science, Sofia (Bulgaria). Inst. of Organic Chemistry

    2010-10-15

    Carbon foams with an anisotropic texture and high mechanical strength were produced using precursors obtained after thermo-oxidation treatment of commercial coal-tar pitch with H{sub 2}SO{sub 4} and HNO{sub 3}. The investigations of the relation between the properties of the precursor and the structure of obtained foam indicate, that the composition and softening point of the pitch precursor significantly affect the foaming process, foam structure and foam mechanical strength. The composition and properties of the modified pitches allow foam formation at relatively low pressure and fast heating rate during the foaming process without a stabilization treatment. The foaming process of pitch-based carbon foams, pretreatment of the precursors, and the properties of resultant foams are discussed in this paper.

  13. Changes in carbon stocks of Danish agricultural mineral soils between 1986 and 2009

    DEFF Research Database (Denmark)

    Taghizadeh-Toosi, Arezoo; Olesen, Jørgen E; Kristensen, Kristian;

    2014-01-01

    To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation-wide 7-km grid and analysed for SOC content. The average SOC stock in 0–100-cm depth soil was 142 t C ha−1, with 63, 41 and 38 t C ha−1 in t...

  14. MINERALIZATION STUDY OF RENAL RATS FOLLOWING OVARYOHYSTERECTOMY AND ADMINISTRATION HIGH DOSE CALCIUM CARBONATE

    Directory of Open Access Journals (Sweden)

    Wiwik Misaco Yuniarti

    2008-06-01

    Full Text Available The aim of this study was to determine the effect of high dose calcium carbonate in rat (Rattus norvegicus following ovaryohysterectomy. A total of twenty female rats at 13 week-old were used in this study. Following ovaryohitectomy, the animals were randomized in four treatment groups. Group P0 were :fed with standard food only P1, P2 and P2 groups treated with standard food but supplemented calcium carbonate respectively at the dose of 75 mg per animal per day, 225 mg per animal per day , and 450 mg per animal per day. The calcium carbonate supplement were given daily in the morning for 42 days. The experimental animals were sacrificed at 21 week-old. Calcium and phosphor level in sinister kidneys were determined by spectrofotometric method. The data obtained from this study were analysed using one way analysis of variance. No significant difference was observed in calcium level among four treatment groups, with the lowest level were found in P3 group. However, the phosphor level of P1 was significantly lower than those of P2 and P3 groups. The highest phosphor level was observed in P3 group, indicating a phosphorous retension and the signs of renal failure.

  15. Carbonate mineral formation under the influence of limestone-colonising actinobacteria: morphology and polymorphism

    Directory of Open Access Journals (Sweden)

    Chengliang eCao

    2016-03-01

    Full Text Available Microorganisms and their biomineralisation processes are widespread in almost every environment on earth. In this work, Streptomyces luteogriseus DHS C014, a dominant lithophilous actinobacteria isolated from microbial mats on limestone rocks, was used to investigate its potential biomineralisation to allow a better understanding of bacterial contributions to carbonate mineralisation in nature. The ammonium carbonate free-drift method was used with mycelium pellets, culture supernatant, and spent culture of the strain. Mineralogical analyses showed that hexagonal prism calcite was only observed in the sub-surfaces of the mycelium pellets, which is a novel morphology mediated by microbes. Hemispheroidal vaterite appeared in the presence of spent culture, mainly because of the effects of soluble microbial products (SMP during mineralisation. When using the liquid culture, doughnut-like vaterite was favoured by actinobacterial mycelia, which has not yet been captured in previous studies. Our analyses suggested that the effects of mycelium pellets as a molecular template almost gained an advantage over SMP both in crystal nucleation and growth, having nothing to do with biological activity. It is thereby convinced that lithophilous actinobacteria, S. luteogriseus DHS C014, owing to its advantageous genetic metabolism and filamentous structure, showed good biomineralisation abilities, maybe it would have geoactive potential for biogenic carbonate in local microenvironments.

  16. Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xue-Jun; ZHOU Guo-Yi; HUANG Zhong-Liang; LIU Ju-Xiu; ZHANG De-Qiang; LI Jiong

    2008-01-01

    Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments.For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3-N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission.SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P≤0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.

  17. Effects of lanthanum carbonate versus calcium carbonate on vascular stiffness and bone mineral metabolism in hemodialysis patients with type 2 diabetes mellitus: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Wada K

    2015-08-01

    Full Text Available Kentaro Wada,1 Yuko Wada,2 Haruhito Adam Uchida,3 Shuichi Tsuruoka4 1Division of Nephrology and Dialysis, Department of Internal Medicine, Nippon Kokan Fukuyama Hospital, Hiroshima, 2Department of Internal Medicine, Central Hospital, Hiroshima, 3Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 4Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan Background: Vascular calcification contributes to cardiovascular disease in hemodialysis (HD patients with diabetes. The randomized controlled trial reported here compared the effects of lanthanum carbonate (LC and calcium carbonate (CC on vascular stiffness assessed using brachial-ankle pulse wave velocity (ba-PWV, intima-media thickness (IMT, bone mineral density (BMD, and serum markers of chronic kidney disease – mineral and bone disorder in such patients. Methods: Ba-PWV, IMT, BMD, and the biomarkers osteocalcin (OC and bone alkaline phosphatase (BAP were examined in 43 type 2 diabetes HD patients treated with LC (n=21 or CC (n=22 for 2 years. Results: Forty-one patients completed the study (19, LC; 22, CC. The mean ba-PWV significantly increased only in the CC group (median: 2,280.5 to 2,402.5 cm/s, P<0.05, after 24-month treatment; it remained unchanged in the LC group (median: 1,830.5 to 2,018.3 cm/s. However, the difference between the groups did not reach statistical significance. Changes in IMT and BMD were not different between the two groups. Changes in serum phosphorus, corrected calcium, and intact parathyroid hormone levels were similar between the groups. The incidence of fracture was 0% (0/19 in the LC group, and 13.6% (3/22 in the CC group (P=0.2478. The OC/BAP ratio increased significantly in the LC group (median: 0.83 to 2.47, compared with in the CC group (median: 0.77 to 1.40 (P=0.036. Conclusion: From

  18. The investigations of changes in mineral-organic and carbon-phosphate ratios in the mixed saliva by synchrotron infrared spectroscopy

    Science.gov (United States)

    Seredin, Pavel; Goloshchapov, Dmitry; Kashkarov, Vladimir; Ippolitov, Yuri; Bambery, Keith

    The objective of this study was to investigate the efficiency of the saturation of mixed saliva by mineral complexes and groups necessary for the remineralisation of tooth enamel using exogenous and endogenous methods of caries prevention. Using IR spectroscopy and high-intensity synchrotron radiation, changes in the composition of the human mixed saliva were identified when exogenous and endogenous methods of caries prevention are employed. Based on the calculations of mineral/organic and carbon/phosphate ratios, changes in the composition of the human mixed saliva depending on a certain type of prevention were identified. It is shown that the use of a toothpaste (exogenous prevention) alone based on a multi-mineral complex including calcium glycerophosphate provides only a short-term effect of saturating the oral cavity with mineral complexes and groups. Rinsing of the oral cavity with water following the preventive use of a toothpaste completely removes the effect of the saturation of the mixed saliva with mineral groups and complexes. The use of tablets of a multi-mineral complex with calcium glycerophosphate (endogenous prevention) in combination with exogenous prevention causes an average increase of ∼10% in the content of mineral groups and complexes in the mixed saliva and allows long-term saturation of the oral fluid by them. This method outperforms the exogenous one owing to a long-term effect of optimal concentrations of endogenous and biologically available derivatives of phosphates on the enamel surface.

  19. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.

    Science.gov (United States)

    Ercole, Claudia; Bozzelli, Paola; Altieri, Fabio; Cacchio, Paola; Del Gallo, Maddalena

    2012-08-01

    This study highlights the role of specific outer bacterial structures, such as the glycocalix, in calcium carbonate crystallization in vitro. We describe the formation of calcite crystals by extracellular polymeric materials, such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) isolated from Bacillus firmus and Nocardia calcarea. Organic matrices were isolated from calcifying bacteria grown on synthetic medium--in the presence or absence of calcium ions--and their effect on calcite precipitation was assessed. Scanning electron microscopy observations and energy dispersive X-ray spectrometry analysis showed that CPS and EPS fractions were involved in calcium carbonate precipitation, not only serving as nucleation sites but also through a direct role in crystal formation. The utilization of different synthetic media, with and without addition of calcium ions, influenced the biofilm production and protein profile of extracellular polymeric materials. Proteins of CPS fractions with a molecular mass between 25 and 70 kDa were overexpressed when calcium ions were present in the medium. This higher level of protein synthesis could be related to the active process of bioprecipitation.

  20. A proteinaceous organic matrix regulates carbonate mineral production in the marine teleost intestine

    Science.gov (United States)

    Schauer, Kevin L.; Lemoine, Christophe M. R.; Pelin, Adrian; Corradi, Nicolas; Warren, Wesley C.; Grosell, Martin

    2016-10-01

    Marine teleost fish produce CaCO3 in their intestine as part of their osmoregulatory strategy. This precipitation is critical for rehydration and survival of the largest vertebrate group on earth, yet the molecular mechanisms that regulate this reaction are unknown. Here, we isolate and characterize an organic matrix associated with the intestinal precipitates produced by Gulf toadfish (Opsanus beta). Toadfish precipitates were purified using two different methods, and the associated organic matrix was extracted. Greater than 150 proteins were identified in the isolated matrix by mass spectrometry and subsequent database searching using an O. beta transcriptomic sequence library produced here. Many of the identified proteins were enriched in the matrix compared to the intestinal fluid, and three showed no substantial homology to any previously characterized protein in the NCBI database. To test the functionality of the isolated matrix, a micro-modified in vitro calcification assay was designed, which revealed that low concentrations of isolated matrix substantially promoted CaCO3 production, where high concentrations showed an inhibitory effect. High concentrations of matrix also decreased the incorporation of magnesium into the forming mineral, potentially providing an explanation for the variability in magnesium content observed in precipitates produced by different fish species.

  1. A proteinaceous organic matrix regulates carbonate mineral production in the marine teleost intestine

    Science.gov (United States)

    Schauer, Kevin L.; LeMoine, Christophe M. R.; Pelin, Adrian; Corradi, Nicolas; Warren, Wesley C.; Grosell, Martin

    2016-01-01

    Marine teleost fish produce CaCO3 in their intestine as part of their osmoregulatory strategy. This precipitation is critical for rehydration and survival of the largest vertebrate group on earth, yet the molecular mechanisms that regulate this reaction are unknown. Here, we isolate and characterize an organic matrix associated with the intestinal precipitates produced by Gulf toadfish (Opsanus beta). Toadfish precipitates were purified using two different methods, and the associated organic matrix was extracted. Greater than 150 proteins were identified in the isolated matrix by mass spectrometry and subsequent database searching using an O. beta transcriptomic sequence library produced here. Many of the identified proteins were enriched in the matrix compared to the intestinal fluid, and three showed no substantial homology to any previously characterized protein in the NCBI database. To test the functionality of the isolated matrix, a micro-modified in vitro calcification assay was designed, which revealed that low concentrations of isolated matrix substantially promoted CaCO3 production, where high concentrations showed an inhibitory effect. High concentrations of matrix also decreased the incorporation of magnesium into the forming mineral, potentially providing an explanation for the variability in magnesium content observed in precipitates produced by different fish species. PMID:27694946

  2. Carbon and nitrogen mineralization in a vineyard soil amended with grape marc vermicompost.

    Science.gov (United States)

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2011-11-01

    Vineyard soils in many areas suffer from low organic matter contents, which can be the cause of negative effects such as increasing the risk of erosion, so the use of organic amendments must be considered a good agricultural practice. Even more, if grape marc is recycled as a soil amendment in the vineyards, benefits from a good waste management strategy are also obtained. In the present study, a grape marc from the wine region of Valdeorras (north-west Spain) was used for the production of vermicompost, and this added to a vineyard soil of the same area in a laboratory study. Mixtures of soil and grape marc vermicompost (2 and 4%, dry weight) were incubated for ten weeks at 25°C and the mineralization of C and N studied. The respiration data were fitted to a first-order kinetic model. The rates of grape marc vermicompost which should be added to the vineyard soil in order to maintain the initial levels of organic matter were estimated from the laboratory data, and found to be 1.7 t ha(-1) year(-1) of bulk vermicompost (if the present mean temperature is considered) and 2.1 t ha(-1) year(-1) of bulk vermicompost (if a 2°C increment in temperature is considered), amounts which could be obtained recycling the grape marc produced in the exploitation.

  3. Analysis of minerals containing dissolved traces of the fluid phase components water and carbon dioxide

    Science.gov (United States)

    Freund, Friedemann

    1991-01-01

    Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.

  4. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications

    DEFF Research Database (Denmark)

    Douglas, Timothy; Lapa, Agata; Samal, Sangram K.

    by incubation in 5% (w/v) urease solution and mineralized for 5 days in five different media denoted as UA, UB, UC, UD and UE, which contained urea (0.17 M) and different concentrations of CaCl2 and MgCl2 (270:0, 202.5:67.5, 135:135, 67.5:202.5 and 0:250, respectively (mmol dm-3)). Discs were autoclaved...

  5. Isolation and Sr2+Mineralization Mediated by Carbonate Mineralization Bacteria%碳酸盐矿化菌的分纯及其对Sr2+的矿化特性研究

    Institute of Scientific and Technical Information of China (English)

    许凤琴; 代群威; 侯丽华; 赵玉连; 邬琴琴; 秦永莲; 蒋沁芮; 董发勤

    2015-01-01

    Soil pollution has increasingly become a serious problem, especially by radionuclide pollution, and has attracted wide attention. Microbial remediation of radionuclide contaminated soil has been studied and proposed as a potential strategy. Because some microorganisms in soil can consolidate heavy metal to form mineralization, heavy metal inos can be removed from soil. A strain of carbonate mineralization bacterium was isolated from the soil and was used for the mineralization of Sr2+. The final removal rate of 1.0 g/L and 0.5 g/L Sr2 + was as high as 98% and 99%, respectively. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses revealed that the mineralized product was strontium carbonate. It is suggested that indigenous bacteria can survive soil radionuclide toxicity and strontium ions could be mineralized as stable carbonate minerals, which indicates important practicability for radionuclide or heavy metal bioremediation. Also, the finding will provide new insights into carbonate biomineralization.%土壤污染日益严重,其中作为土壤污染类型之一的放射性核素污染已引起广泛关注。土壤中的部分微生物可以矿化固结重金属离子,从而达到去除重金属离子的目的。本文实验对从土壤中分离的1株碳酸盐矿化菌的特性及其对Sr2+的矿化结果进行研究,发现该菌对1.0 g/L和0.5 g/L模拟核素Sr2+的去除率可达98%和99%。扫描电子显微镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)等结果显示,矿化产物为碳酸锶。可见,利用碳酸盐矿化菌治理土壤中放射性核素Sr2+污染具有可行性,该方法将会有一定应用前景。

  6. The effect of alginates, fucans and phenolic substances from the brown seaweed Padina gymnospora in calcium carbonate mineralization in vitro

    Science.gov (United States)

    Salgado, L. T.; Amado Filho, G. M.; Fernandez, M. S.; Arias, J. L.; Farina, M.

    2011-04-01

    The mineralization of calcium carbonate (CaCO 3) in the brown seaweed Padina gymnospora is a biologically induced process and is restricted to the cell wall surface. It has been suggested that the CaCO 3 crystallization that occurs over the thallus cell wall surface is induced by changes in the surface pH caused by a local efflux of OH -, Ca ++ and HCO3- ions. However, no studies on the roles of the P. gymnospora cell wall components in this mineralization process had been performed. Therefore, we evaluated the influence of a subset of P. gymnospora cell wall molecules on CaCO 3 crystallization in vitro. The molecules tested were the anionic polysaccharides alginates and fucans (with potential nucleation activity) and phenolic substances (secondary metabolites with amphipathic property). The crystallization assays were performed using polystyrene microbridges as the crystallization apparatus. Crystals formed in the microbridges were analyzed using scanning electron microscopy. Interestingly, the results confirmed that the phenolic substances have the specific capability of changing the morphology of calcite crystals grown in vitro by inducing an elongated morphology in the direction of the c-axis. This morphology is similar to that induced by molecules that attach to { h k 0}-crystal planes. It was also shown that the alginates and the fucans do not specifically modulate the morphology of the growing crystals. In fact, these crystals exhibited a rounded shape due to the slower growth rates of several new crystal planes that appeared in the place of the original corners and edges.

  7. Soil carbon sequestration and mineralization potential in an old-field revegetated with shrubs in semi-arid climate conditions

    Science.gov (United States)

    de Dato, G.; Lagomarsino, A.; Abou Jaoudé, R.; De Angelis, P.

    2012-04-01

    Revegetation and afforestation of abandoned fields can modify mineralisation processes of soil organic matter and, as a consequence, the potential for C sequestration. Our work aimed to analyse these changes identifying C fractions with different degrees of physical protection and potential mineralization, in a old-field revegetated with shrubby species in a Mediterranean semi-arid area. A multi-specific plantation was made up in February 2006, by planting Juniperus phoenicea L. (JP), Pistacia lentiscus L. (PL) and Rosmarinus officinalis L. (RO). The area has a typical Mediterranean climate with an average temperature of 16.8 °C and a total annual precipitation of 643 mm. Soil cores were collected in three plots with a mixed specific composition, and in one plot used as control (grass cover). Soil cores (0 - 20 cm depth) were sampled in April 2010 at two distances (30 and 60 cm) from the centre of shrub crown cover in revegetated plots, and randomly in the control. The following variables were examined: soil aggregates (macro- > 250 µm and micro-aggregates between 53 and 250 µm), fine particulate organic matter (F-POM) and its C and N content, microbial respiration after 28 days at 24 °C, and mineralization rate of labile and stable C. In the short period, no variation in soil C accumulation induced by the plantation was detected. On the other hand, C input from the different soil covers had a distinct pattern: in revegetated plots it was mainly made up by POM, while fine roots represented the major C input in the control. Macro- and micro-aggregates distribution differed in the control and revegetated plots, allowing a higher physical protection of organic carbon in the control. Nevertheless, more recalcitrant organic matter inputs in the plantation can likely determine a more robust soil C accumulation in the long term.

  8. Organo-mineral interactions promote greater soil organic carbon stability under aspen in semi-arid montane forests in Utah

    Science.gov (United States)

    Van Miegroet, H.; Roman Dobarco, M.

    2014-12-01

    Forest species influence soil organic carbon (SOC) storage through litter input, which in interaction with soil microclimate, texture and mineralogy, lead to different SOC stabilization and storage patterns. We sampled mineral soil (0-15 cm) across the ecotone between aspen (Populus tremuloides) and mixed conifers stands (Abies lasiocarpa and Pseudotsuga menziesii) in semi-arid montane forests from Utah, to investigate the influence of vegetation vs. site characteristics on SOC stabilization, storage and chemistry. SOC was divided into light fraction (LF), mineral-associated SOC in the silt and clay fraction (MoM), and a dense subfraction > 53 μm (SMoM) using wet sieving and electrostatic attraction. SOC decomposability and solubility was derived from long term laboratory incubations and hot water extractions (HWE). Fourier transform infrared spectroscopy (FTIR) was used to study differences in chemical functional groups in LF and MoM. Vegetation cover did not affect SOC storage (47.0 ± 16.5 Mg C ha-1), SOC decomposability (cumulative CO2-C release of 93.2 ± 65.4 g C g-1 C), or SOC solubility (9.8 ± 7.2 mg C g-1 C), but MoM content increased with presence of aspen [pure aspen (31.2 ± 15.1 Mg C ha-1) > mixed (25.7 ± 8.8 Mg C ha-1) > conifer (22.8 ± 9.0 Mg C ha-1)]. Organo-mineral complexes reduced biological availability of SOC, indicated by the negative correlation between silt+clay (%) and decomposable SOC per gram of C (r = -0.48, p = 0.001) or soluble SOC (r = -0.59, p < 0.0001). FTIR spectral analysis indicated that higher MoM content under aspen was not due to higher concentration of recalcitrant compounds (e.g., aliphatic and aromatic C), but rather to stabilization of simple molecules (e.g., polysaccharides) of plant or microbial origin. FTIR spectra clustered by sites with similar parent material rather than by vegetation cover. This suggests that initial differences in litter chemistry between aspen and conifers converged into similar MoM chemistry

  9. Experimental Observations of the Patterns of Fungi-Mineral Surfaces Interactions with Muscovite, Biotite, Bauxite, Chromite, Hematite, Galena, Malachite, Manganite and Carbonate Substrates.

    Science.gov (United States)

    Claeys, P.

    2006-12-01

    In an in vitro experimental work, mineral substrates of muscovite, biotite, bauxite, chromite, hematite, galena, malachite, manganite and carbonate were exposed to free fungal growth and interaction in Petri dishes under open conditions. All of the experimental minerals were examined by XRD for identity and purity. The 12-week experiment resulted in significant alteration of the mineral substrates. SEM, EDX, and XRD analysis showed secondary mineral biomineralization represented by different crystal morphologies of Ca- and Mg- oxalates (weddelite: CaC2O4·2H2O, whewellite CaC2O4·H2O and glushinskite: MgC2O4·2H2O), struvite: (NH4) MgPO4·6H2O, gypsum CaSO4.2H2O, and possible dolomite. Metals bioleached from the substrates included: Fe, Pb, S, Cu, Al as single crystals or aggregates, amorphous layers, amorphous aggregates, and linear forms influenced by the fungal filaments. Bauxite and manganite showed the strongest cases of bioleaching where Fe and Al were fungally extracted and deposited as separate mineral species from the Al-Fe oxides mixture, while Ca and S were extracted from the manganite substrate and deposited as gypsum. The bioleached metals were either deposited on the mineral substrates, attached to fungal filaments, embedded in the fungal mycelium or in the extracellular polysaccharide substance (EPS) layer. The EDX microanalysis of the fungal hyphae frequently revealed metal content adsorbed on the hyphae sheath surface. During the short period of the experiment, fungal interaction with the mineral surfaces produced significant biomechanical and biochemical bioweathering features: strong pitting of the mineral surfaces, exfoliation, tunnelling, dissolution, honeycomb-alveolar structures, perforations, fragmentation, and cementation. One important aspect of these interactions is the strong affinity of fungal hyphae to mineral surfaces. The fungi engulfed whole blocks of minerals in the hyphal network, irrespective of mineral surface topography with

  10. Energy Consumption and Carbon Dioxide Emissions of China’s Non-Metallic Mineral Products Industry: Present State, Prospects and Policy Analysis

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2014-11-01

    Full Text Available China is the largest non-metallic mineral producer in the world and one of the key consumers of four major non-metallic mineral products, including cement, refractories, plate glass and ceramics. The non-metallic mineral products industry’s rapid growth has brought about a large demand for energy. The present study provides an overview of China’s non-metallic mineral products industry in terms of production, energy consumption and carbon dioxide emissions. In this industry, the energy efficiency is relatively low and the level of carbon dioxide emission is much higher than developed countries’ average. This study interprets the effects of some newly issued policies and analyses the influential factors in achieving energy conservation and emission reduction goals. It also discusses the prospects for saving energy and emission reduction in the industry. Retrofitting facilities and using new production technologies is imperative. Additionally, implementing market-based policies, promoting industrial transformation and effective international cooperation would help decrease carbon dioxide emissions and energy consumption.

  11. Pyrogenic carbon distribution in mineral topsoils of the northeastern United States

    Science.gov (United States)

    Jauss, Verena; Sullivan, Patrick J.; Sanderman, Jonathan; Smith, David; Lehmann, Johannes

    2017-01-01

    Due to its slow turnover rates in soil, pyrogenic carbon (PyC) is considered an important C pool and relevant to climate change processes. Therefore, the amounts of soil PyC were compared to environmental covariates over an area of 327,757 km2 in the northeastern United States in order to understand the controls on PyC distribution over large areas. Topsoil (defined as the soil A horizon, after removal of any organic horizons) samples were collected at 165 field sites in a generalised random tessellation stratified design that corresponded to approximately 1 site per 1600 km2 and PyC was estimated from diffuse reflectance mid-infrared spectroscopy measurements using a partial least-squares regression analysis in conjunction with a large database of PyC measurements based on a solid-state 13C nuclear magnetic resonance spectroscopy technique. Three spatial models were applied to the data in order to relate critical environmental covariates to the changes in spatial density of PyC over the landscape. Regional mean density estimates of PyC were 11.0 g kg− 1 (0.84 Gg km− 2) for Ordinary Kriging, 25.8 g kg− 1(12.2 Gg km− 2) for Multivariate Linear Regression, and 26.1 g kg− 1 (12.4 Gg km− 2) for Bayesian Regression Kriging. Akaike Information Criterion (AIC) indicated that the Multivariate Linear Regression model performed best (AIC = 842.6; n = 165) compared to Ordinary Kriging (AIC = 982.4) and Bayesian Regression Kriging (AIC = 979.2). Soil PyC concentrations correlated well with total soil sulphur (P < 0.001; n = 165), plant tissue lignin (P = 0.003), and drainage class (P = 0.008). This suggests the opportunity of including related environmental parameters in the spatial assessment of PyC in soils. Better estimates of the contribution of PyC to the global carbon cycle will thus also require more accurate assessments of these covariates.

  12. Effects of minerals in ferric bauxite on sodium carbonate decomposition and volatilization

    Institute of Scientific and Technical Information of China (English)

    胡文韬; 王化军; 刘欣伟; 孙传尧

    2015-01-01

    Direct reduction is an emerging technology for ferric bauxite utilization. However, because of sodium volatilization, its sodium carbonate consumption is considerably higher than that in ordinary bauxite processing technology. TG-DSC and XRD were applied to detecting phase transformation and mass loss in direct reduction to reveal the mechanism on sodium volatilization. The results show that the most significant influence factor of ferric bauxite on sodium volatilization in direct reduction system is its iron content. Sodium volatilization is probably ascribed to the instability of amorphous substances structure. Amorphous substances are the intermediate-products of the reaction, and the volatilization rate of sodium increases with its generating rate. These amorphous substances are volatile, thus, more sodium is volatilized with its generation. A small amount of amorphous substances are generated in the reaction between Na2CO3and Al2O3; thus, only 3.15% of sodium is volatilized. Similarly, the volatilization rate is 1.87% in the reaction between Na2CO3and SiO2. However, the volatilization rate reaches 7.64% in the reaction between Na2CO3 and Fe2O3 because of the generation of a large amount of amorphous substances.

  13. Short communication: A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil

    Directory of Open Access Journals (Sweden)

    GAURAV MISHRA

    2016-04-01

    Full Text Available Abstract. Mishra G, Giri K, Dutta A, Hazarika S and Borgohain P. 2015. A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil. Nusantara Bioscience 8: 5-7. Plant litter or residues can be used as soil amendment to maintain the carbon stock and soil fertility. The amount and rate of mineralization depends on biochemical composition of plant litter. Alnus nepalensis (Alder is known for its symbiotic nitrogen fixation and capability to restore fertility of degraded lands. A laboratory incubation experiment was conducted for 60 days under controlled conditions to validate the carbon and nutrients mineralization potential of alder litter. Soil fertility indicators, i.e. soil organic carbon (SOC, available nitrogen (N, available phosphorus (P, and available potassium (K were analyzed using standard procedures. Significant differences were observed in the soil properties after addition of litter. Nutrient composition of alder litter was found superior by providing significantly higher organic matter and helped in better nutrient cycling. Therefore, alder based land use system may be replicated in other degraded lands or areas for productivity enhancement which is important for sustaining biodiversity and soil fertility.

  14. Measurement of Charged Current Coherent Pion Production by Neutrinos on Carbon at MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Mislivec, Aaron Robert [Univ. of Rochester, NY (United States)

    2017-01-01

    Neutrino-nucleus coherent pion production is a rare neutrino scattering process where the squared four-momentum transferred to the nucleus is small, a lepton and pion are produced in the forward direction, and the nucleus remains in its initial state. This process is an important background in neutrino oscillation experiments. Measurements of coherent pion production are needed to constrain models which are used to predict coherent pion production in oscillation experiments. This thesis reports measurements of νµ and νµ charged current coherent pion production on carbon for neutrino energies in the range 2 < Eν < 20 GeV. The measurements were made using data from MINERνA, which is a dedicated neutrino-nucleus scattering experiment that uses a fi scintillator tracking detector in the high-intensity NuMI neutrino beam at Fermilab. Coherent interactions were isolated from the data using only model-independent signatures of the reaction, which are a forward muon and pion, no evidence of nuclear breakup, and small four-momentum transfer to the nucleus. The measurements were compared to the coherent pion production model used by oscillation experiments. The data and model agree in the total interaction rate and are similar in the dependence of the interaction rate on the squared four- momentum transferred from the neutrino. The data and model disagree significantly in the pion kinematics. The measured νµ and νµ interaction rates are consistent, which supports model predictions that the neutrino and antineutrino interaction rates are equal.

  15. An Overview of the Studies on Black Carbon and Mineral Dust Deposition in Snow and Ice Cores in East Asia

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; XU Baiqing; MING Jing

    2014-01-01

    Black carbon (BC) is the most eff ective insoluble light-absorbing particulate (ILAP), which can strongly absorb solar radiation at visible wavelengths. Once BC is deposited in snow via dry or wet process, even a small amount of BC could signifi cantly decrease snow albedo, enhance absorption of solar radiation, accelerate snow melting, and cause climate feedback. BC is considered the second most important component next to CO2 in terms of global warming. Similarly, mineral dust (MD) is another type of ILAP. So far, little attention has been paid to quantitative measurements of BC and MD deposition on snow surface in the midlatitudes of East Asia, especially over northern China. In this paper, we focus on reviewing several experiments performed for collecting and measuring scavenging BC and MD in the high Asian glaciers over the mountain range (such as the Himalayas) and in seasonal snow over northern China. Results from the surveyed literature indicate that the absorption of ILAP in seasonal snow is dominated by MD in the Qilian Mountains and by local soil dust in the Inner Mongolian region close to dust sources. The detection of BC in snow and ice cores using modern techniques has a large bias and uncertainty when the snow sample is mixed with MD. Evidence also indicates that the reduction of snow albedo by BC and MD perturbations can signifi cantly increase the net surface solar radiation, cause surface air temperature to rise, reduce snow accumulation, and accelerate snow melting.

  16. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2012-09-01

    Full Text Available Conceptual models suggest that stability and age of organic carbon (OC in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Various tools like density fractionation, mineralization experiments, and radiocarbon analyses have been used to study the importance of these mechanisms. We systematically apply them to a range of European soils to test whether general controls emerge even for soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled in 10 cm depth intervals to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF were analysed for OC, total nitrogen (TN, δ13C, and Δ14C. Bulk samples were also incubated to determine mineralizable OC.

    Declining OC-normalized CO2 release and increasing age with soil depth confirm greater stability of OC in subsoils across sites. Depth profiles of LF-OC matched those of roots, which in turn reflect plant functional types in soil profiles not subject to ploughing. Modern Δ14C signatures and positive correlation between mineralizable C and fLF-OC indicate the fLF is an easily available energy and nutrient source for subsurface microbes. Fossil C derived from the geogenic parent material affected the age of OC especially in the LF at three study sites. The overall importance of OC stabilization by binding to minerals was demonstrated by declining OC-normalized CO2 release rates with increasing contributions of HF-OC to bulk soil OC and the low Δ14C values of HF-OC. The stability of HF-OC was greater in subsoils than in topsoils; nevertheless, a portion of HF-OC was active throughout the profile. The decrease in Δ14C (increase

  17. Implications of changing from grazed or semi-natural vegetation to forestry for carbon stores and fluxes in upland organo-mineral soils in the UK

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available In the UK, as organo-mineral soils are a significant store of soil organic carbon (SOC, they may become increasingly favoured for the expansion of upland forestry. It is important, therefore, to assess the likely impacts on SOC of this potentially major land use change. Currently, these assessments rely on modelling approaches which assume that afforestation of organo-mineral soils is "carbon neutral". This review evaluates this assumption in two ways. Firstly, UK information from the direct measurement of SOC change following afforestation is examined in the context of international studies. Secondly, UK data on the magnitude and direction of the major fluxes in the carbon cycle of semi-natural upland ecosystems are assessed to identify the likely responses of the fluxes to afforestation of organo-mineral soils. There are few directly relevant measurements of SOC change following afforestation of organo-mineral soils in the UK uplands but there are related studies on peat lands and agricultural soils. Overall, information on the magnitude and direction of change in SOC with afforestation is inconclusive. Data on the accumulation of litter beneath conifer stands have been identified but the extent to which the carbon held in this pool is incorporated into the stable soil carbon reservoir is uncertain. The effect of afforestation on most carbon fluxes is small because the fluxes are either relatively minor or of the same magnitude and direction irrespective of land use. Compared with undisturbed moorland, particulate organic carbon losses increase throughout the forest cycle but the data are exclusively from plantation conifer forests and in many cases pre-date current industry best practice guidelines which aim to reduce such losses. The biggest uncertainty in flux estimates is the relative magnitude of the sink for atmospheric carbon as trees grow and mature compared with that lost during site preparation and harvesting. Given the size of this

  18. In situ mid-infrared spectroscopic titration of forsterite with water in supercritical CO2: Dependence of mineral carbonation on quantitative water speciation

    Science.gov (United States)

    Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Martin, P.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2011-12-01

    Geologic sequestration of carbon dioxide holds promise for helping mitigate CO2 emissions generated from the burning of fossil fuels. Supercritical CO2 (scCO2) plumes containing variable water concentrations (wet scCO2) will displace aqueous solution and dominate the pore space adjacent to caprocks. It is important to understand possible mineral reactions with wet scCO2 to better predict long-term caprock integrity. We introduce novel in situ instrumentation that enables quantitative titrations of reactant minerals with water in scCO2 at temperatures and pressures relevant to target geologic reservoirs. The system includes both transmission and attenuated total reflection mid-infrared optics. Transmission infrared spectroscopy is used to measure concentrations of water dissolved in the scCO2, adsorbed on mineral surfaces, and incorporated into precipitated carbonates. Single-reflection attenuated total reflection infrared spectroscopy is used to monitor water adsorption, mineral dissolution, and carbonate precipitation reactions. Results are presented for the infrared spectroscopic titration of forsterite (Mg2SiO4), a model divalent metal silicate, with water in scCO2 at 100 bar and at both 50 and 75°C. The spectral data demonstrate that the quantitative speciation of water as either dissolved or adsorbed is important for understanding the types, growth rates, and amounts of carbonate precipitates formed. Relationships between dissolved/adsorbed water, water concentrations, and the role of liquid-like adsorbed water are discussed. Our results unify previous in situ studies from our laboratory based on infrared spectroscopy, nuclear magnetic resonance spectroscopy and X-ray diffraction.

  19. [INDICES OF THE OXIDATIVE STATUS IN CHRONIC ADMINISTRATION OF COLLOID CARBONATE CALCIUM PRAPARATION WITH FAUCET AND LOW-MINERALIZED DRINKING WATER IN RATS].

    Science.gov (United States)

    Khripach, L V; Mikhaylova, R I; Koganova, Z I; Knyazeva, T D; Alekseeva, A V; Savostikova, O N; Ryzhova, I N; Kruglova, E V; Revzova, T L

    2015-01-01

    There are discussed the changes of an array of indices of the oxidative status in chronic administration of colloidal calcium carbonate preparation with faucet and low-mineralized drinking water to rats. Slight differences between significant effects of administration of 3 and 30 mg/L of preparation permit to suggest that the process of its incoming delivery into organism of rats has a bottleneck in the nature of total capacity of macrophages of intestinal lymphoid tissue to absorption of particles.

  20. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3268, Khayr Kot (521) and Urgun (522) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral Surface Materials Map of Quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) Quadrangles, Afghanistan, Showing Carbonates, Phyllosilicates, Sulfates, Altered Minerals, and Other Materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  4. Pore-scale study of the effect of secondary carbonate precipitation on the dissolution of primary minerals using the lattice Boltzmann method

    Science.gov (United States)

    Kang, Q.; Chen, L.; Carey, J. W.

    2013-12-01

    Reactive transport processes involving dissolution and/or precipitation are pervasive in Earth, energy, and environmental systems. One typical example is geologic sequestration of carbon dioxide. Among these reactive processes, it is commonly encountered that a second phase precipitates while the primary phase dissolves, and the precipitation and dissolution reactions are fully coupled with each other. In the case of mineral trapping of CO2, the primary silicate mineral dissolves due to a decrease of pH caused by the dissolution of CO2 into the solution; meanwhile the dissolved CO2 can react with cations to form a secondary precipitate of carbonate mineral. Although the effect of precipitation of secondary solid phase on the dissolution of the primary solid phase has been studied extensively, the results reported in the literature are often inconclusive and sometimes even contradict one another. The reason is that the coupled dissolution and precipitation processes are controlled by several factors whose contribution is difficult to ascertain, including the dissolution and precipitation reaction kinetics, temperature and pressure, pH and species concentration of the solution, physicochemical properties of the primary and secondary minerals, as well as the nucleation and crystal mechanisms of the precipitates, etc. In this study, a pore-scale (mesoscopic) model based on the lattice Boltzmann method (LBM) is developed to investigate the effects of secondary precipitation on the dissolution of the primary mineral. The model can predict coupled multiple physicochemical processes including fluid flow, mass transport, chemical reaction, dissolution, precipitation consisting of nucleation and crystal growth, as well as dynamical evolution of pore geometries. Effects of dissolution and precipitation reaction kinetics, molar volumes of primary and secondary minerals, initial powder size and surface roughness of the primary mineral, as well as nucleation and crystal growth

  5. [Effects of soil texture and water content on the mineralization of soil organic carbon in paddy soils].

    Science.gov (United States)

    Sun, Zhong-lin; Wu, Jin-shui; Ge, Ti-da; Tang, Guo-yong; Tong, Cheng-li

    2009-01-01

    To understand how soil texture and water content affect the mineralization of organic C in paddy soil, 3 selected soils (sandy loam, clay loam, and silty clay) were incubated (25 degrees C) with 14 C-labelled rice straw (1.0 g x kg(-1)) at water content varied from 45% to 105% of water holding capacity (WHC). Data indicated that, in the sandy loam and clay loam, the mineralization rate of 14 C-labelled rice straw reached the maximum at 75% WHC, as 53% and 58% of the straw C mineralized in the incubation period of 160 d, whereas in the silty clay, it increased gradually (from 41.8% to 49.0%) as water content increased up to 105% WHC. For all of the three soils, the mineralization rate of soil native organic C reached the maximum at 75% WHC, with 5.8% of the organic C mineralized in the same period for the sandy loam, and 8.0% and 4.8% for the clay loam and silty clay, respectively. As water content increased further, the mineralization rate of native organic C in the three soils significantly declined. The mineralization rate of added rice straw and native organic C in all the three soils, was well fitted with a conic curve. These results suggest that water-logging can decrease the mineralization of organic C in paddy soils.

  6. Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: Effect of advective pore-water exchange

    DEFF Research Database (Denmark)

    Cook, Perran L. M.; Wenzhofer, Frank; Glud, Ronnie N.;

    2007-01-01

    of O-2 distribution across ripples, and also deep subsurface O-2 pools, being observed. Mineralization pathways were predominantly aerobic when benthic mineralization rates were low and advective pore-water flow high as a result of well-developed sediment topography. By contrast, mineralization...... proceeded predominantly through sulfate reduction when benthic mineralization rates were high and advective pore-water flow low as a result of poorly developed topography. Previous studies of benthic mineralization in shallow sandy sediments have generally ignored these dynamics and, hence, have overlooked......We conducted four field campaigns to evaluate benthic O-2 consumption and the effect of advective pore-water flow in nearshore permeable sediments in the North Sea and Baltic Sea. Advective pore-water transport had a marked effect on the benthic exchange of O-2 and TCO2 in benthic chamber...

  7. The geological and metallogenic setting of stratabound carbonate-hosted Zn-Pb mineralizations in the West Asturian Leonese Zone, NW Spain

    Science.gov (United States)

    Tornos, F.; Ribera, F.; Shepherd, T. J.; Spiro, B.

    1996-01-01

    Several carbonate-hosted stratabound zinc-lead ores in the Ponferrada-Caurel area (NW Spain) are hosted by the Lower to Middle Cambrian Vegadeo Formation. Two clearly distinct groups of mineralizations occur in different stratigraphic positions. The stratiform disseminated ore is located in the Lower Member as irregular and millimetre-thick layers of sphalerite and galena replacing earlier pyrite. The lack of hydrothermal alteration and the heavy C., O and S isotopic signatures suggest that this ore is of premetamorphic origin, the sulphur and fluids being derived from the host carbonates. The more likely source of the sulphide is the abiogenic thermal reduction of sulphate derived from sulphate beds intercalated with the carbonates. The second group of mineralizations is located at the top of the Vegadeo Fm, always along its contact with the overlaying shales and sandstones of the Cabos Series. This group is economically more important and include three styles of strata-bound mineralizations. The more common one is the ‘silica ore’, a hydrothermal rock that traces the contact between the carbonate and the detrital rocks along more than 50 km. Locally, a ‘carbonate-rich ore’ is found along the contact between the silica ore and the Vegadeo Fm. Laterally to these rocks, there are large bodies of the ≪breccia ore≫, made up of sulphides and calcite in a matrix of chlorite. The ore assemblage is composed of sphalerite and galena with minor amounts of chalcopyrite and pyrite. Co-Ni-As sulphides, bismuthinite, tetrahedrite and Pb-Bi sulphosalts are also found as trace minerals. The geological relationships and the isotopic signatures suggest that the three ores are synchronous and of late Hercynian age. They are interpreted as linked with a tectonically driven fluid flow along the stratigraphic contact between the carbonate and the detrital rocks. The model of ore genesis involves the circulation of fluids in likely equilibrium with the detrital rocks that

  8. Synthesizing the Use of Carbon Isotope (14C and 13C) Approaches to Understand Rates and Pathways for Permafrost C Mobilization and Mineralization

    Science.gov (United States)

    Estop-Aragones, C.; Olefeldt, D.; Schuur, E.

    2015-12-01

    To better understand the permafrost carbon (C) feedback it is important to synthesize our current knowledge, and knowledge gaps, of how permafrost thaw can cause in situ mineralization or downstream mobilization of aged soil organic carbon (SOC) and the rate of this release. This potential loss of old SOC may occur via gaseous flux of CO2 and CH4 exchanged between soil and the atmosphere and via waterborne flux as DOC, POC (and their subsequent decomposition and release to the atmosphere). Carbon isotope (14C and 13C) approaches have been used to estimate both rates and pathways for permafrost C mobilization and mineralization. Radiocarbon (14C) has been used to estimate the contribution of aged C to overall respiration or waterborne C export. We aim to contrast results from radiocarbon studies, in order to assess differences between ecosystems (contrasting wet and dry ecosystems), thaw histories (active layer deepening or thermokarst landforms), greenhouse gas considered (CO2 and CH4) and seasons. We propose to also contrast methodologies used for assessing the contribution of aged C to overall C balance, and include studies using 13C data. Biological fractionation of 13C during both uptake and decomposition has been taken advantage of both in order to aid the interpretation of 14C data and on its own to assess sources and mineralization pathways. For example, 13C data has been used to differentiate between CH4 production pathways, and the relative contribution of anaerobic CO2 production to overall respiration. Overall, carbon isotope research is proving highly valuable for our understanding of permafrost C dynamics following thaw, and there is a current need to synthesize the available literature.

  9. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H, E-mail: whchang@cycu.edu.t [Center for Nano Bioengineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2009-09-16

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg{sup -1} body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  10. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    Science.gov (United States)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H.

    2009-09-01

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg-1 body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  11. Integrating plant-microbe interactions to understand soil C stabilization with the MIcrobial-MIneral Carbon Stabilization model (MIMICS)

    Science.gov (United States)

    Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa

    2014-05-01

    If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest

  12. Composition and anion ordering in some Fe II-III hydroxysalt green rusts (carbonate, oxalate, methanoate): The fougerite mineral

    Science.gov (United States)

    Génin, Jean-Marie R.; Ruby, Christian

    2008-03-01

    Main features of Fe II-III hydroxysalts (green rusts) are obtained from XRD. Moreover, Mössbauer spectroscopy revealed that several Fe II sites exist. The structure is classified in green rusts one and two (GR1 and GR2) according to the stacking sequence of Fe(OH) 2 brucite-like layers depending on the shape and type of anions inserted within interlayers. Long range order as determined for hydroxysulphate GR2(SO 42-) is extended to distributions of cations and anions within GR1s even though these are not observed by XRD. Abundances of Fe II and Fe III environments within GR1s that intercalate carbonate, oxalate and methanoate (formate) are found for compositions [Fe 6IIFe 2III(OH) 16] 2+·[CO 32-·5H 2O] 2-, [Fe 4IIFe 2III(OH) 12] 2+·[CO 32-·3H 2O] 2-, [Fe 6IIFe 2III(OH) 16] 2+·[C 2O 42-·4H 2O] 2- and [Fe 5IIFe 2III(OH) 14] 2+·[2HCOO -·3H 2O] 2-, which correspond to orders α, β and γ where the cation distances are (2 × a0), (√3 × a0) or a mixture of both, with a ferric molar ratio x = {[Fe III]/[Fe total]} = 1/4, 1/3 and 2/7, respectively. Anion distributions within interlayers are devised and long range orders in other layered double hydroxides could questionably be extended from these models. The formula [Fe 6II(1- x) Fe 6 xIIIO 12H 2(7-3 x) ] 2+·[CO 32-·3H 2O] 2- for the fougerite mineral, which is the oxyhydroxycarbonate obtained by deprotonation of Fe II-III hydroxycarbonate [Fe 4IIFe 2III(OH) 12] 2+·[CO 32-·3H 2O] 2- where x ∈ [1/3,2/3] is confirmed.

  13. Carbon and nitrogen mineralization characteristics of different types of organic manures%不同种类有机肥碳、氮矿化特性研究

    Institute of Scientific and Technical Information of China (English)

    周博; 高佳佳; 周建斌

    2012-01-01

    本文采用室内培养法研究了陕西关中地区日光温室栽培生产中9个不同有机肥的碳、氮矿化特性。结果表明:不同有机肥碳、氮的矿化量和矿化率(矿化量占总有机碳或氮的比例)的动态变化存在明显差异,其中碳矿化率在22.24%~87.16%之间,变异系数达90.30%;氮矿化率在29.07%~84.87%之间,变异系数达67.37%;不同类型有机肥相比,鸡粪平均的碳、氮矿化累积量及矿化率显著高于猪粪和牛粪;猪粪与牛粪平均的碳、氮矿化累积量及矿化率无显著差异。同一种类有机肥,培养期间其碳、氮矿化累积量及矿化率也存在明显差异。供试有机肥碳、氮的矿化量与有机肥全氮含量均呈线性关系,表明有机肥氮含量是影响矿化量的主导因子。%The incubation experiment was used to study carbon (C) and nitrogen (N) mineralization eharaeteristies of 9 organic manures sampled from the bases of sunlight greenhouses in Guanzhong district, Shaanxi Province. The results show that there are significant differences in the C and N mineralization and their mineralization rates (the ratio of C or N mineralization to total organic C or total organic N) among the different manures. The range of C mineralization rates of different manures is from 22.24% to 87. 16% , with CV ( coefficient of variation) of 90. 30%, and the range of N mineralization rates of different manures is from 29.07% to 84. 87%, with CV of 67.36%. The mean amounts of C and N mineralization, and mineralization rates of ehieken manure are significantly higher than those of pig and cattle manures, and there is no difference between pig and eattle manures. For a same type of organie manure, there are also significant differences in the C and N mineralization and mineralization rates among the manures collected from different plaees. The amounts of C and N mineralization of organic manure are linearly related with their total N contents

  14. Impact of the addition of different plant residues on carbon-nitrogen content and nitrogen mineralization-immobilization turnover in a soil incubated under laboratory conditions

    Science.gov (United States)

    Abbasi, M. K.; Tahir, M. M.; Sabir, N.; Khurshid, M.

    2014-10-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C/N ratio (r = -0.69; p ≤ 0.05), lignin/N ratio (r = -0.68; p ≤ 0.05), polyphenol/N ratio (r = -0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = -0.70; p ≤ 0.05) indicating

  15. Microbial Biomass Carbon Trends in Black and Red Soils Under Single Straw Application: Effect of Straw Placement, Mineral N Addition and Tillage

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Quantifying trends in soil microbial biomass carbon (SMBC) under contrasting management conditions is important in understanding the dynamics of soil organic matter (SOM) in soils and in ensuring their sustainable use. Against such a background, a 60-day greenhouse simulation experiment was carried out to study the effects of straw placement, mineral N source, and tillage on SMBC dynamics in two contrasting soils, red soil (Ferrasol) and black soil (Acrisol). The treatments included straw addition + buried (T1);straw addition + mineral N (T2); and straw addition + tillage (T3). Straw was either buried in the soil or placed on the surface. Sampling was done every 15 days. Straw placement, addition of external mineral N sources (Urea, 46 % N) and soil type affected SMBC. SMBC levels decreased with exposure durations (15 days, 30 days, 45 days, and 60 days). Rate of SMBC fixation was more in buried straw than in surface placed straw at all sampling dates in both soils. Addition of an external N source significantly increased SMBC level. Soil pH increased in both soil types, with a greater increase in black soil than in red soil. The study could not, however, statistically account for the effect of tillage on SMBC levels because of the limited effect of our tillage method due to the artificial barrier to mechanical interference supplied by the mesh bags,although differences in absolute values were quite evident between treatments T1 and T3.``

  16. The selective expression of carbonic anhydrase genes of Aspergillus nidulans in response to changes in mineral nutrition and CO2 concentration.

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Dong, Cuiling; Liu, Fanghua

    2016-02-01

    Carbonic anhydrase (CA) plays an important role in the formation and evolution of life. However, to our knowledge, there has been no report on CA isoenzyme function differentiation in fungi. Two different CA gene sequences in Aspergillus nidulans with clear genetic background provide us a favorable basis for studying function differentiation of CA isoenzymes. Heterologously expressed CA1 was used to test its weathering ability on silicate minerals and real-time quantitative PCR was used to detect expression of the CA1 and CA2 genes at different CO2 concentrations and in the presence of different potassium sources. The northern blot method was applied to confirm the result of CA1 gene expression. Heterologously expressed CA1 significantly promoted dissolution of biotite and wollastonite, and CA1 gene expression increased significantly in response to soluble K-deficiency. The northern blot test further showed that CA1 participated in K-feldspar weathering. In addition, the results showed that CA2 was primary involved in adapting to CO2 concentration change. Taken together, A. nidulans can choose different CA to meet their survival needs, which imply that some environmental microbes have evolved different CAs to adapt to changes in CO2 concentration and acquire mineral nutrition so that they can better adapt to environmental changes. Inversely, their adaption may impact mineral weathering and/or CO2 concentration, and even global change.

  17. Pre-treatment of Used-Cooking Oil as Feed Stocks of Biodiesel Production by Using Activated Carbon and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Rudy Syah Putra

    2014-02-01

    Full Text Available Many low-cost feedstock i.e. used-cooking oil (UCO for the production of biodiesel fuel (BDF has contained a large amount of water and high proportion of free fatty acids (FFAs. Therefore, a pre-treatment process to reduce the water content (<0.1 wt.% and FFAs (<2.0 wt.% were necessary in order to avoid an undesirable side reactions, such as saponification, which could lead to serious problem of product separation and low fatty acid methyl ester (FAME yield. . In this study, a pre-treatment process of used cooking oil as a feedstock for the production of BDF by using various adsorbents such as Activated Carbon (AC and various clay minerals, for example Smectite (S, Bentonite (B, Kaolinite (K, and Powdered Earthenware (PE were evaluated. The oil obtained from pre-treatment was compared with oil without pre-treatment process. In this study, we reported a basic difference in material ability to the oil, depending on the adsorption condition with respect to the physico-chemical parameters, e.g. refractive index (R, density (ρ, FFAs, and water content (W. The results showed that the water content and FFAs in the oil has decreased when using AC as an adsorbent compared with clay minerals. However, the refractive index of oil has similar with the oil without pre-treatment process as well; meanwhile, the density of oil has increased after the pre-treatment process by using clay minerals.

  18. Data compilation, synthesis, and calculations used for organic-carbon storage and inventory estimates for mineral soils of the Mississippi River Basin

    Science.gov (United States)

    Buell, Gary R.; Markewich, Helaine W.

    2004-01-01

    U.S. Geological Survey investigations of environmental controls on carbon cycling in soils and sediments of the Mississippi River Basin (MRB), an area of 3.3 x 106 square kilometers (km2), have produced an assessment tool for estimating the storage and inventory of soil organic carbon (SOC) by using soil-characterization data from Federal, State, academic, and literature sources. The methodology is based on the linkage of site-specific SOC data (pedon data) to the soil-association map units of the U.S. Department of Agriculture State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) digital soil databases in a geographic information system. The collective pedon database assembled from individual sources presently contains 7,321 pedon records representing 2,581 soil series. SOC storage, in kilograms per square meter (kg/m2), is calculated for each pedon at standard depth intervals from 0 to 10, 10 to 20, 20 to 50, and 50 to 100 centimeters. The site-specific storage estimates are then regionalized to produce national-scale (STATSGO) and county-scale (SSURGO) maps of SOC to a specified depth. Based on this methodology, the mean SOC storage for the top meter of mineral soil in the MRB is approximately 10 kg/m2, and the total inventory is approximately 32.3 Pg (1 petagram = 109 metric tons). This inventory is from 2.5 to 3 percent of the estimated global mineral SOC pool.

  19. A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil

    Institute of Scientific and Technical Information of China (English)

    NOURBAKHSH Farshid; SHEIKH-HOSSEINI Ahmad R.

    2006-01-01

    The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (Co)was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation.

  20. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories

    Science.gov (United States)

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using soil sampled from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ul...

  1. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  2. Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions

    Science.gov (United States)

    Kaleeem Abbasi, M.; Tahir, M. Mahmood; Sabir, N.; Khurshid, M.

    2015-02-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects carbon (C) and nitrogen (N) cycling in soil-plant systems. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water-filled pore space) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues, i.e., the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata, incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed a wide variation in total N, C, lignin, polyphenols and C / N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of Glycine max and the shoot and root of Trifolium repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% recovery of N that had been released from these added resources. The roots of Glycine max and Zea mays and the shoot of Zea mays showed continuous negative values throughout the incubation. After an initial immobilization, leaves of Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively, and representing a 16, 32 and 33% N recovery, respectively. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01) and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C / N ratio (r = -0.69; p ≤ 0.05), lignin / N ratio (r = -0.68; p ≤ 0.05), polyphenol / N ratio (r = -0.73; p ≤ 0.05) and (lignin + polyphenol) : N ratio (r = -0.70; p ≤ 0.05) indicating a

  3. Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Jazi

    2015-10-01

    Full Text Available Introduction The Baqoroq Cu-Zn-As deposit is located northeast of the town ofAnarak in Isfahan province, in theeast central areaof Iran. Copper mineralization occursin upper cretaceous carbonate rocks.Studyof thegeologyof the Nakhlak area, the location ofa carbonate-hosted base metaldeposit, indicatesthe importance of stratigraphic, lithological and structural controls in the placement of this ore deposit. (Jazi et al., 2015.Some of the most world’s most important epigenetic, stratabound and discordant copperdeposits are the carbonate hosted Tsumeb and Kipushi type deposits,located in Africa. The Baqoroq deposit is believed to be of this type. Materials and methods In the current study, fifty rock samples were collected from old tunnels and surface mineralization. Twenty-two thin sections, ten polished sections and four thin-polished sections were prepared for microscopic study. Ten samples were selected for elemental analysis by ICP-OES (Inductively coupled plasma optical emission spectrometry by the Zar Azma Company (Tehran and AAS (Atomic absorption spectrometry at the Ferdowsi University of Mashhad. Seven doubly polished sections of barite mineralization were prepared for microthermometric analysis. Homogenization and last ice-melting temperatures were measured using a Linkam THMSG 600 combined heating and freezing stage at Ferdowsi University of Mashhad. Sulfur isotopes of five barite samples were determined by the Iso-Analytical Ltd. Company of the UK. The isotopic ratios are presented in per mil (‰notation relative to the Canyon Diablo Troilite. Results The upper Cretaceoushost rocks of the Baqoroq deposit include limestone, sandstone, and conglomerate units. Mineralization is controlled by two main factors: lithostratigraphy and structure. Epigenetic Cu-Zn mineralizationoccurs in ore zones as stratabound barite and barite-calcite veins and minor disseminated mineralization. Open space filling occurred as breccia matrix

  4. Isolation and Identification of a Bacterial Strain Inducing Mineralization of Calcium Carbonate%一株碳酸钙矿化菌的分离与鉴定

    Institute of Scientific and Technical Information of China (English)

    张振远; 李广悦; 丁德馨; 王永东; 胡南

    2014-01-01

    基于微生物诱导碳酸钙沉积的岩土工程加固技术是一种环境友好的新技术。碳酸钙矿化菌是该技术应用的前提。为获得具有诱导碳酸钙沉积能力的菌株,采用选择性富集培养、平板分离方法从土壤中分离得到了一株具有尿素分解能力的菌株,细菌诱导产生的沉积物检测结果表明该菌株具有诱导碳酸钙沉积能力。通过形态学、革兰氏染色和16 S rDNA序列同源性分析鉴定该菌株为巴斯德芽孢杆菌。%Biocementation through microbial calcium carbonate precipitation is an innova-tive and environmentally friendly rock and soil reinforcement technique in geotechnical en-gineering. The bacteria inducing mineralization of calcium carbonate is a prerequisite to im-plement the biological treatment process. In order to obtain the strain with ability to induce CaCO3 precipitation,a ureolytic strain was isolated from soil using selective enrichment cul-ture and plate screening techniques. The precipites induced by this stain were examined, and the results showed it was capable of inducing calcium carbonate mineralization. The strain was identified as Sporosarcina pasteurii based on morphology,Gram stain and 16S rDNA sequence analysis.

  5. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Sc ientific Opinion on the substantiation of a health claim related to Vichy Catalan carbonated natural mineral water and reduction of post - prandial lip a emic response pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    on the scientific substantiation of a health claim related to Vichy Catalan carbonated natural mineral water and reduction of post-prandial lipaemic response. The food, Vichy Catalan carbonated natural mineral water, that is the subject of the health claim is sufficiently characterised. The claimed effect...... carbonated natural mineral water on the reduction of post-prandial lipaemic response. A cause and effect relationship has not been established between the consumption of Vichy Catalan carbonated natural mineral water and reduction of post-prandial lipaemic response. © European Food Safety Authority, 2013...

  6. Adsorption of RNA on mineral surfaces and mineral precipitates

    Science.gov (United States)

    Biondi, Elisa; Furukawa, Yoshihiro; Kawai, Jun

    2017-01-01

    The prebiotic significance of laboratory experiments that study the interactions between oligomeric RNA and mineral species is difficult to know. Natural exemplars of specific minerals can differ widely depending on their provenance. While laboratory-generated samples of synthetic minerals can have controlled compositions, they are often viewed as "unnatural". Here, we show how trends in the interaction of RNA with natural mineral specimens, synthetic mineral specimens, and co-precipitated pairs of synthetic minerals, can make a persuasive case that the observed interactions reflect the composition of the minerals themselves, rather than their being simply examples of large molecules associating nonspecifically with large surfaces. Using this approach, we have discovered Periodic Table trends in the binding of oligomeric RNA to alkaline earth carbonate minerals and alkaline earth sulfate minerals, where those trends are the same when measured in natural and synthetic minerals. They are also validated by comparison of co-precipitated synthetic minerals. We also show differential binding of RNA to polymorphic forms of calcium carbonate, and the stabilization of bound RNA on aragonite. These have relevance to the prebiotic stabilization of RNA, where such carbonate minerals are expected to have been abundant, as they appear to be today on Mars.

  7. Mineral resources

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    Marine minerals have been center of attraction to mankind since ancient times. The technological advances in the recent years show that the retrieval of underwater minerals from deep-sea can no longer be a dream. Marine minerals are terrigenous...

  8. 低碳经济与选矿行业深化发展关系的思考%Thinks on relationship between low carbon economy and further development of mineral processing industry

    Institute of Scientific and Technical Information of China (English)

    童雄; 罗溪梅

    2011-01-01

    The concept of low carbon economy is introduced, and the necessity of propelling low carbon economy in mineral processing industry is general analyzed. In addition, it is indicated that to comprehensively utilize tailings, enhance concentrate grade, develop new-type equipments and optimize mineral processing technologies etc. are necessary measures to propel low carbon economy and promote the sustainable development of the mineral processing industry.%介绍了低碳经济的概念,浅析选矿行业推行低碳经济的必要性,指出综合利用尾矿、提高选矿品位、研发新型设备以及优化选矿工艺等是推行低碳经济、促进选矿行业可持续发展的必要措施。

  9. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    Science.gov (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  10. Carbon, Nitrogen and Fungal mycelium in the organic and in the mineral soil layers across a chronosequence of Stone pine Forest on Mount Vesuvius

    Science.gov (United States)

    de Marco, Anna; Giordano, Maria; Esposito, Fabrizio; Virzo de Santo, Amalia

    2010-05-01

    Forest ecosystems act as a substantial carbon sink and store about 20% of all soil C. The amount of organic matter sequestered in the soil is dependent on the quantity of plant litter delivered to the soil as well as to the extent of litter decomposition. Stone pine forests are common in the Mediterranean areas of southern Italy, were this tree has been largely used for afforestation of volcanic substrates on Mount Vesuvius. Nevertheless, very little is known about carbon accumulation in Stone pine soil as well as about soil organic matter turnover in the organic and in the mineral soil layers. The aim of this study was to assess, along the whole soil profile, the concentration of C and N and the amount of fungal mycelium across a chronosequence encompassing a 36y, a 66y and a 96y old Stone pine forest within the National Park of Vesuvius. The chronosequence allows to estimate the changes with forest age in C and N concentration and the allocation of organic matter below-ground. The amount of fungal mycelium, particularly the active mycelium, at different depth along the soil profile is an indicator of the organic matter turn-over. The forest stands had been implanted on the same type of parent material, i.e. on lava. The sandy mineral soil was 15 cm deep in the youngest forest and reached a maximum depth of 37 cm in the two older forests. Litter fall (2006-2009) steadily increased from the youngest to the oldest forest stand (3828, 6144 and 7831 Kg/ha/y, respectively) and was positively related to tree basal area. C and N concentration in the organic soil layers (litter and humus) of the three stands did not change remarkably with forest age. In contrast, in the 0-15 cm mineral layer, C and N concentrations were about threefold higher in the 66y old compared to the 36y old forest stand. A further increase (by 2,4 for C and by 1,5 for N) was observed in the 96y old compared to the 66y old forest stand. In the deeper (15-37 cm) mineral soil of the two older forest

  11. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    Science.gov (United States)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  12. Mineralization of carbon and nitrogen from fresh and anaerobically stored sheep manure in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    was insignificant or slightly negative in the three soil-sand mixtures (100% soil+0% quartz sand; 50% soil+50% quartz sand; 25% soil+75% quartz sand). After 84 days, the cumulative CO2 evolution and the net mineralization of N from the fresh manure were highest in the soil-sand mixutre with the lowest clay content......-sand mixture with the lowest clay content was probably caused by a higher remineralization of immobilized N in this soil-sand mixture. Anaerobic storage of the manure reduced the CO2 evolution rates from the manure C in the three soil-sand mixtures during the initial weeks of decomposition. However......A sandy loam soil was mixed with three different amounts of quartz sand and incubated with ((NH4)-N-15)(2)SO4 (60 mu g N g(-1) soil) and fresh or anaerobically stored sheep manure (60 mu g g(-1) soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days...

  13. Effect of species composition on carbon and nitrogen stocks in forest floor and mineral soil in Norway spruce and European beech mixed forests

    Science.gov (United States)

    Andivia, Enrique; Rolo, Víctor; Jonard, Mathieu; Formánek, Pavel; Ponette, Quentin

    2015-04-01

    Management of existing forests has been identified as the main strategy to enhance carbon sequestration and to mitigate the impact of climate change on forest ecosystems. In this direction, the conversion of Norway spruce monospecific stands into mixed stands by intermingling individuals of European beech is an ongoing trend in adaptive forest management strategies, especially in Central Europe. However, studies assessing the effect of changes in tree species composition on soil organic carbon (SOC) and nitrogen stocks are still scarce and there is a lack of scientific evidence supporting tree species selection as a feasible management option to mitigate the effects of predicted future climatic scenarios. We compared C and N stocks in the forest floor (litter and humus) and the top 10 cm of mineral soil in two monospecific stands of Norway spruce and European beech and in a mixed stand of both species. The effect of tree species composition on the C and N stocks and its spatial distribution was evaluated based on litterfall, root production, elevation and canopy opening, and by using a combination of modelling and geostatistical techniques. C stock was highest in the Norway spruce and the mixed stands, while N stock was highest in the mixed stand and lowest under European beech, with intermediate values in the Norway spruce stand. Each forest type showed differences in forest floor properties, suggesting that species composition is an important factor governing forest floor characteristics, including C and N stocks. The distribution of C and N stocks between forest soil layers was different for each forest type. C and N stocks were highest in the hummus layer under Norway spruce, whereas both stocks were lowest in the European beech stand. On the other hand, the mixed stand showed the highest C and N accumulation in the uppermost mineral soil layer, while the monospecific stands showed similar values. Litterfall was the main contribution to C and N stocks of the

  14. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition

    Science.gov (United States)

    Qajar, Jafar; Arns, Christoph H.

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel

  15. Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tsoufis, Theodoros [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Jankovic, Lubos [Department of Physics, University of Ioannina, GR-45110 Ioannina (Greece); Gournis, Dimitrios [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece)], E-mail: dgourni@cc.uoi.gr; Trikalitis, Pantelis N. [Department of Chemistry, University of Crete, GR-71409 Heraklion (Greece); Bakas, Thomas [Department of Physics, University of Ioannina, GR-45110 Ioannina (Greece)], E-mail: tbakas@cc.uoi.gr

    2008-08-25

    In the present work we employed various transition metals (Cr, Mn, Fe, Co, Ni, Cu and Zn) loaded on different smectite clays (laponite and montmorillonite) as catalysts in synthesis of carbon nanostructures (mainly nanotubes) and we report the effect of the nature of the catalytic centers and type of aluminosilicate layers in the morphology, quality and structure on the final products. Owing to their unique swelling, ion-exchange and intercalation properties smectite clays were easily, uniformly and reproducibly loaded with metal cations. Different homoionic forms of montmorillonite and laponite were prepared containing first-row transition metals and the synthesis of carbon nanostructures was carried out at 700 deg. C using an acetylene/nitrogen mixture. A variety of analytical techniques (XRD, Raman, SEM, TEM and thermal analysis) were used to fully characterize the final materials. Iron-, cobalt-, nickel- and manganese-exchanged clays showed to be effective catalysts for the production of carbon nanotubes, while acetylene decomposition over copper-exchanged clays resulted to the creation of carbon spheres. The resulting hybrid systems are particularly attractive for polymer reinforcing applications since the combined action of clay-carbon nanotubes in polymer matrixes can provide outstanding properties to the resulting composite materials.

  16. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Ioannis, E-mail: iliapis@sidenor.vionet.gr [AEIFOROS SA, 12th km Thessaloniki-Veroia Rd, PO Box 59, 57008 Ionia, Thessaloniki (Greece); Papayianni, Ioanna [Laboratory of Building Materials, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-02-11

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO{sub 2}/CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  17. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.

    Science.gov (United States)

    Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César

    2014-06-01

    Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions.

  18. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System.

    Science.gov (United States)

    Cai, Andong; Xu, Hu; Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1) yr(-1), respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000-250, 250-53, and 250-53 μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.

  19. Carbon and Oxygen Isotopic Characteristics of REE—Fluorocarbonate Minerals and Their Genetic Implications,Bayan Obo Deposit,Inner Mongloia,China

    Institute of Scientific and Technical Information of China (English)

    方涛; 裘愉卓; 等

    1996-01-01

    REE-fluorocarbonates as major REE minerals in the Bayan Obo deposit,the largest REE deposit in the world,were analyzed for their stable isotopic compositions,The δ13 C and δ18 O values of huanghoite,cebaite and bastnaesite from late-stage veins vary in the ranges of 7.8--4.0‰ and 6.7-9.4‰,respectively,These data are relatively similar to those of bastnaesites from banded ores:δ13C-5.6--5.2‰ andδ18O3.6-5.5‰.The REE fluorocarbonates from both late-staege veins and banded ores are characterized by lower δ13 C and δ18O values,especially the δ18O values of bastnaesites from banded ores.Compared with them,the disseminated bastnaesits the dolomite-type ores possess rather highδ13 C and δ18O values,i.e.,-2.1-0.4‰ and 8.6-12.9‰ respectively.The high values are typical of the sedimentary host dolomite rocks as well as of the dolomite-type-ores.The carbon and oxygen isotopic characteristics of REE fluorocarbonate minerals provide new evidence for the hypothesis on the origin of Bayan Obo deposit-epigenetic hydrothermal metasomatism.

  20. Comparison of calcium carbonate and aluminium hydroxide as phosphate binders on biochemical bone markers, PTH(1-84), and bone mineral content in dialysis patients

    DEFF Research Database (Denmark)

    Jespersen, B; Jensen, J D; Nielsen, H K;

    1991-01-01

    Bone mineral content, estimated by single-photon absorptiometry of the forearm, serum values of intact parathyroid hormone (PTH(1-84], osteocalcin, alkaline phosphatase, 1,25-dihydroxycholecalciferol (1,25(OH)2D3), and aluminium were determined during treatment with calcium carbonate (CaCO3...... 0.05), osteocalcin decreased (89% versus 117%, P less than 0.01), alkaline phosphatase decreased (92% versus 116%, P less than 0.05), and aluminium decreased (56% versus 189%, P less than 0.05). 1,25(OH)2D3 remained unchanged in both periods. No increase in soft-tissue calcification was demonstrated......) or aluminium hydroxide (Al(OH)3) in 11 dialysis patients participating in a randomised cross-over study. Each treatment period lasted 6 months. Serum phosphorus was maintained in the range 1.5-2.0 mmol/l. During Al(OH)3 treatment bone mineral content (BMC) decreased by 11% per half-year (mean), but only by 3...

  1. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.

    Science.gov (United States)

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy

    2015-11-01

    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process.

  2. Effect of fresh green waste and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from a Vertisol.

    Science.gov (United States)

    Vaughan, Sarah M; Dalal, Ram C; Harper, Stephen M; Menzies, Neal W

    2011-08-01

    Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N(2)O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (14%). Both products were applied at 3t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N(2)O production over the 28 day incubation from the control soil was 1.5mg/N(2)O/m(2), and 11mg/N(2)O/m(2) from the control+N. The N(2)O emission decreased with GWC addition (Psoil, reducing cumulative N(2)O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N(2)O production during the first week of the trial, when soil N(2)O emissions peaked. An additional finding was that FGW+N did not decrease cumulative N(2)O emissions compared to the control+N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N(2)O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N(2)O, an important greenhouse gas.

  3. Carbon content of forest floor and mineral soil in Mediterranean Pinus spp. and Oak stands in acid soils in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, C.; Turrión, M.B.; Pando, V.; Bravo, F.

    2016-07-01

    Aim of the study: The aim of the study was to determine the baseline carbon stock in forest floor and mineral soils in pine and oak stands in acid soils in Northern Spain. Area of study: The study area is situated in northern Spain (42° N, 4° W) on “Paramos y Valles” region of Palencia. aterial and methods: An extensive monitoring composed of 48 plots (31 in pine and 17 in oak stands) was carried out. Litter layers and mineral soil samples, at depths of 0-30 cm and 30-60 cm, were taken in each plot. An intensive monitoring was also performed by sampling 12 of these 48 plots selected taken in account species forest composition and their stand development stage. Microbial biomass C (CMB), C mineralization (CRB), and soil organic C balance at stand level were determined in surface soil samples of intensive monitoring. Main results: No differences in soil C content were detected in the two forest ecosystems up to 60 cm depth (53.0±25.8 Mg C ha-1 in Pinus spp. plantations and 60.3±43.8 Mg C ha-1 in oak stands). However, differences in total C (CT), CMB and CRB were found in the upper 10 cm of the soils depending on the stand development stage in each species forest composition (Pinus nigra, Pinus pinaster, Pinus sylvestris and Quercus pyrenaica). Plots with high development stage exhibited significant lower metabolic quotient (qCO2), so, meant more efficient utilization of C by the microbial community. The C content in the forest floor was higher in pine stands (13.7±0.9 Mg C ha-1) than in oak stands (5.4±0.7 Mg C ha-1). A greater turnover time was found in pine ecosystems vs. oak stands. In contrast, forest floor H layer was nonexistent in oak stands. Research highlights: Results about litterfall, forest floor and mineral soil dynamics in this paper can be used strategically to reach environmental goals in new afforestation programs and sustainable forest management approaches. (Author)

  4. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  5. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  6. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  7. 黑碳不同添加量对土壤有机碳矿化的影响%Effects of Different Addition Rate of Black Carbon on Soil Organic Carbon Mineralization

    Institute of Scientific and Technical Information of China (English)

    李淑香; 李芳芳

    2011-01-01

    [目的]探讨黑碳不同添加量对土壤有机碳矿化的影响.[方法]将350℃下制备的黑碳分别以0% (BC0)、1% (BCl)、2% (BC2)、3% (BC3)、4% (BC4)和5% (BC5)6个不同用量添加到土壤中,恒温25℃培养56 d.[结果]在整个培养过程中,土壤CO2释放速率和土壤CO2-C累积释放量均表现为BC5> BC4> BC3> BC2> BC1.培养至56 d,BC分解率介于0.24%~2.12%.[结论]黑碳对维持土壤碳库平衡具有重要的作用.%[ Objective] The study aimed to study the effects of addition rate of black carbon on soil organic carbon mineralization. [ Method] BC was produced by charring the rice straw under 350 ℃ and was mixed into soil with different addition rate (BC0, BC1, BC2, BC3, BC4, BC5 , respectively) , and incubated for 56 days at 25 ℃. [ Results] During the whole incubation period, soil CO2 releasing rate and the accumulation amount of soil CO2-C changed with the following order: BC5 > BC4 > BC3 > BC2 > BC1. After 56 days of incubation, the decomposition rate of black carbon ranged from 0.24% to 2. 12% . [ Conclusion] Black carbon was of great importance in maintaining the balance of soil carbon pool.

  8. Thermoelectric behavior of carbon fiber reinforced lightweight concrete with mineral admixtures%炭纤维增强轻质矿粉混凝土的热电行为

    Institute of Scientific and Technical Information of China (English)

    Bahar Demirel; Salih Yazicioglu

    2008-01-01

    Carbon fiber reinforced concrete can be used to sense temperature owing to the Seebeck effect caused by the p-type conductivity of short carbon fibers. Both the temperature sensing ability of the carbon fiber reinforced lightweight concrete and the influence of mineral admixtures on the Seebeck effect were investigated by measuring the thermo electric power of six Portland cement-based concretes with or without carbon fibers or mineral admixtures (fly ash, silica fume). It was found that the carbon fiber reinforced lightweight concretes had a Seebeck effect similar to the carbon fiber reinforced normal concrete, but their Seebeck coefficients were decreased by mineral admixtures. Carbon fiber reinforced lightweight concrete with mineral admixtures can be used as a thermal sensor in buildings.%炭纤维增强混凝土能用来感知温度,其因在于短炭纤维的P-型传导性引起的塞贝克(Seebeck)效应所致.通过测量添加炭纤维或矿质掺和物(飞灰、硅土粉)前后六种波特兰水泥基混凝土的热电功率,研究了炭纤维增强轻质混凝土热敏的能力及其矿质掺合物对Seebeck效应的影响.结果表明: 炭纤维增强轻质混凝土具有类似于炭纤维增强标准混凝土的Seebeck效应,只是Seebeck系数因掺合了矿粉而减低.掺有矿粉的炭纤维增强轻质混凝土可用作建筑物的热传感器.

  9. Dynamics of mineral N, water-soluble carbon and potential nitrification in band-steamed arable soil

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    mechanically with the band-steamer. In the steamed soil, ammonium concentrations increased from 1.1 to 20.3 μg NH4+-N g-1 dry weight during 28 days. This coincided with an immediate and persistent inhibition of potential nitrification (33-61% inhibition during 90 days). Assays of the temperature response...... of potential nitrification confirmed the temperature sensitivity and showed an optimum temperature of 27.1°C and a temperature coefficient (Q 10) of 1.9. The effects of band-steaming on concentrations of nitrate and water-soluble carbon were divergent and stimulatory, respectively, but generally...

  10. Mineral oils

    Science.gov (United States)

    Furby, N. W.

    1973-01-01

    The characteristics of lubricants made from mineral oils are discussed. Types and compositions of base stocks are reviewed and the product demands and compositions of typical products are outlined. Processes for commercial production of mineral oils are examined. Tables of data are included to show examples of product types and requirements. A chemical analysis of three types of mineral oils is reported.

  11. Nitrogen, carbon and phosphorus mineralization in soils from semi-arid highlands of central Mexico amended with tannery sludge.

    Science.gov (United States)

    Barajas-Aceves, M; Dendooven, L

    2001-04-01

    Tannery sludge contains valuable nutrients and could be used as a fertilizer to pioneering vegetation in heavily eroded soils of the semi-arid highlands of central Mexico. Soil collected under and outside the canopy of mesquite (Prosopis laeviginata), huizache (Acacia tortuoso) and catclaw (Mimosa biuncifera), and cultivated with maize (Zea mays) and beans (Phaesolus vulgaris) was amended with 1.5 g tannery sludge kg-1 soil or 210 kg dry sludge ha-1 or left unamended. Amended and unamended soils were incubated aerobically for 70 days at 22 +/- 2 degrees C and CO2 production, available P, and inorganic N concentrations were monitored. The CO2 production rate, total C and P, available P, biomass C and P were larger under the canopy of the vegetation than outside of the canopy. The soils were depleted of N as more than 50 mg N kg-1 soil could not be accounted for in the first days of the incubation. Nitrification showed a lag, which lasted 28 days, and concentration of available P remained constant or increased slightly. Application of tannery sludge to soil increased CO2 production with 6.5 mg CO2 kg-1 soil d-1 and inorganic N with 30 mg N kg-1 soil after 70 days, but available P did not increase. Application of tannery sludge increased C and N mineralization and could thus provide valuable nutrients to a pioneer vegetation. Although no inhibitory effects on the biological functioning of the soil were found, further investigation into possible long-term environmental effects are necessary.

  12. Removal of Pb, Cd, and Cr in a water purification system using modified mineral waste materials and activated carbon derived from waste materials

    Science.gov (United States)

    Lu, H. R.; Su, L. C.; Ruan, H. D.

    2016-08-01

    This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.

  13. Experimental determination of carbon partitioning between upper mantle minerals and silicate melts: initial results and comparison to trace element partitioning (Nb, Rb, Ba, U, Th, K)

    Science.gov (United States)

    Rosenthal, A.; Hauri, E. H.; Hirschmann, M. M.; Davis, F. A.; Withers, A. C.; Fogel, M. L.

    2012-12-01

    Inventories of C in the mantle and magmatic fluxes of C between the mantle and the Earth's outer envelopes are poorly constrained in part owing to challenges in determining undegassed C concentrations of pristine basalts. Saal et al. [1] proposed that the behavior of Nb could be used as a proxy for C, owing to apparently similar behavior of the two elements in Siqueiros Transform MORB, but higher C/Nb ratios in popping rocks [2] call into question the applicability of the C/Nb proxy. Here, we present experimentally determined carbon partition coefficients (D's) between nominally volatile-free mantle minerals (olivine, OL; orthopyroxene, OPX; clinopyroxene, CPX; garnet, GA) and melts at 0.8-3 GPa, and 1250-1500°C. We conducted piston-cylinder experiments using an olivine-tholeiite + 4 wt% CO2, doped with Nb, Rb, U, Th, and 13C to enhance detection limits. To promote growth of crystals big enough for SIMS analyses, experiments were either long (D12C, but a few have the opposite. Continuous exchange of the liquid (initially rich in 13C) with the graphite capsules (rich in 12C) may yield D's with 13C>12C. D's with 12C>13C are likely owing to either low count rates or comparatively high analytical contamination. Concentrations in minerals vary from 0.20-3.46 ppm for C, 25-176 ppm for H2O, and 0.05-1.21 ppm for F, whereas liquids tend to much higher values (C≤0.9 wt%; H2O≤1.5 wt%; F≤34 ppm; P≤0.25 wt%; S≤43 ppm; Cl≤77 ppm). Resulting D's indicate that C is highly incompatible in all major mantle mineral phases, with D's for OL, OPX and CPX of close to 5x10-4, and for GA ~2.2x10-4. D's for H2O (2x10-4 to ~3x10-2) and F (~2.3x10-3 to ~5.8x10-2) are comparable to those found in previous studies. Trace element partition determinations are in progress, but comparison to previous studies indicates that carbon is significantly more incompatible during mantle melting than Nb, U, or Th, and has behavior approximately similar to Ba. We therefore suggest that

  14. 短期耕作对土壤团聚体结合碳矿化的影响%Carbon Mineralization Associated with Soil Aggregates as Affected by Short-term Tillage

    Institute of Scientific and Technical Information of China (English)

    郭琳琳; 西村拓; 井本博美; 孙志刚

    2016-01-01

    Tilage practice has received much attention due to its effects on greenhouse gas emissions from agri-cultural fields. The understanding of carbon mineralization associated with soil aggregates helps to explore the in-fluence mechanisms of tilage practice on soil carbon dynamics. Total carbon and carbon mineralization rates as-sociated with various sizes of soil aggregates under no-tilage and tilage treatments were studied with a volcanic ash soil. Total carbon content in microaggregates (0.25 mm) for both the no-tilage and tilage treatments, since microaggregates of the volcanic ash soil include more fine silts and clay particles absorbing more organic agents. The carbon mineralization rate and total carbon were highly correlated (R2 =0.6552,P=0.002) for both treatments, suggesting that soil aggregate size is an important factor to influence the carbon mineralization rate. The no-tilage system showed the advantage of improving soil structure for volcanic ash soil. A larger proportion of microaggregates with relatively high carbon mineralization might contribute to the greater carbon loss from tiled soils. Unlike aggregate size, short-term tilage showed no significant effects on carbon mineralization rates associated with aggregates in a specific size class.%耕作措施由于其对于农田温室气体排放的影响而备受关注。明确土壤团聚体结合碳的矿化过程有助于探讨耕作对于土壤碳库动态变化的影响机理。本研究测定了火山灰土耕作与免耕处理不同粒径土壤团聚体的全碳量和碳矿化速率。免耕与耕作处理下的小粒径团聚体(0.25 mm),因为火山灰土的小粒径团聚体含有较高比例的细壤粒和粘粒,而细壤粒和粘粒能够吸附较多的有机物质。免耕与耕作处理的碳矿化速率和全碳量呈显著相关(R2=0.6552, P=0.002),证明土壤团聚体结合碳的矿化速率受粒径大小的影响。免耕处理可以改善火山灰土的土壤结构

  15. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Fe2O3-loaded activated carbon fiber/polymer materials and their photocatalytic activity for methylene blue mineralization by combined heterogeneous-homogeneous photocatalytic processes

    Science.gov (United States)

    Kadirova, Zukhra C.; Hojamberdiev, Mirabbos; Katsumata, Ken-Ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Okada, Kiyoshi

    2017-04-01

    Fe2O3-supported activated carbon felts (Fe-ACFTs) were prepared by impregnating the felts consisted of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) or polyethylene pulp (PE-W15) in Fe(III) nitrate solution and calcination at 250 °C for 1 h. The prepared Fe-ACFTs with 31-35 wt% Fe were characterized by N2-adsorption, scanning electron microscopy, and X-ray diffraction. The Fe-ACFT(PS-A20) samples with 5-31 wt% Fe were microporous with specific surface areas (SBET) ranging from 750 to 150 m2/g, whereas the Fe-ACFT(PE-W15) samples with 2-35 wt% Fe were mesoporous with SBET ranging from 830 to 320 m2/g. The deposition of iron oxide resulted in a decrease in the SBET and methylene blue (MB) adsorption capacity while increasing the photodegradation of MB. The optimum MB degradation conditions included 0.98 mM oxalic acid, pH = 3, 0.02-0.05 mM MB, and 100 mg/L photocatalyst. The negative impact of MB desorption during the photodegradation reaction was more pronounced for mesoporous PE-W15 samples and can be neglected by adding oxalic acid in cyclic experiments. Almost complete and simultaneous mineralization of oxalate and MB was achieved by the combined heterogeneous-homogeneous photocatalytic processes. The leached Fe ions in aqueous solution [Fe3+]f were measured after 60 min for every cycle and found to be about 2 ppm in all four successive cycles. The developed photocatalytic materials have shown good performance even at low content of iron oxide (2-5 wt% Fe-ACFT). Moreover, it is easy to re-impregnate the ACF when the content of iron oxide is reduced during the cyclic process. Thus, low leaching of Fe ions and possibility of cyclic usage are the advantages of the photocatalytic materials developed in this study.

  2. Carbon Mineralization and the Related Enzyme Activity of Soil in Wetland%湿地根际土壤碳矿化及相关酶活性分异特征

    Institute of Scientific and Technical Information of China (English)

    徐小锋; 宋长春; 宋霞; 宋新山

    2004-01-01

    研究了中国三江平原小叶章湿地根际土壤基础呼吸速率及相关酶活性,以了解碳矿化及其相关酶活性空间分异特征.结果表明,β-葡萄糖苷酶、淀粉酶、纤维素酶均为碳循环的良好指示酶,它们均存在着显著的空间分异.从表层土向下,由根表土向外,碳矿化速率及其相关的各种酶活性均呈下降趋势.当从田间取出土壤样品时,土壤样品在取出后的最初阶段碳矿化速率较高,2.5 h以后达到一个较为平稳的水平,然后呈平缓降低的趋势.β-葡萄糖苷酶、淀粉酶、纤维素酶是碳循环的真正催化剂,而土壤有机碳则是此反应的低物.%The enzyme activity and carbon mineralization in the Calamagrostis angustifolia rhizosphere of soil in Sanjiang Plain, China, were investigated in order to understand the microbial effect on carbon mineralization in wetland soil. The results suggest that the β-Glucosidase, amylase and cellulase activities should be nice indicators for carbon cycling. The activities are high in the topsoil and low in the subsoil, decrease from rhizoplane soil to root-free soil for all three enzymes. Carbon is mineralized rapidly once separated from field, then decrease in a short term, and stable after 2.5 h. The enzymes in microorganism are real catalysts for carbon cycling.

  3. Trace and Rare Earth Element Characteristics in Fe-Mn Carbonates Associated with Stratiform Ag-Pb-Zn Mineraliza-tion from the Lengshuikeng Ore District, Jiangxi Province:Implications for Their Genesis and Depositional Environment

    Institute of Scientific and Technical Information of China (English)

    Qing Li; Shaoyong Jiang

    2016-01-01

    We performed a systematic trace and rare earth element analysis for the bedded Fe-Mn carbonate rocks related to the stratiform Ag-Pb-Zn mineralization in the Lengshuikeng ore district, Jiangxi Province, South China. Three types of Fe-Mn carbonates are distinguished, namely, the massive, breccia, and vein types. Both carbonate and silicate fractions in the samples are analyzed for their trace and rare earth element concentrations using a step acid-leaching technique. Our results show that the carbonate fractions in the massive type samples have the lowest REE concentrations but pronounced positive Eu and Y anomalies with Eu/Eu* value from 1.3 to 6.2 and Y/Ho value from 40.1 to 59.5, and similar characteristics are also shown for the silicate fractions in the massive type samples (Eu/Eu*=1.0–6.7, Y/Ho=20.7–55.1). These REE characteristics are similar to those of Sedex type mas-sive sulfide deposits worldwide, and we suggest that the massive type Fe-Mn carbonate rocks were likely formed from an exhalative volcanic-hydrothermal fluid feeding the depression basin of a volcanic lake. The high concentrations of redox-sensitive elements and ratios such as U/Th, V/Cr and V/(V+Ni) indicate a dysoxic environment for the Fe-Mn carbonate deposition. In contrast, the breccia type and vein type Fe-Mn carbonate samples show different trace and rare earth element features from those of massive type samples, and they are more similar to the volcanic rocks and magmatic-hydrothermal fluids in the Lengshuikeng ore district and may reflect strong overprinting from volcanic and sub-volcanic magmatism related to the porphyry type mineralization in the district.

  4. Mitigating Greenhouse Gas Emissions with Minerals

    Science.gov (United States)

    Wilson, S. A.; Dipple, G. M.; Raudsepp, M.; Anderson, R. G.

    2006-05-01

    Carbon sequestration or disposal has been recognized as a necessary first step toward the stabilization of atmospheric carbon dioxide (CO2) levels. Of the proposed methodologies for carbon disposal, binding CO2 in carbonate minerals represents the most environmentally benign and geologically stable means of reducing atmospheric carbon levels. By some estimates, as much as 87% of the Earth's carbon is bound in carbonate minerals. Carbon sequestration seeks to accelerate the natural weathering processes responsible for carbon fixation in minerals. Atmospheric CO2 is being fixed in carbonate efflorescences forming in tailings from both inactive and active chrysotile mines. Our data suggest that microbial activity in tailings may mediate the precipitation of more thermodynamically stable hydrated magnesium carbonate phases. Carbonation of kaolinite-serpentine group minerals in ultramafic mine tailings represents a potential implementation of the carbon sequestration process. We have developed a protocol for verifying and quantifying carbon sequestration in mine tailings. Quantitative phase analysis with the Rietveld method and X-ray powder-diffraction data is used to determine the modal abundance of hydrated magnesium carbonates in mine tailings. Stable and radiogenic isotopes are used to fingerprint an atmospheric source for CO2 and to detect contamination by bedrock carbonate. Global implementation of carbon sequestration in ultramafic mine tailings has the potential to draw CO2 directly from the atmosphere at a rate of 10(8) tonnes of carbon per year. In situ sequestration in mine tailings bypasses the need to transport large quantities of tailings to industrial point sources and can be accomplished without high-pressure, high-temperature reactors. Mine tailings may, therefore, represent the optimal environment in which to pursue carbon sequestration in minerals.

  5. Transformation of organic carbon, trace element, and organo-mineral colloids in the mixing zone of the largest European Arctic river

    Directory of Open Access Journals (Sweden)

    O. S. Pokrovsky

    2013-10-01

    Full Text Available The estuarine behavior of organic carbon (OC and trace elements (TE was studied for the largest European sub-Arctic river, which is the Severnaya Dvina; this river is a deltaic estuary covered in ice during several hydrological seasons: summer (July 2010, 2012 and winter (March 2009 baseflow, and the November–December 2011 ice-free period. Colloidal forms of OC and TE were assessed using three pore size cutoff (1, 10, and 50 kDa using an in-situ dialysis procedure. Conventionally dissolved ( The most important result of this study is the elucidation of the behavior of the "truly" dissolved low molecular weight LMW fraction containing Fe, OC, and a number of insoluble elements. The concentration of the LMW fraction either remains constant or increases its relative contribution to the overall dissolved ( Overall, the observed decrease of the colloidal fraction may be related to the coagulation of organo-ferric colloids at the beginning of the mixing zone and therefore the replacement of the HMW1 kDa–0.22 μm portion by the LMW fraction. These patterns are highly reproducible across different sampling seasons, suggesting significant enrichment of the mixing zone by the most labile (and potentially bioavailable fraction of the OC, Fe and insoluble TE. The size fractionation of the colloidal material during estuarine mixing reflects a number of inorganic and biological processes, the relative contribution of which to element speciation varies depending on the hydrological stage and time of year. In particular, LMW ligand production in the surface horizons of the mixing zone may be linked to heterotrophic mineralization of allochthonous DOM and/or photodestruction. Given the relatively low concentration of particulate vs. dissolved load of most trace elements, desorption from the river suspended material was less pronounced than in other rivers in the world. As a result, the majority of dissolved components exhibited either a conservative (OC and

  6. A High-Resolution Multitechniques Approach to Characterize Bio-Organo-Mineral Associations Within Rock Samples: Tracking Biological vs Abiotic Processes? Towards a Better Understanding of the Deep Carbon Cycle.

    Science.gov (United States)

    Pisapia, C.

    2015-12-01

    Among all elements, carbon plays one of the major roles for the sustainability of life on Earth. Past considerations of the carbon cycle have mainly focused on surface processes occurring at the atmosphere, oceans and shallow crustal environments. By contrast, little is known about the Deep Carbon cycle whereas both geochemical and biological processes may induce organic carbon production and/or consumption at depth. Indeed, the nowadays-recognized capability of geochemical processes such as serpentinization to generate abiotic organic compounds as well as the existence of a potentially important intraterrestrial life raises questions about the limit of biotic/abiotic carbon on Earth's deep interior and how it impacts global biogeochemical cycles. It is then mandatory to increase our knowledge on the nature and extent of carbon reservoirs along with their sources, sinks and fluxes in the subsurface. This implies to be able to finely characterize organomineral associations within crustal rocks although it might be hampered by the scarceness and heterogeneous micrometric spatial distribution of organic molecules in natural rocks. We then developed an in situ analytical strategy based on the combination of high-resolution techniques to track organic molecules at the pore level in natural rocks and to determine their biological or abiotic origin. We associated classical high-resolution techniques and synchrotron-based imaging techniques in order to characterize their nature and localization (SEM/TEM, coupled CLSM/Raman spectroscopy, Tof-SIMS) along with their 3D-distribution relatively to mineral phases (S-FTIR, S-DeepUV, XANES, Biphoton microscopy). The effectiveness of this approach to shed light on the speciation and nature of carbon in subsurface environments will be illustrated through the study of (i) subsurface ecosystems and abiotic organic carbon within ultramafic rocks of the oceanic lithosphere as putative analogs for the nature and functioning of primitive

  7. Oxygen Extraction from Minerals

    Science.gov (United States)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  8. Clay Mineral: Radiological Characterization

    Science.gov (United States)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.

    2008-08-01

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  9. Authigenic minerals: Biologically influenced and induced organomineralization

    Science.gov (United States)

    Dupraz, Christophe

    2016-04-01

    Organominerals are minerals precipitated by interactions with organic matter without enzymatic control. Organomineralization of authigenic carbonate minerals depends on two key components: (1) the "carbonate alkalinity engine" impacting the calcium carbonate saturation index and (2) the organic matrix comprised of extracellular organic matter (EOM), which provides a template for carbonate nucleation. The alkalinity engine can be "intrinsic" when microbial metabolisms increase supersaturation or lower the kinetic barrier of precipitation, or "extrinsic" when the physicochemical environment creates the conditions for mineral formation. The organic matrix produced by various communities within the microbial mats is known to influence nucleation, morphology and mineralogy of minerals through binding of cations. By playing with these two key components, three types of authigenic minerals can be formed: (1) a purely physicochemical precipitation on an abiotic substrate, (2) a precipitation "influenced" by the presence of an organic matrix but resulting from a physicochemical forcing (environmentally driven), or (3) a "microbially-induced" precipitation, in which both supersaturation and organic matrix are resulting from microbial activity. In this keynote, we will review important processes involved in the precipitation of authigenic carbonate minerals in modern microbial mats and open the discussion on the potential use of authigenic carbonate minerals as biosignatures in the fossil record.

  10. [CKD-MBD (Chronic Kidney Disease-Mineral and Bone Disorder). Lanthanum carbonate and new phosphate binders in patients with chronic kidney disease].

    Science.gov (United States)

    Negi, Shigeo; Shigematsu, Takashi

    2010-07-01

    Hyperphosphatemia is a serious complication which has been linked with an increased risk of cardiovascular mortality in patients with chronic kidney disease. Lanthanum carbonate is a novel non-calcium, non-aluminum phosphate-binding agent, and has approved for clinical use in patients on hemodialysis in Japan on March in 2009. Compared to calcium carbonate and sevelamer hydrochloride, lanthanum carbonate is a powerful phosphate binder. There is no evidence of bone toxicity and neurotoxicity of lanthanum carbonate previously reported for aluminium hydroxide. However, further studies are needed to address the longer term toxic effect on bone and other organs.

  11. A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide - Water - Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Ronald D.; Wang, Zheming; Anderko, Andre; Wang, Peiming; Felmy, Andrew R.

    2012-09-05

    Phase equilibria in mixtures containing carbon dioxide, water, and chloride salts have been investigated using a combination of solubility measurements and thermodynamic modeling. The solubility of water in the CO2-rich phase of ternary mixtures of CO2, H2O and NaCl or CaCl2 was determined, using near infrared spectroscopy, at 90 atm and 40 to 100 °C. These measurements fill a gap in the experimental database for CO2 water salt systems, for which phase composition data have been available only for the H2O-rich phases. A thermodynamic model for CO2 water salt systems has been constructed on the basis of the previously developed Mixed-Solvent Electrolyte (MSE) framework, which is capable of modeling aqueous solutions over broad ranges of temperature and pressure, is valid to high electrolyte concentrations, treats mixed-phase systems (with both scCO2 and water present) and can predict the thermodynamic properties of dry and partially water-saturated supercritical CO2 over broad ranges of temperature and pressure. Within the MSE framework the standard-state properties are calculated from the Helgeson-Kirkham-Flowers equation of state whereas the excess Gibbs energy includes a long-range electrostatic interaction term expressed by a Pitzer-Debye-Hückel equation, a virial coefficient-type term for interactions between ions and a short-range term for interactions involving neutral molecules. The parameters of the MSE model have been evaluated using literature data for both the H2O-rich and CO2-rich phases in the CO2 - H2O binary and for the H2O-rich phase in the CO2 - H2O - NaCl / KCl / CaCl2 / MgCl2 ternary and multicompontent systems. The model accurately represents the properties of these systems at temperatures from 0°C to 300 °C and pressures up to ~4000 atm. Further, the solubilities of H2O in CO2-rich phases that are predicted by the model are in agreement with the new measurements for the CO2 - H2O - NaCl and CO2 - H2O - CaCl2 systems. Thus, the model can be

  12. Mineral bioprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.

    1993-05-01

    In the last 25 years, the introduction of biotechnological methods in hydrometallurgy has created new opportunities and challenges for the mineral processing industry. This was especially true for the production of metal values from mining wastes and low-and-complex-grade mineral resources, which were considered economically not amenable for processing by conventional extraction methods. Using bio-assisted heap, dump and in-situ leaching technologies, copper and uranium extractions gained their first industrial applications. The precious metal industries were the next to adopt the bio-preoxidation technique in the extraction of gold from refractory sulfide-bearing ores and concentrates. A variety of other bioleaching opportunities exist for nickel, cobalt, cadmium and zinc sulfide leaching. Recently developed bioremediation methods and biosorption technologies have shown a good potential for industrial applications to remove trace heavy metal and radionuclide concentrations from contaminated soils, and mining and processing effluents.

  13. Effect of synthetic carbon amino saccharides on the transfer of labeled mineral 45Ca2+ and 32PO 4 3- ions from drinking water to blood serum in mice

    Science.gov (United States)

    Navarrete, J. M.; Muller, G.; Martinez, T.; Cabrera, L.; Gracia, I.; Fabila, L.; Urbina, V. M.

    2006-01-01

    The favorable effects of fulvic acids as fertilizers are very well known and they have been used long time ago in their natural state in dead leaves. Their extraction from natural sources is rather expensive, but the production of very similar carbon amino saccharides by sugar oxidation has been industrially applied in Mexico. Good properties of this commercial product as fertilizer have been proved empirically in different crops as well as at laboratory level, by the efficient absorption of radioactive labeled mineral ions in vegetables when they are carried by this synthetic organic matter in aqueous solution. Now, its effect has been tested by filtration of radioactively labeled 45Ca2+ and 32PO 4 3- ions from drinking water to blood serum through mice liver and kidneys. The results indicate that the filtration and diffusion of these mineral ions also improved, the same that in vegetables, in the presence of the synthetic carbon amino saccharides highly soluble in water. These results suggest the appropriateness of further research to evaluate their possible use either as a dietary complement or as auxiliaries in the treatment of liver and kidney diseases.

  14. 梭菌MH18菌株诱导碳酸盐矿物的形成%Clostridium sp. MH18 strain induces the formation of carbonate minerals

    Institute of Scientific and Technical Information of China (English)

    郭文文; 马恒; 李福春; 王金平; 苏宁

    2012-01-01

    [目的]研究细菌作用下碳酸盐矿物的形成过程有助于了解微生物成矿的机理.[方法]在Lagoa Vermelha培养基中(Mg/Ca为6:1)对一株分离自土壤样品的梭菌MH18菌株进行了为期35天的碳酸盐矿物培养实验,同时还完成了一组无菌对照实验.利用X-射线衍射技术对沉淀物的矿物成分进行了测定,利用光学显微镜和扫描电子显微镜对沉淀物的形态进行了系统的观察.[结果]MH18菌株在Lagoa Vermelha 培养基中诱导形成了以高镁方解石为主的碳酸盐矿物;这些矿物起初具有哑铃状的外形,后来发展为球状;无菌对照实验中出现少量沉淀物,但X-射线衍射技术图谱显示它们是非晶态物质.[结论]MH18菌株具有促进碳酸盐矿物结晶的功能;碳酸盐矿物的特殊形态(哑铃状和球状)可能与细菌形态存在着某种成因上的联系.%Objective ] We studied the formation of carbonate minerals by bacteria to understand the mechanism of microbial mineralization. [Methods] Cultures of carbonate precipitation using Lagoa Vermelha medium with 6;1 molar ratio of Mg/Ca within 35 days were made under the mediation of Clostridium sp. ( MH18 strain) isolated from soil. At the same time, aseptic experiments without the inoculation were done as the control. Mineral species were determined by X-ray diffraction, and the morphologies of precipitated carbonates were observed using optical microscopy and scanning electron microscopy. [Results] In the LV medium, MH18 strain mediated the formation of carbonate mineral, in which high-magnesium calcite was dominant. In the initial stage, the minerals had shapes with dumbbell-like morphology, and finally transformed to spheres. Only a small amount of precipitation appeared in the control, but X-ray diffraction patterns showed that these precipitations were amorphous substance. [Conclusions] MH18 strain could induce crystallization of carbonate.

  15. Interactive effects of belowground organic matter input, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe

    Directory of Open Access Journals (Sweden)

    L. N. Ma

    2013-06-01

    Full Text Available Soil organic matter (SOM inputs, increased precipitation and clipping (reducing belowground photosynthates allocation are predicted to affect soil C and N cycling in temperate grassland ecosystems. However, the interactive effects between SOM inputs (or increased precipitation and clipping on soil C and N mineralization in temperate steppes are still poorly understood. A field manipulation experiment was conducted to quantify the effects of SOM inputs, increased precipitation, clipping and their interactions on soil C and N mineralization in a temperate steppe of northeastern China from 2010 to 2011. The results showed that SOM inputs significantly increased soil C mineralization rate (CMR and net N mineralization rate (NMR. Increased precipitation-induced enhancement of soil CMR essentially ceased after the first year, stimulation of soil NMR and NNR continued into the second year. However, clipping only marginally decreased soil CMR and NMR during the two years. There were significant synergistic interactions between SOM inputs (or increased precipitation and clipping on soil CMR and NMR, as SOM inputs (or increased precipitation showed greater effects on soil CMR and NMR under clipped plots than under unclipped plots, which could be explained by the relative shifts in soil microbial community structure because of bacterial biomass increases, and by the relative decreases in arbuscular mycorrhizal fungi biomass due to the reduction of belowground photosynthates allocation. These results highlight the importance of plants in mediating the responses of soil C and N mineralization to potentially increased SOM and precipitation by controlling belowground photosynthates allocation in the temperate steppe. Thus, the findings have important implications for improving prediction of C and N sequestration potential and its feedbacks to climate change in temperate steppe ecosystems.

  16. ROCKS & MINERALS DETERMINATION AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160255 Wang Na(Tianjin Center of Geological Survey,China Geological Survey,Tianjin 300170,China);Teng Xinhua Determination of Low-Content Iron Carbonate in Stream Sediments by Flame Atomic Absorption Spectrometry with Aluminum Chloride Extraction(Rock and Mineral Analysis,ISSN0254-5357,CN11-2131/TD,34(2),2015,p.229

  17. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    in the Indian Ocean. In both fields, hydrothermalism has ceased between 11.000 and 13.000 years ago. The first occurrence (Sonne Field, 2850 m water depth) is located in the 4th segment of the Central Indian Ridge, north of the Rodriguez Triple Junction... structures are composed of sulfides arising out from deep beneath the Earth' crust. These minerals have been dissolved in hot water (350ºC) under great pressures and temperatures. When the water that flows out through the mantle ejects at the mid ocean...

  18. Insulating and sheathing materials of electric and optical cables: common test methods part 4-1: methods specific to polyethylene and polypropylene compounds – resistance to environmental stress cracking – measurement of the melt flow index – carbon black and/or mineral filler content measurement in polyethylene by direct combustion – measurement of carbon black content by thermogravimetric analysis (TGA) – assessment of carbon black dispersion in polyethylene using a microscope

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Specifies the test methods to be used for testing polymeric insulating and sheathing materials of electric cables for power distribution and telecommunications including cables used on ships. Gives the methods for measurements of the resistance to environmental stress cracking, for wrapping test after thermal ageing in air, for measurement of melt flow index and for measurement of carbon black and/or mineral filler content, which apply to PE and PP coumpounds, including cellular compounds and foam skin for insulation.

  19. Authigenic minerals related to carbon and sulfur biogeochemical cycling from deep-sea active methane seeps offshore South-West Africa

    Science.gov (United States)

    Pierre, C.; Blanc-Valleron, M.; Demange, J.; Boudouma, O.; Pape, T.; Himmler, T.; Fekete, N.; Spiess, V.

    2011-12-01

    The South-West African continental margin is well known for occurrences of active methane-rich fluid seeps that are associated with seafloor pockmarks in a broad range of water depths, from the shelf to the deep basins. High gas flares in the water column, luxurious oases of benthic fauna, gas hydrate accumulations and diagenetic carbonate crusts have been observed at these seeps. During the M76/3a expedition of R/V METEOR (summer 2008) gravity cores recovered abundant authigenic carbonate concretions from five pockmarks of the South-West African margin including previously studied sites (Hydrate Hole, Worm Hole, Regab Pockmark) and two sites (Deep Hole, Baboon Cluster) newly discovered during the cruise. Carbonate concretions were mostly associated to sediments settled by seep-associated benthic macrofauna and bearing shallow gas hydrates. We present new results of the comprehensive analysis of the mineralogy and isotope geochemistry of the diagenetic carbonates sampled in the five pockmarks. The mineralogy of authigenic carbonates is dominated by magnesian calcite and aragonite, associated occasionally with dolomite. The oxygen and carbon isotopic compositions of authigenic carbonates (+2.4 < δ18O % V-PDB < +6.2 ; -61.0 < δ13C % V-PDB < -40.1) indicate that microbial anaerobic oxidation of methane (AOM) was the main process controling carbonate precipitation within sub-seafloor sediments deposited from the glacial-time up to the present. The frequent occurrence of diagenetic gypsum crystals within the sediments demonstrates that bio-irrigation with oxygenated bottom water by the burrowing activity of benthic fauna caused the secondary oxidation of reduced sulfur (hydrogen sulfide and pyrite) that was produced by sulfate reducting bacteria as a by-product of AOM; during the sulfide oxidation process, the released acidity induced the partial dissolution of carbonates. Our results demonstrate also the strong link that existed between the carbon and sulfur cycles

  20. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  1. Estoques totais de carbono orgânico e seus compartimentos em argissolo sob floresta e sob milho cultivado com adubação mineral e orgânica Total stocks of organic carbon and its pools in acrisols under forest and under maize cultivated with mineral and organic fertilization

    Directory of Open Access Journals (Sweden)

    L. F. C. Leite

    2003-10-01

    were: a to evaluate the effect of maize production systems under organic and mineral fertilization on total organic carbon (TOC and total nitrogen (TN stocks and on organic carbon pools (C in an Acrisol; and b to estimate the contribution of these systems in the atmospheric CO2 sequestration or emission. The production systems included two levels of organic compost: level 0 (control and level 1 (40 m³ ha-1; and three levels of mineral fertilizer (0, 1 and 2, which correspond to 0,250 (AM1, and 500 kg ha-1 (AM2 of the 4-14-8 formula. Organic and mineral fertilizer were combined and applied during 16 years. As a reference of the steady state, soil samples were collected from an adjacent area of the same soil type, under secondary Atlantic Forest (AF. Where organic compost was added, the production systems presented higher organic C and N soil storage, light fraction carbon (C LF and labile carbon (C L than production systems without fertilization or with mineral fertilizer only. This confirms the importance of organic fertilizer utilization as a management strategy to improve soil quality. However, the soil under AF showed higher values of organic C and N storage and carbon pools than soils under production systems. Due to their higher sensitivity, the stocks of the C LF and C L were more severely decreased than the TOC stocks and thus, may be used as indicators of the anthropogenic impact or the influence of management alterations on the soil organic matter.

  2. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: reevaluating the potential of CO2 mineral sequestration.

    Science.gov (United States)

    Sissmann, Olivier; Brunet, Fabrice; Martinez, Isabelle; Guyot, François; Verlaguet, Anne; Pinquier, Yves; Daval, Damien

    2014-05-20

    Batch experiments were conducted in water at 150 °C and PCO2 = 280 bar on a Mg-rich tholeiitic basalt (9.3 wt % MgO and 12.2 wt % CaO) composed of olivine, Ti-magnetite, plagioclase, and clinopyroxene. After 45 days of reaction, 56 wt % of the initial MgO had reacted with CO2 to form Fe-bearing magnesite, (Mg0.8Fe0.2)CO3, along with minor calcium carbonates. The substantial decrease in olivine content upon carbonation supports the idea that ferroan magnesite formation mainly follows from olivine dissolution. In contrast, in experiments performed under similar run durations and P/T conditions with a San Carlos olivine separate (47.8 wt % MgO) of similar grain size, only 5 wt % of the initial MgO content reacted to form Fe-bearing magnesite. The overall carbonation kinetics of the basalt was enhanced by a factor of ca. 40. This could be explained by differences in the chemical and textural properties of the secondary silica layer that covers reacted olivine grains in both types of sample. Consequently, laboratory data obtained on olivine separates might yield a conservative estimate of the true carbonation potential of olivine-bearing basaltic rocks.

  3. Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways

    DEFF Research Database (Denmark)

    Vandieken, Verona; Nickel, Maren; Jørgensen, Bo Barker

    2006-01-01

    Carbon oxidation rates and pathways were determined in 3 sediments at latitude 79 degrees to 81 degrees N in the Barents Sea, where the ice cover restricts primary production to a few months of the year. Oxygen uptake (1.5 to 3.5 imnol m(-2) d(-1)) and sulfate reduction (= 60 mu mol cm(-3)) and F...

  4. Laboratory study of the impact of model soil organic carbon content and mineral matter on TCE sorption behaviors%模拟土样有机碳和矿物质对TCE吸附贡献的实验研究

    Institute of Scientific and Technical Information of China (English)

    韩璐; 何江涛; 张晶; 张坤峰

    2011-01-01

    was reduced with the increasing amount of the organic matters. The sorption contribution rate of minerals was less than 5% when the organic carbon content was more than 0. 82%, and even could be neglected when the organic carbon content was higher than 1 %. Also the original concentration of the TCE could affect the capacity of the sorption and the sorption contribution of the organic carbon and minerals insome way. The Freundlich sorption model was used to simulate the TCE isotherm sorption patterns in two segments, with Ce = 500 ng/L as the boundary. The fitting exponential of Freundlich (n) decreased with the increasing TCE concentration. Besides, the contribution rate of the organic carbon increased while that of the minerals went down with the increasingly higher TCE concentration. When the TCE concentration varied from 50 to 500 μg/L and f∝ was 0.16%, the sorption contribution rate of minerals fluctuated in the range of 28% ~ 16% and decreased to 3% - 1 % at f∝ equal to 1 %, whereas the TCE concentration almost had nothing to do with their contributions.

  5. Influence of different mineral admixtures on carbonation resistance property of lightweight aggregate concrete%不同矿物掺合料对轻骨料混凝土抗碳化性能的影响

    Institute of Scientific and Technical Information of China (English)

    高英力; 程领; 龙杰

    2011-01-01

    利用Ⅱ级粉煤灰、超细粉煤灰、磨细矿粉以及钢渣粉等量取代水泥,制备了轻骨料混凝土.并采用加速碳化试验和混凝土孔溶液pH值测试技术,研究了其碳化特性,分析了不同矿物掺合料对轻骨料混凝土抗碳化性能的影响机制.研究结果表明,掺II级粉煤灰和钢渣粉的试样各龄期碳化深度均高于基准样,且不同深度处的混凝土孔溶液pH值也低于基准样;而掺20%超细粉煤灰和磨细矿粉的试样后期抗碳化性能优于基准样,28d碳化深度分别只有基准样的77.6%和86.2%,内部孔溶液pH值与基准样相差不大,说明适量的超细粉煤灰和磨细矿粉可在一定程度上延缓轻骨料混凝土的中性化速度.另外,当大掺量掺合料取代水泥时,随着掺量的增大,轻骨料混凝土碳化过程有加速的趋势.%Cement has been replaced respectively lay equivalent graue Ⅱ fly ash,ultra-finefly ash, ground blast furnace slag and steel slag powder, and the lightweight aggregate concrete with mineral admixture have been prepared. Then the carbonization characteristics of concrete were researched by the accelerated carbonation experiment and the measuring technology of pore solution's pH value of concrete. Meanwhile, the influence mechanism of different mineral admixtures on carbonation resistance property of lightweight aggregate concrete was analyzed. The results show that the carbonation depth of the samples containing grade Ⅱ fly ash and steel slag powder are higher than that of the reference sample, while their pore solution's pH values at different depth are lower than the reference sample. On the other hand, the laterage carbonation resistance property of the samples containing 20 % ultra-fine fly ash and ground blast furnace slag are also better than that of the referencesample, and the 28-day carbonation depth are only 77.6% and 86.2,% of the reference sample respectively, but

  6. 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization

    Directory of Open Access Journals (Sweden)

    Marie eRagon

    2014-07-01

    Full Text Available Cyanobacteria are mainly thought to induce carbonate precipitation extracellularly via their photosynthetic activity combined with the nucleation potential of exopolymeric substances. The discovery in microbialites of the alkaline lake Alchichica (Mexico of Candidatus Gloeomargarita lithophora, a cyanobacterium forming large amounts of intracellular Mg-Ca-Sr-Ba carbonate spherules, showed that intracellular biomineralization in cyanobacteria is also possible. A second cyanobacterium isolated from the same environment, Candidatus Synechococcus calcipolaris G9, has been recently shown to also form intracellular calcium carbonates at the cell poles, a capability shared by all cultured species of the Thermosynechococcus clade, to which it belongs. To explore the diversity of these two distant cyanobacterial lineages representing two different patterns of intracellular calcification, we designed specific primers against their 16S rRNA genes and looked for their occurrence in a wide variety of samples. We identified the presence of members of the Gloeomargarita and Thermosynechococcus/S. calcipolaris lineages in microbialites collected from Lake Alchichica and three other neighboring Mexican lakes. The two clades also occurred in karstic areas and in some thermophilic or hypersaline microbial mats collected in South America and/or Southern Europe. Surprisingly, the within-group diversity in the two clades was low, especially within the S. calcipolaris clade, with all 16S rRNA gene sequences retrieved sharing more than 97% identity. This suggests that these clades are composed of a limited number of species with cosmopolitan distribution. Moreover, scanning electron microscopy coupled with energy dispersive x-ray spectrometry showed the presence of intracellularly calcifying Gloeomargarita-like cyanobacteria in fresh samples where this clade was relatively abundant, suggesting that these cyanobacteria do precipitate carbonates intracellularly under

  7. Preliminary Nanosims Analysis of Carbon Isotope of Carbonates in Calcium-Aluminum-Rich Inclusions

    OpenAIRE

    Guan, Y.; Paque, J. M.; Burnett, D.S.; Eiler, J. M.

    2009-01-01

    Carbonate minerals observed in primitive meteorites are products of either terrestrial weathering or aqueous alteration in the early solar system. Most of the carbonate minerals in carbonaceous chondrites occur primarily as isolated grains in matrix, as crosscutting veins, or as replacement minerals in chondrules [e.g., 1, 2]. A few calcium-aluminum-rich inclusions (CAIs) have been reported containing carbonate minerals as well [2, 3]. The C and O isotopes of carbonates in c...

  8. Evolution Characteristics of Saturated Hydrocarbons of Enclosed Organic Matter in Carbonate Minerals in Tieling Limestone Under High Temperature and High Pressure

    Institute of Scientific and Technical Information of China (English)

    解启来; 陆明勇; 等

    2000-01-01

    The enclosed organic matter chiefly releases lower carbon-number n-alkanes under high temperature and high pressure,while the kerogen mainly produces higher carbon-number n-alkanes.The rsidual hydrocarbons generated by both kerogen and enclosed organic matter in the Tieling limestone contain abundant tricyclic terpanes,pentacyclic triterpanes and steranes,but the contents of tetracyclic terpanes and 25-norhopane are lower.The residual enclosed orgainc matter shows the same distribution characteristics of n-alkanes,steranes and terpanes as that of the original bitumaen A,i.e.,the higher contents of triterpanes and tetracyclic terpanes,the higher ratios of 25-norhopanes over regular hopanes and markedly degraded steranes.By comparing the residual hydrocarbon.residual enclosed orgainc matter and original enclosed orgainc matter.it can be concluded that steranes and terpanes in the residual hydrocarbons are produced mainly by the kerogen and subordinately by the residual enclosed organic matter,the steranes and terpanes do not enter into the residual enclosed organic matter,and the thermal evolution of the residual enclosed organic matter maintains its unique character.Furthermore,pressure retards the pyrolysis of higher carbon-number alkanes and influences the isomerization ratios of C29-steranes,making 20S/(20S+20R) lower under the higher pressure than that under lower pressure,Higher pressure retards the thermal evolution of organic matter.

  9. Dovyrenite Ca6Zr[Si2O7]2(OH)4 - A New Mineral from Skarned Carbonate Xenoliths in Basic-Ultrabasic Rocks of the Ioko-Dovyren Massif, Northern Baikal Region, Russia

    Science.gov (United States)

    Galuskin, Evgeny V.; Pertsev, Nikolai N.; Armbruster, Thomas; Kadiyski, Milen; Zadov, Aleksander E.; Galuskina, Irina O.; Dzierżanowski, Piotr; Wrzalik, Roman; Kislov, Evgeny V.

    2007-01-01

    Dovyrenite, simplified formula Ca6Zr[Si2O7]2(OH)4, occurs as an accessory mineral in vein skarns developed in carbonate xenoliths in subvolcanic layered plagiodunite-troctolite series in the Ioko-Dovyren Massif of Proterozoic age, Northern Baikal Region, Buryatia, Russia. Dovyrenite is a late mineral of altered pyroxene and melilite-monticellite skarns. Associated minerals are Zr-bearing phases: fassaitic pyroxene, perovskite and hydrogarnets; and also monticellite, vesuvianite, diopside, foshagite, brucite, calzirtite, tazheranite, baghdadite, apatite, calcite, native bismuth, sphalerite, selenian galena, clausthalite, safflorite, rammelsbergite, pyrrhotite, pentlandite, valleriite, laitakarite, nickeline, nickel-skutterudite. The average structure of dovyrenite is orthorhombic, space group Pnnm, with subcell parameters A = 5.666(16) Å, B = 18.844(5) Å, C = 3.728(11) Å, V = 398.0(2) Å3 and Z = 1. Dovyrenite shows a new type of modular structure with stacking of the tobermorite-like and the rosenbuschite-like layers parallel to (010). Single-crystal structural data point to an incompletely occupied Ca(2) site from the rosenbuschite module which is confirmed by microprobe analyses: ZrO2 16.47, SiO2 32.83, TiO2 0.14, HfO2 0.16, Cr2O3 0.01, CaO 43.87, FeO 0.25, MgO 0.13, MnO 0.02, Nb2O3 0.03; total 99.38 wt% with calculated H2O. The empirical formula is (Ca5.73Fe0.03Mg0.02)σ5.78(Zr0.98Hf0.01Ti0.01)σ1Si4(O13.56OH0.44)σ14(OH)4. The presence of two types of OH group in the dovyrenite structure is corroborated by FTIR and Raman spectroscopy. Dovyrenite is an optically positive biaxial mineral: α 1.659(2), β 1.660(2); γ 1.676(2); 2Vz 30(5)° (measured), 28° (calculated). The coexistence of monticellite, foshagite and dovyrenite points to a narrow interval of crystallization 560-630°C under subvolcanic conditions (P < 108 Pa).

  10. Mineralização de carbono e de nitrogênio provenientes de composto de lixo urbano em argissolo Carbon and nitrogen mineralization in an ultisol fertilized with urban waste compost

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2006-08-01

    Full Text Available Estudos da mineralização do C e do N em solos que receberam aplicação de composto de lixo urbano são importantes para avaliar o comportamento desse resíduo no solo e dar subsídios para definir as doses adequadas às culturas, com vistas em atender à necessidade de N das plantas. Foram realizados dois experimentos em condições de laboratório com o objetivo de avaliar a mineralização de C e de N em um Argissolo textura média adubado com composto de lixo urbano. No primeiro experimento, utilizou-se delineamento inteiramente ao acaso, com cinco tratamentos e três repetições, com os tratamentos constituídos de cinco doses de composto de lixo urbano, equivalentes a 0, 30, 60, 90 e 120 t ha-1. No segundo experimento, empregou-se esquema fatorial, com delineamento inteiramente ao acaso e três repetições, combinando as mesmas cinco doses de composto de lixo urbano utilizadas no primeiro experimento e 11 tempos de incubação (0, 7, 14, 28, 42, 56, 70, 84, 98, 112 e 126 dias. Os maiores aumentos de N-NO3- no solo foram obtidos até os 42 dias de incubação, independentemente da dose de composto de lixo aplicada, percebendo-se, a partir dos 70 dias, tendência de estabilização. A fração de mineralização de C-orgânico em C-CO2 menor do que 2 % em 168 dias indica que o composto de lixo urbano é material que contribui para aumentar os estoques de matéria orgânica do solo. Na ausência de adubação nitrogenada complementar, a fração de mineralização de N-orgânico de 12 % em 126 dias evidencia que o composto de lixo urbano apresenta potencial fertilizante de liberação lenta de N para as plantas.Studies about nitrogen and carbon mineralization in soils amended with urban waste compost are important to evaluate the reactions of this waste in soil and to define the best rates for crops. Two experiments were carried out under laboratory conditions to evaluate carbon and nitrogen mineralization in an Ultisol fertilized with

  11. Proton induced luminescence of minerals

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H.; Millan, A.; Calderon, T. [Depto. Geologia y Geoquimica, Universidad Autonoma de Madrid, Ctra. Colmenar, km. 15, 28049, Madrid (Spain); Beneitez, P. [Departamento Quimica Fisica Aplicada, Universidad Autonoma de Madrid Cantoblanco, Madrid (Spain); Ruvalcaba S, J.L. [lFUNAM, Circuito de la lnvestigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2008-07-01

    This paper presents a summary of Ionoluminescence (IL) for several minerals commonly found in jewellery pieces and/or artefacts of historical interest. Samples including silicates and non-silicates (native elements, halide, oxide, carbonate and phosphate groups) have been excited with a 1.8 MeV proton beam, and IL spectra in the range of 200- 900 nm have been collected for each one using a fiber optic coupled spectrometer. Light emissions have been related to Cr{sup 3+}, Mn{sup 2+} and Pr{sup 3+} ions, as well as intrinsic defects in these minerals. Results show the potential of IL for impurity characterization with high detection limits, local symmetry studies, and the study of the origin of minerals. (Author)

  12. ROCKS & MINERALS DETERMINATION AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101621 Chen Heping (Nanyang Geology Testing & Research Center of Henan Province, Nanyang 473000, China); Sha Yanmei Simultaneous Determination of Major and Minor Elements in Carbonates by Inductively Coupled Plasma-Atomic Emission Spectrometry with Multi-direction Viewing Mode (Rock and Mineral Analysis, ISSN0254-5357, CN11-2131/TD, 28(4), 2009, p.367-369, 5 tables, 10 refs.)

  13. Robust Prediction of pH and Carbonate Mineral Saturation State in the North Pacific Ocean Using Empirical Relationships with Hydrographic Data

    Science.gov (United States)

    Juranek, L. W.; Feely, R. A.; Alin, S. R.; Emerson, S. R.; Quay, P.

    2010-12-01

    The subarctic North Pacific has recently attracted attention as a region particularly sensitive to ocean acidification, warranting ongoing observing and monitoring efforts. Here, cold surface waters drive an enhanced solubility pump which aids surface ocean uptake of anthropogenic CO2, while intermediate-depth waters bearing the signature of the biological pump (CO2-rich, O2-poor) accumulated over basin-transit timescales penetrate upwards to depths of 200-300m. Thus, the surface pelagic community is subject to acidification from above and below, arising from both natural and anthropogenic causes. Unfortunately, detailed time-series of water-column carbon measurements are not available for this region, hindering efforts to understand scales of natural variability and vulnerability to future change. In order to parlay available carbon data toward this end, we developed empirical relationships between commonly available hydrographic parameters (i.e., temperature, O2) and pH, aragonite saturation state (Ωarag), and calcite saturation state (Ωcalc) using high-quality data from two recent cruises along 152°W: CLIVAR P16N (March 2006) and STUD08 (September, 2008). For the subarctic region (40-55°N), r2 values of >0.98 and root mean square errors of 0.016 (pH), 0.049 (Ωarag), and 0.078 (Ωcalc) were attained for data between 50-500m, with O2 explaining the majority ( >95%) of the variability. Comparable statistics are achieved for subtropical data, although temperature plays an increasingly prominent role in explaining observed variability compared to the subarctic region. Although the errors of this approach prohibit it from being used to resolve secular trends in carbon system parameters, the relationships will provide insight into seasonal controls on pH, Ωarag, and Ωcalc,and could be used to predict these variables from autonomous platforms.

  14. Miscellaneous Industrial Mineral Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes miscellaneous industrial minerals operations in the United States. The data represent commodities covered by the Minerals Information Team...

  15. Mineralization by nanobacteria

    Science.gov (United States)

    Kajander, E. Olavi; Bjorklund, Michael; Ciftcioglu, Neva

    1998-07-01

    Nanobacteria are the smallest cell-walled bacteria, only recently discovered in human and cow blood and in commercial cell culture serum. In this study, we identified with energy-dispersive x-ray microanalysis and chemical analysis that all growth phases of nanobacteria produce biogenic apatite on their cell envelope. Fourier transform IR spectroscopy revealed the mineral as carbonate apatite. Previous models for stone formation have lead to a hypothesis that an elevated pH due to urease and/or alkaline phosphatase activity are important lithogenic factors. Our results indicate that carbonate apatite can be formed without these factors at pH 7.4 at physiological phosphate and calcium concentrations. Due to their specific macromolecules, nanobacteria can produce apatite very efficiency in media mimicking tissue fluids and glomerular filtrate and rapidly mineralizing most of available calcium and phosphate. This can be also monitored by (superscript 85)Sr incorporation and provides a unique model for in vitro studies on calcification. Recently, bacteria have been implicated in the formation of carbonate (hydroxy)fluorapatite in marine sediments. Apatite grains are found so commonly in sedimentary rocks that apatite is omitted in naming the stone. To prove that apatite and other minerals are formed by bacteria would implicate that the bacteria could be observed and their actions followed in stones. We have started to approach this in two ways. Firstly, by the use of sensitive methods for detecting specific bacterial components, like antigens, muramic acid and nucleic acids, that allow for detecting the presence of bacteria and, secondly, by follow-up of volatile bacterial metabolites observed by continuous monitoring with ion mobility spectrometry, IMCELL, working like an artificial, educatable smelling nose. The latter method might allow for remote real time detection of bacterial metabolism, a signature of life, in rocks via fractures of drillholes with or without

  16. Acumulação de nitrogênio e carbono no solo pela adubação orgânica e mineral contínua na cultura do milho Nitrogen and carbon accumulation in soil through continuous organic and mineral fertilization of maize crop

    Directory of Open Access Journals (Sweden)

    Celsemy E. Maia

    2004-04-01

    Full Text Available No presente trabalho, avaliou-se o efeito do uso contínuo das adubações orgânica e mineral na cultura do milho e sobre a acumulação e a disponibilidade do nitrogênio em um Argissolo Vermelho-Amarelo. Estudou-se a produção de milho em função das doses de 0 e 40 m³ ha-1 ano-1 de composto orgânico (palhada de soja e feijão com esterco bovino, combinadas com 0, 250 e 500 kg ha-1 ano-1 da fórmula 4-14-8 aplicados no plantio, e 0, 100 e 200 kg ha-1 ano-1 de sulfato de amônio em cobertura. O uso contínuo da adubação orgânica aumentou a produtividade de milho com o efeito da adubação química sendo menos expressivo. Observou-se, ainda, aumento do C total. Com base nos resultados observados, pôde-se concluir que o uso contínuo da adubação orgânica proporcionou aumento na reserva (N total e na disponibilidade de N, sendo essas características pouco influenciadas pela adubação química.This study aimed to evaluate the effect of continuous use of the organic and mineral fertilization in maize crop and on the accumulation and availability of nitrogen in a Cambic Yellow Red Podzol. The maize yield was evaluated as a function of doses from 0 to 40 m³ ha-1 year-1 of the organic compost (beans and soybean straw with manure combined with 0, 250 and 500 kg ha-1 year-1 of the formula 4-14-8 applied at the planting time, and the application of 0, 100 and 200 kg ha-1 year-1 of ammonium sulphate. The plots consisted of eight furrows (8 m length 1.0 m apart from each other in a randomized experimental block design with four replications. The results showed that the continuous use of the organic fertilization increased maize productivity, whereas the chemical fertilization showed less expressive effects. Increases in both the total carbon and KMnO4- oxidized carbon were observed. The results also show that the continuous use of the organic fertilization provided an increase in total N reserve and availability of N, while the chemical

  17. The Bio-accessibility of Synthetic Fe-Organo Complexes in Subsurface Soil with Elevated Temperature: a Proxy for the Vulnerability of Mineral Associated Carbon to Warming Rachel C. Porras, Peter S. Nico, and Margaret Torn Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

    Science.gov (United States)

    Porras, R. C.; Hicks Pries, C.

    2015-12-01

    Globally, subsurface soils (>30 cm) represent an important reservoir of soil organic carbon (SOC). However, the vulnerability of this deep SOC and, in particular mineral-associated SOC, to warming, and its potential to amplify the effects of climate change is highly uncertain. To gain insight into the bio-accessibility and temperature sensitivity of mineral-associated organic C, we conducted a series of incubations using soils collected from three depths (0-10, 50-60, and 80-90 cm) under coniferous forest. The soils are moderately acidic (mean pH=6.5) sandy, mixed, mesic Ultic Haploxeralfs. To understand how mechanisms controlling SOC bio-accessibilty or temperature sensitivity differ with depth and with the properties of Fe-organo complexes (i.e.,degree of crystallinity, amount of reactive surface area, or surface saturation), we used a 13C labeled glucose substrate to prepare synthetic Fe-organo complexes spanning a range of crystallinity and mineral surface saturation. The synthetic Fe-organo complexes were then added to soil from three depths. The soils containing the 13C labeled Fe-organo adduct were incubated at two temperatures (ambient and +4°C) and respired 13CO2 was measured and used to estimate flux rates. Differences in measured 13CO2 fluxes as a function of depth, surface loading, and mineral properties are discussed in terms of their implications for the temperature sensitivity of mineral protected organic carbon in subsurface soils.

  18. Determinants of pathologic mineralization.

    Science.gov (United States)

    Kirsch, Thorsten

    2008-01-01

    Physiologic mineralization is necessary for the formation of skeletal tissues and for their appropriate functions during adulthood. Mineralization has to be controlled and restricted to specific regions. If the mineralization process occurs in regions that normally do not mineralize, there can be severe consequences (pathologic or ectopic mineralization). Recent findings have indicated that physiologic and pathologic mineralization events are initiated by matrix vesicles, membrane-enclosed particles released from the plasma membranes of mineralization-competent cells. The understanding of how these vesicles are released from the plasma membrane and initiate the mineralization process may provide novel therapeutic strategies to prevent pathologic mineralization. In addition, other regulators (activators and inhibitors) of physiologic mineralization have been identified and characterized, and there is evidence that the same factors also contribute to the regulation of pathologic mineralization. Finally, programmed cell death (apoptosis) may be a contributor to physiologic mineralization and if occurring after tissue injury may induce pathologic mineralization and mineralization-related differentiation events in the injured and surrounding areas. This review describes how the understanding of mechanisms and factors regulating physiologic mineralization can be used to develop new therapeutic strategies to prevent pathologic or ectopic mineralization events.

  19. Jörgkellerite, Na3Mn3+ 3(PO4)2(CO3)O2·5H2O, a new layered phosphate-carbonate mineral from the Oldoinyo Lengai volcano, Gregory rift, northern Tanzania

    Science.gov (United States)

    Zaitsev, Anatoly N.; Britvin, Sergey N.; Kearsley, Anton; Wenzel, Thomas; Kirk, Caroline

    2016-12-01

    Jörgkellerite, ideally Na3Mn3+ 3(PO4)2(CO3)O2·5H2O, is a new layered phosphate-carbonate from the Oldoinyo Lengai volcano in the Gregory Rift (northern Tanzania). The mineral occurs as spherulites, up to 200 μm in diameter, consisting of plates up to 10 μm in thickness in shortite-calcite and calcite carbonatites. Jörgkellerite is brown with a vitreous lustre and has a perfect micaceous cleavage on {001}, Mohs hardness is 3. The calculated density is 2.56 g/cm3. Jörgkellerite is uniaxial (-), ω = 1.700(2), ɛ = 1.625(2) (Na light, 589 nm) with distinct pleochroism: O = dark brown, E = light brown. The empirical formula of the mineral (average of 10 electron microprobe analyses) is (Na2.46K0.28Ca0.08Sr0.04Ba0.02)Σ2.88(Mn3+ 2.39Fe3+ 0.56)Σ2.95((PO4)1.95(SiO4)0.05))Σ2.00(CO3)(O1.84(OH)0.16)Σ2.00·5H2O. The oxidation state of Mn has been determined by XANES. Jörgkellerite is trigonal, space group P-3, a = 11.201(2) Å, c = 10.969(2) Å, V = 1191.9(7) Å3 and Z = 3. The five strongest powder-diffraction lines [d in Å, (I/I o), (hkl)] are: 10.970 (100) (001), 5.597 (15) (002), 4.993 (8) (111), 2.796 (14) (220) and 2.724 (20) (004). The crystal structure is built up of the layers composed of disordered edge-sharing [MnO6] octahedra. Each fourth Mn site in octahedral layer is vacant that results in appearance of ordered system of hexagonal "holes" occupied by (CO3) groups. The overall composition of the layer can be expressed as [Mn3O8(CO3)]. These manganese-carbonate layers are linked in the third dimension by (PO4) tetrahedra and Na-polyhedra. The origin of jörgkellerite is related to low-temperature oxidative alteration of gregoryite-nyerereite carbonatites.

  20. Biochar from swine manure solids: influence on carbon sequestration and Olsen phosphorus and mineral nitrogen dynamics in soil with and without digestate incorporation

    Directory of Open Access Journals (Sweden)

    Rosa Marchetti

    2012-05-01

    Full Text Available Interest in biochar (BC has grown dramatically in recent years, due mainly to the fact that its incorporation into soil reportedly enhances carbon sequestration and fertility. Currently, BC types most under investigation are those obtained from organic matter (OM of plant origin. As great amounts of manure solids are expected to become available in the near future, thanks to the development of technologies for the separation of the solid fraction of animal effluents, processing of manure solids for BC production seems an interesting possibility for the recycling of OM of high nutrient value. The aim of this study was to investigate carbon (C sequestration and nutrient dynamics in soil amended with BC from dried swine manure solids. The experiment was carried out in laboratory microcosms on a silty clay soil. The effect on nutrient dynamics of interaction between BC and fresh digestate obtained from a biogas plant was also investigated to test the hypothesis that BC can retain nutrients. A comparison was made of the following treatments: soil amended with swine manure solids (LC, soil amended with charred swine manure solids (LT, soil amended with wood chip (CC, soil amended with charred wood chip (CT, soil with no amendment as control (Cs, each one of them with and without incorporation of digestate (D for a total of 10 treatments. Biochar was obtained by treating OM (wood chip or swine manure with moisture content of less than 10% at 420°C in anoxic conditions. The CO2-C release and organic C, available phosphorus (P (Olsen P, POls and inorganic (ammonium+nitrate nitrogen (N (Nmin contents at the start and three months after the start of the experiment were measured in the amended and control soils. After three months of incubation at 30°C, the CO2-C emissions from soil with BC (CT and LT, ±D were the same as those in the control soil (Cs and were lower than those in the soils with untreated amendments (CC and LC, ±D. The organic C content

  1. Biohydrometallurgy for nonsulfidic minerals - A review

    Energy Technology Data Exchange (ETDEWEB)

    Jain, N.; Sharma, D.K. [Indian Institute of Technology of Delhi, New Delhi (India). Center for Energy Studies

    2004-05-01

    Bioleaching is a technology applicable to metal extraction from low-grade ores, ore beneficiation, coal beneficiation, metal detoxification, and recovery of metals from waste materials. The technology is environmentally sound and it may lower operational cost and energy requirement. Whereas leaching of sulfidic minerals using chemolithoautotrophic bacteria is the most studied and commercially exploitable aspect of mineral biotechnology today, there is a dearth of literature on the dissolution of nonsulfidic minerals. Biohydrometallurgy of nonsulfidic minerals involves the action of heterotrophic microorganisms. Heterotrophic bacteria and fungi have the potential for producing acidic metabolites that are able to solubilize oxide, silicate, carbonate and hydroxide minerals by reduction, acidolysis and complexation mechanisms. It is an important aspect of biohydrometallugy that requires development to meet future needs.

  2. Mineral distributions at the developing tendon enthesis.

    Directory of Open Access Journals (Sweden)

    Andrea G Schwartz

    Full Text Available Tendon attaches to bone across a functionally graded interface, "the enthesis". A gradient of mineral content is believed to play an important role for dissipation of stress concentrations at mature fibrocartilaginous interfaces. Surgical repair of injured tendon to bone often fails, suggesting that the enthesis does not regenerate in a healing setting. Understanding the development and the micro/nano-meter structure of this unique interface may provide novel insights for the improvement of repair strategies. This study monitored the development of transitional tissue at the murine supraspinatus tendon enthesis, which begins postnatally and is completed by postnatal day 28. The micrometer-scale distribution of mineral across the developing enthesis was studied by X-ray micro-computed tomography and Raman microprobe spectroscopy. Analyzed regions were identified and further studied by histomorphometry. The nanometer-scale distribution of mineral and collagen fibrils at the developing interface was studied using transmission electron microscopy (TEM. A zone (∼20 µm exhibiting a gradient in mineral relative to collagen was detected at the leading edge of the hard-soft tissue interface as early as postnatal day 7. Nanocharacterization by TEM suggested that this mineral gradient arose from intrinsic surface roughness on the scale of tens of nanometers at the mineralized front. Microcomputed tomography measurements indicated increases in bone mineral density with time. Raman spectroscopy measurements revealed that the mineral-to-collagen ratio on the mineralized side of the interface was constant throughout postnatal development. An increase in the carbonate concentration of the apatite mineral phase over time suggested possible matrix remodeling during postnatal development. Comparison of Raman-based observations of localized mineral content with histomorphological features indicated that development of the graded mineralized interface is linked

  3. Mineral distributions at the developing tendon enthesis.

    Science.gov (United States)

    Schwartz, Andrea G; Pasteris, Jill D; Genin, Guy M; Daulton, Tyrone L; Thomopoulos, Stavros

    2012-01-01

    Tendon attaches to bone across a functionally graded interface, "the enthesis". A gradient of mineral content is believed to play an important role for dissipation of stress concentrations at mature fibrocartilaginous interfaces. Surgical repair of injured tendon to bone often fails, suggesting that the enthesis does not regenerate in a healing setting. Understanding the development and the micro/nano-meter structure of this unique interface may provide novel insights for the improvement of repair strategies. This study monitored the development of transitional tissue at the murine supraspinatus tendon enthesis, which begins postnatally and is completed by postnatal day 28. The micrometer-scale distribution of mineral across the developing enthesis was studied by X-ray micro-computed tomography and Raman microprobe spectroscopy. Analyzed regions were identified and further studied by histomorphometry. The nanometer-scale distribution of mineral and collagen fibrils at the developing interface was studied using transmission electron microscopy (TEM). A zone (∼20 µm) exhibiting a gradient in mineral relative to collagen was detected at the leading edge of the hard-soft tissue interface as early as postnatal day 7. Nanocharacterization by TEM suggested that this mineral gradient arose from intrinsic surface roughness on the scale of tens of nanometers at the mineralized front. Microcomputed tomography measurements indicated increases in bone mineral density with time. Raman spectroscopy measurements revealed that the mineral-to-collagen ratio on the mineralized side of the interface was constant throughout postnatal development. An increase in the carbonate concentration of the apatite mineral phase over time suggested possible matrix remodeling during postnatal development. Comparison of Raman-based observations of localized mineral content with histomorphological features indicated that development of the graded mineralized interface is linked to endochondral

  4. Measurements of cross-section of charge current inclusive of antineutrino scattering off nucleons using carbon, iron, lead and scintillator at MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Rakotondravohitra, Laza [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-08-18

    Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence, MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X1020 protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θmu < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dxbj measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.

  5. Metabolism of mineral-sorbed organic matter and microbial lifestyles in fluvial ecosystems

    NARCIS (Netherlands)

    Hunter, W.R.; Niederdorfer, R.; Gernand, A.; Veuger, B.; Prommer, J.; Mooshammer, M.; Wanek, W.; Battin, T.J.

    2016-01-01

    In fluvial ecosystems mineral erosion, carbon (C), and nitrogen (N) fluxes are linked via organomineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictab

  6. Mineral Resources Data System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Mineral resource occurrence data covering the world, most thoroughly within the U.S. This database contains the records previously provided in the Mineral Resource...

  7. Evolution of Mineral-Organic Matter Associations in Sediments: From (Bio)mineralization to Burial

    Science.gov (United States)

    Estes, E.; Nordlund, D.; Wankel, S. D.; Hansel, C. M.

    2014-12-01

    Physical and chemical associations with mineral surfaces may protect organic matter (OM) from oxidative degradation and allow its preservation in soils and sediments. This study evaluates the mechanism of mineral-based preservation (MBP) and the time scale on which MBP is operative by tracking the co-evolution of oxide minerals and associated OM during mineral precipitation and ripening. Scanning transmission X-ray microscopy coupled to near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) as well as bulk NEXAFS demonstrate that, in laboratory systems using cell-free filtrate from pure bacterial cultures, an association between OM and biogenic manganese oxides is rapidly established. OM associated with freshly precipitated biominerals consists of proteinaceous carbon and nitrogen consistent with a microbial origin; this composition remains constant over the course of 96 hours, despite mineral aggregation and structural evolution from hexagonal to triclinic birnessite. We predict that, in natural systems, oxide minerals simultaneously drive remineralization and offer MBP. Different minerals will promote a different balance between the two, imparting a mineral-specific signature on the concentration and composition of preserved OM. We test this idea by conducting incubations of natural estuary waters spiked with compositionally and structurally diverse synthetic oxide minerals. The concentration and composition of mineral-associated OM were tracked by element analyzer-isotope ratio mass spectrometry (EA-IRMS) and STXM-NEXAFS in multiple experiments lasting between 4 weeks and 1 year. Results from incubation experiments are contrasted with natural sediment samples from a range of depositional environments in order to evaluate the potential for long-term sequestration of organic carbon in sediments facilitated by minerals.

  8. Minerals, Tobacco and Smoking-Related Disease

    Science.gov (United States)

    Stephens, W. E.

    2003-12-01

    As much as 8% (by dry weight) of commercial tobacco is mineral, and the view that minerals are inert, playing no more than a passive role in smoking-related disease, is challenged. An inventory of minerals in tobacco is presented and an interpretation of their sources given. Using elemental abundances the relative contributions of natural and anthropogenic sources to the commercial product is quantitatively modelled relative to average crustal abundances. A framework is presented for investigating the potential ways in which minerals with, or acquire, toxic properties behave in the smoking environment. In order to represent a potential hazard any mineral (or mineral reaction product) with suspected toxic properties must partition into smoke and be respirable. For inhalation a significant proportion of the particles must be smaller than 10 microns. Three categories of potential hazard are recognised: 1. Minerals with intrinsic toxic properties. Quartz can amount to 1% or more in some cigarettes and is defined as a human carcinogen by the IARC. It is not likely to represent a hazard as its grain size is probably too coarse to be respirable. However talc, also a Type 1 carcinogen when it is contaminated with asbestos, is a common constituent of cigarette paper and may be of respirable size. Some other minerals also fall into this category. 2. Minerals that generate toxic products on combustion. Examples are the biominerals calcium oxalate monohydrate (whewellite) and dihydrate (weddellite), which amount to about 5 wt% of popular UK brands. These minerals decompose at tobacco combustion temperatures yielding large quantities of carbon monoxide. A substantial fraction of the CO budget of UK cigarettes may derive from this source. 3. Minerals that acquire toxic properties on combustion. Little is known about free radical generation on mineral surfaces during tobacco combustion, but the devolatilisation of calcic phases (carbonates and oxalates) creates oxide particles

  9. Mineral Supply Challenges

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Faced with shortcomings in its mineral supply, it’s imperative for China to balance its desire for reserves with its current economic needs Mineral resources are the corner- stone of materials needed for China’s national economic and social development.The country even counts on its mineral resources to satisfy 90 percent of its energy demands and over 95

  10. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Metabolism of mineral-sorbed organic matter depends upon microbial lifestyle in fluvial ecosystems

    OpenAIRE

    Hunter, William Ross; Niederdorfer, Robert; Gernand, Anna; Veuger, Bart; Prommer, Judith; Mooshammer, Maria; Wanek, Wolfgang; Battin, Tom J.

    2016-01-01

    In fluvial ecosystems mineral erosion, carbon (C) and nitrogen (N) fluxes are linked via organo-mineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictably through fluvial networks. We tested how organo-mineral sorption affects aquatic microbial metabolism, using organo-mineral particles containing a mix of 13C, 15N-labelled amino acids. We traced ...

  12. 降水变化、氮添加对鼎湖山主要森林土壤有机碳矿化和土壤微生物碳的影响%Effects of Precipitation Change and Nitrogen Addition on Organic Carbon Mineralization and Soil Microbial Carbon of the Forest Soils in Dinghushan,Southeastern China

    Institute of Scientific and Technical Information of China (English)

    方熊; 刘菊秀; 张德强; 刘世忠; 褚国伟; 赵亮

    2012-01-01

    Soil organic carbon (SOC) mineralization and soil microbiai carbon (SMBC) play an important role in global C cycle. With method of incubation and chloroform fumigation extraction, the effects of precipitation change and nitrogen (N) addition on the SOC mineralization and SMBC were studied along a forest succession series including pine forest (PF), mixed pine and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF) at Dinghushan, Southestern China. The results showed that: (1) Increased precipitation could improve the mineralization of SOC in the late-successional forest plots, but the effect in the early- successional forest plots were not significant (F>0.05). (2) Less precipitation (drought) resulted in lower content of SMBC in the monsoon forest soil (0-10 cm), while the doubled precipitation treatment had no significant effect on the SMBC content. (3) N deposition did not affect SMBC mineralization and SMBC in all of the three forests. It is important to take the quality of organic matter, C/N ratio, exogenous nitrogen and many other combined effects into consideration in the future studies on the responses of SOC mineralization and SMBC to climate change.%全球变化对土壤有机碳(SOC)存贮与分解的影响在全球碳(C)循环中具有重要地位.分别通过室内土壤培养法和氯仿熏蒸法,研究了降水变化和氮(N)添加处理对鼎湖山3种不同演替阶段的季风常绿阔叶林、针阔混交林和马尾松针叶林SOC矿化和土壤微生物量碳(SMBC)的影响.结果表明:1)降水量增加能够提高森林演替晚期SOC累积矿化量和矿化速率,而对森林演替早期SOC累积矿化量和矿化速率没有显著影响(P>0.05).2)干旱条件(降水量减少)降低森林SMBC含量,且在鼎湖山季风林表层土壤(0~10 cm)中SMBC的减少达到显著水平(P<0.05).3)N添加处理对鼎湖山3种森林类型SOC累积矿化量、矿化速率以及SMBC都没有显著影响(P>0.05)未来关

  13. Chelated minerals for poultry

    Directory of Open Access Journals (Sweden)

    SL Vieira

    2008-06-01

    Full Text Available Organic minerals have been subject of an increasing number of investigations recently. These compounds can be considered the most significant event regarding commercial forms of minerals targeting animal supplementation in the last decades. Minerals, especially metals, are usually supplemented in poultry feeds using cheap saline sources and have never required a lot of attention in terms of quality. On the other hand, definitions of organic minerals are very broad and frequently lead to confusion when decision-making becomes necessary. Organic minerals include any mineral bound to organic compounds, regardless of the type of existing bond between mineral and organic molecules. Proteins and carbohydrates are the most frequent candidates in organic mineral combinations. Organic fraction size and bond type are not limitations in organic mineral definition; however, essential metals (Cu, Fe, Zn, and Mn can form coordinated bonds, which are stable in intestinal lumen. Metals bound to organic ligands by coordinated bonds can dissociate within animal metabolism whereas real covalent bonds cannot. Chelated minerals are molecules that have a metal bound to an organic ligand through coordinated bonds; but many organic minerals are not chelates or are not even bound through coordinated bonds. Utilization of organic minerals is largely dependent on the ligand; therefore, amino acids and other small molecules with facilitated access to the enterocyte are supposed to be better utilized by animals. Organic minerals with ligands presenting long chains may require digestion prior to absorption. After absorption, organic minerals may present physiological effects, which improve specific metabolic responses, such as the immune response. Many studies have demonstrated the benefits of metal-amino acid chelates on animal metabolism, but the detection positive effects on live performance is less consistent.

  14. Control of Vertebrate Skeletal Mineralization by Polyphosphates

    Science.gov (United States)

    Omelon, Sidney; Georgiou, John; Henneman, Zachary J.; Wise, Lisa M.; Sukhu, Balram; Hunt, Tanya; Wynnyckyj, Chrystia; Holmyard, Douglas; Bielecki, Ryszard; Grynpas, Marc D.

    2009-01-01

    Background Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO3−)n) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. Principal Findings/Methodology The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO43−) concentration while permitting the accumulation of a high total PO43− concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO43− and free

  15. Benthic carbon mineralization in hadal trenches

    DEFF Research Database (Denmark)

    Wenzhöfer, F.; Oguri, K.; Middelboe, Mathias;

    2016-01-01

    consumption rates and sediment characteristics from the trench axis of two contrasting trench systems in the Pacific Ocean; the Izu-Bonin Trench underlying mesotrophic waters and the Tonga Trench underlying oligotrophic waters. In situ oxygen consumption at the Izu-Bonin Trench axis site (9200 m; 746 +/- 103...... mu mol m(-2) d(-1); n=27) was 3-times higher than at the Tonga Trench axis site (10800 m; 225 +/- 50 pmol m(-2) d(-1); n=7) presumably reflecting the higher surface water productivity in the Northern Pacific. Comparing benthic O-2 consumption rates measured in the central hadal Tonga Trench...

  16. ROCKS & MINERALS DETERMINATION AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110887 Chen Yong(College of Geo-Resources and Information,China University of Petroleum,Qingdao 266555,China);Ge Yunjin Experimental Study on the Modes of Hydrocarbon-Bearing Inclusion Trapped in Carbonate Rock Reservoirs(Rock and Mineral Analysis,ISSN0254-5357,CN11-2131/TD,29(3),2010,p.217-220,1 illus.,16 refs.,with English abstract)Key words:petroleum products,organic inclusion,carbonates20110888 Cheng Zhizhong(Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China);Gu Tiexin Preparation of Nine Iron Ore Reference Materials of GFe-1~GFe-9(Rock and Mineral Analysis,ISSN0254-5357,CN11-2131/TD,29(3),2010,p.305-308,5 tables,13 refs.)Key words:iron ores,type specimens Nine standard reference iron ore samples of GFe-1~GFe-9 were developed.The concentrations of TFe of the samples ranged from 20.17% to 66.87%,which covered a wide iron concentration range from concentrated iron ore powder to poor iron ores and can meet the needs for iron ore exploration and ore-dressing.Powder XRF technique was used for homogeneity test and the analytical results indicated that all elements tested were in good homogeneity.

  17. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in...

  18. Stable isotopic composition of bottled mineral waters from Romania

    Science.gov (United States)

    Bădăluţă, Carmen; Nagavciuc, Viorica; Perșoiu, Aurel

    2015-04-01

    Romania has a high potential of mineral waters resources, featuring one of the largest mineral resources at European and global level. In the last decade, due to increased in consumption of bottled water, numerous brands have appeared on the market, with equally numerous and variable sources of provenance. In this study we have analyzed the isotopic composition of bottled mineral waters from Romania in order to determine their source and authenticity. We have analysed 32 carbonated and 24 non-carbonated mineral waters from Romania. and the results were analysed in comparison with stable isotope data from precipitation and river waters. Generally, the isotopic values of the mineral waters follow those in precipitation; however, differences occur in former volcanic regions (due to deep circulation of meteoric waters and increased exchange with host rock and volcanic CO2), as well as in mountainous regions, where high-altitude recharge occurs.

  19. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone: Column Experiment

    Science.gov (United States)

    Tan, F.; Dever, S.; Yoo, K.; Imhoff, P. T.; Michael, H. A.

    2015-12-01

    While it is well known that organo-mineral complexes can protect organic matter (OM) from degradation, its impact on soil mineral weathering is not clear. Strong evidence has shown that the adsorption of OM to mineral surface accelerates the dissolution of some minerals, but these observations are limited to bench-scale experiments that focus on specific OM and minerals. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing OM sorption on minerals. Soil samples from two depths, 0-6cm and 84-100cm, were chosen to represent different soil OM content and soil mineralogy. Soil OM was removed stepwise by heating samples to 350℃ for different durations (0-6cm: 100% removed, ~50% removed, and no removal; 84-100cm: 100% removed and no removal). Pretreated soil samples were subjected to flow-through, saturated column experiments using 0.01M LiCl and 5%CO2/95%air gas saturated (pH = 4.5) influent solution. Each column treatment was run in duplicate under a constant flow rate (Darcy velocity ≈ 8cm/hr). All columns reached a steady state after 600~700 pore volumes at which effluent pH, dissolved organic carbon (DOC) and element concentrations were constant. At the 95% significance level, the DOC from OM-present columns was significantly higher, as expected. Correspondingly, effluent pH was lower in higher OM content columns. The chemical denudation rates were calculated from the effluent concentrations of the elements of interest. For the soil columns from both depths, silicon (Si) leaching rate showed that dissolution of silicate minerals was 2-3 times higher in OM-removed columns, suggesting that organo-mineral complexes suppress mineral dissolution. The N2-BET specific surface area (SSA) measurement also showed that the removal of OM increased SSA, which supported the idea that OM adsorption had decreased mineral exposure and thus decreased mineral dissolution. The leaching rates of some

  20. Mineral Fiber Toxicology

    Science.gov (United States)

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  1. Vitamins, Minerals, and Mood

    Science.gov (United States)

    Kaplan, Bonnie J.; Crawford, Susan G.; Field, Catherine J.; Simpson, J. Steven A.

    2007-01-01

    In this article, the authors explore the breadth and depth of published research linking dietary vitamins and minerals (micronutrients) to mood. Since the 1920s, there have been many studies on individual vitamins (especially B vitamins and Vitamins C, D, and E), minerals (calcium, chromium, iron, magnesium, zinc, and selenium), and vitamin-like…

  2. Mineral commodity summaries 2017

    Science.gov (United States)

    Ober, Joyce A.

    2017-01-31

    This report is the earliest Government publication to furnish estimates covering 2016 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials.

  3. CO2 mineralization-bridge between storage and utilization of CO2.

    Science.gov (United States)

    Geerlings, Hans; Zevenhoven, Ron

    2013-01-01

    CO2 mineralization comprises a chemical reaction between suitable minerals and the greenhouse gas carbon dioxide. The CO2 is effectively sequestered as a carbonate, which is stable on geological timescales. In addition, the variety of materials that can be produced through mineralization could find applications in the marketplace, which makes implementation of the technology more attractive. In this article, we review recent developments and assess the current status of the CO2 mineralization field. In an outlook, we briefly describe a few mineralization routes, which upon further development have the potential to be implemented on a large scale.

  4. Marine Mineral Exploration

    DEFF Research Database (Denmark)

    The past 20 years have seen extensive marine exploration work by the major industrialized countries. Studies have, in part, been concentrated on Pacific manganese nodule occurrences and on massive sulfides on mid-oceanic ridges. An international jurisdictional framework of the sea-bed mineral...... in EEZ areas are fairly unknown; many areas need detailed mapping and mineral exploration, and the majority of coastal or island states with large EEZ areas have little experience in exploration for marine hard minerals. This book describes the systematic steps in marine mineral exploration....... Such exploration requires knowledge of mineral deposits and models of their formation, of geophysical and geochemical exploration methods, and of data evaluation and interpretation methods. These topics are described in detail by an international group of authors. A short description is also given of marine...

  5. Late Precambrian oxygenation; inception of the clay mineral factory.

    Science.gov (United States)

    Kennedy, Martin; Droser, Mary; Mayer, Lawrence M; Pevear, David; Mrofka, David

    2006-03-10

    An enigmatic stepwise increase in oxygen in the late Precambrian is widely considered a prerequisite for the expansion of animal life. Accumulation of oxygen requires organic matter burial in sediments, which is largely controlled by the sheltering or preservational effects of detrital clay minerals in modern marine continental margin depocenters. Here, we show mineralogical and geochemical evidence for an increase in clay mineral deposition in the Neoproterozoic that immediately predated the first metazoans. Today most clay minerals originate in biologically active soils, so initial expansion of a primitive land biota would greatly enhance production of pedogenic clay minerals (the "clay mineral factory"), leading to increased marine burial of organic carbon via mineral surface preservation.

  6. Superhydrophobic lignocellulosic wood fiber/mineral networks.

    Science.gov (United States)

    Mirvakili, Mehr Negar; Hatzikiriakos, Savvas G; Englezos, Peter

    2013-09-25

    Lignocellulosic wood fibers and mineral fillers (calcium carbonate, talc, or clay) were used to prepare paper samples (handsheets), which were then subjected to a fluorocarbon plasma treatment. The plasma treatment was performed in two steps: first using oxygen plasma to create nanoscale roughness on the surface of the handsheet, and second fluorocarbon deposition plasma to add a layer of low surface energy material. The wetting behavior of the resulting fiber/mineral network (handsheet) was determined. It was found the samples that were subjected to oxygen plasma etching prior to fluorocarbon deposition exhibit superhydrophobicity with low contact angle hysteresis. On the other hand, those that were only treated by fluorocarbon plasma resulted in "sticky" hydrophobicity behavior. Moreover, as the mineral content in the handsheet increases, the hydrophobicity after plasma treatment decreases. Finally, it was found that although the plasma-treated handsheets show excellent water repellency they are not good water vapor barriers.

  7. Oceans: Geochemistry and mineral resources

    Digital Repository Service at National Institute of Oceanography (India)

    Joao, H.M.; Paropkari, A

    With increased exploitation of the onshore mineral resources, oceans that cover almost 71% of earth's surface and known as storehouse of minerals, provide a suitable alternative. Amongst the various underwater mineral resources, placer deposits...

  8. Mineral resources of Antarctica

    Science.gov (United States)

    Compiled and edited by Wright, Nancy A.; Williams, Paul L.

    1974-01-01

    Although the existence of mineral deposits in Antarctica is highly probable, the chances of finding them are quite small. Minerals have been found there in great variety but only as occurrences. Manganese nodules, water (as ice), geothermal energy, coal, petroleum, and natural gas are potential resources that could perhaps be exploited in the future. On the basis of known mineral occurrences in Antarctica and relationships between geologic provinces of Antarctica and those of neighboring Gondwana continents, the best discovery probability for a base-metal deposit in any part of Antarctica is in the Andean orogen; it is estimated to be 0.075 (75 chances in 1,000).

  9. Evaluating Mineral-Associated Soil Organic Matter Pools as Indicators of Forest Harvesting Disturbance

    Science.gov (United States)

    Kellman, L. M.; Gabriel, C. E.

    2015-12-01

    Soil organic matter (SOM) in northern forest soils is associated with a suite of minerals that can confer SOM stability, resulting in the potential for long-term storage of carbon. Increasingly, evidence is suggesting that SOM in certain mineral phases is dynamic and vulnerable to soil disturbance. The objective of this research was to investigate changes in a suite of mineral-associated pools of SOM through depth in a temperate forest soil to determine which mineral-associated carbon pools are most sensitive to forest harvesting disturbance. Sequential selective dissolutions representing increasingly stable SOM pools (soluble minerals (deionized water); humus-mineral complexes (Na-pyrophosphate); poorly crystalline minerals (HCl hydroxylamine); and crystalline secondary minerals (Na-dithionite + HCl)) of mineral soils through depth to 50 cm were carried out in podzolic soils sampled from temperate red spruce forests of contrasting stand age in Nova Scotia, Canada. Results of this analysis point to a loss of carbon from SOM within the B-horizon of the most recently harvested site from the pyrophosphate-extracted humus mineral complexed SOM, suggesting that it is this exchangeable pool that appears to be destabilized following clearcut harvesting at these study sites. This suggests that recovery from this landuse disturbance is dependent upon increasing storage of this SOM pool, and that mineral-associated pools, particularly pyrophosphate-extractable SOM, may be a useful indicator of changes to soil carbon storage following land use change.

  10. Mineral resource of the month: tungsten

    Science.gov (United States)

    Shedd, Kim B.

    2012-01-01

    The article offers information on tungsten. It says that tungsten is a metal found in chemical compounds such as in the scheelite and ore minerals wolframite. It states that tungsten has the highest melting point and it forms a compound as hard as diamond when combined with carbon. It states that tungsten can be used as a substitute for lead in fishing weights, ammunition, and hunting shot. Moreover, China started to export tungsten materials and products instead of tungsten raw materials.

  11. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  12. sequenceMiner algorithm

    Data.gov (United States)

    National Aeronautics and Space Administration — Detecting and describing anomalies in large repositories of discrete symbol sequences. sequenceMiner has been open-sourced! Download the file below to try it out....

  13. Mineral Commodity Summaries 2009

    Science.gov (United States)

    ,

    2009-01-01

    Each chapter of the 2009 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2008 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Because specific information concerning committed inventory was no longer available from the Defense Logistics Agency, National Defense Stockpile Center, that information, which was included in earlier Mineral Commodity Summaries publications, has been deleted from Mineral Commodity Summaries 2009. National reserves and reserve base information for most mineral commodities found in this report, including those for the United States, are derived from a variety of sources. The ideal source of such information would be comprehensive evaluations that apply the same criteria to deposits in different geographic areas and report the results by country. In the absence of such evaluations, national reserves and reserve base estimates compiled by countries for selected mineral commodities are a primary source of national reserves and reserve base information. Lacking national assessment information by governments, sources such as academic articles, company reports, common business practice, presentations by company representatives, and trade journal articles, or a combination of these, serve as the basis for national reserves and reserve base information reported in the mineral commodity sections of this publication. A national estimate may be assembled from the following: historically reported

  14. [Synthetic mineral fibers].

    Science.gov (United States)

    Boillat, M A

    1999-03-27

    The group of man-made mineral fibres includes slagwool, glasswool, rockwool, glass filaments and microfibres, as well as refractory ceramic fibres. The toxicity of mineral fibres is determined by several factors such as the diameter (ceramic fibres. A slightly elevated standard mortality ratio for lung cancer has been documented in large cohorts of workers (USA, Europe and Canada) exposed to man-made mineral fibres, especially in the early technological phase. It is not possible to determine from these data whether the risk of lung cancer is due to the man-made mineral fibres themselves, in particular due to the lack of data on smoking habits. No increased risk of mesothelioma has been demonstrated in these cohorts. Epidemiological data are insufficient at this time concerning neoplastic diseases in refractory ceramic fibres.

  15. Minerals in environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Schuiling, R.D. [Utrecht Univ., Utrecht (Netherlands). Faculty of Earth Sciences

    2000-07-01

    Minerals play a key role in the environment; this role is often not well understood, because the emphasis of most environmentalists is on air, water, or the composition of solid wastes as a whole, without paying attention to their mineralogical composition. Several minerals can serve as effective and cheap adsorbents for many toxic chemicals. Several minerals can be used as a cheap substitute for expensive chemicals in environmental technologies. Environmental technologies that produce an economically interesting mineral will have an edge over competing technologies. Most of the problems, overreaction, panicky and expensive measures with regard to exposure from quartz and asbestos stem from a poor understanding of natural levels of common contaminants, a disregard for mineralogy, and a lack of insight into natural processes in general.

  16. Vitamins and Minerals

    Science.gov (United States)

    ... minerals your body needs. But if you're skipping meals, dieting, or if you're concerned that ... Kids For Parents MORE ON THIS TOPIC Healthy Breakfast Planner Nutrition & Fitness Center Vitamin D Figuring Out ...

  17. Mathematical model for bone mineralization

    Directory of Open Access Journals (Sweden)

    Svetlana V Komarova

    2015-08-01

    Full Text Available Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly non-linear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology.

  18. Physico-chemical characteristics of activated carbons based on a copolymer of furfural and mineral raw materials of the Republic of Kazakhstan and their application in extracting gold from industrial solutions

    Directory of Open Access Journals (Sweden)

    Kanagat Kishibayev

    2013-09-01

    Full Text Available Activated carbons are widely used in different industries for cleaning a variety of natural objects from of technogenic pollutants. In the article presents the results of physico-chemical investigations of activated carbons. The investigations on the sorption of gold in cyanide solutions activated sorbent based on furfural and sorbent based on shungit.

  19. Mineralization of cellulose in frozen boreal soils

    Science.gov (United States)

    Oquist, Mats G.; Segura, Javier; Sparrman, Tobias; Nilsson, Mats; Schleucher, Jurgen

    2015-04-01

    Soils of high-latitude ecosystems store a large fraction of the global soil carbon. In boreal forests, the microbial mineralization of soil organic matter (SOM) during winter can affect the ecosystems net carbon balance. Recent research has shown that microorganisms in the organic surface layer of boreal forest soil can mineralize and grow on simple, soluble monomeric substrates under frozen conditions. However, any substantial impacts of microbial activity in frozen soils on long-term soil carbon balances ultimately depends on whether soil microorganisms can utilize and grow the more complex, polymeric constituents of SOM. In order to evaluate the potential for soil microorganisms to metabolize carbon polymers at low temperatures, we incubated boreal forest soil samples amended with [13C]-cellulose and studied the microbial catabolic and anabolic utilization of the substrate under frozen and unfrozen conditions (-4 and +4°C). Freezing of the soil markedly reduced microbial utilization of the cellulose. The [13C]-CO2 production rate in the samples at +4°C were 0.52 mg CO2 SOM -1 day-1 while rates in the frozen samples (-4°C) were 0.01 mg CO2 SOM -1 day-1. However, newly synthetized [13C]-enriched cell membrane lipids, PLFAs, were detected in soil samples incubated both above and below freezing, confirming that cellulose can sustain also anabolic activity of the microbial populations under frozen conditions. The reduced metabolic rates induced by freezing indicate constraints on exoenzymatic activity, as well as substrate diffusion rates that we can attribute to reduced liquid water content of the frozen soil. We conclude that the microbial population in boreal forest soil has the capacity to metabolize, and grow, on polymeric substrates at temperatures below zero, which involves maintaining exoenzymatic activity in frozen soils. This capacity manifests the importance of SOM mineralization during the winter season and its importance for the net carbon balance of

  20. The mineral economy of Brazil--Economia mineral do Brasil

    Science.gov (United States)

    Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.

    1999-01-01

    This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.

  1. Measuring the Hardness of Minerals

    Science.gov (United States)

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  2. Assessing screening criteria for the radiocarbon dating of bone mineral

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Ricardo, E-mail: ldv1452@gmail.com [Leibniz Labor for Isotopic and Radiometric Dating, Max-Eyth-Str. 11-13, 24118 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany); Huels, Matthias [Leibniz Labor for Isotopic and Radiometric Dating, Max-Eyth-Str. 11-13, 24118 Kiel (Germany); Nadeau, Marie-Josee; Grootes, Pieter M. [Leibniz Labor for Isotopic and Radiometric Dating, Max-Eyth-Str. 11-13, 24118 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany); Garbe-Schoenberg, C.-Dieter [Institute of Geosciences, Marine Climate Research and ICPMS Lab, Kiel University, Ludewig-Meyn-Str. 10, D-24118 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany); Hollund, Hege I. [Institute for Geo- and Bioarchaeology, The VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Lotnyk, Andriy [Faculty of Engineering, Institute for Material Science, Synthesis and Real Structure, Kiel University, Kaiserstr. 2, D-24143 Kiel (Germany); Leibniz Institute of Surface Modification (IOM), Permoserstr. 15, D-04318 Leipzig (Germany); Kienle, Lorenz [Faculty of Engineering, Institute for Material Science, Synthesis and Real Structure, Kiel University, Kaiserstr. 2, D-24143 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany)

    2013-01-15

    Radiocarbon dating of bone mineral (carbonate in the apatite lattice) has been the target of sporadic research for the last 40 years. Results obtained by different decontamination protocols have, however, failed to provide a consistent agreement with reference ages. In particular, quality criteria to assess bone mineral radiocarbon dating reliability are still lacking. Systematic research was undertaken to identify optimal preservation criteria for bone mineral in archeological bones. Six human long bones, originating from a single site, were radiocarbon-dated both for collagen and apatite, with the level of agreement between the dates providing an indication of exogenous carbon contamination. Several techniques (Histology, FTIR, TEM, LA-ICP-MS) were employed to determine the preservation status of each sample. Research results highlight the importance of a micro-scale approach in establishing bone preservation, in particular the use of trace element concentration profiles demonstrated its potential use as a viable sample selection criterion for bone carbonate radiocarbon dating.

  3. Extraterrestrial magnetic minerals

    Science.gov (United States)

    Pechersky, D. M.; Markov, G. P.; Tsel'movich, V. A.; Sharonova, Z. V.

    2012-07-01

    Thermomagnetic and microprobe analyses are carried out and a set of magnetic characteristics are measured for 25 meteorites and 3 tektites from the collections of the Vernadsky Geological Museum of the Russian Academy of Sciences and Museum of Natural History of the North-East Interdisciplinary Science Research Institute, Far Eastern Branch of the Russian Academy of Sciences. It is found that, notwithstanding their type, all the meteorites contain the same magnetic minerals and only differ by concentrations of these minerals. Kamacite with less than 10% nickel is the main magnetic mineral in the studied samples. Pure iron, taenite, and schreibersite are less frequent; nickel, various iron spinels, Fe-Al alloys, etc., are very rare. These minerals are normally absent in the crusts of the Earth and other planets. The studied meteorites are more likely parts of the cores and lower mantles of the meteoritic parent bodies (the planets). Uniformity in the magnetic properties of the meteorites and the types of their thermomagnetic (MT) curves is violated by secondary alterations of the meteorites in the terrestrial environment. The sediments demonstrate the same monotony as the meteorites: kamacite is likely the only extraterrestrial magnetic mineral, which is abundant in sediments and associated with cosmic dust. The compositional similarity of kamacite in iron meteorites and in cosmic dust is due to their common source; the degree of fragmentation of the material of the parent body is the only difference.

  4. The Effects of Microbial Surfaces on Mineral Trapping

    Science.gov (United States)

    Ajo-Franklin, C.; Cappuccio, J. A.

    2012-12-01

    Geologic carbon sequestration, the underground storage of CO2, will be an essential component of global climate change mitigation. Carbonate minerals are a stable form of CO2 storage, but their geologic formation is slow. Many microbes are known to affect carbonate mineral formation; however the mechanisms of such mineralization are largely unknown. Suggested mechanisms include metabolic processes that alter pH and supersaturation, as well as cell surface properties that induce mineral nucleation. This work systematically investigates how diverse bacterial surface alter the rates and transformations of calcium carbonate (CaCO3). Under low supersaturation conditions, several diverse species accelerated the formation of CaCO3 relative to silicate containing solutions. These rate changes also occurred for metabolically inactive bacteria, indicating that metabolic activity was not the operating mechanism. Rather, since the number of CaCO3 crystals increased in number as the cell density increased, these results indicate that many bacterial species accelerate the nucleation of CaCO3. Bacterial surface charge and cation binding was assessed using zeta potential measurements and correlated to the bacterial surface chemistry and biomineralization experiments with varying Ca2+ concentrations. To understand the role of specific biomolecules on nucleation, we engineered surface layer proteins (S-layers) to affect their charge and displayed functional groups. From these results combined, we postulate that microbial surfaces can selectively attract Ca2+ ions, serving as nucleation sites for CaCO3, thereby accelerating crystal formation. These observations provide substantive evidence for a non-specific nucleation mechanism, and stress the importance of microbes, on the rate of formation of carbonate minerals. This work also indicates that additional microbial engineering specifically targeted to S-layer proteins could optimize these interactions and be used to implement the

  5. Thorium in mineral products.

    Science.gov (United States)

    Collier, D E; Brown, S A; Blagojevic, N; Soldenhoff, K H; Ring, R J

    2001-01-01

    Many ores contain low levels of thorium. When these ores are processed, the associated radioactivity can be found in mineral concentrates, intermediates and final products. There is an incentive for industries to remove radioactivity from mineral products to allow the movement and sale of these materials, both nationally and internationally, without the need for licensing. Control of thorium in various products involves the development and optimisation of process steps to be able to meet product specifications. The Australian Nuclear Science and Technology Organisation (ANSTO) has undertaken a range of R & D programmes targeting the treatment of thorium-bearing minerals. This paper discusses the application of a microprobe technique for siting radioactivity in zircon and ilmenite and the problems experienced in measuring the concentrations in solid rare earth products.

  6. Mineral composition of sedimentary matter in the Caspian Sea

    Science.gov (United States)

    Lukashin, V. N.; Lisitzin, A. P.; Dara, O. M.; Kozina, N. V.; Klyuvitkin, A. A.; Novigatsky, A. N.

    2016-11-01

    Data on the mineral composition of sedimentary matter and its fluxes in the sediment system of the Caspian Sea are presented. River runoff, aerosols, particulate matter from sediment traps, and the upper layer (0-1 cm) of bottom sediments are considered. The contents of detrital minerals (quartz, albite, and K-feldspar), clay minerals (illite, chlorite, and kaolinite), and carbonates (calcite, Mg-calcite, dolomite, aragonite, and rhodochrosite) are determined. Gypsum was found in bottom sediments but is absent in the other object of the sediment system.

  7. Effects of Mixed Residues on Carbon and Nitrogen Mineralization in the Soil of Poplar-Crops Agroforestry System%残落物混合分解对杨树-农作物复合系统土壤碳氮矿化的影响

    Institute of Scientific and Technical Information of China (English)

    王意锟; 方升佐; 田野; 唐罗忠

    2012-01-01

    In the agroforestry system,the mixture of the forest litter and crop straw residues is different in chemical compositions and physical structure from single component,and plays a key role in ecosystem carbon and nutrient cycle.The agroforestry models of poplar-peanut and poplar-wheat,which are the typical agroforestry models in northern Jiangsu province,were chosen to study the impacts of mixed residues on carbon and nitrogen mineralization,microbial biomass carbon and nitrogen in the soil.The soils for the experiment were collected from Siyang county of northern Jiangsu province.The main results were as follows:(1)The cumulated carbon mineralization displayed in the order of HHJ,Y M CK for single residue treatments,while it was ranged as Y-H Y-HJ Y-M in mixed residue treatments.At the end of incubation,the mixture of the forest litter and crop straw residues demonstrated significant stimulation on the cumulated carbon mineralization.(2)A significant correlation was observed among contents of nitrogen in litters,carbon-nitrogen ratio and microbial biomass carbon and nitrogen in the soil.In mixed residue treatments,the microbial biomass carbon and nitrogen in the soil was higher in treatment of Y-H with lower carbon-nitrogen ratio,and was lower in treament of Y-M with higher carbon-nitrogen ratio.(3)When poplar leaf litter(Y),wheat straw residue(M) and their mixture(Y-M) were added to the soil,the contents of mineral nitrogen was significantly smaller than the control.However,when peanut leaf residue(H),peanut stalk residue(HJ),and their mixed residues with the poplar leaf litter(Y-H,Y-HJ) were added,the contents of mineral nitrogen in soil increased significantly.Results from this study suggested that the mixture of the poplar leaf litter and crop straw residues,particularly in crops with a higher nitrogen level,could regulate carbon dynamic and nitrogen supply.Such a study can provide important information for selecting model

  8. Control of vertebrate skeletal mineralization by polyphosphates.

    Directory of Open Access Journals (Sweden)

    Sidney Omelon

    Full Text Available BACKGROUND: Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO(3(-(n are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. PRINCIPAL FINDINGS/METHODOLOGY: The enzymatic formation (condensation and destruction (hydrolytic degradation of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO(4(3- concentration while permitting the accumulation of a high total PO(4(3- concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO

  9. Factors affecting the direct mineralization of CO2 with olivine.

    Science.gov (United States)

    Kwon, Soonchul; Fan, Maohong; DaCosta, Herbert F M; Russell, Armistead G

    2011-01-01

    Olivine, one of the most abundant minerals existing in nature, is explored as a CO2 carbonation agent for direct carbonation of CO2 in flue gas. Olivine based CO2 capture is thermodynamically favorable and can form a stable carbonate for long-term storage. Experimental results have shown that water vapor plays an important role in improving CO2 carbonation rate and capacities. Other operation conditions including reaction temperature, initial CO2 concentration, residence time corresponding to the flow rate of CO2 gas stream, and water vapor concentration also considerably affect the performance of the technology.

  10. Factors affecting the direct mineralization of CO2 with olivine

    Institute of Scientific and Technical Information of China (English)

    Soonchul Kwon; Maohong Fan; Herbert F. M. DaCosta; Armistead G. Russell

    2011-01-01

    Olivine,one of the most abundant minerals existing in nature,is explored as a CO2 carbonation agent for direct carbonation of CO2 in flue gas.Olivine based CO2 capture is thermodynamically favorable and can form a stable carbonate for long-term storage.Experimental results have shown that water vapor plays an important role in improving CO2 carbonation rate and capacities.Other operation conditions including reaction temperature,initial CO2 concentration,residence time corresponding to the flow rate of CO2 gas stream,and water vapor concentration also considerably affect the performance of the technology.

  11. Bioleaching of Minerals

    Energy Technology Data Exchange (ETDEWEB)

    F. Roberto

    2002-02-01

    Bioleaching is the term used to describe the microbial dissolution of metals from minerals. The commercial bioleaching of metals, particularly those hosted in sulfide minerals, is supported by the technical disciplines of biohydrometallurgy, hydrometallurgy, pyrometallurgy, chemistry, electrochemistry, and chemical engineering. The study of the natural weathering of these same minerals, above and below ground, is also linked to the fields of geomicrobiology and biogeochemistry. Studies of abandoned and disused mines indicate that the alterations of the natural environment due to man's activities leave as remnants microbiological activity that continues the biologically mediated release of metals from the host rock (acid rock drainage; ARD). A significant fraction of the world's copper, gold and uranium is now recovered by exploiting native or introduced microbial communities. While some members of these unique communities have been extensively studied for the past 50 years, our knowledge of the composition of these communities, and the function of the individual species present remains relatively limited. Nevertheless, bioleaching represents a major strategy in mineral resource recovery whose importance will increase as ore reserves decline in quality, become more difficult to process (due to increased depth, increased need for comminution, for example), and as environmental considerations eliminate traditional physical processes such as smelting, which have served the mining industry for hundreds of years.

  12. Mixtures and mineral reactions

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, S.; Ganguly, J.

    1987-01-01

    Considerable progress has been made in our understanding of the physicochemical evolution of natural rocks through systematic analysis of the compositional properties and phase relations of their mineral assemblages. This book brings together concepts of classical thermodynamics, solution models, and atomic ordering and interactions that constitute a basis of such analysis, with examples of application to subsolidus petrological problems.

  13. Mineralization of fossil wood

    NARCIS (Netherlands)

    Buurman, P.

    1972-01-01

    Several pieces of fossil wood have been analyzed with X-ray diffraction and were grouped on the basis of mineralogical composition. Various mineralizations were studied in thin sections and by means of the scanning electron microscope. Wood-opals appear to show a structure preservation that points t

  14. Aggregate and Mineral Resources - Industrial Mineral Mining Operations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — An Industrial Mineral Mining Operation is a DEP primary facility type related to the Industrial Mineral Mining Program. The sub-facility types are listed below:Deep...

  15. Photoassisted carbon dioxide reduction and formation of twoand three-carbon compounds. [prebiological photosynthesis

    Science.gov (United States)

    Halmann, M.; Aurian-Blajeni, B.; Bloch, S.

    1981-01-01

    The photoassisted reduction of aqueous carbon dioxide in the presence of naturally occurring minerals is investigated as a possible abiotic precursor of photosynthesis. Aqueous carbon dioxide saturated suspensions or surfaces of the minerals nontronite, bentonite, anatase, wolframite, molybdenite, minium, cinnabar and hematite were irradiated with high-pressure mercury lamps or sunlight. Chemical analyses reveal the production of formic acid, formaldehyde, methanol and methane, and the two and three-carbon compounds glyoxal (CHOCHO) and malonaldehyde (CH2(CHO)2). It is suggested that such photosynthetic reactions with visible light in the presence of semiconducting minerals may provide models for prebiological carbon and nitrogen fixation in both oxidized and reduced atmospheres.