WorldWideScience

Sample records for carbonate mineral optimizing

  1. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN; A

    International Nuclear Information System (INIS)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2001-01-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO(sub 2) emissions can be overcome. Permanent and safe methods for CO(sub 2) capture and disposal/storage need to be developed. Mineralization of stationary-source CO(sub 2) emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH)(sub 2) was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH)(sub 2) gas-solid carbonation as a potentially cost-effective CO(sub 2) mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO(sub 2) sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This report covers the third year progress of this grant, as well as providing an integrated overview of the progress in years 1-3, as we have been granted a one-year no-cost extension to wrap up a few studies and publications to optimize project impact

  2. AMBIENT CARBONATION of MINING RESIDUES: Understanding the Mechanisms and Optimization of Direct Carbon Dioxide Mineral Sequestration

    Science.gov (United States)

    Assima, G. P.; Larachi, F.; Molson, J. W.; Beaudoin, G.

    2013-12-01

    The huge amounts (GTs) of ultramafic mining residues (UMRs) produced by mining activities around the world and accumulated in multi-square-kilometer stockpiles are stimulating a vivid interest regarding their possible use as a stable and permanent sink for CO2. Virtually costless and often found crushed and / or ground, UMRs are being considered as ideal candidates for atmospheric CO2 mitigation. The present work, therefore, explores the potential of several UMRs available in Quebec (Thetford Mines, Asbestos, Nunavik, Amos, Otish Mountains), for carbonation under ambient conditions, as a cost-effective alternative to remove low-concentration CO2 from the atmosphere and alleviate global warming. Several experimental reactors have been built to specifically simulate various climatic changes at the laboratory scale. The impact of various environmental conditions to which the residues are subjected to in their storage location, including temperature variations, precipitation, flooding, drought, changing water saturation, oxygen gradient and CO2 diffusion have been thoroughly studied. Dry and heavy-rain periods are unsuitable for efficient CO2 sequestration. Low liquid saturation within UMRs pores favors carbonation by combining fast percolation of gaseous CO2, rapid dissemination of CO2 dissolved species and creation of highly reactive sites throughout the mining residue pile. Partly saturated samples were also found to exhibit lower gaseous CO2 breakthrough times across the mining residues. Warm periods significantly accelerate the rate of CO2 uptake as compared to cold periods, which, in contrast are characterized by heat generation levels that could possibly be exploited by low temperature geothermal systems. A temperature rise from 10 to 40 °C was accompanied by a ten-fold increase in initial reaction rate. The carbonation reaction caused a rise in UMRs temperature up to 4.9°C during experiments at a 10°C. The presence of oxygen in the reaction medium induces

  3. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  4. Carbonizing bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    1921-05-01

    A process for carbonizing bituminous minerals, like oil-shale, in a furnace with addition of air in the presence of heat-receiving material is characterized by the fact that to the feed such solid or liquid material (with the exception of oil) is added, which, through vaporization or heat-binding decomposition or conversion, hinders the establishment of excessive temperatures.

  5. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  6. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  7. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  8. Mineralization of Carbon Dioxide: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O' Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  9. Statistical models for optimizing mineral exploration

    International Nuclear Information System (INIS)

    Wignall, T.K.; DeGeoffroy, J.

    1987-01-01

    The primary purpose of mineral exploration is to discover ore deposits. The emphasis of this volume is on the mathematical and computational aspects of optimizing mineral exploration. The seven chapters that make up the main body of the book are devoted to the description and application of various types of computerized geomathematical models. These chapters include: (1) the optimal selection of ore deposit types and regions of search, as well as prospecting selected areas, (2) designing airborne and ground field programs for the optimal coverage of prospecting areas, and (3) delineating and evaluating exploration targets within prospecting areas by means of statistical modeling. Many of these statistical programs are innovative and are designed to be useful for mineral exploration modeling. Examples of geomathematical models are applied to exploring for six main types of base and precious metal deposits, as well as other mineral resources (such as bauxite and uranium)

  10. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  11. Impacts of Nickel Nanoparticles on Mineral Carbonation

    Directory of Open Access Journals (Sweden)

    Marius Bodor

    2014-01-01

    Full Text Available This work presents experimental results regarding the use of pure nickel nanoparticles (NiNP as a mineral carbonation additive. The aim was to confirm if the catalytic effect of NiNP, which has been reported to increase the dissolution of CO2 and the dissociation of carbonic acid in water, is capable of accelerating mineral carbonation processes. The impacts of NiNP on the CO2 mineralization by four alkaline materials (pure CaO and MgO, and AOD and CC steelmaking slags, on the product mineralogy, on the particle size distribution, and on the morphology of resulting materials were investigated. NiNP-containing solution was found to reach more acidic pH values upon CO2 bubbling, confirming a higher quantity of bicarbonate ions. This effect resulted in acceleration of mineral carbonation in the first fifteen minutes of reaction time when NiNP was present. After this initial stage, however, no benefit of NiNP addition was seen, resulting in very similar carbonation extents after one hour of reaction time. It was also found that increasing solids content decreased the benefit of NiNP, even in the early stages. These results suggest that NiNP has little contribution to mineral carbonation processes when the dissolution of alkaline earth metals is rate limiting.

  12. Carbon K-edge spectra of carbonate minerals.

    Science.gov (United States)

    Brandes, Jay A; Wirick, Sue; Jacobsen, Chris

    2010-09-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  13. Carbon K-edge Spectra of Carbonate Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, J.; Wirick, S; Jacobsen, C

    2010-01-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  14. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  15. Mineral Carbonation Employing Ultramafic Mine Waste

    Science.gov (United States)

    Southam, G.; McCutcheon, J.; Power, I. M.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.

    2014-12-01

    Carbonate minerals are an important, stable carbon sink being investigated as a strategy to sequester CO2 produced by human activity. A natural playa (Atlin, BC, CAN) that has demonstrated the ability to microbially-accelerate hydromagnesite formation was used as an experimental model. Growth of microbial mats from Atlin, in a 10 m long flow-through bioreactor catalysed hydromagnesite precipitation under 'natural' conditions. To enhance mineral carbonation, chrysotile from the Clinton Creek Asbestos Mine (YT, CAN) was used as a target substrate for sulphuric acid leaching, releasing as much as 94% of the magnesium into solution via chemical weathering. This magnesium-rich 'feedstock' was used to examine the ability of the microbialites to enhance carbonate mineral precipitation using only atmospheric CO2 as the carbon source. The phototrophic consortium catalysed the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] accompanied by magnesite [MgCO3], aragonite [CaCO3], and minor dypingite [Mg5(CO3)4(OH)2·5H2O]. Scanning Electron Microscopy-Energy Dispersive Spectroscopy indicated that cell exteriors and extracellular polymeric substances (EPS) served as nucleation sites for carbonate precipitation. In many cases, entire cyanobacteria filaments were entombed in magnesium carbonate coatings, which appeared to contain a framework of EPS. Cell coatings were composed of small crystals, which intuitively resulted from rapid crystal nucleation. Excess nutrient addition generated eutrophic conditions in the bioreactor, resulting in the growth of a pellicle that sealed the bioreactor contents from the atmosphere. The resulting anaerobic conditions induced fermentation and subsequent acid generation, which in turn caused a drop in pH to circumneutral values and a reduction in carbonate precipitation. Monitoring of the water chemistry conditions indicated that a high pH (> 9.4), and relatively high concentrations of magnesium (> 3000 ppm), compared with the natural

  16. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  17. Interplay between black carbon and minerals contributes to long term carbon stabilization and mineral transformation

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.

    2017-12-01

    Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.

  18. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  19. Commentary: Ex Situ Aqueous Mineral Carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Gadikota, Greeshma, E-mail: gadikota@princeton.edu [Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ (United States)

    2016-05-26

    CO{sub 2} conversion to calcium and magnesium carbonates has garnered considerable attention since it is a thermodynamically downhill pathway to safely and permanently sequester large quantities of CO{sub 2}. This seminal work performed at The National Energy Technology Laboratory in Albany (NETL-Albany) reports the conversion of calcium- and magnesium-bearing silicate minerals, such as olivine [(Mg, Fe){sub 2}SiO{sub 4}], wollastonite (CaSiO{sub 3}), and serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}], as they are reacted with CO{sub 2} in an aqueous environment to form magnesium or calcium carbonates. This paper discusses various pretreatment methods of the starting materials, such as grinding or heat treatment of hydroxylated Mg silicates, to enhance the reaction kinetics. The effects of various chemical additives (e.g., NaCl and NaHCO{sub 3}), and reaction parameters, such as temperature, pressure, and reaction time, on the conversion are investigated. Feasibility assessments and energy and economic analyses of the direct carbonation of calcium- and magnesium-bearing minerals are presented.

  20. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  1. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  2. Reactor design considerations in mineral sequestration of carbon dioxide

    International Nuclear Information System (INIS)

    Ityokumbul, M.T.; Chander, S.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.

    2001-01-01

    One of the promising approaches to lowering the anthropogenic carbon dioxide levels in the atmosphere is mineral sequestration. In this approach, the carbon dioxide reacts with alkaline earth containing silicate minerals forming magnesium and/or calcium carbonates. Mineral carbonation is a multiphase reaction process involving gas, liquid and solid phases. The effective design and scale-up of the slurry reactor for mineral carbonation will require careful delineation of the rate determining step and how it changes with the scale of the reactor. The shrinking core model was used to describe the mineral carbonation reaction. Analysis of laboratory data indicates that the transformations of olivine and serpentine are controlled by chemical reaction and diffusion through an ash layer respectively. Rate parameters for olivine and serpentine carbonation are estimated from the laboratory data

  3. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our second year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. As our second year progress is intimately related to our earlier work, the report is presented in that context to provide better overall understanding of the progress made. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly

  4. SkyMine Carbon Mineralization Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  5. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    Energy Technology Data Exchange (ETDEWEB)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus

  6. Deriving optimal exploration target zones on mineral prospectivity maps

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-08-01

    Full Text Available into an objective function in simulated annealing in order to derive a set of optimal exploration focal points. Each optimal exploration focal point represents a pixel or location within a circular neighborhood of pixels with high posterior probability of mineral...

  7. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  8. Magnesium sulphate’s influence on calcium carbonate minerals

    DEFF Research Database (Denmark)

    Nielsen, Mia Rohde

    The purpose of this PhD thesis was to explore the influence of magnesium sulphate (MgSO4 (aq)) on calcium carbonate (CaCO3) minerals and what role the MgSO40 ion pair had. CaCO3 minerals are abundant and widespread on Earth, particularly in marine environments, and have been so throughout Earth...

  9. Rates of CO2 Mineralization in Geological Carbon Storage.

    Science.gov (United States)

    Zhang, Shuo; DePaolo, Donald J

    2017-09-19

    Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of

  10. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  11. A literature review of actinide-carbonate mineral interactions

    International Nuclear Information System (INIS)

    Stout, D.L.

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage

  12. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    Science.gov (United States)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  13. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  14. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengrong [Yale Univ., New Haven, CT (United States); Qiu, Lin [Yale Univ., New Haven, CT (United States); Zhang, Shuang [Yale Univ., New Haven, CT (United States); Bolton, Edward [Yale Univ., New Haven, CT (United States); Bercovici, David [Yale Univ., New Haven, CT (United States); Ague, Jay [Yale Univ., New Haven, CT (United States); Karato, Shun-Ichiro [Yale Univ., New Haven, CT (United States); Oristaglio, Michael [Yale Univ., New Haven, CT (United States); Zhu, Wen-Iu [Univ. of Maryland, College Park, MD (United States); Lisabeth, Harry [Univ. of Maryland, College Park, MD (United States); Johnson, Kevin [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-30

    that could have been removed if the olivine initially present had fully dissolved and the cations released had subsequently precipitated in carbonate minerals. The carbonation fractions observed in batch experiments with olivine grains and powders varied significantly, from less than 0.01 (1%) to more than 0.5 (50%). Over time, the carbonation fractions reached an upper limit after about 24 to 72 hours of reaction, then stayed constant or decreased. The peak Final Scientific/Technical Report DE-FE0004275 | Mineral Carbonation | 4 coincided with the appearance of secondary magnesium-bearing silicate minerals, whose formation competes for magnesium ions in solution and can even promote conditions that dissolve magnesite. The highest carbonation fractions resulted from experiments with low ratios of concentrated solution to olivine, during which amorphous silica spheres or meshes formed, instead of secondary silicate minerals. The highest carbonation fractions appear to result from competing effects. Precipitation of silica layers on olivine reduces the reactive surface area and, thus, the rate of olivine dissolution (which ultimately limits the carbonation rate), but these same silica layers can also inhibit the formation of secondary silicate minerals that consume magnesite formed in earlier stages of carbonation. Simulation of these experiments with simple geochemical models using the software program EQ3/6 reproduces the general trends observed—especially the results for the carbonation fraction in short-run experiments. Although further experimentation and better models are needed, this study nevertheless provides a framework for understanding the optimal conditions for sequestering carbon dioxide by reacting CO2-bearing fluids with rocks containing olivine minerals. A series of experiments at the Rock Physics Laboratory at the University of Maryland studied the carbonation process during deformation of thermally cracked olivine-rich rock samples (dunite

  15. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    However, no reliable method for quantitative analysis of clay minerals has been established so far. In this study, an attempt was made to propose an optimization method for the quantitative ... 2. Basic principles. The mineralogical constitution of soil is rather complex. ... K2O, MgO, and TFe as variables for the calculation.

  16. Bioleaching of serpentine group mineral by fungus Talaromyces flavus: application for mineral carbonation

    Science.gov (United States)

    Li, Z.; Lianwen, L.; Zhao, L.; Teng, H.

    2011-12-01

    Many studies of serpentine group mineral dissolution for mineral carbonation have been published in recent years. However, most of them focus mainly on either physical and chemical processes or on bacterial function, rather than fungal involvement in the bioleaching of serpentine group mineral. Due to the excessive costs of the magnesium dissolution process, finding a lower energy consumption method will be meaningful. A fungal strain Talaromyces flavus was isolated from serpentinic rock of Donghai (China). No study of its bioleaching ability is currently available. It is thus of great significance to explore the impact of T. flavus on the dissolution of serpentine group mineral. Serpentine rock-inhabiting fungi belonging to Acremonium, Alternaria, Aspergillus, Botryotinia, Cladosporium, Clavicipitaceae, Cosmospora, Fusarium, Monascus, Paecilomyces, Penicillium, Talaromyces, Trichoderma were isolated. These strains were chosen on the basis of resistance to magnesium and nickel characterized in terms of minimum inhibiting concentration (MIC). Specifically, the strain Talaromyces flavus has a high tolerance to both magnesium (1 mol/L) and nickel (10 mM/L), and we examine its bioleaching ability on serpentine group mineral. Contact and separation experiments (cut-off 8 000-14 000 Da), as well as three control experiments, were set up for 30 days. At least three repeated tests were performed for each individual experiment. The results of our experiments demonstrate that the bioleaching ability of T. flavus towards serpentine group mineral is evident. 39.39 wt% of magnesium was extracted from lizardite during the bioleaching period in the contact experiment, which showed a dissolution rate at about a constant 0.126 mM/d before reaching equilibrium in 13 days. The amount of solubilized Mg from chrysotile and antigorite were respectively 37.79 wt% and 29.78 wt% in the contact experiment. These results make clear the influence of mineral structure on mineral bioleaching

  17. A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals.

    Science.gov (United States)

    McCutcheon, Jenine; Power, Ian M; Harrison, Anna L; Dipple, Gregory M; Southam, Gordon

    2014-08-19

    A cyanobacteria dominated consortium collected from an alkaline wetland located near Atlin, British Columbia, Canada accelerated the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] in a linear flow-through experimental model wetland. The concentration of magnesium decreased rapidly within 2 m of the inflow point of the 10-m-long (∼1.5 m(2)) bioreactor. The change in water chemistry was monitored over two months along the length of the channel. Carbonate mineralization was associated with extra-cellular polymeric substances in the nutrient-rich upstream portion of the bioreactor, while the lower part of the system, which lacked essential nutrients, did not exhibit any hydromagnesite precipitation. A mass balance calculation using the water chemistry data produced a carbon sequestration rate of 33.34 t of C/ha per year. Amendment of the nutrient deficiency would intuitively allow for increased carbonation activity. Optimization of this process will have application as a sustainable mining practice by mediating magnesium carbonate precipitation in ultramafic mine tailings storage facilities.

  18. A method for permanent CO2 mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, David C.; O' Connor, William K.; Nilsen, David N.; Rush, G.E.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Department of Energy (DOE) has been conducting research to investigate the feasibility of mineral carbonation as a method for carbon dioxide (CO2) sequestration. The research is part of a Mineral Carbonation Study Program within the Office of Fossil Energy in DOE. Other participants in this Program include DOE?s Los Alamos National Laboratory and National Energy Technology Laboratory, Arizona State University, and Science Applications International Corporation. The research has focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC reacts a slurry of magnesium silicate mineral with supercritical CO2 to produce a solid magnesium carbonate product. To date, olivine and serpentine have been used as the mineral reactant, but other magnesium silicates could be used as well. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and consequently, these results may also be applicable to strategies for in-situ geological sequestration. Baseline tests were begun in distilled water on ground products of foundry-grade olivine. Tests conducted at 150 C and subcritical CO2 pressures (50 atm) resulted in very slow conversion to carbonate. Increasing the partial pressure of CO2 to supercritical (>73 atm) conditions, coupled with agitation of the slurry and gas dispersion within the water column, resulted in significant improvement in the extent of reaction in much shorter reaction times. A change from distilled water to a bicarbonate/salt solution further improved the rate and extent of reaction. When serpentine, a hydrated mineral, was used instead of olivine, extent of reaction was poor until heat treatment was included prior to the carbonation reaction. Removal of the chemically bound water resulted in conversion to carbonate similar to those obtained with olivine. Recent results have shown that conversions of nearly 80 pct are achievable after 30 minutes

  19. The review of recent carbonate minerals processing technology

    Science.gov (United States)

    Solihin

    2018-02-01

    Carbonate is one of the groups of minerals that can be found in relatively large amount in the earth crust. The common carbonate minerals are calcium carbonate (calcite, aragonite, depending on its crystal structure), magnesium carbonate (magnesite), calcium-magnesium carbonate (dolomite), and barium carbonate (barite). A large amount of calcite can be found in many places in Indonesia such as Padalarang, Sukabumi, and Tasikmalaya (West Java Provence). Dolomite can be found in a large amount in Gresik, Lamongan, and Tuban (East Java Provence). Magnesite is quite rare in Indonesia, and up to the recent years it can only be found in Padamarang Island (South East Sulawesi Provence). The carbonate has been being exploited through open pit mining activity. Traditionally, calcite can be ground to produce material for brick production, be carved to produce craft product, or be roasted to produce lime for many applications such as raw materials for cement, flux for metal smelting, etc. Meanwhile, dolomite has traditionally been used as a raw material to make brick for local buildings and to make fertilizer for coconut oil plant. Carbonate minerals actually consist of important elements needed by modern application. Calcium is one of the elements needed in artificial bone formation, slow release fertilizer synthesis, dielectric material production, etc. Magnesium is an important material in automotive industry to produce the alloy for vehicle main parts. It is also used as alloying element in the production of special steel for special purpose. Magnesium oxide can be used to produce slow release fertilizer, catalyst and any other modern applications. The aim of this review article is to present in brief the recent technology in processing carbonate minerals. This review covers both the technology that has been industrially proven and the technology that is still in research and development stage. One of the industrially proven technologies to process carbonate mineral is

  20. Cost Evaluation of CO2 Sequestration by Aqueous Mineral Carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2007-01-01

    A cost evaluation of CO2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO3) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a

  1. Carbonated miscanthus mineralized aggregates for reducing environmental impact of lightweight concrete blocks

    Directory of Open Access Journals (Sweden)

    Courard Luc

    2017-01-01

    Full Text Available At a time when the cement industry is largely responsible for the production of CO2 in the construction sector, it is useful to make this production a reverse phenomenon: that is CO2 capture. The CO2 absorption process called carbonation, improves specific properties of the concrete during the conversion of carbon dioxide CO2 into calcium carbonate CaCO3. Current environmental concerns motivate the study of carbonation in order to maximize the absorption of carbon dioxide. Moreover, lightweight concrete with bio-based products knows an interesting development in the construction field, especially as thermal insulation panels for walls in buildings. Before identifying and quantifying the basic physical characteristics of concrete made from miscanthus, it is necessary to optimize the composition of the product. The long-term stability as well as the reinforcement may be obtained by means of a mineralization process of the natural product: a preparation with a lime and/or cement-based material is necessary to reinforce the cohesion of the bio-based product. Mineralization process is described as well as the way of producing blocks for CO2 capture by means of accelerated carbonation. Finally, concrete blocks produced with miscanthus mineralized aggregates offer interesting mechanical properties and minimal environmental impact.

  2. Mineral CO2 sequestration by steel slag carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2005-12-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feedstock for mineral CO2 sequestration. These materials are cheap, available near large point sources of CO2, and tend to react relatively rapidly with CO2 due to their chemical instability. Ground steel slag was carbonated in aqueous suspensions to study its reaction mechanisms. Process variables, such as particle size, temperature, carbon dioxide pressure, and reaction time, were systematically varied, and their influence on the carbonation rate was investigated. The maximum carbonation degree reached was 74% of the Ca content in 30 min at 19 bar pressure, 100C, and a particle size of <38 μm. The two must important factors determining the reaction rare are particle size (<2 mm to <38 μm) and reaction temperature (25-225C). The carbonation reaction was found to occur in two steps: (1) leaching of calcium from the steel slag particles into the solution; (2) precipitation of calcite on the surface of these particles. The first step and, more in particular, the diffusion of calcium through the solid matrix toward the surface appeared to be the rate-determining reaction step, The Ca diffusion was found to be hindered by the formation of a CaCO3-coating and a Ca-depleted silicate zona during the carbonation process. Research on further enhancement of the reaction rate, which would contribute to the development of a cost-effective CO2-sequestration process, should focus particularly on this mechanism

  3. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    Science.gov (United States)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  4. Cost evaluation of CO2 sequestration by aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, Wouter J.J.; Comans, Rob N.J.; Witkamp, Geert-Jan

    2007-01-01

    A cost evaluation of CO 2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO 3 ) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a basic design was made for the major process equipment, and total investment costs were estimated with the help of the publicly available literature and a factorial cost estimation method. Finally, the sequestration costs were determined on the basis of the depreciation of investments and variable and fixed operating costs. Estimated costs are 102 and 77 EUR/ton CO 2 net avoided for wollastonite and steel slag, respectively. For wollastonite, the major costs are associated with the feedstock and the electricity consumption for grinding and compression (54 and 26 EUR/ton CO 2 avoided, respectively). A sensitivity analysis showed that additional influential parameters in the sequestration costs include the liquid-to-solid ratio in the carbonation reactor and the possible value of the carbonated product. The sequestration costs for steel slag are significantly lower due to the absence of costs for the feedstock. Although various options for potential cost reduction have been identified, CO 2 sequestration by current aqueous carbonation processes seems expensive relative to other CO 2 storage technologies. The permanent and inherently safe sequestration of CO 2 by mineral carbonation may justify higher costs, but further cost reductions are required, particularly in view of (current) prices of CO 2 emission rights. Niche applications of mineral carbonation with a solid residue such as steel slag as feedstock and/or a useful carbonated product hold the best prospects for an economically feasible CO 2 sequestration process. (author)

  5. Optimization of nutritional constituents for carbonic anhydrase ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... for the optimization of the culture media are to select the optimum .... Effect of different temperature on product of carbonic anhydrase. production, B. ... account that the enzyme is easy to inactivate under high temperature ...

  6. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    Science.gov (United States)

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  7. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    Science.gov (United States)

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  8. Optimal decisions of countries with carbon tax and carbon tariff

    Directory of Open Access Journals (Sweden)

    Yumei Hou

    2015-05-01

    Full Text Available Purpose: Reducing carbon emission has been the core problem of controlling global warming and climate deterioration recently. This paper focuses on the optimal carbon taxation policy levied by countries and the impact on firms’ optimal production decisions. Design/methodology/approach: This paper uses a two-stage game theory model to analyze the impact of carbon tariff and tax. Numerical simulation is used to supplement the theoretical analysis. Findings: Results derived from the paper indicate that the demand in an unstable market is significantly affected by environmental damage level. Carbon tariff is a policy-oriented tax while the carbon tax is a market-oriented one. Comprehensive carbon taxation policy benefit developed countries and basic policy is more suitable for developing countries. Research limitations/implications: In this research, we do not consider random demand and asymmetric information, which may not well suited the reality. Originality/value: This work provides a different perspective in analyzing the impact of carbon tax and tariff. It is the first study to consider two consuming market and the strategic game between two countries. Different international status of countries considered in the paper is also a unique point.

  9. Organic carbon production, mineralization and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2014-09-01

    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15-20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2-5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  10. Impact of exotic earthworms on organic carbon sorption on mineral surfaces and soil carbon inventories in a northern hardwood forest

    Science.gov (United States)

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen D. Sebestyen; Kathryn Resner; Alex. Blum

    2015-01-01

    Exotic earthworms are invading forests in North America where native earthworms have been absent since the last glaciation. These earthworms bioturbate soils and may enhance physical interactions between minerals and organic matter (OM), thus affecting mineral sorption of carbon (C) which may affect C cycling. We quantitatively show how OM-mineral sorption and soil C...

  11. Ex-situ and in-situ mineral carbonation as a means to sequester carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.; Rush, G.E.

    2004-01-01

    The U. S. Department of Energy's Albany Research Center is investigating mineral carbonation as a method of sequestering CO2 from coal-fired-power plants. Magnesium-silicate minerals such as serpentine [Mg3Si2O5(OH)4] and olivine (Mg2SiO4) react with CO2 to produce magnesite (MgCO3), and the calcium-silicate mineral, wollastonite (CaSiO3), reacts to form calcite (CaCO3). It is possible to carry out these reactions either ex situ (above ground in a traditional chemical processing plant) or in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals). For ex situ mineral carbonation to be economically attractive, the reaction must proceed quickly to near completion. The reaction rate is accelerated by raising the activity of CO2 in solution, heat (but not too much), reducing the particle size, high-intensity grinding to disrupt the crystal structure, and, in the case of serpentine, heat-treatment to remove the chemically bound water. All of these carry energy/economic penalties. An economic study illustrates the impact of mineral availability and process parameters on the cost of ex situ carbon sequestration. In situ carbonation offers economic advantages over ex situ processes, because no chemical plant is required. Knowledge gained from the ex situ work was applied to long-term experiments designed to simulate in situ CO2 storage conditions. The Columbia River Basalt Group (CRBG), a multi-layered basaltic lava formation, has potentially favorable mineralogy (up to 25% combined concentration of Ca, Fe2+, and Mg cations) for storage of CO2. However, more information about the interaction of CO2 with aquifers and the host rock is needed. Core samples from the CRBG, as well as samples of olivine, serpentine, and sandstone, were reacted in an autoclave for up to 2000 hours at elevated temperatures and pressures. Changes in core porosity, secondary mineralizations, and both solution and solid chemistry were measured.

  12. Carbon Sequestration and Optimal Climate Policy

    International Nuclear Information System (INIS)

    Grimaud, Andre; Rouge, Luc

    2009-01-01

    We present an endogenous growth model in which the use of a non-renewable natural resource generates carbon-dioxide emissions that can be partly sequestered. This approach breaks with the systematic link between resource use and pollution emission. The accumulated stock of remaining emissions has a negative impact on household utility and corporate productivity. While sequestration quickens the optimal extraction rate, it can also generate higher emissions in the short run. It also has an adverse effect on economic growth. We study the impact of a carbon tax: the level of the tax has an effect in our model, its optimal level is positive, and it can be interpreted ex post as a decreasing ad valorem tax on the resource

  13. Adsorption, Aggregation, and Deposition Behaviors of Carbon Dots on Minerals.

    Science.gov (United States)

    Liu, Xia; Li, Jiaxing; Huang, Yongshun; Wang, Xiangxue; Zhang, Xiaodong; Wang, Xiangke

    2017-06-06

    The increased production of carbon dots (CDs) and the release and accumulation of CDs in both surface and groundwater has resulted in the increasing interest in their research. To assess the environmental behavior of CDs, the interaction between CDs and goethite was studied under different environmental conditions. Electrokinetic characterization of CDs suggested that the ζ-potential and size distribution of CDs were affected by pH and electrolyte species, indicating that these factors influenced the stability of CDs in aqueous solutions. Traditional Derjaguin-Landau-Verwey-Overbeek theory did not fit well the aggregation process of CDs. Results of the effects of pH and ionic strength suggested that electronic attraction dominated the aggregation of CDs. Compared with other minerals, hydrogen-bonding interactions and Lewis acid-base interactions contributed to the aggregation of CDs, in addition to van der Waals and electrical double-layer forces. Adsorption isotherms and microscopic Fourier transformed infrared spectroscopy indicated that chemical bonds were formed between CDs and goethite. These findings are useful to understand the interaction of CDs with minerals, as well as the potential fate and toxicity of CDs in the natural environment, especially in soils and sediments.

  14. Recent Progress on Data-Based Optimization for Mineral Processing Plants

    Directory of Open Access Journals (Sweden)

    Jinliang Ding

    2017-04-01

    Full Text Available In the globalized market environment, increasingly significant economic and environmental factors within complex industrial plants impose importance on the optimization of global production indices; such optimization includes improvements in production efficiency, product quality, and yield, along with reductions of energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelligence optimization methods and technologies in improving the performance of global production indices in mineral processing. First, we provide the problem description. Next, we summarize recent progress in data-based optimization for mineral processing plants. This optimization consists of four layers: optimization of the target values for monthly global production indices, optimization of the target values for daily global production indices, optimization of the target values for operational indices, and automation systems for unit processes. We briefly overview recent progress in each of the different layers. Finally, we point out opportunities for future works in data-based optimization for mineral processing plants.

  15. Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates

    International Nuclear Information System (INIS)

    McMillan, Nancy J.; Harmon, Russell S.; De Lucia, Frank C.; Miziolek, Andrzej M.

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) provides an alternative chemical analytical technique that obviates the issues of sample preparation and sample destruction common to most laboratory-based analytical methods. This contribution explores the capability of LIBS analysis to identify carbonate and silicate minerals rapidly and accurately. Fifty-two mineral samples (18 carbonates, 9 pyroxenes and pyroxenoids, 6 amphiboles, 8 phyllosilicates, and 11 feldspars) were analyzed by LIBS. Two composite broadband spectra (averages of 10 shots each) were calculated for each sample to produce two databases each containing the composite LIBS spectra for the same 52 mineral samples. By using correlation coefficients resulting from the regression of the intensities of pairs of LIBS spectra, all 52 minerals were correctly identified in the database. If the LIBS spectra of each sample were compared to a database containing the other 51 minerals, 65% were identified as a mineral of similar composition from the same mineral family. The remaining minerals were misidentified for two reasons: 1) the mineral had high concentrations of an element not present in the database; and 2) the mineral was identified as a mineral with similar elemental composition from a different family. For instance, the Ca-Mg carbonate dolomite was misidentified as the Ca-Mg silicate diopside. This pilot study suggests that LIBS has promise in mineral identification and in situ analysis of minerals that record geological processes

  16. Carbon mineralization in mine tailing ponds amended with pig slurries and marble wastes

    Directory of Open Access Journals (Sweden)

    Raul Zornoza

    2012-07-01

    Full Text Available Effective application of organic residues to reclaim soils requires the optimization of the waste management to minimize CO2 emissions and optimize soil C sequestration efficiency. In this study, the short-term effects of pig slurry amendment alone and together with marble waste on organic matter mineralization in two tailing ponds from Cartagena-La Unión Mining District (SE Spain were investigated in a field remediation experiment. The treatments were: marble waste (MW, pig slurry (PS, marble waste + pig slurry (MW+PS, and control. Soil carbon mineralization was determined using a static chamber method with alkali absorption during 70 days. Soil respiration rates in all plots were higher the first days of the experiment owing to higher soil moisture and higher mean air temperature. MW plots followed the same pattern than control plots, with similar respiration rates. The addition of pig slurry caused a significant increase in the respiration rates, although in MW+PS plots, respiration rates were lower than in PS plots. The cumulative quantities of C-CO2 evolved from the pig slurry mineralization were fitted to a first-order kinetic model explaining 90% of the data. This model implies the presence of only one mineralisable pool (C0. The values of the index C0*constant rate/added C were similar for PS plots in both tailing ponds, but lower in the MW+PS treatment, suggesting that the application of marble reduces the degradability of the organic compounds present in the pig slurry. Thus, the application of marble wastes contributes to slow down the loss of organic matter by mineralization.

  17. Experimental Precipitation of Carbonate Minerals: Effect of pH, Supersaturation and Substrate

    OpenAIRE

    Tetteh, Abednego

    2012-01-01

    Understanding the controlling factors and elucidating the requirements and conditions necessary for carbon dioxide (CO2) storage by mineral trapping (or carbonation) is of paramount interest for any technical application as a means for carbon dioxide capture and storage (CCS). The effect of pH, supersaturation and substrate has been studied using non-stirred batch reactors at initial constant temperature of 150 oC. These conditions are relevant for mineral trapping. A set of experiments was c...

  18. Carbon Dioxide Separation Using Thermally Optimized Membranes

    Science.gov (United States)

    Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.

    2002-05-01

    The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique

  19. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  20. Energy and economic considerations for ex-situ and aqueous mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Rush, G.E.; Gerdemann, Stephen J.; Penner, L.R.

    2004-01-01

    Due to the scale and breadth of carbon dioxide emissions, and speculation regarding their impact on global climate, sequestration of some portion of these emissions has been under increased study. A practical approach to carbon sequestration will likely include several options, which will be driven largely by the energy demand and economics of operation. Aqueous mineral carbonation of calcium and magnesium silicate minerals has been studied as one potential method to sequester carbon dioxide. Although these carbonation reactions are all thermodynamically favored, they occur at geologic rates of reaction. Laboratory studies have demonstrated that these rates of reaction are accelerated with increasing temperature, pressure, and particle surface area. Mineral-specific activation methods were identified, however, each of these techniques incurs energy as well as economic costs. An overview of the mineral availability, pretreatment options and energy demands, and process economics is provided.

  1. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    Science.gov (United States)

    Garten, Charles T., Jr.

    2009-03-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  2. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  3. Investigating Interactions between the Silica and Carbon Cycles during Precipitation and Early Diagenesis of Authigenic Clay/Carbonate-Mineral Associations in the Carbonate Rock Record

    Science.gov (United States)

    McKenzie, J. A.; Francisca Martinez Ruiz, F.; Sanchez-Roman, M.; Anjos, S.; Bontognali, T. R. R.; Nascimento, G. S.; Vasconcelos, C.

    2017-12-01

    The study of authigenic clay/carbonate-mineral associations within carbonate sequences has important implications for the interpretation of scientific problems related with rock reservoir properties, such as alteration of potential porosity and permeability. More specifically, when clay minerals are randomly distributed within the carbonate matrix, it becomes difficult to predict reservoir characteristics. In order to understand this mineral association in the geological record, we have undertaken a comparative study of specially designed laboratory experiments with modern environments, where clay minerals have been shown to precipitate together with a range of carbonate minerals, including calcite, Mg-calcite and dolomite. Two modern dolomite-forming environments, the Coorong lakes, South Australia and Brejo do Espinho Rio de Janeiro, Brazil, were selected for this investigation. For comparative evaluation, enrichment microbial culture experiments, using natural pore water from Brejo do Espinho as the growth medium to promote mineral precipitation, were performed under both aerobic and anaerobic conditions. To establish the environmental parameters and biological processes facilitating the dual mineral association, the experimental samples have been compared with the natural minerals using HRTEM measurements. The results demonstrate that the clay and carbonate minerals apparently do not co-precipitate, but the precipitation of the different minerals in the same sample has probably occurred under different environmental conditions with variable chemistries, e.g., hypersalinity versus normal salinity resulting from the changing ratio of evaporation versus precipitation. Thus, the investigated mineral association is not a product of diagenetic processes but of sequential in situ precipitation processes related to changes in the silica and carbon availability. Implications for ancient carbonate formations will be presented and discussed in the context of a specific

  4. Carbon dioxide sequestration by mineral carbonation. Feasibility of enhanced natural weathering as a CO2 emission reduction technology

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.

    2007-01-01

    A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonates. Potential advantages of mineral CO2 sequestration compared to, e.g., geological CO2 storage include (1) the permanent and inherently safe sequestration of CO2, due to the thermodynamic stability of the carbonate product formed and (2) the vast potential sequestration capacity, because of the widespread and abundant occurrence of suitable feedstock. In addition, carbonation is an exothermic process, which potentially limits the overall energy consumption and costs of CO2 emission reduction. However, weathering processes are slow, with timescales at natural conditions of thousands to millions of years. For industrial implementation, a reduction of the reaction time to the order of minutes has to be achieved by developing alternative process routes. The aim of this thesis is an investigation of the technical, energetic, and economic feasibility of CO2 sequestration by mineral carbonation. In Chapter 1 the literature published on CO2 sequestration by mineral carbonation is reviewed. Among the potentially suitable mineral feedstock for mineral CO2 sequestration, Ca-silicates, more particularly wollastonite (CaSiO3), a mineral ore, and steel slag, an industrial alkaline solid residue, are selected for further research. Alkaline Ca-rich residues seem particularly promising, since these materials are inexpensive and available near large industrial point sources of CO2. In addition, residues tend to react relatively rapidly with CO2 due to their (geo)chemical instability. Various process routes have been proposed for mineral carbonation, which often include a pre-treatment of the solid feedstock (e.g., size reduction and

  5. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    Science.gov (United States)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  6. Evolution of multi-mineral formation evaluation using LWD data in complex carbonates offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, Paolo; Borovskaya, Irina [Schlumberger, Houston, TX (United States)

    2012-07-01

    Petrophysical Formation Evaluation using Logging While Drilling (LWD) measurements is a new requisite when drilling in carbonates reservoirs offshore Brazil. These reservoirs are difficult to characterize due to an unusual mixture of the minerals constituting the matrix and affecting rock texture. As wells are getting deeper and more expensive, an early identification of the drilled targets potential is necessary for valuable decisions. Brazil operators have been especially demanding towards service providers, pushing for development of suitable services able to positively identify and quantify not only the presence of hydrocarbons but also their flowing capability. In addition to the standard gamma ray / resistivity / porosity and density measurements, three new measurements have proven to be critical to evaluate complex carbonate formations: Nuclear Magnetic Resonance (NMR), Spectroscopy and Capture Cross-Section (sigma). Under appropriate logging conditions, NMR data provides lithology independent porosity, bound and free fluids fractions, reservoir texture and permeability. Capture Spectroscopy allows assessment of mineral composition in terms of calcite, dolomite, quartz and clay fractions, and in addition highlights presence of other heavier minerals. Finally, sigma allows performing a volumetric formation evaluation without requiring custom optimization of the classical exponents used in all forms of resistivity saturation equations. All these new measurements are inherently statistical and if provided by wireline after drilling the well they may result in significant usage of rig time. When acquired simultaneously while drilling they have three very clear advantages: 1) no extra rig time, 2) improved statistics due to long formation exposure (drilling these carbonates is a slow process and rate of penetration (ROP) rarely exceeds 10 m/hr), 3) less invasion effect and better hole condition. This paper describes the development of two LWD tools performing the

  7. Tailings and mineral carbonation : the potential for atmospheric CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Rollo, H.A. [Lorax Environmental Services Ltd., Vancouver, BC (Canada); Jamieson, H.E. [Queen' s Univ., Kingston, ON (Canada). Dept. of Geological Sciences and Geological Engineering; Lee, C.A. [Dillon Consulting Ltd., Cambridge, ON (Canada)

    2009-02-15

    Carbon dioxide (CO{sub 2}) sequestration includes geological storage, ocean storage, organic storage, and mineral storage (mineral carbonation). This presentation discussed tailings and mineral carbonation and the potential for atmospheric CO{sub 2} sequestration. In particular, it outlined CO{sub 2} sequestration and presented a history of investigations. The Ekati Diamond Mine was discussed with particular reference to its location, geology, and processing. Other topics that were presented included mineralogy; water chemistry; modeling results; and estimates of annual CO{sub 2} sequestration. Conclusions and implications were also presented. It was concluded that ore processing at mines with ultramafic host rocks have the potential to partially offset CO{sub 2} emissions. In addition, it was found that existing tailings at ultramafic deposits may be viable source materials for CO{sub 2} sequestration by mineral carbonation. tabs., figs.

  8. Mineral carbonation - possibilities in and ex-situ, evaluation and experiments in laboratory. Final report

    International Nuclear Information System (INIS)

    Bodenan, F.; Bailly, L.; Piantone, P.; Seron, A.; Touze, S.

    2006-01-01

    This report proposes a state of the art of the knowledge and a synthesis of the studies realized at the BRGM since many years, especially in the following domains: the possibilities of the natural minerals and alkaline wastes for the CO 2 sequestration under mineral form, a accounting analysis of the ex-situ processes called direct and indirect, the design of experimental bench scale to study the mineral carbonation at ambient conditions and at high pressure and temperature. (A.L.B.)

  9. Diet influences rates of carbon and nitrogen mineralization from decomposing grasshopper frass and cadavers

    Science.gov (United States)

    Insect herbivory can produce a pulse of mineral nitrogen (N) in soil from the decomposition of frass and cadavers. In this study we examined how diet quality affects rates of N and carbon (C) mineralization from grasshopper frass and cadavers. Frass was collected from grasshoppers fed natural or mer...

  10. Carbonate mineral dissolution kinetics in high pressure experiments

    Science.gov (United States)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  11. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  12. Mineral Carbonation of Phosphogypsum Waste for Production of Useful Carbonate and Sulfate Salts

    Energy Technology Data Exchange (ETDEWEB)

    Mattila, Hannu-Petteri, E-mail: hmattila@abo.fi; Zevenhoven, Ron [Thermal and Flow Engineering Laboratory, Åbo Akademi University, Turku (Finland)

    2015-11-16

    Phosphogypsum (CaSO{sub 4}·2H{sub 2}O, PG) waste is produced in large amounts during phosphoric acid (H{sub 3}PO{sub 4}) production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred megatonnes of carbon dioxide (CO{sub 2}). For example, when gypsum is converted to ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}] with ammonia (NH{sub 3}) and CO{sub 2}, also solid calcium carbonate (CaCO{sub 3}) is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as, e.g., filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from PG to calcium carbonate are obtained. Scalenohedral, rhombohedral, and prismatic calcite particles can be produced, although the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  13. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    Science.gov (United States)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore

  14. Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.

    2015-12-01

    Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.

  15. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration

    International Nuclear Information System (INIS)

    Maroto-Valer, M.M.; Kuchta, M.E.; Zhang, Y.; Andresen, J.M.; Fauth, D.J.

    2005-01-01

    Mineral carbonation, the reaction of magnesium-rich minerals such as olivine and serpentine with CO 2 to form stable mineral carbonates, is a novel and promising approach to carbon sequestration. However, the preparation of the minerals prior to carbonation can be energy intensive, where some current studies have been exploring extensive pulverization of the minerals below 37 μm, heat treatment of minerals up to 650 o C, prior separation of CO 2 from flue gases, and carbonation at high pressures, temperatures and long reaction times of up to 125 atm, 185 o C and 6 h, respectively. Thus, the objective of the mineral activation concept is to promote and accelerate carbonation reaction rates and efficiencies through surface activation to the extent that such rigorous reaction conditions were not required. The physical activations were performed with air and steam, while chemical activations were performed with a suite of acids and bases. The parent serpentine, activated serpentines, and carbonation products were characterized to determine their surface properties and assess their potential as carbonation minerals. The results indicate that the surface area of the raw serpentine, which is approximately 8 m 2 /g, can be increased through physical and chemical activation methods to over 330 m 2 /g. The chemical activations were more effective than the physical activations at increasing the surface area, with the 650 o C steam activated serpentine presenting a surface area of only 17 m 2 /g. Sulfuric acid was the most effective acid used during the chemical activations, resulting in surface areas greater than 330 m 2 /g. Several of the samples produced underwent varying degrees of carbonation. The steam activated serpentine underwent a 60% conversion to magnesite at 155 o C and 126 atm in 1 h, while the parent sample only exhibited a 7% conversion. The most promising results came from the carbonation of the extracted Mg(OH) 2 solution, where, based on the amount of

  16. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Ren Dongni; Li Zhuo; Gao Yonghua; Feng Qingling, E-mail: biomater@mail.tsinghua.edu.c [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH{sub 2} and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH{sub 2} and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.

  17. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization

    International Nuclear Information System (INIS)

    Ren Dongni; Li Zhuo; Gao Yonghua; Feng Qingling

    2010-01-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH 2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH 2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.

  18. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization.

    Science.gov (United States)

    Ren, Dongni; Li, Zhuo; Gao, Yonghua; Feng, Qingling

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.

  19. Effects of mineral additives on biochar formation: carbon retention, stability, and properties.

    Science.gov (United States)

    Li, Feiyue; Cao, Xinde; Zhao, Ling; Wang, Jianfei; Ding, Zhenliang

    2014-10-07

    Biochar is being recognized as a promising tool for long-term carbon sequestration, and biochar with high carbon retention and strong stability is supposed to be explored for that purpose. In this study, three minerals, including kaolin, calcite (CaCO3), and calcium dihydrogen phosphate [Ca(H2PO4)2], were added to rice straw feedstock at the ratio of 20% (w/w) for biochar formation through pyrolysis treatment, aiming to improve carbon retention and stabilization in biochar. Kaolin and CaCO3 had little effect on the carbon retention, whereas Ca(H2PO4)2 increased the carbon retention by up to 29% compared to untreated biochar. Although the carbon loss from the kaolin-modified biochar with hydrogen peroxide oxidation was enhanced, CaCO3 and Ca(H2PO4)2 modification reduced the carbon loss by 18.6 and 58.5%, respectively. Moreover, all three minerals reduced carbon loss of biochar with potassium dichromate oxidation from 0.3 to 38.8%. The microbial mineralization as CO2 emission in all three modified biochars was reduced by 22.2-88.7% under aerobic incubation and 5-61% under anaerobic incubation. Enhanced carbon retention and stability of biochar with mineral treatment might be caused by the enhanced formation of aromatic C, which was evidenced by cross-polarization magic angle spinning (13)C nuclear magnetic resonance spectra and Fourier transform infrared spectroscopy analysis. Our results indicated that the three minerals, especially Ca(H2PO4)2, were effective in increasing carbon retention and strengthening biochar stabilization, which provided a novel idea that people could explore and produce the designated biochar with high carbon sequestration capacity and stability.

  20. Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Teng, H. Henry [PI, The George Washington University; Xu, Huifang [Co-PI, University of Wisconsin-Madison

    2013-07-17

    We have approached the long-standing geochemical question why anhydrous high-Mg carbonate minerals (i.e., magnesite and dolomite) cannot be formed at ambient conditions from a new perspective by exploring the formation of MgCO{sub 3} and Mg{sub x}Ca{sub (1-x)}CO{sub 3} in non-aqueous solutions. Data collected from our experiments in this funding period suggest that a fundamental barrier, other than cation hydration, exists that prevents Mg{sup 2+} and CO{sub 3}{sup 2-} ions from forming long-range ordered structures. We propose that this barrier mainly stems from the lattice limitation on the spatial configuration of CO{sub 3} groups in magnesite crystals. On the other hand, the measured higher distribution coefficients of Mg between magnesian calcites formed in the absence and presence of water give us a first direct proof to support and quantify the cation hydration effect.

  1. Optimization of Mineral Separator for Recovery of Total Heavy Minerals of Bay of Bengal using Central Composite Design

    Science.gov (United States)

    Routray, Sunita; Swain, Ranjita; Rao, Raghupatruni Bhima

    2017-04-01

    The present study is aimed at investigating the optimization of a mineral separator for processing of beach sand minerals of Bay of Bengal along Ganjam-Rushikulya coast. The central composite design matrix and response surface methodology were applied in designing the experiments to evaluate the interactive effects of the three most important operating variables, such as feed quantity, wash water rate and Shake amplitude of the deck. The predicted values were found to be in good agreement with the experimental values (R2 = 0.97 for grade and 0.98 for recovery). To understand the impact of each variable, three dimensional (3D) plots were also developed for the estimated responses.

  2. In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography

    Science.gov (United States)

    Weng, Yi-Tse; Wang, Chun-Chieh; Chiang, Cheng-Cheng; Tsai, Heng; Song, Yen-Fang; Huang, Shiuh-Tsuen; Liang, Biqing

    2018-05-01

    An approach for nanoscale 3-D tomography of organic carbon (OC) and associated mineral nanoparticles was developed to illustrate their spatial distribution and boundary interplay, using synchrotron-based transmission X-ray microscopy (TXM). The proposed 3-D tomography technique was first applied to in situ observation of a laboratory-made consortium of black carbon (BC) and nanomineral (TiO2, 15 nm), and its performance was evaluated using dual-scan (absorption contrast and phase contrast) modes. This novel tool was then successfully applied to a natural OC-mineral consortium from mountain soil at a spatial resolution of 60 nm, showing the fine structure and boundary of OC, the distribution of abundant nano-sized minerals, and the 3-D organo-mineral association in situ. The stabilization of 3500-year-old natural OC was mainly attributed to the physical protection of nano-sized iron (Fe)-containing minerals (Fe oxyhydroxides including ferrihydrite, goethite, and lepidocrocite), and the strong organo-mineral complexation. In situ evidence revealed an abundance of mineral nanoparticles, in dense thin layers or nano-aggregates/clusters, instead of crystalline clay-sized minerals on or near OC surfaces. The key working minerals for C stabilization were reactive short-range-order (SRO) mineral nanoparticles and poorly crystalline submicron-sized clay minerals. Spectroscopic analyses demonstrated that the studied OC was not merely in crisscross co-localization with reactive SRO minerals; there could be a significant degree of binding between OC and the minerals. The ubiquity and abundance of mineral nanoparticles on the OC surface, and their heterogeneity in the natural environment may have been severely underestimated by traditional research approaches. Our in situ description of organo-mineral interplay at the nanoscale provides direct evidence to substantiate the importance of mineral physical protection for the long-term stabilization of OC. This high-resolution 3-D

  3. Effects of Montmorillonite on the Mineralization and Cementing Properties of Microbiologically Induced Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-01-01

    Full Text Available Carbonate mineralization microbe is a microorganism capable of decomposing the substrate in the metabolic process to produce the carbonate, which then forms calcium carbonate with calcium ions. By taking advantage of this process, contaminative uranium tailings can transform to solid cement, where calcium carbonate plays the role of a binder. In this paper, we have studied the morphology of mineralized crystals by controlling the mineralization time and adding different concentrations of montmorillonite (MMT. At the same time, we also studied the effect of carbonate mineralized cementation uranium tailings by controlling the amount of MMT. The results showed that MMT can regulate the crystal morphology of calcium carbonate. What is more, MMT can balance the acidity and ions in the uranium tailings; it also can reduce the toxicity of uranium ions on microorganisms. In addition, MMT filling in the gap between the uranium tailings made the cement body more stable. When the amount of MMT is 6%, the maximum strength of the cement body reached 2.18 MPa, which increased by 47.66% compared with that the sample without MMT. Therefore, it is reasonable and feasible to use the MMT to regulate the biocalcium carbonate cemented uranium tailings.

  4. Modification of asphaltic concrete with a mineral polymeric additive based on butadiene-styrene rubber and chemically precipitated calcium carbonate

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2016-01-01

    Full Text Available Modification of asphaltic concrete with a mineral polymeric additive based on butadiene – styrene rubber and chemically precipitated calcium carbonate. This paper presents the results of the study of physical – mechanical and service properties of the asphaltic concrete modified with the mineral polymeric composition. Calcium carbonate is used both as a filler and a coagulant. The chalk was preliminarily ground and hydrophobizated by stearic acid. These operations contribute to even distribution of the filler and interfere with lump coagulation. As a result of the experiments, it was found that the best results were obtained by combining the operations of dispersion and hydrophobization. The optimal amount of stearic acid providing the finest grinding in a ball mill is a content from 3 to 5% by weight. The optimal grinding time of the filler was found (4–6 hours. With increasing dispersion time the particles form agglomerates. Filling the butadiene styrene latex with the hydrophobic fine-grained calcium carbonate was carried out in the laboratory mixer. As a result of the experimental works, it was found that the best distribution of the filler takes place with ratio of rubber: chalk – 100:400. The resulting modifier was subjected to the thermal analysis on the derivatograph to determine its application temperature interval. A marked reduction in weight of the mineral polymeric modifier begins at 350 °C. Thus, high temperature of the modifier destruction allows to use it at the temperature of the technological process of asphaltic concrete preparation (up to 170 °C. It was found that an increase in the amount of the carbonate filler in the rubber SKS 30АRК significantly increases its thermal resistance and connection of the polymer with the chalk in the composition.

  5. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications

    DEFF Research Database (Denmark)

    Douglas, Timothy E L; Łapa, Agata; Samal, Sangram Keshari

    2017-01-01

    enzymatically with CaCO3 , Mg-enriched CaCO3 and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing...

  6. Continuing Studies on Direct Aqueous Mineral Carbonation of CO{sub 2} Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Gerdemann, S.J.; Rush, G.E.; Penner, L.R.; Walters, R.P.; Turner, P.C.

    2002-03-04

    Direct aqueous mineral carbonation has been investigated as a process to convert gaseous CO{sub 2} into a geologically stable, solid final form. The process utilizes a solution of sodium bicarbonate (NaHCO{sub 3}), sodium chloride (NaCl), and water, mixed with a mineral reactant, such as olivine (Mg{sub 2}SiO{sub 4}) or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. Carbon dioxide is dissolved into this slurry, by diffusion through the surface and gas dispersion within the aqueous phase. The process includes dissolution of the mineral and precipitation of the magnesium carbonate mineral magnesite (MgCO{sub 3}) in a single unit operation. Activation of the silicate minerals has been achieved by thermal and mechanical means, resulting in up to 80% stoichiometric conversion of the silicate to the carbonate within 30 minutes. Heat treatment of the serpentine, or attrition grinding of the olivine and/or serpentine, appear to activate the minerals by the generation of a non-crystalline phase. Successful conversion to the carbonate has been demonstrated at ambient temperature and relatively low (10 atm) partial pressure of CO{sub 2} (P{sub CO2}). However, optimum results have been achieved using the bicarbonate-bearing solution, and high P{sub CO2}. Specific conditions include: 185 C; P{sub CO2}=150 atm; 30% solids. Studies suggest that the mineral dissolution rate is not solely surface controlled, while the carbonate precipitation rate is primarily dependent on the bicarbonate concentration of the slurry. Current and future activities include further examination of the reaction pathways and pretreatment options, the development of a continuous flow reactor, and an evaluation of the economic feasibility of the process.

  7. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    Science.gov (United States)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  8. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States); Kleber, Markus [Oregon State Univ., Corvallis, OR (United States); Nico, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-10-19

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration, control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place

  9. Evaluation of Southern Quebec asbestos residues for CO2 sequestration by mineral carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, G.; Hebert, R.; Constantin, M. [Laval Univ., Quebec City, PQ (Canada); Bonin, G. [LAB Chrysotile Inc., Black Lake, PQ (Canada); Dipple, G. [British Columbia Univ., Vancouver, BC (Canada)

    2003-08-01

    One alternative to help reduce carbon dioxide (CO{sub 2}) levels in the atmosphere is to sequester CO{sub 2} by mineral carbonation using ultramafic rock-hosted magnesian silicates (serpentine, olivine, talc). The carbonation process produces magnesite, which is a geologically stable and an environmentally safe magnesium carbonate. Three CO{sub 2} sinks exist in southern Quebec use such silicates. They are: (1) asbestos mill residues, (2) associated mine waste, and (3) ultramafic bedrock. Extraction of asbestos in the region has been accomplished from serpentinized harzburgite located in the Thetford Mines and Asbestos ophiolitic massifs and also from the highly sheared Pennington Sheet. The physical and chemical properties of magnesium silicate deposits greatly determine their carbonation potential. A wide range of properties was observed in samples obtained from almost all asbestos mill residues and waste. The reaction which takes place depends on the mineral content. The kinetics of the reactions are influenced by humidity and grain size.

  10. FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals.

    Science.gov (United States)

    Edwards, Howell G M; Villar, Susana E Jorge; Jehlicka, Jan; Munshi, Tasnim

    2005-08-01

    Calcium and magnesium carbonates are important minerals found in sedimentary environments. Although sandstones are the most common rock colonized by endolith organisms, the production of calcium and magnesium carbonates is important in survival strategies of organisms and as a source for the removal of oxalate ions. Extremophile organisms in some situations may convert or destroy carbonates of calcium and magnesium, which gives important information about the conditions under which these organisms can survive. The identification on the surface of Mars of 'White Rock' formations, in Juventae Chasma or Sabaea Terra, as possibly carbonate rocks makes the study of these minerals a prerequisite of remote Martian exploration. Here, we show the protocol for the identification by Raman spectroscopy of different calcium and magnesium carbonates and we present a database of relevance in the search for life, extinct or extant, on Mars; this will be useful for the assessment of data obtained from remote, miniaturized Raman spectrometers now proposed for Mars exploration.

  11. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications.

    Science.gov (United States)

    Douglas, Timothy E L; Łapa, Agata; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Mendes, Ana C; der Voort, Pascal Van; Dokupil, Agnieszka; Plis, Agnieszka; De Schamphelaere, Karel; Chronakis, Ioannis S; Pamuła, Elżbieta; Skirtach, Andre G

    2017-12-01

    Mineralization of hydrogel biomaterials is considered desirable to improve their suitability as materials for bone regeneration. Calcium carbonate (CaCO 3 ) has been successfully applied as a bone regeneration material, but hydrogel-CaCO 3 composites have received less attention. Magnesium (Mg) has been used as a component of calcium phosphate biomaterials to stimulate bone-forming cell adhesion and proliferation and bone regeneration in vivo, but its effect as a component of carbonate-based biomaterials remains uninvestigated. In the present study, gellan gum (GG) hydrogels were mineralized enzymatically with CaCO 3 , Mg-enriched CaCO 3 and magnesium carbonate to generate composite biomaterials for bone regeneration. Hydrogels loaded with the enzyme urease were mineralized by incubation in mineralization media containing urea and different ratios of calcium and magnesium ions. Increasing the magnesium concentration decreased mineral crystallinity. At low magnesium concentrations calcite was formed, while at higher concentrations magnesian calcite was formed. Hydromagnesite (Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O) formed at high magnesium concentration in the absence of calcium. The amount of mineral formed and compressive strength decreased with increasing magnesium concentration in the mineralization medium. The calcium:magnesium elemental ratio in the mineral formed was higher than in the respective mineralization media. Mineralization of hydrogels with calcite or magnesian calcite promoted adhesion and growth of osteoblast-like cells. Hydrogels mineralized with hydromagnesite displayed higher cytotoxicity. In conclusion, enzymatic mineralization of GG hydrogels with CaCO 3 in the form of calcite successfully reinforced hydrogels and promoted osteoblast-like cell adhesion and growth, but magnesium enrichment had no definitive positive effect. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Minerals

    Science.gov (United States)

    ... Aren't minerals something you find in the earth, like iron and quartz? Well, yes, but small ... canned salmon and sardines with bones leafy green vegetables, such as broccoli calcium-fortified foods — from orange ...

  13. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen P.; Tallant, David Robert

    2013-09-01

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for

  14. Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.

    Science.gov (United States)

    Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin

    2016-10-20

    We report experimental measurements of the dissolution rate of several carbonate minerals in CO 2 -saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO 2 -saturated NaCl brines with molalities of up to 5 mol kg -1 . The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO 2 -saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO 2 -saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO 2 -injection into carbonate-mineral saline aquifers.

  15. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    International Nuclear Information System (INIS)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G.

    2013-01-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg −1 ) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase. -- Highlights: •Phenanthrene desorption and mineralization compared in soils with activated carbon, charcoal or compost. •Only activated charcoal and biochar hindered both desorption and mineralization. •A linear relationship was found between the extents desorbed and mineralized. •Modelling indicated that bacterial activity was not limiting but that desorption was. -- Extraction into an exhaustive silicone sink measures the maximum phenanthrene desorption from soils with amendments, and this is reflected in the extent of mineralization

  16. Methods of modeling and optimization of work effects for chosen mineral processing systems

    Directory of Open Access Journals (Sweden)

    Tomasz Niedoba

    2005-11-01

    Full Text Available The methods being used in the mineral processing modeling are reviewed in this paper. Particularly, the heuristic approach was presented. The new, modern techniques of modeling and optimization were proposed, including the least median squares method and genetic algorithms. The rules of the latter were described in details.

  17. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  18. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals

    International Nuclear Information System (INIS)

    Gadikota, Greeshma; Natali, Claudio; Boschi, Chiara; Park, Ah-Hyung Alissa

    2014-01-01

    The disintegration of asbestos containing materials (ACM) over time can result in the mobilization of toxic chrysotile ((Mg, Fe) 3 Si 2 O 5 (OH) 4 )) fibers. Therefore, carbonation of these materials can be used to alter the fibrous morphology of asbestos and help mitigate anthropogenic CO 2 emissions, depending on the amount of available alkaline metal in the materials. A series of high pressure carbonation experiments were performed in a batch reactor at P CO2 of 139 atm using solvents containing different ligands (i.e., oxalate and acetate). The results of ACM carbonation were compared to those of magnesium silicate minerals which have been proposed to permanently store CO 2 via mineral carbonation. The study revealed that oxalate even at a low concentration of 0.1 M was effective in enhancing the extent of ACM carbonation and higher reaction temperatures also resulted in increased ACM carbonation. Formation of phases such as dolomite ((Ca, Mg)(CO 3 ) 2 ), whewellite (CaC 2 O 4 ·H 2 O) and glushinskite (MgC 2 O 4 ·2H 2 O) and a reduction in the chrysotile content was noted. Significant changes in the particle size and surface morphologies of ACM and magnesium silicate minerals toward non-fibrous structures were observed after their carbonation

  19. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gadikota, Greeshma [Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Natali, Claudio; Boschi, Chiara [Institute of Geosciences and Earth Resources – National Research Council, Pisa (Italy); Park, Ah-Hyung Alissa, E-mail: ap2622@columbia.edu [Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Lenfest Center for Sustainable Energy, Columbia University, 500 West 120th Street, New York, NY 10027 (United States)

    2014-01-15

    The disintegration of asbestos containing materials (ACM) over time can result in the mobilization of toxic chrysotile ((Mg, Fe){sub 3}Si{sub 2}O{sub 5}(OH){sub 4})) fibers. Therefore, carbonation of these materials can be used to alter the fibrous morphology of asbestos and help mitigate anthropogenic CO{sub 2} emissions, depending on the amount of available alkaline metal in the materials. A series of high pressure carbonation experiments were performed in a batch reactor at P{sub CO2} of 139 atm using solvents containing different ligands (i.e., oxalate and acetate). The results of ACM carbonation were compared to those of magnesium silicate minerals which have been proposed to permanently store CO{sub 2} via mineral carbonation. The study revealed that oxalate even at a low concentration of 0.1 M was effective in enhancing the extent of ACM carbonation and higher reaction temperatures also resulted in increased ACM carbonation. Formation of phases such as dolomite ((Ca, Mg)(CO{sub 3}){sub 2}), whewellite (CaC{sub 2}O{sub 4}·H{sub 2}O) and glushinskite (MgC{sub 2}O{sub 4}·2H{sub 2}O) and a reduction in the chrysotile content was noted. Significant changes in the particle size and surface morphologies of ACM and magnesium silicate minerals toward non-fibrous structures were observed after their carbonation.

  20. Effect of sterilization on mineralization of straw and black carbon

    OpenAIRE

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    The study was aimed at investigating the role of microorganisms in the degradation of BC (black carbon). CO evolution was measured under sterilized and non-sterilized soil using BC and straw amendments. Black carbon and straw were produced from homogenously C labelled roots of barley (Hordeum vulgare) with a specific activity 2.9 MBq g C. Production of BC was implemented at 300 °C for 24 h in a muffle oven, incubated in soil and C in the evolved CO was measured after 0.5, 1, 2, 4, 8, 16, 26 a...

  1. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Larry R.; O' Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism.

  2. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    International Nuclear Information System (INIS)

    Penner, Larry R.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism

  3. Soil carbon mineralization following biochar addition associated with external nitrogen

    Directory of Open Access Journals (Sweden)

    Rudong Zhao

    2015-12-01

    Full Text Available Biochar has been attracting increasing attention for its potentials of C sequestration and soil amendment. This study aimed to understand the effects of combining biochar with additional external N on soil C mineralization. A typical red soil (Plinthudults was treated with two biochars made from two types of plantation-tree trunks (soil-biochar treatments, and was also treated with external N (soil-biochar-N treatments. All treatments were incubated for 42 d. The CO2-C released from the treatments was detected periodically. After the incubation, soil properties such as pH, microbial biomass C (MBC, and microbial biomass N (MBN were measured. The addition of biochar with external N increased the soil pH (4.31-4.33 compared to the soil treated with external N only (4.21. This was not observed in the comparison of soil-biochar treatments (4.75-4.80 to soil only (4.74. Biochar additions (whether or not they were associated with external N increased soil MBC and MBN, but decreased CO2-C value per unit total C (added biochar C + soil C according to the model fitting. The total CO2-C released in soil-biochar treatments were enhanced compared to soil only (i.e., 3.15 vs. 2.57 mg and 3.23 vs. 2.45 mg, which was attributed to the labile C fractions in the biochars and through soil microorganism enhancement. However, there were few changes in soil C mineralization in soil-biochar-N treatments. Additionally, the potentially available C per unit total C in soil-biochar-N treatments was lower than that observed in the soil-biochar treatments. Therefore, we believe in the short term, that C mineralization in the soil can be enhanced by biochar addition, but not by adding external N concomitantly.

  4. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  5. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  6. Photochemical mineralization of terrigenous DOC to dissolved inorganic carbon in ocean

    OpenAIRE

    Aarnos, Hanna; Gélinas, Yves; Kasurinen, Ville; Gu, Yufei; Puupponen, Veli-Mikko; Vähätalo, Anssi

    2018-01-01

    When terrigenous dissolved organic carbon (tDOC) rich in chromophoric dissolved organic matter (tCDOM) enters the ocean, solar radiation mineralizes it partially into dissolved inorganic carbon (DIC). This study addresses the amount and the rates of DIC photoproduction from tDOC and the area of ocean required to photomineralize tDOC. We collected water samples from 10 major rivers, mixed them with artificial seawater, and irradiated them with simulated solar radiation to measure DIC photoprod...

  7. Effect of sterilization on mineralization of straw and black carbon

    DEFF Research Database (Denmark)

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    vulgare) with a specific activity 2.9 MBq g C. Production of BC was implemented at 300 °C for 24 h in a muffle oven, incubated in soil and C in the evolved CO was measured after 0.5, 1, 2, 4, 8, 16, 26 and 40 days. BC showed much lower and slow evolution of CO than the plant material which refers to high...... the plant material proceeded with a lag phase while CO evolution from the charcoals showed no lag phase. This indicates that microorganisms are not involved in the initial flush of carbon emitted from the BC. We suggest that an alternative source may be carbonates on the surfaces of the BC, but another...

  8. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid

    Science.gov (United States)

    Kanakiya, Shreya; Adam, Ludmila; Esteban, Lionel; Rowe, Michael C.; Shane, Phil

    2017-06-01

    One of the leading hydrothermal alteration processes in volcanic environments is when rock-forming minerals with high concentrations of iron, magnesium, and calcium react with CO2 and water to form carbonate minerals. This is used to the advantage of geologic sequestration of anthropogenic CO2. Here we experimentally investigate how mineral carbonation processes alter the rock microstructure due to CO2-water-rock interactions. In order to characterize these changes, CO2-water-rock alteration in Auckland Volcanic Field young basalts (less than 0.3 Ma) is studied before and after a 140 day reaction period. We investigate how whole core basalts with similar geochemistry but different porosity, permeability, pore geometry, and volcanic glass content alter due to CO2-water-rock reactions. Ankerite and aluminosilicate minerals precipitate as secondary phases in the pore space. However, rock dissolution mechanisms are found to dominate this secondary mineral precipitation resulting in an increase in porosity and decrease in rigidity of all samples. The basalt with the highest initial porosity and volcanic glass volume shows the most secondary mineral precipitation. At the same time, this sample exhibits the greatest increase in porosity and permeability, and a decrease in rock rigidity post reaction. For the measured samples, we observe a correlation between volcanic glass volume and rock porosity increase due to rock-fluid reactions. We believe this study can help understand the dynamic rock-fluid interactions when monitoring field scale CO2 sequestration projects in basalts.

  9. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment

    Directory of Open Access Journals (Sweden)

    V. Brüchert

    2018-01-01

    Full Text Available The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC; δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC ∕ NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr−1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3

  10. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  11. Microorganisms in the deposits of cold carbon mineral waters of the Russian Far East and their habitats

    Science.gov (United States)

    Kalitina, E. G.; Kharitonova, N. A.; Kuzmina, T. V.; Chelnokov, G. A.

    2018-01-01

    Study of the chemical composition of carbon mineral waters has shown the prevalence of calcium, magnesium and sodium among the cations, sulfate, nitrate and chloride ions among the anions, and ferric iron, strontium and manganese in the microelement composition. Results of the microbiological studies have revealed that carbon mineral waters contain various microorganisms that can transform the physical and chemical composition of mineral waters by interfering with geochemical cycles. The sanitary and microbiological properties of carbon mineral waters have been evaluated thus proving that the waters of Medvezhii (Shmakovskoe deposit) are microbiologically clean.

  12. Carbon Mineralization in Two Ultisols Amended with Different Sources and Particle Sizes of Pyrolyzed Biochar

    Science.gov (United States)

    Biochar produced during pyrolysis has the potential to enhance soil fertility and reduce greenhouse gas emissions. The influence of biochar properties (e.g., particle size) on both short- and long-term carbon (C) mineralization of biochar remains unclear. There is minimal informa...

  13. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  14. [Effects of different types of litters on soil organic carbon mineralization].

    Science.gov (United States)

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  15. Carbonate Mineral Formation on Mars: Clues from Stable Isotope Variation Seen in Cryogenic Laboratory Studies of Carbonate Salts

    Science.gov (United States)

    Socki, Richard; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K.

    2013-01-01

    The geologic history of water on the planet Mars is intimately connected to the formation of carbonate minerals through atmospheric CO2 and its control of the climate history of Mars. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms readily when a rise in pH occurs as a result of carbon dioxide degassing quickly from freezing Ca-bicarbonate-rich water solutions. This is a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lakebeds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. We report here the results of a series of laboratory experiments that were conducted to simulate potential cryogenic carbonate formation on the planet Mars. These results indicate that carbonates grown under martian conditions (controlled atmospheric pressure and temperature) show enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values with average delta13C(DIC-CARB) values of 20.5%0 which exceed the expected equilibrium fractionation factor of [10(sup 3) ln alpha = 13%0] at 0 degC. Oxygen isotopes showed a smaller enrichment with delta18O(H2O-CARB) values of 35.5%0, slightly exceeding the equilibrium fractionation factor of [10(sup 3) ln alpha = 34%0 ] at 0degC. Large kinetic carbon isotope effects during carbonate precipitation could substantially affect the carbon isotope evolution of CO2 on Mars allowing for more efficient removal of 13C from the Noachian atmosphere enriched by atmospheric loss. This mechanism would be consistent with the observations of large carbon isotope variations in martian materials despite the

  16. Black carbon and mineral dust in snow cover on the Tibetan Plateau

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Sprenger, Michael; Cong, Zhiyuan; Gao, Tanguang; Li, Chaoliu; Tao, Shu; Li, Xiaofei; Zhong, Xinyue; Xu, Min; Meng, Wenjun; Neupane, Bigyan; Qin, Xiang; Sillanpää, Mika

    2018-02-01

    Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g-1, 491 to 13 880 ng g-1, and 22 to 846 µg g-1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ˜ 50 % in the southern TP to ˜ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

  17. Experimental Investigation and Simplistic Geochemical Modeling of CO2 Mineral Carbonation Using the Mount Tawai Peridotite

    Directory of Open Access Journals (Sweden)

    Omeid Rahmani

    2016-03-01

    Full Text Available In this work, the potential of CO2 mineral carbonation of brucite (Mg(OH2 derived from the Mount Tawai peridotite (forsterite based (Mg2SiO4 to produce thermodynamically stable magnesium carbonate (MgCO3 was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO3 is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO2 gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year with the bulk of the carbon partitioning into magnesite and that very little remains in solution.

  18. Contribution to the application of nuclear microprobe in geochemistry. Carbon and nitrogen microanalysis in glasses and minerals

    International Nuclear Information System (INIS)

    Mosbah, M.

    1988-01-01

    The morphological complexity of geological materials implies the use of microanalysis techniques utilization. Nuclear microprobe allows selective and no destructive light elements determination, through nuclear reactions. Nuclear microanalysis has been used to characterize carbon and nitrogen in volatile phase dissolved in magmatic samples. The application of some microanalysis techniques in geochemistry are discussed, nuclear microprobe theory and techniques are developed. Minerals, glasses and glassy inclusions are described, and more particularly, the interest of these investigations. Optimal conditions of carbon and nitrogen analysis ( 12 C(d.p) 13 C and 14 N(d,p) 15 N reaction respectively), as deuteron energy and observation angle are studied. A methodology has been established for this purpose. Several results are exposed: Punctual analysis, carbon concentration profile in depth surface scanning, surficial mapping in glassy inclusions. The carbon content interpretation in glassy inclusions measured conveniently for the first time agrees with data obtained through other techniques. In conclusion, degazing schedule improvements require more analysis. Perspective research axis are evocated [fr

  19. An Optimal Centralized Carbon Dioxide Repository for Florida, USA

    Directory of Open Access Journals (Sweden)

    Brandon Poiencot

    2011-03-01

    Full Text Available For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration. Numerous reports exist analyzing the potential for sequestering carbon dioxide at various sites around the globe, but none have identified the potential for a statewide system in Florida, USA. In 2005, 83% of Florida’s electrical energy was produced by natural gas, coal, or oil (e.g., fossil fuels, from power plants spread across the state. In addition, only limited research has been completed on evaluating optimal pipeline transportation networks to centralized carbon dioxide repositories. This paper describes the feasibility and preliminary locations for an optimal centralized Florida-wide carbon sequestration repository. Linear programming optimization modeling is used to plan and route an idealized pipeline network to existing Florida power plants. Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites. The identification of the most favorable site(s is also presented.

  20. Carbon mineralization and carbonate preservation in modern cold-water coral reef sediments on the Norwegian shelf

    Directory of Open Access Journals (Sweden)

    L. M. Wehrmann

    2009-04-01

    Full Text Available Cold-water coral ecosystems are considered hot-spots of biodiversity and biomass production and may be a regionally important contributor to carbonate production. The impact of these ecosystems on biogeochemical processes and carbonate preservation in associated sediments were studied at Røst Reef and Traenadjupet Reef, two modern (post-glacial cold-water coral reefs on the Mid-Norwegian shelf. Sulfate and iron reduction as well as carbonate dissolution and precipitation were investigated by combining pore-water geochemical profiles, steady state modeling, as well as solid phase analyses and sulfate reduction rate measurements on gravity cores of up to 3.25 m length. Low extents of sulfate depletion and dissolved inorganic carbon (DIC production, combined with sulfate reduction rates not exceeding 3 nmol S cm−3 d−1, suggested that overall anaerobic carbon mineralization in the sediments was low. These data showed that the coral fragment-bearing siliciclastic sediments were effectively decoupled from the productive pelagic ecosystem by the complex reef surface framework. Organic matter being mineralized by sulfate reduction was calculated to consist of 57% carbon bound in CH2O groups and 43% carbon in -CH2- groups. Methane concentrations were below 1 μM, and failed to support the hypothesis of a linkage between the distribution of cold-water coral reefs and the presence of hydrocarbon seepage. Reductive iron oxide dissolution linked to microbial sulfate reduction buffered the pore-water carbonate system and inhibited acid-driven coral skeleton dissolution. A large pool of reactive iron was available leading to the formation of iron sulfide minerals. Constant pore-water Ca2+, Mg2+ and Sr2+ concentrations in most cores and decreasing Ca2+ and Sr2+ concentrations with depth in core 23–18 GC indicated diagenetic carbonate precipitation. This was

  1. STATEMENT OF THE OPTIMIZATION PROBLEM OF CARBON PRODUCTS PRODUCTION

    Directory of Open Access Journals (Sweden)

    O. A. Zhuchenko

    2016-08-01

    Full Text Available The paper formulated optimization problem formulation production of carbon products. The analysis of technical and economic parameters that can be used to optimize the production of carbonaceous products had been done by the author. To evaluate the efficiency of the energy-intensive production uses several technical and economic indicators. In particular, the specific cost, productivity, income and profitability of production. Based on a detailed analysis had been formulated optimality criterion that takes into account the technological components of profitability. The components in detail the criteria and the proposed method of calculating non-trivial, one of them - the production cost of each product. When solving the optimization problem of technological modes of production into account constraints on the variables are optimized. Thus, restrictions may be expressed on the number of each product produced. Have been formulated the method of calculating the cost per unit of product. Attention is paid to the quality indices of finished products as an additional constraint in the optimization problem. As a result have been formulated the general problem of optimizing the production of carbon products, which includes the optimality criterion and restrictions.

  2. Deposition and benthic mineralization of organic carbon: A seasonal study from Faroe Islands

    Science.gov (United States)

    á Norði, Gunnvør; Glud, Ronnie N.; Simonsen, Knud; Gaard, Eilif

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for rates were associated to the spring bloom. The dynamics in the benthic solute exchange were governed by stratification that isolated the bottom water during summer and intensified sediment resuspension during winter. The POC export from the euphotic zone could not sustain the benthic mineralization rate (10.8 mol C m- 2 yr- 1) and the calculated burial rate (9.8 mol C m- 2 yr- 1) of organic material in the central basin. This indicated considerable focusing of material in the central part of the fjord. This was supported by the fact that the measured benthic mineralization rate - in contrast to most investigations - actually increased with increasing water depth. In August, when mineralization was at its maximum, the dissolved inorganic carbon (DIC) release from the sediment increased by 2.2 mmol m- 2 d- 1 for every m increase in water depth at 30-60 m depth. Due to sediment focusing, the OC burial in the deepest part of the fjord was 9.8 mol C m- 2 yr- 1. This was 2.4 times higher than the average OC burial in the fjord, estimated from the total sedimentation, and benthic mineralization accounting for the water depth related changes in activity. The study in Kaldbaksfjørður underscore that fjords are important sites for long time OC burial, but emphasize the need for accounting for spatial variations when extrapolating results from a single or few stations to the scale of the entire fjord.

  3. The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite)

    International Nuclear Information System (INIS)

    Pastorková, K.; Jesenák, K.; Kadlečíková, M.; Breza, J.; Kolmačka, M.; Čaplovičová, M.; Lazišťan, F.; Michalka, M.

    2012-01-01

    The suitability of clay minerals - kaolinite, nontronite and sepiolite - is studied for synthesis of nanocomposites based on carbon nanotubes. Particles of iron were used as catalysts. Prior to synthesis, kaolinite and sepiolite were doped by the catalytically active metal, whereas in the case of nontronite the presence was used of this metal in the matrix of this mineral. Synthesis of CNTs was performed by hot filament chemical vapor deposition method. The produced nanocomposites were examined by transmission and scanning electron microscopies and energy dispersive X-ray spectroscopy. The experiment verified the potential of the three microcrystalline phyllosilicates for the growth of carbon nanotubes. Under the same technology conditions, the type of catalyst carrier affects the morphology and structure of the nanotube product markedly.

  4. Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Rysgaard, S.; Christensen, P.B.; Sørensen, Martin Vinther

    2000-01-01

    Organic carbon mineralization was studied in a shallow-water (4 m), sandy sediment and 2 comparatively deep-water (150 and 300 m), soft sediments in Disko Bay, West Greenland. Benthic microalgae inhabiting the shallow-water locality significantly affected diurnal O-2 conditions within the surface...... is regulated primarily by the availability of organic matter and not by temperature. The shallow-water sediment contained a larger meiofauna population than the deep-water muddy sediments. Crustacean nauplia dominated the upper 9 mm while nematodes dominated below. A typical interstitial fauna of species...... layers of the sediment. Algal photosynthetic activity and nitrogen uptake reduced nitrogen effluxes and denitrification rates. Sulfate reduction was the most important pathway for carbon mineralization in the sediments of the shallow-water station. In contrast, high bottom-water NO3- concentrations...

  5. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior

    DEFF Research Database (Denmark)

    Li, Jiying; Crowe, Sean Andrew; Miklesh, David

    2012-01-01

    To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep ...... volume-specific carbon degradation rates were 0.3–1.5 µmol cm−3 d−1; bioturbation coefficient near the sediment surface was 3–8 cm2 yr−1. These results indicate that carbon cycling in large freshwater systems conforms to many of the same trends as in marine systems.......To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep......, suggesting that temporal variability in deeply oxygenated sediments may be greater than previously acknowledged. The oxygen uptake rates (4.4–7.7 mmol m−2 d−1, average 6.1 mmol m−2 d−1) and carbon mineralization efficiency (∼ 90% of deposited carbon) were similar to those in marine hemipelagic and pelagic...

  6. [Effects of variable temperature on organic carbon mineralization in typical limestone soils].

    Science.gov (United States)

    Wang, Lian-Ge; Gao, Yan-Hong; Ding, Chang-Huan; Ci, En; Xie, De-Ti

    2014-11-01

    Soil sampling in the field and incubation experiment in the laboratory were conducted to investigate the responses of soil organic carbon (SOC) mineralization to variable temperature regimes in the topsoil of limestone soils from forest land and dry land. Two incubated limestone soils were sampled from the 0-10 cm layers of typical forest land and dry land respectively, which were distributed in Tianlong Mountain area of Puding county, Guizhou province. The soils were incubated for 56 d under two different temperature regimes including variable temperature (range: 15-25 degrees C, interval: 12 h) and constant temperature (20 degrees C), and the cumulative temperature was the same in the two temperature treatments. In the entire incubation period (56 d), the SOC cumulative mineralization (63.32 mg x kg(-1)) in the limestone soil from dry land (SH) under the variable temperature was lower than that (63.96 mg x kg(-1)) at constant 20 degrees C, and there was no significant difference in the SOC cumulative mineralization between the variable and constant temperature treatments (P variable temperature was significantly lower than that (209.52 mg x kg(-1)) at constant 20 degrees C. The results indicated that the responses of SOC mineralization to the variable temperature were obviously different between SL and SH soils. The SOC content and composition were significantly different between SL and SH soils affected by vegetation and land use type, which suggested that SOC content and composition were important factors causing the different responses of SOC mineralization to variable temperature between SL and SH soils. In addition, the dissolved organic carbon (DOC) content of two limestone soils were highly (P variable temperature mainly influenced SOC mineralization by changing microbial community activity rather than by changing microbial quantity.

  7. Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals

    Science.gov (United States)

    Welch, N.; Crawshaw, J.

    2017-12-01

    Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.

  8. Calibrating the ChemCam LIBS for Carbonate Minerals on Mars

    Science.gov (United States)

    Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  9. Crystal structure of the (REE)–uranyl carbonate mineral shabaite-(Nd)

    Czech Academy of Sciences Publication Activity Database

    Plášil, Jakub; Škoda, R.

    2017-01-01

    Roč. 62, č. 2 (2017), s. 97-105 ISSN 1802-6222 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : shabaite-(Nd) * uranyl carbonate * rare-earth elements * crystal structure * mineral evolution Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 0.609, year: 2016

  10. Benthic Carbon Mineralization and Nutrient Turnover in a Scottish Sea Loch

    DEFF Research Database (Denmark)

    Glud, Ronnie N.; Berg, Peter; Stahl, Henrik

    2016-01-01

    Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated by the b......Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated....... The average benthic O2 exchange as derived by chamber incubations and the eddy covariance approach were similar (14.9 ± 2.5 and 13.1 ± 9.0 mmol m−2 day−1) providing confidence in the two measuring approaches. Moreover, the non-invasive eddy approach revealed a flow-dependent benthic O2 flux that was partly...... ascribed to enhanced ventilation of infauna burrows during periods of elevated flow rates. The ratio in exchange rates of ΣCO2 and O2 was close to unity, confirming that the O2 uptake was a good proxy for the benthic carbon mineralization in this setting. The infauna activity resulted in highly dynamic...

  11. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    Science.gov (United States)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  12. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-12-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  13. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    Science.gov (United States)

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  14. Priming effects of leaves of Laurus nobilis L. and 1,8-cineole on carbon mineralization

    Directory of Open Access Journals (Sweden)

    Burak Kocak

    2016-03-01

    Full Text Available Plant secondary compounds can have stimulating effect on C cycling and change its rate in soils. We examined how leaves of bay laurel (Laurus nobilis L.; Lauraceae and 1,8-cineole (CIN, one of its constituents, affect soil C mineralization and its rate. Leaves and soil samples of bay laurel were taken from Cukurova University Campus (Adana, Turkey growing naturally under Mediterranean climate conditions. Leaves and CIN were considered as the two forms of organic C sources. After determining the level of 1,8-cineole in leaves by gas chromatography-mass spectrometry, soils were mixed with powdered leaves and 1,8-cineole based on their C contents at same and half doses of soil organic C level. Carbon mineralization of all soils was determined over 54 d (28 °C, 80% field capacity. While 1,8-cineole was found as a major constituent of leaves (65% of essential oil, all doses of leaves and CIN increased soil microbial activity. There were significant differences for C mineralization rate between control and all applications (P < 0.05. High C levels of all treatments decreased C mineralization rate compared to control soils. In summary, all treatments stimulated C mineralization and it is possible to conclude that soil microorganisms adapted to use CIN as an energy source.

  15. Mineral Depositions of Calcifying Skin Disorders are Predominantly Composed of Carbonate Apatite

    Directory of Open Access Journals (Sweden)

    Michael Franzen

    2017-08-01

    Full Text Available Subcutaneous calcifications can lead to complications, including pain, inflammation, ulceration and immobilization. Studies on the pathophysiology of mineral compositions and effective treatment modalities are limited. We therefore studied 14 patients with subcutaneous calcifications. Mineral material was collected and analysed by Fourier transform infrared spectrometry. Blood analyses were run to evaluate systemic alterations of mineral metabolism. Carbonate apatite (CAP was found to be the single constituent in the majority of patients (n = 9, 64.3%, 3 cases (21.4% had a composition of CAP and calcium oxalate dihydrate and one case had a combination of CAP and magnesium ammonium phosphate, whereas CAP was the major component in all 4 cases. Only one case showed predominantly calcium oxalate. Thus, CAP was found to be the only or predominant component in most cases of subcutaneous calcifications. Chemical analyses of the mineral compositions may aid in the development of new treatment regimes to improve the solubility of mineral components and to decrease extraosseous calcifications.

  16. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-12-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m -2  yr -1 ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use. © 2016 John Wiley

  17. Mineral Soil Carbon in Managed Hardwood Forests of the Northeastern US

    Science.gov (United States)

    Vario, C.; Friedland, A.; Hornig, C.

    2013-12-01

    New England is characterized by extensive forest cover and large reservoirs of soil carbon (C). In northern hardwood forests, mineral soil C can account for up to 50% of total ecosystem C. There has been an increasing demand for forests to serve both as a C sink and a renewable energy source, and effective management of the ecosystem C balance relies on accurate modeling of each compartment of the ecosystem. However, the dynamics of soil C storage with respect to forest use are variable and poorly understood, particularly in mineral soils. For example, current regional models assume C pools after forest harvesting do not change, while some studies suggest that belowground mineral soil C pools can be affected by disturbances at the soil surface. We quantified mineral soil C pools in previously clear-cut stands in seven research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. The ages of the sites sampled ranged from recently cleared to those with no disturbance history, with 21 forest stands represented in the study. Within each research forest studied, physical parameters such as soil type, forest type, slope and land-use history (aside from forest harvest) did not vary between the stands of different ages. Soil samples were collected to a depth of 60 cm below the mineral-organic boundary using a gas-powered augur and 9.5-cm diameter drill bit. Samples were collected in 10-cm increments in shallow mineral soil and 15-cm increments from 30-60 cm depth. Carbon, nitrogen (N), pH, texture and soil mineralogy were measured across the regional sites. At Bartlett Experimental Forest (BEF) in New Hampshire, mineral soil biogeochemistry in cut and uncut sites was studied at a finer scale. Measurements included soil temperature to 55 cm depth, carbon compound analyses using Py-GCMS and soil microbial messenger RNA extractions from mineral soil. Finally, we simulated C dynamics after harvesting by building a model in Stella, with a particular

  18. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    Science.gov (United States)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  19. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    Science.gov (United States)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an

  20. A Pareto Optimal Auction Mechanism for Carbon Emission Rights

    Directory of Open Access Journals (Sweden)

    Mingxi Wang

    2014-01-01

    Full Text Available The carbon emission rights do not fit well into the framework of existing multi-item auction mechanisms because of their own unique features. This paper proposes a new auction mechanism which converges to a unique Pareto optimal equilibrium in a finite number of periods. In the proposed auction mechanism, the assignment outcome is Pareto efficient and the carbon emission rights’ resources are efficiently used. For commercial application and theoretical completeness, both discrete and continuous markets—represented by discrete and continuous bid prices, respectively—are examined, and the results show the existence of a Pareto optimal equilibrium under the constraint of individual rationality. With no ties, the Pareto optimal equilibrium can be further proven to be unique.

  1. DEVELOPMENT OF A CO2 SEQUESTRATION MODULE BY INTEGRATING MINERAL ACTIVATION AND AQUEOUS CARBONATION. ANNUAL TECHNICAL PROGRESS REPORT

    International Nuclear Information System (INIS)

    George Alexander; M. Mercedes Maroto-Valer; Parvana Aksoy; Harold Schobert

    2006-01-01

    Mineral carbonation provides a potential option for the long-term storage of carbon dioxide. Serpentine has been chosen as the feedstock mineral, due to its abundance and availability. However, the relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has recently been investigated. In addition to the challenges presented by the dissolution of serpentine, another challenge is the subsequent carbonation of the magnesium ions. A stable hydration sphere for the magnesium ion reduces the carbonation kinetics by obstructing the formation of the carbonation products. Accordingly, this research has evaluated the solubility of carbon dioxide in aqueous solution, the interaction between the dissociation products of carbon dioxide, and the carbonation potential of the magnesium ion

  2. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    Energy Technology Data Exchange (ETDEWEB)

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at

  3. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization

    Science.gov (United States)

    A recent review concluded that earthworm presence increases CO2 emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO2 emission nor in stabilized carbon...

  4. Normalization of stable isotope data for carbonate minerals: implementation of IUPAC guideline

    Science.gov (United States)

    Kim, Sang-Tae; Coplen, Tyler B.; Horita, Juske

    2015-01-01

    Carbonate minerals provide a rich source of geochemical information because their δ13C and δ18O values provide information about surface and subsurface Earth processes. However, a significant problem is that the same δ18O value is not reported for the identical carbonate sample when analyzed in different isotope laboratories in spite of the fact that the International Union of Pure and Applied Chemistry (IUPAC) has provided reporting guidelines for two decades. This issue arises because (1) the δ18O measurements are performed on CO2 evolved by reaction of carbonates with phosphoric acid, (2) the acid-liberated CO2 is isotopically fractionated (enriched in 18O) because it contains only two-thirds of the oxygen from the solid carbonate, (3) this oxygen isotopic fractionation factor is a function of mineralogy, temperature, concentration of the phosphoric acid, and δ18O value of water in the phosphoric acid, (4) researchers may use any one of an assortment of oxygen isotopic fractionation factors that have been published for various minerals at various reaction temperatures, and (5) it sometimes is not clear how one should calculate δ18OVPDB values on a scale normalized such that the δ18O value of SLAP reference water is −55.5 ‰ relative to VSMOW reference water.

  5. Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils

    Science.gov (United States)

    Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muñoz, M.

    2014-05-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

  6. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    Science.gov (United States)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    High CO2 partial pressure (pCO2) in deep rock reservoirs causes acidification of the porefluid. Such conditions occur during injection and subsurface storage of CO2 (to prevent the release of greenhouse gas) but also naturally in zones of strong methanogenic microbial activity in organic matter-rich ocean margin sediments. The acidic fluids are corrosive to carbonates and bear the risk of leakage of CO2 gas to the surface. Porefluid acidification may be moderated by processes that increase the alkalinity, i.e. that produce weak acid anions capable of buffering the acidification imposed by the CO2. Often, alkalinity increases as a result of anaerobic microbial activity, such as anaerobic oxidation of methane. However, on a long term the alteration of silicates, in particular, clay minerals, may be a more efficient mechanism of alkalinity production. Under altered temperature, pressure and porefluid composition at depth, clay minerals may change to thermodynamically more stable states, thereby increasing the alkalinity of the porefluid by partial leaching of Mg-(OH)2 and Ca-(OH)2 (e.g. Wallmann et al., 2008; Mavromatis et al., 2014). This alteration may even be enhanced by a high pCO2. Thus, silicate alteration can be essential for a long-term stabilization of volatile CO2 in the form of bicarbonate or may even induce precipitation of carbonate minerals, but these processes are not fully understood yet. The goal of this study is to simulate the alkalinity effect of silicate alteration under diagenetic conditions and high pCO2 by geochemical modeling. We are using the program PHREEQC (Parkhurst and Appelo, 2013) to generate high rock/fluid ratio characteristics for deep subsurface rock reservoirs. Since we are interested in the long-term evolution of diagenetic processes, over millions of years, we do not consider kinetics but calculate the theoretically possible equilibrium conditions. In a first step we are calculating the saturation state of different clay minerals

  7. Optimal Cement Mixtures Containing Mineral Admixtures under Multiple and Conflicting Criteria

    Directory of Open Access Journals (Sweden)

    Nitza M. García

    2018-01-01

    Full Text Available In modern construction industry, fabrication of sustainable concrete has turned the decision-making process into a challenging endeavor. One alternative is using fly ash and nanostructured silica as cement replacements. In these modern mixtures, proper concrete bulk density, percentage of voids, and compressive strength normally cannot be optimized individually. Hereby, a decision-making strategy on the replacement of those components is presented while taking into account those three performance measurements. The relationships among those components upon concrete fabrication required a design of experiments of mixtures to characterize those mineral admixtures. This approach integrates different objective functions that are in conflict and obtains the best compromise mixtures for the performance measures being considered. This optimization strategy permitted to recommend the combined use of fly ash and nanosilica to improve the concrete properties at its early age.

  8. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2

    Science.gov (United States)

    Sulman, Benjamin N.; Phillips, Richard P.; Oishi, A. Christopher; Shevliakova, Elena; Pacala, Stephen W.

    2014-12-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which root-microbe interactions induce SOC losses (through accelerated decomposition or `priming') or indirectly promote SOC gains (via `protection' through interactions with mineral particles). We developed a new SOC model to examine priming and protection responses to rising atmospheric CO2. The model captured disparate SOC responses at two temperate free-air CO2 enrichment (FACE) experiments. We show that stabilization of `new' carbon in protected SOC pools may equal or exceed microbial priming of `old' SOC in ecosystems with readily decomposable litter and high clay content (for example, Oak Ridge). In contrast, carbon losses induced through priming dominate the net SOC response in ecosystems with more resistant litters and lower clay content (for example, Duke). The SOC model was fully integrated into a global terrestrial carbon cycle model to run global simulations of elevated CO2 effects. Although protected carbon provides an important constraint on priming effects, priming nonetheless reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from enhanced ecosystem productivity.

  9. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  10. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  11. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  12. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption

    International Nuclear Information System (INIS)

    Garcia M, A.

    2001-01-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  13. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010 for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg-1y-1 when produced in mineral soils and 0.46 kg CO2e kg-1y-1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.

  14. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  15. Calculation of Site-specific Carbon-isotope Fractionation in Pedogenic Oxide Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, James R.; Zarzycki, Piotr

    2008-07-29

    Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO2(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO2(m) into (oxy)hydroxide crystal structures: one in which the C4+ substitutes for four H+ [CO2(m)A] and another in which C4+ substitutes for (Al3+,Fe3+) + H+ [CO2(m)B]. Calculations of isotope fractionation factors give large differences between the two structures, with the CO2(m)A being isotopically lighter than CO2(m)B by ≈10 per mil in the case of gibbsite and nearly 20 per mil in the case of goethite. The reduced partition function ratio of CO2(m)B structure in goethite differs from CO2(g) by <1 per mil. The predicted fractionation for gibbsite is >10 per mil higher, close to those measured for calcite and aragonite. The surprisingly large difference in the carbon-isotope fractionation factor between the CO2(m)A and CO2(m)B structures within a given mineral suggests that the isotopic signatures of soil (oxy)hydroxide could be heterogeneous.

  16. Welfare Analysis of an Optimal Carbon Tax in Chile

    OpenAIRE

    Cristian Espinosa; Jorge Fornero

    2014-01-01

    We analyze a dynamic stochastic general equilibrium model which includes a negative externality that arises from fossil fuels burnings. The carbon released to the atmosphere by electricity producers is the main driver of climate change. We adapt the optimal tax derived by Golosov et al. (2011) to a small open economy to force polluters to internalize their damages. The results show that the tax benefits outweigh their costs; yet welfare gains seem to be marginal under plausible parameters. We...

  17. The effect of alkaline cations on the Intercalation of Carbon Dioxide in Sepiolite Minerals: a Molecular Dynamics Investigation.

    Science.gov (United States)

    Tavanti, Francesco; Muniz-Miranda, Francesco; Pedone, Alfonso

    2018-03-01

    The ability of the sepiolite mineral to intercalate CO2 molecules inside its channels in the presence of different alkaline cations (K+, Na+ and Li+) has been studied by classical Molecular Dynamics simulations. Starting from an alkaline-free sepiolite crystalline model we built three models with stoichiometry Mg320Si440Al40O1200(OH)160X+40•480H2O. On these models, we gradually replaced the water molecules present in the channels with carbon dioxide and determined the energy of this exchange reaction as well as the structural organization and dynamics of carbon dioxide in the channels. The adsorption energy shows that the Li-containing sepiolite mineral retains more carbon dioxide with respect to those with sodium and potassium cations in the channels. Moreover, the ordered patterns of CO2 molecules observed in the alkaline-free sepiolite mineral are in part destabilized by the presence of cations decreasing the adsorption capacity of this clay mineral.

  18. Influence of nitric acid concentration on the characteristics of active carbons obtained from a mineral coal

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, A.; Temdrara, L.; Addoun, A. [Laboratoire d' Etude Physicochimique des Materiaux et Application a l' Environnement, Faculte de Chimie, USTHB, BP. 32 El Alia, Bab Ezzouar 16111, Algiers (Algeria); Almazan-Almazan, M.C.; Perez-Mendoza, M.; Domingo-Garcia, M.; Lopez-Garzon, F.J [Departamento de Quimica Inorganica, Facultad de Ciencias, 18071 Granada (Spain); Lopez-Domingo, F.J. [Departamento de CCIA, ETS de Ingenieria Informatica y Telecomunicacion, Granada, 18071 (Spain)

    2010-10-15

    This paper deals with the effect of the concentration of nitric acid solutions on the properties of activated carbons obtained by the oxidation of a parent activated carbon. For this purpose a mineral coal from Algeria has been used as raw material to prepare the parent active carbon AC. This was further treated with nitric acid solutions. The analysis of the samples includes the chemical and textural characterization. The former was carried out by selective titrations and FTIR spectroscopy. The latter, by nitrogen and carbon dioxide adsorption at 77 and 273 K, respectively, and by adsorption of organic probes (benzene, dichloromethane, cyclohexane and 2,2-dimethyl butane) at 303 K. The nitrogen adsorption isotherms have been analysed by using the BET equation, {alpha}{sub s}-method and molecular simulation. The Dubinin-Radushkevich approach has been applied to the carbon dioxide and vapours adsorption data. The results show that the treatment with 2 N nitric acid solution is very appropriate because it introduces a large amount of oxygen containing groups with a small change of the textural characteristics of the parent AC. More concentrated nitric acid solutions change in large extent the textural properties although they also introduce large amount of chemical groups. (author)

  19. Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-06-01

    Full Text Available The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1 CT and annual cover crop with the leguminous Calopogonium mucunoides; (2 CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and cover crop with spontaneous B. humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.

  20. Design of the passive personal dosimeter for miners using an allyl diglycol carbonate plastic. Phase 1

    International Nuclear Information System (INIS)

    1983-12-01

    The report summarizes the results of the feasibility study on the design and development of a passive personal dosimeter incorporating an allyl diglycol carbonate plastic (CR39) detector, for use by uranium miners. Based upon the feasibility study, a passive personal dosimeter using a capacitor-type electrostatic enhancement device has been designed. Preliminary tests indicate that the prototype could be used in the mine environment to differentiate radon and thoron daughters with a detection efficiency comparable to that of a typical active device. Further study is required, however, into the possible influence in the mine environment of local variations in charged fraction, upon the calibration of this dosimeter

  1. Peptoid nanosheets as soluble, two-dimensional templates for calcium carbonate mineralization.

    Science.gov (United States)

    Jun, Joo Myung V; Altoe, M Virginia P; Aloni, Shaul; Zuckermann, Ronald N

    2015-06-25

    Nacre-mimetic materials are of great interest, but difficult to synthesize, because they require the ordering of organic and inorganic materials on several length scales. Here we introduce peptoid nanosheets as a versatile two-dimensional platform to develop nacre mimetic materials. Free-floating zwitterionic nanosheets were mineralized with thin films of amorphous calcium carbonate (of 2-20 nm thickness) on their surface to produce planar nacre synthons. These can serve as tunable building blocks to produce layered brick and mortar nanoarchitectures.

  2. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N...

  3. Taxing Strategies for Carbon Emissions: A Bilevel Optimization Approach

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2014-04-01

    Full Text Available This paper presents a quantitative and computational method to determine the optimal tax rate among generating units. To strike a balance between the reduction of carbon emission and the profit of energy sectors, the proposed bilevel optimization model can be regarded as a Stackelberg game between the government agency and the generation companies. The upper-level, which represents the government agency, aims to limit total carbon emissions within a certain level by setting optimal tax rates among generators according to their emission performances. The lower-level, which represents decision behaviors of the grid operator, tries to minimize the total production cost under the tax rates set by the government. The bilevel optimization model is finally reformulated into a mixed integer linear program (MILP which can be solved by off-the-shelf MILP solvers. Case studies on a 10-unit system as well as a provincial power grid in China demonstrate the validity of the proposed method and its capability in practical applications.

  4. Optimizing Location of Bulk Metallic Minerals Processing Based on Greenhouse Gas Avoidance

    Directory of Open Access Journals (Sweden)

    Benjamin C. McLellan

    2011-12-01

    Full Text Available The bulk minerals iron ore and bauxite cause significant greenhouse emissions in their processing to steel and aluminum respectively. The level of these emissions is highly dependent on the source of electrical and thermal energy. However, they also cause significant greenhouse gas emissions from their transportation across the globe for processing. This study examines these minerals from the perspective of greenhouse gas avoidance, examining the location of processing as an option for reducing transportation-based and process-based emissions. The analysis proposes a “radius of reduction” to define the potential for transporting ore to reduce emissions by offshore processing. Overall scenarios for localized steel production indicate potential for 85% reduction of transport emissions in the steel industry and 14% of overall industry emissions. Local high-carbon electricity grids and inefficient production mean that the benefit of reduced transportation is partially counteracted by increased processing emissions. The transportation of all global bauxite to Norway and other nations with low-emissions electricity for production of aluminum could result in an overall reduction of industry emissions of up to 44%.

  5. Temperature response of permafrost soil carbon is attenuated by mineral protection.

    Science.gov (United States)

    Gentsch, Norman; Wild, Birgit; Mikutta, Robert; Čapek, Petr; Diáková, Katka; Schrumpf, Marion; Turner, Stephanie; Minnich, Cynthia; Schaarschmidt, Frank; Shibistova, Olga; Schnecker, Jörg; Urich, Tim; Gittel, Antje; Šantrůčková, Hana; Bárta, Jiři; Lashchinskiy, Nikolay; Fuß, Roland; Richter, Andreas; Guggenberger, Georg

    2018-05-18

    Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO 2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO 2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils. © 2018 John Wiley & Sons Ltd.

  6. Soil mineral assemblage influences on microbial communities and carbon cycling under fresh organic matter input

    Science.gov (United States)

    Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.

    2017-12-01

    The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh

  7. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    Science.gov (United States)

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  8. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    Science.gov (United States)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected

  9. Removal of phenol from synthetic wastewater using carbon-mineral composite: Batch mechanisms and composition study

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Alrozi, Rasyidah; Aziz, Hamidi Abdul; Han, Tan Yong; Yusoff, Mohd Suffian

    2017-09-01

    This study investigates the treatability of composite adsorbent made from waste materials and minerals which is widely available in Malaysia. The composite adsorbent was prepared based on wet attrition method which focuses on the determination of optimum dosage of each of raw materials amount by conventional design of experiment work. Zeolite, activated carbon, rice husk and limestone were ground to obtained particle size of 150 µm. 45.94% zeolite, 15.31% limestone, 4.38% activated carbon, 4.38% rice husk carbon and 30% of ordinary Portland cement (OPC). The mixture was mixed together under pre-determined mixing time. About 60% (by weight) of water was added and the mixture paste was allowed to harden for 24 hours and then submersed in water for three days for curing. Batch experimental study was performed on synthetic dissolving a known amount of solid crystal phenol with distilled water into the volumetric flasks. From the batch experimental study, it was revealed that the optimum shaking speed for removal of phenol was 200 rpm. The removal efficiency was 65%. The optimum shaking time for removing phenol was 60 minutes; the percentage achieved was 55%. The removal efficiency increased with the increased of the amount of composite adsorbent. The removal efficiency for optimum adsorbent dosage achieved 86%. Furthermore, the influence of pH solution was studied. The optimum pH for removing phenol was pH 6, with the removal percentage of 95%. The results implies that carbon-mineral based composite adsorbent is promising replacement for commercial adsorbent that provides alternative source for industrial adsorption application in various types of effluent treatment system.

  10. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  11. From Carbonatite to Ikaite: How high-T carbonates are transformed into low-T carbonate minerals in SW Greenland

    Science.gov (United States)

    Stockmann, G. J.; Tollefsen, E.; Ranta, E.; Skelton, A.; Sturkell, E.; Lundqvist, L.

    2015-12-01

    The 1300 Ma Grønnedal-Íka igneous complex in southwest Greenland comprises nepheline syenites and carbonatites. It belongs to a suite of intrusions formed 1300-1100 Ma ago referred to as the Gardar period. In modern time (the last ca. 8000 years), fluid-rock interactions involving the nepheline syenites and carbonatites gives rise to about one thousand submarine columns made of the rare low-T mineral ikaite (CaCO3x6H2O). The columns are found in a shallow, narrow fjord named Ikka Fjord and their distribution clearly follows the outcrop of the Grønnedal-Íka complex. When meteoric water percolates through the highly fractured complex, a sodium carbonate solution of pH 10 is formed through hitherto unknown fluid-rock reactions. This basic solution seeps up through fractures at the bottom of Ikka Fjord and when mixed with seawater, the mineral ikaite is formed. As the seepage water has a lower density than seawater, there is an upwards flow that creates columns. What is peculiar about ikaite is its limited stability making it unstable above +6 °C. Isotopic studies of ikaite reveal a seawater origin for the Ca2+ ions, and the carbonatite being the most likely source for the CO32- ions. The carbonatite is mainly of søvite composition (CaCO3) with high contents of siderite and ankerite in certain areas. The nepheline syenites contain Na,K-rich minerals like nepheline, alkali-feldspar, aegirine-augite, katophorite and biotite. Nepheline is mainly replaced by muscovite, and aegirine-augite partly by chlorite, which could release sodium into solution. A dolerite dyke of unknown age prompted extensive mineralization of magnetite by activating hydrothermal fluid convection. The fluid interacted with the carbonatite, replacing siderite and ankerite by magnetite and later hematite. In a newly launched project at Stockholm University, we are trying to unravel the chemical reactions taking place inside the Grønnedal-Íka igneous complex leading to the formation of the

  12. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    Energy Technology Data Exchange (ETDEWEB)

    Stumpe, Britta, E-mail: britta.stumpe@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany); Marschner, Bernd, E-mail: bernd.marschner@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-01-15

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with {sup 14}C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  13. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    International Nuclear Information System (INIS)

    Stumpe, Britta; Marschner, Bernd

    2010-01-01

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with 14 C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  14. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate

    Science.gov (United States)

    Li, Dong; Yin, Wan-zhong; Xue, Ji-wei; Yao, Jin; Fu, Ya-feng; Liu, Qi

    2017-07-01

    The effects of carbonate minerals (dolomite and siderite) on the flotation of hematite using sodium oleate as a collector were investigated through flotation tests, supplemented by dissolution measurements, solution chemistry calculations, zeta-potential measurements, Fourier transform infrared (FTIR) spectroscopic studies, and X-ray photoelectron spectroscopy (XPS) analyses. The results of flotation tests show that the presence of siderite or dolomite reduced the recovery of hematite and that the inhibiting effects of dolomite were stronger. Dissolution measurements, solution chemistry calculations, and flotation tests confirmed that both the cations (Ca2+ and Mg2+) and CO3 2- ions dissolved from dolomite depressed hematite flotation, whereas only the CO3 2- ions dissolved from siderite were responsible for hematite depression. The zeta-potential, FTIR spectroscopic, and XPS analyses indicated that Ca2+, Mg2+, and CO3 2- (HCO3 -) could adsorb onto the hematite surface, thereby hindering the adsorption of sodium oleate, which was the main reason for the inhibiting effects of carbonate minerals on hematite flotation.

  15. Enhanced electro-Fenton Mineralization of Acid Orange 7 Using a Carbon Nanotube Fiber Based Cathode

    Science.gov (United States)

    Huong Le, Thi Xuan; Alemán, Belén; Vilatela, Juan J.; Bechelany, Mikhael; Cretin, Marc

    2018-02-01

    A new cathodic material for electro-Fenton (EF) process was prepared based on a macroscopic fiber (CNTF) made of mm long carbon nanotubes directly spun from the gas phase by floating catalyst CVD, on a carbon fiber (CF) substrate. CNTF@CF electrode is a highly graphitic material combining a high surface area ( 260 m2/g) with high electrical conductivity and electrochemical stability . One kind of azo dye, acid orange 7 (AO7), was used as model bio-refractory pollutant to be treated at CNTF@CF cathode in acidic aqueous medium (pH 3.0). The experimental results pointed out that AO7 and its organic intermediate compounds were totally mineralized by hydroxyl radical generated from Fenton reaction. In fact, 96.7 % of the initial TOC was eliminated in 8h of electrolysis by applying a current of -25 mA and ferrous ions as catalyst at concentration of 0.2 mM. At the same electrolysis time, only 23.7 % of TOC removal found on CF support which proved the high mineralization efficiency of new material thanks to CNTs deposition. The CNTF@CF cathode maintained stable its activity during five experimental cycles of EF set-up. The results indicated that CNTF@CF material could be a potential choice for wastewater treatment containing bio-refractory by electrochemical advanced oxidation processes (EAOPs).

  16. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  17. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

    Science.gov (United States)

    Madupalli, Honey; Pavan, Barbara; Tecklenburg, Mary M. J.

    2017-11-01

    The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR ν3 region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A-site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.

  18. Conventional intensive logging promotes loss of organic carbon from the mineral soil.

    Science.gov (United States)

    Dean, Christopher; Kirkpatrick, James B; Friedland, Andrew J

    2017-01-01

    There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short-term empirical studies, longer-term empirical studies and long-term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long-term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer-term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short-term SOC flux varies around zero. The long-term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long-term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil-like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in

  19. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    Science.gov (United States)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    Recent evidence highlights the importance of organo-mineral interactions in regulating the source or sink capacity of soil. High surface area soils, such as allophane-rich or clay-rich soils, retain organic matter (OM) via sorption to mineral surfaces which can also contribute physical isolation in interlayer spaces. Despite the direct correlation between mineral surfaces and OM accumulation, the pedogenic processes controlling the abundance of reactive surface areas and their distribution in the mineral matrix remains unclear. As global soil temperatures rise, the dissolution of primary minerals and formation of new secondary minerals may be thermodynamically favored as part of soil weathering process. Newly formed minerals can supply surfaces for organo-metallic bonding and may, therefore, stabilize OM by surface bonding and physical exclusion. This is especially relevant in environments that intersect terrestrial and aquatic systems, such as the capillary fringe zone in riparian ecosystems. To test the mechanisms of mineral surface area protection of OM, we facilitated secondary precipitation of alumino-silicates in the presence of OM held at two different temperatures in natural Nisqually River sediments (Mt Rainier, WA). This was a three month reaction intended to simulate early pedogenesis. To tease out the influence of mineral surface area increase during pedogenesis, we incubated the sediments at two different soil moisture contents to induce biodegradation. We measured OM desorption, biodegradation, and the molecular composition of mineral-associated OM both prior to and following the temperature manipulation. To simulate the saturation of capillary fringe sediment and associated transport and reaction of OM, column experiments were conducted using the reacted sediments. More co-precipitation was observed in the 20°C solution compared to the 4°C reacted solution suggesting that warming trends alter mineral development and may remove more OM from solution

  20. Negative CO2 emissions via subsurface mineral carbonation in fractured peridotite

    Science.gov (United States)

    Kelemen, P. B.; Matter, J.

    2014-12-01

    Uptake of CO2 from surface water via mineral carbonation in peridotite can be engineered to achieve negative CO2 emissions. Reaction with peridotite, e.g., CO2 + olivine (A), serpentine (B) and brucite (C), forms inert, non-toxic, solid carbonates such as magnesite. Experimental studies show that A can be 80% complete in a few hours with 30 micron powders and elevated P(CO2) [1,2,3]. B is slower, but in natural systems the rate of B+C is significant [4]. Methods for capture of dilute CO2 via mineral carbonation [4,5,6,7] are not well known, though CO2 storage via mineral carbonation has been discussed for decades [8,9]. Where crushed peridotite is available, as in mine tailings, increased air or water flow could enhance CO2 uptake at a reasonable cost [4,5]. Here we focus on enhancing subsurface CO2 uptake from surface water flowing in fractured peridotite, in systems driven by thermal convection such as geothermal power plants. Return of depleted water to the surface would draw down CO2 from the air [6,7]. CO2 uptake from water, rate limited by flow in input and output wells, could exceed 1000 tons CO2/yr [7]. If well costs minus power sales were 0.1M to 1M and each system lasts 10 years this costs oil industry. Uptake of 1 Gt CO2/yr at 1000 t/well/yr requires 1M wells, comparable to the number of producing oil and gas wells in the USA. Subsurface CO2 uptake could first be applied in coastal, sub-seafloor peridotite with onshore drilling. Sub-seafloor peridotite is extensive off Oman, New Caledonia and Papua New Guinea, with smaller amounts off Spain, Morocco, USA, etc. This would be a regional contribution, used in parallel with other methods elsewhere. To achieve larger scale is conceivable. There is a giant mass of seafloor peridotite along slow-spreading mid-ocean ridges. Could robotic drills enhance CO2 uptake at a reasonable cost, while fabric chimneys transport CO2-depleted water to the sea surface? Does anyone know James Cameron's phone number? [1] O

  1. Sorption of carbon, cobalt, nickel, strontium, iodine, cesium, americium and neptumium in rocks and minerals

    International Nuclear Information System (INIS)

    Pinnoja, S.; Jaakkola, T.; Kaemaeraeinen, E.L.; Koskinen, A.; Lindberg, A.

    1984-09-01

    Sorption of the radionuclides C-14, Co-58, Ni-63, I-125, Sr-85, Cs-134, Am-241 and Np-237, which are important in nuclear waste, were studied in rock by autoradiographic method. Samples were selected to represent common rocks and minerals in Finnish bedrock: rapakivi granite, tonalite, mica gneiss, granodiorite, biotite, quartz, plagioclase, K feldspar and hornblende. Polished thin sections were used to determine the contributions of different minerals to the sorption of the radionuclides. Sawn rock pieces (1.2 x 1.2 x 1.6 cm) were used to determine the Ksub(a)-values for rough rock surfaces where penetration into the rock matrix was found. The sorption order of the elements determined with the rock pieces was Ksub(a)sup(Cs)>Ksub(a)sup(Ni)>Ksub(a)sup(Co)>Ksub(a)sup(Sr)>Ksub(a)sup(C)>Ksub(a)sup(I). The same order of sorption was determined with thin sections for all nuclides except carbon, which was not sorbed on thin sections. Wide differences in the Ksub(a)-values for different minerals were found for Cs and Sr. The sorption mechanism for these elements is presumed to be ion exchange. The Ksub(a)-values of Cs varied between 0.1 x 10 -4 and 600 x 10 -4 m 3 /m 2 and those for Sr between 0.01 x 10 -4 and 10 x 10 -4 m 3 /m 2 . The lowest values were determined for quartz and the highest for biotite. Radionuclides having a tendency to form pseudocolloids and hydroxide precipitates (Am, Np, Ni) were sorbed on thin sections with only small variation in Ksub(a)-values: all values were between 1 x 10 -4 and 10 x 10 -4 and 100 x 10 -4 m 3 /m 2 . A very good agreement was found between experimental and calculated Ksub(a)-values for rock thin sections. Ksub(a)-values were calculated by multiplying the percentages of individual minerals in the rock by the Ksub(a)-values of the corresponding pure minerals and summing the results. Calculated Ksub(a)-values were occasionally up to 50% smaller than the experimental ones, owing to the low contents of some high adsorbing minerals

  2. The role of organo-mineral interactions on the capacity of soils to store carbon

    Science.gov (United States)

    Georgiou, K.; Abramoff, R. Z.; Riley, W. J.; Torn, M. S.

    2017-12-01

    Observed patterns of soil organic carbon (SOC) content across geochemical regimes are signatures of process and provide opportunities to understand the underlying decomposition and stabilization mechanisms that can guide their representation in models. The type of sorption equation used in soil decomposition models has large implications for both SOC stock and its temperature sensitivity. Here we compared different model formulations of SOC sorption to mineral surfaces, motivated by the myriad of chemical associations between organic and mineral surfaces, and used laboratory and field incubations to inform model parameters. We explored linear, Langmuir, and Freundlich adsorption models, where the latter emerges from heterogeneous compositions of substrate and surface components. We show the effect of model representations on predicted trends of SOC as a function of mineralogy and discuss the role of soil C saturation on emergent patterns. Specifically, our results highlight that the response of mineral-associated (`protected') SOC to changes in plant C inputs depends greatly on the C saturation deficit of the soil and thus, the representation of organo-mineral interactions in models can lead to nonlinear steady-state responses in protected SOC. We also find that, consistent with field experiments, the trend in protected SOC and mineral C saturation capacity is linear, but, interestingly, the slope depends on the degree of C saturation. We contend that this latter finding is an important consideration for field studies that did not find a universal slope and interpreted this as an inability of mineralogy to explain observed patterns. Our results also suggest that warming affects this slope, with higher temperatures causing a decrease in the amount of protected C for a given saturation capacity and C input rate. This means that more C inputs will be needed to keep the same amount of protected C at higher temperatures. Organo-mineral interactions play a key role in

  3. Visible-near-infrared spectroscopy can predict the clay/organic carbon and mineral fines/organic carbon ratios

    DEFF Research Database (Denmark)

    Hermansen, Cecilie; Knadel, Maria; Møldrup, Per

    2016-01-01

    The ratios of mineral fines (carbon (OC), consisting of the n-ratio (i.e., the clay/OC ratio) and m-ratio (i.e., the fines/OC ratio) have recently been used to analyze and predict soil functional properties such as tilth conditions, clay dispersibility, degree...... from seven Danish and one Greenlandic fields, with a large textural range (clay: 0.027–0.355 kg kg−1; OC: 0.011–0.084 kg kg−1; n-ratio: 0.49–16.80; m-ratio: 1.46–32.14), were analyzed for texture and OC and subsequently scanned with a vis-NIR spectrometer from 400 to 2500 nm. The spectral data were...

  4. Calculating carbon mass balance from unsaturated soil columns treated with CaSO₄₋minerals: test of soil carbon sequestration.

    Science.gov (United States)

    Han, Young-Soo; Tokunaga, Tetsu K

    2014-12-01

    Renewed interest in managing C balance in soils is motivated by increasing atmospheric concentrations of CO2 and consequent climate change. Here, experiments were conducted in soil columns to determine C mass balances with and without addition of CaSO4-minerals (anhydrite and gypsum), which were hypothesized to promote soil organic carbon (SOC) retention and soil inorganic carbon (SIC) precipitation as calcite under slightly alkaline conditions. Changes in C contents in three phases (gas, liquid and solid) were measured in unsaturated soil columns tested for one year and comprehensive C mass balances were determined. The tested soil columns had no C inputs, and only C utilization by microbial activity and C transformations were assumed in the C chemistry. The measurements showed that changes in C inventories occurred through two processes, SOC loss and SIC gain. However, the measured SOC losses in the treated columns were lower than their corresponding control columns, indicating that the amendments promoted SOC retention. The SOC losses resulted mostly from microbial respiration and loss of CO2 to the atmosphere rather than from chemical leaching. Microbial oxidation of SOC appears to have been suppressed by increased Ca(2+) and SO4(2)(-) from dissolution of CaSO4 minerals. For the conditions tested, SIC accumulation per m(2) soil area under CaSO4-treatment ranged from 130 to 260 g C m(-1) infiltrated water (20-120 g C m(-1) infiltrated water as net C benefit). These results demonstrate the potential for increasing C sequestration in slightly alkaline soils via CaSO4-treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Metabolism of carbon-14 labelled l-tryptophan, l-kynerenine and hydroxy-l-kynerenine in miners with scleroderma

    International Nuclear Information System (INIS)

    Hankes, L.V.; De Bruin, E.; Jansen, C.R.; Voster, L.; Schmaeler, M.

    1977-01-01

    Six South African white miners were studied with the 2-g l-tryptophan load test and tracer doses of L-tryptophan-7a-carbon-14, L-kynurenine-keto-carbon-14 and hydroxy-L-kynerenine-keto-carbon-14. The breath 14 CO 2 and 14 urinary metabolites were measured. When they were compared with a previous study of American women with scleroderma, similar 14 CO 2 and tryptophan metabolite excretion patterns were observed in the data from the miners. The labelled quinolinic acid excretion was more significantly elevated in the South African miners' urine than in the urine of the American women. The data from both studies suggest that some patients with scleroderma have an altered step in the tryptophan metabolic pathway after hydroxy-anthranilic acid. What relationship exists between the induction of pulmonary silicosis and the subsequent development of scleroderma, requires additional human studies

  6. Proceedings of the international symposium on control and optimization in minerals, metals and materials processing

    International Nuclear Information System (INIS)

    Hodouin, D.; Bazin, C.; Desbiens, A.

    1999-01-01

    This is the first symposium on Process optimization and Control in Ore Processing, Extractive Metallurgy and Material Science ever sponsored by Metsoc. Sure enough, papers dealing with these topics are regularly presented at the Annual Conference of Metallurgists, but they have always been, so far, scattered through different symposia dealing with specific mineral or metallurgical processes. The novelty, at this symposium, is that our central theme reflects the methods rather than the processes, a change of focus that should foster interdisciplinary exchanges in Metallurgical Engineering. The various methods reviewed in the symposium proceedings are presented in four chapters covering the following topics: data acquisition and filtering, process monitoring; process modelling; process control; and process optimization. We hope that the 41 papers collected in this volume can sensitize the reader to the importance of modern data processing techniques for the valorization of available process data to improve the metallurgical and economic efficiency of industrial processes. They should also incite production managers, research directors and educational leaders to expand their efforts in the field

  7. Soil Organic Carbon and Its interaction with Minerals in Two Hillslopes with Different Climates and Erosion Processes

    Science.gov (United States)

    Wang, X.; Yoo, K.; Wackett, A. A.; Gutknecht, J.; Amundson, R.; Heimsath, A. M.

    2017-12-01

    Climate and topography have been widely recognized as important factors regulating soil organic carbon (SOC) dynamics but their interactive effects on SOC storage and its pools remain poorly constrained. Here we aimed to evaluate SOC storages and carbon-mineral interactions along two hillslope transects with moderately different climates (MAP: 549 mm vs. 816 mm) in Southeastern Australia. We sampled soil along the convex (eroding)-to-convergent (depositional) continuum at each hillslope transect and conducted size and density fractionation of these samples. In responses to the difference in climate factor, SOC inventories of eroding soils were twice as large at the wetter site compared with the drier site but showed little difference between two sites in depositional soils. These trends in SOC inventories were primarily controlled by SOC concentrations and secondarily by soil thicknesses. Similar patterns were observed for mineral associated organic carbon (MOC), and the abundances of MOC were controlled by the two independently operating processes affecting MOC concentration and fine-heavy fraction minerals. The contents and species of secondary clay and iron oxide minerals, abundances of particulate organic carbon, and bioturbation affected MOC concentrations. In contrast, the abundances of fine-heavy fraction minerals were impacted by erosion mechanisms that uniquely responded to regional- and micro- climate conditions. Consequently, topographic influences on SOC inventories and carbon-mineral interactions were more strongly pronounced in the drier climate where vegetation and erosion mechanisms were sensitive to microclimate. Our results highlight the significance of understanding topography and erosional processes in capturing climatic effects on soil carbon dynamics.

  8. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation

    International Nuclear Information System (INIS)

    Ukwattage, N.L.; Ranjith, P.G.; Wang, S.H.

    2013-01-01

    Mineral carbonation of alkaline waste materials is being studied extensively for its potential as a way of reducing the increased level of CO 2 in the atmosphere. Carbonation converts CO 2 into minerals which are stable over geological time scales. This process occurs naturally but slowly, and needs to be accelerated to offset the present rate of emissions from power plants and other emission sources. The present study attempts to identify the potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation. In the study, two operational parameters that could affect the reaction process were tested to investigate their effect on mineralization. Coal fly ash was mixed with water to different water-to-solid ratios and samples were carbonated in a pressure vessel at different initial CO 2 pressures. Temperature was kept constant at 40 °C. According to the results, one ton of Hazelwood fly ash could sequester 7.66 kg of CO 2 . The pressure of CO 2 inside the vessel has an effect on the rate of CO 2 uptake and the water-to-solid ratio affects the weight gain after the carbonation of fly ash. The results confirm the possibility of the manipulation of process parameters in enhancing the carbonation reaction. - Highlights: ► Mineral sequestration CO 2 by of coal fly ash is a slow process under ambient conditions. ► It can be accelerated by manipulating the process parameters inside a reactor. ► Initial CO 2 pressure and water to solid mixing ratio inside the reactor are two of those operational parameters. ► According to the test results higher CO 2 initial pressure gives higher on rates of CO 2 sequestration. ► Water to fly ash mixing ratio effect on amount of CO 2 sequestered into fly ash

  9. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications

    DEFF Research Database (Denmark)

    Douglas, Timothy; Lapa, Agata; Samal, Sangram K.

    carbonate to generate composite biomaterials for bone regeneration. GG is an inexpensive, biotechnologically produced anionic polysaccharide, from which hydrogels for cartilage regeneration have been formed by crosslinking with divalent ions[3]. Methods: GG hydrogels were loaded with the enzyme urease...... by incubation in 5% (w/v) urease solution and mineralized for 5 days in five different media denoted as UA, UB, UC, UD and UE, which contained urea (0.17 M) and different concentrations of CaCl2 and MgCl2 (270:0, 202.5:67.5, 135:135, 67.5:202.5 and 0:250, respectively (mmol dm-3)). Discs were autoclaved...

  11. Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite

    Science.gov (United States)

    Coleyshaw, Esther E.; Crump, Gregory; Griffith, William P.

    2003-08-01

    The Raman (200-4000 cm -1) and infrared (600-4000 cm -1) spectra of four rare carbonate hydrate minerals are reported. These are naturally occurring and synthetic ikaite CaCO 3 · 6H 2O, and nesquehonite MgCO 3 · 3H 2O; natural monohydrocalcite CaCO 3 · H 2O, and synthetic lansfordite MgCO 3 · 5H 2O. The spectra of synthetic ikaite partially substituted with 2H 2O and also with 13C were measured, as were those of synthetic deuteriated nesquehonite. Spectra of ikaite and lansfordite, both of which decompose at room temperatures, were measured below 0 °C. Assignments of fundamental modes are proposed.

  12. Graphene oxide/oxidized carbon nanofiber/mineralized hydroxyapatite based hybrid composite for biomedical applications

    Science.gov (United States)

    Murugan, N.; Sundaramurthy, Anandhakumar; Chen, Shen-Ming; Sundramoorthy, Ashok K.

    2017-12-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP), a multi-mineral substituted calcium phosphate is the main mineral component of tooth enamel and bone, has become an important biomaterial for biomedical applications. However, as-synthesized HAP has poor mechanical properties and inferior wear resistance, so it is not suitable to use in bone tissue engineering applications. We report the successful incorporation of oxidized carbon nanofibers (O-CNF) and graphene oxide (GO) into the mineralized hydroxyapatite (M-HAP) which showed excellent mechanical and biological properties. GO improved the high mechanical strength and corrosion protection of the substrate in simulated body fluid (SBF) solution and promoted the viability of osteoblasts MG63 cells. As-prepared M-HAP/O-CNF/GO composite showed materials characteristics that similar to natural bone (M-HAP) with high mechanical strength. The resultant M-HAP/O-CNF/GO composite was characterized out by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR), respectively. The mechanical strength of the material was determined by Vicker’s micro-hardness method and it was found that M-HAP/O-CNF/GO (468  ±  4 Hv) composite has superior mechanical properties than M-HAP (330  ±  3 Hv) and M-HAP/GO (425  ±  5 Hv) samples. In addition, antibacterial activity of the composite was studied against Staphylococcus aureus and Escherichia coli. Furthermore, the cell viability of the composite was observed in vitro against osteoblast cells. All these studies confirmed that the M-HAP/O-CNF/GO composite can be considered as potential candidate for dental and orthopedic applications.

  13. Biomimetic mineralization of calcium carbonate/carboxymethylcellulose microspheres for lysozyme immobilization

    International Nuclear Information System (INIS)

    Lu Zheng; Zhang Juan; Ma Yunzi; Song Siyue; Gu Wei

    2012-01-01

    Porous calcium carbonate/carboxymethylcellulose (CaCO 3 /CMC) microspheres were prepared by the biomimetic mineralization method for lysozyme immobilization via adsorption. The size and morphology of CaCO 3 /CMC microspheres were characterized by transmitted electron microscopy (TEM) and zeta potential measurement. The lysozyme immobilization was verified by Fourier transform infrared (FTIR) spectroscopy. The effects of pHs and temperatures on lysozyme adsorption were investigated as well. It was revealed that CaCO 3 /CMC microspheres could immobilize lysozyme efficiently via electrostatic interactions and a maximum adsorption capacity of 450 mg/g was achieved at pH 9.2 and 25 °C. Moreover, it was found that the adsorption process fitted well with the Langmuir isothermal model. In addition, UV, fluorescence, and circular dichroism (CD) spectroscopic studies showed that lysozyme maintained its original secondary structure during the adsorption/desorption process. Our study therefore demonstrated that CaCO 3 /CMC microsphere can be used as a cost-effective and efficient support for lysozyme immobilization. - Graphical abstract: CaCO 3 /CMC microsphere was prepared by a facile biomimetic mineralization method and can be used as an efficient and cost-effective support for lysozyme immobilization. Highlights: ► CaCO 3 /CMC microspheres were prepared by the biomimetic mineralization method. ► Lysozyme was efficiently immobilized to CaCO 3 /CMC microspheres via adsorption. ► A maximum adsorption capacity of 450 mg/g was obtained at pH 9.2 and 25 °C. ► The original secondary structure of lysozyme was maintained upon immobilization.

  14. Bench-scale studies on capture of mercury on mineral non-carbon based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Wendt, Jost O.L. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Zhang, Junying; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    A new high-temperature, mineral non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600 C. The sorbent is consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600 and 1,100 C and requires activation of the minerals contained within the sorbents. Mercury capture is dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1,000 C and increases monotonically with temperature. The presence of oxygen is also the required. Freshly activated sorbent is the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation is suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that are both contained within the sorbent. Deactivation occurs at temperatures higher than 1,000 C, and this is due to melting of the substrate and pore closure. The situation in packed beds is complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO{sub 2} on poor Sorbent B is much larger than sorbent A.

  15. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Brent Constantz; Randy Seeker; Martin Devenney

    2010-06-30

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  16. Metal immobilization by sludge-derived biochar: roles of mineral oxides and carbonized organic compartment.

    Science.gov (United States)

    Zhang, Weihua; Huang, Xinchen; Jia, Yanming; Rees, Frederic; Tsang, Daniel C W; Qiu, Rongliang; Wang, Hong

    2017-04-01

    Pyrolyzing sludge into biochar is a potentially promising recycling/disposal solution for municipal wastewater sludge, and the sludge-derived biochar (SDBC) presents an excellent sorbent for metal immobilization. As SDBC is composed of both mineral oxides and carbonized organic compartment, this study therefore compared the sorption behaviour of Pb and Zn on SDBC to those of individual and mixture of activated carbon (AC) and amorphous aluminium oxide (Al 2 O 3 ). Batch experiments were conducted at 25 and 45 °C, and the metal-loaded sorbents were artificially aged in the atmosphere for 1-60 days followed by additional sorption experiments. The Pb sorption was generally higher than Zn sorption, and the co-presence of Pb reduced Zn sorption on each studied sorbent. Higher sorption capacities were observed at 45 °C than 25 °C for SDBC and AC, while the opposite was shown for Al 2 O 3 , indicating the significance of temperature-dependent diffusion processes in SDBC and AC. Nevertheless, metal sorption was more selective on Al 2 O 3 that showed a greater affinity towards Pb over Zn under competition, correlating with the reducible fraction of sequential extraction. Furthermore, significant amounts of Pb and Zn were additionally sorbed on SDBC following 30-day ageing. The X-ray diffraction revealed the formation of metal-phosphate precipitates, while the X-ray photoelectron spectroscopy showed a larger quantity of metal-oxygen bonding after 30-day ageing of metal-loaded SDBC. The results may imply favourable long-term transformation and additional sorption capacity of SDBC. In conclusion, SDBC resembles the sorption characteristics of both organic and mineral sorbents in different aspects, presenting an appropriate material for metal immobilization during soil amendment.

  17. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Yakobson, Boris I [Rice University

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures of high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.

  18. Optimizing a Laser Process for Making Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivaram; Nikolaev, Pavel; Holmes, William

    2010-01-01

    A systematic experimental study has been performed to determine the effects of each of the operating conditions in a double-pulse laser ablation process that is used to produce single-wall carbon nanotubes (SWCNTs). The comprehensive data compiled in this study have been analyzed to recommend conditions for optimizing the process and scaling up the process for mass production. The double-pulse laser ablation process for making SWCNTs was developed by Rice University researchers. Of all currently known nanotube-synthesizing processes (arc and chemical vapor deposition), this process yields the greatest proportion of SWCNTs in the product material. The aforementioned process conditions are important for optimizing the production of SWCNTs and scaling up production. Reports of previous research (mostly at Rice University) toward optimization of process conditions mention effects of oven temperature and briefly mention effects of flow conditions, but no systematic, comprehensive study of the effects of process conditions was done prior to the study described here. This was a parametric study, in which several production runs were carried out, changing one operating condition for each run. The study involved variation of a total of nine parameters: the sequence of the laser pulses, pulse-separation time, laser pulse energy density, buffer gas (helium or nitrogen instead of argon), oven temperature, pressure, flow speed, inner diameter of the flow tube, and flow-tube material.

  19. Mesocosm-Scale Experimental Quantification of Plant-Fungi Associations on Carbon Fluxes and Mineral Weathering

    Science.gov (United States)

    Andrews, M. Y.; Palmer, B.; Leake, J. R.; Banwart, S. A.; Beerling, D. J.

    2009-12-01

    The rise of land plants in the Paleozoic is classically implicated as driving lower atmospheric CO2 levels through enhanced weathering of Ca and Mg bearing silicate minerals. However, this view overlooks the fact that plants coevolved with associated mycorrhizal fungi over this time, with many of the weathering processes usually ascribed to plants actually being driven by the combined activities of roots and mycorrhizal fungi. Here we present initial results from a novel mesocosm-scale laboratory experiment designed to allow investigation of plant-driven carbon flux and mineral weathering at different soil depths under ambient (400 ppm) and elevated (1500 ppm) atmospheric CO2. Four species of plants were chosen to address evolutionary trends in symbiotic mycorrhizal association and rooting depth on biologically driven silicate weathering under the different CO2 regimes. Gymnosperms were used to investigate potential differences in weathering capabilities of two fungal symbioses: Sequoia sempervirens and Metasequoia glyptostroboides (arbuscular mycorrhizal, AM) and Pinus sylvestris (ectomycorrhizal, EM), and the shallow rooted ancient fern, Osmunda regalis, used to provide a contrast to the three more deeply rooted trees. Plants were grown in a cylindrical mesocosm with four horizontal inserts at each depth. These inserts are a mesh-covered dual-core unit whereby an inner core containing silicate minerals can be rotated within an outer core. The mesh excludes roots from the cylinders allowing fungal-rock pairings to be examined at each depth. Each core contains either basalt or granite, each with severed (rotated cores) or intact (static cores) mycorrhizae. This system provides a unique opportunity to examine the ability of a plant to weather minerals with and without its symbiotic fungi. Preliminary results indicate marked differences in nutritional and water requirements, and response to elevated CO2 between the species. The bulk solution chemistries (p

  20. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

  1. Explorative economic analysis of a novel biogas upgrading technology using carbon mineralization. A case study for Spain

    NARCIS (Netherlands)

    Starr, Katherine; Ramirez, Andrea; Meerman, Hans; Villalba, Gara; Gabarrell, Xavier

    2015-01-01

    This paper studies the potential application of a novel biogas upgrading technology called alkaline with regeneration (AwR). This technology uses an alkaline solution, along with carbon mineralization, to remove and store CO2 from biogas in order to create biomethane, a substitute of natural gas.

  2. Carbon and nutrient use efficiencies optimally balance stoichiometric imbalances

    Science.gov (United States)

    Manzoni, Stefano; Čapek, Petr; Lindahl, Björn; Mooshammer, Maria; Richter, Andreas; Šantrůčková, Hana

    2016-04-01

    Decomposer organisms face large stoichiometric imbalances because their food is generally poor in nutrients compared to the decomposer cellular composition. The presence of excess carbon (C) requires adaptations to utilize nutrients effectively while disposing of or investing excess C. As food composition changes, these adaptations lead to variable C- and nutrient-use efficiencies (defined as the ratios of C and nutrients used for growth over the amounts consumed). For organisms to be ecologically competitive, these changes in efficiencies with resource stoichiometry have to balance advantages and disadvantages in an optimal way. We hypothesize that efficiencies are varied so that community growth rate is optimized along stoichiometric gradients of their resources. Building from previous theories, we predict that maximum growth is achieved when C and nutrients are co-limiting, so that the maximum C-use efficiency is reached, and nutrient release is minimized. This optimality principle is expected to be applicable across terrestrial-aquatic borders, to various elements, and at different trophic levels. While the growth rate maximization hypothesis has been evaluated for consumers and predators, in this contribution we test it for terrestrial and aquatic decomposers degrading resources across wide stoichiometry gradients. The optimality hypothesis predicts constant efficiencies at low substrate C:N and C:P, whereas above a stoichiometric threshold, C-use efficiency declines and nitrogen- and phosphorus-use efficiencies increase up to one. Thus, high resource C:N and C:P lead to low C-use efficiency, but effective retention of nitrogen and phosphorus. Predictions are broadly consistent with efficiency trends in decomposer communities across terrestrial and aquatic ecosystems.

  3. Using X-ray methods to evaluate the combustion sulfur minerals and graphitic carbon in coals and ashes

    International Nuclear Information System (INIS)

    Wertz, D.L.; Collins, L.W.

    1988-01-01

    Coals are complex mixtures of vastly different materials whose combustion kinetics may well exhibit symbiotic effects. Although the sulfur oxide gases produced during the combustion of coals may have a variety of sources, they are frequently caused by the thermal degradation of inorganic minerals to produce ''acid rain''. Since many of the minerals involved either as reactants or products in coal combustion produce well defined x-ray power diffraction (XRPD) patterns, the fate of these minerals may be followed by measuring the XRPD patterns of combustion products. Coal 1368P, a coal with an unusually high pyrite (FeS/sub 2/) fraction, has been the subject materials in our investigations of the fate of the inorganic minerals during combustion. These studies include measuring the fate of pyrite and of graphitic carbon in coal 1368P under varying combustion conditions. The results discussed in this paper were obtained by standard XRPD methods

  4. Winter wheat optimizes allocation in response to carbon limitation

    Science.gov (United States)

    Huang, Jianbei; Hammerbacher, Almuth; Trumbore, Susan; Hartmann, Henrik

    2016-04-01

    • Plant photosynthesis is not carbon-saturated at current atmospheric CO2 concentration ([CO2]) thus carbon allocation priority is of critical importance in determining plant response to environmental changes, including increasing [CO2]. • We quantified the percentage of daytime net assimilation (A) allocated to whole-plant nighttime respiration (R) and structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during winter wheat (Triticum aestivum) vegetative growth (over 4 weeks) at glacial, ambient, and elevated [CO2] (170, 390 and 680 ppm). • We found that R/A remained relatively constant (11-14%) across [CO2] treatments, whereas plants allocated less C to growth and more C to export at low [CO2] than elevated [CO2]; low [CO2] grown plants tended to invest overall less C into NSC and SMs than to SG due to reduced NSC availability; while leaf SMs/NSC was greater at 170 ppm than at 680 ppm [CO2] this was the opposite for root SMs/NSC; biomass, especially NSC, were preferentially allocated to leaves instead of stems and roots, likely to relieve C limitation induced by low [CO2]. • We conclude that C limitation may force plants to reduce C allocation to long-term survival in order to secure short-term survival. Furthermore, they optimized allocation of the available resource by concentrating biomass and storage to those tissues responsible for assimilation.

  5. Comparative study of electrochemical oxidation of herbicide 2,4,5-T: Kinetics, parametric optimization and mineralization pathway

    Directory of Open Access Journals (Sweden)

    Hicham Zazou

    2017-01-01

    Full Text Available Oxidative degradation of herbicide 2,4,5-T was studied by electrochemical advanced oxidation processes anodic oxidation and electro-Fenton (EF using Pt/carbon felt and BDD/carbon felt cells. The effect of main operating parameters on oxidation of 2,4,5-T and mineralization of its aqueous solution were investigated. The rate constant for oxidation of 2,4,5-T by ·≡OH was determined as (3.7 ± 0.2 × 109 M−1 s−1 using competition kinetics method. The EF process with BDD anode was shown to be very efficient reaching 94% mineralization in 3 h treatment. Based on identified aromatic intermediates, short-chain carboxylic acids, released inorganic ions and total organic carbon removal measurements, a plausible oxidation pathway for mineralization of 2,4,5-T by hydroxyl radical was proposed. In addition, the evolution of solution toxicity during treatment was monitored by Microtox method showing the formation of toxic aromatic/cyclic intermediates. The results showed also that EF process was able to remove efficiently toxic intermediates and consequently solution toxicity.

  6. The carbon isotope ratios and contents of mineral elements in leaves of Chinese medicinal plants

    International Nuclear Information System (INIS)

    Lin Zhifang; Sun Guchou; Wang Wei

    1989-01-01

    Leaf carbon isotope ratios and 13 kinds of mineral elements were measured on 36 species of common Chinese medicinal plants in a subtropical monsoon forest of Ding Hu Shan in Guangdong Province. The .delta.13C value were from -26.4 to -32.6%, indicating that all of the species belonged the photosynthetic C3 types. The relative lower value of δ13C was observed in the life form of shrubs. The contents of 7 elements (N, P, K, Ca, Na Mg, Si) were dependent upon the species, life form, medicinal function and medicinal part. Herb type medicine and the used medicinal part of leaves or whole plant showed higher levels of above elements than the others. Among the nine groups with different medicinal functions, it was found that more nitrogen was in the leaves of medicinal plants for hemophthisis, hypertension and stomachic troubles, more phosphorus and potassium were in the leaves for cancer and snake bite medicines, but more calcium and magnesium were in the leaves for curing rheumatics. Ferric, aluminium and manganese were the main composition of microelements in leaves. There were higher content of ferric in leaves for hemophthisis medicine, higher zinc in leaves for cold and hypertension medicine, and higher Cup in leaves of stomachic medicine. It was suggested that the pattern of mineral elements in leaves of Chinese medicinal plants reflected the different properties of absorption and accumulation. Some additional effect due to the high content of certain element might be associated with the main function of that medicine

  7. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  8. [Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou province].

    Science.gov (United States)

    Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei

    2015-03-01

    Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P < 0.05). With the increasing times of cultivation of Chinese prickly ash, the contents of readily oxidized carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.

  9. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process.

    Science.gov (United States)

    Monteagudo, J M; Durán, A; Aguirre, M; San Martín, I

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H(2)O(2), Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H(2)O(2) and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k(TOC), increased as initial Fe(II) and H(2)O(2) concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. OH and O(2)(-) radicals were the main oxidative intermediate species in the process, although singlet oxygen ((1)O(2)) also played a role in the mineralization reaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Tufa in Northern England: depositional facies, carbonate mineral fabrics, and role of biomineralization

    Science.gov (United States)

    Manzo, E.; Mawson, M.; Perri, E.; Tucker, M. E.

    2009-04-01

    soil hereabouts, and are gradually being washed down slope. Pisoids vary in size and shape, ranging from rods to sub-spherical forms, up to several cm long or a cm or more in diameter. The external surface is a smooth dull surface of a pale grey-buff colour; the nucleus may be a plant fragment, tufa intraclast or rock fragment. Microfacies Teesdale tufa is characterized by three microfacies all contributing to a basic stromatolitic or laminated microfabric: dendrolite, dense micrite and palisades of sparite. Laminae consist of an irregular alternation of the three microfacies, which vary in abundance within the main depositional facies. Dendrolitic layers are characterized of mineralized, upward-branching cyanobacterial filaments, forming bush-like fans. Coarse sparitic layers consist of palisades of bladed calcite spar characterized by rhombohedral terminations. Micritic layers consist of dark-brown dense laminae with some clotted fabric, composed of dark micritic crystals. In thin-section molds of moss stems are often preserved by a sparitic layer that formed a coating before decay of the moss organic tissues. Cavities are abundant in moss tufa and crusts. They are often empty or in some case filled by detrital particles. Pisoids under the microscope show a cortex characterized by a concentric structure consisting mainly dense micritic layers alternating with sporadic sparitic and/or dendrolitic layers. Calcified cyanobacterial filaments or their molds are very evident in the dendrolitic laminae, but also occur in the other microfacies, being incorporated in both the sparite macro-crystals and the micritic layers. Nanofacies of minerals The mineral composition of the autochthonous carbonate forming tufa is calcite with a few mole% Mg. Sub-hedral crystals of calcite, several tens of microns in size, form sparite crystals. Sub-polygonal micro-crystals and elongate fibres a few microns in size compose dense micrite and calcified filaments. Under extra-high SEM

  11. Development of lucerne (Medicago sativa L.) treated with mineral fertilizer and manure at optimal and water deficit conditions.

    Science.gov (United States)

    Vasileva, V; Kostov, O; Vasilev, E

    2006-01-01

    A study on the effect of different rates of mineral fertilizer and manure on yield parameters of lucerne under optimal and water deficit conditions was carried out. Leached chernozem soil and lucerne cultivar Victoria were used. The soil was treated with ammonium nitrate and fully matured cattle manure. The plants were grown under optimum moisture content of 80% and 40% of field capacity. The water deficit stress decreased top and root biomass by 11-75% and 3-29% at mineral and organic fertilization, respectively. The applied mineral and organic N strongly depressed nodules development. Both mineral fertilizer and organic manure at dose of 210 mg N kg(-1) soil completely inhibited the appearance of nodules. Next to nitrogen, water deficit stress further inhibited the development of nodules. Nitrogen fertilization increased seed productivity in the two experimental moisture conditions. The water deficit stress decreased seed productivity by 18 to 33% as compared to optimum conditions. The plant treatments with manure were much more resistant to water deficit and recovering ability of plants was faster as compared to treatments with mineral fertilizer. The application of manure stimulates development of drought-stress tolerance in lucerne. However, the results obtained can be considered for the soil type and experimental conditions used.

  12. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    Science.gov (United States)

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO 2 -C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C 0 and k 1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development of a technology for obtaining flotation reagent oxane-3 for carbon mineral raw materials of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Sergey Kalugin

    2014-12-01

    Full Text Available The paper represents the results of development of a technology for obtaining oxane-3 and its application for enrichment of carbon mineral raw materials. Studies on enrichment of a shungite rock showed that the increase of a pulp temperature to 30°C significantly improves the characteristics and rate of the flotation process. Measured indicators of a shungite rock enrichment using Flotol B were lower in comparison with an enrichment by oxane-3. For schungite mineral, it was established that the obtained heterocyclic compound can replace existing industrial flotation reagents in enrichment processes.

  14. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    Directory of Open Access Journals (Sweden)

    M. H. Iversen

    2010-09-01

    Full Text Available Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted, Skeletonema costatum aggregates (opal ballasted, and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted. Overall average carbon-specific respiration rate was ~0.13 d−1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study vary between 0.08 d−1 and 0.20 d−1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m−1 and 0.0030 m−1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  15. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate

    International Nuclear Information System (INIS)

    Feng, Shuzhen; Huang, Yuan; Ge, Yunhui; Su, Yirong; Xu, Xinwen; Wang, Yongdong; He, Xunyang

    2016-01-01

    The addition of exogenous inorganic carbon (CaCO 3 ) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, 14 C-labeled rice straw addition, 14 C-labeled CaCO 3 addition, and a combination of 14 C-labeled rice straw and CaCO 3 . Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both 14 C-rice straw and Ca 14 CO 3 addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. - Highlights: • Different patterns of 14 C-rice straw and Ca 14 CO 3 addition on positive priming effects of SOC mineralization. • Inorganic C is involved in soil C cycling with the participation of soil microbial

  16. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shuzhen [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China); Huang, Yuan [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Ge, Yunhui [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Su, Yirong [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China); Xu, Xinwen; Wang, Yongdong [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); He, Xunyang, E-mail: hbhpjhn@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huangjiang 547100 (China)

    2016-11-15

    The addition of exogenous inorganic carbon (CaCO{sub 3}) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, {sup 14}C-labeled rice straw addition, {sup 14}C-labeled CaCO{sub 3} addition, and a combination of {sup 14}C-labeled rice straw and CaCO{sub 3}. Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both {sup 14}C-rice straw and Ca{sup 14}CO{sub 3} addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. - Highlights: • Different patterns of {sup 14}C-rice straw and Ca{sup 14}CO{sub 3} addition on positive priming effects of SOC mineralization. • Inorganic C is involved in

  17. Predicting bi-decadal organic carbon mineralization in northwestern European soils with Rock-Eval pyrolysis

    Science.gov (United States)

    Soucemarianadin, Laure; Barré, Pierre; Baudin, François; Chenu, Claire; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Plante, Alain F.; Cécillon, Lauric

    2017-04-01

    The organic carbon reservoir of soils is a key component of climate change, calling for an accurate knowledge of the residence time of soil organic carbon (SOC). Existing proxies of the size of SOC labile pool such as SOC fractionation or respiration tests are time consuming and unable to consistently predict SOC mineralization over years to decades. Similarly, models of SOC dynamics often yield unrealistic values of the size of SOC kinetic pools. Thermal analysis of bulk soil samples has recently been shown to provide useful and cost-effective information regarding the long-term in-situ decomposition of SOC. Barré et al. (2016) analyzed soil samples from long-term bare fallow sites in northwestern Europe using Rock-Eval 6 pyrolysis (RE6), and demonstrated that persistent SOC is thermally more stable and has less hydrogen-rich compounds (low RE6 HI parameter) than labile SOC. The objective of this study was to predict SOC loss over a 20-year period (i.e. the size of the SOC pool with a residence time lower than 20 years) using RE6 indicators. Thirty-six archive soil samples coming from 4 long-term bare fallow chronosequences (Grignon, France; Rothamsted, Great Britain; Ultuna, Sweden; Versailles, France) were used in this study. For each sample, the value of bi-decadal SOC mineralization was obtained from the observed SOC dynamics of its long-term bare fallow plot (approximated by a spline function). Those values ranged from 0.8 to 14.3 gC·kg-1 (concentration data), representing 8.6 to 50.6% of total SOC (proportion data). All samples were analyzed using RE6 and simple linear regression models were used to predict bi-decadal SOC loss (concentration and proportion data) from 4 RE6 parameters: HI, OI, PC/SOC and T50 CO2 oxidation. HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g-1SOC) and OI (the CO2 yield during the pyrolysis phase of RE6; mgCO2.g-1SOC) parameters describe SOC bulk chemistry. PC/SOC (the amount of organic

  18. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process

    Directory of Open Access Journals (Sweden)

    Gelayol Golkarnarenji

    2018-03-01

    Full Text Available To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR and Artificial Neural Network (ANN, were studied and compared, with a limited dataset obtained to predict physical property (density of oxidative stabilized PAN fiber (OPF in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.

  19. CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CO2 Nordic Plus) and use of serpentinites in energy and metal industry (ECOSERP)

    International Nuclear Information System (INIS)

    Fogelholm, C.-J.; Raiski, T.; Teir, S.

    2007-01-01

    Abstract Mineral carbonation has been investigated at Helsinki University of Technology (TKK), laboratory of energy engineering and environmental protection since year 2000. The Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee are funding through the ClimBus technology programme, in conjunction with the Nordic Energy Research Programme, the research regarding the application of ex situ mineral carbonation processes. One aspect is to verify the possible use of mineral carbonation for the separation, utilisation and long-term storage of carbon dioxide (CO 2 ) in the pulp and paper industry. The Geological Survey of Finland (GTK) has been screening since 2004 the location, quality and suitability of the Finnish processed serpentine and stoped serpentinite storage of mines and in situ serpentinite bodies of ultramafic rock formations for mineral carbonation of CO 2 . Tekes and the GTK are funding development work through the ClimBus technology programme on the utilisation of serpentine and serpentinite for CO 2 sequestration purposes, based on economical and environmental evaluation of mineral and mining processing operations. Also the options for other use of serpentine and serpentinite are evaluated. The most promising magnesium- and calcium-based sources for carbonation are by-products of mining processes of ultramafic rocks (such as serpentinites and serpentine) and steelmaking slags. Carbonated minerals could possibly be used as paper coating materials (PCC), fillers or construction materials. For magnesium carbonate new markets and applications must be developed. (orig.)

  20. CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CONordicPlus) and use of serpentinites in energy and metal industry (ECOSERP)

    International Nuclear Information System (INIS)

    Fogelholm, C.J.; Raiski, T.; Teir, S.

    2006-01-01

    Mineral carbonation has been investigated at Helsinki University of Technology (TKK), laboratory of energy engineering and environmental protection since year 2000. The Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee are funding through the ClimBus technology programme, in conjunction with the Nordic Energy Research Programme, the research regarding the application of ex situ mineral carbonation processes. One aspect is to verify the possible use of mineral carbonation for the separation, utilisation and long-term storage of carbon dioxide (CO2) in the pulp and paper industry. The Geological Survey of Finland (GTK) has been screening since 2004 the location, quality and suitability of the Finnish processed serpentine and stopped serpentinite storage of mines and in situ serpentinite bodies of ultramafic rock formations for mineral carbonation of CO2. Tekes and the GTK are funding development work through the ClimBus technology programme on the utilisation of serpentine and serpentinite for CO2 sequestration purposes, based on economical and environmental evaluation of mineral and mining processing operations. Also the options for other use of serpentine and serpentinite are evaluated. The most promising magnesium and calcium-based sources for carbonation are by products of mining processes of ultramafic rocks (such as serpentinites and serpentine) and steelmaking slags. Carbonated minerals could possibly be used as paper coating materials (PCC), fillers or construction materials. For magnesium carbonate new markets and applications must be developed. (orig.)

  1. Optimal management of bone mineral disorders in chronic kidney disease and end stage renal disease.

    Science.gov (United States)

    Lundquist, Andrew L; Nigwekar, Sagar U

    2016-03-01

    The review summarizes recent studies on chronic kidney disease-mineral bone disorders, with a focus on new developments in disease management. The term chronic kidney disease-mineral bone disorder has come to describe an increasingly complex network of alterations in minerals and skeletal disorders that contribute to the significant cardiovascular morbidity and mortality seen in patients with chronic kidney disease and end stage renal disease. Clinical studies continue to suggest associations with clinical outcomes, yet current clinical trials have failed to support causality. Variability in practice exists as current guidelines for management of mineral bone disorders are often based on weak evidence. Recent studies implicate novel pathways for therapeutic intervention in clinical trials. Mineral bone disorders in chronic kidney disease arise from alterations in a number of molecules in an increasingly complex physiological network interconnecting bone and the cardiovascular system. Despite extensive associations with improved outcomes in a number of molecules, clinical trials have yet to prove causality and there is an absence of new therapies available to improve patient outcomes. Additional clinical trials that can incorporate the complexity of mineral bone disorders, and with the ability to intervene on more than one pathway, are needed to advance patient care.

  2. Evaluation of southern Quebec asbestos residues for CO{sub 2} sequestration by mineral carbonation : preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Huot, F. [Geo-conseils, Cap-Rouge, PQ (Canada); Beaudoin, G.; Hebert, R.; Constantin, M. [Laval Univ., Dept. of Geology and Geological Engineering, Quebec City, PQ (Canada); Bonin, G. [LAB Chrysotile Inc., Black Lake, PQ (Canada); Dipple, G.M. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Earth and Ocean Sciences

    2003-07-01

    Carbon dioxide (CO{sub 2}) sequestration is one approach that can help reduce CO{sub 2} levels in the atmosphere. This paper discusses CO{sub 2} sequestration by mineral carbonation using ultramafic rock-hosted magnesian silicates (serpentine, olivine, talc). The carbonation process produces magnesite, which is a geologically stable and an environmentally safe magnesium carbonate. There are 3 potential CO{sub 2} sinks in southern Quebec that use such silicates. They are: (1) asbestos mill residues, (2) associated mine waste, and (3) ultramafic bedrock. Asbestos is extracted from serpentinized harzburgite located in the Thetford Mines and Asbestos ophiolitic massifs and also from the highly sheared Pennington Sheet. The physical and chemical properties of magnesium silicate deposits greatly determine their carbonation potential. A wide range of properties was observed in samples obtained from almost all asbestos mill residues and waste. The reaction which takes place depends on the mineral content. The kinetics of the reactions are influenced by humidity and grain size.

  3. Inventario mundial de la calidad del carbon mineral (WoCQI) [The world coal quality inventory (WoCQI)

    Science.gov (United States)

    Finkelman, R.B.; Lovern, V.S.

    2001-01-01

    Los oficiales encargados de la politica comercial de cada pais requieren informacion clara y precisa sobre el recurso del carbon mineral, particularmente sobre sus propiedades y caracteristicas, para tomar decisiones bien fundamentadas con respecto al mejor uso de los recursos naturales, necesidades de importacion y oportunidades de exportacion, objetivos de politica interna y externa, oportunidades de transferencia tecnologica, posibilidades de inversion externa, estudios ambientales y de salud, y asuntos relacionados con el uso de productos secundarios y su disposicion.

  4. Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe

    OpenAIRE

    Ma, L.; Guo, C.; Xin, X.; Yuan, S.; Wang, R.

    2013-01-01

    Soil carbon (C) and nitrogen (N) cycling are sensitive to changes in environmental factors and play critical roles in the responses of terrestrial ecosystems to natural and anthropogenic perturbations. This study was conducted to quantify the effects of belowground particulate litter (BPL) addition, increased precipitation and their interactions on soil C and N mineralization in two adjacent sites where belowground photosynthate allocation was manipulated through vegetation ...

  5. Response of soil organic carbon fractions, microbial community composition and carbon mineralization to high-input fertilizer practices under an intensive agricultural system

    Science.gov (United States)

    Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong

    2018-01-01

    Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals

  6. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    OpenAIRE

    He, Longfei; Xu, Zhaoguang; Niu, Zhanwen

    2014-01-01

    We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optim...

  7. Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for vanadium(V) detection in mineral water samples

    Science.gov (United States)

    He, Lijun; Zhang, Heng; Fan, Huanhuan; Jiang, Xiuming; Zhao, Wenjie; Xiang, Guo Qiang

    2018-01-01

    Herein, we propose a simple and effective strategy for designing a ratiometric fluorescent nanosensor. We designed and developed a carbon dots (CDs) based dual-emission nanosensor for vanadium(V) by coating the surface of dye-doped silica nanoparticles with CDs. The fluorescence of dual-emission silica nanoparticles was quenched in acetic acid through potassium bromate (KBrO3) oxidation. V(V) could catalyze KBrO3 oxidation reaction process, resulting in the ratiometric fluorescence quenching of dual-emission silica nanoparticles. We investigated several important parameters affecting the performance of the nanosensor. Under the optimized conditions, the detection limit of this nanosensor reached 1.1 ng mL- 1 and the linear range from 10 to 800 ng mL- 1. Furthermore, we found that the sensor was suitable for determination of V(V) in different mineral water samples with satisfactory results.

  8. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    Science.gov (United States)

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  9. Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances

    Science.gov (United States)

    Hunkeler, Daniel; Höhener, Patrick; Bernasconi, Stefano; Zeyer, Josef

    1999-04-01

    A concept is proposed to assess in situ petroleum hydrocarbon mineralization by combining data on oxidant consumption, production of reduced species, CH 4, alkalinity and dissolved inorganic carbon (DIC) with measurements of stable isotope ratios. The concept was applied to a diesel fuel contaminated aquifer in Menziken, Switzerland, which was treated by engineered in situ bioremediation. In the contaminated aquifer, added oxidants (O 2 and NO 3-) were consumed, elevated concentrations of Fe(II), Mn(II), CH 4, alkalinity and DIC were detected and the DIC was generally depleted in 13C compared to the background. The DIC production was larger than expected based on the consumption of dissolved oxidants and the production of reduced species. Stable carbon isotope balances revealed that the DIC production in the aquifer originated mainly from microbial petroleum hydrocarbon mineralization, and that geochemical reactions such as carbonate dissolution produced little DIC. This suggests that petroleum hydrocarbon mineralization can be underestimated if it is determined based on concentrations of dissolved oxidants and reduced species.

  10. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    Science.gov (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO 2 transforms from a separate phase to CO 2 (aq) and HCO 3 - by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO 2 (aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO 2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO 2 and formation water. A better understanding of these effects on the CO 2 -water two-phase flow will improve predictions of the long-term CO 2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO 2 exsolution and mineral dissolution/precipitation on CO 2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO 2 (sc/g), CO 2 (aq), HCO 3 - , and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO 2 dissolved water is

  11. Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite

    Science.gov (United States)

    Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Caraccio, Anne J.; Sampson, Jeffery W.

    2013-01-01

    Bismaleimide (BMI) resins are an attractive new addition to world-wide composite applications. This type of thermosetting polyimide provides several unique characteristics such as excellent physical property retention at elevated temperatures and in wet environments, constant electrical properties over a vast array of temperature settings, and nonflammability properties as well. This makes BMI a popular choice in advance composites and electronics applications [I]. Bismaleimide-2 (BMI-2) resin was used to infuse intermediate modulus 7 (IM7) based carbon fiber. Two panel configurations consisting of 4 plies with [+45deg, 90deg]2 and [0deg]4 orientations were fabricated. For tensile testing, a [90deg]4 configuration was tested by rotating the [0deg]4 configirration to lie orthogonal with the load direction of the test fixture. Curing of the BMI-2/IM7 system utilized an optimal infusion process which focused on the integration of the manufacturer-recommended ramp rates,. hold times, and cure temperatures. Completion of the cure cycle for the BMI-2/IM7 composite yielded a product with multiple surface voids determined through visual and metallographic observation. Although the curing cycle was the same for the three panellayups, the surface voids that remained within the material post-cure were different in abundance, shape, and size. For tensile testing, the [0deg]4 layup had a 19.9% and 21.7% greater average tensile strain performance compared to the [90deg]4 and [+45deg, 90deg, 90deg,-45degg] layups, respectively, at failure. For tensile stress performance, the [0deg]4 layup had a 5.8% and 34.0% greater average performance% than the [90deg]4 and [+45deg, 90deg, 90deg,-45deg] layups.

  12. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo, J.M., E-mail: josemaria.monteagudo@uclm.es [University of Castilla-La Mancha, Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, Avda. Camilo Jose Cela, 1, 13071 Ciudad Real (Spain); Duran, A.; Aguirre, M.; San Martin, I. [University of Castilla-La Mancha, Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, Avda. Camilo Jose Cela, 1, 13071 Ciudad Real (Spain)

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H{sub 2}O{sub 2}, Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H{sub 2}O{sub 2} and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k{sub TOC}, increased as initial Fe(II) and H{sub 2}O{sub 2} concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. {center_dot}OH and O{sub 2}{center_dot}{sup -} radicals were the main oxidative intermediate species in the process, although singlet oxygen ({sup 1}O{sub 2}) also played a role in the mineralization reaction.

  13. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    Science.gov (United States)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  14. CO{sub 2} Energy Reactor – Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rafael M., E-mail: rafael.santos@alumni.utoronto.ca [Chemical and Environmental Laboratories (CEL), School of Applied Chemical and Environmental Sciences, Sheridan Institute of Technology, Brampton, ON (Canada); Knops, Pol C. M.; Rijnsburger, Keesjan L. [Innovation Concepts B.V., Twello (Netherlands); Chiang, Yi Wai [School of Engineering, University of Guelph, Guelph, ON (Canada)

    2016-02-15

    To overcome the challenges of mineral CO{sub 2} sequestration, Innovation Concepts B.V. is developing a unique proprietary gravity pressure vessel (GPV) reactor technology and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In this paper, a perspective on the status of this technology and outlook for the future is provided. To date, laboratory-scale tests of the envisioned process have been performed in a tubular “rocking autoclave” reactor. The mineral of choice has been olivine [~Mg{sub 1.6}Fe{sup 2+}{sub 0.4}(SiO{sub 4}) + ppm Ni/Cr], although asbestos, steel slags, and oil shale residues are also under investigation. The effect of several process parameters on reaction extent and product properties has been tested: CO{sub 2} pressure, temperature, residence time, additives (buffers, lixiviants, chelators, oxidizers), solids loading, and mixing rate. The products (carbonates, amorphous silica, and chromite) have been physically separated (based on size, density, and magnetic properties), characterized (for chemistry, mineralogy, and morphology), and tested in intended applications (as pozzolanic carbon-negative building material). Economically, it is found that product value is the main driver for mineral carbonation, rather than, or in addition to, the sequestered CO{sub 2}. The approach of using a GPV and focusing on valuable reaction products could thus make CO{sub 2} mineralization a feasible and sustainable industrial process.

  15. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically...... of osteoblast-like cells....

  16. Short communication: A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil

    OpenAIRE

    GAURAV MISHRA; KRISHNA GIRI; ANTARA DUTTA

    2016-01-01

    Abstract. Mishra G, Giri K, Dutta A, Hazarika S and Borgohain P. 2015. A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil. Nusantara Bioscience 8: 5-7. Plant litter or residues can be used as soil amendment to maintain the carbon stock and soil fertility. The amount and rate of mineralization depends on biochemical composition of plant litter. Alnus nepalensis (Alder) is known for its symbiotic nitrogen fixa...

  17. Influence of the particle size of activated mineral carbon on the phenol and chlorophenol adsorption; Influencia del tamano de particula de carbon mineral activado sobre la adsorcion de fenol y clorofenol

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, A

    2001-07-01

    Water pollution by phenolic compounds is a problem that requires a solution since these phenolic compounds are not completely biodegradable, they accumulate through the food chains and they are quite toxic when enter in contact with living organisms. In human beings, ingestion or contact of the skin with this type of compounds produces irritation and damages mainly to the liver and kidneys. In fact, the Environmental Protection Agency of the United States (EPA assigned nine phenolic compounds among the 275 most toxic substances in 1991. Phenols are found in wastewater from agriculture and industry, because phenolic compounds are used as pesticides and in diverse industrial activities. The treatment of this type of water is not simple because they are generally composed of a mixture of residuals with different chemical nature A useful method for the removal of phenols is the adsorption by activated carbon, since this material has a great surface area and it can be regenerated. The adsorption process depends, among other factors, on the activated carbon characteristics. When they are modified, their capacity to remove pollutants from the water changes. The effect of activated carbon particle size on the removal of phenolic compounds has not been completely studied. Therefore, the aim of this work was to determine the influence of the mineral activated carbon particle size on the phenol and 4-chloro phenol adsorption in aqueous solution, on adsorption column system. The results of the present work indicate that the mineral activated carbon particle size has a very important influence on the adsorption of phenol and 4-chloro phenol. When the particles were smaller, the retention quantities of phenol and 4-chloro phenol increased. This behavior was related to the particle characteristics of the mineral activated carbon such as surface area and pore volume, while other factors such as elementary composition of the activated carbon did not influence the adsorption process

  18. Study on Electricity Purchase Optimization in Coordination of Electricity and Carbon Trading

    Science.gov (United States)

    Liu, Dunnan; Meng, Yaru; Zhang, Shuo

    2017-07-01

    With the establishment of carbon emissions trading market in China, the power industry has become an important part of the market participants. The power grid enterprises need to optimize their own strategies in the new environment of electricity market and carbon market coordination. First, the influence of electricity and carbon trading coordination on electricity purchase strategy for grid enterprises was analysed in the paper. Then a power purchase optimization model was presented, which used the minimum cost of low carbon, energy saving and environment protection as the goal, the power generation capacity, installed capacity and pollutant emission as the constraints. Finally, a provincial power grid was taken as an example to analyse the model, and the optimization order of power purchase was obtained, which provided a new idea for the low carbon development of power grid enterprises.

  19. TEMPERATURE-DEFORMATION CRITERION OF OPTIMIZATION OF FINE DRAWING HIGH CARBON WIRE ROUTE

    Directory of Open Access Journals (Sweden)

    Y. L. Bobarikin

    2012-01-01

    Full Text Available The temperature-deformation criterion of assessment and optimization of routes of the thin high-carbon wire drawing enabling to increase plastic properties of wire at retaining of its durability is offered.

  20. The Leuze mineral water swimming pool - purposefully optimized energy utilization. Mineralbad Leuze: Sinnvoll optimierte Energienutzung

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-04-01

    The mineral-water swimming pool in Stuttgart-Bad Cannstatt is fed by mineral springs. The author reports on the design and energy technology used in this indoor swimming pool (photographs), pool hall (feed and exhaust air), treatment basin, showers, locker rooms (air throughput rate, feed and exhaust air management), cafeteria, kitchen, gymnastics and technical services rooms, toilets, chemicals storage room, cooling system and heat pump (heat recovery from drained pool water up to 50%). District heating steam (18 bar) is used for heat supply (reducing station). The author comments on the temperature levels required for different heating cycles (hot-pool hall, hot-water basin, skylight heating, space heating) and on thermal output requirements (kW). (HWJ).

  1. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass

    International Nuclear Information System (INIS)

    Danish, Mohammed; Hashim, Rokiah; Ibrahim, M.N. Mohamad; Sulaiman, Othman

    2014-01-01

    The preparation of activated carbon from date stone treated with phosphoric acid was optimized using rotatable central composite design of response surface methodology (RSM). The chemical activating agent concentration and temperature of activation plays a crucial role in preparation of large surface area activated carbons. The optimized activated carbon was characterized using thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the larger surface area of activated carbon from date stone can be achieved under optimum activating agent (phosphoric acid) concentration, 50.0% (8.674 mol L −1 ) and activation temperature, 900 °C. The Brunauer–Emmett–Teller (BET) surface area of optimized activated carbon was found to be 1225 m 2  g −1 , and thermogravimetric analysis revealed that 55.2% mass of optimized activated carbon was found thermally stable till 900 °C. The leading chemical functional groups found in the date stone activated carbon were aliphatic carboxylic acid salt ν(C=O) 1561.22 cm −1 and 1384.52 cm −1 , aliphatic hydrocarbons ν(C–H) 2922.99 cm −1 (C–H sym./asym. stretch frequency), aliphatic phosphates ν(P–O–C) 1054.09 cm −1 , and secondary aliphatic alcohols ν(O–H) 3419.81 cm −1 and 1159.83 cm −1 . - Highlights: • RSM optimization was done for the production of large surface area activated carbon. • Two independent variables with two responses were selected for optimization. • Characterization was done for surface area, morphology and chemical constituents. • Optimized date stone activated carbon achieved surface area 1225 m 2  g −1

  2. Global warming and carbon taxation. Optimal policy and the role of administration costs

    International Nuclear Information System (INIS)

    Williams, M.

    1995-01-01

    This paper develops a model relating CO 2 emissions to atmosphere concentrations, global temperature change and economic damages. For a variety of parameter assumptions, the model provides estimates of the marginal cost of emissions in various years. The optimal carbon tax is a function of the marginal emission cost and the costs of administering the tax. This paper demonstrates that under any reasonable assumptions, the optimal carbon tax is zero for at least several decades. (author)

  3. Slowing the rate of loss of mineral wetlands on human dominated landscapes - Diversification of farmers markets to include carbon (Invited)

    Science.gov (United States)

    Creed, I. F.; Badiou, P.; Lobb, D.

    2013-12-01

    Canada is the fourth-largest exporter of agriculture and agri-food products in the world (exports valued at 28B), but instability of agriculture markets can make it difficult for farmers to cope with variability, and new mechanisms are needed for farmers to achieve economic stability. Capitalizing on carbon markets will help farmers achieve environmentally sustainable economic performance. In order to have a viable carbon market, governments and industries need to know what the carbon capital is and what potential there is for growth, and farmers need financial incentives that will not only allow them to conserve existing wetlands but that will also enable them to restore wetlands while making a living. In southern Ontario, farmers' needs to maximize the return on investment on marginal lands have resulted in loss of 70-90% of wetlands, making this region one of the most threatened region in terms of wetland degradation and loss in Canada. Our project establishes the role that mineral wetlands have in the net carbon balance by contributing insight into the potential benefits to carbon management provided by wetland restoration efforts in these highly degraded landscapes. The goal was to establish the magnitude of carbon offsets that could be achieved through wetland conservation (securing existing carbon stocks) and restoration (creating new carbon stocks). The experimental design was to focus on (1) small (0.2-2.0 ha) and (2) isolated (no inflow or outflow) mineral wetlands with the greatest restoration potential that included (3) a range of restoration ages (drained (0 yr), 3 yr, 6 yr, 12 yr, 20 yr, 35 yr, intact marshes) to capture potential changes in rates of carbon sequestration with restoration age of wetland. From each wetland, wetland soil carbon pools samples were collected at four positions: centre of wetland (open-water); emergent vegetation zone; wet meadow zone where flooding often occurs (i.e., high water mark); and upland where flooding rarely

  4. A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-08-01

    Full Text Available The carbon emissions trading market and direct power purchases by large consumers are two promising directions of power system development. To trace the carbon emission flow in the power grid, the theory of carbon emission flow is improved by allocating power loss to the load side. Based on the improved carbon emission flow theory, an optimal dispatch model is proposed to optimize the cost of both large consumers and the power grid, which will benefit from the carbon emissions trading market. Moreover, to better simulate reality, the direct purchase of power by large consumers is also considered in this paper. The OPF (optimal power flow method is applied to solve the problem. To evaluate our proposed optimal dispatch strategy, an IEEE 30-bus system is used to test the performance. The effects of the price of carbon emissions and the price of electricity from normal generators and low-carbon generators with regards to the optimal dispatch are analyzed. The simulation results indicate that the proposed strategy can significantly reduce both the operation cost of the power grid and the power utilization cost of large consumers.

  5. Enhanced Electro-Fenton Mineralization of Acid Orange 7 Using a Carbon Nanotube Fiber-Based Cathode

    Directory of Open Access Journals (Sweden)

    Thi Xuan Huong Le

    2018-02-01

    Full Text Available A new cathodic material for electro-Fenton (EF process was prepared based on a macroscopic fiber (CNTF made of mm-long carbon nanotubes directly spun from the gas phase by floating catalyst CVD, on a carbon fiber (CF substrate. CNTF@CF electrode is a highly graphitic material combining a high surface area (~260 m2/g with high electrical conductivity and electrochemical stability. One kind of azo dye, acid orange 7 (AO7, was used as model bio-refractory pollutant to be treated at CNTF@CF cathode in acidic aqueous medium (pH 3.0. The experimental results pointed out that AO7 and its organic intermediate compounds were totally mineralized by hydroxyl radical generated from Fenton reaction. In fact, 96.7% of the initial total organic carbon (TOC was eliminated in 8 h of electrolysis by applying a current of −25 mA and ferrous ions as catalyst at concentration of 0.2 mM. At the same electrolysis time, only 23.7% of TOC removal found on CF support which proved the high mineralization efficiency of new material thanks to CNTF deposition. The CNTF@CF cathode maintained stable its activity during five experimental cycles of EF setup. The results indicated that CNTF@CF material could be a potential choice for wastewater treatment containing bio-refractory by electrochemical advanced oxidation processes.

  6. Optimization of process parameters during carbonization for improved carbon fibre strength

    Science.gov (United States)

    Köhler, T.; Pursche, F.; Burscheidt, P.; Seide, G.; Gries, T.

    2017-10-01

    Based on their extraordinary properties, carbon fibres nowadays play a significant role in modern industries. In the last years carbon fibres are increasingly used for lightweight constructions in the energy or the transportation industry. However, a bigger market penetration of carbon fibres is still hindered by high prices (~ 22 /kg) [3]. One crucial step in carbon fibre production is the process of carbonization of stabilized fibres. However, the cause effect relationships of carbonization are nowadays not fully understood. Therefore, the main goal of this research work is the quantification of the cause-effect relationships of process parameters like temperature and residence time on carbon fibre strength.

  7. Integrating plant-microbe interactions to understand soil C stabilization with the MIcrobial-MIneral Carbon Stabilization model (MIMICS)

    Science.gov (United States)

    Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa

    2014-05-01

    If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest

  8. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock.

    Science.gov (United States)

    Voegelin, Andreas; Pfenninger, Numa; Petrikis, Julia; Majzlan, Juraj; Plötze, Michael; Senn, Anna-Caterina; Mangold, Stefan; Steininger, Ralph; Göttlicher, Jörg

    2015-05-05

    We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (μ-XRF) and X-ray absorption spectroscopy (μ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.

  9. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories

    NARCIS (Netherlands)

    Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H.; Waal, de R.W.

    2008-01-01

    Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many

  10. Photothermal stress triggered by near-infrared-irradiated carbon nanotubes up-regulates osteogenesis and mineral deposition in tooth-extracted sockets.

    Science.gov (United States)

    Kajiya, Hiroshi; Katsumata, Yuri; Sasaki, Mina; Tsutsumi, Takashi; Kawaguchi, Minoru; Fukushima, Tadao

    2015-01-01

    The bone regenerative healing process is often prolonged, with a high risk of infection particularly in elderly and diseased patients. A reduction in healing process time usually requires mechanical stress devices, chemical cues, or laser/thermal therapies. Although these approaches have been used extensively for the reduction of bone healing time, the exact mechanisms involved in thermal stress-induced bone regeneration remain unclear. Photothermal stress (PTS) stimulation was carried out using a novel photothermal device, composed of an alginate gel (AG) including carbon nanotubes (CNT-AGs) and their irradiator with near-infrared (NIR) light. We investigated the effects of optimal hyperthermia on osteogenesis, its signalling pathway in vitro and mineral deposition in tooth-extracted sockets in vivo. The PTS (10 min at 42 °C, every day), triggered by NIR-induced CNT, increased the activity of alkaline phosphatase (ALP) in mouse osteoblast MC3T3-E1 cells in a time-dependent manner compared with the non-thermal stress control. PTS significantly induced the expression of osteogenic-related molecules such as ALP, RUNX2 and Osterix in a time-dependent manner with phosphorylated mitogen-activated protein kinases (MAPK). PTS increased the expression of heat shock factor (HSF) 2, but not HSF1, resulting in activation of heat shock protein 27. PTS significantly up-regulated mineral deposition in tooth-extracted sockets in normal and ovariectomised osteoporotic model mice in vivo. Our novel CNT-based PTS up-regulated osteogenesis via activation of heat shock-related molecules, resulting in promotion of mineral deposition in enhanced tooth-extracted sockets.

  11. THE OPTIMAL ROTATIONS OF GMELINA STAND ON TWO CARBON PROJECTS: LENGTHENING ROTATION AND AFFORESTATION

    Directory of Open Access Journals (Sweden)

    Yonky Indrajaya

    2016-12-01

    Full Text Available Forest plantation may contribute economically and socially as a provider of wood raw materials for industry and providing jobs for local people. In addition, forest plantation may also contribute as watershed protection and carbon sequestration. Projects on carbon sequestration from plantation forest can be conducted in two types: (1 afforestation and (2 lengthening forest rotation. One of the potential carbon markets operationalized in the field is voluntary market with Verified Carbon Standard mechanism. This study aimed to analyze the optimal rotations of gmelina forests on two carbon projects: lengthening rotation and afforestation. The method used in this study was by using Hartman model ( i.e. Faustmann by maximizing profit with the revenue source from timber and carbon sequestration project. The results of this study showed that carbon price will affect the optimal rotation for lengthening forest rotation of VCS project. Meanwhile, for VCS afforestation project, carbon price had no effect on the optimal rotation on gmelina forest. The NPV value of afforestation project was relatively higher than that of NPV value of lengthening forest rotation project, since the amount of carbon that can be credited relatively higher in afforestation project.

  12. The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model

    NARCIS (Netherlands)

    Wolthers, M.; Charlet, L.; Van Cappellen, P.

    2008-01-01

    The Charge Distribution MUltiSite Ion Complexation or CD–MUSIC modeling approach is used to describe the chemical structure of carbonate mineralaqueous solution interfaces. The new model extends existing surface complexation models of carbonate minerals, by including atomic scale information on

  13. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin [Calera Corporation, Moss Landing, CA (United States); Gilliam, Ryan [Calera Corporation, Moss Landing, CA (United States); Seeker, Randy [Calera Corporation, Moss Landing, CA (United States)

    2015-06-30

    The objective of this project was to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updated Techno-Economic Analysis and CO2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.

  14. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere.

    Science.gov (United States)

    Watanabe, Nobuhisa; Takata, Mitsuyasu; Takemine, Shusuke; Yamamoto, Katsuya

    2018-03-01

    Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N 2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage.

  15. Carbon Mineralization Can Be Sustained or Even Stimulated under Fluctuating Redox Conditions in Tropical and Temperate Soils

    Science.gov (United States)

    Huang, W.; Hall, S. J.

    2017-12-01

    Soil carbon (C) mineralization is widely thought to be affected by O2 availability, and anaerobiosis represents a significant global mechanism of C stabilization. However, mineral-associated organic C (e.g. Fe-bound organic C) may be vulnerable to redox fluctuations due to release following Fe reduction, which could counteract protective effects of anaerobiosis. Many soils, including temperate Mollisols and tropical Oxisols, experience fluctuating redox conditions following moisture variations that could impact C cycling and stabilization. Here we incubated two soils with C4 leaf litter at different duration and frequencies of anaerobic periods for 128 days to investigate how redox fluctuations affect soil C mineralization. The treatments included static aerobic (control), and 2-, 4-, 8- and 12- day anaerobic followed by 4-day aerobic. We measured CO2, CH4, and their C isotope ratios. Longer durations of anaerobic conditions promoted greater Fe reduction and more DOC released. Notably, in both soils despite their large differences in composition, the production of CO2 and CH4 was stimulated under aerobic conditions following anaerobic conditions (relative to the control), which compensated for the decrease under anaerobic conditions. After 128 days, cumulative C mineralization in the control was similar between the Mollisol (9.7 mg C g-1) and the Oxisol (10.1 mg C g-1). The value in the Mollisol was significantly higher in the 12-day anaerobic treatment (11.2 mg C g-1) than the aerobic control and the 2-day anaerobic treatment (9.7 mg C g-1). In the Oxisol, cumulative C mineralization was not significantly affected by any of the fluctuating redox treatments relative to the control. Our findings challenge theory by showing that redox fluctuations can counteract the suppressive effects of O2 limitation on decomposition.

  16. Optimization of mass flow rate in RGTT200K coolant purification for Carbon Monoxide conversion process

    International Nuclear Information System (INIS)

    Sumijanto; Sriyono

    2016-01-01

    Carbon monoxide is a species that is difficult to be separated from the reactor coolant helium because it has a relatively small molecular size. So it needs a process of conversion from carbon monoxide to carbondioxide. The rate of conversion of carbon monoxide in the purification system is influenced by several parameters including concentration, temperature and mass flow rate. In this research, optimization of the mass flow rate in coolant purification of RGTT200K for carbon monoxide conversion process was done. Optimization is carried out by using software Super Pro Designer. The rate of reduction of reactant species, the growth rate between the species and the species products in the conversion reactions equilibrium were analyzed to derive the mass flow rate optimization of purification for carbon monoxide conversion process. The purpose of this study is to find the mass flow rate of purification for the preparation of the basic design of the RGTT200K coolant helium purification system. The analysis showed that the helium mass flow rate of 0.6 kg/second resulted in an un optimal conversion process. The optimal conversion process was reached at a mass flow rate of 1.2 kg/second. A flow rate of 3.6 kg/second – 12 kg/second resulted in an ineffective process. For supporting the basic design of the RGTT200K helium purification system, the mass flow rate for carbon monoxide conversion process is suggested to be 1.2 kg/second. (author)

  17. The effect of carbonated mineral water and mofette treatment in Baile Tusnad after ischemic stroke – a case report

    Directory of Open Access Journals (Sweden)

    Gabriela Dogaru

    2018-02-01

    Full Text Available Carbon dioxide baths might represent an effective therapeutic method in the rehabilitation of coronary heart disease, myocardial infarction and stroke, as well as in the treatment of chronic venous insufficiency, inflammatory diseases and functional disorders. According to the World Health Organization, 5.5 million deaths from stroke were recorded in 2001, and about 15 million people survive stroke every year. Mortality from stroke is 11% for women and 8.4% for men. According to the European Association for Cardiovascular Prevention  Rehabilitation, phase II and III cardiovascular rehabilitation is performed in Romania only in a proportion of 10%. The therapeutic effects of carbonated mineral waters are due to the action of carbon dioxide. This induces cutaneous vasodilation, with a decrease in blood pressure values. It also causes an increase of cardiac output, while reducing blood pressure and heart rate. Mofettes are natural emanations along the Harghita volcanic massif, which contain CO2 in concentrations of 90-98% with cutaneous vasodilator effects, increasing cerebral and muscle blood flow. The natural therapeutic factors in Baile Tusnad, consisting of carbonated mineral water baths, mofettes, climate therapy, along with medical physical culture, indicated in the rehabilitation treatment of post-stroke patients had a beneficial effect on clinical and functional symptomatology, improving the quality of gait and balance, functionality and exercise capacity in a patient who suffered stroke five years before and was followed up for three years, while she attended an annual medical rehabilitation program in Baile Tusnad. Continuing medical rehabilitation programs, in the absence of contraindications, in Romanian spa resorts for cardiovascular treatment, as well as conducting randomized clinical studies on the efficiency of these treatments is important.

  18. Direct Comparison of Biologically Optimized Spread-out Bragg Peaks for Protons and Carbon Ions

    International Nuclear Information System (INIS)

    Wilkens, Jan J.; Oelfke, Uwe

    2008-01-01

    Purpose: In radiotherapy with hadrons, it is anticipated that carbon ions are superior to protons, mainly because of their biological properties: the relative biological effectiveness (RBE) for carbon ions is supposedly higher in the target than in the surrounding normal tissue, leading to a therapeutic advantage over protons. The purpose of this report is to investigate this effect by using biological model calculations. Methods and Materials: We compared spread-out Bragg peaks for protons and carbon ions by using physical and biological optimization. The RBE for protons and carbon ions was calculated according to published biological models. These models predict increased RBE values in regions of high linear energy transfer (LET) and an inverse dependency of the RBE on dose. Results: For pure physical optimization, protons yield a better dose distribution along the central axis. In biologically optimized plans, RBE variations for protons were relatively small. For carbon ions, high RBE values were found in the high-LET target region, as well as in the low-dose region outside the target. This means that the LET dependency and dose dependency of the RBE can cancel each other. We show this for radioresistant tissues treated with two opposing beams, for which the predicted carbon RBE within the target volume was lower than outside. Conclusions: For tissue parameters used in this study, the model used does not predict a biologic advantage of carbon ions. More reliable model parameters and clinical trials are necessary to explore the true potential of radiotherapy with carbon ions

  19. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    ), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative...... amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC...

  20. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  1. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    Science.gov (United States)

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  2. Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters.

    Science.gov (United States)

    Naddeo, V; Belgiorno, V; Kassinos, D; Mantzavinos, D; Meric, S

    2010-01-01

    The 20 kHz ultrasound-induced degradation of non-steroidal, anti-inflammatory drug diclofenac (DCF) was investigated. Several operating conditions, such as power density (25-100 W/L), substrate concentration (2.5-80 mg/L), initial solution pH (3.5-11), liquid bulk temperature and the type of sparging gas (air, oxygen, argon), were tested concerning their effect on DCF degradation (as assessed measuring absorbance at 276 nm) and hydroxyl radicals generation (as assessed measuring H(2)O(2) concentration). Sample mineralization (in terms of TOC and COD removal), aerobic biodegradability (as assessed by the BOD(5)/COD ratio) and ecotoxicity to Daphnia magna and Artemia salina were followed too. DCF conversion is enhanced at increased applied power densities and liquid bulk temperatures, acidic conditions and in the presence of dissolved air or oxygen. The reaction rate increases with increasing DCF concentration in the range 2.5-5mg/L but it remains constant in the range 40-80 mg/L, indicating different kinetic regimes (i.e. first and zero order, respectively). H(2)O(2) production rates in pure water are higher than those in DCF solutions, implying that decomposition basically proceeds through hydroxyl radical reactions. Mineralization is a slow process as reaction by-products are more stable than DCF to total oxidation; nonetheless, they are also more readily biodegradable. Toxicity to D. magna increases during the early stages of the reaction and then decreases progressively upon degradation of reaction by-products; nevertheless, complete toxicity elimination cannot be achieved at the conditions in question. Neither the original nor the treated DCF samples are toxic to A. salina.

  3. Impact of elevated CO_2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO_2 sequestration

    International Nuclear Information System (INIS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.

    2017-01-01

    Interest in anthropogenic CO_2 release and associated global climatic change has prompted numerous laboratory-scale and commercial efforts focused on capturing, sequestering or utilizing CO_2 in the subsurface. Known carbonate mineral precipitating microorganisms, such as the anaerobic sulfate-reducing bacteria (SRB), could enhance the rate of conversion of CO_2 into solid minerals and thereby improve long-term storage of captured gasses. The ability of SRB to induce carbonate mineral precipitation, when exposed to atmospheric and elevated pCO_2, was investigated in laboratory scale tests with bacteria from organic-rich sediments collected from hypersaline Lake Estancia, New Mexico. The enriched SRB culture was inoculated in continuous gas flow and batch reactors under variable headspace pCO_2 (0.0059 psi to 20 psi). Solution pH, redox conditions, sulfide, calcium and magnesium concentrations were monitored in the reactors. Those reactors containing SRB that were exposed to pCO_2 of 14.7 psi or less showed Mg-calcite precipitation. Reactors exposed to 20 psi pCO_2 did not exhibit any carbonate mineralization, likely due to the inhibition of bacterial metabolism caused by the high levels of CO_2. Hydrogen, lactate and formate served as suitable electron donors for the SRB metabolism and related carbonate mineralization. Carbon isotopic studies confirmed that ∼53% of carbon in the precipitated carbonate minerals was derived from the CO_2 headspace, with the remaining carbon being derived from the organic electron donors, and the bicarbonate ions available in the liquid medium. The ability of halotolerant SRB to induce the precipitation of carbonate minerals can potentially be applied to the long-term storage of anthropogenic CO_2 in saline aquifers and other ideal subsurface rock units by converting the gas into solid immobile phases. - Highlights: • SRB under study are capable of precipitating calcite up to 14.7 psi pCO_2. • At 20 psi pCO_2, bacterial activity

  4. Optimization of Treatment Policy for Acute Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    R. N. Akalayev

    2012-01-01

    Full Text Available Objective: to evaluate the efficiency of combination use of hyperbaric oxygenation, succinate-containing solutions, and anti-edematous agents in patients with acute carbon monoxide poisoning. Subjects and methods. The results of treatment were analyzed in 32 patients admitted in 2009—2011 for severe acute carbon monoxide poisoning and a Glasgow coma score of 6—8. The patients were divided into 2 groups: 1 patients whose combination therapy involved hyperbaric oxygenation, Succinasol infusions, and L-lysine-aescinate injections; 2 those who received traditional therapy. All the patients underwent complex clinical, laboratory, and neurophysiologic examinations. Results. Just 24 hours after the combination use of Succinasol and L-lysine-aescinate, Group I patients were observed to have substantially reduced lactate, the content of the latter approached the normal value following 48 hours, which was much below the values in the control group. The similar pattern was observed when endogenous intoxication parameters were examined. During the performed therapy, the level of consciousness and that of intellect according to the MMSE and FAB scales were restored more rapidly in the study group patients than in Group 2. Conclusion. The combination use of hyperbaric oxygenation, the succinate-containing solution Succinasol, and the anti-edematous agent L-lysine-aescinate considerably enhances the efficiency of intensive therapy for acute carbon monoxide poisoning. Key words: carbon monoxide, toxic hypoxic encephalopathy, combination therapy, hyperbaric oxygenation, succinic acid, L-lysine-aescinate.

  5. Cumulative emissions, unburnable fossil fuel, and the optimal carbon tax

    NARCIS (Netherlands)

    van der Ploeg, F.; Rezai, A.

    2017-01-01

    A stylised analytical framework is used to show how the global carbon tax and the amount of untapped fossil fuel can be calculated from a simple rule given estimates of society's rate of time impatience and intergenerational inequality aversion, the extraction cost technology, the rate of technical

  6. Optimization of chemical regeneration procedures of spent activated carbon

    Directory of Open Access Journals (Sweden)

    Naser Ghasemzadeh

    2017-01-01

    Full Text Available The chemical regeneration of granular activated carbon exhausted in a petrochemical wastewater unit was investigated. Gas chromatography and energy-dispersive X-ray spectroscopy demonstrated that spent activated carbon carries large types of organic and inorganic materials. Diverse chemical solvents were adopted in comparison with traditional chemical solvents and regeneration efficiency was investigated for each approach. The optimum procedure and optimum condition including temperature, concentration of solvent, and time were determined. The regenerated activated carbon was used in the adsorption of methylene blue (MB in order to find its regeneration efficiency. The regeneration efficiency can be identified by comparing of amount of MB absorbed by the fresh and regenerated activated carbon. The best acidic regenerator was hydrofluoric acid. The higher the temperature causes the faster desorption rate and consequently, the higher regeneration efficiency. The regeneration efficiency increased by means of an increase in the time of regeneration and solvent concentration, but there was an optimum time and solvent concentration for regeneration. The optimum temperature, solvent concentration and regeneration time obtained was 80 ⁰C, 3 molar and 3 hours, respectively.

  7. Simulation and Optimization of a Carbon Nanotube Electron Source

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Radlička, Tomáš; Krátký, Stanislav

    2015-01-01

    Roč. 21, S4 (2015), s. 60-65 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotube * electron beam lithography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  8. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  9. Radiation monitoring for uranium miners: evaluation and optimization. Final report 9 Sep 79-9 Oct 81

    International Nuclear Information System (INIS)

    Schiager, K.J.; Borak, T.B.; Johnson, J.A.

    1981-01-01

    Radiological health risks to uranium miners are reviewed. Radiation measurement methods and monitoring systems that are now, or soon could be, available are reviewed with respect to their reliability and cost for determining annual exposures. Criteria for optimization of radiation monitoring programs are presented and applied to the current exposure conditions and available monitoring methods. The following recommendations are offered: (1) Personal thermoluminescent dosimeters for gamma exposures should be provided to all underground employees in uranium mines. (2) exposures to long-lived radionuclides in respirable dust and to airborne radon progency should be measured by randomized grab sampling. (3) regulations of the Mine Safety and Health Administration should place greater emphasis on exposure reduction, as opposed to documentation

  10. [Soil organic carbon mineralization of Black Locust forest in the deep soil layer of the hilly region of the Loess Plateau, China].

    Science.gov (United States)

    Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai

    2012-11-01

    The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.

  11. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    Science.gov (United States)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  12. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area.

    Science.gov (United States)

    Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander

    2017-06-01

    Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions fractions (0.2-2μm, 0.05-0.2μm, fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  14. Statistical optimization of gold recovery from difficult leachable sulphide minerals using bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Hussin A.M. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Mining Engineering Dept.; El-Midany, Ayman A. [King Saud Univ., Riyadh (Saudi Arabia)

    2012-07-01

    Some of refractory gold ores represent one of the difficult processable ores due to fine dissemination and interlocking of the gold grains with the associated sulphide minerals. This makes it impossible to recover precious metals from sulphide matrices by direct cyanide leaching even at high consumption of cyanide solution. Research to solve this problem is numerous. Application of bacteria shows that, some types of bacteria have great affect on sulphides bio-oxidation and consequently facilitate the leaching process. In this paper, leaching of Saudi gold ore, from Alhura area, containing sulphides before cyanidation is studied to recover gold from such ores applying bacteria. The process is investigated using stirred reactor bio-leaching rather than heap bio-leaching. Using statistical analysis the main affecting variables under studied conditions were identified. The design results indicated that the dose of bacteria, retention time and nutrition K{sub 2}SO{sub 4} are the most significant parameters. The higher the bacterial dose and the bacterial nutrition, the better is the concentrate grade. Results show that the method is technically effective in gold recovery. A gold concentrate containing > 100 g/t gold was obtained at optimum conditions, from an ore containing < 2 g/t gold i.e., 10 ml bacterial dose, 6 days retention time, and 6.5 kg/t K{sub 2}SO{sub 4}as bacteria nutrition. (orig.)

  15. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals

    Directory of Open Access Journals (Sweden)

    M. Schrumpf

    2013-03-01

    Full Text Available Conceptual models suggest that stability of organic carbon (OC in soil depends on the source of plant litter, occlusion within aggregates, incorporation in organo-mineral complexes, and location within the soil profile. Density fractionation is a useful tool to study the relevance of OC stabilization in aggregates and in association with minerals, but it has rarely been applied to full soil profiles. We aim to determine factors shaping the depth profiles of physically unprotected and mineral associated OC and test their relevance for OC stability across a range of European soils that vary in vegetation, soil types, parent material, and land use. At each of the 12 study sites, 10 soil cores were sampled to 60 cm depth and subjected to density separation. Bulk soil samples and density fractions (free light fractions – fLF, occluded light fractions – oLF, heavy fractions – HF were analysed for OC, total nitrogen (TN, δ14C, and Δ14C. Bulk samples were also incubated to determine CO2 evolution per g OC in the samples (specific mineralization rates as an indicator for OC stability. Depth profiles of OC in the light fraction (LF-OC matched those of roots for undisturbed grassland and forest sites, suggesting that roots are shaping the depth distribution of LF-OC. Organic C in the HF declined less with soil depth than LF-OC and roots, especially at grassland sites. The decrease in Δ14C (increase in age of HF-OC with soil depth was related to soil pH as well as to dissolved OC fluxes. This indicates that dissolved OC translocation contributes to the formation of subsoil HF-OC and shapes the Δ14C profiles. The LF at three sites were rather depleted in 14C, indicating the presence of fossil material such as coal and lignite, probably inherited from the parent material. At the other sites, modern Δ14C signatures and positive correlations between specific mineralization rates and fLF-OC indicate the fLF is a potentially available energy and

  16. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2

    Science.gov (United States)

    Benjamin N. Sulman; Richard P. Phillips; A. Christopher Oishi; Elena Shevliakova; Stephen W. Pacala

    2014-01-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle–climate models1.Much of this uncertainty arises from our limited understanding of the extent to which root–microbe interactions induce SOC losses (through accelerated decomposition or ‘priming’2) or indirectly promote SOC gains (...

  17. Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Harrison, Robert; Stupak, Inge

    2016-01-01

    studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Nutrient release profiles clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Reviewing potential sustainability of nutrient supplies......Roots mobilize nutrients via deep soil penetration and rhizosphere processes inducing weathering of primary minerals. These processes contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long......-term supplies of nutrient elements essential for forest growth and resilience. Research and techniques have significantly advanced since Olof Tamm’s 1934 “base mineral index” for Swedish forest soils, and the basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research...

  18. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    Science.gov (United States)

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Adsorption of pertechnetate ion on various active carbons from mineral acid solutions

    International Nuclear Information System (INIS)

    Ito, K.

    1991-01-01

    The adsorption behavior of pertechnetate ion (TcO 4 - ) on active carbon has been studied for various acid solutions, taking as indicative value the distribution coefficient K d of Tc between active carbon surface and solution. In a system where the total anion concentration of the acid and its sodium salt was maintained constant, modifying the pH of the solution proved distinctly to influence the Tc adsorption behavior of active carbon: taking the case of active carbon derived from coconut shell, increasing the acidity raised K d ; around neutrality there occurred a level stage; in the alkali region, K d declined. The rise of K d in the acid region, however, was observed only with active carbon derived from coconut shell, from oil pitch or from saw dust; it failed to occur when the active carbon was derived from coal or from bone. With a hydrochloric acid system, the rise of K d started around 1 M (mol dm -1 ) HCl. Beyond 3 M, on the other hand, a breakthrough occurred, and K d declined with increasing acidity. With a nitric acid system, K d rose from 1 M, and the breakthrough occurred at 2 M. When the adsorption was left to equilibrate beyond 4 h, desorption displacement of TcO 4 - by a coexisting other anion was observed in the case of perchloric acid solutions of concentration above 0.1 M and with sulfuric acid solutions above 0.5 M. (author)

  20. CO2 Energy Reactor - Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

    OpenAIRE

    Rafael M Santos; Pol CM Knops; Keesjan L Rijnsburger; Yi Wai eChiang

    2016-01-01

    To overcome the challenges of mineral CO2 sequestration, Innovation Concepts B.V. is developing a unique proprietary gravity pressure vessel (GPV) reactor technology and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In ...

  1. Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.

    Science.gov (United States)

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-06

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  2. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    Science.gov (United States)

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-01

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639

  3. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    Directory of Open Access Journals (Sweden)

    Songyi Wang

    2018-01-01

    Full Text Available In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  4. Flash pyrolysis of adsorbed aromatic organic acids on carbonate minerals: Assessing the impact of mineralogy for the identification of organic compounds in extraterrestrial bodies

    Science.gov (United States)

    Zafar, R.

    2017-12-01

    The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified

  5. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures......, the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  6. Optimal Strategies for Low Carbon Supply Chain with Strategic Customer Behavior and Green Technology Investment

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    2016-01-01

    Full Text Available Climate change is mainly caused by excessive emissions of carbon dioxide and other greenhouse gases. In order to reduce carbon emissions, cap and trade policy is implemented by governments in many countries, which has significant impacts on the decisions of companies at all levels of the low carbon supply chain. This paper investigates the decision-making and coordination of a low carbon supply chain consisting of a low carbon manufacturer who produces one product and is allowed to invest in green technology to reduce carbon emissions in production and a retailer who faces stochastic demands formed by homogeneous strategic customers. We investigate the optimal production, pricing, carbon trading, and green technology investment strategies of the low carbon supply chain in centralized (including Rational Expected Equilibrium scenario and quantity commitment scenario and decentralized settings. It is demonstrated that quantity commitment strategy can improve the profit of the low carbon supply chain with strategic customer behavior. We also show that the performance of decentralized supply chain is lower than that of quantity commitment scenario. We prove that the low carbon supply chain cannot be coordinated by revenue sharing contract but by revenue sharing-cost sharing contract.

  7. Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases.

    Science.gov (United States)

    Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica

    2009-04-01

    The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.

  8. Rapid Co-optimization of Processing and Circuit Design to Overcome Carbon Nanotube Variations

    OpenAIRE

    Hills, Gage; Zhang, Jie; Shulaker, Max Marcel; Wei, Hai; Lee, Chi-Shuen; Balasingam, Arjun; Wong, H. -S. Philip; Mitra, Subhasish

    2015-01-01

    Carbon nanotube field-effect transistors (CNFETs) are promising candidates for building energy-efficient digital systems at highly-scaled technology nodes. However, carbon nanotubes (CNTs) are inherently subject to variations that reduce circuit yield, increase susceptibility to noise, and severely degrade their anticipated energy and speed benefits. Joint exploration and optimization of CNT processing options and CNFET circuit design are required to overcome this outstanding challenge. Unfor...

  9. Review of CO2 Reduction Technologies using Mineral Carbonation of Iron and Steel Making Slag in Malaysia

    Science.gov (United States)

    Norhana Selamat, Siti; Nor, Nik Hisyamudin Muhd; Rashid, Muhammad Hanif Abdul; Fauzi Ahmad, Mohd; Mohamad, Fariza; Ismail, Al Emran; Fahrul Hassan, Mohd; Turan, Faiz Mohd; Zain, Mohd Zamzuri Mohd; Abu Bakar, Elmi; Seiji, Yokoyama

    2017-10-01

    Climate change, greenhouse gas effect, and global warming is envisioning to turn more awful and more terrible by year. Since the leading cause of global warming is uncontrolled CO2 in atmosphere. The amount of unused steel slag is expected to increment later on, steel industries is one of the mechanical industries that contribute the CO2 emission. That because this businesses deliver carbon in light of powers reductant and substantial volume of steel. The changes of atmosphere these day is truly developing concern and that make steel creator are confronted with test of discovering methods for bringing down CO2 emission. Malaysia is working decidedly in the diminishment of CO2 gas. There are a few techniques in decreasing the amount of CO2 in the air as underlined by the Intergovernmental Panel of Climate Change (IPCC), an organization under the United Country however CCS is an extremely encouraging innovation to moderate CO2 emission in air. Mineral carbonation is another technique to store carbon dioxide permanently, long term stability and vast capacity.

  10. Mineral CO2 sequestration in basalts and ultra-basic rocks: impact of secondary silicated phases on the carbonation process

    International Nuclear Information System (INIS)

    Sissmann, Olivier

    2013-01-01

    The formation of carbonates constitutes a stable option for carbon dioxide (CO 2 ) geological sequestration, and is prone to play a significant role in reducing emissions of anthropic origin. However, our comprehension of the carbonation mechanism, as well as of the kinetics limitations encountered during this chemical reaction, remains poorly developed. Though there is a large number of studies focusing on the dissolution kinetics of basic silicates and on the precipitation of carbonates, few have inquired about the impact that the formation of non-carbonated secondary phases can have on these reaction's kinetics. It is the approach chosen here, as only solid knowledge of the global carbonation mechanism can make this process predictive and efficient. Experimental data on dissolution and carbonation have therefore been determined in batch reactors, on relevant minerals and rocks. Firstly, we studied the carbonation of olivine (a major phase within peridotites and minor within basalts) at 90 deg. C and under pCO 2 of 280 bars. The dissolution of San Carlos olivine (Mg 1.76 Fe 0.24 SiO 4 ) is slowed down by the formation of a surface silica gel, when the fluid reaches equilibrium with amorphous silica. The transport of species to the reactive medium becomes the limiting step of the process, slowing down the dissolution process of San Carlos olivine by 5 orders of magnitude. However, this passivation doesn't occur during the alteration of Ca-olivine (Ca 2 SiO 4 ), though a surface silica layer does form. This comparison suggests that it isn't the structure of the silicate but its chemical composition, which controls the transport properties through the interfacial layer. The second part explores the effects of organic ligands and of temperature variations on the formation of those phases. The addition of citrate at 90 deg. C increases the kinetics of San Carlos olivine by one order of magnitude, and allows the release of enough Mg in the aqueous medium to form

  11. An optimal control model for reducing and trading of carbon emissions

    Science.gov (United States)

    Guo, Huaying; Liang, Jin

    2016-03-01

    A stochastic optimal control model of reducing and trading for carbon emissions is established in this paper. With considerations of reducing the carbon emission growth and the price of the allowances in the market, an optimal policy is searched to have the minimum total costs to achieve the agreement of emission reduction targets. The model turns to a two-dimension HJB equation problem. By the methods of reducing dimension and Cole-Hopf transformation, a semi-closed form solution of the corresponding HJB problem under some assumptions is obtained. For more general cases, the numerical calculations, analysis and comparisons are presented.

  12. EFFECTS OF MINERAL ADMIXTURE ON THE CARBONIC ACID LEACHING RESISTANCE OF CEMENT-BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Yun Dong

    2017-07-01

    Full Text Available In order to reveal the degradation process and deterioration mechanism of cement-based materials, this paper analyzes the effects of carbonic acid leaching on the mechanical strength of mortars, as well as relative mass loss, microstructure, and composition of various cement pastes. The results indicate that cement pastes containing less than 20 % fly ash have higher carbonic acid leaching resistance than cement pastes without fly ash. However, after carbonic acid leaching, the compressive strength of the samples with fly ash is lower than that of the cement pastes without fly ash. The leaching resistance is good for samples cured at an early age before leaching. Carbonic acid leaching proceeds from the paste surface to the interior. The incorporation of an appropriate amount of slag powder helps to increase the density of the paste. Due to the pozzolanic activity of fly ash at late-stage leaching, a mixture of fly ash (≤ 20 % and slag powder (≤ 20 % effectively improves carbonic acid leaching resistance. The products of early-stage leaching were mainly CaCO₃ and small amounts of SiO₂ and Fe₂O₃. The C-S-H phase at the paste surface suffered serious damage after long periods of leaching, and the main products of leaching were SiO₂ and Fe₂O₃.

  13. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  14. Optimization and spectroscopic studies on carbon nanotubes/PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Naziha Suliman Alghunaim

    Full Text Available Nanocomposite films of polyvinyl alcohol (PVA containing constant ratio of both single and multi-wall carbon nanotubes had been obtained by dispersion techniques and were investigated by different techniques. The infrared spectrum confirmed that SWNTs and MWNTs have been covalently related OH and CC bonds within PVA. The X-ray diffraction indicated lower crystallinity after the addition of carbon nanotubes (CNTs due to interaction between CNTs and PVA. Transmission electron microscope (TEM illustrated that SWNTs and MWNTs have been dispersed into PVA polymeric matrix and it wrapped with PVA. The properties of PVA were enhanced by the presence of CNTs. TEM images show uniform distribution of CNTs within PVA and a few broken revealing that CNTs broke aside as opposed to being pulled out from fracture surface which suggests an interfacial bonding between CNTs and PVA. Maximum value of AC conductivity was recorded at higher frequencies. The behavior of both dielectric constant (ɛ′ and dielectric loss (ɛ″ were decreased when frequency increased related to dipole direction within PVA films to orient toward the applied field. At higher frequencies, the decreasing trend seems nearly stable as compared with lower frequencies related to difficulty of dipole rotation. Keywords: CNTs, XRD, TEM, AC conductivity

  15. The production of activated carbon from nigerian mineral coal via steam activation

    International Nuclear Information System (INIS)

    Nwosu, F.O.; Owolabi, B.I.O.; Adebowale, O.

    2010-01-01

    Activated carbon was produced from Okpara sub-bituminous coal and Ogwashi brown lignite coal of Nigeria through steam activation at 900 degree C and 960 degree C each for 30 min and 60 min. Okpara and Ogwashi precursor coals had carbon content of 67.41 and 64.47%, respectively, whereas the bulk density and the ash content were 0.59 - 0.68 g/mL and 2.56-9.91%, respectively. The former exhibited up to 901.0 mg/g iodine number and Brunauer Emmett Teller (BET) surface area of 604 m/sup 2/g while the latter, iodine number of 998.0 mg/g and 669 m/sup 2/g BET surface area. Both showed adequate porosity indicative of their potential for utilization for commercial production of active carbons. (author)

  16. Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Baath, Erland

    2007-01-01

    Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim w...... on C and N transformations during field incubation suggest that microbial activity is an important control on the carbon balance of arctic soils under climate change.......Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim...

  17. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-01-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed ‘priming’. We investig......Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed ‘priming’. We...

  18. Tuning the Wettability of Halloysite Clay Nanotubes by Surface Carbonization for Optimal Emulsion Stabilization.

    Science.gov (United States)

    Owoseni, Olasehinde; Zhang, Yueheng; Su, Yang; He, Jibao; McPherson, Gary L; Bose, Arijit; John, Vijay T

    2015-12-29

    The carbonization of hydrophilic particle surfaces provides an effective route for tuning particle wettability in the preparation of particle-stabilized emulsions. The wettability of naturally occurring halloysite clay nanotubes (HNT) is successfully tuned by the selective carbonization of the negatively charged external HNT surface. The positively charge chitosan biopolymer binds to the negatively charged external HNT surface by electrostatic attraction and hydrogen bonding, yielding carbonized halloysite nanotubes (CHNT) on pyrolysis in an inert atmosphere. Relative to the native HNT, the oil emulsification ability of the CHNT at intermediate levels of carbonization is significantly enhanced due to the thermodynamically more favorable attachment of the particles at the oil-water interface. Cryogenic scanning electron microscopy (cryo-SEM) imaging reveals that networks of CHNT attach to the oil-water interface with the particles in a side-on orientation. The concepts advanced here can be extended to other inorganic solids and carbon sources for the optimal design of particle-stabilized emulsions.

  19. Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment

    Directory of Open Access Journals (Sweden)

    Daming You

    2018-02-01

    Full Text Available This study introduces a time factor into a low-carbon context, and supposes the contamination control state of local government and the ability of polluting enterprise to abate emissions as linear increasing functions in a regional low-carbon emission abatement cooperation chain. The local government effectuates and upholds the low-carbon development within the jurisdiction that is primarily seeking to transform regional economic development modes, while the polluting enterprise abates the amounts of emitted carbon in the entire period of product through simplifying production, facilitating decontamination, and adopting production technology, thus leading to less contamination. On that basis, we infer that the coordinated joint carbon reduction model and two decentralization contracts expound the dynamic coordination strategy for a regional cooperation chain in terms of vertical carbon abatement. Furthermore, feedback equilibrium strategies that are concerned with several diverse conditions are compared and analyzed. The main results show that a collaborative centralized contract is able to promote the regional low-carbon cooperation chain in order to achieve a win–win situation in both economic and environmental performance. Additionally, the optimal profits of the entire regional low-carbon cooperation channel under an integration scenario evidently outstrip that of two non-collaborative decentralization schemes. Eventually, the validity of the conclusions is verified with a case description and numerical simulation, and the sensitivity of the relevant parameters is analyzed in order to lay a theoretical foundation and thus facilitate the sustainable development of a regional low-carbon environment.

  20. Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes

    Science.gov (United States)

    Pietsch, Stephan

    2017-04-01

    DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong, since: (i) No given ecosystem ever is at steady state! (ii) Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.

  1. Organo-mineral interactions promote greater soil organic carbon stability under aspen in semi-arid montane forests in Utah

    Science.gov (United States)

    Van Miegroet, H.; Roman Dobarco, M.

    2014-12-01

    Forest species influence soil organic carbon (SOC) storage through litter input, which in interaction with soil microclimate, texture and mineralogy, lead to different SOC stabilization and storage patterns. We sampled mineral soil (0-15 cm) across the ecotone between aspen (Populus tremuloides) and mixed conifers stands (Abies lasiocarpa and Pseudotsuga menziesii) in semi-arid montane forests from Utah, to investigate the influence of vegetation vs. site characteristics on SOC stabilization, storage and chemistry. SOC was divided into light fraction (LF), mineral-associated SOC in the silt and clay fraction (MoM), and a dense subfraction > 53 μm (SMoM) using wet sieving and electrostatic attraction. SOC decomposability and solubility was derived from long term laboratory incubations and hot water extractions (HWE). Fourier transform infrared spectroscopy (FTIR) was used to study differences in chemical functional groups in LF and MoM. Vegetation cover did not affect SOC storage (47.0 ± 16.5 Mg C ha-1), SOC decomposability (cumulative CO2-C release of 93.2 ± 65.4 g C g-1 C), or SOC solubility (9.8 ± 7.2 mg C g-1 C), but MoM content increased with presence of aspen [pure aspen (31.2 ± 15.1 Mg C ha-1) > mixed (25.7 ± 8.8 Mg C ha-1) > conifer (22.8 ± 9.0 Mg C ha-1)]. Organo-mineral complexes reduced biological availability of SOC, indicated by the negative correlation between silt+clay (%) and decomposable SOC per gram of C (r = -0.48, p = 0.001) or soluble SOC (r = -0.59, p plant or microbial origin. FTIR spectra clustered by sites with similar parent material rather than by vegetation cover. This suggests that initial differences in litter chemistry between aspen and conifers converged into similar MoM chemistry within sites.

  2. Influence of soil properties on the toxicity of TiO₂ nanoparticles on carbon mineralization and bacterial abundance.

    Science.gov (United States)

    Simonin, Marie; Guyonnet, Julien P; Martins, Jean M F; Ginot, Morgane; Richaume, Agnès

    2015-01-01

    Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Quantitative assessment of elemental carbon in the lungs of never smokers, cigarette smokers and coal miners

    Science.gov (United States)

    Inhalation exposure to particulates such as cigarette smoke and coal dust is known to contribute to the development of chronic lung disease. The purpose of this study was to estimate the amount of elemental carbon (EC) deposits from autopsied lung samples from cigarette smokers, ...

  4. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen

  5. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas. Phase I. Final Topical Report

    International Nuclear Information System (INIS)

    Constantz, Brent; Seeker, Randy; Devenney, Martin

    2010-01-01

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO 2 to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM(trademark) was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  6. Synthesis and characterization of carbon nanotubes on clay minerals and its application to a hydrogen peroxide biosensor

    International Nuclear Information System (INIS)

    Hsu, H.-L.; Jehng, J.-M.

    2009-01-01

    In this study, we demonstrate the synthesis of carbon nanotubes (CNTs) on clay minerals, and the development of biosensors based on Nafion-CNT/Clay-Au and Nafion-CNT/Clay-Au-Glucose oxidase (GOD) composite films for the detection of hydrogen peroxide (H 2 O 2 ) and glucose, respectively. The CNTs are synthesized on nickel cation exchanged clay mineral platelets. From field-emission scanning electron microscope images, X-ray diffraction, Fourier transfer infrared and thermogravimetric analysis results, the clay layers are exfoliated and delaminated after the growth of CNTs on them. The mixed hybrid film of Nafion, CNT/Clay, Au particles and GOD is coated on the glassy carbon (GC) electrode to detect H 2 O 2 or glucose. This film exhibits a detection limit of 5.0 x 10 -5 M for H 2 O 2 with a sensitivity of 280 nA mM -1 . In addition, the amperometric response for glucose containing 2.0 mg mL -1 GOD in the Nafion-CNT/Clay-Au-GOD modified GC electrode exhibits a sensitivity of 620 nA mM -1 with a linear range up to 1850 μM. A higher sensitivity and shorter response time are observed with increasing GOD content in the composite matrix film. Besides, the highest sensitivity of 2032 nA mM -1 is obtained with the addition of the 10.0 mg mL -1 GOD in the composite film. Consequently, the CNT/Clay/Nafion medium can probably be a useful electrode for the development of sensors due to its high sensitivity and applicability

  7. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1

    Science.gov (United States)

    Hu, Xia; Yin, Peng; Nong, Xiang; Liao, Jinhua

    2018-01-01

    To elucidate the alpine soil process in winter, the response mechanism of soil mineral nitrogen and soil microbes to exogenous carbon (0 mg C, 1 mg C, 2 mg C, 4 mg C and 8 mg C·g-1 dry soil) and the freeze-thaw cycle (-2 °C, -2 ∼ 2 °C, -20 ∼2°C) were studied by laboratory simulation. The freeze-thaw treatment had no significant effect on microbial biomass nitrogen and the number of bacteria. The soil mineral N pool, the number of fungi, and enzyme activities were obviously affected by the freeze-thaw cycle. A mild freeze-thaw cycle (-2∼2°C) significantly increased the number of fungi and catalase activity, while severe freeze-thaw cycle (-20∼2°C) obviously decreased invertase activity. The results suggested that both the freeze-thaw rate and freeze-thaw temperature amplitudes have a strong effect on soil microbial dynamics in the alpine zone in winter. The results showed that exogenous carbon addition significantly decreased soil NO3-N and NH4 +-N contents, increased soil microbial biomass, the number of microbes, and soil enzyme activities. The results showed that microbial growth in the eastern Tibetan Plateau was somewhat limited by available C. It may represent a larger potential pulse of soil nutrient for alpine plants in the next spring, and may be instrumental for plant community shifts under future climate change predictions due to the possible increased litter addition.

  8. Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak)

    OpenAIRE

    Mohammad Ali Jazi; Mohammad Hassan Karimpour; Azadeh Malekzadeh Shafaroudi

    2015-01-01

    Introduction The Baqoroq Cu-Zn-As deposit is located northeast of the town ofAnarak in Isfahan province, in theeast central areaof Iran. Copper mineralization occursin upper cretaceous carbonate rocks.Studyof thegeologyof the Nakhlak area, the location ofa carbonate-hosted base metaldeposit, indicatesthe importance of stratigraphic, lithological and structural controls in the placement of this ore deposit. (Jazi et al., 2015).Some of the most world’s most important epigenetic, stratabo...

  9. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  10. Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon

    DEFF Research Database (Denmark)

    Mines, Paul D.; Andersen, Henrik Rasmus; Hwang, Yuhoon

    2016-01-01

    economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing...

  11. Crystal structure of the (REE)-uranyl carbonate mineral kamotoite-(Y)

    Czech Academy of Sciences Publication Activity Database

    Plášil, Jakub; Petříček, Václav

    2017-01-01

    Roč. 81, č. 3 (2017), s. 653-660 ISSN 0026-461X R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : kamotoite-(Y) * uranyl carbonate * rare-earth elements * crystal structure Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.285, year: 2016

  12. Precipitation kinetics of Mg-carbonates, influence of organic ligands and consequences for CO2 mineral sequestration

    International Nuclear Information System (INIS)

    Gautier, Q.

    2012-01-01

    Forming magnesium carbonate minerals through carbonation of magnesium silicates has been proposed as a safe and durable way to store carbon dioxide, with a possibly high potential to offset anthropogenic CO 2 emissions. To date however, chemical reactions involved in this process are facing strong kinetic limitations, which originate in the low reactivity of both Mg-silicates and Mg-carbonates. Numerous studies have focused on the dissolution of Mg-silicates, under the questionable hypothesis that this step limits the whole process. This thesis work focuses instead on the mechanisms and rates of formation of magnesium carbonates, which are the final products of carbonation reactions. The first part of the work is dedicated to studying the influence on magnesite precipitation kinetics of three organic ligands known to accelerate Mg-silicates dissolution rates: oxalate, citrate and EDTA. With help of mixed-flow reactor experiments performed between 100 and 150 C, we show that these ligands significantly reduce magnesite growth rates, through two combined mechanisms: (1) complexation of Mg 2+ cations in aqueous solution, which was rigorously estimated from a thermodynamic database established through a critical review of the literature, and (2) adsorption of ligands to a limited number of surface sites, leading to a decrease of the precipitation rate constant. The observed growth inhibition is maximal with citrate. We then used hydrothermal atomic force microscopy to probe the origin of the documented growth inhibition. Our observations show that citrate and oxalate interact with the crystal growth process on magnesite surface, modifying the shape of growth hillocks as well as the step generation frequency through spiral growth. We also show that the ligands adsorb preferentially on different kink-sites, which is probably related to their different structures and chemical properties. We propose that the stronger magnesite growth inhibition caused by citrate is related

  13. Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xue-Jun; ZHOU Guo-Yi; HUANG Zhong-Liang; LIU Ju-Xiu; ZHANG De-Qiang; LI Jiong

    2008-01-01

    Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments.For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3-N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission.SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P≤0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.

  14. Optimal Synthesis of Horizontally Aligned Single-Walled Carbon Nanotubes and Their Biofunctionalization for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Dawoon Jung

    2016-01-01

    Full Text Available As an influential candidate for highly sensitive biomolecule sensor, which can capture disease related biomolecules, carbon nanotube is useful material due to its unique properties. To adopt as a sensing platform, it is strongly needed to find optimal refined synthetic condition. In order to find the optimal synthetic conditions of horizontally aligned CNT, we performed quantity control of the mixed gases of H2 and CH4 injected. We successfully find that the formation of amorphous-like carbon was critically affected by some gas condition such as the flow rate of injected gases and ratios of gas mixture. Moreover, it should be noted that our horizontally aligned carbon nanotube array platform developed would offer another potential in developing nanoscale light source, where light emission results from electron-hole carrier recombination.

  15. A Low-Carbon-Based Bilevel Optimization Model for Public Transit Network

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2013-01-01

    Full Text Available To satisfy the demand of low-carbon transportation, this paper studies the optimization of public transit network based on the concept of low carbon. Taking travel time, operation cost, energy consumption, pollutant emission, and traffic efficiency as the optimization objectives, a bilevel model is proposed in order to maximize the benefits of both travelers and operators and minimize the environmental cost. Then the model is solved with the differential evolution (DE algorithm and applied to a real network of Baoji city. The results show that the model can not only ensure the benefits of travelers and operators, but can also reduce pollutant emission and energy consumption caused by the operations of buses, which reflects the concept of low carbon.

  16. Can joint carbon and biodiversity management in tropical agroforestry landscapes be optimized?

    Science.gov (United States)

    Kessler, Michael; Hertel, Dietrich; Jungkunst, Hermann F; Kluge, Jürgen; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Gerold, Gerhard; Gradstein, S Robbert; Köhler, Stefan; Leuschner, Christoph; Moser, Gerald; Pitopang, Ramadhanil; Saleh, Shahabuddin; Schulze, Christian H; Sporn, Simone G; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S; Tscharntke, Teja

    2012-01-01

    Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential 'win-win' scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227-362 Mg C ha(-1) to agroforests with 82-211 Mg C ha(-1) showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels.

  17. Grey Relational Analyses for Multi-Objective Optimization of Turning S45C Carbon Steel

    International Nuclear Information System (INIS)

    Shah, A.H.A.; Azmi, A.I.; Khalil, A.N.M.

    2016-01-01

    The optimization of performance characteristics in turning process can be achieved through selection of proper machining parameters. It is well known that many researchers have successfully reported the optimization of single performance characteristic. Nevertheless, the multi-objective optimization can be difficult and challenging to be studied due to its complexity in analysis. This is because an improvement of one performance characteristic may lead to degradation of other performance characteristic. As a result, the study of multi-objective optimization in CNC turning of S45C carbon steel has been attempted in this paper through Taguchi and Grey Relational Analysis (GRA) method. Through this methodology, the multiple performance characteristics, namely; surface roughness, material removal rate (MRR), tool wear, and power consumption; can be optimized simultaneously. It appears from the experimental results that the multiple performance characteristics in CNC turning was achieved and improved through the methodology employed. (paper)

  18. Optimization of the sintering atmosphere for high-density hydroxyapatite–carbon nanotube composites

    Science.gov (United States)

    White, Ashley A.; Kinloch, Ian A.; Windle, Alan H.; Best, Serena M.

    2010-01-01

    Hydroxyapatite–carbon nanotube (HA–CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the ‘water–gas reaction’) would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water–gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density. PMID:20573629

  19. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    Directory of Open Access Journals (Sweden)

    Longfei He

    2014-01-01

    Full Text Available We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optimization algorithm to obtain joint optimal production quantities combination for maximizing overall profit under regulatory policies, respectively. Furthermore, numerical studies by featuring exponentially distributed demand compare systemwide performances in various scenarios. We build the “carbon emission elasticity of profit (CEEP” index as a metric to evaluate the impact of regulatory policies on both chainwide emissions and profit. Our results manifest that by facilitating the mandatory emission cap in proper installation within the network one can balance well effective emission reduction and associated acceptable profit loss. The outcome that CEEP index when implementing Carbon emission tax is elastic implies that the scale of profit loss is greater than that of emission reduction, which shows that this policy is less effective than mandatory cap from industry standpoint at least.

  20. Optimization of the Waterbus Operation Plan Considering Carbon Emissions: The Case of Zhoushan City

    Directory of Open Access Journals (Sweden)

    Juying Wang

    2015-08-01

    Full Text Available Recently, as more people are concerned with the issues around environment protection, research about how to reduce carbon emissions has drawn increasing attention. Encouraging public transportation is an effective measure to reduce carbon emissions. However, overland public transportation does less to lower carbon because of the gradually increasing pressure of the urban road traffic. Therefore, the waterbus along the coast becomes a new direction of the urban public transport development. In order to optimize the operation plan of the waterbus, a bi-level model considering carbon emissions is proposed in this paper. In the upper-level model, a multiple objective model is established, which considers both the interests of the passengers and the operator while considering the carbon emissions. The lower-level model is a traffic model split by using a Nested Logit model. A NSGA-II (Non-dominated Sorting Genetic Algorithm-II algorithm is proposed to solve the model. Finally, the city of Zhoushan is chosen as an example to prove the feasibility of the model and the algorithm. The result shows that the proposed model for waterbus operation optimization can efficiently reduce transportation carbon emissions and satisfy passenger demand at the same time.

  1. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

    Science.gov (United States)

    Felipe G. Sanchez; Allan E. Tiarks; J. Marty Kranabetter; Deborah S. Page-Dumroese; Robert F. Powers; Paul T. Sanborn; William K. Chapman

    2006-01-01

    This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts)...

  2. An Optimal Allocation Model of Public Transit Mode Proportion for the Low-Carbon Transportation

    Directory of Open Access Journals (Sweden)

    Linjun Lu

    2015-01-01

    Full Text Available Public transit has been widely recognized as a potential way to develop low-carbon transportation. In this paper, an optimal allocation model of public transit mode proportion (MPMP has been built to achieve the low-carbon public transit. Optimal ratios of passenger traffic for rail, bus, and taxi are derived by running the model using typical data. With different values of traffic demand, construction cost, travel time, and accessibilities, MPMP can generate corresponding optimal ratios, benefiting decision impacts analysis and decision makers. Instead of considering public transit as a united system, it is separated into units in this paper. And Shanghai is used to test model validity and practicality.

  3. Rapid Turnover and Minimal Accretion of Mineral Soil Carbon During 60-Years of Pine Forest Growth on Previously Cultivated Land

    Science.gov (United States)

    Richter, D., Jr.; Mobley, M. L.; Billings, S. A.; Markewitz, D.

    2016-12-01

    At the Calhoun Long-Term Soil-Ecosystem field experiment (1957-present), reforestation of previously cultivated land over fifty years nearly doubled soil organic carbon (SOC) in surface soils (0 to 7.5-cm) but these gains were offset by significant SOC losses in subsoils (35 to 60-cm). Nearly all of the accretions in surface soils amounted to gains in light fraction SOC, whereas losses at depth were associated with silt and clay-sized particles. These changes are documented in the Calhoun Long-Term Soil-Ecosystem (LTSE) study that resampled soil from 16 plots about every five years and archived all soil samples from four soil layers within the upper 60-cm of mineral soil. We combined soil bulk density, density fractionation, stable isotopes, and radioisotopes to explore changes in SOC and soil organic nitrogen (SON) associated with five decades of the growth of a loblolly pine secondary forest. Isotopic signatures showed relatively large accumulations of contemporary forest-derived carbon in surface soils, and no accumulation of forest-derived carbon in subsoils. We interpret results to indicate that land-use change from cotton fields to secondary pine forests drove soil biogeochemical and hydrological changes that enhanced root and microbial activity and SOM decomposition in subsoils. As pine stands matured and are now transitioning to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth has eased due to pine mortality, and bulk SOM and SON and their isotopes in subsoils have stabilized. We anticipate major changes in the next fifty years as 1957 pine trees transition to hardwoods. This study emphasizes the importance of long-term experiments and deep soil measurements when characterizing SOC and SON responses to land use change. There is a remarkable paucity of E long-term soil data deeper than 30 cm.

  4. Quantitative percutaneous CO2 measurement following CO2 mineral water baths by means of the isotope ratio

    International Nuclear Information System (INIS)

    Mass, I.; Huebner, G.; Birkenfeld, H.; Zelaitis, L.; Ploetner, G.

    1983-01-01

    A method for the quantitative determination of the carbon dioxide penetration through the human skin during a medical carbon dioxide mineral water bath is described. The natural isotope variation of carbon in the carbon dioxide of bath water, blood, and exspiratory gas are used for the calculation of the penetrated carbon dioxide amount. The method permits to optimize the effectiveness of medical carbon dioxide baths. (author)

  5. Design and optimization of carbon-nanotube-material/dielectric hybrid nonlinear optical waveguides

    International Nuclear Information System (INIS)

    Zhao, Xin; Zheng, Zheng; Lu, Zhiting; Zhu, Jinsong; Zhou, Tao

    2011-01-01

    The nonlinear optical characteristics of highly nonlinear waveguides utilizing carbon nanotube composite materials are investigated theoretically. The extremely high nonlinearity and relatively high loss of the carbon nanotube materials are shown to greatly affect the performance of such waveguides for nonlinear optical applications, in contrast to waveguides using conventional nonlinear materials. Different configurations based on applying the carbon nanotube materials to the popular ridge and buried waveguides are thoroughly studied, and the optimal geometries are derived through simulations. It is shown that, though the nonlinear coefficient is often huge for these waveguides, the loss characteristics can significantly limit the maximum achievable accumulated nonlinearity, e.g. the maximum nonlinear phase shift. Our results suggest that SOI-based high-index-contrast, carbon nanotube cladding waveguides, rather than the currently demonstrated low-contrast waveguides, could hold the promise of achieving significantly higher accumulated nonlinearity

  6. Optimization of the use of carbon paste electrodes (CPE for electrochemical study of the chalcopyrite

    Directory of Open Access Journals (Sweden)

    Daniela G. Horta

    2009-01-01

    Full Text Available The use of carbon paste electrodes (CPE of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i the atmosphere of preparation (air or argon of CPE and elapsed time till its use; (ii scan rate for voltammetric measurements and (iii chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.

  7. The importance of non-carbonate mineral weathering as a soil formation mechanism within a karst weathering profile in the SPECTRA Critical Zone Observatory, Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    Oliver W.Moore; Heather L.Buss; Sophie M.Green; Man Liu; Zhaoliang Song

    2017-01-01

    Soil degradation,including rocky desertification,of the karst regions in China is severe.Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded.Understanding the balance between soil formation and soil erosion is critical for long-term soil sustainability,yet little is known about the initial soil forming processes on karst terrain.Herein we examine the initial weathering processes of several types of carbonate bedrock containing varying amounts of non-carbonate minerals in the SPECTRA Critical Zone Observatory,Guizhou Province,Southwest China.We compared the weathering mechanisms of the bedrock to the mass transfer of mineral nutrients in a soil profile developed on these rocks and found that soil formation and nutrient contents are strongly dependent upon the weathering of interbedded layers of more silicate-rich bedrock (marls).Atmospheric inputs from dust were also detected.

  8. The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

    International Nuclear Information System (INIS)

    Gitz, V.; Hourcade, J.Ch.; Ciais, Ph.

    2005-10-01

    This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector. thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a 'safety valve' after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades. (authors)

  9. Optimal carbon emissions trajectories when damages depend on the rate or level of global warming

    International Nuclear Information System (INIS)

    Peck, S.C.; Teisberg, T.J.

    1994-01-01

    The authors extend earlier work with the Carbon Emissions Trajectory Assessment model (CETA) to consider a number of issues relating to the nature of optimal carbon emissions trajectories. They first explore model results when warming costs are associated with the rate of temperature rise, rather than with its level, as in earlier work. It is found that optimal trajectories are more strongly affected by the degree of non-linearity in the warming cost function than by whether the cost function is driven by the warming level or the warming rate. The authors briefly explore the implications of simple uncertainty and risk aversion for optimal emissions trajectories to be somewhat lower, but that the effect is not noticeable in the near term and not dramatic in the long term; the long term effect on the shadow price of carbon is more marked, however. Finally, they experiment with scaling up the warming cost functions until optimal policies are approximately the same as a policy of stabilising emissions at the 1990 level. Based on the results of this experiment, it is concluded that damages would have to be very high to justify anything like a stabilization policy; and even in this case, a policy allowing intertemporal variation in emissions would be better. 18 refs., 15 figs

  10. Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon

    Science.gov (United States)

    Dang, Cheng; Brandt, Richard E.; Warren, Stephen G.

    2015-06-01

    The reduction of snow spectral albedo by black carbon (BC) and mineral dust, both alone and in combination, is computed using radiative transfer modeling. Broadband albedo is shown for mass fractions covering the full range from pure snow to pure BC and pure dust, and for snow grain radii from 5 µm to 2500 µm, to cover the range of possible grain sizes on planetary surfaces. Parameterizations are developed for opaque homogeneous snowpacks for three broad bands used in general circulation models and several narrower bands. They are functions of snow grain radius and the mass fraction of BC and/or dust and are valid up to BC content of 10 ppm, needed for highly polluted snow. A change of solar zenith angle can be mimicked by changing grain radius. A given mass fraction of BC causes greater albedo reduction in coarse-grained snow; BC and grain radius can be combined into a single variable to compute the reduction of albedo relative to pure snow. The albedo reduction by BC is less if the snow contains dust, a common situation on mountain glaciers and in agricultural and grazing lands. Measured absorption spectra of mineral dust are critically reviewed as a basis for specifying dust properties for modeling. The effect of dust on snow albedo at visible wavelengths can be represented by an "equivalent BC" amount, scaled down by a factor of about 200. Dust has little effect on the near-IR albedo because the near-IR albedo of pure dust is similar to that of pure snow.

  11. A global carbon assimilation system based on a dual optimization method

    Science.gov (United States)

    Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Wang, L. H.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.

    2015-02-01

    Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° × 1° grid cells for the period from 2001 to 2007. Results show that land and ocean absorb -3.63 ± 0.50 and -1.82 ± 0.16 Pg C yr-1, respectively. North America, Europe and China contribute -0.98 ± 0.15, -0.42 ± 0.08 and -0.20 ± 0.29 Pg C yr-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C yr-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by the Boreal Ecosystems Productivity Simulator (BEPS) are reduced to -0.78 ± 0.23 Pg C yr-1, the third largest carbon sink.

  12. Effect of surface area of substrates aiming the optimization of carbon nanotube production from ferrocene

    International Nuclear Information System (INIS)

    Osorio, A.G.; Bergmann, C.P.

    2013-01-01

    Highlights: ► An optimized synthesis of CNTs by ferrocene is proposed. ► The surface area of substrates influences the nucleation of CNTs. ► The higher the surface area of substrates the lower the temperature of synthesis. ► Chemical composition of substrates has no influence on the growth of CNTs. - Abstract: Ferrocene is widely used for the synthesis of carbon nanotubes due to its ability to act as catalyst and precursor of the synthesis. This paper proposes an optimization of the synthesis of carbon nanotubes from ferrocene, using a substrate with high surface area for their nucleation. Four different surface areas of silica powder were tested: 0.5, 50, 200 and 300 m 2 /g. Raman spectroscopy and microscopy were used to characterize the product obtained and X-ray diffraction and thermal analysis were also performed to evaluate the phases of the material. It was observed that the silica powder with the highest surface area allowed the synthesis of carbon nanotubes to occur at a lower temperature (600 °C), whereas substrates with a surface area lower than 50 m 2 /g will only form carbon nanotubes at temperatures higher than 750 °C. In order to evaluate the influence of chemical composition of the substrate, three different ceramic powders were analyzed: alumina, silica and zirconia. carbon black and previously synthesized carbon nanotubes were also used as substrate for the synthesis and the results showed that the chemical composition of the substrate does not play a relevant role in the synthesis of carbon nanotubes, only the surface area showed an influence.

  13. Pyrogenic carbon distribution in mineral topsoils of the northeastern United States

    Science.gov (United States)

    Jauss, Verena; Sullivan, Patrick J.; Sanderman, Jonathan; Smith, David; Lehmann, Johannes

    2017-01-01

    Due to its slow turnover rates in soil, pyrogenic carbon (PyC) is considered an important C pool and relevant to climate change processes. Therefore, the amounts of soil PyC were compared to environmental covariates over an area of 327,757 km2 in the northeastern United States in order to understand the controls on PyC distribution over large areas. Topsoil (defined as the soil A horizon, after removal of any organic horizons) samples were collected at 165 field sites in a generalised random tessellation stratified design that corresponded to approximately 1 site per 1600 km2 and PyC was estimated from diffuse reflectance mid-infrared spectroscopy measurements using a partial least-squares regression analysis in conjunction with a large database of PyC measurements based on a solid-state 13C nuclear magnetic resonance spectroscopy technique. Three spatial models were applied to the data in order to relate critical environmental covariates to the changes in spatial density of PyC over the landscape. Regional mean density estimates of PyC were 11.0 g kg− 1 (0.84 Gg km− 2) for Ordinary Kriging, 25.8 g kg− 1(12.2 Gg km− 2) for Multivariate Linear Regression, and 26.1 g kg− 1 (12.4 Gg km− 2) for Bayesian Regression Kriging. Akaike Information Criterion (AIC) indicated that the Multivariate Linear Regression model performed best (AIC = 842.6; n = 165) compared to Ordinary Kriging (AIC = 982.4) and Bayesian Regression Kriging (AIC = 979.2). Soil PyC concentrations correlated well with total soil sulphur (P < 0.001; n = 165), plant tissue lignin (P = 0.003), and drainage class (P = 0.008). This suggests the opportunity of including related environmental parameters in the spatial assessment of PyC in soils. Better estimates of the contribution of PyC to the global carbon cycle will thus also require more accurate assessments of these covariates.

  14. A Machine-Learning and Filtering Based Data Assimilation Framework for Geologic Carbon Sequestration Monitoring Optimization

    Science.gov (United States)

    Chen, B.; Harp, D. R.; Lin, Y.; Keating, E. H.; Pawar, R.

    2017-12-01

    Monitoring is a crucial aspect of geologic carbon sequestration (GCS) risk management. It has gained importance as a means to ensure CO2 is safely and permanently stored underground throughout the lifecycle of a GCS project. Three issues are often involved in a monitoring project: (i) where is the optimal location to place the monitoring well(s), (ii) what type of data (pressure, rate and/or CO2 concentration) should be measured, and (iii) What is the optimal frequency to collect the data. In order to address these important issues, a filtering-based data assimilation procedure is developed to perform the monitoring optimization. The optimal monitoring strategy is selected based on the uncertainty reduction of the objective of interest (e.g., cumulative CO2 leak) for all potential monitoring strategies. To reduce the computational cost of the filtering-based data assimilation process, two machine-learning algorithms: Support Vector Regression (SVR) and Multivariate Adaptive Regression Splines (MARS) are used to develop the computationally efficient reduced-order-models (ROMs) from full numerical simulations of CO2 and brine flow. The proposed framework for GCS monitoring optimization is demonstrated with two examples: a simple 3D synthetic case and a real field case named Rock Spring Uplift carbon storage site in Southwestern Wyoming.

  15. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems.

    Science.gov (United States)

    Kim, Youngil; Ullah, Sami; Roulet, Nigel T; Moore, Tim R

    2015-04-01

    The inundation of boreal forests and peatlands through the construction of hydroelectric reservoirs can increase carbon dioxide (CO2) and methane (CH4) emission. To establish controls on emission rates, we incubated samples of forest and peat soils, spruce litter, forest litter and peatland litter collected from boreal ecosystems in northern Quebec for 16 weeks and measured CO2 and CH4 production rates under flooded or non-flooded conditions and varying oxygen concentration and temperature. CO2 production under flooded conditions was less than under non-flooded conditions (5-71 vs. 5-85 mg Cg(-1) C), but CH4 production under flooded conditions was larger than under non-flooded conditions (1-8158 vs. 0-86 μg Cg(-1) C). The average CO2 and CH4 production rate factor for flooded:non-flooded conditions was 0.76 and 1.32, respectively. Under flooded conditions, high oxygen concentrations increased CO2 production in peat soils but decreased CH4 production in forest and peat soils and spruce litter. Warmer temperatures (from 4 to 22°C) raised both CO2 production in peat soils and peatland litter, and CH4 production in peat soils and spruce litter. This study shows that the direction and/or strength of CO2 and CH4 fluxes change once boreal forests and peatlands are inundated. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Optimal Inference of Modelling Parameters to Simulate Complex Trends across Soft Boundaries : A Case Study in Heavy Mineral Sands

    NARCIS (Netherlands)

    Wambeke, T.; Benndorf, J.

    2014-01-01

    A risk-robust development of a heavy mineral resource requires an assessment of the geological uncertainty and spatial variability of the key factors impacting the mining and processing operation. Attributes of interest are the total heavy mineral grade, the slime content and the amount of oversized

  17. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99

    International Nuclear Information System (INIS)

    Gu, B.

    1996-01-01

    This report summarizes studies on the interactions of technetium-99 (Tc) with different organic compounds and soil minerals under both oxidizing and reducing conditions. The report is divided into four parts and includes (1) effect of natural organic matter (NOM) on the complexation and solubility of Tc, (2) complexation between Tc and trichloroethylene (TCE) in aqueous solutions, (3) adsorption of Tc on soil samples from Paducah Gaseous Diffusion Plant (PGDP), and (4) adsorption and separation of Tc on activated carbon. Various experimental techniques were applied to characterize and identify Tc complexation with organic compounds and TCE, including liquid-liquid extraction, membrane filtration, size exclusion, and gel chromatography. Results indicate, within the experimental error, Tc (as pertechnetate, TcO 4 ) did not appear to form complexes with groundwater or natural organic matter under both atmospheric and reducing conditions. However, Tc can form complexes with certain organic compounds or specific functional groups such as salicylate. Tc did not appear to form complexes with TCE in aqueous solution.Both liquid-liquid extraction and high performance liquid chromatography (HPLC) gave no indication Tc was complexed with TCE. The correlations between Tc and TCE concentrations in monitoring wells at PGDP may be a coincidence because TCE was commonly used as a decontamination reagent. Once TCE and Tc entered the groundwater, they behaved similarly because both TcO 4 - and TCE are poorly adsorbed by soils. An effective remediation technique to remove TcO 4 - from PGDP contaminated groundwater is needed. One possibility is the use of an activated carbon adsorption technique developed in this study

  18. Short communication: A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil

    Directory of Open Access Journals (Sweden)

    GAURAV MISHRA

    2016-04-01

    Full Text Available Abstract. Mishra G, Giri K, Dutta A, Hazarika S and Borgohain P. 2015. A laboratory study to validate the impact of the addition of Alnus nepalensis leaf litter on carbon and nutrients mineralization in soil. Nusantara Bioscience 8: 5-7. Plant litter or residues can be used as soil amendment to maintain the carbon stock and soil fertility. The amount and rate of mineralization depends on biochemical composition of plant litter. Alnus nepalensis (Alder is known for its symbiotic nitrogen fixation and capability to restore fertility of degraded lands. A laboratory incubation experiment was conducted for 60 days under controlled conditions to validate the carbon and nutrients mineralization potential of alder litter. Soil fertility indicators, i.e. soil organic carbon (SOC, available nitrogen (N, available phosphorus (P, and available potassium (K were analyzed using standard procedures. Significant differences were observed in the soil properties after addition of litter. Nutrient composition of alder litter was found superior by providing significantly higher organic matter and helped in better nutrient cycling. Therefore, alder based land use system may be replicated in other degraded lands or areas for productivity enhancement which is important for sustaining biodiversity and soil fertility.

  19. Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals.

    Science.gov (United States)

    Direito, Susana O L; Marees, Andries; Röling, Wilfred F M

    2012-07-01

    The adsorption of nucleic acids to mineral matrixes can result in low extraction yields and negatively influences molecular microbial ecology studies, in particular for low-biomass environments on Earth and Mars. We determined the recovery of nucleic acids from a range of minerals relevant to Earth and Mars. Clay minerals, but also other silicates and nonsilicates, showed very low recovery (< 1%). Consequently, optimization of DNA extraction was directed towards clays. The high temperatures and acidic conditions used in some methods to dissolve mineral matrices proved to destruct DNA. The most efficient method comprised a high phosphate solution (P/EtOH; 1 M phosphate, 15% ethanol buffer at pH 8) introduced at the cell-lysing step in DNA extraction, to promote chemical competition with DNA for adsorption sites. This solution increased DNA yield from clay samples spiked with known quantities of cells up to nearly 100-fold. DNA recovery was also enhanced from several mineral samples retrieved from an aquifer, while maintaining reproducible DGGE profiles. DGGE profiles were obtained for a clay sample for which no profile could be generated with the standard DNA isolation protocol. Mineralogy influenced microbial community composition. The method also proved suitable for the recovery of low molecular weight DNA (< 1.5 kb). © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Synthesis of sodium caseinate-calcium carbonate microspheres and their mineralization to bone-like apatite

    Science.gov (United States)

    Xu, Zhewu; Liang, Guobin; Jin, Lin; Wang, Zhenling; Xing, Chao; Jiange, Qing; Zhang, Zhiguang

    2014-06-01

    Phosphoproteins can induce and stabilize calcium carbonate (CaCO3) vaterite, which has desirable features for high reactivity. The purpose of this study was to synthesize bioactive CaCO3 microspheres for bone regeneration. Sodium caseinate (NaCas)-containing CaCO3 microspheres, with the crystal phase of vaterite, were synthesized by fast precipitation in an aqueous solution of CaCl2, Na2CO3, and 2 mg/mL of NaCas. The uniform microspheres exhibited rougher surfaces and lower negative charges than CaCO3 particles without NaCas addition. Fourier-transform infrared spectroscopy (FT-IR) of the microspheres showed characteristic peaks or bands corresponding to phosphate and hydroxyl groups. Thermogravimetric analysis (TGA) curves exhibited approximately 5% weight loss below 600 °C due to the decomposition of NaCas. Scanning electron microscope (SEM) images showed lath-like hydroxyapatite (HAp) on the surface after soaking in simulated body fluid (SBF) at 37 °C for 5 and 10 days. Energy dispersive X-ray spectrometry (EDS) revealed that the agglomerates were composed of Ca, C, O, P, Na, and Mg elements, and the Ca/P ratios ranged from 1.53 to 1.56. X-ray diffraction (XRD) patterns exhibited peaks characteristic of hydroxyapatite. The results of this study demonstrated that the addition of NaCas induced the formation of vaterite microspheres which possesses an enhanced apatite formation after soaking in SBF at 37 °C for 5 and 10 days. These NaCas-CaCO3 microspheres may be a potential biomaterial for bone regeneration.

  1. Measurement of Charged Current Coherent Pion Production by Neutrinos on Carbon at MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Mislivec, Aaron Robert [Univ. of Rochester, NY (United States)

    2017-01-01

    Neutrino-nucleus coherent pion production is a rare neutrino scattering process where the squared four-momentum transferred to the nucleus is small, a lepton and pion are produced in the forward direction, and the nucleus remains in its initial state. This process is an important background in neutrino oscillation experiments. Measurements of coherent pion production are needed to constrain models which are used to predict coherent pion production in oscillation experiments. This thesis reports measurements of νµ and νµ charged current coherent pion production on carbon for neutrino energies in the range 2 < Eν < 20 GeV. The measurements were made using data from MINERνA, which is a dedicated neutrino-nucleus scattering experiment that uses a fi scintillator tracking detector in the high-intensity NuMI neutrino beam at Fermilab. Coherent interactions were isolated from the data using only model-independent signatures of the reaction, which are a forward muon and pion, no evidence of nuclear breakup, and small four-momentum transfer to the nucleus. The measurements were compared to the coherent pion production model used by oscillation experiments. The data and model agree in the total interaction rate and are similar in the dependence of the interaction rate on the squared four- momentum transferred from the neutrino. The data and model disagree significantly in the pion kinematics. The measured νµ and νµ interaction rates are consistent, which supports model predictions that the neutrino and antineutrino interaction rates are equal.

  2. Material Optimization of Carbon/Epoxy Composite Rotor for Spacecraft Energy Storage

    OpenAIRE

    R Varatharajoo; M Salit; G Hong

    2016-01-01

    An investigation to optimize the carbon/epoxy composite rotor is performed for the spacecraft energy storage application. A highspeed multi-layer rotor design is proposed and different composite materials are tested to achieve the most suitable recipe. First, the analytical rotor evaluation is performed to establish a reliable numerical rotor model. Then, finite element analysis (FEA) is employed in order to optimise the multi-layer composite rotor design. Subsequently, the modal analysis is ...

  3. Carbon dynamics in no-till soil due to the use of industrial organic waste and mineral fertilizer

    Directory of Open Access Journals (Sweden)

    Jucimare Romaniw

    Full Text Available ABSTRACTThe use of organic waste from industrial processes in agriculture is a strategy not only for improving soil properties but also for promoting the utilization of recycled nutrients by market crops and for reducing environmental impact. The aim of this study was to evaluate the effects of using organic waste from pork and poultry slaughterhouses (OWS applied alone or in combination with mineral fertilizer (MF on the dynamics of soil organic matter (SOM compartments. The experimental design adopted was that of completely randomized blocks with six treatments and three replicates. The treatments consisted of a general control (T1 without the addition of MF and OWS, the application of MF alone at 100% of the recommended fertilizer levels for the crops (T2,the application of OWS alone at a fixed dose of 2 Mg ha-1 (T3, and the following three combinations of MF and OWS: 75% MF + 25% OWS (T4; 50% MF + 50% OWS (T5; and 25% MF + 75% OWS (T6. The application of OWS promoted increase in the labile fractions extracted by potassium permanganate (C-OXP and hot water (C-HW compared with using MF alone. Using OWS in the combination of 50% MF + 50% OWS increased the content and stock of total organic carbon (TOC in the 0-20 cm layer and of particulate organic C (POC and C-OXP in the 0-5 cm layer.

  4. Multiple-stage diagenetic alteration and fluid history of Ordovician carbonate-hosted barite mineralization, Southern Quebec Appalachians

    Science.gov (United States)

    Paradis, Suzanne; Lavoie, Denis

    1996-12-01

    Lower Ordovician bioclastic limestone of the Upton Group, southern Quebec Appalachians, hosts stratabound Ba-Zn-Pb mineralization. The Upton Group, a mixed platform carbonate-siliciclastic-volcanic succession, is exposed as windows within the tectonically overlying Cambrian siliciclastics of the Granby Nappe. Mineralization consists mostly of barite and minor amounts of sulfides (sphalerite, pyrite, galena, and chalcopyrite), in addition to calcite, quartz and bitumen cements. It is hosted by a bioclastic limestone which is interbedded with and capped by a black calcareous shale, and underlain by a mudstone-siltstone-volcanic succession and a lower poorly fossiliferous limestone. The lower limestone recorded early extensive dolomitization followed by meteoric alteration (dedolomitization, sulphate dissolution, vadose cements, soil pisoids, etc.), and burial diagenesis (recrystallization, fracturation, and cementation). The vadose gravitational calcite cements yield δ 18O PDB values of -8.4 to -11.0‰ andδ 13C PDB values of +2.4 to +2.8‰. The thin soil profiles with pisoids have a δ 18O PDB value of -8.2‰ and a δ 13C PDB value of +2.0‰. These data suggest an evaporative 18O-enrichment of near-surface trapped soil moisture (vadose water) in a rock-dominated diagenetic system. The recrystallized limestone hasδ 18O PDB values of -11.4 to -15.5‰ and near Early Ordovician marine δ 13C PDB values of -0.2 to +2.5‰. These data suggest a final stabilization of the limestone from high temperature fluids in a rock-dominated diagenetic system. The mineralized bioclastic limestone shows rare evidence of early submarine cementation which is overprinted by significant post-depositional recrystallization and hydrothermal alteration. The latter resulted in the generation of secondary porosity and precipitation of a subhedral barite cement, a bladed barite cement, and fracture-filling barite. Fracture- and void-filling calcite, sulfides, quartz and bitumen

  5. A Joint Optimal Decision on Shipment Size and Carbon Reduction under Direct Shipment and Peddling Distribution Strategies

    Directory of Open Access Journals (Sweden)

    Daiki Min

    2017-11-01

    Full Text Available Recently, much research has focused on lowering carbon emissions in logistics. This paper attempts to contribute to the literature on the joint shipment size and carbon reduction decisions by developing novel models for distribution systems under direct shipment and peddling distribution strategies. Unlike the literature that has simply investigated the effects of carbon costs on operational decisions, we address how to reduce carbon emissions and logistics costs by adjusting shipment size and making an optimal decision on carbon reduction investment. An optimal decision is made by analyzing the distribution cost including not only logistics and carbon trading costs but also the cost for adjusting carbon emission factors. No research has explicitly considered the two sources of carbon emissions, but we develop a model covering the difference in managing carbon emissions from transportation and storage. Structural analysis guides how to determine an optimal shipment size and emission factors in a closed form. Moreover, we analytically prove the possibility of reducing the distribution cost and carbon emissions at the same time. Numerical analysis follows validation of the results and demonstrates some interesting findings on carbon and distribution cost reduction.

  6. SIMULTANEOUS MECHANICAL AND HEAT ACTIVATION: A NEW ROUTE TO ENHANCE SERPENTINE CARBONATION REACTIVITY AND LOWER CO2 MINERAL SEQUESTRATION PROCESS COST

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McKelvy; J. Diefenbacher; R. Nunez; R.W. Carpenter; A.V.G. Chizmeshya

    2005-01-01

    Coal can support a large fraction of global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other candidate technologies, which propose long-term storage (e.g., ocean and geological sequestration), mineral sequestration permanently disposes of CO{sub 2} as geologically stable mineral carbonates. Only benign, naturally occurring materials are formed, eliminating long-term storage and liability issues. Serpentine carbonation is a leading mineral sequestration process candidate, which offers large scale, permanent sequestration. Deposits exceed those needed to carbonate all the CO{sub 2} that could be generated from global coal reserves, and mining and milling costs are reasonable ({approx}$4 to $5/ton). Carbonation is exothermic, providing exciting low-cost process potential. The remaining goal is to develop an economically viable process. An essential step in this development is increasing the carbonation reaction rate and degree of completion, without substantially impacting other process costs. Recently, the Albany Research Center (ARC) has accelerated serpentine carbonation, which occurs naturally over geological time, to near completion in less than an hour. While reaction rates for natural serpentine have been found to be too slow for practical application, both heat and mechanical (attrition grinding) pretreatment were found to substantially enhance carbonation reactivity. Unfortunately, these processes are too energy intensive to be cost-effective in their present form. In this project we explored the potential that utilizing power plant waste heat (e.g., available up to {approx}200-250 C) during mechanical activation (i.e., thermomechanical activation) offers to enhance serpentine mineral carbonation, while reducing pretreatment energy consumption and process cost. This project was carried out in collaboration with the Albany Research Center (ARC) to maximize the insight into the

  7. Optimization of the synthesis based on Resorcine and formaldehyde to obtain carbon nanoxérogels

    Science.gov (United States)

    Zweg, A.; Elaloui, E.; Nouri, S.; Moussaoui, Y.

    2012-02-01

    The sol-gel method consists on obtaining very pure products from selected precursors. Indeed, synthesizing very pure activated carbon (> 99% carbon) using organic precursors containing only carbon and oxygen as hetero atoms to form a polymeric resin by pyrolysis. The proposed synthesis reaction is in the border of two sciences: the Sol-gel and polymerization. The polymerization by mechanism followed by the initiation and propagation, the sol-gel by evolution of the media environment starting with a solution of various ingredients to have the particle's sol in the emulsion solvent. The sol turns into a gel which is the result of three-dimensional crosslinking of the material trapping the solvent. In this work we propose to introduce a new method of synthesis of these nanoxérogels by polycondensation of resorcinol with formaldehyde in two different media (water and acetone) in the presence of two catalysts (acetic acid and sodium carbonate). By varying the following parameters: solvent, nature and quantity of catalyst, 16 samples were obtained. By the method of factorial design (2k): an optimization is realized by following three characteristics of nanoxerogels prepared: the density, the gel time and performance. The results indicate the best conditions for the synthesis of a carbon nanoxerogel: the lowest quantity of acid catalyst in aqueous media (A5).

  8. Identification of areas in Brazil that optimize conservation of forest carbon, jaguars, and biodiversity.

    Science.gov (United States)

    De Barros, Alan E; MacDonald, Ewan A; Matsumoto, Marcelo H; Paula, Rogério C; Nijhawan, Sahil; Malhi, Y; MacDonald, David W

    2014-04-01

    A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co-benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co-benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. ©2013 Society for Conservation Biology.

  9. In situ mid-infrared spectroscopic titration of forsterite with water in supercritical CO2: Dependence of mineral carbonation on quantitative water speciation

    Science.gov (United States)

    Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Martin, P.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2011-12-01

    Geologic sequestration of carbon dioxide holds promise for helping mitigate CO2 emissions generated from the burning of fossil fuels. Supercritical CO2 (scCO2) plumes containing variable water concentrations (wet scCO2) will displace aqueous solution and dominate the pore space adjacent to caprocks. It is important to understand possible mineral reactions with wet scCO2 to better predict long-term caprock integrity. We introduce novel in situ instrumentation that enables quantitative titrations of reactant minerals with water in scCO2 at temperatures and pressures relevant to target geologic reservoirs. The system includes both transmission and attenuated total reflection mid-infrared optics. Transmission infrared spectroscopy is used to measure concentrations of water dissolved in the scCO2, adsorbed on mineral surfaces, and incorporated into precipitated carbonates. Single-reflection attenuated total reflection infrared spectroscopy is used to monitor water adsorption, mineral dissolution, and carbonate precipitation reactions. Results are presented for the infrared spectroscopic titration of forsterite (Mg2SiO4), a model divalent metal silicate, with water in scCO2 at 100 bar and at both 50 and 75°C. The spectral data demonstrate that the quantitative speciation of water as either dissolved or adsorbed is important for understanding the types, growth rates, and amounts of carbonate precipitates formed. Relationships between dissolved/adsorbed water, water concentrations, and the role of liquid-like adsorbed water are discussed. Our results unify previous in situ studies from our laboratory based on infrared spectroscopy, nuclear magnetic resonance spectroscopy and X-ray diffraction.

  10. Optimization of single-walled carbon nanotube solubility by noncovalent PEGylation using experimental design methods

    Directory of Open Access Journals (Sweden)

    Hadidi N

    2011-04-01

    Full Text Available Naghmeh Hadidi1, Farzad Kobarfard2, Nastaran Nafissi-Varcheh3, Reza Aboofazeli11Department of Pharmaceutics, 2Department of Pharmaceutical Chemistry, 3Department of Pharmaceutical Biotechnology, School of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, IranAbstract: In this study, noncovalent functionalization of single-walled carbon nanotubes (SWCNTs with phospholipid-polyethylene glycols (Pl-PEGs was performed to improve the solubility of SWCNTs in aqueous solution. Two kinds of PEG derivatives, ie, Pl-PEG 2000 and Pl-PEG 5000, were used for the PEGylation process. An experimental design technique (D-optimal design and second-order polynomial equations was applied to investigate the effect of variables on PEGylation and the solubility of SWCNTs. The type of PEG derivative was selected as a qualitative parameter, and the PEG/SWCNT weight ratio and sonication time were applied as quantitative variables for the experimental design. Optimization was performed for two responses, aqueous solubility and loading efficiency. The grafting of PEG to the carbon nanostructure was determined by thermogravimetric analysis, Raman spectroscopy, and scanning electron microscopy. Aqueous solubility and loading efficiency were determined by ultraviolet-visible spectrophotometry and measurement of free amine groups, respectively. Results showed that Pl-PEGs were grafted onto SWCNTs. Aqueous solubility of 0.84 mg/mL and loading efficiency of nearly 98% were achieved for the prepared Pl-PEG 5000-SWCNT conjugates. Evaluation of functionalized SWCNTs showed that our noncovalent functionalization protocol could considerably increase aqueous solubility, which is an essential criterion in the design of a carbon nanotube-based drug delivery system and its biodistribution.Keywords: phospholipid-PEG, D-optimal design, loading efficiency, Raman spectroscopy, scanning electron microscopy, theromogravimetric analysis, carbon nanotubes

  11. Study of optimal X-ray exposure conditions in consideration of bone mineral density. Relation between bone mineral density and image contrast

    International Nuclear Information System (INIS)

    Kondo, Yuji

    2003-01-01

    Bone mineral density (BMD) increases through infancy and adolescence, reaching a maximum at 20-30 years of age. Thereafter, BMD gradually decreases with age in both sexes. The image contrast of radiographs of bones varies with the change in BMD owing to the changes in the X-ray absorption of bone. The image contrast of bone generally is higher in the young adult than in the older adult. To examine the relation between BMD and image visibility, we carried out the following experiments. We measured the image contrast of radiographs of a lumbar vertebra phantom in which BMD was equivalent to the average BMD for each developmental period. We examined image visibility at various levels of imaging contrast using the Howlett chart. The results indicated that differences in BMD affect the image contrast of radiographs, and, consequently, image visibility. It was also found that image visibility in the young adult was higher than that in the older adult. The findings showed that, in digital radiography of young adults with high BMD, X-ray exposure can be decreased according the ratio of improvement in image visibility. (author)

  12. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    International Nuclear Information System (INIS)

    Klaminder, J.; Grip, H.; Moerth, C.-M.; Laudon, H.

    2011-01-01

    Research highlights: → Organic compounds is mineralized during later transport in deep groundwater aquifers. → Carbonic acid generated by this process stimulates dissolution of silicate minerals. → Protons derived from pyrite oxidation also affects weathering in deep groundwater. → The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H 2 CO 3 , produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and δ 18 O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H 2 CO 3 generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO 4 2- in the groundwater during lateral transport and a δ 34 S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km 2 ) as evident by δ 18 O signatures and base cation concentrations that overlap with that of the groundwater.

  14. Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klaminder, J., E-mail: jonatan.klaminder@emg.umu.se [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)] [Department of Ecology and Environmental Science, Umea University, SE-901 87 (Sweden); Grip, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden); Moerth, C.-M. [Department of Geological Sciences, Stockholm University, 106 91 Stockholm (Sweden); Laudon, H. [Department of Forest Ecology and Management, SLU, SE-901 83 Umea (Sweden)

    2011-03-15

    Research highlights: {yields} Organic compounds is mineralized during later transport in deep groundwater aquifers. {yields} Carbonic acid generated by this process stimulates dissolution of silicate minerals. {yields} Protons derived from pyrite oxidation also affects weathering in deep groundwater. {yields} The identified weathering mechanisms affect base-flow chemistry in boreal streams. - Abstract: What role does mineralized organic C and sulfide oxidation play in weathering of silicate minerals in deep groundwater aquifers? In this study, how H{sub 2}CO{sub 3}, produced as a result of mineralization of organic matter during groundwater transport, affects silicate weathering in the saturated zone of the mineral soil along a 70 m-long boreal hillslope is demonstrated. Stream water measurements of base cations and {delta}{sup 18}O are included to determine the importance of the deep groundwater system for downstream surface water. The results suggest that H{sub 2}CO{sub 3} generated from organic compounds being mineralized during the lateral transport stimulates weathering at depths between 0.5 and 3 m in the soil. This finding is indicated by progressively increasing concentrations of base cations-, silica- and inorganic C (IC) in the groundwater along the hillslope that co-occur with decreasing organic C (OC) concentrations. Protons derived from sulfide oxidation appear to be an additional driver of the weathering process as indicated by a build-up of SO{sub 4}{sup 2-} in the groundwater during lateral transport and a {delta}{sup 34}S per mille value of +0.26-3.76 per mille in the deep groundwater indicating S inputs from pyrite. The two identified active acids in the deep groundwater are likely to control the base-flow chemistry of streams draining larger catchments (>1 km{sup 2}) as evident by {delta}{sup 18}O signatures and base cation concentrations that overlap with that of the groundwater.

  15. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  16. Laboratory Measurements of Mass Specific Absorption Spectra for Suites of Black Carbon-like, Biomass Burning and Mineral Dust Aerosols

    Science.gov (United States)

    Radney, J.; Zangmeister, C.

    2017-12-01

    Light-absorbing atmospheric aerosols can be grouped into three categories: black carbon (BC), brown carbon (BrC) or mineral dust (MD). In many cases, the absorption of these species is best quantified using a mass-specific absorption cross section (MAC) since the particles are in the Rayleigh regime (BC) or optically thin (BrC and MD); notably, MAC values are both traceable to the SI and transferrable between photoacoustic spectroscopy and filter-based absorption measurements. Here, we present laboratory measurements of MAC for all three light-absorbing aerosol classes. Particles were size- and mass-selected using a differential mobility analyzer and aerosol particle mass analyzer, respectively, with absorption coefficients (αabs) and number concentrations (N) being measured by a broadband photoacoustic spectrometer and condensation particle counter, respectively. This suite of instrumentation allows for direct quantification of MAC from the measured parameters (MAC = αabs/Nmp). Further, the measurements contained > 8 data points spanning λ = 405 nm to 840 nm allowing for spectral curvatures (i.e. the Absorption Angstrom Exponent or AAE) to be fit from many data points versus the more common 2-point interpolations. For the carbonaceous, BC-like aerosols - five samples generated from flames, spark discharge soot (i.e. fullerene soot), graphene, reduced graphene oxide (rGO), and fullerene (C60) - we found: 1) measured MAC ranged between 2.4 m2 g-1 and 8.6 m2 g-1 at λ = 550 nm, 2) most AAEs ranged between 0.5 and 1.3; C60 AAE was 7.5 ± 0.9 and 3) MAC spectra were dependent on fuel type and formation conditions. For BrC particles generated from smoldering combustion of 3 hardwood (Oak, Hickory and Mesquite) and 3 softwood species (Western redcedar, Blue spruce and Baldcypress), we found: 1) median MAC values ranged from 1.4 x 10-2 m2 g-1 to 7.9 x 10-2 m2 g-1 at λ = 550 nm, 2) AAE values ranged between 3.5 and 6.2, and 3) Oak, Western redcedar and Blue spruce

  17. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  18. The effect of soll water conditions on carbon isotope discrimination and minerals contents in spring-planted wheat

    International Nuclear Information System (INIS)

    Zhu Lin; Liang Zongsuo; Xu Xing; Li Shuhua

    2008-01-01

    Carbon isotope discrimination (triangle open 13 C) has been proposed as indirect selection criterion for transpiration efficiency and grain yield in wheat. However, because of high cost for triangle open 13 C analysis, attempts have been made to identify alternative screening criteria. Ash content (m a ) has been proposed as an alternative criterion for triangle open 13 C in wheat and barley. A pot experiment with three water treatments (45% ± 5% FC, 55% ± 5% FC and 75% ± 5%FC) was conducted and flag leaf triangle open 13 C (triangle openL a ), contents of ash, potassium (K), magnesium (Mg) and calcium (Ca) were measured to study the relationships between triangle open, mineral composition in spring planted bread wheat (Triticum aestivum L.). In the light of the results obtained in this research, the traits measured showed significant differences among the three water treatments. There were variations in triangle openL a between the genotypes derived from contrasting environments. The improved varieties or advanced lines bred in irrigated areas displayed higher triangle open 13 C values, while the improved and local varieties bred in rain-fed areas exhibited lower triangle open 13 C values Significant positive correlations were found between triangle open 13 C and m a in seedlings and second fully developed leaves at elongation stage and in flag leaves at anthesis stage in severe drought treatment (T 1 ) (r=0.790, P 13 C was negatively associated with potassium (K) content in flag leaves in T 2 (r=0.813, P 2 and T 3 (r=0.725, P 13 C and calcium (Ca) content in flag leaves in T 3 (r=0.708, P a is a possible alternative criterion of triangle open 13 C in vegetative organs especially in stressed environments. K, Mg and Ca contents in flag leaf under moderate water stress or feasible water conditions might be new predictive criteria of triangle openL a . (authors)

  19. Optimization of Catalytic Ozonation Process for Formaldehyde Mineralization from Synthetic Wastewater by Fe/MgO Nanoparticles Synthesis by Sol-Gel Method by Response Surface Model

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2014-09-01

    Full Text Available Background: Design experiment stages of formalin mineralization process by center composition design (CCD cause ease of work, reducing the number of samples, increasing the accuracy of optimized conditions and the interaction parameters determined during the process. The aim of this study was optimization of catalytic ozonation process for formaldehyde mineralization from synthetic wastewater by Fe/MgO nanoparticles synthesis by sol-gel method by response surface model. Methods: This experimental study was conducted in a semi-batch reactor, using a RSM by taking 3 factors in the final stage of pH (7-9, reaction time (10-20 min and catalyst dose (1.1-1.3 g/L was investigated. Synthesis of nanoparticles was done by sol-gel method. The results were analyzed by Design Expert 7.0.1 software. Results: The results showed that the process was dependent on the parameters studied and changing each parameter, affected the process efficiency and other parameters. The optimum conditions predicted for the process was 86.51% of mineralization efficiency. Optimum condition included pH=8.82, reaction time of 20 minute and catalyst dose of 1.3 g/L. The correlation coefficient for the process was determined 0.91. Conclusion: Using a statistical model could reduce the number of experiments, the accuracy and the prediction process. The catalytic ozonation process has the ability to remove formaldehyde with high efficiency and the process was environmental friendly.

  20. Optimization of Preparation Program for Biomass Based Porous Active Carbon by Response Surface Methodology Based on Adsorptive Property

    Directory of Open Access Journals (Sweden)

    ZHANG Hao

    2017-06-01

    Full Text Available With waste walnut shell as raw material, biomass based porous active carbon was made by microwave oven method. The effects of microwave power, activation time and mass fraction of phosphoric acid on adsorptive property of biomass based porous active carbon in the process of physical activation of active carbon precursor were studied by response surface method and numerical simulation method, the preparation plan of biomass based porous active carbon was optimized, and the optimal biomass based porous active carbon property was characterized. The results show that three factors affect the adsorptive property of biomass based porous active carbon, but the effect of microwave power is obviously more significant than that of mass fraction of phosphoric acid, and the effect of mass fraction of phosphoric acid is more significant than that of activation time. The optimized preparation conditions are:microwave power is 746W, activation time is 11.2min and mass fraction of phosphoric acid is 85.9% in the process of physical activation of activated carbon precursor by microwave heating method. For the optimal biomass based porous active carbon, the adsorption value of iodine is 1074.57mg/g, adsorption value of methylene blue is 294.4mL/g and gain rate is 52.1%.

  1. Thermoeconomic Optimization of Cascade Refrigeration System Using Mixed Carbon Dioxide and Hydrocarbons at Low Temperature Circuit

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2016-12-01

    Full Text Available Many applications and industrial processes require very low cooling temperature, such as cold storage in the biomedical field, requiring temperature below -80 °C. However,single-cycle refrigeration systems can only achieve the effective cooling temperature of -40 °C and, also, the performance of the cycle will decrease drastically for cooling temperatures lower than -35°C. Currently, most of cascade refrigeration systems use refrigerants that have ozone depletion potential (ODP and global warming potential (GWP, therefore, in this study, a cascade system is simulated using a mixture of environmentally friendly refrigerants, namely, carbon dioxide and a hydrocarbon (propane, ethane or ethylene as the refrigerant of the low temperature circuit. A thermodynamic analysis is performed to determine the optimal composition of the mixture of carbon dioxide and hydrocarbons in the scope of certain operating parameters. In addition, an economic analysis was also performed to determine the annual cost to be incurred from the cascade refrigeration system. The multi-objective/thermoeconomic optimization points out optimal operating parameter values of the system, to addressing both exergy efficiency and its relation to the costs to be incurred.

  2. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    Science.gov (United States)

    Gu, Yingxin; Howard, Daniel M.; Wylie, Bruce K.; Zhang, Li

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  3. Prediction of mineral scale formation in geothermal and oilfield operations using the Extended UNIQUAC model - Part II. Carbonate-scaling minerals

    DEFF Research Database (Denmark)

    Villafafila, Ada; Thomsen, Kaj; Stenby, Erling Halfdan

    2006-01-01

    Two additional parameters to account for the pressure dependency of solubility are added to the Extended UNIQUAC model presented by Thomsen and Rasmussen (1999). The improved model has been used for correlation and prediction of vapor-liquid-solid equilibrium for different carbonate systems (CaCO...

  4. Development of a Carbon Emission Calculations System for Optimizing Building Plan Based on the LCA Framework

    Directory of Open Access Journals (Sweden)

    Feifei Fu

    2014-01-01

    Full Text Available Life cycle thinking has become widely applied in the assessment for building environmental performance. Various tool are developed to support the application of life cycle assessment (LCA method. This paper focuses on the carbon emission during the building construction stage. A partial LCA framework is established to assess the carbon emission in this phase. Furthermore, five typical LCA tools programs have been compared and analyzed for demonstrating the current application of LCA tools and their limitations in the building construction stage. Based on the analysis of existing tools and sustainability demands in building, a new computer calculation system has been developed to calculate the carbon emission for optimizing the sustainability during the construction stage. The system structure and detail functions are described in this paper. Finally, a case study is analyzed to demonstrate the designed LCA framework and system functions. This case is based on a typical building in UK with different plans of masonry wall and timber frame to make a comparison. The final results disclose that a timber frame wall has less embodied carbon emission than a similar masonry structure. 16% reduction was found in this study.

  5. A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy

    International Nuclear Information System (INIS)

    Zhang, Dongjie; Liu, Pei; Ma, Linwei; LI, Zheng

    2013-01-01

    A great challenge China's power sector faces is to mitigate its carbon emissions whilst satisfying the ever-increasing power demand. Optimal planning of the power sector with consideration of carbon mitigation for a long-term future remains a complex task, involving many technical alternatives and an infinite number of possible plants installations, retrofitting, and decommissioning over the planning horizon. Previously the authors built a multi-period optimization model for the planning of China's power sector during 2010–2050. Based on that model, this paper executed calculations on the optimal pathways of China's power sector with two typical decision-making modes, which are based on “full-information” and “limited-information” hypothesis, and analyzed the impacts on the optimal planning results by two typical types of carbon tax policies including a “continuous and stable” one and a “loose first and tight later” one. The results showed that making carbon tax policy for long-term future, and improving the continuity and stability in policy execution can effectively help reduce the accumulated total carbon emissions, and also the cost for carbon mitigation of the power sector. The conclusion of this study is of great significance for the policy makers to make carbon mitigation policies in China and other countries as well. - Highlights: • A multi-stage optimization model for planning the power sector is applied as basis. • Difference of ideal and actual decision making processes are proposed and analyzed. • A “continuous and stable” policy and a “loose first and tight later” one are designed. • 4 policy scenarios are studied applying the optimal planning model and compared. • The importance of “continuous and stable” policy for long term is well demonstrated

  6. Optimization of carbon nanotube powder growth using low pressure floating catalytic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chen, Y.; Sun, Z.; Li, Y.N.; Tay, B.K.

    2006-01-01

    A new approach to synthesize carbon nanotube (CNT) powders has been achieved by using the floating catalyst method below atmospheric pressure. Scanning electron microscopy, Raman spectroscopy and high-resolution transmission electron microscopy were utilized to characterize the CNTs samples. Using ferrocene (FeC 10 H 10 ) as catalyst precursor, cyclohexane (C 6 H 12 ) as carbon source, H 2 as carrier gas and thiophene (C 4 H 4 S) as promoter, it is found that the pressure of 15 kPa, temperature of 650 deg. C and H 2 flow rate of 60 sccm would be the optimization condition for synthesis of high quality CNTs. This method is economical and easily scalable for synthesis of CNTs

  7. Collembolans feeding on soil affect carbon and nitrogen mineralization by their influence on microbial and nematode activities

    Czech Academy of Sciences Publication Activity Database

    Kaneda, Satoshi; Kaneko, N.

    2008-01-01

    Roč. 44, č. 3 (2008), s. 435-442 ISSN 0178-2762 Institutional research plan: CEZ:AV0Z60660521 Keywords : Collembola * mineral soil * nitrogen mineralization Subject RIV: EH - Ecology, Behaviour Impact factor: 1.446, year: 2008

  8. Mineralization of carbon and nitrogen from fresh and anaerobically stored sheep manure in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1995-01-01

    A sandy loam soil was mixed with three different amounts of quartz sand and incubated with ((NH4)-N-15)(2)SO4 (60 mu g N g(-1) soil) and fresh or anaerobically stored sheep manure (60 mu g g(-1) soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days...

  9. Land Use Strategies for Optimizing Carbon Sequestration within the Head of the Lower Mississippi Watershed

    Science.gov (United States)

    Weaver, L.

    2015-12-01

    The world is currently in a stage of extreme growth, characterized by increasing demands for food and increasing greenhouse gas emissions. The population for 2050 is forecasted to grow by 2.3 billion people, resulting in close to a 40% increase in food demand (Alexandratos, Bruinsma 2012). This will severely increase pressure on the earth and on crop harvesting processes to incorporate carbon emissions reduction strategies. Optimal land use analysis and innovation can provide feasible solutions for these problems. A key environmental feature around which land use systems should be carefully planned and maintained is the Mississippi River, the largest watershed system in the United States. Along head of the Lower Mississippi Watershed lie several farming communities including Cairo, Illinois. The primary land use for the area inhabited by these communities consists of soybeans, corn, and pasture. These crops have varying carbon storage capacities, economic and social benefits, and environmental consequences. In order to maximize social, economic, and environmental benefits and sustainability, these crops were analyzed over time, spatial correlation, and crop size area. When considering risks of carbon emissions, economic decline, landscape erosion and harmful runoff, a localized switchgrass buffer remains a feasible solution. Its strengths as a native, reliable plant with high carbon sequestration and biomass harvest potential yield it to be more prevalently implemented at the head of the Lower Mississippi Watershed. However, there are multiple factors that must be considered before implementing broad agricultural policies and practices. Thorough analyses should be performed frequently to assess the effects of major land use change and can be used to identify the optimized applications for farmers and communities.

  10. Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: Effect of advective pore-water exchange

    DEFF Research Database (Denmark)

    Cook, Perran L. M.; Wenzhofer, Frank; Glud, Ronnie N.

    2007-01-01

    within the range measured in the chambers. The contribution of advection to solute exchange was highly variable and dependent on sediment topography. Advective processes also had a pronounced influence on the in situ distribution of O-2 within the sediment, with characteristic two-dimensional patterns...... of O-2 distribution across ripples, and also deep subsurface O-2 pools, being observed. Mineralization pathways were predominantly aerobic when benthic mineralization rates were low and advective pore-water flow high as a result of well-developed sediment topography. By contrast, mineralization...... proceeded predominantly through sulfate reduction when benthic mineralization rates were high and advective pore-water flow low as a result of poorly developed topography. Previous studies of benthic mineralization in shallow sandy sediments have generally ignored these dynamics and, hence, have overlooked...

  11. Material Optimization of Carbon/Epoxy Composite Rotor for Spacecraft Energy Storage

    Directory of Open Access Journals (Sweden)

    R Varatharajoo

    2016-09-01

    Full Text Available An investigation to optimize the carbon/epoxy composite rotor is performed for the spacecraft energy storage application. A highspeed multi-layer rotor design is proposed and different composite materials are tested to achieve the most suitable recipe. First, the analytical rotor evaluation is performed to establish a reliable numerical rotor model. Then, finite element analysis (FEA is employed in order to optimise the multi-layer composite rotor design. Subsequently, the modal analysis is carried out to determine the rotor natural frequencies and mode shapes for a safe operational regime below 50, 000 rpm.

  12. Lodenafil carbonate tablets: optimization and validation of a capillary zone electrophoresis method

    OpenAIRE

    Codevilla, Cristiane F; Ferreira, Pâmela Cristina L; Sangoi, Maximiliano S; Fröehlich, Pedro Eduardo; Bergold, Ana Maria

    2012-01-01

    A simple capillary zone electrophoresis (CZE) method was developed and validated for the analysis of lodenafil carbonate in tablets. Response surface methodology was used for optimization of the pH and concentration of the buffer, applied voltage and temperature. The method employed 50 mmol L-1 borate buffer at pH 10 as background electrolyte with an applied voltage of 15 kV. The separation was carried out in a fused-silica capillary maintained at 32.5 ºC and the detection wavelength was 214 ...

  13. Parametric optimization for the production of nanostructure in high carbon steel chips via machining

    Directory of Open Access Journals (Sweden)

    M. Ilangkumaran

    2015-09-01

    Full Text Available Nano crystalline materials are an area of interest for the researchers all over the world due to its superior mechanical properties such as high strength and high hardness. But the cost of nano-crystals is high because of the complexity and cost incurred during its production. This paper focuses on the application of Taguchi method with Fuzzy logic for optimizing the machining parameters of nano-crystalline structured chips production in High Carbon Steel (HCS through machining. An orthogonal array, multi-response performance index, signals to noise ratio and analysis of variance are used to study the machining process with multi-response performance characteristics. The machining parameters namely rake angle, depth of cut, heat treatment, feed and cutting velocity are optimized with considerations of the multi-response performance characteristics. Using the Taguchi and Fuzzy logic method optimum cutting conditions are identified in order to obtain the smallest nanocrystalline structure via machining.

  14. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    Science.gov (United States)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  15. Low-carbon-oriented dynamic optimization of residential energy pricing in China

    International Nuclear Information System (INIS)

    He, Yongxiu; Liu, Yangyang; Wang, Jianhui; Xia, Tian; Zhao, Yushan

    2014-01-01

    In China, the energy pricing mechanism has an insufficient linkage with other energy prices. As a result of the unreasonable price level, it is impossible to exploit fully the substitution elasticity among energy resources and there is a negative impact on achieving energy conservation and energy efficiency. This paper proposes an optimized mechanism for residential energy prices in China, which maximizes the total social surplus subject to some related constraints. Three types of energy pricing mechanisms are designed based on China's low-carbon targets and the optimization of residential energy price policies through the dynamic CGE model. Compared with the energy price linkage method, the results show that the market netback value mechanism has a greater impact on the total social surplus. In order to achieve further low-carbon targets, the proportion of second and third tier residents can be expanded, while the energy prices could be deregulated to some degree. In addition, considering residential affordability, the government may take into account different electricity pricing mechanisms for different tiers of residents. Electricity pricing for the first tier, the second tier and the third tier should be based respectively on cost, the integration of energy price linkage and the market netback value mechanism. - Highlights: • Residential energy price mechanisms can be considered in the D-CGE model. • The maximization of total social surplus is the optimized objective. • The market netback value mechanism has a greater impact on the total social surplus. • Production cost and energy price conduction should be considered in price mechanisms. • Government should take the energy system as a whole to optimize energy prices

  16. Simulation and optimization of stable isotope 13C separation by carbon monoxide cryogenic distillation

    International Nuclear Information System (INIS)

    Li Hulin; Ju Yonglin; Li Liangjun; Xu Dagang

    2009-01-01

    A stable isotope 13 C separation column was set up by carbon monoxide (CO) cryogenic distillation. Diameter of the column is 45 mm, packing height is 17.5 m, of which enriching section is 15 m and stripping section is 2.5 m. Firstly, computer simulation results were validated by test results. Secondly, tests were replaced by computer simulations in order to obtain the optimal operation conditions in the experimental setup. Comprehensive factors of column pressure, feeding velocity, reflux ratio, withdrawing velocity, and boiling power impacts on the products were studied. Then optimization design of the experimental device was achieved through computer simulations combined with uniform experimental design. The final results show that the optimal operation conditions in the built column are as followings: boiling power, 250 W; column pressure, 54 kPa; reflux ratio, 84. The conclusion is that the method of combination of computer simulation and experimental design could be applied to 13 C industrial design and could be popularized in traditional distillation process to realize optimization design. (authors)

  17. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H, E-mail: whchang@cycu.edu.t [Center for Nano Bioengineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2009-09-16

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg{sup -1} body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  18. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Congjin, E-mail: gxdxccj@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Xin [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Tong, Zhangfa [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Yue [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Li, Mingfei [Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)

    2014-10-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H{sub 2}O{sub 2} concentration 1.0 mol l{sup −1}, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I{sub 2}). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N{sub 2} adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H{sub 2}O{sub 2} solution, the optimized conditions were found to be as follows: aqueous H{sub 2}O{sub 2} solution concentration 1.0 mol·l{sup −1}, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased

  19. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    International Nuclear Information System (INIS)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-01-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H 2 O 2 . • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H 2 O 2 concentration 1.0 mol l −1 , modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I 2 ). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H 2 O 2 , and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N 2 adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H 2 O 2 solution, the optimized conditions were found to be as follows: aqueous H 2 O 2 solution concentration 1.0 mol·l −1 , modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC

  20. Process optimization for the application of carbon from plantain peels in dye abstraction

    Directory of Open Access Journals (Sweden)

    E. Inam

    2017-01-01

    Full Text Available Activated carbon obtained from plantain peels was applied to the optimization of the adsorption process parameters for abstraction of colour from simulated dye effluent. The activated carbon was prepared and characterized using nitrogen adsorption, X-ray diffractometry (XRD and Fourier transform infrared spectroscopy (FTIR. Equilibrium isotherms were modelled using the Langmuir, Freundlich, Dubinin–Radushkevich and Temkin models; the Temkin and Dubinin–Radushkevich models provided the best fit for the sorption process, with a correlation coefficient greater than 0.95. The D–R model suggested a chemical process. The pseudo second-order kinetic model agreed well for fitting experimental data with the calculated adsorption capacity, qe, (46.5 mg/g, which was reasonably close to the experimental value (47.3 mg/g. Optimization of the process parameters was achieved using response surface methodology (RSM – Box–Behnken design, where factors considered are represented on three levels: (−1, (0 and (+1 for high, mean and low levels, respectively. ANOVA fits a quadratic model with prob > F less than 0.05 (<0.0001 at 95% confidence level. From this modelling, significant factors for dye removal have been identified.

  1. Optimizing the fabrication of carbon nanotube electrode for effective capacitive deionization via electrophoretic deposition strategy

    Directory of Open Access Journals (Sweden)

    Simeng Zhang

    2018-04-01

    Full Text Available In order to obtain superior electrode performances in capacitive deionization (CDI, the electrophoretic deposition (EPD was introduced as a novel strategy for the fabrication of carbon nanotube (CNT electrode. Preparation parameters, including the concentration of slurry components, deposition time and electric field intensity, were mainly investigated and optimized in terms of electrochemical characteristic and desalination performance of the deposited CNT electrode. The SEM image shows that the CNT material was deposited homogeneously on the current collector and a non-crack surface of the electrode was obtained. An optimal preparation condition of the deposited CNT electrode was obtained and specified as the Al (NO33 M concentration of 1.3 × 10−2 mol/L, the deposition time of 30 min and the electric field intensity of 15 V/cm. The obtained electrode performs an increasing specific mass capacitance of 33.36 F/g and specific adsorption capacity of 23.93 mg/g, which are 1.62 and 1.85 times those of the coated electrode respectively. The good performance of the deposited CNT electrode indicates the promising application of the EPD methodology in subsequent research and fabrication of the CDI electrodes for CDI process. Keywords: Carbon nanotube, Water treatment, Desalination, Capacitive deionization, Electrode fabrication, Electrophoretic deposition

  2. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments.

    Science.gov (United States)

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-11-15

    A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H2O2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD5/COD) as the responses. The highest COD removal (74.59%) and BOD5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72g/L, H2O2 concentration 12.32mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

    Science.gov (United States)

    Assmann, Céline; Scott, Amanda; Biller, Dondra

    2017-08-01

    Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.

  4. Optimal Management of Water, Nutrient and Carbon Cycles of Green Urban Spaces

    Science.gov (United States)

    Revelli, R.; Pelak, N. F., III; Porporato, A. M.

    2016-12-01

    The urban ecosystem is a complex, metastable system with highly coupled flows of mass, energy, people and capital. Their sustainability is in part linked to the existence of green spaces which provide important ecosystem services, whose sustainable management requires quantification of their benefits in terms of impacts on water, carbon and energy fluxes. An exploration of problems of optimal management of such green urban spaces and the related biogeochemical fluxes is presented, extending probabilistic ecohydrological models of the soil-plant system to the urban context, where biophysical and ecological conditions tend to be radically different from the surrounding rural and natural environment (e.g. heat islands, air and water pollution, low quality soils, etc…). The coupled soil moisture, nutrient and plant dynamics are modeled to compute water requirements, carbon footprint, nutrient demand and losses, and related fluxes under different design, management and climate scenarios. The goal is to provide operative rules for a sustainable water use through focused irrigation and fertilization strategies, optimal choice of plants, soil and cultivation conditions, accounting for the typical hydroclimatic variability that occur in the urban environment. This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701914. The work is also cofounded by USDA Agricultural Research Service cooperative agreement 58-6408-3-027; National Science Foundation (NSF) grants: EAR-1331846, EAR-1316258, and the DGE-1068871 and FESD EAR-1338694.

  5. Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide.

    Science.gov (United States)

    Salea, Rinaldi; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2014-09-01

    Oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide was optimized using Taguchi method. The factors considered were pressure, temperature, carbon dioxide flowrate and time at levels ranging between 10-25 MPa, 35-60 °C, 10-25 g/min and 60-240 min respectively. The highest oil yield (8.0 %) was achieved at factor combination of 15 MPa, 50 °C, 20 g/min and 180 min whereas the highest xanthorrhizol content (128.3 mg/g oil) in Curcuma xanthorrhiza oil was achieved at a factor combination of 25 MPa, 50 °C, 15 g/min and 60 min. Soxhlet extraction with n-hexane and percolation with ethanol gave oil yield of 5.88 %, 11.73 % and xanthorrhizol content of 42.6 mg/g oil, 75.5 mg/g oil, respectively. The experimental oil yield and xanthorrhizol content at optimum conditions agreed favourably with values predicted by computational process. The xanthorrizol content extracted using supercritical carbon dioxide was higher than extracted using Soxhlet extraction and percolation process.

  6. Morphology optimization of CCVD-synthesized multiwall carbon nanotubes, using statistical design of experiments

    International Nuclear Information System (INIS)

    Nourbakhsh, Amirhasan; Ganjipour, Bahram; Zahedifar, Mostafa; Arzi, Ezatollah

    2007-01-01

    The possibility of optimization of morphological features of multiwall carbon nanotubes (MWCNTs) using the statistical design of experiments (DoE) is investigated. In this study, MWCNTs were synthesized using a catalytic chemical vapour deposition (CCVD) method in a horizontal reactor using acetylene as the carbon source. The effects of six synthesis parameters (synthesis time, synthesis temperature, catalyst mass, reduction time, acetylene flow rate and hydrogen flow rate) on the average diameter and mean rectilinear length (MRL) of carbon nanotubes were examined using fractional-factorial design (FFD) coupled with response surface methodology (RSM). Using a 2 III 6-3 FFD, the main effects of reaction temperature, hydrogen flow rate and chemical reduction time were concluded to be the key factors influencing the diameter and MRL of MWCNTs; then Box-Behnken design (BBD) was exploited to create a response surface from the main factors. The total number of required runs is 26: 8 runs are for FFD parameter screening, 17 runs are for the response surface obtained by the BBD, and the final run is used to confirm the predicted results

  7. Optimization of pressurized liquid extraction (PLE) for rapid determination of mineral oil saturated (MOSH) and aromatic hydrocarbons (MOAH) in cardboard and paper intended for food contact.

    Science.gov (United States)

    Moret, Sabrina; Sander, Maren; Purcaro, Giorgia; Scolaro, Marianna; Barp, Laura; Conte, Lanfranco S

    2013-10-15

    Packaging can represent a primary source of food contamination with mineral oil saturated hydrocarbons (MOSH) and aromatic hydrocarbons (MOAH), especially when recycled cardboard or mineral oil based printing inks are used. A pressurized liquid extraction (PLE) method, followed by on-line LC-GC analysis, has been optimized for rapid mineral oil determination in cardboard and paper samples. The proposed method involves extraction with hexane (2 cycles) at 60°C for 5 min, and allows for the processing of up to 6 samples in parallel with minimal sample manipulation and solvent consumption. It gave good repeatability (coefficient of variation lower than 5%) and practically quantitative extraction yield (less than 2% of the total contamination found in a third separate cycle). The method was applied to different cardboards and paper materials intended for food contact. Results obtained were similar to those obtained by applying classical solvent extraction with hexane/ethanol 1:1 (v/v) as described by Lorenzini et al. [20]. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments

    International Nuclear Information System (INIS)

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-01-01

    Highlights: • Fe-C microelectrolysis-Fenton process is proposed to pretreat landfill leachate. • Operating variables are optimized by response surface methodology (RSM). • 3D-EEMs and MW distribution explain the mechanism of enhanced biodegradability. • Fixed-bed column experiments are performed at different flow rates. - Abstract: A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H_2O_2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD_5/COD) as the responses. The highest COD removal (74.59%) and BOD_5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72 g/L, H_2O_2 concentration 12.32 mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  9. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liqun, E-mail: 691127317@qq.com [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Wang, Dongbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Xiaoming, E-mail: xmli121x@hotmail.com [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-11-15

    Highlights: • Fe-C microelectrolysis-Fenton process is proposed to pretreat landfill leachate. • Operating variables are optimized by response surface methodology (RSM). • 3D-EEMs and MW distribution explain the mechanism of enhanced biodegradability. • Fixed-bed column experiments are performed at different flow rates. - Abstract: A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H{sub 2}O{sub 2} concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD{sub 5}/COD) as the responses. The highest COD removal (74.59%) and BOD{sub 5}/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72 g/L, H{sub 2}O{sub 2} concentration 12.32 mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  10. Multi-objective optimization of the carbon dioxide transcritical power cycle with various configurations for engine waste heat recovery

    International Nuclear Information System (INIS)

    Tian, Hua; Chang, Liwen; Shu, Gequn; Shi, Lingfeng

    2017-01-01

    Highlights: • A systematic optimization methodology is presented for carbon dioxide power cycle. • Adding the regenerator is a significant means to improve the system performance. • A decision making based on the optimization results is conducted in depth. • Specific optimal solutions are selected from Pareto fronts for different demands. - Abstract: In this paper, a systematic multi-objective optimization methodology is presented for the carbon dioxide transcritical power cycle with various configurations used in engine waste heat recovery to generate more power efficiently and economically. The parametric optimization is performed for the maximum net power output and exergy efficiency, as well as the minimum electricity production cost by using the genetic algorithm. The comparison of the optimization results shows the thermodynamic performance can be most enhanced by simultaneously adding the preheater and regenerator based on the basic configuration, and the highest net power output and exergy efficiency are 25.89 kW and 40.95%, respectively. Meanwhile, the best economic performance corresponding to the lowest electricity production cost of 0.560$/kW·h is achieved with simply applying an additional regenerator. Moreover, a thorough decision making is conducted for a further screening of the obtained optimal solutions. A most preferred Pareto optimal solution or a representative subset of the Pareto optimal solutions is obtained according to additional subjective preferences while a referential optimal solution is also provided on the condition of no additional preference.

  11. Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm

    Science.gov (United States)

    Balan, A. V.; Shivasankaran, N.; Magibalan, S.

    2018-04-01

    Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.

  12. Intelligent optimization of common water treatment plant for the removal of organic carbon

    International Nuclear Information System (INIS)

    Ahmadzadeh, T.; Mehrdadi, N.; Ardestani, M.; Baghvand, A.

    2016-01-01

    Intelligent model optimization is a key factor in the improvement of water treatment. In the current study, we applied artificial neural networks modelling for the optimization of the coagulation and flocculation processes to achieve sufficient water quality control over the total organic carbon parameter. The ANN network consisted of a multilayer feed-forward structure with a back propagation learning algorithm with the output layer of ferric chloride and cationic polymer dosages. The results were simultaneously compared with the nonlinear multiple regression model. The model validation phase was performed using 94 unknown samples for which the prediction result was in good agreement with the observed values. Analysis of the results showed a determination coefficient of 0.85 for the cationic polymer and 0.97 for the ferric chloride models, respectively. He mean absolute percentage error and root mean square errors were calculated, consequently, as 5.8% and 0.96 for the polymer and 3.1% and 1.97 for the ferric chloride models, respectively. According to the results, artificial neural networks proved to be very promising for the optimization of water treatment processes.

  13. Applied Gaussian Process in Optimizing Unburned Carbon Content in Fly Ash for Boiler Combustion

    Directory of Open Access Journals (Sweden)

    Chunlin Wang

    2017-01-01

    Full Text Available Recently, Gaussian Process (GP has attracted generous attention from industry. This article focuses on the application of coal fired boiler combustion and uses GP to design a strategy for reducing Unburned Carbon Content in Fly Ash (UCC-FA which is the most important indicator of boiler combustion efficiency. With getting rid of the complicated physical mechanisms, building a data-driven model as GP is an effective way for the proposed issue. Firstly, GP is used to model the relationship between the UCC-FA and boiler combustion operation parameters. The hyperparameters of GP model are optimized via Genetic Algorithm (GA. Then, served as the objective of another GA framework, the predicted UCC-FA from GP model is utilized in searching the optimal operation plan for the boiler combustion. Based on 670 sets of real data from a high capacity tangentially fired boiler, two GP models with 21 and 13 inputs, respectively, are developed. In the experimental results, the model with 21 inputs provides better prediction performance than that of the other. Choosing the results from 21-input model, the UCC-FA decreases from 2.7% to 1.7% via optimizing some of the operational parameters, which is a reasonable achievement for the boiler combustion.

  14. Assessing screening criteria for the radiocarbon dating of bone mineral

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Ricardo, E-mail: ldv1452@gmail.com [Leibniz Labor for Isotopic and Radiometric Dating, Max-Eyth-Str. 11-13, 24118 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany); Huels, Matthias [Leibniz Labor for Isotopic and Radiometric Dating, Max-Eyth-Str. 11-13, 24118 Kiel (Germany); Nadeau, Marie-Josee; Grootes, Pieter M. [Leibniz Labor for Isotopic and Radiometric Dating, Max-Eyth-Str. 11-13, 24118 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany); Garbe-Schoenberg, C.-Dieter [Institute of Geosciences, Marine Climate Research and ICPMS Lab, Kiel University, Ludewig-Meyn-Str. 10, D-24118 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany); Hollund, Hege I. [Institute for Geo- and Bioarchaeology, The VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Lotnyk, Andriy [Faculty of Engineering, Institute for Material Science, Synthesis and Real Structure, Kiel University, Kaiserstr. 2, D-24143 Kiel (Germany); Leibniz Institute of Surface Modification (IOM), Permoserstr. 15, D-04318 Leipzig (Germany); Kienle, Lorenz [Faculty of Engineering, Institute for Material Science, Synthesis and Real Structure, Kiel University, Kaiserstr. 2, D-24143 Kiel (Germany); Graduate School Human Development in Landscapes, Christian Albrecht University, Kiel (Germany)

    2013-01-15

    Radiocarbon dating of bone mineral (carbonate in the apatite lattice) has been the target of sporadic research for the last 40 years. Results obtained by different decontamination protocols have, however, failed to provide a consistent agreement with reference ages. In particular, quality criteria to assess bone mineral radiocarbon dating reliability are still lacking. Systematic research was undertaken to identify optimal preservation criteria for bone mineral in archeological bones. Six human long bones, originating from a single site, were radiocarbon-dated both for collagen and apatite, with the level of agreement between the dates providing an indication of exogenous carbon contamination. Several techniques (Histology, FTIR, TEM, LA-ICP-MS) were employed to determine the preservation status of each sample. Research results highlight the importance of a micro-scale approach in establishing bone preservation, in particular the use of trace element concentration profiles demonstrated its potential use as a viable sample selection criterion for bone carbonate radiocarbon dating.

  15. Optimization of environment compatible analysis methods for mineral hydrocarbons in the soil; Optimierung umweltvertraeglicher Analysenverfahren fuer Mineraloelkohlenwasserstoffe im Boden

    Energy Technology Data Exchange (ETDEWEB)

    Flachowsky, J.; Borsdorf, H. [eds.] [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany); Loehmannsroeben, H.G.; Roch, T. [Erlangen-Nuernberg Univ., Erlangen (Germany); Leopom, P. [Umweltbundesamt, Berlin (Germany); Reimers, C. [Technische Univ. Hamburg-Harburg, Hamburg (Germany); Matz, G.; Kuebler, J. [MOBILAB GmbH, Hamburg (Germany); Christall, B. [SOFIA GmbH, Berlin (Germany); Hahn, M.; Matschiner, H. [Elektrochemie Halle GmbH (Germany); Baermann, A. [Dr. Baermann und Partner Mikroanalytik, Hamburg (Germany)

    1997-12-31

    This paper describes several analytical methods for the quantitative chemical analysis of mineral oil hydrocarbons in soils. The measuring methods are investigated on accuracy, errors, sample preparation methods, analysis of reference materials and real materials. (SR) [Deutsch] Mit dieser Schrift praesentiert die Deutsche Bundesstiftung Umwelt der Oeffentlichkeit Ergebnisse zu alternativen umweltvertraeglichen Bestimmungsmethoden fuer Mineraloelkohlenwasserstoffe in Boeden. Es war in erster Linie das Ziel aller beteiligten Forscher und Entwickler, die heute noch in der Anwendung befindliche Vorschrift nach DIN 38409 H18 zur Analytik von Mineraloelkohlenwasserstoffen durch eine sowohl umweltfreundliche als auch insgesamt aussagekraeftige Methode zu substituieren. (orig.)

  16. Field emission from optimized structure of carbon nanotube field emitter array

    International Nuclear Information System (INIS)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-01-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm"2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  17. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Science.gov (United States)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-10-01

    Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.

  18. Field emission from optimized structure of carbon nanotube field emitter array

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2016-04-07

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  19. Leaching Characteristics of Uranium And Copper from Their Mineralization in the Carbonate Rich latosol of Abu-Thor Locality, South Western Sinai, Egypt

    International Nuclear Information System (INIS)

    El-Sheikh, E.M.; Ghazala, R.A.; Abdelwarith, A.; Salem, F.; Ali, S.

    2015-01-01

    The chemical processing of the poly-mineralized carbonate rich latosol ore occurring at Abu-Thor locality of south western Sinai area has been studied for the recovery of uranium and copper metal values. A technological sample assaying 700 ppm U and 9.7% Cu was collected. In the present study, two successive percolation leaching procedures were performed after determination of optimum leaching factors by agitation leaching process. The first was carried out for uranium recovery by using urea as organic leaching agent which was possible to achieve leaching efficiency exceeding 90.3%. This procedure was followed by a second one for copper recovery using ammonium hydroxide solution and ammonium carbonate. The obtained dissolution efficiency was about 93%. The leached metal values namely U and Cu from the studied ore were then extracted as marketable products in the form of ammonium diuranate and copper sulphate, respectively.

  20. Final Report: Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ye [Univ. of Wyoming, Laramie, WY (United States)

    2018-01-17

    equivalency, all the stratigraphic models were successfully upscaled from the reference heterogeneous model for bulk flow and transport predictions (Zhang & Zhang, 2015). GCS simulation was then simulated with all models, yielding insights into the level of parameterization complexity that is needed for the accurate simulation of reservoir pore pressure, CO2 storage, leakage, footprint, and dissolution over both short (i.e., injection) and longer (monitoring) time scales. Important uncertainty parameters that impact these key performance metrics were identified for the stratigraphic models as well as for the heterogeneous model, leading to the development of reduced/simplified models at lower characterization cost that can be used for the reservoir uncertainty analysis. All the CO2 modeling was conducted using PFLOTRAN – a massively parallel, multiphase, multi-component, and reactive transport simulator developed by a multi-laboratory DOE/SciDAC (Scientific Discovery through Advanced Computing) project (Zhang et al., 2017, in review). Within the uncertainty analysis framework, increasing reservoir depth were investigated to explore its effect on the uncertainty outcomes and the potential for developing gravity-stable injection with increased storage security (Dai et al., 20126; Dai et al., 2017, in review). Finally, to accurately model CO2 fluid-rock reactions and resulting long-term storage as secondary carbonate minerals, a modified kinetic rate law for general mineral dissolution and precipitation was proposed and verified that is invariant to a scale transformation of the mineral formula weight. This new formulation will lead to more accurate assessment of mineral storage over geologic time scales (Lichtner, 2016).

  1. Optimizing Carbon/Nitrogen Ratio for Biosurfactant Production by a Bacillus subtilis Strain

    Science.gov (United States)

    Fonseca, R. R.; Silva, A. J. R.; de Franca, F. P.; Cardoso, V. L.; Sérvulo, E. F. C.

    A Bacillus subtilis strain isolated from contaminated soil from a refinery has been screened for biosurfactant production in crystal sugar (sucrose) with different nitrogen sources (NaNO3' (NH4)2SO4' urea, and residual brewery yeast). The highest reduction in surface tension was achieved with a 48-h fermentation of crystal sugar and ammonium nitrate. Optimization of carbon/nitrogen ratio (3,9, and 15) and agitation rate (50, 150, and 250 rpm) for biosurfactant production was carried out using complete factorial design and response surface analysis. The condition of C/N 3 and 250 rpm allowed the maximum increase in surface activity of biosurfactant. A suitable model has been developed, having presented great accordance experimental data. Preliminary characterization of the bioproduct suggested it to be a lipopeptide with some isomers differing from those of a commercial surfactin.

  2. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.

    Science.gov (United States)

    Ağralı, Semra; Üçtuğ, Fehmi Görkem; Türkmen, Burçin Atılgan

    2018-06-01

    We consider fossil-fired power plants that operate in an environment where a cap and trade system is in operation. These plants need to choose between carbon capture and storage (CCS), carbon capture and utilization (CCU), or carbon trading in order to obey emissions limits enforced by the government. We develop a mixed-integer programming model that decides on the capacities of carbon capture units, if it is optimal to install them, the transportation network that needs to be built for transporting the carbon captured, and the locations of storage sites, if they are decided to be built. Main restrictions on the system are the minimum and maximum capacities of the different parts of the pipeline network, the amount of carbon that can be sold to companies for utilization, and the capacities on the storage sites. Under these restrictions, the model aims to minimize the net present value of the sum of the costs associated with installation and operation of the carbon capture unit and the transportation of carbon, the storage cost in case of CCS, the cost (or revenue) that results from the emissions trading system, and finally the negative revenue of selling the carbon to other entities for utilization. We implement the model on General Algebraic Modeling System (GAMS) by using data associated with two coal-fired power plants located in different regions of Turkey. We choose enhanced oil recovery (EOR) as the process in which carbon would be utilized. The results show that CCU is preferable to CCS as long as there is sufficient demand in the EOR market. The distance between the location of emission and location of utilization/storage, and the capacity limits on the pipes are an important factor in deciding between carbon capture and carbon trading. At carbon prices over $15/ton, carbon capture becomes preferable to carbon trading. These results show that as far as Turkey is concerned, CCU should be prioritized as a means of reducing nation-wide carbon emissions in an

  3. Optimization of supercritical carbon dioxide extraction of Piper Betel Linn leaves oil and total phenolic content

    Science.gov (United States)

    Aziz, A. H. A.; Yunus, M. A. C.; Arsad, N. H.; Lee, N. Y.; Idham, Z.; Razak, A. Q. A.

    2016-11-01

    Supercritical Carbon Dioxide (SC-CO2) Extraction was applied to extract piper betel linn leaves. The piper betel leaves oil was used antioxidant, anti-diabetic, anticancer and antistroke. The aim of this study was to optimize the conditions of pressure, temperature and flowrate for oil yield and total phenolic content. The operational conditions of SC-CO2 studied were pressure (10, 20, 30 MPa), temperature (40, 60, 80 °C) and flowrate carbon dioxide (4, 6, 8 mL/min). The constant parameters were average particle size and extraction regime, 355pm and 3.5 hours respectively. First order polynomial expression was used to express the extracted oil while second order polynomial expression was used to express the total phenolic content and the both results were satisfactory. The best conditions to maximize the total extraction oil yields and total phenolic content were 30 MPa, 80 °C and 4.42 mL/min leading to 7.32% of oil and 29.72 MPa, 67.53 °C and 7.98 mL/min leading to 845.085 mg GAE/g sample. In terms of optimum condition with high extraction yield and high total phenolic content in the extracts, the best operating conditions were 30 MPa, 78 °C and 8 mL/min with 7.05% yield and 791.709 mg gallic acid equivalent (GAE)/g sample. The most dominant condition for extraction of oil yield and phenolic content were pressure and CO2 flowrate. The results show a good fit to the proposed model and the optimal conditions obtained were within the experimental range with the value of R2 was 96.13% for percentage yield and 98.52% for total phenolic content.

  4. Production-log base model for carbonate permeability distribution and steam flood optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ahamed, S.F.; Choudhry, M.A.; Abdulbaqi, J.B. [Kuwait Gulf Oil Co. (Kuwait)

    2008-10-15

    This paper presented a model for the effective management of primary and thermal oil recovery operations in the Wafra Field in Kuwait, where a small huff and puff project was carried out in 1998 to determine if steam injection was a feasible recovery option for the field. The Eocene heavy oil reservoirs of the Wafra Field are carbonate rock admixtures with gypsum and anhydrite. They are the shallowest of the field's productive horizons and exhibit a high degree of fluid flow heterogeneity. The assessment of vertical and lateral permeability variation is a key factor for success of the reservoir development plan. Steam injection began in 2006 in a small scale test (SST) to determine if the innovative technology could produce steam from effluent water and to test the viability of steam injection in carbonate reservoirs. Following the success of the SST, a large scale pilot (LSP) is schedule to start in 2009. It can be used for completion strategies of injectors and producers in steam injection. The model showed that the productivity of the Eocene wells could be correlated with common available logs to develop a log based-permeability model. A series of cross plots for the perforated intervals of high and low productivity wells were constructed to develop a relationship between well productivity and location of log parameters on the plots. A relationship between rock quality, productivity and conventional log parameters was established. It was concluded that the vertical permeability and interwell continuity in the Eocene wells can be used to optimize new well placement for horizontal and vertical infill drilling. The model is also an effective tool to predict the steam injectivity profile to understand the anomalies related to temperature-depth distribution. The model can be used to improve the efficiency of formation heating by optimizing the steam flood process and steam pattern well completion. 16 refs.

  5. Pre-treatment of Used-Cooking Oil as Feed Stocks of Biodiesel Production by Using Activated Carbon and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Rudy Syah Putra

    2014-02-01

    Full Text Available Many low-cost feedstock i.e. used-cooking oil (UCO for the production of biodiesel fuel (BDF has contained a large amount of water and high proportion of free fatty acids (FFAs. Therefore, a pre-treatment process to reduce the water content (<0.1 wt.% and FFAs (<2.0 wt.% were necessary in order to avoid an undesirable side reactions, such as saponification, which could lead to serious problem of product separation and low fatty acid methyl ester (FAME yield. . In this study, a pre-treatment process of used cooking oil as a feedstock for the production of BDF by using various adsorbents such as Activated Carbon (AC and various clay minerals, for example Smectite (S, Bentonite (B, Kaolinite (K, and Powdered Earthenware (PE were evaluated. The oil obtained from pre-treatment was compared with oil without pre-treatment process. In this study, we reported a basic difference in material ability to the oil, depending on the adsorption condition with respect to the physico-chemical parameters, e.g. refractive index (R, density (ρ, FFAs, and water content (W. The results showed that the water content and FFAs in the oil has decreased when using AC as an adsorbent compared with clay minerals. However, the refractive index of oil has similar with the oil without pre-treatment process as well; meanwhile, the density of oil has increased after the pre-treatment process by using clay minerals.

  6. Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wang, Yaling; Miao, Yanqin; Yang, Yongzhen, E-mail: yyztyut@126.com, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); He, Yuheng; Liu, Xuguang, E-mail: yyztyut@126.com, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-08-22

    Through a one-step fast microwave-assisted approach, nitrogen and phosphorus co-doped carbon dots (N,P-CDs) were synthesized using ammonium citrate (AC) as a carbon source and phosphates as additive reagent. Under the condition of an optimal reaction time of 140 s, the influence of additive with different N and P content on fluorescent performance of N,P-CDs was further explored. It was concluded that high nitrogen content and moderate phosphorus content are necessary for obtaining high quantum yield (QY) N,P-CDs, among which the TAP-CDs (CDs synthesized using ammonium phosphate as additive reagent) show high quantum yield (QY) of 62% and red-green-blue (RGB) spectral composition of 51.67%. Besides, the TAP-CDs exhibit satisfying thermal stability within 180 °C. By virtue of good optical and thermal properties of TAP-CDs, a white light-emitting device (LED) was fabricated by combining ultraviolet chip with TAP-CDs as phosphor. The white LED emits bright warm-white light with the CIE chromaticity coordinate of (0.38, 0.35) and the corresponding color temperature (CCT) of 4450 K, indicating the potential of TAP-CDs phosphor in white LED.

  7. Optimization of microwave-assisted rubberwood sawdust based activated carbon preparation conditions for methylene blue removal

    Science.gov (United States)

    Khasri, Azduwin; Ahmad, Mohd Azmier

    2017-10-01

    Optimum preparation conditions of rubberwood sawdust based activated carbon (RSAC) for methylene blue (MB) dye removal was studied. RSAC was produced by applying physiochemical activation method by using potassium hydroxide as a chemical agent which accompanied by carbon dioxide gasification under microwave heating. The effects of microwave power, irradiation time and impregnation ratio on two types of responses namely MB removal and RSAC yield using the center composite design (CCD) were also included in this study. The preparation variables correlation for responses was developed by two quadratic models. Optimum preparation conditions of RSAC were obtained at microwave power, irradiation time and IR of 354 W, 4.5 minutes and 0.98, respectively, which resulted MB removal and yield of 83.79% and 28%, respectively. The average pore diameter, surface area and total pore volume of optimized RSAC were 4.12 nm, 796.33 m2/g and 0.4219 cm3/g, respectively. This sample was found to has well-developed pores on its surface and can be a promising adsorbent for MB removal from aqueous solution.

  8. Electrical properties of multiphase composites based on carbon nanotubes and an optimized clay content

    Science.gov (United States)

    Egiziano, Luigi; Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi

    2016-05-01

    The experimental results concerning the characterization of a multiphase nanocomposite systems based on epoxy matrix, loaded with different amount of multi-walled carbon nanotubes (MWCNTs) and an optimized Hydrotalcite (HT) clay content (i.e. 0.6 wt%), duly identified by an our previous theoretical study based on Design of Experiment (DoE), are presented. Dynamic-mechanical analysis (DMA) reveal that even the introduction of higher HT loading (up to 1%wt) don't affect significantly the mechanical properties of the nanocomposites while morphological investigations show an effective synergy between clay and carbon nanotubes that leads to peculiar micro/nanostructures that favor the creation of the electrical conductive network inside the insulating resin. An electrical characterization is carried out in terms of DC electrical conductivity, percolation threshold (EPT) and frequency response in the range 10Hz-1MHz. In particular, the measurements of the DC conductivity allow to obtain the typical "percolation" curve also found for classical CNT-polymer mixtures and a value of about 2 S/m for the electrical conductivity is achieved at the highest considered CNTs concentration (i.e. 1 wt%). The results suggest that multiphase nanocomposites obtained incorporating dispersive nanofillers, in addition to the conductive one, may be a valid alternative to the polymer blends, to improve the properties of the polymeric materials thus able to meet high demands, particularly concerning their mechanical and thermal stability and electrical features required in the aircraft engineering.

  9. Investigating the Impact of Carbon Tax to Power Generation in Java-Bali System by Applying Optimization Technique

    OpenAIRE

    Maxensius Tri Sambodo

    2010-01-01

    Java-Bali power system dominates the national installed capacity and will contribute to about 76% of the national CO2 emissions from the electricity sector in the future. Thus, minimizing CO2 emission from the Java-Bali system can help Indonesia to reduce the national CO2 emissions level. We apply optimization approach to investigate this problem by including carbon tax into the cost function. We analyzed data based on electricity generating system in 2008. In general the optimization showed ...

  10. Too little oil, too much coal: Optimal carbon tax and when to phase in oil, coal and renewables

    OpenAIRE

    van der Ploeg, Frederick; Withagen, Cees A.

    2011-01-01

    Our main message is that it is optimal to use less coal and more oil once one takes account of coal being a backstop which emits much more CO2 than oil. The way of achieving this is to have a steeply rising carbon tax during the initial oil-only phase, a less-steeply rising carbon tax during the intermediate phase where oil and coal are used alongside each other and the following coal-only phase, and a flat carbon tax during the final renewables-only phase. The "laissez-faire" outcome uses co...

  11. Effect of white mineral trioxide aggregate compared with biomimetic carbonated apatite on dentine bridge formation and inflammatory response in a dental pulp model.

    Science.gov (United States)

    Danesh, F; Vahid, A; Jahanbani, J; Mashhadiabbas, F; Arman, E

    2012-01-01

      To evaluate the effects of apatite precipitation on the biocompatibility and hard tissue induction properties of white mineral trioxide aggregate (WMTA) in a dental pulp model.   Pulp exposures were created on the axial walls of 32 sound canine teeth of eight dogs. Four additional sound teeth served as controls. The pulps were capped either with WMTA or apatite derivatives [biomimetic carbonated apatite (BCAp)] in the interaction of WMTA with a synthetic tissue fluid and restored with zinc oxide-eugenol cement. After 7 and 70 days, the animals were killed, and the histological specimens taken from the teeth were stained with haematoxylin and eosin for histomorphological evaluation. The Brown and Brenn technique was employed to stain bacteria. The data were subjected to nonparametric Kruskall-Wallis analysis and Mann-Whitney U_tests.   Biomimetic carbonated apatite did not induce hard tissue bridge formation. WMTA performed significantly better than BCAp in this respect at both periods (P 0.05).   White mineral trioxide aggregate induced hard tissue formation via a mechanism other than that postulated via apatite formation. © 2011 International Endodontic Journal.

  12. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  13. An analysis of the feasibility of carbon management policies as a mechanism to influence water conservation using optimization methods.

    Science.gov (United States)

    Wright, Andrew; Hudson, Darren

    2014-10-01

    Studies of how carbon reduction policies would affect agricultural production have found that there is a connection between carbon emissions and irrigation. Using county level data we develop an optimization model that accounts for the gross carbon emitted during the production process to evaluate how carbon reducing policies applied to agriculture would affect the choices of what to plant and how much to irrigate by producers on the Texas High Plains. Carbon emissions were calculated using carbon equivalent (CE) calculations developed by researchers at the University of Arkansas. Carbon reduction was achieved in the model through a constraint, a tax, or a subsidy. Reducing carbon emissions by 15% resulted in a significant reduction in the amount of water applied to a crop; however, planted acreage changed very little due to a lack of feasible alternative crops. The results show that applying carbon restrictions to agriculture may have important implications for production choices in areas that depend on groundwater resources for agricultural production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The mineral composition and the effect of particle size of carbonized rice straw as colorant of a traditional cake kue jongkong Surabaya

    Science.gov (United States)

    Murtini, E. S.; Yuwono, S. S.; Setyawan, H. Y.

    2018-03-01

    Carbonized rice straw (CRS) is a term defined for the residue of incomplete combustion of rice straw. Utilization of CRS as a natural food coloring agent has been the local Indonesian wisdom. However, study of this local food coloring agent is rare in the literature. This study was aimed to determine the mineral composition of the CRS, and to investigate the effect of particle size of the CRS to the black color intensity of a traditional Indonesian cake called kue jongkong Surabaya. The mineral content of the CRS was analyzed using X-ray fluorescence (XRF). The CRS was grounded and sieved passing through different screen sizes (40, 80, 100, 120 and 200 mesh).The particle size distribution was measured using particle size analyzer. The CRS with different particle sizes were then applied as a natural coloring agent of the kue jongkong, from which the intensity of black color was determined using a color reader. It was found that the dominant minerals of the CRS were SiO2, carbon, and K2O. Other trace elements found were Cl, CaO, Na2O, MgO, P, S, Fe, Al2O3 and Mn. The CRS which passed to the sieve of 40 mesh has particle size distribution of 28μm, 115μm, and 348μm for a standard of D10, D50, and D90, respectively. However, CRS that passing through the sieve of 60-200 mesh have similar particle sizes (D10: 12-14μm, D50: 49-60μm, and D90: 114-145 μm). The smaller of CRS particle size produced a darker color of the kue jongkong due to better molecule dispersion and wider surface area.

  15. Modeling and optimization for rotary ultrasonic face milling of carbon fiber reinforced polymers

    Directory of Open Access Journals (Sweden)

    Amin Muhammad

    2017-01-01

    Full Text Available Carbon fiber reinforced polymers (CFRP have got paramount importance in aerospace, and other industries due to their attractive properties of high specific strength, high specific stiffness, high corrosion resistance, and low thermal expansion. However, due to their properties like heterogeneity, anisotropy, and low heat dissipation, the issues in machining like excessive cutting forces and high surface roughness have found. In this research, a cutting force model has developed for rotary ultrasonic face milling of CFRP composites. The experimental machining was carried out on CFRP-T700. From the analysis, it has found that experimental and simulation values of cutting forces have variation/ error below than 10% in the most of the groups of parameters. However, the error found higher in few cases, due to heterogeneity, anisotropy and some other properties of these materials. The formula for contact area of the abrasive core tool improved and an overlapping cutting allowance has applied the first time. The optimal combination of parameters has investigated for cutting force and surface roughness. The developed cutting force model then further validated with pilot experiments and found the same results. So, the model developed in this paper is robust and can be applied to predict cutting force and optimization.

  16. Optimal Electrode Selection for Electrical Resistance Tomography in Carbon Fiber Reinforced Polymer Composites

    Science.gov (United States)

    Escalona Galvis, Luis Waldo; Diaz-Montiel, Paulina; Venkataraman, Satchi

    2017-01-01

    Electrical Resistance Tomography (ERT) offers a non-destructive evaluation (NDE) technique that takes advantage of the inherent electrical properties in carbon fiber reinforced polymer (CFRP) composites for internal damage characterization. This paper investigates a method of optimum selection of sensing configurations for delamination detection in thick cross-ply laminates using ERT. Reduction in the number of sensing locations and measurements is necessary to minimize hardware and computational effort. The present work explores the use of an effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations resulting from selecting sensing electrode pairs. Singular Value Decomposition (SVD) is applied to obtain a spectral representation of the resistance measurements in the laminate for subsequent EI based reduction to take place. The electrical potential field in a CFRP laminate is calculated using finite element analysis (FEA) applied on models for two different laminate layouts considering a set of specified delamination sizes and locations with two different sensing arrangements. The effectiveness of the EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of damage using the full set and the reduced set of resistance measurements. This investigation shows that the EI measure is effective for optimally selecting the electrode pairs needed for resistance measurements in ERT based damage detection. PMID:28772485

  17. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle

    International Nuclear Information System (INIS)

    Wang Zhifeng; Ye Xiongying

    2013-01-01

    Carbon nanotubes (CNTs) filled polymeric composites can be used as a kind of flexible piezoresistive material in potentially many fields. Due to the diversity of CNTs and polymers, the mechanism and features of their piezoresistive behaviour is still not fully understood. This paper reports our investigations into the mechanism and optimization of piezoresistive CNT/polymer composites. Numerical simulation results showed that the junction resistances between CNTs are a major component of the network conductance of the composite as well as the piezoresistive behaviour. Average junction gap variation (AJGV) was introduced as a quantitative description of the conductance variation of a CNT network caused by strain and the conductance variation of the CNT network was found to be dominated by AJGV. Numerical simulation and analytical results indicated that the key parameters affecting AJGV include the orientation and diameter of CNTs, Poisson’s ratio of the polymer, and the concentration of CNTs in the polymer matrix. An optimizing principle was then given for piezoresistive CNT/polymer composites. (paper)

  18. Optimized network of multi-walled carbon nanotubes for chemical sensing

    International Nuclear Information System (INIS)

    Gohier, A; Chancolon, J; Porterat, D; Mayne-L'Hermite, M; Reynaud, C; Chenevier, P

    2011-01-01

    This work reports the design of a resistive gas sensor based on 2D mats of multi-walled carbon nanotubes (MWCNTs) grown by aerosol-assisted chemical vapour deposition. The sensor sensitivity was optimized using chlorine as analyte by tuning both CNT network morphology and CNT electronic properties. Optimized devices, operating at room temperature, have been calibrated over a large range of concentration and are shown to be sensitive down to 27 ppb of chlorine. The as-grown MWCNT response is compared with responses of 2000 deg. C annealed CNTs, as well as of nitrogen-doped CNTs and CNTs functionalized with polyethyleneimine (PEI). Under chlorine exposure, the resistance decrease of as-grown and annealed CNTs is attributed to charge transfer from chlorine to CNTs and demonstrates their p-type semiconductor behaviour. XPS analysis of CNTs exposed to chlorine shows the presence of chloride species that confirms electron charge transfer from chlorine to CNTs. By contrast, the resistance of nitrogen-doped and PEI functionalized CNTs exposed to chlorine increases, in agreement with their n-type semiconductor nature. The best response is obtained using annealed CNTs and is attributed to their higher degree of crystallinity.

  19. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase.

    Science.gov (United States)

    de Carvalho, Rodrigo Tomazetto; Salgado, Leonardo Tavares; Amado Filho, Gilberto Menezes; Leal, Rachel Nunes; Werckmann, Jacques; Rossi, André Linhares; Campos, Andrea Porto Carreiro; Karez, Cláudia Santiago; Farina, Marcos

    2017-06-01

    Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith-forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix-mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico-chemical interactions between rhodoliths and the environment in coralline reefs. © 2017 Phycological Society of America.

  20. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System

    Science.gov (United States)

    Shao, Xingfang; Zhu, Ping; Zhang, Wenju; Xu, Minggang; Murphy, Daniel V.

    2016-01-01

    Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha−1 yr−1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000–250, 250–53, and fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000–250 μm > 250–53μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient. PMID:27031697

  1. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems.

    Science.gov (United States)

    Tamura, Mioko; Suseela, Vidya; Simpson, Myrna; Powell, Brian; Tharayil, Nishanth

    2017-10-01

    Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant-microbe-mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant-derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial-derived C in the silt-clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above-ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0-5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of

  2. Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant

    International Nuclear Information System (INIS)

    Reyes-Belmonte, M.A.; Sebastián, A.; Romero, M.; González-Aguilar, J.

    2016-01-01

    Peculiar thermodynamic properties of carbon dioxide (CO 2 ) when it is held at or above its critical condition (stated as supercritical CO 2 or sCO 2 ) have attracted the attention of many researchers. Its excellent thermophysical properties at medium-to-moderate temperature range have made it to be considered as the alternative working fluid for next power plant generation. Among those applications, future nuclear reactors, solar concentrated thermal energy or waste energy recovery have been shown as the most promising ones. In this paper, a recompression sCO 2 cycle for a solar central particles receiver application has been optimized, observing net cycle efficiency close to 50%. However, small changes on cycle parameters such as working temperatures, recuperators efficiencies or mass flow distribution between low and high temperature recuperators were found to drastically modify system overall efficiency. In order to mitigate these uncertainties, an optimization analysis based on recuperators effectiveness definition was performed observing that cycle efficiency could lie among 40%–50% for medium-to-moderate temperature range of the studied application (630 °C–680 °C). Due to the lack of maturity of current sCO 2 technologies and no power production scale demonstrators, cycle boundary conditions based on the solar application and a detailed literature review were chosen. - Highlights: • Mathematical modelling description for recompression sCO 2 cycle. • Split fraction and recuperators effectiveness effect into sCO 2 cycle performance. • Optimization methodology of sCO 2 cycle for an innovative solar central receiver. • Power generation using particles central receiver.

  3. Sugarcane ethanol production in Malawi: Measures to optimize the carbon footprint and to avoid indirect emissions

    International Nuclear Information System (INIS)

    Dunkelberg, Elisa; Finkbeiner, Matthias; Hirschl, Bernd

    2014-01-01

    Sugarcane ethanol is considered to be one of the most efficient first-generation biofuels in terms of greenhouse gas (GHG) emissions. The carbon footprint (CF), however, increases significantly when taking into account emissions induced by indirect land-use changes (ILUC). This case study investigates sugarcane ethanol production in the Republic of Malawi, in Sub-Sahara Africa (SSA); the research objectives were to identify and quantify direct and indirect emissions and to identify measures to optimize the CF. The CF has been calculated with a life cycle approach and with data obtained from the involved companies; our estimations with regard to ILUC take into account further expansion plans for sugarcane crop production. Under existing production conditions ethanol produced in Malawi leads to GHG emissions expressed as CO 2eq of 116 g MJ −1 of ethanol. However, high optimization potentials exist when the vinasse is used as an input for biogas production and the harvesting switches from pre-harvest burning to green harvesting. ILUC induced by prospective sugarcane expansions in the Southern Region will, according to current planning, probably not occur since these expansions are linked to the implementation of a large-scale irrigation project. However if ILUC takes place, high levels of additional CO 2 emissions of about 77 g MJ −1 of ethanol are to be expected. Although the case study results are only valid for a specific region, some of the findings, such as the high compensation potential regarding ILUC through investments in irrigation systems, may be transferable to other regions in SSA. - Highlights: • We conducted a case study on sugarcane ethanol production in Malawi and calculated its carbon footprint (CF). • The current CF of sugarcane ethanol produced in the Southern Region in Malawi amounts for 116 g MJ −1 of ethanol. • The usage of vinasse in biogas plants would significantly improve the CF. • Another optimization measure is to

  4. Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Jazi

    2015-10-01

    Full Text Available Introduction The Baqoroq Cu-Zn-As deposit is located northeast of the town ofAnarak in Isfahan province, in theeast central areaof Iran. Copper mineralization occursin upper cretaceous carbonate rocks.Studyof thegeologyof the Nakhlak area, the location ofa carbonate-hosted base metaldeposit, indicatesthe importance of stratigraphic, lithological and structural controls in the placement of this ore deposit. (Jazi et al., 2015.Some of the most world’s most important epigenetic, stratabound and discordant copperdeposits are the carbonate hosted Tsumeb and Kipushi type deposits,located in Africa. The Baqoroq deposit is believed to be of this type. Materials and methods In the current study, fifty rock samples were collected from old tunnels and surface mineralization. Twenty-two thin sections, ten polished sections and four thin-polished sections were prepared for microscopic study. Ten samples were selected for elemental analysis by ICP-OES (Inductively coupled plasma optical emission spectrometry by the Zar Azma Company (Tehran and AAS (Atomic absorption spectrometry at the Ferdowsi University of Mashhad. Seven doubly polished sections of barite mineralization were prepared for microthermometric analysis. Homogenization and last ice-melting temperatures were measured using a Linkam THMSG 600 combined heating and freezing stage at Ferdowsi University of Mashhad. Sulfur isotopes of five barite samples were determined by the Iso-Analytical Ltd. Company of the UK. The isotopic ratios are presented in per mil (‰notation relative to the Canyon Diablo Troilite. Results The upper Cretaceoushost rocks of the Baqoroq deposit include limestone, sandstone, and conglomerate units. Mineralization is controlled by two main factors: lithostratigraphy and structure. Epigenetic Cu-Zn mineralizationoccurs in ore zones as stratabound barite and barite-calcite veins and minor disseminated mineralization. Open space filling occurred as breccia matrix

  5. Optimization of single channel glazed photovoltaic thermal (PVT) array using Evolutionary Algorithm (EA) and carbon credit earned by the optimized array

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay; Gadh, Rajit

    2015-01-01

    Highlights: • Optimization of SCGPVT array using Evolutionary Algorithm. • The overall exergy gain is maximized with an Evolutionary Algorithm. • Annual Performance has been evaluated for New Delhi (India). • There are improvement in results than the model given in literature. • Carbon credit analysis has been done. - Abstract: In this paper, work is carried out in three steps. In the first step, optimization of single channel glazed photovoltaic thermal (SCGPVT) array has been done with an Evolutionary Algorithm (EA) keeping the overall exergy gain is an objective function of the SCGPVT array. For maximization of overall exergy gain, total seven design variables have been optimized such as length of the channel (L), mass flow rate of flowing fluid (m_F), velocity of flowing fluid (V_F), convective heat transfer coefficient through the tedlar (U_T), overall heat transfer coefficient between solar cell to ambient through glass cover (U_S_C_A_G), overall back loss heat transfer coefficient from flowing fluid to ambient (U_F_A) and convective heat transfer coefficient of tedlar (h_T). It has been observed that the instant overall exergy gain obtained from optimized system is 1.42 kW h, which is 87.86% more than the overall exergy gain of a un-optimized system given in literature. In the second step, overall exergy gain and overall thermal gain of SCGPVT array has been evaluated annually and there are 69.52% and 88.05% improvement in annual overall exergy gain and annual overall thermal gain respectively than the un-optimized system for the same input irradiance and ambient temperature. In the third step, carbon credit earned by the optimized SCGPVT array has also been evaluated as per norms of Kyoto Protocol Bangalore climatic conditions.

  6. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    Science.gov (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  7. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    Science.gov (United States)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Supercritical carbon dioxide Brayton power conversion cycle for battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Kim, T. W.; Kim, N. H.; Suh, K. Y.

    2007-01-01

    Supercritical carbon dioxide (SCO 2 ) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. The SCO 2 Brayton cycle efficiency as high as 45% furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth lead-cooled Battery Optimized Reactor Integral System (BORIS) is being developed as an ultra-long-life, versatile-purpose, fast-spectrum reactor. BORIS is coupled to the SCO 2 Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO 2 Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW precooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO 2 leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45% was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO 2 going out from the low temperature recuperator. Development of Modular Optimized Brayton Integral System (MOBIS) is being devised as the SCO 2 Brayton cycle energy conversion cycle for BORIS. MOBIS consists of Loop Operating Brayton Optimization Study (LOBOS) for experimental Brayton cycle loop and Gas Advanced Turbine Operation Study (GATOS) for the SCO 2 turbine. Liquid-metal Energy Exchanger Integral System (LEXIS) serves to couple BORIS and MOBIS. LEXIS comprises Physical Aspect Thermal Operation System (PATOS) for SCO 2 thermal hydraulic characteristics, Shell-and-tube Overall Layout Optimization Study (SOLOS) for shell-and-tube heat exchanger, Printed

  9. Optimization of low energy sonication treatment for granular activated carbon colonizing biomass assessment.

    Science.gov (United States)

    Saccani, G; Bernasconi, M; Antonelli, M

    2014-01-01

    This study is aimed at optimizing a low energy sonication (LES) treatment for granular activated carbon (GAC)-colonizing biomass detachment and determination, evaluating detachment efficiency and the effects of ultrasound exposure on bacterial cell viability. GAC samples were collected from two filters fed with groundwater. Conventional heterotrophic plate count (HPC) and fluorescence microscopy with a double staining method were used to evaluate cell viability, comparing two LES procedures, without and with periodical bulk substitution. A 20 min LES treatment, with bulk substitution after cycles of 5 min as maximum treatment time, allowed to recover 87%/100% of attached biomass, protecting detached bacteria from ultrasound damaging effects. Observed viable cell inactivation rate was 6.5/7.9% cell/min, with membrane-compromised cell damage appearing to be even higher (11.5%/13.1% cell/min). Assessing bacterial detachment and damaging ultrasound effects, fluorescence microscopy turned out to be more sensitive compared to conventional HPC. The optimized method revealed a GAC-colonizing biomass of 9.9 x 10(7) cell/gGAC for plant 1 and 8.8 x 10(7) cell/gGAC for plant 2, 2 log lower than reported in literature. The difference between the two GAC-colonizing biomasses is higher in terms of viable cells (46.3% of total cells in plant 1 GAC-colonizing biomass compared to the 33.3% in plant 2). Studying influent water contamination through multivariate statistical analyses, apossible combined toxic and genotoxic effect of chromium VI and trichloroethylene was suggested as a reason for the lower viable cell fraction observed in plant 2 GAC-colonizing population.

  10. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haibo [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Graduate University of the Chinese Academy of Sciences, Beijing (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Hermann, Sascha, E-mail: sascha.hermann@zfm.tu-chemnitz.de [Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Schulz, Stefan E.; Gessner, Thomas [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Li, Wen J., E-mail: wenjungli@gmail.com [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR (China)

    2012-10-26

    Graphical abstract: We study the dispersing behavior of SWCNTs based on the surfactant and the optimization of sonication parameters including the sonication power and running time. Highlights: Black-Right-Pointing-Pointer We study the optimization of sonication for the surfactant-based dispersion of SWCNTs. Black-Right-Pointing-Pointer The absorption spectrum of SWCNT solution strongly depend on the sonication conditions. Black-Right-Pointing-Pointer The sonication process has an important influence on the average length and diameters of SWCNTs in solution. Black-Right-Pointing-Pointer Centrifugation mainly contributes to the decrease of nonresonant absorption background. Black-Right-Pointing-Pointer Under the same sonication parameters, the large-diameter tip performs dispersion of SWCNTs better than the small-diameter tip. -- Abstract: Non-covalent functionalization based on surfactants has become one of the most common methods for dispersing of single-walled carbon nanotubes (SWCNTs). Previously, efforts have mainly been focused on experimenting with different surfactant systems, varying their concentrations and solvents. However sonication plays a very important role during the surfactant-based dispersion process for SWCNTs. The sonication treatment enables the surfactant molecules to adsorb onto the surface of SWCNTs by overcoming the interactions induced by the hydrophobic, electrostatic and van der Waals forces. This work describes a systematic study of the influence of the sonication power and time on the dispersion of SWCNTs. UV-vis-NIR absorption spectra is used to analyze and to evaluate the dispersion of SWCNTs in an aqueous solution of 1 w/v% sodium deoxycholate (DOC) showing that the resonant and nonresonant background absorption strongly depends on the sonication conditions. Furthermore, the diameter and length of SWCNTs under different sonication parameters are investigated using atomic force microscopy (AFM).

  11. Optimization and evaluation of chelerythrine nanoparticles composed of magnetic multiwalled carbon nanotubes by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Yuan, Yulin [Department of Clinical Laboratory, the People' s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021 (China); Zhou, Zhide; Liang, Jintao; Chen, Zhencheng [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Li, Guiyin, E-mail: liguiyin01@163.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China)

    2014-02-15

    In this study, a new chelerythrine nanomaterial targeted drug delivery system (Fe{sub 3}O{sub 4}/MWNTs-CHE) was designed with chelerythrine (CHE) as model of antitumor drug and magnetic multiwalled carbon nanotubes (Fe{sub 3}O{sub 4}/MWNTs) nanocomposites as drug carrier. The process and formulation variables of Fe{sub 3}O{sub 4}/MWNTs-CHE were optimized using response surface methodology (RSM) with a three-level, three-factor Box–Behnken design (BBD). Mathematical equations and response surface plots were used to relate the dependent and independent variables. The experimental results were fitted into second-order response surface model. When Fe{sub 3}O{sub 4}/MWNTs:CHE ratio was 20.6:1, CHE concentration was 172.0 μg/mL, temperature was 34.5 °C, the drug loading content and entrapment efficiency were 3.04 ± 0.17% and 63.68 ± 2.36%, respectively. The optimized Fe{sub 3}O{sub 4}/MWNTs-CHE nanoparticles were characterized by scanning electron microscopy (SEM), Zeta potential, in vitro drug release and MTT assays. The in vitro CHE drug release behavior from Fe{sub 3}O{sub 4}/MWNTs-CHE displayed a biphasic drug release pattern and followed Korsmeyer–Peppas model with Fickian diffusion mechanism for drug release. The results from MTT assays suggested that the Fe{sub 3}O{sub 4}/MWNTs-CHE could effectively inhibit the proliferation of human hepatoma cells (HepG2), which displayed time or concentration-dependent manner. All these preliminary studies were expected to provide a theoretical basis and offer new methods for preparation efficient magnetic targeted drug delivery systems.

  12. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    International Nuclear Information System (INIS)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO 2 /CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector

  13. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Ioannis, E-mail: iliapis@sidenor.vionet.gr [AEIFOROS SA, 12th km Thessaloniki-Veroia Rd, PO Box 59, 57008 Ionia, Thessaloniki (Greece); Papayianni, Ioanna [Laboratory of Building Materials, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-02-11

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO{sub 2}/CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  14. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.

    Science.gov (United States)

    Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César

    2014-06-01

    Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Optimization of microwave-assisted durian seed based activated carbon preparation conditions for methylene blue dye removal

    Science.gov (United States)

    Ahmad, Mohd Azmier; Hamid, Siti Ruqayyah Ab.; Yusop, Mohamad Firdaus Mohamad; Aziz, Hamidi Abdul

    2017-10-01

    Due to easy access and relatively high fixed carbon content of 26.13% in its raw form, durian seed based activated carbon (DSAC) was produced via microwave heating. For activation stage, physiochemical approach consist of carbon dioxide (CO2) gasification and potassium hydroxide (KOH) as chemical activator were employed. Three most influential preparation variables on adsorption performance and yield of activated carbon (AC), which is radiation power, radiation time and KOH impregnation ratio (IR) were optimized with the help of response surface methodology (RSM). The optimization result revealed that 440W, 4.0 minutes and 0.55 of radiation power, radiation time and IR respectively, were needed to remove 80.23% of methylene blue (MB) dye and to obtain 25.77% of DSAC's yield. High Brunauer-Emmet-Teller (BET) surface area, total pore volume and average pore size of 852.30m2/g, 0.465cm3/g and 3.74nm respectively, were obtained on optimized DSAC.

  16. Application of central composite design to optimize the amount of carbon source and prebiotics for Bifidobacterium bifidum BB01

    Directory of Open Access Journals (Sweden)

    Shu Guowei

    2016-06-01

    Full Text Available The objective of the present study was to obtain the optimum proportion of the carbon source and prebiotics for Bifidobacterium bifidum BB01 by the central composite design (CCD. The effect of carbon source (lactose and two prebiotics (inulin and fructooligosaccharides on the BB01 were observed by measuring the OD600 value, pH value and the viable counts at 18h. The final optimized concentrations of carbon source and prebiotics were: lactose 1.6%, inulin 0.26%, and fructooligosaccharides 0.22%. The result indicates that the growth of B. bifidum BB01 shows an significant increase in the optimized culture medium (p < 0.05, the OD600 value reached 1.434 at 18h, which increased 6.58% compared to the control. And the viable counts of B. bifidum BB01 increased 24.36% and reached (2.17±0.06 ×109cfu/mL. The results show that the optimization of the carbon source and prebiotics using CCD in this study is workable and necessary.

  17. The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Oldenburg, Curtis M.; Benson, Sally M.

    2008-09-15

    Storage of large amounts of carbon dioxide (CO{sub 2}) in deep geological formations for greenhouse gas mitigation is gaining momentum and moving from its conceptual and testing stages towards widespread application. In this work we explore various optimization strategies for characterizing surface leakage (seepage) using near-surface measurement approaches such as accumulation chambers and eddy covariance towers. Seepage characterization objectives and limitations need to be defined carefully from the outset especially in light of large natural background variations that can mask seepage. The cost and sensitivity of seepage detection are related to four critical length scales pertaining to the size of the: (1) region that needs to be monitored; (2) footprint of the measurement approach, and (3) main seepage zone; and (4) region in which concentrations or fluxes are influenced by seepage. Seepage characterization objectives may include one or all of the tasks of detecting, locating, and quantifying seepage. Each of these tasks has its own optimal strategy. Detecting and locating seepage in a region in which there is no expected or preferred location for seepage nor existing evidence for seepage requires monitoring on a fixed grid, e.g., using eddy covariance towers. The fixed-grid approaches needed to detect seepage are expected to require large numbers of eddy covariance towers for large-scale geologic CO{sub 2} storage. Once seepage has been detected and roughly located, seepage zones and features can be optimally pinpointed through a dynamic search strategy, e.g., employing accumulation chambers and/or soil-gas sampling. Quantification of seepage rates can be done through measurements on a localized fixed grid once the seepage is pinpointed. Background measurements are essential for seepage detection in natural ecosystems. Artificial neural networks are considered as regression models useful for distinguishing natural system behavior from anomalous behavior

  18. Carbon and Nitrogen Mineralization in Relation to Soil Particle-Size Fractions after 32 Years of Chemical and Manure Application in a Continuous Maize Cropping System.

    Directory of Open Access Journals (Sweden)

    Andong Cai

    Full Text Available Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC accumulation and nitrogen (N mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha(-1 yr(-1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P and potassium (K. Soils were separated into three particle-size fractions (2000-250, 250-53, and 250-53 μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.

  19. Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: In vivo biological performance"†

    International Nuclear Information System (INIS)

    Govindaraj, Dharman; Rajan, Mariappan; Munusamy, Murugan A.; Alarfaj, Abdullah A.; Higuchi, Akon; Suresh Kumar, S.

    2017-01-01

    A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO_2) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO_2 implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO_2 that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone. - Highlights: • Successful development of CNTs–Pectin reinforced M-HA nanocomposite coating on TiO_2 by electrodeposition. • The success of nanocomposite coatings was evidenced with FTIR, XRD, XPS, SEM-EDX, and TEM. • Nanocomposite coating on TiO_2 is bio-resistive, better candidate for implant applications. • The fabricate nanocomposite coatings showed good biocompatibility and no adverse effect from in vitro and in vivo tests.

  20. Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: In vivo biological performance{sup †}

    Energy Technology Data Exchange (ETDEWEB)

    Govindaraj, Dharman [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Rajan, Mariappan, E-mail: rajanm153@gmail.com [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Munusamy,