WorldWideScience

Sample records for carbonate growth modification

  1. Growth, modification and integration of carbon nanotubes into molecular electronics

    Science.gov (United States)

    Moscatello, Jason P.

    Molecules are the smallest possible elements for electronic devices, with active elements for such devices typically a few Angstroms in footprint area. Owing to the possibility of producing ultra-high density devices, tremendous effort has been invested in producing electronic junctions by using various types of molecules. The major issues for molecular electronics include (1) developing an effective scheme to connect molecules with the present micro- and nano-technology, (2) increasing the lifetime and stabilities of the devices, and (3) increasing their performance in comparison to the state-of-the-art devices. In this work, we attempt to use carbon nanotubes (CNTs) as the interconnecting nanoelectrodes between molecules and microelectrodes. The ultimate goal is to use two individual CNTs to sandwich molecules in a cross-bar configuration while having these CNTs connected with microelectrodes such that the junction displays the electronic character of the molecule chosen. We have successfully developed an effective scheme to connect molecules with CNTs, which is scalable to arrays of molecular electronic devices. To realize this far reaching goal, the following technical topics have been investigated. (1) Synthesis of multi-walled carbon nanotubes (MWCNTs) by thermal chemical vapor deposition (T-CVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques (Chapter 3). We have evaluated the potential use of tubular and bamboo-like MWCNTs grown by T-CVD and PE-CVD in terms of their structural properties. (2) Horizontal dispersion of MWCNTs with and without surfactants, and the integration of MWCNTs to microelectrodes using deposition by dielectrophoresis (DEP) (Chapter 4). We have systematically studied the use of surfactant molecules to disperse and horizontally align MWCNTs on substrates. In addition, DEP is shown to produce impurityfree placement of MWCNTs, forming connections between microelectrodes. We demonstrate the deposition density is tunable by

  2. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  3. Local growth of vertical aligned carbon nanotubes by laserinduced surface modification of coated silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, K; Boehme, R; Ruthe, D; Rudolph, Th; Rauschenbach, B [Leibniz-Institut fuer Oberflaechenmodifizierung e. V. Permoserstrasse 15, D-04318 Leipzig (Germany)

    2007-04-15

    The stimulation of carbon nanotubes (CNT) growth in a thermal CVD process using an acetylene/nitrogen gas mixture by KrF-excimer laser exposure of iron nitrate coated silicon is described. At moderate laser fluences of {approx}1 J/cm{sup 2} the growth of nanotube bundles up to 100 {mu}m consisting of vertical aligned multi-walled carbon nanotubes (VA-MWCNT) is observed. AFM measurements show the formation of nanoparticles in the laser-exposed areas. At this catalytic sites the nanotubes grow and sustain one another and forming the well-defined bundles. Via the laser exposure the control of the catalytic sites formation and consequently the nanotube growth and properties can be achieved.

  4. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  5. Realities of craniofacial growth modification.

    Science.gov (United States)

    Kluemper, G T; Spalding, P M

    2001-03-01

    Facial growth modification can be an effective method of resolving skeletal discrepancies. There still is much controversy regarding our understanding of the nature and extent of skeletal orthopedic change possible in individual patients and the most effective appliances and timing of such treatment. In the treatment of class II patients, growth modification can lead to an improvement, if not complete correction of the class II malocclusion. Although two-phase treatment with an early first prepubertal phase can be effective, a later single-phase approach during early puberty seems to be equally effective. Certainly, before surgical correction of the mild to moderate skeletal class II problem in a growing patient is considered, an orthopedic phase of treatment prior to the pubertal growth spurt is an appropriate first step. Skeletal class III patients with a maxillary deficiency stand to gain significant benefits from early orthopedic treatment. However, such therapy may produce more favorable changes for older children and adolescents than previously thought. Nevertheless, orthopedic correction of the mild to moderate skeletal class III should be accompanied by regular progress evaluations to avoid creating significant dental compensations in the face with little skeletal change that ultimately requires surgery anyway. Skeletal class III patients with mandibular excess and/or vertical excess are poor candidates for growth modification. Orthopedic palatal expansion appears to be effective and stable at any time prior to late puberty, a stage of development when ossification of the maxillary sutures is more advanced. Consequently, the timing for expansion may be better determined by the specific needs of each patient. A functional shift resulting from a crossbite is optimally corrected early, so that asymmetric growth of the mandible can be reduced or even prevented. Postpubertal orthopedic expansion is likely to result in bone bending, which will reverse itself over

  6. Biomolecular Modification of Inorganic Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  7. Nano-coatings on carbon structures for interfacial modification

    Science.gov (United States)

    Pulikollu, Rajasekhar V.

    Surface modification of materials is a rapidly growing field as structures become smaller, more integrated and complex. It opens up the possibility of combining the optimum bulk properties of a material with optimized surface properties such as enhanced bonding, corrosion resistance, reactivity, stress transfer, and thermal, optical or electrical behavior. Therefore, surface functionalization or modification can be an enabling step in a wide variety of modern applications. In this dissertation several surface modification approaches on carbon foam and carbon nano-fibers will be discussed. These are recently developed sp2 graphitic carbon based structures that have significant potential in aerospace, automotive and thermal applications. Influence of surface modification on composite formation and properties have also been investigated. Two types of property changes have been investigated: one for enhancing the surface reactivity and another for surface inertness. Characterization techniques such as X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Contact Angle Measurement, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and mechanical testing are used in this study to find out the influence of these coatings on surface composition, chemistry and morphology. Mechanical testing has been performed on composites and stand alone foam to study the influence of surface modification on physical and mechanical properties of the composite materials. The effectiveness of these coatings on metallic/graphite interface has also been investigated for metal-matrix composite related applications. Additionally, the influence of plasma coatings on nucleation and growth of nanotubes on larger carbon structures (to produce multiscale, multifunctional materials) have also been studied. It is seen that the liquid phase activation treatment introduces oxygen functional groups on the surface, but may cause severe enough degradation that

  8. Physical Mechanisms of Crystal Growth Modification by Biomolecules

    Science.gov (United States)

    De Yoreo, James J.

    2010-07-01

    During the process of biomineralization, living organisms use macromolecules to direct the nucleation and growth of a variety of inorganic materials. Because biomineral structures exhibit complex topologies, hierarchical design, and unique materials properties, an understanding of the underlying mechanisms of biomolecular controls over mineral growth presents an opportunity to develop new strategies towards synthesis of novel materials for applications across a wide range of technologies. Herein the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on calcium carbonate and calcium oxalate crystal surfaces during the growth are reviewed. The results show how the stereochemical relationships between additive and atomic step leads to modifications of crystal shape. In some cases, the inhibitory effects of strong binders are well-explained by a model of growth inhibition based on the classic Cabrera-Vermilyea theory, but updated to take into account the particular nature of biomolecular adsorption dynamics. The consequences include a positive feedback between peptide adsorption and step inhibition that results in bistable growth with rapid switching from fast to near-zero growth rates for very small changes in supersaturation. The phenomenon of biomolecule-induced growth acceleration is also reviewed and shown to be common to both the oxalate and carbonate systems. The source of acceleration is related to the activation barrier for solute attachment to steps. Finally, experimental and theoretical results are presented that suggest most biomineral phases can not be described by conventional models in which kink formation due to thermal fluctuations at step edges is rapid enough to ensure the availability of kinks. Instead, growth is kink-limited. As a consequence, biomolecule-step interactions cannot be

  9. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  10. Ultraviolet modification of Chlamydomonas reinhardtii for carbon capture

    Directory of Open Access Journals (Sweden)

    Gopal NS

    2016-04-01

    Full Text Available Nikhil S Gopal,1 K Sudhakar2 1The Lawrenceville School, Lawrenceville, NJ, USA; 2Bioenergy Laboratory, Malauna Azad National Institute of Technology, Bhopal, India Purpose: Carbon dioxide (CO2 levels have been rising rapidly. Algae are single-cell organisms with highly efficient CO2 uptake mechanisms. Algae yield two to ten times more biomass versus terrestrial plants and can grow nearly anywhere. Large scale CO2 sequestration is not yet sustainable due to high amounts of nitrogen (N and phosphate (P needed to grow algae in media. Methods: Mutant strains of Chlamydomonas reinhardtii were created using ultraviolet light (2.2–3 K J/m2 and natural selection using media with 20%–80% lower N and P compared to standard Sueoka's high salt medium. Strains were selected based upon growth in media concentrations varying from 20% to 80% less N/P compared to control. Biomass was compared to wild-type control (CC-125 using direct counts, optical density dry weight, and mean doubling time. Results: Mean doubling time was 20 and 25 hours in the low N and N/P strains, respectively (vs 66 hours in control. Using direct counts, growth rates of mutant strains of low N and N/P cultures were not statistically different from control (P=0.37 and 0.70, respectively. Conclusion: Two new strains of algae, as well as wild-type control, were able to grow while using 20%–40% less N and P. Ultraviolet light-based modification of algae is an inexpensive and alternative option to genetic engineering techniques. This technique might make larger scale biosequestration possible. Keywords: biosequestration, ultraviolet, carbon sequestration, carbon capture, algae

  11. Carbon nanotube modification of microbial fuel cell electrodes.

    Science.gov (United States)

    Yazdi, Alireza Ahmadian; D'Angelo, Lorenzo; Omer, Nada; Windiasti, Gracia; Lu, Xiaonan; Xu, Jie

    2016-11-15

    The use of carbon nanotubes (CNTs) for energy harvesting devices is preferable due to their unique mechanical, thermal, and electrical properties. On the other hand, microbial fuel cells (MFCs) are promising devices to recover carbon-neutral energy from the organic matters, and have been hindered with major setbacks towards commercialization. Nanoengineered CNT-based materials show remarkable electrochemical properties, and therefore have provided routes towards highly effective modification of MFC compartments to ultimately reach the theoretical limits of biomass energy recovery, low-cost power production, and thus the commercialization of MFCs. Moreover, these CNT-based composites offer significant flexibility in the design of MFCs that enable their use for a broad spectrum of applications ranging from scaled-up power generation to medically related devices. This article reviews the recent advances in the modification of MFCs using CNTs and CNT-based composites, and the extent to which each modification route impacts MFC power and current generation. PMID:27213269

  12. The biology of TMJ growth modification: a review.

    Science.gov (United States)

    Owtad, P; Park, J H; Shen, G; Potres, Z; Darendeliler, M A

    2013-04-01

    Several studies have indicated a positive response of the temporomandibular joint (TMJ) to mandibular advancement, while others have reported that TMJ adaptive responses are non-existent and negligible. Controversy continues to grow over the precise nature of skeletal changes that occur during mandibular growth modification, due to an apparent lack of tissue markers required to substantiate the precise mechanism by which this is occurring. However, evidence suggests that orthopedic forces clinically modify the growth of the mandible. To further our knowledge about the effect of orthopedic treatment on the TMJ, it is necessary that we understand the biologic basis behind the various tissues involved in the TMJ's normal growth and maturation. The importance of this knowledge is to consider the potential association between TMJ remodeling and mandibular repositioning under orthopedic loading. Considerable histologic and biochemical research has been performed to provide basic information about the nature of skeletal growth modification in response to mandibular advancement. In this review, the relevant histochemical evidence and various theories regarding TMJ growth modification are discussed. Furthermore, different regulatory growth factors and tissue markers, which are used for cellular and molecular evaluation of the TMJ during its adaptive response to biomechanical forces, are underlined.

  13. Homogeneous modification of carbon nanotubes with cellulose acetate

    Institute of Scientific and Technical Information of China (English)

    Gang Ke

    2009-01-01

    An efficient strategy that comprised shorten, chain extension, active groups introducing and homogeneous reaction tactics, was adopted to modify multiwalled carbon nanotubes (MWNTs) with cellulose acetate (CA). Specially, by utilizing 2,4,6-trichloro-1,3,5-triazine, a reactive intermediate of the MWNTs (MWNT-triazine) was obtained. Suitable solubility of the MWNT-triazine helps make the homogeneous modification become reality. Detailed characterizations further verified that reaction between chloride atoms in the MWNT-triazine and hydroxyl groups in the CA had contributed to the formation of MWNT-CA conjugates. The novel MWNT-CA consists of carbon (76.3%), oxygen (18.4%) and nitrogen (5.3%). With a nanotube-attached CA content of 42.8 wt%, the MWNT-CA is readily soluble in DMSO, NME DMF and DMAc. Confirmation of the CA-based modification route might lead to studies aiming for specific sorption and isolation.

  14. The effect of substrate modification on microbial growth on surfaces

    CERN Document Server

    Brown, A A

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process...

  15. Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo

    International Nuclear Information System (INIS)

    The aim of this research is focused on the biological effects of multi wall carbon nanotubes (MWCNTs) on three different human cell types, laboratory animals in vivo, and immunological effects. Large numbers of researchers are directly involved in the handling of nanostructured materials such as MWCNTs and nanoparticles. It is important to assess the potential health risks related to their daily exposure to carbon nanotubes. The administration of sterilized nanosamples has been performed on laboratory animals, in both acute and chronic administration, and the pathological effects on the parenchymal tissues have been investigated. We studied the serum immunological modifications after intraperitoneal administration of the MWCNTs. We did not observe any antigenic reaction; the screening of ANA, anti-ENA, anti-cardiolipin, C-ANCA and P-ANCA was negative. No quantitative modification of immunoglobulins was observed, hence no modification of humoral immunity was documented. We also studied the effects of MWCNTs on the proliferation of three different cell types. MCF-7 showed a significant inhibition of proliferation for all conditions studied, whereas hSMCs demonstrated a reduction of cell growth only for the highest MWCNTs concentrations after 72 h. Also, no growth modification was observed in the Caco-2 cell line. We observed that a low quantity of MWCNTs does not provoke any inflammatory reaction. However, for future medical applications, it is important to realize prosthesis based on MWCNTs, through studying the corresponding implantation effects. Moreover, it has to be emphasized that this investigation does not address, at the moment, the carcinogenicity of MWCNTs, which requires a detailed follow-up investigation on the specific topic. In view of the subsequent and more extensive use of MWCNTs, especially in applications where carbon nanotubes are injected into the human body for drug delivery, as a contrast agent carrying entities for MRI, or as the basic

  16. Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo

    Science.gov (United States)

    Chiaretti, M.; Mazzanti, G.; Bosco, S.; Bellucci, S.; Cucina, A.; LeFoche, F.; Carru, G. A.; Mastrangelo, S.; Di Sotto, A.; Masciangelo, R.; Chiaretti, A. M.; Balasubramanian, C.; DeBellis, G.; Micciulla, F.; Porta, N.; Deriu, G.; Tiberia, A.

    2008-11-01

    The aim of this research is focused on the biological effects of multi wall carbon nanotubes (MWCNTs) on three different human cell types, laboratory animals in vivo, and immunological effects. Large numbers of researchers are directly involved in the handling of nanostructured materials such as MWCNTs and nanoparticles. It is important to assess the potential health risks related to their daily exposure to carbon nanotubes. The administration of sterilized nanosamples has been performed on laboratory animals, in both acute and chronic administration, and the pathological effects on the parenchymal tissues have been investigated. We studied the serum immunological modifications after intraperitoneal administration of the MWCNTs. We did not observe any antigenic reaction; the screening of ANA, anti-ENA, anti-cardiolipin, C-ANCA and P-ANCA was negative. No quantitative modification of immunoglobulins was observed, hence no modification of humoral immunity was documented. We also studied the effects of MWCNTs on the proliferation of three different cell types. MCF-7 showed a significant inhibition of proliferation for all conditions studied, whereas hSMCs demonstrated a reduction of cell growth only for the highest MWCNTs concentrations after 72 h. Also, no growth modification was observed in the Caco-2 cell line. We observed that a low quantity of MWCNTs does not provoke any inflammatory reaction. However, for future medical applications, it is important to realize prosthesis based on MWCNTs, through studying the corresponding implantation effects. Moreover, it has to be emphasized that this investigation does not address, at the moment, the carcinogenicity of MWCNTs, which requires a detailed follow-up investigation on the specific topic. In view of the subsequent and more extensive use of MWCNTs, especially in applications where carbon nanotubes are injected into the human body for drug delivery, as a contrast agent carrying entities for MRI, or as the basic

  17. The effect of substrate modification on microbial growth on surfaces

    International Nuclear Information System (INIS)

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process determining the minimum inhibitory concentration (MIC) values of agents in the desired test medium. During the study it was found that a number of surfaces did appear to inhibit yeast growth in fruit juice, however on further investigation the apparent inhibitory effect was discovered to be the result of un-bound material free in the test medium. On removing the possibility of any un-bound material present on the test surface, by a series of surface washings, the inhibitory effect on yeast growth was eliminated. Of the agents tested only one appeared to have an inhibitory effect which could be attributed to a true antimicrobial surface effect, Amical 48. As there is little known about this agent in the literature, its affect on yeast growth was examined and in particular a proposal for the mode of action on yeast is discussed, providing a plausible explanation for the inhibitory effect observed when this agent is covalently immobilised onto nylon. (author)

  18. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  19. Mechano-activated surface modification of calcium carbonate in wet stirred mill and its properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface modification of calcium carbonate particles using sodium stearate(SDS) as a modification agent incorporated with the simultaneous wet ultra-fine grinding in the laboratory stirred mill was investigated. The physical properties and application properties of modified calcium carbonate were measured and evaluated. The action mechanism between SDS and calcium carbonate in the modification was studied by infrared spectrometry(IR) and X-ray photoelectron energy spectroscopy(XPS). The results indicate that the crushing mechanic force intensity can obviously influence the modification effect of calcium carbonate because of mechano-chemical effect. The hydrophilic surface of calcium carbonate is turned into hydrophobic after modification. The properties of polyethylene(PE) filled by modified calcium carbonate powder is markedly improved. And the adsorption of SDS could occur by chemical reaction with calcium carbonate surface.

  20. Plasma modification of medical implants by carbon coatings depositions

    Directory of Open Access Journals (Sweden)

    J. Grabarczyk

    2009-12-01

    Full Text Available Purpose: The main goal was to work out the technology of deposition of carbon layers onto surface of medical implants made of the AISI316L medical steel. So far the results of carried investigations have proved that layers synthesized in RF PACVD process noticeably improve the biotolerance of the medical steel. Positive experimental results concerning the implementation of carbon layers conducted in the Institute of Materials Science and Engineering of the Technical University of Lodz were the basis for attempt of industrial application of the worked out technology.Design/methodology/approach: Carbon layers were manufactured using radio frequency plasma RF PACVD method. The technology was worked out for the surfaces of the intramedullary nails. The investigations were carried out in order to compare obtained synthesis results with the layers deposited under the laboratory conditions. In this work the following are presented: the surface topography investigation, results of nanohardness and adhesion measurements as well as the raman spectra. Medical examination results were presented in our earlier publications. In the description of obtained investigation results are also presented the preliminary results of the medical treatment effects with the use of intramedullary nails covered with the carbon layer.Findings: Carbon layers manufactured onto intramedullary nails presented good mechanical properties. Applied synthesis parameters made it possible to manufacture uniform film onto whole implant surface. Thickness of the layer was varied in the range of 200 – 400 nm, however total modification area contained 3.5 micrometers. Nails covered with the carbon layer positively passed the tests and were admitted into medical trade turnover. Positive medical treatment results were observed especially in case of patients with affirmed allergies onto alloying components contained in medical steels like chromium and nickel.Research limitations

  1. Synthesis and chemical modification of carbon nanostructures for materials applications

    Science.gov (United States)

    Higginbotham, Amanda Lynn

    This dissertation explores the structure, chemical reactivities, electromagnetic response, and materials properties of various carbon nanostructures, including single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphite, and graphene nanoribbons (GNRs). Efficient production and modification of these unique structures, each with their own distinct properties, will make them more accessible for applications in electronics, materials, and biology. A method is reported for controlling the permittivity from 1--1000 MHz of SWCNT-polymer composites (0.5 wt%) for radio frequency applications including passive RF antenna structures and EMI shielding. The magnitude of the real permittivity varied between 20 and 3.3, decreasing as higher fractions of functionalized-SWCNTs were added. The microwave absorbing properties and subsequent heating of carbon nanotubes were used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30--40 W of directed microwave power (2.45 GHz), bulk composite samples reached temperatures above 500°C within 1 min. Graphite oxide (GO) polymer nanocomposites were developed at 1, 5, and 10 wt% for the purpose of evaluating the flammability reduction and materials properties of the resulting systems. Microscale oxygen consumption calorimetry revealed that addition of GO reduced the total heat release in all systems, and GO-polycarbonate composites demonstrated very fast self-extinguishing times in vertical open flame tests. A simple solution-based oxidative process using potassium permanganate in sulfuric acid was developed for producing nearly 100% yield of graphene nanoribbons (GNRs) by lengthwise cutting and unraveling of MWCNT sidewalls. Subsequent chemical reduction of the GNRs resulted in restoration of electrical conductivity. The GNR synthetic conditions were investigated in further depth, and an improved method which utilized a two-acid reaction medium was found to produce GNRs with

  2. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    EijiIwamura; MasanoriYamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process, graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  3. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    Eiji Iwamura; Masanori Yamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process,graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  4. Improving the durability of methanol oxidation reaction electro-catalysts through the modification of carbon architectures

    Science.gov (United States)

    Wood, Kevin N.

    Carbon materials represent one of the largest areas of studied research today, having integrated applications stretching from energy production and storage to medical use and far beyond. One of these many intriguing applications is fuel cells, which offers the promise of clean electricity through a direct electrochemical energy conversion process. Unfortunately, at the present time the cost per watt-hour produced by fuel cells is more expensive than conventional methods of energy production/storage (i.e. combustion engines, batteries, etc.). Under the umbrella of fuel cell systems, methanol is a promising fuel source because of its high energy density and convenience of direct liquid fuel operation. In this field, recent advancements are bringing direct methanol fuel cells (DMFCs) closer to commercial viability. However, just as in other fuel cell systems, further improvements are greatly needed, particularly in the area of catalyst durability. This need for improved durability has led to increased research activity focused on improving catalyst stability and utilization. This thesis explores one of the most promising areas of enhancing catalyst-support interactions; namely, modification of carbon support architectures. Through the use of heteroatom modifiers, such as nitrogen, fuel cell support systems can be enhanced in such a way as to improve metal nucleation and growth, catalyst durability and catalytic activity. To this end, this thesis employs advanced characterization techniques to study the changes in catalyst particle morphology before and after nitrogen modification of the support structure. These results clearly show the beneficial effects of nitrogen moieties on carbon structures and help elucidate the effects of nitrogen on the stability of supported catalytic nanoparticles systems. Similarly, the novel concept of post-modifying commercially available supported catalysts with nitrogen ion implantation gives further insight into the behavior of

  5. Surface modification of multiwall carbon nanotubes by sulfonitric treatment

    Science.gov (United States)

    Gómez, Sofía; Rendtorff, Nicolás M.; Aglietti, Esteban F.; Sakka, Yoshio; Suárez, Gustavo

    2016-08-01

    Carbon nanotubes are widely used for electronic, mechanical, and optical devices due to their unique structural and quantum characteristics. The species generated by oxidation on the surface of these materials permit binding new reaction chains, which improves the dispersibility, processing and compatibility with other materials. Even though different acid treatments and applications of these CNT have been reported, relatively few research studies have focused on the relationship between the acid treatment and the formation of nanodefects, specific oxidized species or CNT surface defects. In this work, multiwall carbon nanotube (MWCNT) oxidation at 90 °C was characterized in order to determine the acid treatment effect on the surface. It was found that oxidized species are already present in MWCNT without an acid treatment, but there are not enough to cause water-based dispersion. The species were identified and quantified by infrared spectroscopy and X-ray photoelectron spectroscopy. Also, transmission electron microscopy observations showed not only modifications of the oxidized species, but also morphological damage on the surfaces of MWCNT after being subjected to the acid treatment. This effect was also confirmed by Raman spectroscopy. The acid treatment generates higher oxidized species, decreasing the zeta potential in the whole pH range.

  6. Structural Modification in Carbon Nanotubes by Boron Incorporation

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2009-01-01

    Full Text Available Abstract We have synthesized boron-incorporated carbon nanotubes (CNTs by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds.

  7. Carbon nanofiber growth on thin rhodium layers

    NARCIS (Netherlands)

    Chinthaginjala, J.K.; Unnikrishnan, S.; Smithers, M.A.; Kip, G.A.M.; Lefferts, L.

    2012-01-01

    A thinlayer of carbon nanofibers (CNFs) was synthesized on a thin polycrystalline rhodium (Rh) metal layer by decomposing ethylene in the presence of hydrogen. Interaction of Rh crystals with carbon results in fragmentation and formation of Rh-nanoparticles, facilitating CNF growth. CNFs are immobil

  8. Green Growth and Low Carbon Society

    DEFF Research Database (Denmark)

    Müller, Anders Riel; Tonami, Aki

    This paper ask the question of what makes Low Carbon and Green Growth and Low Carbon Society policy concepts that have not only gained foothold in their countries of origin, but also globally. Autobiography analysis is employed to discover the stories that these concepts tell about developmental ...

  9. Structure and growth thermodynamics of carbon tubes

    Institute of Scientific and Technical Information of China (English)

    李文治; 钱露茜; 钱生法; 周维亚; 王刚; 付春生; 赵日安; 解思深

    1996-01-01

    Carbon tubes were prepared by Ni (or Ti) catalytic pyrolysis of acetylene. The catalytic effect of nanometer nickel powders is related to the reduction temperature in H2 atmosphere. Nanometer nickel powders reduced at high temperature have a distinguished catalytic effect, and the yield of the carbon tubes is relatively high; but for the nickel powders reduced at low temperature, the yield of carbon tubes is low, and no tube can be formed. Carbon tubes can only be grown along the edges or on the tips of the Ni (or Ti) sheets reduced at about 770C. But if Ni (or Ti) sheets are etched in acid, at lot of carbon tubes with various forms can be formed on their surface. The structure and morphology of the carbon tubes is studied, and the growth thermodynamics for the straight, curved and helical carbon tubes are systematically investigated for the first time.

  10. Growth of carbon nanotubes on carbon fibers without strength degradation

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Niels [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Magrez, Arnaud; Forro, Laszlo [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Couteau, Edina; Locquet, Jean-Pierre [Laboratory of Solid-State Physics and Magnetism, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Seo, Jin Won [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2012-12-15

    Carbon nanotubes (CNTs) are grown on PAN-based carbon fibers by means of catalytic chemical vapor deposition technique. By using catalytic thermal decomposition of hydrocarbon, CNTs can be grown in the temperature range of 650-750 C. However, carbon fibers suffer significant damages resulting in decrease of initial tensile strength. By applying the oxidative dehydrogenation reaction of C{sub 2}H{sub 2} with CO{sub 2}, we found an alternative way to grow CNTs on carbon fibers at low temperatures, such as 500 C. Scanning electron microscope results combined with single fiber tests indicate that this low temperature growth enables homogeneous grafting of CNTs onto carbon fibers without degradation of tensile strength. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Carbon nanotube growth by PECVD: a review

    Energy Technology Data Exchange (ETDEWEB)

    Meyyappan, M; Delzeit, Lance; Cassell, Alan; Hash, David [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2003-05-01

    Carbon nanotubes (CNTs), due to their unique electronic and extraordinary mechanical properties, have been receiving much attention for a wide variety of applications. Recently, plasma enhanced chemical vapour deposition (PECVD) has emerged as a key growth technique to produce vertically-aligned nanotubes. This paper reviews various plasma sources currently used in CNT growth, catalyst preparation and growth results. Since the technology is in its early stages, there is a general lack of understanding of growth mechanisms, the role of the plasma itself, and the identity of key species responsible for growth. This review is aimed at the low temperature plasma research community that has successfully addressed such issues, through plasma and surface diagnostics and modelling, in semiconductor processing and diamond thin film growth.

  12. Multiwalled carbon nanotube CVD synthesis, modification, and composite applications

    Science.gov (United States)

    Qian, Dali

    Well-aligned carbon multiwall nanotube (MWNT) arrays have been continuously synthesized by a floating catalytic chemical vapor deposition (CVD) method involving the pyrolysis of xylene-ferrocene mixtures. The CVD parameters have been studied to selectively synthesize nanotubes with required dimensions. A mixed tip-root growth model has been proposed for the floating catalytic CVD synthesis. Coarsening of the catalyst particle at the root end promoted MWNT wall coarsening (addition of new concentric graphene shells), while the smaller catalyst particle at the tip contributed to MWNT elongation. A two-step process in which ferrocene was fed for only five minutes to nucleate the DTs was developed to understand if a continuous supply of catalyst was necessary for continued growth. The results show that the ferrocene was only necessary for initial nucleation. To simplify the CVD process further, another two-step synthesis method was developed in which the ferrocene was pre-decomposed so that the nanotube nucleation could be isolated from the growth, enabling quantification of growth mechanisms and kinetics. Mass spectra and hydrocarbon analyses of the CVD reactor tail gas were performed to understand the pyrolysis chemistry. Well-aligned N-doped and Ru-doped MWNT arrays have been produced by pyrolysis of pyridine ferrocene mixtures and xylene-ferrocene-ruthenocene mixtures, respectively. Various material characterization techniques were used to measure the dopant distributions and correlate the catalyst phase with the novel nanotube structures. High-temperature annealing has been shown to be a viable means to remove both the catalyst particles and certain microstructural defects within the CVD-derived DTs. The phase transformation of catalyst during annealing has also been studied. Homogeneous distribution of MWNTs in polystyrene matrices was achieved by an ultrasonic assisted solution-evaporation method. Addition of only 1 wt % DTs to polystyrene increased the polymer

  13. Nanocrystalline cobalt oxides for carbon nanotube growth

    Science.gov (United States)

    Guo, Kun; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2007-09-01

    Thin Films of nanocrystalline cobalt oxide were formed by sol-gel method. Structure, optical properties and surface properties of these films were investigated by numerous characterization techniques. These films were successfully fabricated on glass substrates below 500°C. . Micropatterns of cobalt oxide thin films were also fabricated on glass and silicon substrates by employing a lift-off method. Crystal size of these nanocrystalline cobalt films could be successfully controllable by varying the amount of cobalt precursors and number of layers. These films were used as the seeding layers for carbon nanotube growth in a CVD process By changing the concentration of monomer precursors in the solgel coating solutions, different size nanoclusters hence different size carbon nanotubes could be synthesized in CVD process. This method can be used for controlled growth of carbon nanotubes for many different applications. In this paper, detail of these experimental results will be presented.

  14. Activated carbon from pyrolysed sugarcane bagasse: Silver nanoparticle modification and ecotoxicity assessment.

    Science.gov (United States)

    Gonçalves, Suely Patrícia C; Strauss, Mathias; Delite, Fabrício S; Clemente, Zaira; Castro, Vera L; Martinez, Diego Stéfani T

    2016-09-15

    Activated carbon from pyrolysed sugarcane bagasse (ACPB) presented pore size ranges from 1.0 to 3.5nm, and surface area between 1200 and 1400m(2)g(-1) that is higher than commonly observed to commercial activated carbon. The ACPB material was successfully loaded with of silver nanoparticles with diameter around 35nm (0.81wt.%). X-ray photoelectron spectroscopy (XPS) analyses showed that the material surface contains metallic/Ag(0) (93.60wt.%) and ionic/Ag(+) states (6.40wt.%). The adsorption capacity of organic model molecules (i.e. methylene blue and phenol) was very efficient to ACPB and ACPB loaded with silver nanoparticles (ACPB-AgNP), indicating that the material modification with silver nanoparticles has not altered its adsorption capacity. ACPB-AgNP inhibited bacteria growth (Escherichia coli), it is a promising advantage for the use of these materials in wastewater treatment and water purification processes. However, ACPB-AgNP showed environmental risks, with toxic effect to the aquatic organism Hydra attenuata (i.e. LC50 value of 1.94mgL(-1)), and it suppressed root development of Lycopersicum esculentum plant (tomato). Finally, this work draw attention for the environmental implications of activated carbon materials modified with silver nanoparticles. PMID:27039274

  15. Novel method for carbon nanofilament growth on carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Johathan [Los Alamos National Laboratory; Luhrs, Claudia [UNM MECH.ENG.; Terani, Mehran [UNM MECH.ENG.; Al - Haik, Marwan [UNM MECH.ENG.; Garcia, Daniel [UNM MECH.ENG.; Taha, Mahmoud R [UNM MECH.ENG.

    2009-01-01

    Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs

  16. Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ho; Kim, Dae Su [Chungbuk National University, Cheongju (Korea, Republic of)

    2013-10-15

    Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surface-modified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

  17. Growth of Y-shaped Carbon Nanofibers from Ethanol Flames

    Directory of Open Access Journals (Sweden)

    Cheng Jin

    2008-01-01

    Full Text Available Abstract Y-shaped carbon nanofibers as a multi-branched carbon nanostructure have potential applications in electronic devices. In this article, we report that several types of Y-shaped carbon nanofibers are obtained from ethanol flames. These Y-shaped carbon nanofibers have different morphologies. According to our experimental results, the growth mechanism of Y-shaped carbon nanofibers has been discussed and a possible growth model of Y-shaped carbon nanofibers has been proposed.

  18. Modification of computer simulation of normal grain growth

    Institute of Scientific and Technical Information of China (English)

    李剑; 李世晨; 郑子樵; 刘祖耀; 陈大钦

    2004-01-01

    A set of principles on transition probability was supplied for the physical process of grain growth. In accord with these principles, a modified transition probability considering the influence of temperature was put forward to simulate the normal grain growth relying on temperature and second phase particles. The modified transition probability correctly reflects the dependence of grain growth on the temperature. The effect of different shapes of second phase particles on the grain growth process was taken into account using the modified transition probability.The relationship between the area fraction of second phase particles and the limit of grain size of the matrix was given. The microstructural evolution patterns employed to 2-D were given. The results agree well with the real grain growth process. All these suggest that the modified transition probability is better than the conventional one.

  19. THERMOCHEMICAL TRANSFORMATION IN THE PROCESS OF OBTAINING AND MODIFICATION OF NANOPOROUS CARBON

    Directory of Open Access Journals (Sweden)

    M. O. Nykoliuk

    2016-07-01

    Full Text Available The paper is devoted to the study of the thermochemical transformation in the process of obtaining and modification of nanoporous carbon. Nanoporous carbon material, which was gotten in carbonization process, is characterized by specific surface area. The thermogravimetric study of materials with linear heating and isothermal aging at a certain temperature were made to study the effect of thermal activation, which was conducted in air and argon atmospheres.

  20. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  1. Carbon isotopes as indicators of peatland growth?

    Science.gov (United States)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  2. Modification of Carbon Nanotube Powder Microelectrode and Nitrite Reduction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The properties of the carbon nanotube powder microelectrodes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.

  3. Modification of Carbon Nanotube Powder Microelectrode and Nitrite Reduction

    Institute of Scientific and Technical Information of China (English)

    PeiFangLIU; JunFuHU

    2002-01-01

    The properties of the carbon nanotube powder microelectroes (denoted CNTPME) are remarkably altered by anodic pretreatment and preadsorption of mediators. It seems that anodic pretreatment leads the long and tangled carbon nanotubes to be partially cut shorter, resulting in more openings as shown by TEM. Besides, the anodic pretreatment may adjust the hydrophobicity of nanotubes to match with that of Os(bpy)32+. As a result, the real surface area and the ability of adsorbing mediator Os(bpy)32+ of the nanotubes are markedly increased so as to effectively catalyze NO2- reduction in acidic solution.

  4. Carbon nanotubes: controlled growth and application

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2013-01-01

    Full Text Available Notable progress has been made on the synthesis, properties and uses of carbon nanotubes (CNTs in the past two decades. However, the controlled growth of single-wall CNTs (SWCNTs with predefined and uniform structures remains a big challenge, and making full use of CNTs in applications still requires great effort. In this article, our strategies and recent progress on the controlled synthesis of SWCNTs by chemical vapor deposition are reviewed, and the applications of CNTs in lithium-ion batteries, transparent conductive films, and as connectors of metal atomic chains are discussed. Finally, future prospects for CNTs are considered.

  5. Increased Alignment in Carbon Nanotube Growth

    Science.gov (United States)

    Delzeit, Lance D. (Inventor)

    2007-01-01

    Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.

  6. Carbon Sequestration, Economic Policies and Growth

    OpenAIRE

    Grimaud, André; Rougé, Luc

    2012-01-01

    The possibility of capturing and sequestering some fraction of the CO2 emissions arising from fossil fuel combustion, often labeled as carbon capture and storage (CCS), is drawing an increasing amount of attention in the business and academic communities. We present here a model of endogenous growth in which the use of a non-renewable resource in production yields flows of pollution whose accumulated stock negatively a¤ects welfare. A CCS technology allows, via some effort, for the partial r...

  7. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Science.gov (United States)

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  8. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Science.gov (United States)

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  9. Synthesis, chemical modification, and surface assembly of carbon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Amma, A.; St. Angelo, S.K.; Mallouk, T.E. [Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 (United States); Razavi, B.; Mayer, T.S. [Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2003-05-01

    Carbon nanotubules and nanowires were synthesized by pyrolysis of polymer precursors in the pores of alumina membranes. The nanowires were released by dissolving the membranes, and were then made hydrophobic or hydrophilic by chemical surface derivatization. These nanowires could be placed into lithographically defined wells on surfaces by means of electrostatic interactions with monolayers at the bottoms of the wells. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  10. Ultraviolet modification of Chlamydomonas reinhardtii for carbon capture

    OpenAIRE

    Gopal NS; Sudhakar K.

    2016-01-01

    Nikhil S Gopal,1 K Sudhakar2 1The Lawrenceville School, Lawrenceville, NJ, USA; 2Bioenergy Laboratory, Malauna Azad National Institute of Technology, Bhopal, India Purpose: Carbon dioxide (CO2) levels have been rising rapidly. Algae are single-cell organisms with highly efficient CO2 uptake mechanisms. Algae yield two to ten times more biomass versus terrestrial plants and can grow nearly anywhere. Large scale CO2 sequestration is not yet sustainable due to high amounts of nitrogen (N) and p...

  11. STUDY ON THE SURFACE MODIFICATION OF NANOMETER CARBON PARTICLES IN ATMOSPHERIC PLASMA

    Institute of Scientific and Technical Information of China (English)

    Y.J. Ge; G.Q. Zhang; Y.M. Liu; X.G. Guo; Z.F. Zhao

    2002-01-01

    The surface modification of nanometer carbon material has been studied by usingan Induced Dielectric Barrier Discharge Plasma device (IDBD). The experimentalresults show that with different work gases and different discharge conditions, thesurface behaviors of carbon black can be changed according to needs, including theuse of different functional groups and the change of the surface roughness of carbonparticles etc., which increased the grinding and dispersion abilities in binder.

  12. Modification of cellulose nanofibrils with luminescent carbon dots.

    Science.gov (United States)

    Junka, Karoliina; Guo, Jiaqi; Filpponen, Ilari; Laine, Janne; Rojas, Orlando J

    2014-03-10

    Films and hydrogels consisting of cellulose nanofibrils (CNF) were modified by covalent EDC/NHS coupling of luminescent, water-dispersible carbon dots (CDs). Quartz crystal microgravimetry with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) were used to investigate the attachment of CDs on carboxymethylated CNF (CM-CNF). As the first reported use of CD in nanocellulose products, we provide proof-of-concept for the synthesis of transparent and fluorescent nanopaper and for its tunable luminescence as confirmed by confocal microscopy imaging. PMID:24456129

  13. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    /O2 and Ar plasma treatments, mainly attributed to an increase in the density of the C-O single bond at the carbon fibre surfaces. The O/C ratio increased to 0.182 after 1-s He plasma treatment, and remained approximately constant after longer treatment. After exposure in an ambient air at room...... temperature for a month the O/C ratio at the plasma treated surfaces decreased to 0.151, which is close to that of the untreated ones. It can be attributed to the adsorption of hydrocarbon contamination at the plasma treated surfaces....

  14. Interfacial Properties Modification of Carbon Fiber/ Polyarylacetylene Composites

    Institute of Scientific and Technical Information of China (English)

    FU Hong-jun; MA Chong-qi; KUANG Nai-hang; LUAN Shi-lin

    2007-01-01

    This work was dedicated to performing surface oxidation and coating treatments on carbon fibers (CF) and investigating the changes of fiber surface properties after these treatments, including surface composition, relative volume of functional groups, and surface topography with X-ray photoelectron spectroscopy (XPS) and atom force microscopy (AFM) technology. The results show that,after oxidation treatments, interfacial properties between CF and non-polar polyarylacetylene (PAA) resin are remarkably modified by removing weak surface layers and increasing fiber surface roughness. Coating treatment by high char phenolic resin solution after oxidation makes interface of CF/PAA composites to be upgraded and the interfacial properties further bettered.

  15. Effect of Hybrid Surface Modifications on Tensile Properties of Polyacrylonitrile- and Pitch-Based Carbon Fibers

    Science.gov (United States)

    Naito, Kimiyoshi

    2016-05-01

    Recent interest has emerged in techniques that modify the surfaces of carbon fibers, such as carbon nanotube (CNT) grafting or polymer coating. Hybridization of these surface modifications has the potential to generate highly tunable, high-performance materials. In this study, the mechanical properties of surface-modified polyacrylonitrile (PAN)-based and pitch-based carbon fibers were investigated. Single-filament tensile tests were performed for fibers modified by CNT grafting, dipped polyimide coating, high-temperature vapor deposition polymerized polyimide coating, grafting-dipping hybridization, and grafting-vapor deposition hybridization. The Weibull statistical distributions of the tensile strengths of the surface-modified PAN- and pitch-based carbon fibers were examined. All surface modifications, especially hybrid modifications, improved the tensile strengths and Weibull moduli of the carbon fibers. The results exhibited a linear relationship between the Weibull modulus and average tensile strength on a log-log scale for all surface-modified PAN- and pitch-based carbon fibers.

  16. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor

    2013-03-05

    , flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses. We studied the poplar C(19) gibberellin 2-oxidase (GA2ox) gene subfamily. We show that a set of paralogous gene pairs differentially regulate shoot and root development. ? PtGA2ox4 and its paralogous gene PtGA2ox5 are primarily expressed in aerial organs, and overexpression of PtGA2ox5 produced a strong dwarfing phenotype characteristic of GA deficiency. Suppression of PtGA2ox4 and PtGA2ox5 led to increased biomass growth, but had no effect on root development. By contrast, the PtGA2ox2 and PtGA2ox7 paralogous pair was predominantly expressed in roots, and when these two genes were RNAi-suppressed it led to a decrease of root biomass. ? The morphological changes in the transgenic plants were underpinned by tissue-specific increases in bioactive GAs that corresponded to the predominant native expression of the targeted paralogous gene

  17. Surface modification of multi-wall carbon nanotube with ultraviolet-curable hyperbranched polymer

    International Nuclear Information System (INIS)

    Surface modification is a general and efficient approach to improve the compatibility of carbon nanotube (CNT) with various matrixes. Here we report the modification of multi-wall carbon nanotube (MWCNT) with hyperbranched polymer which contains UV reactive functional groups. The modification promotes the incorporation of CNT into UV-curable resin, and when cured under UV irradiation to form a homogeneous film, the CNT will be chemically bonded with the matrix by crosslinking photopolymerization. For the unique mechanical properties of CNT, the mechanical properties of the cured MWCNT/UV-curable resin film were greatly improved compared with pure resin film as indicated by the increasing of Young's modulus, tensile strength, and toughness

  18. Plant growth conditions alter phytolith carbon

    Directory of Open Access Journals (Sweden)

    Kimberley L Gallagher

    2015-09-01

    Full Text Available Many plants, including grasses and some important human food sources, accumulate and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a glass wastebasket. Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  19. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.

    Science.gov (United States)

    Duan, Haiming; Rosén, Arne; Harutyunyan, Avetik; Curtarolo, Stefano; Bolton, Kim

    2008-11-01

    Density functional theory (DFT) calculations show that dimers and longer carbon strings are more stable than individual atoms on Fe(111) surfaces. It is therefore necessary to consider the formation of these species on the metal surfaces and their effect on the mechanism of single-walled nanotube (SWNT) growth. The good agreement between the trends (energies and structures) obtained using DFT and those based on the Brenner and AIREBO models indicate that these analytic models provide adequate descriptions of the supported carbon systems needed for valid molecular dynamics simulations of SWNT growth. In contrast, the AIREBO model provides a better description of the relative energies for isolated carbon species, and this model is preferred over the Brenner potential when simulating SWNT growth in the absence of metal particles. However, the PM3 semiempirical model appears to provide an even better description for these systems and, given sufficient computer resources, direct dynamics methods based on this model may be preferred.

  20. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.

    Science.gov (United States)

    Tan, Dongsheng; Liu, Liuxu; Li, Zhen; Fu, Qiang

    2015-08-01

    To improve blood compatibility of polyurethane (PU), phospholipids grafted carbon nanotubes (CNTs) were prepared through zwitterion-mediated cycloaddition reaction and amide condensation, and then were added to the PU as fillers via solution mixing to form biomimetic surface. The properties of phospholipids grafted CNTs (CNT-PC) were investigated by thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance ((1) H NMR). The results indicated that the phospholipids were grafted onto CNTs in high efficiency, and the hydrophilicity and dispersibility of the modified CNTs were improved effectively. The structures and properties of composites containing CNT-PC were investigated by optical microscope, XPS, and water contact angles. The results indicated that phospholipids were enriched on the surface with addition of 0.1 wt % of CNT-PC, which significantly reduced protein adsorption and platelet adhesion. The method of carrying phospholipids on the nanofiller to modify polymers has provided a promising way of constructing biomimetic phospholipid membrane on the surface to improve blood compatibility. PMID:25630300

  1. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification

    CERN Document Server

    Liao, Quanwen; Liu, Zhichun; Liu, Wei

    2016-01-01

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonst...

  2. Comparative Study of the Modification of Coal Tar Pitch for Higher Carbonization Yield and Better Properties

    Institute of Scientific and Technical Information of China (English)

    张文娟; 李铁虎; 卢萌; 侯翠岭

    2013-01-01

    Parent coal tar pitch (CTP) was modified with boric acid (BA), cinnamaldehyde (CMA) and the mixture of BA and CMA, respectively. The parent CTP and three modified CTPs were characterized by elemental analysis, thermogravimetric analysis, Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy. The four samples were carbonized at different temperatures and resultant carbonized products were characterized by FT-IR spectroscopy, X-ray diffraction and polarized-light microscopy. The results show that the morphologies and carbonization behaviors of the parent CTP and modified CTPs are quite different. The carbonization yield of the CTP modified with the mixture of BA and CMA is higher than that of CTP modified with BA or CMA only. In addition, the modification of CTP with 7 g of BA and 10 ml of CMA results in an increase in carbonization yield by 5.64%. During the pyrolysis of modified CTPs, the dehydration of BA or the distillation of CMA occurs at the tem-perature lower than 300 °C, and methyl and methylene groups of the modified CTPs disappear gradually as tem-perature rises. Furthermore, the modification of CTP by the mixture of BA and CMA results in more intensive mesophase spheres than other modified CTPs, and the modified CTP is easier to be carbonized to form graphitic carbon.

  3. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Anne Harnisch

    2002-06-27

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.

  4. Growth enhancement by soil derived carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Grodzinski, B.; Wallis, M.; O' Sullivan, J. (Univ. of Guelph, Ontario (Canada))

    1989-04-01

    The objective of this study was to investigate the role which naturally evolved CO{sub 2} from the soil can play in the early growth and establishment of vegetable transplants in the field. Two planting dates were utilized to examine the effects of the time of tunnel placement on development of a crop of bell peppers, Capsicum annuum L. Ambient CO{sub 2} levels were 340 {plus minus} 4 ppm. In the first 3 weeks of spring (May) CO levels 2 to 3 cm above the soil surface were 420 to 480 ppm. Inside plastic tunnels the upward flux of CO{sub 2} evolved from the soil was restricted effectively raising the tunnel atmosphere to over 3000 ppm even at midday. Data from parallel field and controlled environment chamber experiments support the view that 25-40% of the increase in seedling growth in the field tunnels in the spring was due to enhanced photosynthesis and carbon partitioning into both sugars and starch not merely the elevated temperatures associated with protected structures.

  5. Collective mechanochemical growth of carbon nanotubes

    Science.gov (United States)

    Bedewy, Mostafa M. K. M. A.

    Hierarchically ordered carbon nanotubes (CNTs) are promising for integration in high-performance structural composites, electrical interconnects, thermal interfaces, and filtration membranes. These and other applications require CNTs that are monodisperse, well aligned, and densely packed. Moreover, because more than 1 billion CNTs per square centimeter grow simultaneously in a typical chemical vapor deposition (CVD) process, understanding the collective chemical and mechanical effects of growth is key to engineering the properties of CNT-based materials. This dissertation presents tailored synthesis processes, characterization techniques, and mathematical models that enable improved control of the morphology of as-grown CNT "forests.". First, a comprehensive characterization methodology, combining synchrotron X-ray scattering and attenuation with real-time height kinetics, enabled mapping the spatiotemporal evolution of CNT diameter distribution, alignment and density. By this method, the forest mass kinetics were measured and found to follow the S-shaped Gompertz curve of population growth. Dividing a forest into subpopulations revealed size-dependent activation-deactivation competition. Additionally, in situ transmission electron microscopy (TEM) showed that the kinetics of CNT nucleation are S-shaped. Based on these findings, a collective growth model is proposed, wherein randomly oriented CNTs first nucleate then self-organize and lift-off during a crowding stage, followed by a density decay stage until self-termination when the density drops below the self-supporting threshold. Next, further X-ray data analysis enabled modeling the mechanics of entangled CNTs and proved that mechanical coupling is not only responsible for the self-organization into the aligned morphology, but is also an important limiting mechanism as significant forces ensue from diameter-dependent CNT growth rates. A custom-built CVD system was used for mechanical manipulation of growing

  6. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-03-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  7. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    Science.gov (United States)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  8. Melamine Modification of Spherical Activated Carbon and Its Effects on Acetylene Hydrochlorination

    Institute of Scientific and Technical Information of China (English)

    HAN Weijie; WANG Xugen; ZHU Mingyuan; ZHANG Haiyang; CHEN Kun; WANG Qinqin; LI Xiaoyan; DAI Bin

    2014-01-01

    Commercial spherical activated carbon (SAC) was modified by impregnation to enhance the catalytic properties of SAC in acetylene hydrochlorination through melamine modification. Different modification conditions for SAC with nitrogen were compared by changing the SAC-Melamine ratios. The effect of carbonization temperature on the modification was also investigated. Surface chemistry and adsorption properties of the modified and unmodified SACs were studied by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), elementary analysis, BET, and temperature-programmed desorption (TPD). Moreover, the catalytic properties of SAC in acetylene hydrochlorination under differently modified conditions were also investigated. Elemental analysis showed that the nitrogen content of the modified SAC was greatly improved. XPS revealed that nitrogen mainly exists in Pyrrole nitrogen and Pyridine nitrogen. TPD showed that desorption of C2H2 was changed by modification. The conversion rate of acetylene was up to 70%under the following reaction conditions:temperature, 150℃;C2H2 hourly space velocity (GHSV), 36 h-1;feed volume ratio V (HCl)/V (C2H2) = 1.15. The catalytic properties of SAC were improved significantly via melamine modification.

  9. The effect of modification of matrix on densification efficiency of pitch based carbon composites

    Institute of Scientific and Technical Information of China (English)

    MOHAMMAD Mahdi Sotoudehnia; All Khalife Soltani; AMIR Maghsouipour; FATOLLAH Moztarzadeh

    2010-01-01

    Using coal tar pitch as a matrix precursor to prepare carbon materials is widely used by impregnation/carbonization processing technology. Four different grades of coal tar pitch and a natural pitch were characterized in terms of carbon yield, density, viscosity,and fractionation with solvents, as well as by thermal analysis methods. The suitability of these commercially available matrices for densification of 3 dimensional carbon-carbon composites was examined. The theoretical results compared with experimental results.The highest density after impregnation was obtained using one of the coal tar pitches. The predicted results are in reasonable agreement with experiment data. The significance of this research is that a special heat treatment regime was conducted. The effects of modification temperature on the densification efficiency of composites were investigated and then structure and characteristics of the composites were determined by scanning electron microscopy (SEM), Transmission electron microscopy(TEM) and X-Ray Diffraction (XRD).

  10. A REVIEW OF OXYGEN-CONTAINING SURFACE GROUPS AND SURFACE MODIFICATION OF ACTIVATED CARBON

    Institute of Scientific and Technical Information of China (English)

    WU Yongwen; LI Zhong; XI Hongxia; XIA Qibin

    2004-01-01

    This review focused on the recent reports related to the function, characterization and modification of oxygen-containing surface groups of activated carbon (AC). The Oxygen-containing surface groups were briefly described, and the most frequently used techniques for characterization of the oxygen-containing surface groups on ACs were also briefly stated. A detailed discussion of the effects of the oxygen-containing surface groups on the adsorptive capacity of AC was given. The recent progresses in modification of the oxygen-containing surface groups of AC were also reviewed.

  11. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide

    Energy Technology Data Exchange (ETDEWEB)

    Xu Bing [Department of Polymer Science and Engineering, State Key Lab Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Wang Xiaoshu [Centre for Materials Analysis, Nanjing University, Nanjing 210093 (China); Lu Yun [Department of Polymer Science and Engineering, State Key Lab Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)]. E-mail: yunlu@nju.edu.cn

    2006-12-30

    In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites.

  12. Economic growth and carbon emission control

    Science.gov (United States)

    Zhang, Zhenyu

    The question about whether environmental improvement is compatible with continued economic growth remains unclear and requires further study in a specific context. This study intends to provide insight on the potential for carbon emissions control in the absence of international agreement, and connect the empirical analysis with theoretical framework. The Chinese electricity generation sector is used as a case study to demonstrate the problem. Both social planner and private problems are examined to derive the conditions that define the optimal level of production and pollution. The private problem will be demonstrated under the emission regulation using an emission tax, an input tax and an abatement subsidy respectively. The social optimal emission flow is imposed into the private problem. To provide tractable analytical results, a Cobb-Douglas type production function is used to describe the joint production process of the desired output and undesired output (i.e., electricity and emissions). A modified Hamiltonian approach is employed to solve the system and the steady state solutions are examined for policy implications. The theoretical analysis suggests that the ratio of emissions to desired output (refer to 'emission factor'), is a function of productive capital and other parameters. The finding of non-constant emission factor shows that reducing emissions without further cutting back the production of desired outputs is feasible under some circumstances. Rather than an ad hoc specification, the optimal conditions derived from our theoretical framework are used to examine the relationship between desired output and emission level. Data comes from the China Statistical Yearbook and China Electric Power Yearbook and provincial information of electricity generation for the year of 1993-2003 are used to estimate the Cobb-Douglas type joint production by the full information maximum likelihood (FIML) method. The empirical analysis shed light on the optimal

  13. The carbon cycle in the old-growth forests

    OpenAIRE

    Motta R

    2008-01-01

    According to a recent paper published in Nature (Luyssaert et al. 2008) the old-growth forests remove carbon dioxide from the atmosphere and should be considered an important carbon sink at the planetary level. This finding is discussed both in relation to the traditional hypothesis that considered the old-growth forests "neutral" in the carbon balance, and in relation to the present and future importance of this sink at the local and at the planetary level.

  14. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  15. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  16. Interfacial load transfer in polymer/carbon nanotube nanocomposites with a nanohybrid shish kebab modification.

    Science.gov (United States)

    Nie, Min; Kalyon, Dilhan M; Fisher, Frank T

    2014-09-10

    Interfacial properties are known to have a critical effect on the mechanical properties of a nanocomposite material system. Here, the interfacial load transfer in a carbon nanotube (CNT)/nylon-11 composite was studied with a CNT/nylon-11 nanohybrid shish kebab (NHSK) structure modification using Raman spectroscopy. Characterization of the polymer crystal in the NHSK using differential scanning calorimetry (DSC) for the first time indicates that the NHSK structure formed a more perfect crystal structure than the bulk polymer. On the basis of transmission electron microscopy and DSC results, a new growth model for the NHSK crystal is hypothesized, indicating the formation of an initial uniform crystal layer on the CNT prior to the crystallization of the kebabs. Characterization of the nanocomposites using Raman spectroscopy, with the samples heated to introduce interfacial shear stress caused by thermal expansion mismatch, found that the D* band of the CNT in the NHSK/nylon-11 composite displayed a more pronounced shift with an increase in temperature, which is attributed to the NHSK structure being more effective at transferring load from the nylon matrix to the nanotube inclusions. The NHSK structure was also used to fabricate composites with two amorphous polymers, polycarbonate and poly(methyl methacrylate), to investigate the load transfer mechanism. It was found that when the compatibility between the polymer in the NHSK structure and the bulk polymer matrix at the molecular level is sufficiently high, the ensuing mechanical interlocking effect further enhances the interfacial load transfer for polymer nanocomposites. Additional mechanical characterization of polymer nanocomposites with 0.1 wt % NHSK reinforcement demonstrates how the moduli and ultimate tensile strength of the nanocomposites can be improved via this NHSK structure. PMID:25134606

  17. [Modification of activated carbon fiber for electro-Fenton degradation of phenol].

    Science.gov (United States)

    Ma, Nan; Tian, Yao-Jin; Yang, Guang-Ping; Xie, Xin-Yuan

    2014-07-01

    Microwave-modified activated carbon fiber (ACF-1), nitric acid-modified activated carbon fiber (ACF-2), phosphoric acid-modified activated carbon fiber (ACF-3) and ammonia-modified activated carbon fiber (ACF-4) were successfully fabricated. The electro-Fenton catalytic activities of modified activated carbon fiber were evaluated using phenol as a model pollutant. H2O2 formation, COD removal efficiency and phenol removal efficiency were investigated compared with the unmodified activated carbon fiber (ACF-0). Results indicated that ACF-1 showed the best adsorption and electrocatalytic activity. Modification was in favor of the formation of H2O2. The performance of different systems on phenol degradation and COD removal were ACF-1 > ACF-3 > ACF-4 > ACF-2 > ACF-0 and ACF-1 > ACF-4 > ACF-3 > ACF-2 > ACF-0, respectively, which confirmed that electrocatalytic activities of modified activated carbon fiber were better than the unmodified. In addition, phenol intermediates were not the same while using different modified activated carbon fibers.

  18. Electronic state modification in laser deposited amorphous carbon films by the inclusion of nitrogen

    OpenAIRE

    Y. Miyajima; Adamopoulos, G; Henley, SJ; V.Stolojan; Tison, Y; Garcia-Caurel, E; Drevillon, B.; Shannon, JM; Silva, SRP

    2008-01-01

    In this study, we investigate the effect of the inclusion of nitrogen in amorphous carbon thin films deposited by pulsed laser deposition, which results in stress induced modifications to the band structure and the concomitant changes to the electronic transport properties. The microstructural changes due to nitrogen incorporation were examined using electron energy-loss spectroscopy and Raman scattering. The band structure was investigated using spectroscopic ellipsometry data in the range o...

  19. Solid catalytic growth mechanism of micro-coiled carbon fibers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Micro-coiled carbon fibers were prepared by catalytic pyrolysisof acetylene with nano-sized nickel powder catalyst using the substrate method. The morphology of micro-coiled carbon fibers was observed through field emission scanning electron microscopy. It was found that the fiber and coil diameter of the obtained micro-coiled carbon fibers is about 500—600 nm and 4—5 μm, respectively. Most of the micro-coiled carbon fibers obtained were regular double carbon coils, but a few irregular ones were also observed. On the basis of the experimental observation, a solid catalytic growth mechanism of micro-coiled carbon fibers was proposed.

  20. Kinetics of Laser-Assisted Carbon Nanotube Growth

    CERN Document Server

    van de Burgt, Yoeri; Mandamparambil, Rajesh

    2014-01-01

    Laser-assisted chemical vapour deposition (CVD) growth is an attractive mask-less process for growing locally aligned carbon nanotubes (CNTs) in selected places on temperature sensitive substrates. The nature of the localized process results in fast carbon nanotube growth with high experimental throughput. Here, we report on detailed investigation of growth kinetics related to physical and chemical process characteristics. Specifically, the growth kinetics is investigated by monitoring the dynamical changes of reflected laser beam intensity during growth. Benefiting from the fast growth and high experimental throughput, we investigate a wide range of experimental conditions and propose several growth regimes. Rate-limiting steps are determined using rate equations linked to the proposed growth regimes, which are further characterized by Raman spectroscopy and Scanning Electron Microscopy (SEM), therefore directly linking growth regimes to the structural quality of the CNTs. Activation energies for the differe...

  1. High-resistance GaN epilayers with low dislocation density via growth mode modification

    Science.gov (United States)

    Xu, Z. Y.; Xu, F. J.; Wang, J. M.; Lu, L.; Yang, Z. J.; Wang, X. Q.; Shen, B.

    2016-09-01

    High-resistance GaN with low dislocation density adopting growth mode modification has been investigated by metalorganic chemical vapor deposition. The sheet resistance of the order of 1016 Ω/sq has been achieved at room temperature by diminishing the oxygen impurity level close to the substrate with an AlN blocking layer. Attributed to this method which offers more freedom to tailor the growth mode, a three-dimensional (3D) growth process is introduced by adjusting the growth pressure and temperature at the initial stage of the GaN epitaxy to improve the crystalline quality. The large 3D GaN grains formed during this period roughen the surface, and the following coalescence of the GaN grains causes threading dislocations bending, which finally remarkably reduces the dislocation density.

  2. Electricity Consumption, Carbon Emissions and Economic Growth in Nigeria

    Directory of Open Access Journals (Sweden)

    Godwin Effiong Akpan

    2012-01-01

    Full Text Available This paper applies a Multivariate Vector Error Correction (VECM framework to examine the long run and causal relationship between electricity consumption, carbon emissions and economic growth in Nigeria. Using annual time series data for 1970 to 2008, findings show that in the long run, economic growth is associated with increase carbon emissions, while an increase in electricity consumption leads to an increase in carbon emissions. These imply that Nigeria’s growth process is pollution intensive, while the negative relationship between electricity consumption (or positive relationship between electricity consumption and emissions in Nigeria is a clear indication that electricity consumption in the country has intensified carbon emissions. No support was obtained for the hypothesized environmental Kuznets curve (EKC. Granger-causality results confirm a unidirectional causality running from economic growth to carbon emissions, indicating that carbon emissions reduction policies could be pursued without reducing economic growth in Nigeria. No causality was found between electricity and growth, in either way, which further lends credence to the crisis in the Nigerian electricity sector. Overall, the paper submits that efficient planning and increased investment in electricity infrastructure development may be the crucial missing variable in the obtained neutrality hypothesis between electricity and growth.

  3. CVD growth and field emission properties of nanostructured carbon films

    International Nuclear Information System (INIS)

    An investigation of the growth mechanisms, electronical and structural properties, and field emissions of carbon films obtained by chemical vapour deposition showed that field emissions from films composed of spatially oriented carbon nanotubes and plate-like graphite nanocrystals exhibit non-metallic behaviour. The experimental evidence of work function local reduction for carbon film materials is reported here. A model of the emission site is proposed and the mechanism of field emission from nanostructured carbon materials is described. In agreement with the model proposed here, the electron emission in different carbon materials results from sp3-like defects in an sp2 network of their graphite-like component. (author)

  4. Increase of the Photocatalytic Activity of TiO by Carbon and Iron Modifications

    Directory of Open Access Journals (Sweden)

    Beata Tryba

    2008-01-01

    Full Text Available Modification of TiO2 by doping of a residue carbon and iron can give enhanced photoactivity of TiO2. Iron adsorbed on the surface of TiO2 can be an electron or hole scavenger and results in the improvement of the separation of free carriers. The presence of carbon can increase the concentration of organic pollutants on the surface of TiO2 facilitating the contact of the reactive species with the organic molecules. Carbon-doped TiO2 can extend the absorption of the light to the visible region and makes the photocatalysts active under visible-light irradiation. It was proved that TiO2 modified by carbon and iron can work in both photocatalysis and photo-Fenton processes, when H2O2 is used, enhancing markedly the rate of the organic compounds decomposition such as phenol, humic acids and dyes. The photocatalytic decomposition of organic compounds on TiO2 modified by iron and carbon is going by the complex reactions of iron with the intermediates, what significantly accelerate the process of their decomposition. The presence of carbon in such photocatalyst retards the inconvenient reaction of OH radicals scavenging by H2O2, which occurs when Fe-TiO2 photocatalyst is used.

  5. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  6. Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization

    OpenAIRE

    Nuno Carlos LEITÃO

    2014-01-01

    This article investigates the correlation between economic growth, carbon dioxide emissions, renewable energy and globalization for the period 1970-2010, using time series (OLS,GMM, unit root test, VEC model, and Granger causality) to Portuguese economy. OLS estimator and GMM model demonstrate that carbon dioxide emissions and renewable energy are positively correlated with economic growth. The econometric models also show that the overall index of globalization has a positive effect...

  7. Targeting Antibodies to Carbon Nanotube Field Effect Transistors by Pyrene Hydrazide Modification of Heavy Chain Carbohydrates

    Directory of Open Access Journals (Sweden)

    Steingrimur Stefansson

    2012-01-01

    Full Text Available Many carbon nanotube field-effect transistor (CNT-FET studies have used immobilized antibodies as the ligand binding moiety. However, antibodies are not optimal for CNT-FET detection due to their large size and charge. Their size can prevent ligands from reaching within the Debye length of the CNTs and a layer of charged antibodies on the circuits can drown out any ligand signal. In an attempt to minimize the antibody footprint on CNT-FETs, we examined whether pyrene hydrazide modification of antibody carbohydrates could reduce the concentration required to functionalize CNT circuits. The carbohydrates are almost exclusively on the antibody Fc region and this site-specific modification could mediate uniform antibody orientation on the CNTs. We compared the hydrazide modification of anti-E. coli O157:H7 polyclonal antibodies to pyrenebutanoic acid succinimidyl ester-coated CNTs and carbodiimide-mediated antibody CNT attachment. Our results show that the pyrene hydrazide modification was superior to those methods with respect to bacteria detection and less than 1 nM labeled antibody was required to functionalize the circuits.

  8. Evidence for super-exponentially accelerating atmospheric carbon dioxide growth

    CERN Document Server

    Hüsler, Andreas D

    2011-01-01

    We analyze the growth rates of atmospheric carbon dioxide and human population, by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model. Our empirical calibrations confirm that human population has decelerated from its previous super-exponential growth until 1960 to ``just' an exponential growth, but with no sign of more deceleration. As for atmospheric CO2 content, we find that it is at least exponentially increasing and most likely characterized by an accelerating growth rate as off 2009, consistent with an unsustainable FTS power law regime announcing a drastic change of regime. The coexistence of a quasi-exponential growth of human population with a super-exponential growth of carbon dioxide content in the atmosphere is a diagnostic of insignificant impr...

  9. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  10. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Darrel [Mississippi State Univ., Mississippi State, MS (United States); Brown, Lewis [Mississippi State Univ., Mississippi State, MS (United States); Lynch, F. Leo [Mississippi State Univ., Mississippi State, MS (United States); Kirkland, Brenda L. [Mississippi State Univ., Mississippi State, MS (United States); Collins, Krystal M. [Mississippi State Univ., Mississippi State, MS (United States); Funderburk, William K. [Mississippi State Univ., Mississippi State, MS (United States)

    2010-12-31

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115°C (239°F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66°C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 μm diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly

  11. THE EFFECT OF THERMAL MODIFICATION ON THE DEVELOPMENT OF CARBON MATERIAL MICROPOROUS STRUCTURE

    Directory of Open Access Journals (Sweden)

    B.K. Ostafiychuk

    2014-05-01

    Full Text Available A research is done to characterize the microporous structure of outgoing and thermally modified (673 K, 180 min plant-extracted carbon material. The porous system characteristics are worked out by different methods on low temperature (77K N2 adsorption-desorption based isotherm. It is stated that thermal modification contributes to the enlargement of specific       surface (from 361 m2/g to 673 m2/g, an increase in total pore volume and an increase in micropore volume (from 0,127 cm3/g to 0,173 cm3/g. Most effectively thermal modification  is apt to form nanopores with diameters of 0,75; 1,25 and 4 nm.

  12. A novel surface modification of carbon fiber for high-performance thermoplastic polyurethane composites

    Science.gov (United States)

    Zhang, Yuanyuan; Zhang, Yizhen; Liu, Yuan; Wang, Xinling; Yang, Bin

    2016-09-01

    Properties of carbon fiber (CF) reinforced composites depend largely on the interfacial bonding strength between fiber and the matrix. In the present work, CF was grafted by 4,4‧-diphenylmethane diisocyanate (MDI) molecules after electrochemical oxidation treatment. The existence of functional groups introduced to the fiber surface and the changes of surface roughness were confirmed by FTIR, AFM, XPS, SEM and Raman spectroscopy. To evaluate the possible applications of this surface modification of carbon fiber, we examined the mechanical properties as well as the friction and wear performance of pristine CF and MDI-CF reinforced thermoplastic polyurethane (TPU) composites with 5-30 wt.% fiber contents, and found that the mechanical properties of TPU composites were all significantly improved. It is remarkable that when fiber content was 30 wt.%, the tensile strength of TPU/MDI-CF was increased by 99.3%, which was greater than TPU/CF (53.2%), and the friction loss of TPU/MDI-CF was decreased by 49.09%. The results of DMA and SEM analysis indicated the positive effects of MDI modification on the interfacial bonding between fibers and matrix. We believed that this simple and effective method could be used to the development of surface modified carbon fiber for high-performance TPU.

  13. Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications

    Science.gov (United States)

    Tyborski, T.; Merschjann, C.; Orthmann, S.; Yang, F.; Lux-Steiner, M.-Ch; Schedel-Niedrig, Th

    2013-10-01

    Based on the arrangement of two-dimensional ‘melon’, we construct a unit cell for polymeric carbon nitride (PCN) synthesized via thermal polycondensation, whose theoretical diffraction powder pattern includes all major features measured in x-ray diffraction. With the help of this unit cell, we describe the process-temperature-induced crystallographic changes in PCN that occur within a temperature interval between 510 and 610 °C. We also discuss further potential modifications of the unit cell for PCN. It is found that both triazine- and heptazine-based g-C3N4 can only account for minor phases within the investigated synthesis products.

  14. [Surface modification and microstructure of single-walled carbon nanotubes for dental composite resin].

    Science.gov (United States)

    Xia, Yang; Zhang, Feimin; Xu, Li'na; Gu, Ning

    2006-12-01

    In order to improve its dispersion condition in dental composite resin and enhance its interaction with the matrix, single-walled carbon nanotubes(SWNTs) were refluxed and oxidized, then treated by APTE. Their outer surface were coated by nano-SiO2 particles using sol-gel process, then further treated by organosilanes ATES. IR and TEM were used to analyze modification results. TEM pictures showed nano-particles were on the surface of SWNTs; IR showed characteristic adsorbing bands of SiO2. Composite resin specimen with modified SWNTs was prepared and examined by TEM. SWNTs were detected in composite resin matrix among other inorganic fillers.

  15. Modification of the Interfacial Interaction between Carbon Fiber and Epoxy with Carbon Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Kejing Yu

    2016-05-01

    Full Text Available The mechanical properties of the hybrid materials and epoxy and carbon fiber (CF composites were improved significantly as compared to the CF composites made from unmodified epoxy. The reasons could be attributed to the strong interfacial interaction between the CF and the epoxy composites for the existence of carbon nanomaterials. The microstructure and dispersion of carbon nanomaterials were characterized by transmission electron microscopy (TEM and optical microscopy (OM. The results showed that the dispersion of the hybrid materials in the polymer was superior to other carbon nanomaterials. The high viscosity and shear stress characterized by a rheometer and the high interfacial friction and damping behavior characterized by dynamic mechanical analysis (DMA indicated that the strong interfacial interaction was greatly improved between fibers and epoxy composites. Remarkably, the tensile tests presented that the CF composites with hybrid materials and epoxy composites have a better reinforcing and toughening effect on CF, which further verified the strong interfacial interaction between epoxy and CF for special structural hybrid materials.

  16. The Infinite Possible Growth Ambients that Support Single-Wall Carbon Nanotube Forest Growth

    Science.gov (United States)

    Kimura, Hiroe; Goto, Jundai; Yasuda, Satoshi; Sakurai, Shunsuke; Yumura, Motoo; Futaba, Don N.; Hata, Kenji

    2013-11-01

    We report the virtually infinite possible carbon feedstocks which support the highly efficient growth of single-wall carbon nanotubes (SWCNTs) using on the water-assisted chemical vapor deposition method. Our results demonstrate that diverse varieties of carbon feedstocks, in the form of hydrocarbons, spanning saturated rings (e.g. trans-deca-hydronaphthalene), saturated chains (e.g. propane), unsaturated rings (e.g. dicyclopentadiene), and unsaturated chains (e.g. ethylene) could be used as a carbon feedstocks with SWCNT forests with heights exceeding 100 ums. Further, we found that all the resultant SWCNTs possessed similar average diameter indicating that the diameter was mainly determined by the catalyst rather than the carbon feedstock within this synthetic system. A demonstration of the generality was the synthesis of a carbon nanotube forest from a highly unorthodox combination of gases where trans-decahydronaphthalene acted as the carbon feedstock and benzaldehyde acted as the growth enhancer.

  17. Growth limit of carbon onions – A continuum mechanical study

    DEFF Research Database (Denmark)

    Todt, Melanie; Bitsche, Robert; Hartmann, Markus A.;

    2014-01-01

    The growth of carbon onions is simulated using continuum mechanical shell models. With this models it is shown that, if a carbon onion has grown to a critical size, the formation of an additional layer leads to the occurrence of a structural instability. This instability inhibits further growth...... of carbon onions and, thus, can be a reason for the limited size of such particles. The loss of stability is mainly evoked by van der Waals interactions between misfitting neighboring layers leading to self-equilibrating stress states in the layers due to mutual accommodation. The influence of the curvature...... model gives insight into mechanisms which are assumed to limit the size of carbon onions and can serve as basis for further investigations, e.g., of the formation of nanodiamonds in the center of carbon onions. © 2013 Elsevier Ltd. All rights reserved....

  18. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang, E-mail: wolfgang.bacsa@cemes.fr [CEMES-CNRS and University of Toulouse, 29 Jeanne Marvig, 31055 Toulouse (France); Boyer, François; Olivier, Philippe [Université de Toulouse, Institut Clément Ader, I.U.T. Université Paul Sabatier - 133C Avenue de Rangueil - B.P. 67701, 31077 Toulouse CEDEX 4 (France); Sapelkin, Andrei [School of Physics and Astronomy, Queen Mary, University of London, Mile End Road, E1 4NS London (United Kingdom); King, Stephen; Heenan, Richard [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri [AIRBUS FRANCE (B.E. M and P Toulouse), 316 Route de Bayonne, 31060 Toulouse (France)

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  19. Modification of natural graphite using pitch through dynamical melt-carbonization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The graphite was modified using pitch through dynamical melt-carbonization, and the effects of modification temperature and the amount of pitch on the characteristics of graphite were investigated. The structure and characteristics of the graphite were determined by X-ray diffractometry(XRD), scanning electron microscopy(SEM), particle size analysis and electrochemical measurements. The results show that the modified graphite has a disordered carbon/graphite composite structure, larger average particle diameter, greater tap density, and better electrochemical characteristics than the untreated graphite. The sample coated with 10% pitch dynamical melt-carbonized at 400 ℃ for 3 h and heat-treated at 850 ℃ for 2 h has better electrochemical performances with a reversible capacity of 360.5 mA·h/g, a irreversible capacity of 41.0 mA·h/g, and an initial coulombic efficiency of 89.8% compared with natural graphite and disordered carbon. The cycling stability of the Li/C cell with modified graphite as anodes is improved, and its capacity retention ratio at the 30th cycle is up to 94.37%.

  20. Energy loss of /sup 12/C projectiles in different carbon modifications

    International Nuclear Information System (INIS)

    The stopping cross sections of the three carbon modifications diamond, graphite, and glassy carbon are investigated for carbon projectiles of intermediate velocity. The inverted Doppler-shift attenuation method was used as the experimental technique, and it enabled us to measure the ratios of the three stopping cross sections precisely over a wide energy range. For velocities between 3 and 4 times Bohr's velocity the stopping cross sections of graphite and glassy carbon are found to be 1.036 and 1.072 times larger than that of diamond, respectively. These differences are attributed to binding effects. To understand these effects, we have evaluated the mean ionization potentials utilizing the local-plasma approximation for the inner-shell electrons and the dielectric response function for the valence electrons. The theoretical ratios calculated by inserting these potentials into the Bethe-Bloch stopping-power formula agree well with our experimental results. Furthermore, we have obtained a value of 53.3 +- 4.1 fs for the lifetime of the first excited state of the /sup 12/C nucleus

  1. Electrochemical p-doping modification of carbon nanotubes with Prussian Blue

    Energy Technology Data Exchange (ETDEWEB)

    Forment-Aliaga, Alicia; Weitz, Ralf Thomas; Burghard, Marko [Max-Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max-Planck Institute for Solid State Research, Stuttgart (Germany); Institut de Physique des Nanostructures, EPFL, Lausanne (Switzerland)

    2008-07-01

    Electrochemical modification is an effective method to tune the properties of carbon nanotubes. In this communication, we report on the modification of individual carbon nanotubes (SWCNTs) by electrodeposition of the molecular magnet Prussian Blue (PB) FeIII{sub 4}[FeII(CN){sub 6}]3{sup *}nH{sub 2}O (n=14-16). While previous studies have primarily addressed the electrocatalytic properties of PB-modified bulk nanotube electrodes,1 the motivation behind the present work is to investigate the influence of inorganic coatings on the charge transport characteristics of individual SWCNTs. The formation of PB under the applied electrochemical conditions has been proven by various characterization techniques. In contrast to metallic SWCNTs whose electrical conductivity remained largely unaffected, semiconducting tubes exhibited a strongly altered behavior after PB deposition. Specifically, in the latter case, the conductance vs. gate voltage curves were substantially shifted toward more positive gate voltages, indicative of enhanced p-type doping of the tubes. Temperature-dependent measurements revealed that the threshold voltage decreases significantly upon cooling, which is attributed to freezing out of the hole transfer from PB to the underlying nanotubes.

  2. A Diazonium Salt-Based Ionic Liquid for Solvent-FreeModification of Carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu [ORNL; Huang, Jing-Fang [ORNL; Li, Zuojiang [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2006-01-01

    A novel ionic liquid that consists of p-butylbenzenediazonium ions and bis(trifluoromethanesulfonyl)amidates (Tf{sub 2}N{sup -}) has been synthesized as a task-specific ionic liquid for the solvent-free modification of carbon materials. The use of anions Tf{sub 2}N{sup =} is the key to rendering the hydrophobicity, low liquidus temperature, and ionicity to this novel molten salt. This diazonium salt has a melting point of 7.2 C and a moderate electric conductivity of 527 {micro} s/cm at 25 C. The thermal stability of this diazonium ionic liquid has been investigated by high-resolution thermogravimetric analysis (HRTGA). The compound is stable up to about 90 C in nitrogen, which is only 10 C less than its solid tetrafluoroborate counterpart. The modification of carbon materials has been carried out through both thermal and electrochemical activations of diazonium ions to generate free radical intermediates without the use of any solvent. The surface-coverage loadings of 3.38 {micro} mol/m{sup 2} and 6.07 {micro} mol/m{sup 2} for covalently attached organic functionalities have been achieved by the thermally induced functionalization and electrochemically assisted reaction, respectively.

  3. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    Science.gov (United States)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer; Nojeh, Alireza; Takahata, Kenichi

    2016-08-01

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ˜30% and ˜300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.

  4. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  5. Climate Constraints on the Carbon Intensity of Economic Growth

    Science.gov (United States)

    Davis, S. J.; Rozenberg, J.; Hallegatte, S.; Narloch, U.

    2015-12-01

    Development and climate goals together constrain the carbon intensity of production. Using a simple and transparent model that represents committed CO2 emissions (i.e. those embedded in installed capital), we explore the carbon intensity of production related to new capital required for different temperature targets across several thousand scenarios. Future pathways consistent with the 2oC target which allow for continued GDP growth require early action to reduce carbon intensity of new production, and either (i) a short lifetime of energy and industry capital (e.g. early retrofit of coal power plants), or (ii) large negative emissions after 2050 (i.e. rapid development and dissemination of carbon capture and sequestration). To achieve the 2oC target, half of the scenarios indicate a carbon intensity of new production between 33 and 73 g CO2/ - much lower than the carbon intensities of the best performing countries today. The average lifespan of energy capital (especially power plants), and industry capital, are critical because they commit emissions far into the future and reduce the budget for new capital emissions. Each year of lifetime added to existing, carbon intensive capital, decreases the carbon intensity of new production required to meet a 2°C carbon budget by 1 to 1.5 g CO2/, and each year of delaying the start of mitigation decreases the required CO2 intensity of new production by 20 to 50 gCO2/$. Constraints on the carbon intensity of new production under a 3°C target are considerably relaxed relative to the 2°C target, but remain daunting in comparison to the carbon intensity of the global economy today. Figure Caption: The relationship between GDP per capita growth, lifetime of energy and industry capital and the required carbon intensity of new production 2013-2050 under a 2°C target.

  6. Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    McCann, R. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom); Roy, S.S. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom)]. E-mail: s.sinha-roy@ulster.ac.uk; Papakonstantinou, P. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom); Bain, M.F. [Queens University of Belfast, School of Elect and Elect Engineering, Belfast, Antrim, N. Ireland (United Kingdom); Gamble, H.S. [Queens University of Belfast, School of Elect and Elect Engineering, Belfast, Antrim, N. Ireland (United Kingdom); McLaughlin, J.A. [NIBEC, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, Co. Antrim, BT37 OQB, N. Ireland (United Kingdom)

    2005-06-22

    Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN {sub x}), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN {sub x} containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three {pi}* resonance peaks at the {sup '}N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains.

  7. Iron, phytoplankton growth, and the carbon cycle.

    Science.gov (United States)

    Street, Joseph H; Paytan, Adina

    2005-01-01

    Iron is an essential nutrient for all living organisms. Iron is required for the synthesis of chlorophyll and of several photosynthetic electron transport proteins and for the reduction of CO2, SO4(2-), and NO3(-) during the photosynthetic production of organic compounds. Iron concentrations in vast areas of the ocean are very low (iron in oxic seawater. Low iron concentrations have been shown to limit primary production rates, biomass accumulation, and ecosystem structure in a variety of open-ocean environments, including the equatorial Pacific, the subarctic Pacific and the Southern Ocean and even in some coastal areas. Oceanic primary production, the transfer of carbon dioxide into organic carbon by photosynthetic plankton (phytoplankton), is one process by which atmospheric CO2 can be transferred to the deep ocean and sequestered for long periods of time. Accordingly, iron limitation of primary producers likely plays a major role in the global carbon cycle. It has been suggested that variations in oceanic primary productivity, spurred by changes in the deposition of iron in atmospheric dust, control atmospheric CO2 concentrations, and hence global climate, over glacial-interglacial timescales. A contemporary application of this "iron hypothesis" promotes the large-scale iron fertilization of ocean regions as a means of enhancing the ability of the ocean to store anthropogenic CO2 and mitigate 21st century climate change. Recent in situ iron enrichment experiments in the HNLC regions, however, cast doubt on the efficacy and advisability of iron fertilization schemes. The experiments have confirmed the role of iron in regulating primary productivity, but resulted in only small carbon export fluxes to the depths necessary for long-term sequestration. Above all, these experiments and other studies of iron biogeochemistry over the last two decades have begun to illustrate the great complexity of the ocean system. Attempts to engineer this system are likely to

  8. Carbon Nanofibers (CNFs) Surface Modification to Fabricate Carbon Nanofibers_Nanopaper Integrated Polymer Composite Material.

    Science.gov (United States)

    Jiang, Jianjun; Zhao, Ziwei; Deng, Chao; Liu, Fa; Li, Dejia; Fang, Liangchao; Zhang, Dan; Castro Jose M; Chen, Feng; Lee, L James

    2016-06-01

    Carbon Nanofibers (CNFs) have shown great potential to improve the physical and mechanical properties of conventional Fiber Reinforced Polymer Composites (FRPCs) surface. Excellent dispersion CNFs into water or polymer matrix was very crucial to get good quality CNFs enhanced FRPCs. Because of the hydrophobic properties of CNFs, we apply the reversible switching principles to transfer the hydrophobic surface into hydrophilic surface by growing polyaniline nanograss on the surface of CNFs which was carried out in hydrochloric acid condition. Incorporating CNFs into FRPCs as a surface layer named CNFs Nanopaper to increase the erosion resistance and electrical conductivity in this research which was very important in the wind energy field. In order to get high quality dispersed CNFs suspension, a sonication unit was used to detangle and uniform disperse the functionalized CNFs. A filter with vacuum pressure used to filter the suspension of CNFs onto Carbon veil to make CNFs Nanopaper. Vacuum Aided Resin Transfer Modeling (VARTM) process was used to fabricate Nano-enhanced FRPCs samples. In order to characterize the mechanical properties, three point bending experiment was measured. The flexural strength capacity and deformation resistance and behavior were compared and analyzed. In this paper, we discussed the methods used and provided experimental parameter and experimental results.

  9. Carbon Nanofibers (CNFs) Surface Modification to Fabricate Carbon Nanofibers_Nanopaper Integrated Polymer Composite Material.

    Science.gov (United States)

    Jiang, Jianjun; Zhao, Ziwei; Deng, Chao; Liu, Fa; Li, Dejia; Fang, Liangchao; Zhang, Dan; Castro Jose M; Chen, Feng; Lee, L James

    2016-06-01

    Carbon Nanofibers (CNFs) have shown great potential to improve the physical and mechanical properties of conventional Fiber Reinforced Polymer Composites (FRPCs) surface. Excellent dispersion CNFs into water or polymer matrix was very crucial to get good quality CNFs enhanced FRPCs. Because of the hydrophobic properties of CNFs, we apply the reversible switching principles to transfer the hydrophobic surface into hydrophilic surface by growing polyaniline nanograss on the surface of CNFs which was carried out in hydrochloric acid condition. Incorporating CNFs into FRPCs as a surface layer named CNFs Nanopaper to increase the erosion resistance and electrical conductivity in this research which was very important in the wind energy field. In order to get high quality dispersed CNFs suspension, a sonication unit was used to detangle and uniform disperse the functionalized CNFs. A filter with vacuum pressure used to filter the suspension of CNFs onto Carbon veil to make CNFs Nanopaper. Vacuum Aided Resin Transfer Modeling (VARTM) process was used to fabricate Nano-enhanced FRPCs samples. In order to characterize the mechanical properties, three point bending experiment was measured. The flexural strength capacity and deformation resistance and behavior were compared and analyzed. In this paper, we discussed the methods used and provided experimental parameter and experimental results. PMID:27427606

  10. Selective growth of carbon nanotube on silicon substrates

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOT; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies,and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

  11. Surface Modification and Planar Defects of Calcium Carbonates by Magnetic Water Treatment

    Directory of Open Access Journals (Sweden)

    Yeh MS

    2010-01-01

    Full Text Available Abstract Powdery calcium carbonates, predominantly calcite and aragonite, with planar defects and cation–anion mixed surfaces as deposited on low-carbon steel by magnetic water treatment (MWT were characterized by X-ray diffraction, electron microscopy, and vibration spectroscopy. Calcite were found to form faceted nanoparticles having 3x ( commensurate superstructure and with well-developed { } and { } surfaces to exhibit preferred orientations. Aragonite occurred as laths having 3x ( commensurate superstructure and with well-developed ( surface extending along [100] direction up to micrometers in length. The (hkil-specific coalescence of calcite and rapid lath growth of aragonite under the combined effects of Lorentz force and a precondensation event account for a beneficial larger particulate/colony size for the removal of the carbonate scale from the steel substrate. The coexisting magnetite particles have well-developed {011} surfaces regardless of MWT.

  12. Post-translational modification of osteopontin: Effects on in vitro hydroxyapatite formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Boskey, Adele L., E-mail: boskeya@hss.edu [Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY (United States); Christensen, Brian, E-mail: bc@mb.au.dk [Department of Molecular Biology and Genetics, Aarhus University (Denmark); Taleb, Hayat, E-mail: Talebh@hss.edu [Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY (United States); Sorensen, Esben S., E-mail: ess@mb.au.dk [Department of Molecular Biology and Genetics, Aarhus University (Denmark)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Thrombin-cleaved fragments of milk-osteopontin effect hydroxyapatite formation differently. Black-Right-Pointing-Pointer N- and C-terminal fragments promoted hydroxyapatite formation and growth. Black-Right-Pointing-Pointer A central fragment inhibited hydroxyapatite formation and growth. Black-Right-Pointing-Pointer Binding to collagen or hydroxyapatite seed crystals modified these effects. -- Abstract: The manuscript tests the hypothesis that posttranslational modification of the SIBLING family of proteins in general and osteopontin in particular modify the abilities of these proteins to regulate in vitro hydroxyapatite (HA) formation. Osteopontin has diverse effects on hydroxyapatite (HA) mineral crystallite formation and growth depending on the extent of phosphorylation. We hypothesized that different regions of full-length OPN would also have distinct effects on the mineralization process. Thrombin fragmentation of milk OPN (mOPN) was used to test this hypothesis. Three fragments were tested in a de novo HA formation assay; an N-terminal fragment (aa 1-147), a central fragment (aa 148-204) denoted SKK-fragment and a C-terminal fragment (aa 205-262). Compared to intact mOPN the C- and N-terminal fragments behaved comparably, promoting HA formation and growth, but the central SKK-fragment acted as a mineralization inhibitor. In a seeded growth experiment all fragments inhibited mineral proliferation, but the SKK-fragment was the most effective inhibitor. These effects, seen in HA-formation and seeded growth assays in a gelatin gel system and in a pH-stat experiment were lost when the protein or fragments were dephosphorylated. Effects of the fully phosphorylated protein and fragments were also altered in the presence of fibrillar collagen. The diverse effects can be explained in terms of the intrinsically disordered nature of OPN and its fragments which enable them to interact with their multiple partners.

  13. Hybrid membrane using polyethersulfone-modification of multiwalled carbon nanotubes with silane agent to enhance high performance oxygen separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-04-01

    Full Text Available Mixed matrix membrane comprising carbon nanotubes embedded in polymer matrix have become one of the emerging technologies. This study was investigated in order to study the effect of silane agent modification towards carbon nanotubes (CNT surface at different concentration on oxygen enrichment performances of asymmetric mixed matrix membrane. The modified carbon nanotubes were prepared by treating the carbon nanotubes with chemical modification using Dynasylan Ameo (DA silane agent to allow PES chains to be grafted on carbon nanotubes surface. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The gas separation performance of the asymmetric flat sheet mixed matrix membranes with modified CNT were relatively higher compared to the unmodified CNT. Hence, coated hollow fiber mixed matrix membrane with chemical modification on CNT surface using (3-aminopropyl-triethoxy methyl silane agent can potentially enhance the gas separation performance of O2 and N2.

  14. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Congjin, E-mail: gxdxccj@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Xin [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Tong, Zhangfa [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004 (China); Li, Yue [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Li, Mingfei [Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083 (China)

    2014-10-01

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H{sub 2}O{sub 2} concentration 1.0 mol l{sup −1}, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I{sub 2}). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H{sub 2}O{sub 2}, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N{sub 2} adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H{sub 2}O{sub 2} solution, the optimized conditions were found to be as follows: aqueous H{sub 2}O{sub 2} solution concentration 1.0 mol·l{sup −1}, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased

  15. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    International Nuclear Information System (INIS)

    Highlights: • Granular fir-based activated carbon (GFAC) was modified with H2O2. • Orthogonal array design method was used to optimize the modification process. • Optimized parameters were: aqueous H2O2 concentration 1.0 mol l−1, modification temperature and time 30.0 °C and 4.0 h. • Adsorption capacity of the modified GFAC increased by 500.0% (caramel), 59.7% (methylene blue), 32.5% (phenol), and 15.1% (I2). • The pore structure parameters and surface oxygen groups changed in the modified GFAC. - Abstract: Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption–desorption isotherms, Brunauer–Emmett–Teller (BET) equation, Barett–Joyner–Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25–0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l−1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I–IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC

  16. Are old-growth forests still able to accumulate carbon?

    OpenAIRE

    Grassi G

    2006-01-01

    A recent paper published in Science (Zhou et al. 2006) reports an unexpectedly high accumulation of carbon in the top 20-cm soil layer in a preserved old-growth forest in southern China during 24 years. This finding is discussed in relation to the traditional “ecological equilibrium” concept and compared to other recent results and hypotheses on this issue. Given the importance of better quantifying and understanding the capacity of accumulating carbon by old-growth forest in the context of t...

  17. Low carbon products to design innovative leather processes. Part II: determination of the optimal physical modification of tara

    OpenAIRE

    Ollé Otero, Lluís; Casas, Concepció; Diaz, Jorge; Sorolla, Sílvia; Bacardit Dalmases, Anna

    2014-01-01

    This study considers the fruit of the tara bush as a sustainable source for tanning agents and proposes alternatives to chromium and other mineral salts and vegetable extracts. Specifically, physical modifications have been developed in part II of the study to obtain a modified tara with a higher percentage of tannins and with a better level of penetration (see Low carbon products to design innovative leather processes. Part I: determination of the optimal chemical modification of...

  18. Controlling growth of aligned carbon nanotubes from porous silicon templates

    Institute of Scientific and Technical Information of China (English)

    徐东升; 郭国霖; 桂琳琳; 唐有祺; 施祖进; 金朝霞; 顾振南

    2000-01-01

    Fabricating well-aligned carbon nanotubes, especially, on a silicon substrate is very important for their applications. In this paper, an aligned carbon nanotube array has been prepared by pyrolysis of hydrocarbons catalyzed by nickel nanoparticles embedded in porous silicon (PS) templates. High-magnification transmission electron microscopy images confirm that the nanotubes are well graphitized. The PS substrates with pore sizes between 10 and 100 nm play a control role on the growth of carbon nanotubes and the diameters of the tubes increase with the enlargement of the pores of the substrates. However, such a control role cannot be found in the macro-PS substrates.

  19. Adsorption of crystal violet with diatomite earth&carbon by a modification of hydrothermal carbonization process.

    Science.gov (United States)

    Zhang, Yanzhuo; Li, Jun; Chen, Guanghui; Bian, Wei; Lu, Yun; Li, Wenjing; Zheng, Zhaoming; Cheng, Xiaojie

    2016-01-01

    The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption-desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m(2) g(-1) for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R(2) > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° 0 and ΔG° dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye. PMID:27003089

  20. Improvement in capacitive deionization function of activated carbon cloth by titania modification.

    Science.gov (United States)

    Ryoo, Min-Woong; Seo, Gon

    2003-04-01

    Activated carbon cloth (ACC) was modified by the reaction between polar groups on its surface and metal alkoxides of titanium, silicon, aluminum and zirconium to enhance its capacitive deionization (CDI) performance. Incorporated state of metals and surface property of modified ACC were deduced from surface analysis results obtained using FE-SEM, XRD, XPS and zeta-potential meter. Titania was highly dispersed on the ACC surface with tetrahedral coordination, and the incorporated titania was effective to decrease physical adsorption of NaCl and to increase electric field adsorption, resulting in a significant enhancement of CDI performance. The negligible contribution of silica, alumina and zirconia modifications suggested that the small oxidation-reduction potential of titania was responsible for the enhancement of the electric field adsorption. Reversibility of adsorption and desorption operation on titania-modified ACC were also discussed relating to its CDI function. PMID:12600380

  1. Comparative temporal analysis of multiwalled carbon nanotube oxidation reactions: Evaluating chemical modifications on true nanotube surface

    Science.gov (United States)

    Pacheco, Flávia G.; Cotta, Alexandre A. C.; Gorgulho, Honória F.; Santos, Adelina P.; Macedo, Waldemar A. A.; Furtado, Clascídia A.

    2015-12-01

    The influence of extensive purification on oxidized multiwalled carbon nanotube surface composition was studied through the characterization and differentiation of the actual surface submitted to three oxidation methods: microwave-assisted acid oxidation, hydrogen peroxide reflux, and Fenton reaction. The oxidized samples were purified by a multi-step procedure including the sequential use of basic reflux and dispersion in dimethylformamide (DMF). The results showed a significant increase in the amount of oxidation debris with hydrogen peroxide and Fenton reaction times longer than 8 h and strong surface characteristic modification. With regard to sample purification, basic reflux led to a reduction in oxygenated group concentration of only 10% in the samples treated by acid oxidation. On the other hand, the subsequent use of DMF led to a further decrease in concentration of 39%, proving to be a more efficient method for the removal of oxidation debris.

  2. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    Science.gov (United States)

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  3. Climate indices strongly influence old-growth forest carbon exchange

    Science.gov (United States)

    Wharton, Sonia; Falk, Matthias

    2016-04-01

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (F NEE) at Wind River AmeriFlux was ‑32 ± 84 g C m‑2 yr‑1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannual variability is high (>300 g C m‑2 yr‑1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean F NEE = ‑90 g C m‑2 yr‑1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean F NEE = +17 g C m‑2 yr‑1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (F ANPP) is associated with cool phases of both the PNA and PDO. These measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.

  4. Polygalacturonases from Moniliophthora perniciosa are regulated by fermentable carbon sources and possible post-translational modifications.

    Science.gov (United States)

    Argôlo Santos Carvalho, Heliana; de Andrade Silva, Edson Mario; Carvalho Santos, Stenio; Micheli, Fabienne

    2013-11-01

    We report the first molecular and in silico analysis of Monilophthora perniciosa polygalacturonases (PGs). Three MpPG genes (MpPG1, MpPG2 and MpPG3) were identified and analyzed at transcriptional level, by RT-qPCR, in dikaryotic M. perniciosa mycelium grown on solid-bran based medium and on liquid medium supplemented with different fermentable and non-fermentable carbon sources. The MpPG genes presented different expression patterns suggesting different individual regulation. However, all are mainly regulated by fermentable carbon sources (galactose and mannose). The integrated analysis of PG gene expression and systems biology (using MpG1 and MpG2 orthologs in Neurospora crassa, named NCU06961 and NCU02369, respectively) allowed identifying some possible mechanism of protein regulation during the necrotrophic fungal phase. MpPG1-NCU06961 and MpPG2-NCU02369 directly or indirectly interacted with central and highly connected proteins involved in protein synthesis and protein regulation associated to post-translational modifications, in cell wall metabolism, and in cellular metabolism related to energy production. This analysis also allowed the identification of key proteins for further studies of M. perniciosa development and/or for disease management, such as MpPG2, a pectin methylesterase, an acetolactate synthase and the small ubiquitin-like modifier SMT3-like. PMID:24140149

  5. Effect of Post Spinning Modification on the PAN Precursors and Resulting Carbon Fibres

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-zhi; ZHANG Wang-xi; SUN Chun-feng

    2007-01-01

    The impregnation of a special grade polyacrylonitrile(PAN) precursor fibres was carried out in a 8 wt.% KMnO4 aqueous solution to obtain modified PAN precusor fibres.The focus is primarily on the effects of modification on the structure and the pbysical properties of precursor fibres,thermal stabilised and their resulting carbon fibres,which were characterized by the combination use of densities,wide-angle X-ray diffraction(WAXD),X-ray photoelectron spectroscopy(XPS),Elemental analysis(EA),Fourier transform infrared(FT-IR) and seaming electron microscope(SEM),etc.KMnO4 as a strong oxidizer can swell,oxidize and corrode the skin of a precursor ibre,transform partly C≡N groups to C=N ones,decrease the crystal size,increase the orientation index,increase the crystallinity irdex,furthemore ircrease the densities of modified PAN precursors and resulting thermal stabilised fibres.As a result,the carbon fibres dcveloped from modified PAN fibres show,an improvment in tensile strength of 31.25% and an improvement in elongation of 77.78%,but a decrease of 16.52% in Young's modulus.

  6. Effect of Post-spinning Modification on the PAN Precursors and Resulting Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wangxi; LIU Jie

    2006-01-01

    The impregnation of a special grade PAN precursor fibers was carried out in a 8 wt% KMnO4 aqueous solution to obtain modified PAN precursor fibers. The effects of modification on the chemical structure and the mechanical properties of precursor fibers thermally stabilized and their resulting carbon fibers were characterized by the combination use of densities, wide-angle X-ray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM), etc. KMnO4 as a strong oxidizer can swell, oxidize and corrode the skin of a precursor fiber,and transform C(=)N groups to C=N ones, meanwhile, it can decrease the crystal size increase the orientation index and the crystallinity index, furthermore it can increase the densities of modified PAN precursors and resulting thermally stabilized fibers. As a result, the carbon fibers developed from modified PAN fibers show an improvement in tensile strength of 31.25 % and an improvement in elongation of 77.78 %, but a decrease of 16.52 % in Young's modulus.

  7. Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination

    Science.gov (United States)

    Jeong, Seojeong; Lee, Jaegeun; Kim, Hwan-Chul; Hwang, Jun Yeon; Ku, Bon-Cheol; Zakharov, Dmitri N.; Maruyama, Benji; Stach, Eric A.; Kim, Seung Min

    2016-01-01

    In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05547d

  8. Effects of functional group modification on the thermal properties of nano-carbon clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhenyi, E-mail: zywu@xmu.edu.cn [Xiamen University, Department of Chemistry and College of Chemistry and Chemical Engineering (China); Cai, Xueying [Xiamen University, Xiamen Zhongshan Hospital (China); Yang, Zhiquan [South China University of Technology, School of Environment and Energy, Guangzhou Higher Education Mega Centre (China)

    2015-08-15

    In this paper, the thermal properties including thermal stability, thermal decomposition activation energy and the thermal enthalpy of nano-carbon clusters (NCCs, including fullerene[60](C{sub 60}, with a diameter of 0.71 nm), multi-walled carbon nanotubes(MWCNTs, with a diameter of 10–30 nm and a length of 1–2 µm), single-walled carbon nanotubes (SWCNTs, with a diameter of ∼2 nm and a length of 5–15 µm), ligands of NCC-based terpyridine (NCC-tpy), and NCC-based ruthenium complexes (NCC-tpyRuCl{sub 3}) were systematically studied by method of simultaneous thermogravimetric and differential thermal analysis. The results show that the modification of NCCs with terpyridine leads to a decrease in the thermal stability and in the thermal decomposition activation energy (the thermal decomposition activation energy decreased from 174.4 for C{sub 60}, 144.9 for MWCNTs and 161.2 kJ/mol for SWCNTs to 166.2 for C{sub 60}-tpy, 119.7 for MWCNT-tpy and 85.0 kJ/mol for SWCNT-tpy). But the modification of NCCs with terpyridine results in an increase in the enthalpy change of NCC thermal decomposition reaction. The introduction of the metal ions through complexation further decreases the thermal stability and the thermal decomposition activation energy of NCC-tpyRuCl{sub 3} due to the catalytic oxidation of Ru(III) ions (the activation energy decreases to 124.1 for C{sub 60}-tpyRuCl{sub 3}, 106.4 for MWCNT-tpyRuCl{sub 3} and 41.2 kJ/mol for SWCNT-tpyRuCl{sub 3}). The introduction of the metal ions also leads to a decrease in the enthalpy change of the thermal decomposition reaction.

  9. Climate constraints on the carbon intensity of economic growth

    International Nuclear Information System (INIS)

    Development and climate goals together constrain the carbon intensity of production. Using a simple and transparent model that represents committed CO2 emissions (future emissions expected to come from existing capital), we explore the carbon intensity of production related to new capital required for different temperature targets across several thousand scenarios. Future pathways consistent with the 2 °C target which allow for continued gross domestic product growth require early action to reduce carbon intensity of new production, and either (i) a short lifetime of energy and industry capital (e.g. early retrofit of coal power plants), or (ii) large negative emissions after 2050 (i.e. rapid development and dissemination of carbon capture and sequestration). To achieve the 2 °C target, half of the scenarios indicate a carbon intensity of new production between 33 and 73 g CO2/$—much lower than the global average today, at 360 g CO2/$. The average lifespan of energy capital (especially power plants), and industry capital, are critical because they commit emissions far into the future and reduce the budget for new capital emissions. Each year of lifetime added to existing, carbon intensive capital, decreases the carbon intensity of new production required to meet a 2 °C carbon budget by 1.0–1.5 g CO2/$, and each year of delaying the start of mitigation decreases the required CO2 intensity of new production by 20–50 g CO2/$. Constraints on the carbon intensity of new production under a 3 °C target are considerably relaxed relative to the 2 °C target, but remain daunting in comparison to the carbon intensity of the global economy today. (letter)

  10. Modification of pure oxygen absorption equipment for concurrent stripping of carbon dioxide

    Science.gov (United States)

    Watten, B.J.; Sibrell, P.L.; Montgomery, G.A.; Tsukuda, S.M.

    2004-01-01

    The high solubility of carbon dioxide precludes significant desorption within commercial oxygen absorption equipment. This operating characteristic of the equipment limits its application in recirculating water culture systems despite its ability to significantly increase allowable fish loading rates (kg/(L min)). Carbon dioxide (DC) is typically removed by air stripping. This process requires a significant energy input for forced air movement, air heating in cold climates and water pumping. We developed a modification for a spray tower that provides for carbon dioxide desorption as well as oxygen absorption. Elimination of the air-stripping step reduces pumping costs while allowing dissolved nitrogen to drop below saturation concentrations. This latter response provides for an improvement in oxygen absorption efficiency within the spray tower. DC desorption is achieved by directing head-space gases from the spray tower (O2, N2, CO2) through a sealed packed tower scrubber receiving a 2 N NaOH solution. Carbon dioxide is selectively removed from the gas stream, by chemical reaction, forming the product Na 2CO3. Scrubber off-gas, lean with regard to carbon dioxide but still rich with oxygen, is redirected through the spray tower for further stripping of DC and absorption of oxygen. Make-up NaOH is metered into the scrubbing solution sump on an as needed basis as directed by a feedback control loop programmed to maintain a scrubbing solution pH of 11.4-11.8. The spent NaOH solution is collected, then regenerated for reuse, in a batch process that requires relatively inexpensive hydrated lime (Ca(OH)2). A by-product of the regeneration step is an alkaline filter cake, which may have use in bio-solids stabilization. Given the enhanced gas transfer rates possible with chemical reaction, the required NaOH solution flow rate through the scrubber represents a fraction of the spray tower water flow rate. Further, isolation of the water being treated from the atmosphere (1

  11. Low temperature CVD growth of ultrathin carbon films

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-05-01

    Full Text Available We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC used in several device processing technologies.

  12. Stable colloidal Co-Pd nanocatalysts for carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Berenguer, A.; Golovko, V.B.; Johnson, B.F.G.; Robertson, John [Department of Chemistry, University of Cambridge (United Kingdom); Cantoro, M.; Hofmann, S.; Wirth, C.T. [Department of Engineering, University of Cambridge (United Kingdom)

    2009-12-15

    The standard preparation method for catalysts for surface-bound growth of carbon nanotubes (CNT) is to sputter or evaporate the metal catalyst (Fe, Co, and Ni) onto the surface. A lower cost method for large areas is to use liquid delivery. Colloids have the advantage of containing the catalyst in nanocluster form. Our previously developed colloidal catalysts were successful for growth but had limited shelf-life due to oxidation and coagulation. Here, we develop an air-stable colloidal catalyst with long shelf-life of many months to years. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. Local growth of aligned carbon nanotubes at surface sites irradiated by pulsed laser

    Science.gov (United States)

    Zimmer, K.; Böhme, R.; Rauschenbach, B.

    2008-05-01

    The utilization of the unique properties of nanostructures often requires their arrangement in mesoscopic patterns, e.g., to facilitate the connection to microelectrodes. Such arrangements can be achieved by local growth of nanostructures. The stimulation of the localized growth of carbon nanotubes (CNT) has been achieved by excimer laser irradiation of iron(III)nitride-coated silicon substrates at a wavelength of 248 nm. After the growth using a thermal CVD process, vertical aligned CNT bundles were found within the laser-irradiated areas. Pulsed UV-laser irradiation causes the transformation of the nitride film into nanoparticles at the substrate surface as AFM measurements show. Surface modification by direct writing techniques allows the growth of arbitrary shaped CNT-forest patterns. Despite the optimization of the processing parameters, an unequal growth of CNT has been observed at the regions of pulse overlap at direct writing. The dissimilar particle properties at the overlap regions are the reason for the different CNT heights. These differences in the catalytic particles properties are caused by the lower laser fluence at the mask edges and the interaction of the laser plasma plume with the pristine nitride film.

  14. Towards carbon nanotube growth into superconducting microwave resonator geometries

    OpenAIRE

    Blien, S.; Götz, K. J. G.; Stiller, P. L.; Mayer, T.; Huber, T.; Vavra, O.; Hüttel, A. K.

    2016-01-01

    The in-place growth of suspended carbon nanotubes facilitates the observation of both unperturbed electronic transport spectra and high-Q vibrational modes. For complex structures integrating, e.g., superconducting rf elements on-chip, selection of a chemically and physically resistant material that survives the chemical vapor deposition (CVD) process provides a challenge. We demonstrate the implementation of molybdenum-rhenium coplanar waveguide resonators that exhibit clear resonant behavio...

  15. Growth of tungsten oxide on carbon nanowalls templates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua, E-mail: wanghua@dlou.edu.cn [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023 (China); Su, Yan [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Chen, Shuo, E-mail: shuochen@dlut.edu.cn [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Quan, Xie [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-03-15

    Highlights: ► Tungsten oxide deposited on carbon nanowalls by hot filament chemical vapor deposition technique. ► This composite has two-dimensional uniform morphology with a crystalline structure of monoclinic tungsten trioxide. ► Surface photoelectric voltage measurements show that this product has photoresponse properties. - Abstract: In the present work we present a simple approach for coupling tungsten oxide with carbon nanowalls. The two-dimensional carbon nanowalls with open boundaries were grown using plasma enhanced hot filament chemical vapor deposition, and the subsequent tungsten oxide growth was performed in the same equipment by direct heating of a tungsten filament. The tungsten oxide coating is found to have uniform morphology with a crystalline structure of monoclinic tungsten trioxide. Surface photoelectric voltage measurements show that this product has photoresponse properties. The method of synthesis described here provides an operable route to the production of two-dimensional tungsten oxide nanocomposites.

  16. Isotopic investigations of carbonate growth on concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, R.V.; Schmitt, D.; Atekwana, E.A.; Baskaran, M

    2003-03-01

    Stable C and O isotope ratios were measured in carbonate minerals, growing under concrete structures from two locations in the United States. These locations were under a bridge in Michigan and under an overpass in New York. The {delta}{sup 13}C of the carbonate samples ranged from -21.6 to -31.4 per mille (with respect to V-PDB) and clearly indicated precipitation under non-equilibrium conditions. Indeed, the values in some cases were more negative than could be accounted for by existing models that invoke 4 stages of kinetic fractionation. There have been suggestions that microbial activity involving C from gasoline and other fossil fuel sources might be responsible for the relatively low C isotope ratios measured in these carbonates. To explore this possibility, {sup 14}C measurements were made in some of the samples. All samples measured for {sup 14}C contained bomb C. The range of {sup 14}C concentrations suggested a non-uniform growth rate, although possible fossil fuel-derived carbon in the system needs future investigation. The {delta}{sup 18}O values of the carbonates analyzed from Michigan range from 12.5 to 15.7 per mille (with respect to V-SMOW), with a mean value of 13.7 per mille. The {delta}{sup 18}O values of the NY samples range from 11.8 to 15.2 per mille, with a mean value of 13.1 per mille. The nearly identical mean values at both locations favors incorporation of O from atmospheric CO{sub 2} in carbonate precipitation. Additionally, the {sup 210}Pb radiometric technique was also attempted to explore the applicability of this technique in dating concrete derived carbonates as well as recent carbonates forming in a wide variety of environments. The results gave ages between 64 and 3.8 a and are consistent when compared with the date the bridge was constructed.

  17. Superior mechanical properties of double-network hydrogels reinforced by carbon nanotubes without organic modification.

    Science.gov (United States)

    Dong, Weifu; Huang, Chiguang; Wang, Yang; Sun, Yujie; Ma, Piming; Chen, Mingqing

    2013-01-01

    A facile method is developed to fabricate nanocomposite double-network (DN) gels with excellent mechanical properties, which do not fracture upon loading up to 78 MPa and a strain above 0.98, by compositing of carbon nanotubes (CNTs) without organic modification. Investigations of swelling behaviors, and compressive and tensile properties indicate that equilibrium swelling ratio, compressive modulus and stress, fracture stress, Young's modulus, and yield stress are significantly improved in the presence of CNTs. Scanning electron microscopy (SEM) reveals that the pore size of nanocomposite DN gels is decreased and some embedded micro-network structures are observed on the fracture surface in comparison to DN gels without CNTs, which leads to the enhancement of mechanical properties. The compressive loading-unloading behaviors show that the area of hysteresis loop, dissipated energy, for the first compressive cycle, increases with addition of CNTs, which is much higher than that for the successive cycles. Furthermore, the energy dissipation mechanism, similar to the Mullins effect observed in filled rubbers, is demonstrated for better understanding the nanocomposite DN polymer gels with CNTs. PMID:24232456

  18. In situ synthesis and modification of calcium carbonate nanoparticles via a bobbling method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Modified calcium carbonate (CaCO3) nanoparticles with cubic- and spindle-like configuration were synthesized in situ by the typical bobbling (gas-liquid-solid) method. The modifiers, such as sodium stearate, octadecyl dihydrogen phosphate (ODP) and oleic acid (OA), were used to obtain hydrophobic nanoparticles. The different modification effects of the modifiers were investigated by measuring the active ratio, whiteness and the contact angle. Moreover, transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetry analysis (TGA analysis) were employed to characterize the obtained products. A preliminary reaction mechanism was discussed. According to the results, the active ratio of CaCO3 modified by ODP was ca. 99.9% and the value of whiteness was 97.3% when the dosage of modifiers reached 2%. The contact angle was 122.25° for the CaCO3 modified in the presence of sodium stearate, ODP and OA. When modified CaCO3 was filled into PVC, the mechanical properties of products were improved greatly such as rupture intensity, pull intensity and fuse temperature. The compatibility and affinity between the modified CaCO3 nanoparticles and the organic matrixes were greatly improved.

  19. The effects of surface modification on the supercapacitive behaviors of novel mesoporous carbon derived from rod-like hydroxyapatite template

    International Nuclear Information System (INIS)

    Highlights: ► A novel porous carbon with rod-like pore structure was prepared using hydroxyapatite as templates. ► The N and O contained mesoporous carbon was obtained by modified by HNO3 solution. ► The role of hydroxyapatite as double-template and mechanism of surface modification were supposed. ► The modified mesoporous carbon exhibited good electrochemical performances. -- Abstract: Novel mesoporous carbon has been synthesized using rod-like nano-hydroxyapatite (HA) particles as templates, sucrose as carbon precursor by polymerizing, carbonizing and the removal of templates with HCl solution. In the process, HA not only acted as an endotemplate but also an exotemplate producing micropores and mesopores. Subsequently, mesoporous carbon was modified by HNO3 solution with different concentration. The morphology, pore structure, and surface functional groups of the as-obtained samples are analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller method (BET), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The electrochemical performance for electrochemical capacitors is evaluated in a 1 M H2SO4 aqueous solution. The results manifest that the structrue of resultant carbon with a high surface area (719.7 m2 g−1) and large pore volume (1.51 cm3 g−1) is the replica of HA. After modification, the surface area and pore volume mesoporous carbons slightly decrease, while their electrochemical performance have been significantly improved with the increase of the capacitance from 125.7 to 170.1 F g−1 and a non-decayed cycle life over 5000 cycles for HA-C-0.15N

  20. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Science.gov (United States)

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  1. Electric field effect in the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, E., E-mail: ericvpp@gmail.com; Briceño-Fuenmayor, H. [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Física de Fluidos y Plasma (Venezuela, Bolivarian Republic of); Arévalo, J. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of); Atencio, R. [Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (Venezuela, Bolivarian Republic of); Corredor, L. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of)

    2015-06-15

    The growth of carbon nanotubes (CNTs) under a controlled electric field in a chemical vapor deposition system is investigated. We evaluate the influence of this external field on the morphological and structural characteristics of CNTs. Scanning electron microscopy results display a large presence of carbonaceous material in the positive plate, which appear to be a consequence of the attraction of electric forces over the electronically unbalanced cracked carbon molecules in the heating zone. We also observe a growth behavior for CNTs, in which catalyst particles are localized either at the bottom or the upper part of the nanotube, depending on the intensity and direction of the electric field. A Raman analysis from all obtained carbon materials shows the presence of two peaks, corresponding to the D ∼ 1340 cm{sup −1} and G ∼ 1590 cm{sup −1} bands attributed to multiwall CNTs. The average diameter of the CNTs is in the range between 90 and 40 nm. These results provide experimental evidence for the dependence of the catalyst and subtract interaction on the growing mechanism, in which weak chemical or electronic interactions could stimulate a top-growing as the strongest base-growing process.

  2. Economic Growth And Carbon Emission: A Dynamic Panel Data Analysis

    Directory of Open Access Journals (Sweden)

    Ibrahim BAKIRTAS

    2014-10-01

    Full Text Available The relationship between carbon dioxide emission (CO2 and economic growth is one of the crucial topics in environmental economics. This study is aimed to investigatethat problem. In this study, depending on the theory of Environmental Kuznets Curves (EKC, the impact of income in carbon dioxide emission has measured for 34 OECD and5 BRICS countries with using Dynamic Panel Data Analysis. In this regard OECD countries are classified by income groups due to the average per capita income rate ofOECD to solve the homogeneity problem among OECD countries. On the other hand EKC hypothesis analysed by short and long run income elasticity which will be using foran evident that a country reduces CO2 emissions with the income increase in this study. According to the findings of the study, % 36 of the country sample coherent with theEKC hypothesis. The main encouragement for testing this relationship between economic growth and CO2 emission is leading politicians to reconsider the environmental impactswhich are arising from income increase when they are taking a decision to maximizes the economic growth.Keywords: EKC; OECD; Dynamic Panel Data

  3. Nucleation, growth and habit modification of n-alkanes and homologous mixtures in the absence and presence of flow improving additives

    CERN Document Server

    Taggart, A M

    1996-01-01

    A detailed study has been performed on the nucleation, growth and habit modification of n-alkanes and homologous mixtures in the absence and presence of flow improving additives in an attempt to gain a clearer appreciation of the interaction mechanisms behind wax / additive crystallisation. Kinetic and structural assessment of melt phase n-alkanes illustrate the different crystallographic forms present within the homologous series. Studies demonstrate the alternating behaviour of the even and odd numbered homologues which converges as a function of increasing molecular weight. Greater crystal lattice stabilities were found for those n-alkanes which have an even carbon number and which crystallise into the triclinic crystal structure. Solid state phase behaviour of the n-alkanes was found to vary depending on the number and parity of n. Nucleation kinetic studies of n-alkanes and homologous mixtures from model diesel fuel solvents (dodecane, m-xylene, decalin, pristane and a dewaxed fuel) are assessed using tu...

  4. Zinc oxide catalyzed growth of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    We demonstrate that zinc oxide can catalyze the growth of single-walled carbon nanotubes (SWNTs) with high efficiency by a chemical vapor deposition process. The zinc oxide nanocatalysts, prepared using a diblock copolymer templating method and characterized by atomic force microscopy (AFM), were uniformly spaced over a large deposition area with an average diameter of 1.7 nm and narrow size distribution. Dense and uniform SWNTs films with high quality were obtained by using a zinc oxide catalyst, as characterized by scanning electron microscopy (SEM), Raman spectroscopy, AFM, and high-resolution transmission electron microscopy (HRTEM).

  5. Thermo-Chemical Modification of Low-Dimensional Carbons: an Infrared Study

    Science.gov (United States)

    Biniak, S.; Trykowski, G.; Walczyk, M.; Richert, M.

    2016-09-01

    Changes in the structure of various carbon materials generated by thermal treatment were analyzed by Fourier transform infrared (FTIR) spectroscopy. FTIR spectra of different commercially-available carbon materials (activated carbon, carbon black, carbon paper, powdered graphite, expanded graphite, multi-walled carbon nanotubes), as well as carbon film obtained by cellulose foil carbonization, were compared and discussed. The complicated nature of the absorption bands in the 1650-1500 cm-1 region suggests that aromatic ring bands and double bond (C=C) vibrations overlap C=O stretching vibration bands and OH binding vibration bands in different environmental surroundings and represent their mutual interactions. The band in the 1430-1440 cm-1 region observed for some carbon materials ("as received" - graphite, graphitized carbon black, carbon nanotubes), and as result of their thermal treatment (activated carbon) is probably due to antisymmetric stretching vibrations of polynuclear aromatic structures, which seems to be characteristic for more ordered aromatic carbon units (graphene-like) made from well-stacked graphite crystallites. The relative intensity of these bands depends on the degree of carbon material graphitization and can reflect the difference in their chemical reactivity and thermal durability. The changes in the relative intensity of the bands during thermal treatment can be interpreted as the result of the destruction of various surface functionalities, graphitization of the amorphous phase of carbon, and finally, by reactions between the freshly annealed carbon surface with oxygen and water molecules present in air (after contact at ambient temperature).

  6. Surface chemistry of metal catalyst under carbon nanotube growth conditions

    Science.gov (United States)

    Back, Tyson Cody

    The catalyst nanoparticle is critical to the yield, type, and diameter in the growth and nucleation of carbon nanotubes. The objective of this study is focused on determining what changes take place with the catalyst chemistry under growth conditions typically seen in chemical vapor deposition, CVD, experiments. It is well known that catalyst poisoning can occur and in turn effects the catalytic activity of the nanoparticle. A complete description of this mechanism is as of yet undetermined. In order to elucidate this process iron films were deposited onto Si substrates that contained a support layer of Al2O3 or SiO2. These samples were investigated with various surface chemistry techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and electron energy loss spectroscopy (EELS). In addition, structural characteristics were investigated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface techniques were used in-situ in order to observe chemistries that might not be observable outside a CVD reactor. Two sets of experiments were performed on the silica and alumina supports. The first consisted of carbon nanotube growth at near atmospheric pressure, while the second was performed under vacuum. The oxide support was shown to have an affect on the type of nanotubes grown under identical conditions. The silica support films produced more MWNT, while the alumina support films produced more SWNT. This difference was due to the amount of ripening that takes place on the oxide supports. Also in-situ XPS revealed differences in the chemistry of iron catalyst during growth and these differences were attributed to substrate interactions between alumina and iron. Finally, in-situ XPS analysis showed no evidence of carbides or oxides acting as a catalyst during the nucleation process.

  7. IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri

    OpenAIRE

    Wu, Juan-Zi; Lin, Yi; Zhang, Xue-lian; Pang, Dai-wen; Zhao, Jie

    2008-01-01

    The effects of several hormones on pollen tube growth were compared in Torenia fournieri and it was found that IAA was the most effective, stimulating pollen tube growth and causing the shank part of pollen tubes to be slender and straighter. The role of IAA was investigated by studying the changes in ultrastructure and PM H+-ATPase distribution in the pollen tubes and the modification of the tube wall. Using the fluorescent marker FM4-64, together with transmission electron microscopy, it wa...

  8. Post-translational modification of osteopontin: Effects on in vitro hydroxyapatite formation and growth

    DEFF Research Database (Denmark)

    Boskey, Adele L.; Christensen, Brian Søndergaard; Taleb, Hayat;

    2012-01-01

    The manuscript tests the hypothesis that posttranslational modification of the SIBLING family of proteins in general and osteopontin in particular modify the abilities of these proteins to regulate in vitro hydroxyapatite (HA) formation. Osteopontin has diverse effects on hydroxyapatite (HA...

  9. Carbon/graphite composite material study. Appendix C: NASA studies on modification of carbon/graphite fibers and alternative materials

    Science.gov (United States)

    1981-01-01

    The feasibility of modifying resin matrix composites to reduce the potential of electrical shorting from fire released fiber was explored. The effort included modifications to or coatings for graphite fibers, alternative fibers, modifications to matrix materials, and hybrid composites. The objectives included reduction of the conductivity of the graphite fiber, char formation to reduce fiber release, glass formation to prevent fiber release, catalysis to assure fiber consumption in a fire, and replacement of the graphite fibers with nonconductive fibers of similar mechanical potential.

  10. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  11. Photoresist Derived Carbon for Growth and Differentiation of Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Tie Zou

    2007-08-01

    Full Text Available Apoptosis or necrosis of neurons in the central nervous system (CNS is thehallmark of many neurodegenerative diseases and Traumatic Brain Injury (TBI. Theinability to regenerate in CNS offers little hope for naturally repairing the damagedneurons. However, with the rapid development of new technologies, regenerative medicineoffers great promises to patients with these disorders. Among many events for furtheradvancement of regenerative medicine, extracellular matrix (ECM plays a critical role forcellular migration and differentiation. To develop a biocompatible and electricallyconductive substrate that can be potentially used to promote growth and regeneration ofneurons and to record intracellular and multisite signals from brain as a probe, a polymericprecursor – SPR 220.7 was fabricated by pyrolysis at temperatures higher than 700 oC.Human Neuroblastoma cells - SK-N-MC, SY5Y, mouse teratocarcinoma cells P-19 and ratPC12 cells were found to attach and proliferate on photoresist derived carbon film.Significantly, neuronal differentiation of PC12 cells induced by NGF was demonstrated byobserving cell shape and size, and measuring the length of neurites under SEM. Our resultsindicated that fabricated carbon could potentially be explored in regenerative medicine forpromoting neuronal growth and differentiation in CNS with neurodegeneration.

  12. Radiation-curing of acrylate composites including carbon fibres: A customized surface modification for improving mechanical performances

    Science.gov (United States)

    Martin, Arnaud; Pietras-Ozga, Dorota; Ponsaud, Philippe; Kowandy, Christelle; Barczak, Mariusz; Defoort, Brigitte; Coqueret, Xavier

    2014-12-01

    The lower transverse mechanical properties of radiation-cured acrylate-based composites reinforced with carbon-fibre with respect to the thermosettable analogues was investigated from the viewpoint of chemical interactions at the interface between the matrix and the carbon material. XPS analysis of representative commercial carbon fibres revealed the presence of a significant amount of chemical functions potentially exerting an adverse effect on the initiation and propagation of the free radical polymerization initiated under high energy radiation. The EB-induced polymerization of n-butyl acrylate as a simple model monomer was conducted in the presence of various aromatic additives exhibiting a strong inhibiting effect, whereas thiols efficiently sensitize the initiation mechanism and undergo transfer reactions. A method based on the surface modification of sized fibres by thiomalic acid is proposed for overcoming the localized inhibition phenomenon and for improving the mechanical properties of the resulting acrylate-based composites.

  13. Effects of oxygen on multiwall carbon nanotubes growth by PECVD

    Institute of Scientific and Technical Information of China (English)

    Chun-mei ZHANG; Ya-bo FU; Qiang CHEN; Yue-fei ZHANG

    2008-01-01

    Multiwall carbon nanotubes (MWCNTs) were grown by dielectric barrier discharge (DBD)-type plasma enhanced chemical vapor deposition (PECVD) method in downstream. The temperature was 973 K and the com-positions of gases were methane, hydrogen and oxygen in the total pressure of 0.05 MPa. The effect of O2 concen-tration in the mixture on the configuration of carbon nanotubes (CNTs) was investigated in detail. Results from scanning electron microscope (SEM) and transmis-sion electron microscope (TEM) showed that CNTs grown in CH4/H2 (38.6%/61.4%, volume) mixture have many defects and contained disordered graphitic materials. With the addition of appropriate amount of O2 (~0.67%), high-purity CNTs could be obtained. However, no CNT, even no carbon matrix existed under the condition of an excessive oxygen concentration (> 1.0%, volume) in the mixture. In order to understand the role of O2 during CNTs growth, optical emission spectroscopy (OES) was in-situ employed and the results predicted that the improve-ment of CNTs quality in O2 addition was attributed to the effect of OH oxidation from the reaction of atomic oxygen with hydrogen in the plasma.

  14. Functional Materials Based on Surface Modification of Carbon Nanotubes for Biomedical and Environmental Applications

    KAUST Repository

    Mashat, Afnan

    2015-05-01

    Since the discovery of carbon nanotubes (CNTs), they have gained much interest in many science and engineering fields. The modification of CNTs by introducing different functional groups to their surface is important for CNTs to be tailored to fit the need of specific applications. This dissertation presents several CNT-based systems that can provide biomedical and environmental advantages. In this research, polyethylenimine (PEI) and polyvinyl alcohol (PVA) were used to coat CNTs through hydrogen bonding. The release of doxorubicin (DOX, an anticancer drug) from this system was controlled by temperature. This system represents a promising method for incorporating stimuli triggered polymer-gated CNTs in controlled release applications. To create an acid responsive system CNTs were coated with 1,2-Distearoyl-snglycero- 3-Phosphoethanolamine-N-[Amino(Polyethylene glycol)2000]-(PE-PEG) and Poly(acrylic acid) modified dioleoy lphosphatidyl-ethanolamine (PE-PAA). An acidlabile linker was used to cross-link PAA, forming ALP@CNTs, thus making the system acid sensitive. The release of DOX from ALP@CNTs was found to be higher in an acidic environment. Moreover, near infrared (NIR) light was used to enhance the release of DOX from ALP@CNTs. A CNT-based membrane with controlled diffusion was prepared in the next study. CNTs were used as a component of a cellulose/gel membrane due to their optical property, which allows them to convert NIR light into heat. Poly(Nisopropylacrylamide) (PNIPAm) was used due to its thermo-sensitivity. The properties of both the CNTs and PNIPAm’s were used to control the diffusion of the cargo from the system, under the influence of NIR. CNTs were also used to fabricate an antibacterial agent, for which they were coated with polydopamine (PDA) and decorated with silver particles (Ag). Galactose (Gal) terminated with thiol groups conjugated with the above system was used to strengthen the bacterial targeting ability. The antibacterial activity of

  15. GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor

    2013-03-05

    designated as a bioenergy crop by the U.S. Department of Energy, as a result of research following the oil embargo. Populus species also serve as model trees for plant molecular biology research. In this article, we will review recent progress in the genetic improvement of Populus, considering both classical breeding and genetic engineering for bioenergy, as well as in using transgenics to elucidate gene functionality. A perspective for future improvement of Populus via functional genomics will also be presented. The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during

  16. Surface modification of carbon fibers and its effect on the fiber–matrix interaction of UHMWPE based composites

    Energy Technology Data Exchange (ETDEWEB)

    Chukov, D.I., E-mail: dil_chukov@yahoo.com; Stepashkin, A.A.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-02-15

    Highlights: • Both chemical and thermal treatments of UKN 5000 carbon fibers allow one to obtain well-developed surface. • The changes of structure and properties of VMN-4 fibers after both thermal and chemical oxidation are insignificant due to more perfect initial structure of these fibers. • The oxidative treatment of carbon fibers allows one to improve the interfacial interaction in the UHMWPE-based composites. • The oxidative treatment of the fibers allows one to a triple increase of Young’s modulus of the modified fibers reinforced UHMWPE composites. -- Abstract: The PAN-based carbon fibers (CF) were subjected to thermal and chemical oxidation under various conditions. The variation in the surface morphology of carbon fibers after surface treatment was analyzed by scanning electron microscopy (SEM). It was found that the tensile strength of carbon fibers changed after surface modification. The interaction between the fibers and the matrix OF ultra-high molecular weight polyethylene (UHMWPE) was characterized by the Young modulus of produced composites. It was shown that the Young modulus of composites reinforced with modified carbon fibers was significantly higher than that of composites reinforced with non-modified fibers.

  17. Modification of pore size in activated carbon by benzene deposition and its effects on CH4/N2 separation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-hua; CHE Yong-fang; LI Lan-ting; BAO Peng-cheng

    2011-01-01

    Anthracite coal was used as raw material to prepare activated carbons as the carbon support in the carbonization-activation process.Modification of the pore size of the activated carbon by chemical vapor deposition of carbon from benzene was examined.These samples were characterized by adsorption of N2 at 77 K and CH4 and N2 at 303 K.The microporosity of these samples was evaluated by the Dubinin-Astakhov Equation.The pore size distribution was obtained by the DFT method applied to the N2 adsorption data at 77 K.The separation selectivity was obtained by the Langmuir Equation.The surface morphology was characterized by an environmental scanning electron microscope.It was observed that all samples of carbon molecular sieves studied were microporous carbonaceous materials.CMS-2 prepared in the present study has a better N2/CH4 separation performance; it can satisfy the requirements of the pressure swing adsorption for concentrating CH4 from the N2/CH4 mixture gas.

  18. Modification of Activated Carbon by Means of Microwave Heating and Its Effects on the Pore Texture and Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Liqiang Zhang

    2013-02-01

    Full Text Available Two kinds of typical activated carbons (coal based AC and coconut shell based AC were modified in a flow of N2 gas has been carried out using a microwave device operating at 2450 MHz and different input power, instead of a conventional furnace. The samples were analyzed by means of low temperature N2 adsorption, elemental analysis and Boehm titration. The results show that microwave heating is an effective means of activated carbon modification. The temperature of activated carbon increases rapidly under microwave heating and then gradual increase to a quasi-stationary temperature. The pore texture of activated carbon changes slightly after microwave treatment and the two activated carbons still keep rich pore structure. The oxygen functional groups decompose and evolve with the form of CO and CO2. This in turn gives rise to a significant decrease in oxygen content. These changes of oxygen contents increase as the microwave input power increases. During microwave treatment, a gradual decrease in the surface acidic functional groups is observed. More important, with the removal of the surface acidic groups, the number of the basic group increased gradually, the activated carbon with oxygen functional groups become basic properties material.

  19. Modification of Activated Carbon by Means of Microwave Heating and Its Effects on the Pore Texture and Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Bing Li

    2013-02-01

    Full Text Available Two kinds of typical Activated Carbons (coal based AC and coconut shell based AC were modified in a flow of N0 gas has been carried out using a microwave device operating at 2450 MHz and different input power, instead of a conventional furnace. The samples were analyzed by means of low temperatureN0 adsorption, elemental analysis and Boehm titration. The results show that microwave heating is an effective means of activated carbon modification. The temperature of activated carbon increases rapidly under microwave heating and then gradual increase to a quasi-stationary temperature. The pore texture of activated carbon changes slightly after microwave treatment and the two activated carbons still keep rich pore structure. The oxygen functional groups decompose and evolve with the form of CO and CO2. This in turn gives rise to a significant decrease in oxygen content. These changes of oxygen contents increase as the microwave input power increases. During microwave treatment, a gradual decrease in the surface acidic functional groups is observed. More important, with the removal of the surface acidic groups, the number of the basic group increased gradually, the activated carbon with oxygen functional groups become basic properties material.

  20. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farbi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, Almaty (Kazakhstan); Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States); Hannora, A. [Suez Canal University, Faculty of Petroleum and Mining Engineering (Egypt); Mansurov, Z. [Al-Farbi Kazakh National University, Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2012-01-16

    Graphical abstract: Carbon nanotubes have been grown directly on hydroxyapatite by using microwave plasma-enhanced chemical vapor deposition (MPECVD). Highlights: Black-Right-Pointing-Pointer CNTs have been successfully grown directly on hydroxyapatite using MPECVD. Black-Right-Pointing-Pointer Diameter distribution of the CNTs lies in the range from 30 to 70 nm. Black-Right-Pointing-Pointer The HA surface is partially transformed to {beta}-TCP during the deposition. Black-Right-Pointing-Pointer Grown CNTs have good quality and I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. - Abstract: For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30-70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 Degree-Sign C. Raman spectroscopy indicates that the CNTs are of high quality and the I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the {beta}-tricalcium phosphate via dehydroxylation.

  1. Bacterial growth efficiency in a tropical estuary: Seasonal variability subsidized by allochthonous carbon

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.S.P.; Nair, S.; Chandramohan, D.

    Bacterial growth efficiency (BGE) is a key factor in understanding bacterial influence on carbon flow in aquatic ecosystems. Intra-annual variability in BGE, and bacteria-mediated carbon flow in the tropical Mandovi and Zuari estuaries (southwest...

  2. Green growth: Policies for transition towards low carbon economies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Thorvald

    2012-11-01

    For the next fifty years and beyond, the world faces twin challenges: -Enhancing economic opportunities and living standards for a growing global population; -Addressing the environmental threats that, if left largely unaddressed, could undermine our abilities for longer term economic growth and development and the ability to reduce poverty. For twenty years the world community has attempted to face up to these challenges, notably global warming by a 'top down' international negotiation process under the auspices of the UN Framework Convention on Climate Change (UNFCCC). The paper discusses why this process has failed so far. To get out of this impasse, a 'bottom up' policy framework for green growth based on national preferences, possibilities and policies should be considered and is discussed in some detail. However, while green growth may enhance the transition towards low-carbon economies in the short and medium term, it is argued that a 'Global Green Deal' with regional and global rules of the game is needed to reduce the risk for unsustainable development in the longer term.(auth)

  3. Effects of Surface Area and Flow Rate on Marine Bacterial Growth in Activated Carbon Columns

    OpenAIRE

    Shimp, Robert J.; Pfaender, Frederic K.

    1982-01-01

    The colonization of granular activated carbon columns by bacteria can have both beneficial and potentially detrimental consequences. Bacterial growth on the carbon surface can remove adsorbed organics and thus partially regenerate the carbon bed. However, growth can also increase the levels of bacteria in the column effluents, which can adversely affect downstream uses of the treated water. This study of a sand column and several activated carbon columns demonstrated that considerable marine ...

  4. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.

    Science.gov (United States)

    Steiner, Stephen A; Baumann, Theodore F; Bayer, Bernhard C; Blume, Raoul; Worsley, Marcus A; MoberlyChan, Warren J; Shaw, Elisabeth L; Schlögl, Robert; Hart, A John; Hofmann, Stephan; Wardle, Brian L

    2009-09-01

    We report that nanoparticulate zirconia (ZrO(2)) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon exposure to hydrocarbons at moderate temperatures (750 degrees C). High-pressure, time-resolved X-ray photoelectron spectroscopy (XPS) of these substrates during carbon nanotube nucleation and growth shows that the zirconia catalyst neither reduces to a metal nor forms a carbide. Point-localized energy-dispersive X-ray spectroscopy (EDAX) using scanning transmission electron microscopy (STEM) confirms catalyst nanoparticles attached to CNTs are zirconia. We also observe that carbon aerogels prepared through pyrolysis of a Zr(IV)-containing resorcinol-formaldehyde polymer aerogel precursor at 800 degrees C contain fullerenic cage structures absent in undoped carbon aerogels. Zirconia nanoparticles embedded in these carbon aerogels are further observed to act as nucleation sites for multiwall carbon nanotube growth upon exposure to hydrocarbons at CVD growth temperatures. Our study unambiguously demonstrates that a nonmetallic catalyst can catalyze CNT growth by thermal CVD while remaining in an oxidized state and provides new insight into the interactions between nanoparticulate metal oxides and carbon at elevated temperatures. PMID:19663436

  5. Growth of Ag nanocrystals on multiwalled carbon nanotubes and Ag-carbon nanotube interaction

    Institute of Scientific and Technical Information of China (English)

    WANG ZhenXia; LI XinNian; REN CuiLan; YONG ZhenZhong; ZHU JianKang; LUO WenYun; FANG XiaoMing

    2009-01-01

    The experimental investigations on the interaction between Ag-nanocrystal particles (Ag-NCPs) and carbon nanotubes (CNTs) in Ag-nanocrystal particles/carbon nanotubes (Ag-NCPs/CNTs) hybrid structures were reported.The growth of Ag-NCPs on multiwalled carbon nanotubes (MWCNTs) was carried out by thermal evaporation deposition.High-resolution transmission electron microscopy and X-ray diffraction analyses revealed that Ag-NCPs had the crystal lattice feature of face-centered cube (fcc).The growth of Ag-NCPs on MWCNTs induced the cross-section deformation of MWCNT.The ex-perimental results also showed that the synthesized Ag-NCPs/CNTs hybrid structure appeared as quasi-one dimensional nanowires containing the Ag-NCP/CNT hetero-junction.There was local cross-section deformation on MWCNTs at the interface of hetero-junction.These results involve the Important topic about fundamental and practical studies for structure of MNCPs on CNTs and also find clues to further research of Ag nanocrystal growing on MWCNTs and related Ag-CNT interaction.

  6. Growth of Ag nanocrystals on multiwalled carbon nanotubes and Ag-carbon nanotube interaction

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The experimental investigations on the interaction between Ag-nanocrystal particles (Ag-NCPs) and carbon nanotubes (CNTs) in Ag-nanocrystal particles/carbon nanotubes (Ag-NCPs/CNTs) hybrid structures were reported. The growth of Ag-NCPs on multiwalled carbon nanotubes (MWCNTs) was carried out by thermal evaporation deposition. High-resolution transmission electron microscopy and X-ray diffraction analyses revealed that Ag-NCPs had the crystal lattice feature of face-centered cube (fcc). The growth of Ag-NCPs on MWCNTs induced the cross-section deformation of MWCNT. The experimental results also showed that the synthesized Ag-NCPs/CNTs hybrid structure appeared as quasi-one dimensional nanowires containing the Ag-NCP/CNT hetero-junction. There was local cross-section deformation on MWCNTs at the interface of hetero-junction. These results involve the important topic about fundamental and practical studies for structure of MNCPs on CNTs and also find clues to further research of Ag nanocrystal growing on MWCNTs and related Ag-CNT interaction.

  7. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    International Nuclear Information System (INIS)

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  8. Surface modification, characterization and adsorptive properties of a coconut activated carbon

    Science.gov (United States)

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Xie, Xinping; Hu, Yiming

    2012-08-01

    A coconut activated carbon was modified using chemical methods. Different concentration of nitric acid oxidation of the conventional sample produced samples with weakly acidic functional groups. The oxidized samples were characterized by scanning electron micrograph, nitrogen absorption-desorption, Fourier transform infra red spectroscopy, Bothem method, pH titration, adsorption capacity of sodium and formaldehyde, and the adsorption mechanism of activated carbons was investigated. The results showed that BET surface area and pore volume of activated carbons were decreased after oxidization process, while acidic functional groups were increased. The surface morphology of oxidized carbons looked clean and eroded which was caused by oxidization of nitric acid. The oxidized carbons showed high adsorption capacity of sodium and formaldehyde, and chemical properties of activated carbon played an important role in adsorption of metal ions and organic pollutants.

  9. Keratinocyte Growth Inhibition through the Modification of Wnt Signaling by Androgen in Balding Dermal Papilla Cells

    OpenAIRE

    Kitagawa, Tomoko; Matsuda, Ken-ichi; Inui, Shigeki; Takenaka, Hideya; Katoh, Norito; Itami, Satoshi; Kishimoto, Saburo; Kawata, Mitsuhiro

    2009-01-01

    Context/Objective: Androgen induces androgenetic alopecia (AGA), which has a regressive effect on hair growth from the frontal region of the scalp. Conversely, Wnt proteins are known to positively affect mammalian hair growth. We hypothesized that androgen reduces hair growth via an interaction with the Wnt signaling system. The objective of this study was to investigate the effect of androgen on Wnt signaling in dermal papilla (DP) cells.

  10. A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes.

    Science.gov (United States)

    Jiang, Kaili; Feng, Chen; Liu, Kai; Fan, Shoushan

    2007-01-01

    Although carbon nanotubes (CNTs) with a variety of morphologies have been successfully synthesized, there is no clear physical picture of the growth process. Correspondingly, the growth mechanism is still not clear up to now. Here we suggest a VLS model for the growth process of CNTs, which involves a liquid or liquid-like state catalyst. The basic idea is that, due to the high thermal conductivity and nanometer size of the catalyst and the fast diffusion of carbon atoms in it, both the temperature and the carbon atom distribution across it are uniform. The supersaturation level can be expressed as a function of the carbon concentration and temperature, which determines the nucleation dynamics and growth kinetics. Based on this model, the growth rate equation was obtained to describe the growth kinetics of carbon nanotubes, which shows good accordance with the experimental results.

  11. Markov Modeling of Component Fault Growth Over A Derived Domain of Feasible Output Control Effort Modifications

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper introduces a novel Markov process formulation of stochastic fault growth modeling, in order to facilitate the development and analysis of...

  12. Effect of surface modification of activated carbon on its adsorption capacity for NH3

    Institute of Scientific and Technical Information of China (English)

    SHAN Xiao-mei; ZHU Shu-quan; ZHANG Wen-hui

    2008-01-01

    To investigate the effects of carbon surface characteristics on NH3 adsorption, coal-based and coconut shell activated carbons were modified by treatment with oxidants. The surface properties of the carbons were characterized by low temperature nitrogen sorption, by Boehm's titrations and by XPS techniques. NH3 adsorption isotherms of the original and the modified carbons were determined. The results show that the carbons were oxidized by HNO3 and (NH4)2S2O8, and that there was an increase in oxygen containing functional groups on the surface. However, the pore-size distribution of the coal-based carbons was changed after KMnO4 treatment. It was found that the NH3 adsorption capacity of the modified carbons was enhanced and that the most pronounced enhancement results from (NH4)2S2O8 oxidation. Under our experimental conditions, the capacity is positively corrected to the number of surface functional groups containing oxygen, and to the number of micro-pores. Furthermore, an empirical model of the relationship between NH3 adsorption and multiple factors on the carbon surface was fit using a complex regression method.

  13. Controlled growth of vertically aligned carbon nanotubes on metal substrates

    Science.gov (United States)

    Gao, Zhaoli

    Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their

  14. Modification of Stranski-Krastanov growth on the surface of nanowires

    Science.gov (United States)

    Li, Xinlei; Yang, Guowei

    2014-10-01

    The heteroepitaxial growth of strained islands on a planar substrate offers an attractive route to the fabrication of quantum dots (QDs). To obtain more functions and superior properties, recent efforts have focused on using nanowires (NWs) as substrates to produce attractive structures that combine QDs with NWs. As the lateral size of an NW is large, it is possible that islands are formed on the side walls of the NW. However, no islands exist, and the lateral surface is rather smooth in thin, core-shell NWs. The existing theoretical models on the growth on planar and patterned substrates are not appropriate for the growth transition on the surface with nanoscale curvature. We thus urgently need to understand the basic physics involved in the strain-induced growth on the surface with nanoscale curvature. Here, we established a theoretical model to study the strain-induced growth on the surface, which showed that the Stranski-Krastanov (SK) mode can change to the Frank-van der Merwe (FM) mode due to the limit of the surface to the island’s lateral growth. Using the model to investigate the heterostructured core/shell nanowires (NWs), we found, in addition to the SK mode on thick NWs and the FM mode on thin NWs, that there is a multiplex mode on medium NWs which includes the initial layer growth, the intermediate islands’ growth and the final layer growth again. The established theoretical model not only explained some puzzling experimental results but also provided useful information to design and control the epitaxial growth on the surface with nanoscale curvature.

  15. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, O. A., E-mail: ageev@sfedu.ru [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation); Bykov, Al. V. [NT-MDT (Russian Federation); Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G. [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation)

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  16. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization

    International Nuclear Information System (INIS)

    Graphical abstract: A novel strategy combination of mussel inspired chemistry and chain transfer free radical polymerization has been developed for surface modification of carbon nanotubes with polymers for the first time. - Highlights: • Surface modification of CNTs via mussel inspired chemistry. • Preparation of aminated polymers through free radical polymerization. • Functionalized CNTs with aminated polymers via Michael addition reaction. • Highly dispersed CNTs in organic and aqueous solution. - Abstract: In this work, a novel strategy for surface modification of carbon nanotubes (CNTs) was developed via combination of mussel inspired chemistry and chain transfer free radical polymerization. First, pristine CNTs were functionalized with polydopamine (PDA), which is formed via self-polymerization of dopamine in alkaline conditions. These PDA functionalized CNTs can be further reacted with amino-terminated polymers (named as PDMC), which was synthesized through chain transfer free radical polymerization using cysteamine hydrochloride as chain transfer agent and methacryloxyethyltrimethyl ammonium chloride as the monomer. PDMC perfectly conjugated with CNT-PDA was ascertained by a series of characterization techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The dispersibility of obtained CNT nanocomposites (named as CNT-PDA-PDMC) was further examined. Results showed that the dispersibility of CNT-PDA-PDMC in aqueous and organic solutions was obviously enhanced. Apart from PDMC, many other amino-terminated polymers can also be used to functionalization of CNTs via similar strategy. Therefore, the method described in this work should be a general strategy for fabrication various polymer nanocomposites

  17. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qing; Tian, Jianwen; Liu, Meiying; Zeng, Guangjian; Huang, Qiang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke; Zhang, Qingsong [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2015-08-15

    Graphical abstract: A novel strategy combination of mussel inspired chemistry and chain transfer free radical polymerization has been developed for surface modification of carbon nanotubes with polymers for the first time. - Highlights: • Surface modification of CNTs via mussel inspired chemistry. • Preparation of aminated polymers through free radical polymerization. • Functionalized CNTs with aminated polymers via Michael addition reaction. • Highly dispersed CNTs in organic and aqueous solution. - Abstract: In this work, a novel strategy for surface modification of carbon nanotubes (CNTs) was developed via combination of mussel inspired chemistry and chain transfer free radical polymerization. First, pristine CNTs were functionalized with polydopamine (PDA), which is formed via self-polymerization of dopamine in alkaline conditions. These PDA functionalized CNTs can be further reacted with amino-terminated polymers (named as PDMC), which was synthesized through chain transfer free radical polymerization using cysteamine hydrochloride as chain transfer agent and methacryloxyethyltrimethyl ammonium chloride as the monomer. PDMC perfectly conjugated with CNT-PDA was ascertained by a series of characterization techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The dispersibility of obtained CNT nanocomposites (named as CNT-PDA-PDMC) was further examined. Results showed that the dispersibility of CNT-PDA-PDMC in aqueous and organic solutions was obviously enhanced. Apart from PDMC, many other amino-terminated polymers can also be used to functionalization of CNTs via similar strategy. Therefore, the method described in this work should be a general strategy for fabrication various polymer nanocomposites.

  18. Combined modification of a TiO{sub 2} photocatalyst with two different carbon forms

    Energy Technology Data Exchange (ETDEWEB)

    Ansón-Casaos, Alejandro, E-mail: alanson@icb.csic.es [Instituto de Carboquímica ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza (Spain); Tacchini, Ignacio; Unzue, Andrea; Martínez, M. Teresa [Instituto de Carboquímica ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza (Spain)

    2013-04-01

    Hydrothermally synthesized titanate nanotubes were carbon-doped through a thermal treatment in the presence of glucose followed by blending with single-walled carbon nanotubes (SWCNTs). A series of TiO{sub 2}-based materials was prepared with various initial glucose contents and two SWCNT types, resulting in total carbon contents from 0.3 wt.% to nearly 26 wt.%. Electron microscopy observations indicated that titanate nanotubes were converted into nanorods during the thermal treatment, and X-ray diffraction patterns confirmed that all the treated materials mostly consisted of anatase TiO{sub 2}. Glucose pyrolysis caused changes in the infrared and X-ray photoelectron spectra of the titania material, indicating an interaction between the inserted carbon atoms and titanium atoms. Raman spectra of SWCNT/C/TiO{sub 2} hybrids showed characteristic bands of both the SWCNT and anatase TiO{sub 2} phases. SWCNT/C/TiO{sub 2} multicomponent materials demonstrated substantially better photocatalytic activities than P25 TiO{sub 2} for methylene blue degradation under visible light irradiation. Independently from its origin, the presence of carbon caused a strong increase in the TiO{sub 2} visible light absorption. However, the results obtained with the C/TiO{sub 2} and SWCNT/C/TiO{sub 2} photocatalysts clearly showed different photocatalysis mechanisms depending on the carbon form.

  19. Surface modification and characterization of carbon spheres by grafting polyelectrolyte brushes

    Science.gov (United States)

    Zhang, Qi; Li, Houbin; Zhang, Pan; Liu, Liangliang; He, Yuhang; Wang, Yali

    2014-06-01

    Modified carbon spheres (CSPBs) were obtained by grafting poly(diallyl dimethyl ammonium chloride) (p-DMDAAC) on the surface of carbon spheres (CSs). It can be viewed as a kind of cation spherical polyelectrolyte brushes (CSPBs), which consist of carbon spheres as core and polyelectrolytes as shell. The method of synthesizing carbon spheres was hydrothermal reaction. Before the polyelectrolyte brushes were grafted, azo initiator [4,4'-Azobis(4-cyanovaleric acyl chloride)] was attached to the carbon spheres' surface through hydroxyl groups. CSPBs were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), conductivity meter, and system zeta potential. The results showed that compared with carbon spheres, the conductivity and zeta potential on CSPBs increased from 9.98 to 49.24 μS/cm and 11.6 to 42.5 mV, respectively, after the polyelectrolyte brushes were grafted. The colloidal stability in water was enhanced, and at the same time, the average diameter of the CSPBs was found to be 173 nm, and the average molecular weight and grafted density of the grafted polyelectrolyte brushes were 780,138 g/mol and 4.026 × 109/nm2, respectively.

  20. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth

    Directory of Open Access Journals (Sweden)

    Marijana Mionić

    2010-11-01

    Full Text Available The catalytic chemical vapor deposition (CCVD is currently the most flexible and economically attractive method for the growth of carbon nanotubes. Although its principle is simple, the precisely controlled growth of carbon nanotubes remains very complex because many different parameters influence the growth process. In this article, we review our recent results obtained on the synthesis of carbon nanotubes via CCVD. We discuss the role of the catalyst and the catalyst support. Our recent results obtained from the water assisted growth and the equimolar C2H2-CO2 reaction are also discussed. Both procedures lead to significantly enhanced carbon nanotube growth. In particular, the latter allows growing carbon nanotubes on diverse substrate materials at low temperatures.

  1. Effect of applied environmental stress on growth, photosynthesis, carbon allocation, and hydrocarbon production in Euphorbia lathyris

    International Nuclear Information System (INIS)

    Photosynthetic activity was reduced by salinity stress, but is was found to be less sensitive than growth. Salinity stress also caused changes in the concentrations of specific cations. Moderate water stress had little effect on growth, but large changes in hydrocarbon production were still observed. Carbon allocation experiments with radiolabeled carbon indicated that carbon for latex production was supplied by nearby leaves, with some translocation down the stem also occurring

  2. Simple Predicting Method for Fatigue Crack Growth Rate Based on Tensile Strength of Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Three types of fatigue tests for an annealed carbon steel containing carbon of 0.42 % were carried out on smooth specimens and specimens with a small blind hole in order to investigate the fatigue crack growth law. A simple predicting method for crack growth rates has been proposed involving strength σb and the relation between cyclic stress and strain. The validity of proposed method has been confirmed by experiments on several carbon steels with different loadings.

  3. Phase stability of iron-carbon nanocarbides and implications for the growth of carbon nanotubes

    Science.gov (United States)

    Awasthi, Neha

    Catalyst nanoparticles play a crucial role in the synthesis of single-walled carbon nanotubes by chemical vapor deposition technique. Understanding the thermal behavior of the nano-catalysts, their interaction with Carbon and stability of nanocarbides can give better insight into the growth mechanism and control over selective, yield of nanotubes. In this work, we present results using first-principle calculations and classical molecular dynamics simulations to understand the thermodynamics of free and Al2O3 supported Fe-C nanoparticles. We observe that the substrate plays an important role during the growth reaction by increasing the melting temperatures of small and medium size Fe nanoparticles. We investigate Fe-C phase diagrams for small Fe nanoparticles (d˜2nm) and discover that as the size of the Fe nanoparticle is reduced, the eutectic point shifted significantly toward lower temperatures, as expected from the Gibbs-Thomson law, and also toward lower concentrations of C. We devise a simple model based on the Young-Laplace pressure-radius relation, to predict the behavior of the phases competing for stability in Fe-C nanoclusters at low temperature. We identify ranges of nanoparticle sizes which are compatible for steady state-, limited- and no-growth of SWCNTs corresponding to unaffected, reduced and no solubility of C in the Fe nanoparticles. We also calculate Fe-Mo-C ternary phase diagrams to investigate the behavior of bimetallic Fe:Mo catalyst nanoparticles. Our results show that addition of Mo (upto small concentrations) lowers the minimum radius when stable carbides nucleate and poison the catalyst, which enables a larger range of catalyst nanoparticles sizes to nucleate nanotubes. We also find that pure Fe has the highest surface concentration in Fe:Mo nanoparticles and is likely to be the active nucleation site for nanotubes.

  4. Structural and surface modifications of carbon nanotubes when submitted to high temperature annealing treatments

    Energy Technology Data Exchange (ETDEWEB)

    Castillejos, E. [Instituto de Catalisis y Petroleoquimica, ICP-CSIC, Campus de Cantoblanco, 28046 Madrid (Spain); Bachiller-Baeza, B. [Instituto de Catalisis y Petroleoquimica, ICP-CSIC, Campus de Cantoblanco, 28046 Madrid (Spain); Unidad Asociada UNED/ICP-CSIC Group for Molecular Design of Heterogeneous Catalysts, Madrid (Spain); Perez-Cadenas, M.; Gallegos-Suarez, E. [Dpto. de Quimica Inorganica y Tecnica, UNED, 28040 Madrid (Spain); Rodriguez-Ramos, I. [Instituto de Catalisis y Petroleoquimica, ICP-CSIC, Campus de Cantoblanco, 28046 Madrid (Spain); Unidad Asociada UNED/ICP-CSIC Group for Molecular Design of Heterogeneous Catalysts, Madrid (Spain); Guerrero-Ruiz, A. [Unidad Asociada UNED/ICP-CSIC Group for Molecular Design of Heterogeneous Catalysts, Madrid (Spain); Dpto. de Quimica Inorganica y Tecnica, UNED, 28040 Madrid (Spain); Tamargo-Martinez, K., E-mail: katia@incar.csic.es [Instituto Nacional del Carbon, INCAR-CSIC, Apartado 73, 33080 Oviedo (Spain); Martinez-Alonso, A.; Tascon, J.M.D. [Instituto Nacional del Carbon, INCAR-CSIC, Apartado 73, 33080 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Multiwall carbon nanotubes (MWCNTs), pristine and heat-treated at 2873 K, were comparatively characterized using HRTEM, SEM, nitrogen adsorption, Raman spectroscopy and immersion calorimetry. Black-Right-Pointing-Pointer Annealing at 2873 K produced removal of amorphous phases, ordering of graphene layers and structural changes inside the cylindrical mesopores. Black-Right-Pointing-Pointer Immersion enthalpies in organic liquids indicated the existence of specific {pi}-{pi} electronic interactions between aromatic molecules and the surface of heat-treated MWCNTs. - Abstract: Multiwall carbon nanotubes (MWCNTs) were synthesized using a chemical vapour deposition procedure using acetylene as source of carbon, iron pentacarbonyl as catalyst and an inert carrier gas. An aliquot of these MWCNTs was heat-treated at 2873 K under inert atmosphere (Ar). The two carbon nanotube samples where characterized using high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy, nitrogen adsorption at 77 K, Raman spectroscopy, and immersion calorimetry in toluene, methanol and methylcyclohexane. HRTEM images confirmed that high-temperature treatment removed amorphous carbon, the graphene layers being better graphitized, and also some structural changes inside the cylindrical mesopores took place. Immersion enthalpies in toluene, in which molecules are present as aromatic functions, indicated the existence of specific {pi}-{pi} electronic interactions between such molecules and the surface of heat-treated MWCNTs.

  5. Growth stress in tungsten carbide-diamond-like carbon coatings

    International Nuclear Information System (INIS)

    Growth stress in tungsten carbide-diamond-like carbon coatings, sputter deposited in a reactive argon/acetylene plasma, has been studied as a function of the acetylene partial pressure. Stress and microstructure have been investigated by wafer curvature and transmission electron microscopy (TEM) whereas composition and energy distribution functions of positive ions were obtained by electron probe microanalyzer, elastic recoil detection analysis, and mass-energy analyzer (MEA). It has been observed that the compressive stress decreases with increasing acetylene partial pressure, showing an abrupt change from -5.0 to -1.6 GPa at an acetylene partial pressure of 0.012 Pa. TEM micrographs show that by increasing the acetylene partial pressure in the plasma from 0 to 0.012 Pa, the microstructure of the coating changes from polycrystalline to amorphous. MEA results show that the most probable energy of positive ions bombarding the substrate during deposition in pure argon and argon/acetylene atmosphere is the same. Based on the results, it is concluded that the huge variation in the compressive stress at low acetylene partial pressures is due to a change in the microstructure of the coating from polycrystalline to amorphous and not to the energy of positive ions bombarding the film

  6. Laser-chemical modification of nucleation barriers for area-selective thin film growth

    Science.gov (United States)

    Tsao, J. Y.; Ehrlich, D. J.

    1984-09-01

    The use of laser radiation to locally modify nucleation barriers to thin film growth is discussed. Examples are described in which UV laser photodeposition is used to directly pattern surface-altering monolayer or submonolayer films. The surface-altering films can then be used to promote or both physical condensation as well as surface chmistry. A qualitative is made of two kinds of processes: those relying on physical, and those relying on chemical, barriers. A figure of merit is defined and discussed, which measures the selectivity of a given process for patterned growth.

  7. Is growth reduction in defoliated trees a consequence of prioritized carbon allocation to reserves?

    Science.gov (United States)

    Hoch, Guenter; Schmid, Sandra; Palacio, Sara

    2015-04-01

    Tissue concentrations of carbon reserve compounds are frequently used as proxies for the carbon balance of trees, but the mechanisms regulating the formation of carbon reserves are still under debate. It is often assumed that carbon storage in trees is largely a consequence of surplus carbon supply (reserve accumulation). In contrast, carbon storage might also occur against prevailing carbon demand from other sink activities, like growth (reserve formation), in which case carbon reserve pools might increase even at carbon limitation, and thus, cannot be used as indicators for a tree's carbon supply status. Such a situation might be severe defoliation by herbivores. Especially in evergreen tree species, it has been shown that natural and experimental defoliation leads to a reduction of growth that is proportional to the lost leaf area. Compared to this strong effect on growth, carbon reserve pools (i.e. sugars, starch and storage lipids) of defoliated trees often exert only a temporary decrease immediately after defoliation, while tissue concentrations of carbon reserves return to those of undefoliated trees by the end of the growing season. Within a recent experiment, we investigated, if the growth decline in trees following early season defoliation is the consequence of prioritized carbon allocation to carbon reserves over growth. To test this hypothesis we grew seedlings of evergreen Quecus ilex and deciduous Quercus petraea trees under low (140 ppm), medium (280 ppm) and high (560 ppm) CO2 concentrations and completely defoliated half of the seedlings in each CO2 treatment at the beginning of the growing season. In undefoliated control trees, CO2 had a significant positive effect on the seasonal growth in both species. Defoliation had a strong negative impact on growth in the evergreen Q. illex, but less in the deciduous Q. petraea. In both species, the growth reduction after defoliation relative to undefoliated controls was very similar at all three CO2

  8. Strong Metal-Support Interaction: Growth of Individual Carbon Nanofibers from Amorphous Carbon Interacting with an Electron Beam

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil

    2013-01-01

    The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO/Ni nanopar......The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO....../Ni nanoparticles, devoid of any gaseous carbon source and external heating and stimulated by an electron beam in a 300 kilo volt transmission electron microscope....

  9. MODIFICATION OF PRECIPITATED CALCIUM CARBONATE FILLER USING SODIUM SILICATE/ZINC CHLORIDE BASED MODIFIERS TO IMPROVE ACID-RESISTANCE AND USE OF THE MODIFIED FILLER IN PAPERMAKING

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2009-11-01

    Full Text Available In order to improve the acid-resistant property of papermaking grade precipitated calcium carbonate filler and to obtain modified filler in powder form, sodium silicate/zinc chloride based modifiers were used in filler modification, and the use of modified filler in papermaking of deinked pulp derived from recycled newspaper was also preliminarily investigated. Under the preliminarily optimized experimental conditions, when sodium silicate, zinc chloride, sodium hexametaphosphate, and phosphoric acid with dosages of 10 wt%, 3 wt%, 1 wt% and 0.2 wt%, respectively, were used as modifiers, and when the temperature, aging time, and PCC concentration during the filler modification process was 70 oC, 7 h and 9.1 wt%, respectively, the acid-resistant property of filler was significantly improved after modification, as evaluated using alum consumption and pH methods. The use of modified precipitated calcium carbonate filler prepared under the optimized conditions provided considerably more brightness and light scattering improvement in comparison to unmodified filler, and filler modification was found to have only negligible influence on tensile and burst strength of the paper, air permeability of the paper, and retention performance of the filler. Surface analysis of the modified filler using XPS and SEM confirmed the occurring of surface encapsulation and modification of precipitated calcium carbonate filler when the relevant modifiers were used in filler modification. The encapsulating effect of modifiers on filler was thought to be favorable to improvement in acid-resistant property, and optical properties of the filled paper.

  10. Selective epitaxial growth of sub-micron structures of YBaCuO by substrate modification

    NARCIS (Netherlands)

    Blank, Dave H.A.; Damen, Cas A.J.; Kropman, Boike L.; Rogalla, Horst

    1994-01-01

    Sub-micron structures of high-Tc thin films have been realized with Selective Epitaxial Growth (SEG). Two different techniques to achieve SEG have been studied. First, narrow trenches down to 100 nm are etched into the substrate with a four-layer E-beam lithography technique. Second, amorphous metal

  11. Effects of chemical modifications of heme on kinetics of carbon monoxide binding to free home

    Energy Technology Data Exchange (ETDEWEB)

    Sono, M.; McCray, J.A.; Asakura, T.

    1977-11-10

    The rates of carbon monoxide recombination to six different kinds of chemically modified heme with various substituents at positions 2 and 4 have been studied in the protein-free state (free heme) by the laser flash photolysis method in a mixture of ethylene glycol and 0.02 N NaOH (80:20, v/v) (80% ethylene glycol). The carbon monoxide combination rate constants to the various free hemes obtained in 80% ethylene glycol at 22/sup 0/ were 1.4, 2.1, 2.1, 3.7, 4.5, and 6.4 x 10/sup 7/ M/sup -1/ s/sup -1/ for 2,4-diformyl-, spirographis (2-formyl-4-vinyl-), isospirographis (2-vinyl-4-formyl-) proto-(2,4-divinyl-), deutero-(2,4-dihydrogen-), and meso-(2,4-diethyl-), hemes, respectively. This order of increase in carbon monoxide combination rate constants for these hemes correlates exactly with decrease in electron attractivity of heme side chains (i.e., increase in pK/sub 3/, basicity of nitrogen base of prophyrin) and is completely opposite to that obtained for carbon monoxide binding to these hemes reconstituted with apomyoglobin. Contrary to the results for myoglobin, the two isomers of monoformyl-monovinylheme exhibited similar optical properties and the same combination rate constant indicating that the differences in the optical and kinetic results observed in myoglobin are due to different interactions of these isomeric hemes with protein.

  12. Modification of rubber surface with hydrogenated diamond-like carbon thin films

    NARCIS (Netherlands)

    Pei, Y. T.; Bui, X. L.; De Hosson, J. Th. M.; Laudon, M; Romanowicz, B

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals, by sputtering graphite targets in C(2)H(2)/Ar plasma. The wax removal and pre-deposition plas

  13. Surface modification of activated carbons for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Pevida, C. [Instituto Nacional del Carbon (INCAR), CSIC, Apartado 73, 33080 Oviedo (Spain)], E-mail: cpevida@incar.csic.es; Plaza, M.G.; Arias, B.; Fermoso, J.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon (INCAR), CSIC, Apartado 73, 33080 Oviedo (Spain)

    2008-09-15

    The reduction of anthropogenic CO{sub 2} emissions to address the consequences of climate change is a matter of concern for all developed countries. In the short term, one of the most viable options for reducing carbon emissions is to capture and store CO{sub 2} at large stationary sources. Adsorption with solid sorbents is one of the most promising options. In this work, two series of materials were prepared from two commercial activated carbons, C and R, by heat treatment with gaseous ammonia at temperatures in the 200-800 deg. C range. The aim was to improve the selectivity and capacity of the sorbents to capture CO{sub 2}, by introducing basic nitrogen-functionalities into the carbons. The sorbents were characterised in terms of texture and chemical composition. Their surface chemistry was studied through temperature-programmed desorption tests and X-ray photoelectron spectroscopy. The capture performance of the carbons was evaluated by using a thermogravimetric analyser to record mass uptakes by the samples when exposed to a CO{sub 2} atmosphere.

  14. Modifications on Microporosity and Physical Properties of Cement Mortar Caused by Carbonation: Comparison of Experimental Methods

    Directory of Open Access Journals (Sweden)

    Son Tung Pham

    2013-01-01

    Full Text Available The influence of carbonation on the microstructure of normalised CEM II mortar was studied using nitrogen adsorption and porosity accessible to water. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity, and 20% CO2 concentration. Conflicts in results were observed because while the pore size distributions calculated by BJH method from nitrogen adsorption provided evolution of the micro- and mesopores during carbonation, the porosity accessible to water showed changes in all three porous domains: macro-, meso- and micropores. Furthermore, the porous domains explored by water and nitrogen molecules are not the same because of the difference in the molecular sizes. These two techniques are therefore different and help to complementarily evaluate the effects of carbonation. We also examined the evolution of macrophysical properties such as the solid phase volume using helium pycnometry, gas permeability, thermal conductivity, thermal diffusivity, and longitudinal and transverse ultrasonic velocities. This is a multiscale study where results on microstructural changes can help to explain the evolution of macro physical properties.

  15. Modification of glassy carbon surfaces by atmospheric pressure cold plasma torch

    DEFF Research Database (Denmark)

    Mortensen, Henrik Junge; Kusano, Yukihiro; Leipold, Frank;

    2006-01-01

    The effect of plasma treatment on glassy carbon (GC) surfaces was studied with adhesion improvement in mind. A newly constructed remote plasma source was used to treat GC plates. Pure He and a dilute NH3/He mixture were used as feed gases. Optical emission spectroscopy was performed for plasma to...

  16. Tailoring activated carbon by surface chemical modification with O, S, and N containing molecules

    Directory of Open Access Journals (Sweden)

    Rachel RibeiroVieira Azzi Rios

    2003-06-01

    Full Text Available In this work the surface of activated carbon was chemically modified in order to introduce O, S and N containing groups. The activated carbon surface was selectively oxidized with concentrated HNO3 under controlled conditions. Characterization by thermogravimetric analyses, infrared spectroscopy and NaOH titration suggested the formation of mainly -COOH and small amounts of -OH groups, with concentration of approximately 4.10(21 groups/g of carbon. These -COOH functionalized carbons showed high adsorption capacity for metal cations in aqueous solution in the following order: Pb+2>Cu+2>Ni+2 >Cd+2~Co+2>Ca+2 , suggesting a cation exchange mechanism via a surface complex [COO-M+2]. These -COOHsurf groups can be reacted with SOCl2 to produce a surface acylchloride group, -COCl. This surface -COCl group proved to be a very reactive and versatile intermediate for the grafting of different S and N containing molecules onto the carbon surface, such as 1,2-ethaneditiol (EDT-, HSCH2CH2SH 1,7-dimercapto-4-thioheptane (DMTH-HSCH2CH2CH2SCH2CH 2CH2SH or 1,2-ethylenediamine (EDA- NH2CH2CH2NH2 and triethyltetraamine, TEA (H2NCH2CH2NHCH2CH 2NHCH2CH2 NH2. The characterization of these materials was carried out by TG, IR and TPDMS (Temperature Programmed Decomposition Mass Spectrometry experiments suggesting the formation of thioesther and amide surface groups, i.e. -COSR and -CONHR, with yields of approximately 50 and 75% for the reaction with DME and EDA, respectively. Preliminary adsorption experiments showed that these materials can efficiently remove metals such as Pb+2, Cu+2 and Ni+2 from aqueous medium.

  17. Domestic Research Process of Matrix Modification for Carbon/Carbon Composites%国内C/C复合材料基体改性研究进展

    Institute of Scientific and Technical Information of China (English)

    付前刚; 李贺军; 沈学涛; 李克智

    2011-01-01

    Oxidation and ablation of carbon/carbon (C/C) composites in oxidation-containing environments limits their applications as the high-temperature structural materials in aeronautics and aerospace fields. Matrix modification is an effective method for protecting C/C composites against oxidation and ablation at high temperature. The methods for matrix modification, including chemical vapor infiltration, precursor infiltration pyrolysis, reactive melt infiltration and chemical vapor reaction, were introduced. The research status of several modification materials, including SiC, ZrC, TaC, HfC, ZrB2, WC and Cu, were reviewed. Refractory carbides or borides, such as HfC, ZrC, TaC, HfB2 and ZrB2, characterized by high melting point, excellent stability and ablation resistance at high temperature, are the perfect candidates for modifying C/C composites. The present problems and the potential development direction on the investigation of matrix modification for C/C composites were also proposed.%碳/碳(C/C)复合材料在高温含氧气氛下的氧化烧蚀问题严重制约该材料在航空航天领域的推广应用,基体改性技术是提高该材料高温抗氧化抗烧蚀能力的有效手段。介绍了目前发展的化学气相渗透、先驱体转化、反应熔体浸渗、化学气相反应等基体改性技术的主要方法,综述了SiC,ZrC,TaC,HfC,ZrB2,WC,Cu等抗氧化和抗烧蚀组元改性C/C复合材料的研究现状。指出难熔金属碳化物和硼化物,如HfC,ZrC,TaC,HfB2,ZrB2等,具有熔点高、高温性能稳定、抗烧蚀性能优良等特点,是提高C/C复合材料高温抗氧化抗烧蚀的理想基体改性材料,并提出了C/C复合材料基体改性研究中存在的问题和今后潜在的发展方向。

  18. A mixed formulation for a modification to Darcy equation with applications to enhanced oil recovery and carbon-dioxide sequestration

    CERN Document Server

    Nakshatrala, K B

    2011-01-01

    In this paper we consider a modification to Darcy equation by taking into account the dependence of viscosity on the pressure. We present a stabilized mixed formulation for the resulting governing equations. Equal-order interpolation for the velocity and pressure is considered, and shown to be stable (which is not the case under the classical mixed formulation). The proposed mixed formulation is tested using a wide variety of numerical examples. The proposed formulation is also implemented in a parallel setting, and the performance of the formulation for large-scale problems is illustrated using a representative problem. Two practical and technologically important problems, one each on enhanced oil recovery and carbon-dioxide sequestration, are solved using the proposed formulation. The numerical results clearly indicate the importance of considering the role of dependence of viscosity on the pressure.

  19. Effect of Rare Earth Alloy Modification on High Carbon Equivalent Gray Cast Iron of Automotive Brake Drum

    Institute of Scientific and Technical Information of China (English)

    ZHANG Daowen; LI Zhu; HUANG Jie

    2012-01-01

    Effect of rare earth alloy modification on properties and microstructure of high carbon equivalent gray cast iron was investigated.The experimental results show that in the way of mechanical property,when the addition of rare earth alloy is 0.2% and 0.3%,the tensile strength of cast iron increases.In the way of microstructure,the addition of rare earth alloy increases the number of primary austenite dendrites,reduces secondary dendritic arm spacing,and changes the eutectic size and quantity.When rare earth alloy is added into gray cast iron,the morphology and quantity of graphite play a major role on the improvement of tensile strength.

  20. Effect of Ammonium Chloride Solution on the Growth of Phosphorus Gypsum Whisker and Its Modification

    Directory of Open Access Journals (Sweden)

    Shouwei Jian

    2016-01-01

    Full Text Available Phosphogypsum is the by-product of phosphate of fertilizer or phosphate which causes serious environmental pollution. In this work, a series of phosphogypsum whiskers were prepared using phosphogypsum as raw materials and NH4Cl as additive through the atmospheric water solution method. The results showed that the ammonium chloride solution has a great influence on phosphogypsum whiskers growth and the solubility. The best whisker aspect ratio of phosphogypsum was preferred in 1 mol/L NH4Cl solution, in which the solubility achieved 6.434 mg/mL and the aspect ratio reached 69.29. Besides, NH4Cl was found to have a modified effect on gypsum whiskers’ growth and it can be used to get mesh or dendritic whiskers.

  1. Effect of Ammonium Chloride Solution on the Growth of Phosphorus Gypsum Whisker and Its Modification

    OpenAIRE

    Shouwei Jian; Mengqi Sun; Guihai He; Zhenzhen Zhi; Baoguo Ma

    2016-01-01

    Phosphogypsum is the by-product of phosphate of fertilizer or phosphate which causes serious environmental pollution. In this work, a series of phosphogypsum whiskers were prepared using phosphogypsum as raw materials and NH4Cl as additive through the atmospheric water solution method. The results showed that the ammonium chloride solution has a great influence on phosphogypsum whiskers growth and the solubility. The best whisker aspect ratio of phosphogypsum was preferred in 1 mol/L NH4Cl so...

  2. Interceptive Orthodontics and Growth Modification Therapy with Fixed Functional Appliance: A Case Report

    Science.gov (United States)

    Ahuja, Jatin

    2011-01-01

    A 12-year-old female patient presented with proclined upper anteriors on a class II skeletal base, a retrognathic mandible and high maxillary- mandibular plane angle. Lower first molars were mesially tipped and lower second premolars were impacted. Treatment plan included uprighting and distalising the lower molars followed by growth modulation with Jasper Jumper to correct the mandibular retrognathism. Final finishing and detailing of occlusion was carried out through 0.022” MBT prescription preadjusted edgewise appliance therapy.

  3. Use of growth regulator of cytokinin type for enhancement and modification of herbicide activity.

    Science.gov (United States)

    Karakotov, S D; Zheltova, E V; Putsykin, Y G; Balakin, K V; Shapovalov, A A

    2006-01-01

    The herbicidal action of Betanal Express (BPAM) on Chine jute (Abutilon theophrasti) weed was studied in the presence of a new plant growth regulator of urea type, N-phenyl-N-(1,2,4-triazol-4-yl)urea (PhenylTriazolylUrea, PTU). In the past years, Chine jute has become a major limiting factor in sugar beet production in the southern Russia due to its resistance to BPAM which is an essential herbicide widely used for sugar beet protection. When PTU was added to BPAM, the combination appeared to be more effective than the herbicide alone. The influence of phytohormone PTU was observed at very low application rate of 20-100 g/ha, thus herbicide dose in the ecosystem was reduced. The main visual signs of herbicidal action of the combination BPAM + PTU on Chine jute were inhibition of growth of overground plant and stem, leaves changes and sharp inhibition of root growth. No sugar beet injury was observed when this tank mixture was used. It was found that enhanced performance of the novel herbicide formulation is determined by increased herbicidal action of Ethofumesate, one of the active ingredients of BPAM.

  4. Morphological and structural modifications of multiwalled carbon nanotubes by electron beam irradiation

    Science.gov (United States)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Motaweh, H. A.

    2016-10-01

    Effects of electron beam irradiation on a morphology and structure of multiwalled carbon nanotubes sample in a normal imaging regime of a scanning electron microscope (SEM) were investigated. Direct SEM observations give evidence that irradiation by electron beam in SEM eliminates morphological unevenness, in the form of round spots of white contrast, on the surface of carbon nanotubes (CNTs) and makes the tubes thinner. Electron dispersive analysis and Raman spectroscopy are used to explore the origin and nature of these spots. From this analysis we found that e-beam irradiation improves the CNTs graphitization. The synergy of thermal heating and ionization produced by the irradiation are discussed as possible mechanisms of the observed effects.

  5. Surface modification of low cost carbons for their application in the environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)]. E-mail: aapuente@incar.csis.es; Rubiera, F. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Parra, J.B. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Ania, C.O. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2005-10-31

    In this work, the CO{sub 2} capture capacity of a series of activated carbons derived from recycled polyethylene terephtalate (PET) was tested, facing two problems at the same time: minimising plastic waste and developing an adsorbent for CO{sub 2} capture. The PET raw material, obtained from post-consumer soft-drink bottles, was chemically activated with KOH. In addition, a series of nitrogen-enriched activated carbons was obtained by mixing the raw material with different nitrogen compounds (i.e., acridine, carbazole and urea). The influence of temperature on the CO{sub 2} capture capacity of the adsorbents was evaluated in a thermogravimetric system. The CO{sub 2} uptake was also related to the chemical and textural characteristics of the samples.

  6. Surface modification of low cost carbons for their application in the environmental protection

    Science.gov (United States)

    Arenillas, A.; Rubiera, F.; Parra, J. B.; Ania, C. O.; Pis, J. J.

    2005-10-01

    In this work, the CO 2 capture capacity of a series of activated carbons derived from recycled polyethylene terephtalate (PET) was tested, facing two problems at the same time: minimising plastic waste and developing an adsorbent for CO 2 capture. The PET raw material, obtained from post-consumer soft-drink bottles, was chemically activated with KOH. In addition, a series of nitrogen-enriched activated carbons was obtained by mixing the raw material with different nitrogen compounds (i.e., acridine, carbazole and urea). The influence of temperature on the CO 2 capture capacity of the adsorbents was evaluated in a thermogravimetric system. The CO 2 uptake was also related to the chemical and textural characteristics of the samples.

  7. MORPHOLOGY MODIFICATION OF CARBON CHROME MOLYBDENUM STEEL STRUCTURE INFLUENCED BY HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available The influence of temperature and time parameters of thermal treatment on structural change and properties of carbon chromium molybdenum steel has been studied. It has been shown that there are considerable areas with grainy morphology of cementite after high temperature tempering in the structure of steel. It assures reduction of steel microhardness by 25%, and there are no substantial structural changes after medium temperature tempering.

  8. MORPHOLOGY MODIFICATION OF CARBON CHROME MOLYBDENUM STEEL STRUCTURE INFLUENCEDBY HEAT TREATMENT

    OpenAIRE

    Lutsenko, V.; Anelkin, N.; Golubenko, T.; Scherbakov, V.; Lutsenko, O.

    2011-01-01

    The influence of temperature and time parameters of thermal treatment on structural change and properties of carbon chromium molybdenum steel has been studied. It has been shown that there are considerable areas with grainy morphology of cementite after high temperature tempering in the structure of steel. It assures reduction of steel microhardness by 25%, and there are no substantial structural changes after medium temperature tempering.

  9. Morphology modification of carbon chrome molybdenum steel structure influenced by heat treatment

    OpenAIRE

    V. A. Lutsenko; N. L. Anelkin; T. N. Golubenko; Scherbakov, V. I.; O. V. Lutsenko

    2011-01-01

    The influence of temperature and time parameters of thermal treatment on structural change and properties of carbon chromium molybdenum steel has been studied. It has been shown that there are considerable areas with grainy morphology of cementite after high temperature tempering in the structure of steel. It assures reduction of steel microhardness by 25%, and there are no substantial structural changes after medium temperature tempering.

  10. Impregnation and surface modification of polymers in liquid and supercritical carbon dioxide

    OpenAIRE

    Alm, Martin

    2007-01-01

    Interpenetrating polymer networks (IPN) of silicone rubber and poly(2-hydroxyethyl methacrylate) (PHEMA) produced in supercritical carbon dioxide (scCO2) are studied. The purpose is to increase the hydrophilicity of silicone without loosing transparency and make a suitable contact lens material. The compatibility between CO2 and silicone is quantified by applying the Flory-Huggins interaction approach. The compatibility is modeled as a function of pressure and temperature revea...

  11. Supramolecular modification of multi-walled carbon nanotubes with β-cyclodextrin for better dispersibility

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi, E-mail: 15828515724@163.com, E-mail: heyi@swpu.edu.cn; Xu, Zhonghao [Southwest Petroleum University, State Key Lab of Oil and Gas Reservoir Geology and Exploitation (China); Yang, Qiangbin; Wu, Feng; Liang, Lv [Southwest Petroleum University, School of Chemistry and Chemical Engineering (China)

    2015-01-15

    A novel hybrid material based on multi-walled carbon nanotubes was synthesized using organic synthesis, and the structures of multi-walled carbon nanotube derivatives were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, {sup 1}H NMR spectroscopy, transmission electron microscopy, and scanning electron microscope. The analytical results indicated that β-cyclodextrin (β-CD) was anchored to the surface of Multi-walled carbon nanotubes (MWCNTs, OD: 10–20 nm, length: 10–30 μm) and dispersion experiments exhibited that the introduction of β-CD onto the MWCNTs would dramatically enhance the dispersion of MWCNTs in both ethanol and water media; the suspensions were found to be very stable for 2 months, and the results of this technique confirmed the experimental results. This novel technique would provide a new, simple, and facile route to prepare the modified nanomaterials based on silane-coupling agent and β-CD, and the obtained modified nanomaterials have great potential practical significance and theoretical value to develop the novel organic–inorganic hybrid material, which was very useful for water treatment and biological medicine.

  12. Microbial Growth and Air Pollutants in the Corrosion of Carbonate Rocks: Results from Laboratory and Outdoor Experimental Tests

    Science.gov (United States)

    Moroni, B.; Poli, G.; Pitzurra, L.

    2003-04-01

    Microorganisms and atmospheric pollution are primary causes of deterioration of materials exposed to open air. Due to the variety of chemical-mineralogical compositions and textures, stone represents a variegated substrate that interacts with environmental fluids and particulate, and is a selective environment for biological proliferation. Carbonate rocks, in particular, are highly exposed to environmental decay and extremely susceptible to acid attack caused by atmospheric pollutants and metabolic acid production. The aim of this work is to study the combined effect of microbial contamination and atmospheric pollutants in the weathering of carbonate rocks by means of laboratory and outdoor exposure tests. Laboratory experiments performed on carbonate rocks allowed evaluation of the influence of the gas mixture in the chemical modifications of the lithic substrate, and formulation of a kinetic model of sulphation. The obtained results suggest that nucleation alternates with growth as leading processes in the development of sulphation. In particular, nucleation of the reaction products is the leading process in the initial period of sulphation, which is characterized by a marked slowdown of the reaction progress, whereas growth of the products is the leading process in the subsequent period of resumption of sulphation. In situ experiments performed by exposing limestone specimens at two air monitoring stations in Perugia with different degrees of urban air pollution showed high levels of fungal colonization at early times and the presence of weathering products (i.e. gypsum) in the longer term. Results point to a combined effect of microbial colonization and atmospheric pollutants in promoting the weathering of stone through acid attack within the film of water present on the surface of the exposed material, and through the oxidation of metal sulphide particulate pollutant to sulphate. Laboratory tests assaying the extent of fungal colonization and/or chemical

  13. Modification of the actions of some neuroactive drugs by growth hormone

    Energy Technology Data Exchange (ETDEWEB)

    Tang, L.C.; Cotzias, G.C.

    1976-02-01

    The flat serum growth hormone (GH) patterns of untreated parkinsonian patients develop diurnal rises during treatment with levodopa. This chronic exposure to excesses of GH might lead to the eventual emergence of the ''on-off'' phenomenon, which would indicate a need for animal experiments. Pretreatment of mice with GH increased (1) cerebral dopa and dopamine concentrations in levodopa-treated mice, (2) cerebral accumulation of injected tritiated apomorphine and tritiated thymidine, and (3) behavioral responses to levodopa, L-m-tyrosine, apomorphine hydrochloride, and oxotremorine. (auth)

  14. Early diagenetic growth of carbonate concretions in the upper Doushantuo Formation in South China and their significance for the assessment of hydrocarbon source rock

    Institute of Scientific and Technical Information of China (English)

    DONG Jin; ZHANG ShiHong; JIANG GanQing; ZHAO QingLe; LI HaiYan; SHI XiaoYing; LIU JunLai

    2008-01-01

    Mineralogical and textural characteristics and organic carbon composition of the carbonate concretions from the upper Doushantuo Formation (ca.551 Ma) in the eastern Yangtze Gorge area reveal their early diagenetic (shallow) growth in organic-rich shale.High organic carbon content (up to 10%) and abundance of framboidal pyrites in the hosting shale suggest an anoxic or euxinic depositional environment.Well-preserved cardhouse clay fabrics in the concretions suggest their formation at 0-3 m burial depth, likely associated with microbial decomposition of organic matter and anaerobic oxidation of methane.Gases through decomposition of organic matter and/or from methanogenesis created bubbles and cavities, and anaerobic methane oxidation at the sulfate reduction zone resulted in carbonate precipitation, filling in bubbles and cavities to form spherical structures of the concretions.Rock pyrolysis analyses show that the carbonate concretions have lower total organic carbon (TOC) content but higher effective carbon than those in the host rocks.This may be caused by enclosed organic matter in pores of the concretions so that organic matter was protected from further modification during deep burial and maintained high hydrocarbon generating potential even in over-matured source rock.As a microbialite sensu latu, concretions have special growth conditions and may provide important information on the microbial activities in depositional and early burial environments.

  15. Early diagenetic growth of carbonate concretions in the upper Doushantuo Formation in South China and their significance for the assessment of hydrocarbon source rock

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mineralogical and textural characteristics and organic carbon composition of the carbonate concretions from the upper Doushantuo Formation (ca. 551 Ma) in the eastern Yangtze Gorge area reveal their early diagenetic (shallow) growth in organic-rich shale. High organic carbon content (up to 10%) and abundance of framboidal pyrites in the hosting shale suggest an anoxic or euxinic depositional environment. Well-preserved cardhouse clay fabrics in the concretions suggest their formation at 0-3 m burial depth, likely associated with microbial decomposition of organic matter and anaerobic oxidation of methane. Gases through decomposition of organic matter and/or from methanogenesis created bubbles and cavities, and anaerobic methane oxidation at the sulfate reduction zone resulted in carbonate precipitation, filling in bubbles and cavities to form spherical structures of the concretions. Rock pyrolysis analyses show that the carbonate concretions have lower total organic carbon (TOC) content but higher effective carbon than those in the host rocks. This may be caused by enclosed organic matter in pores of the concretions so that organic matter was protected from further modification during deep burial and maintained high hydrocarbon generating potential even in over-matured source rock. As a microbialite sensu latu, concretions have special growth conditions and may provide important information on the microbial activities in depositional and early burial environments.

  16. Modification of multiwall carbon nanotubes with ruthenium(II) terpyridine complex

    Energy Technology Data Exchange (ETDEWEB)

    Li Huayang [Clark Atlanta University, Chemistry Department (United States); Wu Jie [Georgia Institute of Technology, School of Materials Science and Engineering (United States); Jeilani, Yassin A. [Spelman College, Department of Chemistry (United States); Ingram, Conrad W.; Harruna, Issifu I., E-mail: iharruna@cau.edu [Clark Atlanta University, Chemistry Department (United States)

    2012-06-15

    Multiwall carbon nanotubes (MWCNTs, 1-3 {mu}M in length and 20-25 nm in diameter) were initially functionalized with a 2,2 Prime :6 Prime 2 Double-Prime -terpyridine-chelated ruthenium(II) complex by covalent amidation. The resulting functionalized ruthenium MWCNTs (RuMWCNTs, 1-2 {mu}M in length and 10-20 nm in diameter) were characterized by thermogravimetric analysis, X-ray photoelectronic spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM). Thermogravimetric experiments of RuMWCNTs show that the functional group coverage of terpyridine-rutheniun-terpyridine (tpy-Ru-tpy) is 0.7036 mmol/1.0 g carbon. The XPS results show N1s and Ru3d{sup 5/5} signals, confirming the presence of tpy-Ru-tpy groups on the surface of MWCNTs. The FTIR spectra of the RuMWCNTs display the typical stretching mode of the carboxyl group (amide I) and a combination of amide N-H and C-N stretching mode (amide II). The Raman D- and G-line peak intensity ratio of RuMWCNTs (ID/IG 2.21) exceeds that of pristine MWCNTs (ID/IG 1.93), suggesting covalent bonding of tpy-Ru-tpy to MWCNTs and supporting the disruption of the graphitic integrity due to the proposed covalent functionalization. High-resolution SEM images confirm that tpy-Ru-tpy moieties are interconnected or attached as aggregated structures (100-200-nm range) on the surfaces of the carbon nanotubes after functionalization. The electrical property of RuMWCNTs depicts higher resistance (10.10 M Ohm-Sign ) than that of OX-MWCNTs (15.38 k Ohm-Sign ).

  17. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    International Nuclear Information System (INIS)

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O3 attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides

  18. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A superhydrophobic and oleophilic sorbent powder was developed by surface modification of commercially available hygroscopic magnesium carbonate with palmitic acid. • The sorbent powder is capable of scavenging oil for about three times its weight. • Reusability test of the sorbent powder infers the retention of hydrophobic as well as oleophilic character even after three times of re-use. • The powder was found to possess sufficient buoyancy, high rate of uptake and selectivity towards oil which is necessary for oil spill clean-ups. - Abstract: The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation

  19. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    Energy Technology Data Exchange (ETDEWEB)

    Patowary, Manoj [Advanced Technology Development Center, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Ananthakrishnan, Rajakumar, E-mail: raja.iitchem@yahoo.com [Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302 (India); Pathak, Khanindra [Department of Mining Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302 (India)

    2014-11-30

    Graphical abstract: - Highlights: • A superhydrophobic and oleophilic sorbent powder was developed by surface modification of commercially available hygroscopic magnesium carbonate with palmitic acid. • The sorbent powder is capable of scavenging oil for about three times its weight. • Reusability test of the sorbent powder infers the retention of hydrophobic as well as oleophilic character even after three times of re-use. • The powder was found to possess sufficient buoyancy, high rate of uptake and selectivity towards oil which is necessary for oil spill clean-ups. - Abstract: The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation.

  20. The effect of various carbon sources on the growth of single-celled cyanophyta

    Science.gov (United States)

    Avilov, I. A.; Sidorenkova, E. S.

    1983-01-01

    In 19 strains of unicellular blue-green algae, belonging to general Synechococcus, Synechocystis, Aphanocapsa and Aphanothece, the capacity of growth under mixotrophic conditions in mineral media with organic carbon sources (carbohydrates, polyols) was investigated. At moderate light intensity (1200 lx) and 0.5% of carbon source there was revealed: (1) Stimulation of growth; (2) Partial or complete inhibition of growth; (3) No influence of carbohydrate and polyols on the growth of some algae strains. Three physiological groups for the investigated strains have been outlined on the basis of data obtained. The possibility of using the differences revealed in classification of unicellular blue-green algae is discussed.

  1. Surface Modification of Carbon Nanotubes with Conjugated Polyelectrolytes: Fundamental Interactions and Applications in Composite Materials, Nanofibers, Electronics, and Photovoltaics

    KAUST Repository

    Ezzeddine, Alaa

    2015-10-01

    Ever since their discovery, Carbon nanotubes (CNTs) have been renowned to be potential candidates for a variety of applications. Nevertheless, the difficulties accompanied with their dispersion and poor solubility in various solvents have hindered CNTs potential applications. As a result, studies have been developed to address the dispersion problem. The solution is in modifying the surfaces of the nanotubes covalently or non-covalently with a desired dispersant. Various materials have been employed for this purpose out of which polymers are the most common. Non-covalent functionalization of CNTs via polymer wrapping represents an attractive method to obtain a stable and homogenous CNTs dispersion. This method is able to change the surface properties of the nanotubes without destroying their intrinsic structure and preserving their properties. This thesis explores and studies the surface modification and solublization of pristine single and multiwalled carbon nanotubes via a simple solution mixing technique through non-covalent interactions of CNTs with various anionic and cationic conjugated polyelectrolytes (CPEs). The work includes studying the interaction of various poly(phenylene ethynylene) electrolytes with MWCNTs and an imidazolium functionalized poly(3-hexylthiophene) with SWCNTs. Our work here focuses on the noncovalent modifications of carbon nanotubes using novel CPEs in order to use these resulting CPE/CNT complexes in various applications. Upon modifying the CNTs with the CPEs, the resulting CPE/CNT complex has been proven to be easily dispersed in various organic and aqueous solution with excellent homogeneity and stability for several months. This complex was then used as a nanofiller and was dispersed in another polymer matrix (poly(methyl methacrylate), PMMA). The PMMA/CPE/CNT composite materials were cast or electrospun depending on their desired application. The presence of the CPE modified CNTs in the polymer matrix has been proven to enhance

  2. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Directory of Open Access Journals (Sweden)

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  3. Microstructure modification during the growth of TiN hard coatings

    International Nuclear Information System (INIS)

    TiN hard coatings are deposited using reactive magnetron sputtering with variations of the bias voltage during the deposition. The correlations between the bias voltage and the generation of structural gradients in TiN are investigated. Using X-ray diffraction, partly combined with definite film removals, residual stresses and textures are measured in dependence on the distance to the surface. Accompanying studies using transmission electron microscopy (TEM) support the results of X-ray investigations. It is shown that a depth profile of residual stresses and textures can be generated tailor-made. The formation of these gradients is mainly influenced by the applied bias voltage in each layer of the coating. Growth selection processes are interrupted due to a high nucleation rate in each layer. (author). 4 refs., 1 fig., 1 tab

  4. Surface modification of oil fly ash and its application in selective capturing of carbon dioxide

    Science.gov (United States)

    Yaumi, Ali L.; Hussien, Ibnelwaleed A.; Shawabkeh, Reyad A.

    2013-02-01

    Oil fly ash from power generation plants was activated with 30% NH4OH and used for selective adsorption of carbon dioxide from CO2/N2 mixture. The treated samples were characterized for their surface area, morphology, crystalline phase, chemical composition and surface functional groups. Energy dispersive X-ray analysis showed an increase in the carbon contents from 45 to 73 wt% as a result of leaching out metal oxides. XRD proved that chemical activation of ash resulted in diminishing of major crystalline phases of zeolite, and other alumino-silicates leaving only quartz and mullite. BET analysis showed an increase in surface area from 59 to 318 m2/g after chemical activation and the pore volume increased from 0.0368 to 0.679 cm3/g. This increase in pore volume is supported by the results of SEM, where more micropores were opened with well-defined particle sizes and porous structure. The TGA of the treated fly ash showed stability at higher temperature as the weight loss decreased with increasing temperature. For treated ash, the FTIR displayed new peaks of amine functional group. The treated ash was used for the removal of CO2 from CO2/N2 mixture and the maximum adsorption/capturing capacity was found to be 240 mg/g. This capacity increases with increase in initial gas concentration, inlet flow rate and temperature suggesting the endothermic nature of the interaction between the gas molecules and the surface of the ash.

  5. Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile–butadiene–styrene blends

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.B. [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Chen, Y. [School of materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002 (China); Wang, F. [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Hong, R.Y., E-mail: rhong@suda.edu.cn [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); College of Chemistry, Chemical Engineering and Materials Science & Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China)

    2015-10-01

    Highlights: • CB was modified through the method of oxygen plasma treatment. • Surface modified CB applied in PC/ABS blends. • The treated CB showed better compatibility in PC/ABS blends. • PC/ABS blends with treated CB showed better mechanical and thermal properties. - Abstract: The surface of carbon black was modified by oxygen plasma treatment for different times (10, 20 and 30 min). In order to increase the applicability of carbon black (CB), functional groups were grafted on the generally inert surface of CB using oxygen plasma. The surface compositional and structural changes that occurred on CB were investigated by SEM, FT-IR, Raman spectroscopy, XRD and BET. Subsequently, CB reinforced polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) composites were prepared by internal batch mixing with the addition of different content of CB (3, 6, 9, 12 wt%). The morphology of PC/ABS/CB (7/3/6 wt%) nanocomposites was studied through scanning electron microscopy. Observations of SEM images showed that the plasma-treated CB had a better dispersion in the blend matrix. Moreover, the mechanical tests showed that the tensile strength and impact strength were improved by 32.4% and 22.5%, respectively, with the addition of plasma-treated CB. In addition, the thermal stability was improved and glass transition temperatures of both PC and ABS increased as shown by TGA and DSC, respectively.

  6. Structural Modifications And Mechanical Degradation Of Ion Irradiated Glassy Polymer Carbon

    Science.gov (United States)

    Abunaemeh, Malek; Seif, Mohamed; Elsamadicy, Abdalla; Muntele, Claudiu; Ila, Daryush

    2011-06-01

    The TRISO fuel has been used in some of the Generation IV nuclear reactor designs. It consists of a fuel kernel of UOx coated with several layers of materials with different functions. Pyrolytic carbon (PyC) is one of the materials in the layers. In this study we investigate the possibility of using Glassy Polymeric Carbon (GPC) as an alternative to PyC. GPC is used for artificial heart valves, heat-exchangers, and other high-tech products developed for the space and medical industries. This lightweight material can maintain dimensional and chemical stability in adverse environment and very high temperatures (up to 3000 °C). In this work, we are comparing the changes in physical and microstructure properties of GPC after exposure to irradiation fluence of 5 MeV Ag equivalent to a 1 displacement per atom (dpa) at samples prepared at 1000, 1500 and 2000 °C. The GPC material is manufactured and tested at the Center for Irradiation Materials (CIM) at Alabama A&M University. Transmission electron microscopy (TEM) and Raman spectroscopy were used for analysis.

  7. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    Science.gov (United States)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  8. Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile–butadiene–styrene blends

    International Nuclear Information System (INIS)

    Highlights: • CB was modified through the method of oxygen plasma treatment. • Surface modified CB applied in PC/ABS blends. • The treated CB showed better compatibility in PC/ABS blends. • PC/ABS blends with treated CB showed better mechanical and thermal properties. - Abstract: The surface of carbon black was modified by oxygen plasma treatment for different times (10, 20 and 30 min). In order to increase the applicability of carbon black (CB), functional groups were grafted on the generally inert surface of CB using oxygen plasma. The surface compositional and structural changes that occurred on CB were investigated by SEM, FT-IR, Raman spectroscopy, XRD and BET. Subsequently, CB reinforced polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) composites were prepared by internal batch mixing with the addition of different content of CB (3, 6, 9, 12 wt%). The morphology of PC/ABS/CB (7/3/6 wt%) nanocomposites was studied through scanning electron microscopy. Observations of SEM images showed that the plasma-treated CB had a better dispersion in the blend matrix. Moreover, the mechanical tests showed that the tensile strength and impact strength were improved by 32.4% and 22.5%, respectively, with the addition of plasma-treated CB. In addition, the thermal stability was improved and glass transition temperatures of both PC and ABS increased as shown by TGA and DSC, respectively

  9. A simple method to synthesize carbon nanofibers with a parallel growth mode and their capacitive properties

    International Nuclear Information System (INIS)

    Carbon nanofibers with a parallel growth mode were synthesized by a chemical vapor deposition (CVD) method using a nickel catalyst precursor and acetylene carbon source gas at 550 °C, the growth mechanism and growth model of which were discussed and established, respectively. In the case of no pretreatment, the Brunauer–Emmett–Teller (BET) surface area and total pore volume of the as-synthesized carbon nanofibers were 214 m2·g−1 and 0.36 cm3·g−1, respectively. The maximum specific capacitance of the carbon nanofibers was 205.8 F·g−1, examined at a 0.20 V·s−1 sweep rate. The structure and morphology of the carbon nanofibers were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and x-ray powder diffraction (XRD). (paper)

  10. Growth of Graphene Nanoribbons and Carbon Onions from Polymer

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Song; LU Bing-An; XIE Er-Qing

    2011-01-01

    Graphene nanoribbons and carbon onions are directly prepared by electron beam irradiation of polyacrylonitrile and expanded polystyrene nanofibers,respectively.By controlling the irradiation process in a high resolution transmission electron microscope,the number of layers of the graphene nanoribbons,as well as the dimension of the carbon onions,can be controlled.It is found that the initial diameter of the nanofiber has a strong effect on the final results.A mechanism is proposed to explain the transformation of polymer nanofibers to carbon nanostructures under electron beam irradiation.This supposes that the polymer nanofibers are first carbonized and then graphitized as a result of the high energy electrons.According to the mechanism,it is believed that all polymer nanofibers could be carbonized and then converted to graphene nanoribbons by proper electron beam irradiation.

  11. GidA, a tRNA modification enzyme, contributes to the growth and virulence of Streptococcus suis serotype 2

    Directory of Open Access Journals (Sweden)

    Ting eGao

    2016-04-01

    Full Text Available Glucose-inhibited division protein (GidA, is a tRNA modification enzyme functioning together with MnmE in the addition of a carboxymethylaminomethyl group to position 5 of the anticodon wobble uridine of tRNA. Here, we report a GidA homologue from a Chinese isolate SC-19 of the zoonotic Streptococcus suis serotype 2 (SS2. gidA disruption led to a defective growth, increased capsule thickness, and reduced hemolytic activity. Moreover, the gidA deletion mutant (ΔgidA displayed reduced mortality and bacterial loads in mice, reduced ability of adhesion to and invasion in epithelial cells, and increased sensitivity to phagocytosis. The iTRAQ analysis identified 372 differentially expressed (182 up- and 190 down-regulated proteins in ΔgidA and SC-19. Numerous DNA replication, cell division and virulence associated proteins were downregulated, whereas many capsule synthesis enzymes were upregulated by gidA disruption. This is consistent with the phenotypes of the mutant. Thus, GidA is a translational regulator that plays an important role in the growth, cell division, capsule biosynthesis, and virulence of SS2. Our findings provide new insight into the regulatory function of GidA in bacterial pathogens.

  12. Carbon allocation during defoliation: testing a defence-growth trade-off in balsam fir

    Directory of Open Access Journals (Sweden)

    Annie eDeslauriers

    2015-05-01

    Full Text Available During repetitive defoliation events, carbon can become limiting for trees. To maintain growth and survival, the resources have to be shared more efficiently, which could result in a trade-off between the different physiological processes of a plant. The objective of this study was to assess the effect of defoliation in carbon allocation of balsam fir [Abies balsamea (L. Mill.] to test the presence of a trade-off between allocation to growth, carbon storage and defence. Three defoliation intensities [control (C-trees, 0% defoliation, moderately (M-trees, 41 to 60% and heavily (H-trees, 61 to 80% defoliated] were selected in order to monitor several variables related to stem growth (wood formation in xylem, carbon storage in stem and needle (non-structural soluble sugars and starch and defence components in needles (terpenoids compound from May to October 2011. The concentration of starch was drastically reduced in both wood and leaves of H-trees with a quasi-absence of carbon partitioning to storage in early summer. Fewer kinds of monoterpenes and sesquiterpenes were formed with an increasing level of defoliation indicating a lower carbon allocation for the production of defence. The carbon allocation to wood formation gradually reduced at increasing defoliation intensities, with a lower growth rate and fewer tracheids resulting in a reduced carbon sequestration in cell walls. The hypothesis of a trade-off between the allocations to defence components and to non-structural (NCS and structural (growth carbon was rejected as most of the measured variables decreased with increasing defoliation. The starch amount was highly indicative of the tree carbon status at different defoliation intensity and future research should focus on the mechanism of starch utilisation for survival and growth following an outbreak.

  13. Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir

    Science.gov (United States)

    Deslauriers, Annie; Caron, Laurie; Rossi, Sergio

    2015-01-01

    During repetitive defoliation events, carbon can become limiting for trees. To maintain growth and survival, the resources have to be shared more efficiently, which could result in a trade-off between the different physiological processes of a plant. The objective of this study was to assess the effect of defoliation in carbon allocation of balsam fir [Abies balsamea (L.) Mill.] to test the presence of a trade-off between allocation to growth, carbon storage, and defense. Three defoliation intensities [control (C-trees, 0% defoliation), moderately (M-trees, 41–60%), and heavily (H-trees, 61–80%) defoliated] were selected in order to monitor several variables related to stem growth (wood formation in xylem), carbon storage in stem and needle (non-structural soluble sugars and starch), and defense components in needles (terpenoids compound) from May to October 2011. The concentration of starch was drastically reduced in both wood and leaves of H-trees with a quasi-absence of carbon partitioning to storage in early summer. Fewer kinds of monoterpenes and sesquiterpenes were formed with an increasing level of defoliation indicating a lower carbon allocation for the production of defense. The carbon allocation to wood formation gradually reduced at increasing defoliation intensities, with a lower growth rate and fewer tracheids resulting in a reduced carbon sequestration in cell walls. The hypothesis of a trade-off between the allocations to defense components and to non-structural (NCS) and structural (growth) carbon was rejected as most of the measured variables decreased with increasing defoliation. The starch amount was highly indicative of the tree carbon status at different defoliation intensity and future research should focus on the mechanism of starch utilization for survival and growth following an outbreak. PMID:26029235

  14. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid.

    Science.gov (United States)

    Thiagarajan, Soundappan; Tsai, Tsung-Hsuan; Chen, Shen-Ming

    2009-04-15

    A glassy carbon electrode (GCE) has been modified by electrochemical oxidation in mild acidic media (0.1 mol l(-1) H(2)SO(4)) and could be applied for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Oxidized GCE shows a single redox couple (E(0)'=-2.5 mV) which is based on the formation functional groups during the electrochemical pretreatment process. Proposed GCE successfully decreases the over potentials for the oxidation process of these species (AA, DA and UA) comparing with bare GCE. The oxidized GCE has its own simplicity, stability, high sensitivity and possesses the potential for simultaneous determination of AA, DA and UA. PMID:19162467

  15. Chemical modification of multiwalled carbon nanotube with a bifunctional caged ligand for radioactive labelling

    International Nuclear Information System (INIS)

    Graphical abstract: The findings of this work describe a new method that can be utilised to radioactively label multiwalled carbon nanotube (MWCNT) powders with the use of a bi-functional cage ligand. -- Abstract: Carboxyl-functionalized multiwalled carbon nanotubes (MWCNTs) have been successfully radiolabelled with cobalt-57 (57Co) (T1/2 = 270 days) via the attachment of the bifunctional caged ligand MeAMN3S3sar. In this study MeAMN3S3sar has been synthesized and coupled to MWCNTs to form the conjugate MWCNT–MeAMN3S3sar. Synthesis was confirmed with nuclear magnetic resonance. X-ray photoelectron spectroscopy (XPS) confirmed the conjugation. Non-radioactive labelling of this conjugate was completed with Cu(II) ions to confirm the stability of the MeAMN3S3sar after coupling with the MWCNTs. The complexation of the Cu(II) was also confirmed with XPS. Transmission electron microscopy was used to demonstrate that the coupling reaction had a negligible effect on the size and shape of the MWCNTs. Radiolabelling of the MWCNT–MeAMN3S3sar conjugate and pristine (untreated) MWCNTs (non-specific) with the gamma-emitting radioactive isotope 57Co were compared. The radiolabelling efficiency of the MWCNT–MeAMN3S3sar conjugate was significantly higher (95% vs. 0.1%) (P ⩽ 0.001) than for the unconjugated pristine MWCNTs. This will allow for the potential tracking of nanoparticle movement in vitro and in vivo

  16. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    Science.gov (United States)

    Cao, Zongshuang; Qiu, Li; Yang, Yongzhen; Chen, Yongkang; Liu, Xuguang

    2015-10-01

    The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e-MWCNTs caused an enhancement in the glass transition temperature of the composites. Wear tests have shown that the friction coefficient of e-MWCNT/PEEK composites decreased significantly during the test after the running-in period. This suggests that there is an obvious improvement in tribological properties of e-MWCNT/PEEK composites. Overall, the e-MWCNT/PEEK composites have exhibited improved properties and are promising for their applications in industry.

  17. Effects of roof modifications on growth performance and physiological changes of crossbred beef heifers (Bos indicus

    Directory of Open Access Journals (Sweden)

    Titaporn Khongdee

    2016-04-01

    Full Text Available The objective of the experiment was to examine and evaluate growth performance and physiological changes of cattle raised under normal roof versus a modified roof. Ten Hindu Brazil x Brahman heifers were used in the experiment. The animals were divided randomly into two groups. They were used to evaluate the effects of modified roofing on the subjects’ physiological responses to heat stress and performance under hot humid conditions. It was found that the modified roof (MR offered a more efficient way to lower heat stress in the cattle than the normal roof (NR. The difference was sufficient to enable the NR at 14:00 p.m. to have a THI higher (P<0.001 than that of the MR. Roof temperature of the MR (35.67±4.28°C was found to be lower (P<0.01 than that of the NR (44.49±7.61°C. Rectal temperature (RT and average rate of gain (ADG of the cattle kept under MR (39.02°C; 0.632 kg/d was lower (P<0.01 and higher (P<0.01, respectively than the NR (40.05 °C; 0.350 kg/d cattle

  18. Experimental Modification of Rat Pituitary Growth Hormone Cell Function During and After Spaceflight

    Science.gov (United States)

    Hymer, W. C.; Salada, T.; Nye, P.; Grossman, E. J.; Lane, P. K.; Grindeland, R. E.

    1996-01-01

    Space-flown rats show a number of flight-induced changes in the structure and function of pituitary Growth Hormone (GH) cells after in vitro postflight testing. To evaluate the possible effects of microgravity on GH cells themselves, freshly dispersed rat anterior pituitary gland cells were seeded into vials containing serum +/- 1 micron HydroCortisone (HC) before flight. Five different cell preparations were used: the entire mixed-cell population of various hormone-producing cell types, cells of density less than 1.071 g/sq cm (band 1), cells of density greater than 1.071 g/sq cm (band 2), and cells prepared from either the dorsal or ventral part of the gland. Relative to ground control samples, bioactive GH released from dense cells during flight was reduced in HC-free medium but was increased in HC-containing medium. Band I and mixed cells usually showed opposite HC-dependent responses. Release of bioactive GH from ventral flight cells was lower; postflight responses to GH-releasing hormone challenge were reduced, and the cytoplasmic area occupied by GH in the dense cells was greater. Collectively, the data show that the chemistry and cellular makeup of the culture system modifies the response of GH cells to microgravity. As such, these cells offer a system to identify gravisensing mechanisms in secretory cells in future microgravity research.

  19. Nucleation and aggregative growth of palladium nanoparticles on carbon electrodes: Experiment and kinetic model

    NARCIS (Netherlands)

    Kim, Yang-Rae; Lai, Stanley C.S.; McKelvey, Kim; Zhang, Guohui; Perry, David; Miller, Thomas S.; Unwin, Patrick R.

    2015-01-01

    The mechanism and kinetics of the electrochemical nucleation and growth of palladium (Pd) nanoparticles (NPs) on carbon electrodes have been investigated using a microscale meniscus cell on both highly oriented pyrolytic graphite (HOPG) and a carbon-coated transmission electron microscopy (TEM) grid

  20. The kinetics of Scenedesmus obliquus microalgae growth utilizing carbon dioxide gas from biogas

    International Nuclear Information System (INIS)

    Microalgae Scenedesmus obliquus was cultured in a laboratory photobioreactor to determine the efficacy of using biogas as a carbon source for the microalgae's growth. The biogas contained ∼60% CH4 and ∼40% CO2, and was derived from an anaerobic digester operating from animal wastes, and an anaerobic reactor utilizing high strength wastewater. The results showed that biogas is a viable carbon source for microalgae growth and that significant portions of the biogas' CO2 can be utilized for algae growth, resulting in a biogas having a high concentration of methane. This paper develops the kinetic expressions for the algae's growth by assuming an autocatalytic reaction between carbon substrate and microalgae. The maximum specific growth rate and biomass productivity of S. obliquus were 0.56 d−1 and 0.145 g L−1d−1 respectively. The biomass contained 51.8% carbon and higher heating value (HHV) was 22.9 MJ kg−1. - Highlights: • Biogas is a viable carbon source for microalgae growth. • Biomass production rate and characteristics were assessed. • Scenedesmus obliquus can adjust to grow with high concentration of CO2 in the carbon source

  1. Growth Temperature Effect on Carbon Nano tubes Formation by Spray Pyrolysis Method

    International Nuclear Information System (INIS)

    Carbon nano tubes has been produced by using spray pyrolysis method with no carrier gas. Carbon nano tubes were formulated from a mixture a ferrocene and benzene with certain ratio and then the mixture were injected by the sprayer into the furnace. Growth temperature was optimized in the range of 650 until 850 oC to get the high quality of carbon nano tubes. These were characterized by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX). (author)

  2. Growth of graphene films from non-gaseous carbon sources

    Science.gov (United States)

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  3. Elevated pressure of carbon dioxide affects growth of thermophilic Petrotoga sp.

    Science.gov (United States)

    Rakoczy, Jana; Gniese, Claudia; Schippers, Axel; Schlömann, Michael; Krüger, Martin

    2014-05-01

    Carbon capture and storage (CCS) is considered a promising new technology which reduces carbon dioxide emissions into the atmosphere and thereby decelerates global warming. During CCS, carbon dioxide is captured from emission sources (e.g. fossil fuel power plants or other industries), pressurised, and finally stored in deep geological formations, such as former gas or oil reservoirs as well as saline aquifers. However, with CCS being a very young technology, there are a number of unknown factors that need to be investigated before declaring CCS as being safe. Our research investigates the effect of high carbon dioxide concentrations and pressures on an indigenous microorganism that colonises a potential storage site. Growth experiments were conducted using the thermophilic thiosulphate-reducing bacterium Petrotoga sp., isolated from formation water of the gas reservoir Schneeren (Lower Saxony, Germany), situated in the Northern German Plain. Growth (OD600) was monitored over one growth cycle (10 days) at different carbon dioxide concentrations (50%, 100%, and 150% in the gas phase), and was compared to control cultures grown with 20% carbon dioxide. An additional growth experiment was performed over a period of 145 days with repeated subcultivation steps in order to detect long-term effects of carbon dioxide. Cultivation over 10 days at 50% and 100% carbon dioxide slightly reduced cell growth. In contrast, long-term cultivation at 150% carbon dioxide reduced cell growth and finally led to cell death. This suggested a more pronounced effect of carbon dioxide at prolonged cultivation and stresses the need for a closer consideration of long-term effects. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a sterilising effect on cells. This effect was not observed in control cultures

  4. Intracellular modification of 125I-labeled epidermal growth factor by normal human foreskin fibroblasts

    International Nuclear Information System (INIS)

    Intracellular processing of 125I-labeled epidermal growth factor (EGF) in normal human foreskin fibroblasts was examined after incubation with saturating concentrations of [125I]EGF. This report describes the column chromatographic separation of multiple processed forms of EGF generated by human foreskin fibroblasts and their structural characterization. More than 95% of the cell-bound [125I]EGF was converted into multiple forms, which were separated into four distinct peaks of radioactivity using columns of Bio-Gel P-150 equilibrated with 0.2% sodium dodecyl sulfate. These were designated peaks 1-4. Cellular generation of these four peaks was dependent on culture conditions. Differences in absolute and relative amounts of peaks 1-4 were observed as a function of time of incubation at 37 C. In addition, chromatographic profiles of cell-associated 125I varied in relation to cell density. The radioactivity in peak 1 comigrated with 125I-labeled native EGF on nondenaturing polyacrylamide gels (pH 9.5), whereas peaks 2 and 3 exhibited more rapid electrophoretic mobilities. Electrophoretic mobilities of the radioactivity in peaks 2 and 3 were indistinguishable from those of chemically prepared derivatives of [125I]EGF which were lacking either one or six amino acid residues from the carboxyterminus, respectively. The EGF receptor bound the radioactive material in peak 2 with an affinity equal to or greater than that of EGF; however, the radioactivity in peak 3 was bound to a much lesser extent. The radiolabel in both peaks 2 and 3 was greater than 95% precipitable by antiserum to native EGF. The labeled material in peak 4 was composed of [125I]monoiodotyrosine, 125I-, and an unidentified peptide. None of the radiolabeled compounds in peak 4 interacted with the EGF receptor or with antiserum to native EGF

  5. Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Stefan Burén

    Full Text Available BACKGROUND: The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited. CONCLUSIONS/SIGNIFICANCE: We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native

  6. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

    Directory of Open Access Journals (Sweden)

    Bussy Cyrill

    2012-11-01

    Full Text Available Abstract Given the increasing use of carbon nanotubes (CNT in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT specifically synthesized following a similar production process (aerosol-assisted CVD, and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects and chemical (i.e. oxidation modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized compared to long (pristine MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.

  7. Carbonate platform growth and demise offshore Central Vietnam

    DEFF Research Database (Denmark)

    Fyhn, Michael B.W.; Boldreel, Lars Ole; Nielsen, Lars H.;

    2013-01-01

    Miocene carbonate platforms cover a large part of the Central Vietnamese South China Sea margin. Early carbonate deposition took place on two regional platforms separated by a narrow depression developed along the trace of the East Vietnam Boundary Fault Zone. West of the East Vietnam Boundary...... nutrient input derived from the uplifted mainland, possibly enhanced by deteriorated climatic conditions and rapid sea-level fluctuations promoting platform drowning....

  8. Dietary intake, growth and development of children with ADHD in a randomized clinical trial of Ritalin and Melatonin co-administration: Through circadian cycle modification or appetite enhancement?

    OpenAIRE

    Seyed-Ali Mostafavi; Mohammad Reza Mohammadi; Payam Hosseinzadeh; Mohammad Reza Eshraghian; Shahin Akhondzadeh; Mohammad.Javad Hosseinzadeh-Attar; Elham Ranjar; Seyed. Mohammad-Ali Kooshesh; Seyed-Ali Keshavarz

    2012-01-01

    Objective: It is postulated that ritalin may adversely affect sleep, appetite, weight and growth of some children with ADHD. Therefore, we aimed to evaluate melatonin supplementation effects on dietary intake, growth and development of children with ADHD treated with ritalin through circadian cycle modification and appetite mechanisms.Method: After obtaining consent from parents, 50 children aged 7-12 with combined form of AD/HD were randomly divided into two groups based on gender blocks: on...

  9. Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chang-Hsiao; Chuang, Shih-Chang; Lee, Yu-Tao; Chang, Yen-Chung; Yao, Da-Jeng [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Su, Huan-Chieh; Yen, Shiang-Jie; Yew, Tri-Rung [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yung-Chan; Chen, Hsin [Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yeh, Shih-Rung, E-mail: djyao@mx.nthu.edu.tw [Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2010-12-03

    To decrease the impedance of microelectrode arrays, for neuroscience applications we have fabricated and tested MEA based on multi-walled carbon nanotubes. With decreasing physical size of a microelectrode, its impedance increases and charge-transfer capability decreases. To decrease the impedance, the effective surface area of the electrode must generally be increased. We explored the effect of plasma treatment on the surface wettability of MWCNT. With a steam-plasma treatment the surface of MWCNT becomes converted from superhydrophobic to superhydrophilic; this hydrophilic property is attributed to -OH bonding on the surface of MWCNT. We reported the synthesis at 400 deg. C of MWCNT on nickel-titanium multilayered metal catalysts by thermal chemical vapor deposition. Applying plasma with a power less than 25 W for 10 s improved the electrochemical and biological properties, and circumvented the limitation of the surface reverting to a hydrophobic condition; a hydrophilic state is maintained for at least one month. The MEA was used to record neural signals of a lateral giant cell from an American crayfish. The response amplitude of the action potential was about 275 {mu}V with 1 ms period; the recorded data had a ratio of signal to noise up to 40.12 dB. The improved performance of the electrode makes feasible the separation of neural signals and the recognition of their distinct shapes. With further development the rapid treatment will be useful for long-term recording applications.

  10. Modification of diamond-like carbon films by nitrogen incorporation via plasma immersion ion implantation

    Science.gov (United States)

    Flege, S.; Hatada, R.; Hoefling, M.; Hanauer, A.; Abel, A.; Baba, K.; Ensinger, W.

    2015-12-01

    The addition of nitrogen to diamond-like carbon films affects properties such as the inner stress of the film, the conductivity, biocompatibility and wettability. The nitrogen content is limited, though, and the maximum concentration depends on the preparation method. Here, plasma immersion ion implantation was used for the deposition of the films, without the use of a separate plasma source, i.e. the plasma was generated by a high voltage applied to the samples. The plasma gas consisted of a mixture of C2H4 and N2, the substrates were silicon and glass. By changing the experimental parameters (high voltage, pulse length and repetition rate and gas flow ratio) layers with different N content were prepared. Additionally, some samples were prepared using a DC voltage. The nitrogen content and bonding was investigated with SIMS, AES, XPS, FTIR and Raman spectroscopy. Their influence on the electrical resistivity of the films was investigated. Depending on the preparation conditions different nitrogen contents were realized with maximum contents around 11 at.%. Those values were compared with the nitrogen concentration that can be achieved by implantation of nitrogen into a DLC film.

  11. Modification of granular activated carbon surface by chitosan coating for geosmin removal: sorption performances.

    Science.gov (United States)

    Vinitnantharat, S; Rattanasirisophon, W; Ishibashi, Y

    2007-01-01

    This study presents the results of the sorption performances for geosmin removal by sorption onto granular activated carbons (GAC) manufactured from different raw materials of coconut shell and bituminous coal. The surface of GAC was modified by chitosan coating. The 90% deacetylated chitosan flakes were used for coating on GAC with the GAC: chitosan ratio of 5:1. The surface of GAC was characterised by scanning electron microscope (SEM) analysis, Fourier transform infrared spectroscopy and measurement of the pH solution of GAC samples. The sorption of geosmin onto the chitosan for both uncoated and coated GACs could be described by the Freundlich adsorption model. Data revealed that the sequence of Freundlich constant (K(F)) was chitosan coated bitominous coal (CB) > uncoated bituminous coal (UB) > chitos approximately equal to an coated coconut shell (CC) approximately equal to uncoated coconut shell (UC). The bituminous coal based GAC with chitosan coating had a maximum capacity of 23.57 microg/g which was approximately two-fold of uncoated bituminous coal based GAC. Two simplified kinetic models, pseudo-first order and pseudo-second order, were tested to investigate the sorption mechanisms. It was found that the intraparticle diffusion was a rate controlling step for the sorption and followed the pseudo-second order equation.

  12. Microporous and mesoporous carbide-derived carbons for strain modification of electromechanical actuators.

    Science.gov (United States)

    Torop, Janno; Arulepp, Mati; Sugino, Takushi; Asaka, Kinji; Jänes, Alar; Lust, Enn; Aabloo, Alvo

    2014-03-18

    Low-voltage stimuli-responsive actuators based on carbide-derived carbon (CDC) porous structures were demonstrated. Bending actuators showed a differential electromechanical response defined by the porosity of the CDC used in the electrode layer. Highly porous CDCs prepared from TiC (mainly microporous), B4C (micromesoporous), and Mo2C (mainly mesoporous) precursors were selected to demonstrate the influence of porosity parameters on the electromechanical performance of actuators. CDC-based bending-type actuators showed a porosity-driven displacement response over a frequency range of 200 to 0.005 Hz at an applied excitation voltage of ±2 V. The displacement response of the CDC actuators increased with an increasing number of mesopores in the electrode layer, and the generated strain of the bending actuators was proportional to the total porosity (micropores and mesopores) of the CDC. The modifiable electromechanical response that arises from the precise porosity control attained through tailoring the CDC architecture demonstrates that these actuators hold great promise for smart, low-voltage-driven actuation devices.

  13. Growth and modification of thin SiGeC films at low substrate temperatures through UV laser assisted processing

    Science.gov (United States)

    López, E.; Chiussi, S.; Serra, J.; González, P.; Serra, C.; Kosch, U.; León, B.; Fabbri, F.; Fornarini, L.; Martelli, S.

    2004-07-01

    Enhancing the performance of solar cells, near infrared photo-detectors and microelectronic devices through band gap engineering caused an increasing attention in processes for growing thin silicon germanium carbon (SiGeC) films in a wide range of composition and crystalline structures. Moreover, the demand of using cheap substrates and the development of new devices with advanced materials like "high- k dielectrics" and "organic materials" implies the need of new processes avoiding high substrate temperatures that may decompose or alter the substrate materials, crystallise part of the heterostructures or promote segregation effects. Laser induced chemical vapour deposition (LCVD) and excimer laser assisted crystallisation (ELC) are such alternative and relatively cheap "low thermal budget" techniques that, in addition, are compatible with conventional IC silicon technology. The present study will show the possibility of tailoring the composition of amorphous SiGeC coatings through the adjustment of gas flow rates in LCVD processes performed at substrate temperatures between 180 and 400 °C. The modification of an amorphous film through a subsequent ELC process performed at room temperature is analysed through SEM and depth profile XPS in order to study the effects of controlled laser radiation on it, as well as on a very thin underlaying interfacial SiO 2 layer and on the Si(1 0 0) substrate.

  14. Visualizing the growth dynamics of individual single-wall carbon nanotubes

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal; Zhang, Lili; He, Maoshuai;

    In order to meet the increasing demand of faster and more flexible electronics and optical devices and at the same time decrease the use of the critical metals, carbon based devices are in fast development. Single walled carbon nanotube (SWCNT) based electronics is a way of addressing...... around the studied sample at elevated temperature gives a unique way of monitoring gas-solid interactions such as CNT growth. Here we show the direct experimental evidence on the growth dynamics of SW-CNTs from Co/MgO catalysts using CO as carbon source inside the environmental TEM. The evolution...

  15. Synthesis, alignment, growth mechanism and functional properties of carbon nanotubes and their hybrid materials with inorganic and biomaterials

    OpenAIRE

    Joshi, Ravi

    2010-01-01

    The present work comprises a novel method for selective growth of carbon nanotubes, study of their growth mechanism as well as synthesis and application of their various hybrid materials. An experimental setup is established to grow carbon nanotubes using water assisted chemical vapor deposition method. Various growth parameters were scrutinized carefully and a growth mechanism is put forth for the same method. A new methodology to prepare different hybrid materials of aligned carbon nanotube...

  16. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    Science.gov (United States)

    Cao, Zhi; Daly, Michael; Clémence, Lopez; Geever, Luke M.; Major, Ian; Higginbotham, Clement L.; Devine, Declan M.

    2016-08-01

    Calcium carbonate (CaCO3) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO3 thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the "complex" process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the "complex" surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the "complex" treatment process, the CaCO3 particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the "wet" and "complex" treated CaCO3 composites had a significantly higher heat of fusion and moisture resistance compared to the "dry" treated CaCO3 composites. Furthermore, "wet" and "complex" treated CaCO3 composites have a significantly higher tensile strength than the composites containing untreated and "dry" treated CaCO3. This is mainly because the "wet" and "complex" treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the "complex" method minimised the negative effects of void

  17. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Science.gov (United States)

    Wang, C. X.; Lv, J. C.; Ren, Y.; Zhi, T.; Chen, J. Y.; Zhou, Q. Q.; Lu, Z. Q.; Gao, D. W.; Jin, L. M.

    2015-12-01

    This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O2 plasma treated and SWCNT coated PET fabric was better and worse than that of N2 or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the plasma treated and SWCNT coated PET fabrics also increased with the increasing SWCNT concentration, curing time and curing temperature in the range studied. Plasma conditions and SWCNT coating parameters had signally influence on the antistatic property of plasma treated and SWCNT coated PET fabrics. Therefore, adequate parameters should be carefully selected for the optimum antistatic property of the plasma treated and SWCNT coated PET fabrics.

  18. Theoretical study of the nucleation/growth process of carbon clusters under pressure.

    Science.gov (United States)

    Pineau, N; Soulard, L; Los, J H; Fasolino, A

    2008-07-14

    We used molecular dynamics and the empirical potential for carbon LCBOPII to simulate the nucleation/growth process of carbon clusters both in vacuum and under pressure. In vacuum, our results show that the growth process is homogeneous and yields mainly sp(2) structures such as fullerenes. We used an argon gas and Lennard-Jones potentials to mimic the high pressures and temperatures reached during the detonation of carbon-rich explosives. We found that these extreme thermodynamic conditions do not affect substantially the topologies of the clusters formed in the process. However, our estimation of the growth rates under pressure are in much better agreement with the values estimated experimentally than our vacuum simulations. The formation of sp(3) carbon was negligible both in vacuum and under pressure which suggests that larger simulation times and cluster sizes are needed to allow the nucleation of nanodiamonds. PMID:18624553

  19. Growth of forest of single-walled carbon nanotubes at inhomogeneous fluxes from plasma

    International Nuclear Information System (INIS)

    The growth of forest of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a deposition model. The inhomogeneity in deposition of neutrals from plasma on the SWCNTs, which is typical for growth of the nano structures in PECVD, is accounted for. It is investigated how the growth rate and the residence time of carbon atoms on SWCNT surfaces depend on the SWCNT length and the decay length characterizing deposition of neutral fluxes on the SWCNTs. The obtained results can be used for optimizing the synthesis of related nano assembles in low-temperature plasma-assisted nano fabrication

  20. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.

    Science.gov (United States)

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  1. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-01-01

    Full Text Available Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast.

  2. Acetylene-Accelerated Alcohol Catalytic CVD Growth of Vertically Aligned Single-Walled Carbon Nanotubes

    OpenAIRE

    R. Xiang; Einarsson, E.; Okawa, J.; Miyauchi, Y.; Maruyama, S.

    2008-01-01

    Addition of only 1% of acetylene into ethanol was found to enhance the growth rate of singlewalled carbon nanotubes (SWNTs) by up to ten times. Since acetylene is a byproduct of the thermal decomposition of ethanol, this suggests an alternative fast reaction pathway to the formation of SWNTs from ethanol via byproducts of decomposition. This accelerated growth, however, only occurred in the presence of ethanol, whereas pure acetylene at the same partial pressure resulted in negligible growth ...

  3. Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-01

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel

  4. Initial stage of growth of single-walled carbon nanotubes: modeling and simulations.

    Science.gov (United States)

    Chaudhuri, I; Yu, Ming; Jayanthi, C S; Wu, S Y

    2014-03-19

    Because there are different pathways to grow carbon nanotubes (CNTs), a common mechanism for the synthesis of CNTs does not likely exist. However, after carbon atoms are liberated from carbon-containing precursors by catalysts or from pure carbon systems, a common feature, the nucleation of CNTs by electron mediation, does appear. We studied this feature using the initial stage of growth of single wall CNTs (SWCNTs) by transition metal nano-particle catalysts as the working example. To circumvent the bottleneck due to the size and simulation time, we used a model in which the metal droplet is represented by a jellium, and the effect of collisions between the carbon atoms and atoms of the catalyst is captured by charge transfers between the jellium and the carbon. The simulations were performed using a transferable semi-empirical Hamiltonian to model the interactions between carbon atoms in jellium. We annealed different initial configurations of carbon clusters in jellium as well as in a vacuum. We found that in jellium, elongated open tubular structures, precursors to the growth of SWCNTs, are formed. Our model was also shown to be capable of mimicking the continued growth when more atoms were placed near the open end of the tubular structure.

  5. The solar photovoltaics wedge: pathways for growth and potential carbon mitigation in the US

    International Nuclear Information System (INIS)

    The challenge of stabilizing global carbon emissions over the next 50 years has been framed in the context of finding seven 1.0 Gton C/year carbon reduction wedges. Solar photovoltaics (PV) could provide at least one carbon wedge, but will require significant growth in PV manufacturing capacity. The actual amount of installed PV capacity required to reach wedge-level carbon reductions will vary greatly depending on the mix of avoided fuels and the additional emissions from manufacturing PV capacity. In this work, we find that the US could reduce its carbon emissions by 0.25 Gton C/year, equal to the fraction of a global carbon wedge proportional to its current domestic electricity use, by installing 792-811 GW of PV capacity. We evaluate a series of PV growth scenarios and find that wedge-level reductions could be met by increasing PV manufacturing capacity and annual installations by 0.95 GW/year/year each year from 2009 to 2050 or by increasing up to 4 GW/year/year for a period of 4-17 years for early and late growth scenarios. This challenge of increasing PV manufacturing capacity and market demand is significant but not out of line with the recent rapid growth in both the global and US PV industry. We find that the rapid growth in PV manufacturing capacity leads to a short term increase in carbon emissions from the US electric sector. However, this increase is small, contributing less than an additional 0.3% to electric sector emissions for less than 4.5 years, alleviating recent concern regarding carbon emissions from rapid PV growth scenarios.

  6. Single-Wall Carbon Nanotube Growth from Graphite Layers-a Tight Binding Molecular Dynamics Simulation

    Institute of Scientific and Technical Information of China (English)

    Yuntuan FANG; Min ZHU; Yongshun WANG

    2003-01-01

    The growth of single-wall carbon nanotube from graphite layers is studied by tight binding molecular dynamics simulation. Given temperature of 2500 K or 3500 K and an interval of 0.25 nm for the two layers of graphite, a single-wall carbon nanotube with a zigzag shell will be produced. On the other conditions the carbon nanotube cannot grow or grows with too many defects. All carbon nanotube ends have pentagons which play an important role during the tube ends closing.

  7. Effects of Temperature and Catalyst Concentration on the Growth of Aligned Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    BAI Xiaodong; LI Dan; WANG Ye; LIANG Ji

    2005-01-01

    The effects of preheating and pyrolysis temperatures and catalyst concentration on the synthesis of aligned carbon nanotubes (CNTs) using ferrocene as the catalyst and xylene as the carbon source in chemical vapor deposition were experimentally studied. The as-grown aligned CNTs were characterized by field emission scanning electron microscopy, transmission electronic microscopy, high-resolution transmission electronic microscopy, and Raman spectroscopy. The growth rate, the diameters, and the degree of crystal structure of the aligned CNTs were all found to depend on the preheating and pyrolysis temperatures and the catalyst concentration. The optimized conditions for the growth of aligned CNTs resulted in a rapid growth rate of 20.4 μm/min, with the CNTs having a good, uniform crystal structure, and clean surfaces with little amorphous carbon. The results also show that higher preheating temperatures and lower ferrocene concentrations favor the growth of single-walled CNTs.

  8. Scanning electron microscopic investigations of root structural modifications arising from growth in crude oil-contaminated sand.

    Science.gov (United States)

    Balasubramaniyam, Anuluxshy; Harvey, Patricia J

    2014-11-01

    The choice of plant for phytoremediation success requires knowledge of how plants respond to contaminant exposure, especially their roots which are instrumental in supporting rhizosphere activity. In this study, we investigated the responses of plants with different architectures represented by beetroot (Beta vulgaris), a eudicot with a central taproot and many narrower lateral roots, and tall fescue (Festuca arundinacea), a monocot possessing a mass of threadlike fibrous roots to grow in crude oil-treated sand. In this paper, scanning electron microscopy was used to investigate modifications to plant root structure caused by growth in crude oil-contaminated sand. Root structural disorders were evident and included enhanced thickening in the endodermis, increased width of the root cortical zone and smaller diameter of xylem vessels. Inhibition in the rate of root elongation correlated with the increase in cell wall thickening and was dramatically pronounced in beetroot compared to the roots of treated fescue. The latter possessed significantly fewer (p oil-treated sand than beetroot and, thus, a potential for long-term phytoremediation.

  9. Laser-assisted growth of carbon nanotubes - A review

    NARCIS (Netherlands)

    Burgt, Y. van de

    2014-01-01

    Laser-assisted chemical vapor deposition (LACVD) is an attractive maskless process for growing locally carbon nanotubes at selected places on substrates that may contain temperature-sensitive components. This review gives a comprehensive overview of the reported research with respect to laser assist

  10. Growth processes and surface properties of diamondlike carbon films

    International Nuclear Information System (INIS)

    In this study, we compare the deposition processes and surface properties of tetrahedral amorphous carbon (ta-C) films from filtered pulsed cathodic arc discharge (PCAD) and hydrogenated amorphous carbon (a-C:H) films from electron cyclotron resonance (ECR)-plasma source ion implantation. The ion energy distributions (IEDs) of filtered-PCAD at various filter inductances and Ar gas pressures were measured using an ion energy analyzer. The IEDs of the carbon species in the absence of background gas and at low gas pressures are well fitted by shifted Maxwellian distributions. Film hardness and surface properties show a clear dependence on the IEDs. ta-C films with surface roughness at an atomic level and thin (0.3-0.9 nm) graphitelike layers at the film surfaces were deposited at various filter inductances in the highly ionized plasmas with the full width at half maximum ion energy distributions of 9-16 eV. The a-C:H films deposited at higher H/C ratios of reactive gases were covered with hydrogen and sp3 bonded carbon-enriched layers due to the simultaneous interaction of hydrocarbon species and atomic hydrogen. The effects of deposited species and ion energies on film surface properties were analyzed. Some carbon species have insufficient energies to break the delocalized π(nC) bonds at the graphitelike film surface, and they can govern film formation via surface diffusion and coalescence of nuclei. Dangling bonds created by atomic hydrogen lead to uniform chemisorption of hydrocarbon species from the ECR plasmas. The deposition processes of ta-C and a-C:H films are discussed on the basis of the experimental results

  11. Amorphous carbon for structured step bunching during graphene growth on SiC

    Science.gov (United States)

    Palmer, James; Kunc, Jan; Hu, Yike; Hankinson, John; Guo, Zelei; Berger, Claire; de Heer, Walt

    2014-03-01

    Structured growth of high quality graphene is necessary for technological development of carbon based materials. Specifically, control of the bunching and placement of surface steps under epitaxial graphene on SiC is an important consideration for graphene device production. We demonstrate lithographically patterned evaporated amorphous carbon as a method to pin SiC surface steps. Evaporated amorphous carbon is an ideal step-flow barrier on SiC due to its chemical compatibility with graphene growth and its structural stability at high temperatures, as well as its patternability. The amorphous carbon is deposited in vacuum on SiC prior to graphene growth. In the graphene furnace at temperatures above 1200°C, mobile SiC steps accumulate at these amorphous carbon barriers, forming an aligned step free region for graphene growth at temperatures above 1330°C. AFM imaging and Raman spectroscopy support the formation of quality step-free graphene sheets grown on SiC with the step morphology aligned to the carbon grid.

  12. Synthesis and Growth Mechanism of Carbon Filaments by Chemical Vapor Deposition without Catalyst

    Institute of Scientific and Technical Information of China (English)

    Shuhe Liu; Feng Li; Shuo Bai

    2009-01-01

    Carbon filaments with diameter from several to hundreds micrometers were synthesized by chemical vapor deposition of methane without catalyst. The morphology, microstructure and mechanical properties of the carbon filament were investigated by scanning electronic microscopy, optical microscopy, X-ray diffraction and mechanical testing. The results show that the carbon filament is inverted cone shape and grows up along the gas flow direction. The stem of it is formed of annular carbon layers arranged in a tree ring structure while the head is made up of concentrical layers. The tensile strength of the carbon filament is increased after graphitization for the restructuring and growing large of graphene. The growth mechanism of carbon filament was proposed according to the results of two series of experiments with different deposition time and intermittent deposition cycles.

  13. Temperature responses of substrate carbon conversion efficiencies and growth rates of plant tissues.

    Science.gov (United States)

    Hansen, Lee D; Thomas, Nathan R; Arnholdt-Schmitt, Birgit

    2009-12-01

    Growth rates of plant tissues depend on both the respiration rate and the efficiency with which carbon is incorporated into new structural biomass. Calorespirometric measurement of respiratory heat and CO2 rates, from which both efficiency and growth rate can be calculated, is a well established method for determining the effects of rapid temperature changes on the respiratory and growth properties of plant tissues. The effect of the alternative oxidase/cytochrome oxidase activity ratio on efficiency is calculated from first principles. Data on the temperature dependence of the substrate carbon conversion efficiency are tabulated. These data show that epsilon is maximum and approximately constant through the optimum growth temperature range and decreases rapidly as temperatures approach temperature limits to growth. The width of the maximum and the slopes of decreasing epsilon at high and low temperatures vary greatly with species, cultivars and accessions.

  14. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes.

    Science.gov (United States)

    Martinelli, Valentina; Cellot, Giada; Toma, Francesca Maria; Long, Carlin S; Caldwell, John H; Zentilin, Lorena; Giacca, Mauro; Turco, Antonio; Prato, Maurizio; Ballerini, Laura; Mestroni, Luisa

    2013-07-23

    Myocardial tissue engineering currently represents one of the most realistic strategies for cardiac repair. We have recently discovered the ability of carbon nanotube scaffolds to promote cell division and maturation in cardiomyocytes. Here, we test the hypothesis that carbon nanotube scaffolds promote cardiomyocyte growth and maturation by altering the gene expression program, implementing the cell electrophysiological properties and improving networking and maturation of functional syncytia. In our study, we combine microscopy, biological and electrophysiological methodologies, and calcium imaging, to verify whether neonatal rat ventricular myocytes cultured on substrates of multiwall carbon nanotubes acquire a physiologically more mature phenotype compared to control (gelatin). We show that the carbon nanotube substrate stimulates the induction of a gene expression profile characteristic of terminal differentiation and physiological growth, with a 2-fold increase of α-myosin heavy chain (P carbon nanotubes appear to exert a protective effect against the pathologic stimulus of phenylephrine. Finally, cardiomyocytes on carbon nanotubes demonstrate a more mature electrophysiological phenotype of syncytia and intracellular calcium signaling. Thus, carbon nanotubes interacting with cardiomyocytes have the ability to promote physiological growth and functional maturation. These properties are unique in the current vexing field of tissue engineering, and offer unprecedented perspectives in the development of innovative therapies for cardiac repair.

  15. Growth, characterisation and electronic applications of amorphous hydrogenated carbon

    CERN Document Server

    Paul, S

    2000-01-01

    temperature on GaAs, has been studied and concluded to be satisfactory on the basis of good adherence and low leakage currents. Such a structure was motivated by the applicability in Metal Insulator Semiconductor Field Effect Transistors (MISFET). My thesis proposes solutions to a number of riddles associated with the material, hydrogenated amorphous carbon, (a-C:H). This material has lately generated interest in the electronic engineering community, owing to some remarkable properties. The characterisation of amorphous carbon films, grown by radio frequency plasma enhanced chemical vapour deposition has been reported. The coexistence of multiple phases in the same a-C:H film manifests itself in the inconsistent electrical behaviour of different parts of the film, thus rendering it difficult to predict the nature of films. For the first time, in this thesis, a reliable prediction of Schottky contact formation on a-C:H films is reported. A novel and simple development on a Scanning Electron Microscope, configu...

  16. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants

    Science.gov (United States)

    Sonkar, Sumit Kumar; Roy, Manas; Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2012-11-01

    Water-soluble carbon nano-onions (wsCNOs) isolated from wood wool--a wood-based pyrolysis waste product of wood, can enhance the overall growth rate of gram (Cicer arietinum) plants. Treatment of plants with upto 30 μg mL-1 of wsCNOs for an initial 10 day period in laboratory conditions led to an increase in the overall growth of the plant biomass. In order to examine the growth stimulating effects of wsCNOs under natural conditions, 10 day-old plants treated with and without wsCNOs were transplanted into soil of standard carbon and nitrogen composition. We observed an enhanced growth rate of the wsCNOs pre-treated plants in soil, which finally led to an increased productivity of plants in terms of a larger number of grams. On analyzing the carbon, hydrogen, and nitrogen (CHN) content for the shoot and fruit sections of the plants treated with and without wsCNOs, only a minor difference in the composition was noticed. However, a slight increase in the percentage of carbon and hydrogen in shoots reflects the synthesis of more organic biomass in the case of treated plants. This work shows that wsCNOs are non-toxic to plant cells and can act as efficient growth stimulants which can be used as benign growth promoters.

  17. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    Science.gov (United States)

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

  18. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    Science.gov (United States)

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  19. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    Science.gov (United States)

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  20. 柠檬酸钠表面改性重钙粉体的研究%Study on sodium citrate surface modification ground calcium carbonate powder

    Institute of Scientific and Technical Information of China (English)

    周国永; 陈丽莎; 成琳

    2011-01-01

    研究了柠檬酸钠用量、反应温度、反应时间、浆料浓度对重钙粉体表面改性的影响.结果表明,柠檬酸钠用量为重钙粉体的6.0%(质量分数),改性温度65℃,改性时间45 min,浆料浓度为12.5%时,重钙粉体沉降体积降为0.65 mL/g,活化度可达到67.9%,吸油值降为230 mg/g,粘度值降低为120 mPa·s,pH值8.50.%The effect of modifier amount, modification temperature, time and slurry concentration on modification were studied. The results showed sodium citrate can be used to modify calcium carbonate powder, the best conditions were as follows: sodium citrate amount 6% , modification temperature 65 X., modification time 45 min, slurry concentration 12.5%. The settling volume reduced to 0.65 Ml/g, the activation grade was 67. 9% ,the oil absorption decreased to 230 mg/g, viscosity of calcium carbonate reduced to 120 mPa·S,Ph value was 8.50.

  1. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity

    OpenAIRE

    Martínez-Ballesta, Mª Carmen; Zapata, Lavinia; Chalbi, Najla; Carvajal, Micaela

    2016-01-01

    Background Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. Results In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWC...

  2. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.

    Science.gov (United States)

    Guzmán de Villoria, R; Figueredo, S L; Hart, A J; Steiner, S A; Slocum, A H; Wardle, B L

    2009-10-01

    Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al2O3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of approximately 1 mm are achieved at substrate speeds up to 2.4 mm s(-1). Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport. PMID:19752503

  3. An old-growth subtropical Asian evergreen forest as a large carbon sink

    Science.gov (United States)

    Tan, Zheng-Hong; Zhang, Yi-Ping; Schaefer, Douglas; Yu, Gui-Rui; Liang, Naishen; Song, Qing-Hai

    2011-03-01

    Old-growth forests are primarily found in mountain ranges that are less favorable or accessible for land use. Consequently, there are fewer scientific studies on old-growth forests. The eddy covariance method has been widely used as an alternative approach to studying an ecosystem's carbon balance, but only a few eddy flux sites are located in old-growth forest. This fact will hinder our ability to test hypotheses such as whether or not old-growth forests are carbon neutral. The eddy covariance approach was used to examine the carbon balance of a 300-year-old subtropical evergreen broadleaved forest that is located in the center of the largest subtropical land area in the world. The post-QA/QC (quality assurance and control) eddy covariance based NEP was ˜ 9 tC ha -1 yr -1, which suggested that this forest acts as a large carbon sink. The inventory data within the footprint of the eddy flux show that ˜6 tC ha -1 yr -1 was contributed by biomass and necromass. The large-and-old trees sequestered carbon. Approximately 60% of the biomass increment is contributed by the growth of large trees (DBH > 60 cm). The high-altitude-induced low temperature and the high diffusion-irradiation ratio caused by cloudiness were suggested as two reasons for the large carbon sink in the forest we studied. To analyze the complex structure and terrain of this old-growth forest, this study suggested that biometric measurements carried out simultaneously with eddy flux measurements were necessary.

  4. The effect of modification of pedon on distribution of soil moisture, plant growth and yield in loess plateau (E Poland)

    Science.gov (United States)

    rejman, jerzy

    2013-04-01

    Long-term tillage and water erosion in loess areas resulted in modification of pedon structure and redistribution of soils within the fields. The changes are more significant in the areas of largely differentiated past micro-relief of relatively small differences in height. The effect of soil redistribution on soil moisture content, plant growth, and yield was studied within a small field (0.72 ha) located in the loess plateau (Lublin Upland, E Poland) in the years 2006-08. Structure of Haplic Luvisol, soil properties, and yield of spring barley (Hordeum vulgaris L.) were determined in a grid 10x10 m, and plant growth in sites located along the transect. Studies showed that after about 180 years of agricultural land use of the experimental site, small micro-relief forms as depressions and hills were partly or completely leveled by tillage and water erosion. In the effect of relief transformation, soils of eroded profiles represented 47.2, depositional soils 34.7 and non-eroded soils 18.1% of total number of studied pedons. Soil thickness, clay, silt and SOC were spatially correlated with a range of autocorrelation from 28 to 35 m. Soil redistribution affected the soil water content during vegetation season. Significantly higher water content at near soil surface was found on sites with depositional and non-eroded soils in April-May, while on eroded soils in June-July. As antecedent moisture conditions affect the water erosion process, various parts of field area could be responsible for quicker formation of runoff in different seasons of the year. Relation between crop and soil was complex and varied with precipitation during growing seasons. The more rainfall was close to the normal, the more significant positive correlations between the yield and soil thickness, silt and SOC, and negative with clay were found. The relations were reversed in a dry year, when yields were much lower. Results of the studies showed that loess plateau was significantly transformed

  5. Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: Parametric studies

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu, Mihnea Ioan; Zhang Yong; Li Ruying [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON. N6A 5B9 (Canada); Sun Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON. N6A 5B9 (Canada); Abou-Rachid, Hakima; Lussier, Louis-Simon [Defense Research and Development Canada - Valcartier, 2459 Boulevard Pie-XI Nord, Quebec, QC. G3J 1X5 (Canada)

    2011-05-15

    Spray pyrolysis chemical vapor deposition (CVD) in the absence of hydrogen at low carrier gas flow rates has been used for the growth of carbon nanotubes (CNTs). A parametric study of the carbon nanotube growth has been conducted by optimizing various parameters such as temperature, injection speed, precursor volume, and catalyst concentration. Experimental observations and characterizations reveal that the growth rate, size and quality of the carbon nanotubes are significantly dependent on the reaction parameters. Scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy techniques were employed to characterize the morphology, structure and crystallinity of the carbon nanotubes. The synthesis process can be applied to both semiconducting silicon wafer and conducting substrates such as carbon microfibers and stainless steel plates. This approach promises great potential in building various nanodevices with different electron conducting requirements. In addition, the absence of hydrogen as a carrier gas and the relatively low synthesis temperature (typically 750 deg. C) qualify the spray pyrolysis CVD method as a safe and easy way to scale up the CNT growth, which is applicable in industrial production.

  6. Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: Parametric studies

    International Nuclear Information System (INIS)

    Spray pyrolysis chemical vapor deposition (CVD) in the absence of hydrogen at low carrier gas flow rates has been used for the growth of carbon nanotubes (CNTs). A parametric study of the carbon nanotube growth has been conducted by optimizing various parameters such as temperature, injection speed, precursor volume, and catalyst concentration. Experimental observations and characterizations reveal that the growth rate, size and quality of the carbon nanotubes are significantly dependent on the reaction parameters. Scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy techniques were employed to characterize the morphology, structure and crystallinity of the carbon nanotubes. The synthesis process can be applied to both semiconducting silicon wafer and conducting substrates such as carbon microfibers and stainless steel plates. This approach promises great potential in building various nanodevices with different electron conducting requirements. In addition, the absence of hydrogen as a carrier gas and the relatively low synthesis temperature (typically 750 deg. C) qualify the spray pyrolysis CVD method as a safe and easy way to scale up the CNT growth, which is applicable in industrial production.

  7. Growth of straight carbon nanotubes by simple thermal chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOTO; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700 ℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions.

  8. The relative contributions of forest growth and areal expansion to forest biomass carbon sinks in China

    OpenAIRE

    Li, P.; Zhu, J.; Hu, H; Guo, Z.; Pan, Y.; R. Birdsey; J. Fang

    2015-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms that control forest C sinks and is helpful for developing sustainable forest management poli...

  9. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris

    OpenAIRE

    Egan J. Lohman; Gardner, Robert D; Pedersen, Todd; Peyton, Brent M; Cooksey, Keith E; Gerlach, Robin

    2015-01-01

    Background Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy consumption. Results A two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the...

  10. Study on Suface Modification of Barium Carbonate Powders with Stearic Acid%硬脂酸对碳酸钡表面改性的研究

    Institute of Scientific and Technical Information of China (English)

    刘铭; 霍冀川; 刘树信

    2011-01-01

    采用硬脂酸对碳酸钡进行表面改性,研究改性剂用量、改性温度和改性时间等因素对碳酸钡表面改性的影响.采用粒度分析、红外光谱、热重分析、扫描电镜、X射线衍射及润湿性实验对改性前后的碳酸钡进行表征.结果表明:在硬脂酸用量为1.5%(质量分数),改性温度为80℃,改性时间为30 min的条件下制备的产品性能优良,活化指数达99.2%.碳酸钡经硬脂酸改性后,粒度由4.56 μm减小至4.19 μm;硬脂酸在碳酸钡表面发生吸附键合,形成新的化学键;改性后的碳酸钡表面性质由亲水变为疏水.%The surface modification of barium carbonate powders by stearic acid was investigated. The impact of modifier dosage, modification temperature and modification time on the surface modification of barium carbonate powders were studied. The unmodified and modified barium carbonate were both tested with the particle size distribution, FTIR, TG-DSC, SEM, XRD and the experiments of wettability. The results showed that the products with excellent modification effect as well as 99.2% activation exponential were prepared in the conditions of 80 ℃, with 1.5% stearic acid added (mass fraction) and stirring for 30 min. The particle size of barium carbonate reduced from 4.56 u.m to 4.19 μm. The stearic acid molecules occurred adsorbing bond on the surface of barium carbonate, forming new chemical bonds, and the surface property of barium carbonatemodified with stearic acid was changed from hydrophilicity tohydrophobicity.

  11. Does carbon availability control temporal dynamics of radial growth in Norway spruce (Picea abies)?

    Science.gov (United States)

    Oberhuber, Walter; Gruber, Andreas; Swidrak, Irene

    2015-04-01

    Intra-annual dynamics of cambial activity and wood formation of coniferous species exposed to soil dryness revealed early culmination of maximum growth in late spring prior to occurrence of more favourable environmental conditions, i.e., repeated high rainfall events during summer (Oberhuber et al. 2014). Because it is well known that plants can adjust carbon allocation patterns to optimize resource uptake under prevailing environmental constraints, we hypothesize that early decrease in radial stem growth is an adaptation to cope with drought stress, which might require an early switch of carbon allocation to belowground organs. Physical blockage of carbon transport in the phloem through girdling causes accumulation and depletion of carbohydrates above and below the girdle, respectively, making this method quite appropriate to investigate carbon relationships in trees. Hence, in a common garden experiment we will manipulate the carbon status of Norway spruce (Picea abies) saplings by phloem blockage at different phenological stages during the growing season. We will present the methodological approach and first results of the study aiming to test the hypothesis that carbon status of the tree affects temporal dynamics of cambial activity and wood formation in conifers under drought. Acknowledgment The research is funded by the Austrian Science Fund (FWF): P25643-B16 "Carbon allocation and growth of Scots pine". Reference Oberhuber W, A Gruber, W Kofler, I Swidrak (2014) Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur J For Res 133:467-479.

  12. What are the active carbon species during graphene chemical vapor deposition growth?

    Science.gov (United States)

    Shu, Haibo; Tao, Xiao-Ming; Ding, Feng

    2015-02-01

    The dissociation of carbon feedstock is a crucial step for understanding the mechanism of graphene chemical vapor deposition (CVD) growth. Using first-principles calculations, we performed a comprehensive theoretical study for the population of various active carbon species, including carbon monomers and various radicals, CHi (i = 1, 2, 3, 4), on four representative transition-metal surfaces, Cu(111), Ni(111), Ir(111) and Rh(111), under different experimental conditions. On the Cu surface, which is less active, the population of CH and C monomers at the subsurface is found to be very high and thus they are the most important precursors for graphene CVD growth. On the Ni surface, which is more active than Cu, C monomers at the subsurface dominate graphene CVD growth under most experimental conditions. In contrast, on the active Ir and Rh surfaces, C monomers on the surfaces are found to be very stable and thus are the main precursors for graphene growth. This study shows that the mechanism of graphene CVD growth depends on the activity of catalyst surfaces and the detailed graphene growth process at the atomic level can be controlled by varying the temperature or partial pressure of hydrogen.

  13. Sustainable development and low carbon growth strategy for India

    International Nuclear Information System (INIS)

    For India, sustainable strategy means one that is economically, environmentally and socially sustainable. This calls for rapid economic growth to deal with poverty and human development. However, the relatively meagre energy resources of the country pose a huge challenge. At the same time concern for climate change has raised the bar on the use of the one energy resource that India has in some abundance, namely coal. India's strategy for sustainable development has to explore all options of reducing energy needs, enhancing efficiency of use of conventional energy resources and develop new and renewable sources. The paper identifies various technical options, their potential roles and alternative policy measures to realize them in a cost effective manner. Even for the same objectives different policy instruments are available and how one chooses a particular instrument is often critical for the success. Self-implementing incentive compatible policy that does not create vested interests that would get entrenched should be preferred. -- Highlights: ► Energy efficiency is critical for sustainable development. ► India can reduce its emission intensity by 25 % by 2020 as proposed by India at Copenhagen. ► With a more aggressive effort even 35% reduction is attainable even with 8% or 9% growth. ► Energy efficient appliances, vehicles, buildings and industrial processes are needed. ► Policies that incentivize adoption of these pose critical challenges.

  14. Modification of glassy carbon electrode with a polymer/mediator composite and its application for the electrochemical detection of iodate

    International Nuclear Information System (INIS)

    Highlights: ► FAD and PEDOT are combined to modify the glassy carbon electrode for IO3− sensing. ► The doping of FAD into PEDOT matrix can almost be viewed as an irreversible process. ► The optimal cycle number for preparing the GCE/PEDOT/FAD electrode is found to be 9. ► The detection limit of the GCE/PEDOT/FAD electrode for IO3− is found to be 0.16 μM. ► The GCE/PEDOT/FAD electrode possesses enough selectivity toward IO3−. - Abstract: A modified glassy carbon electrode was prepared by depositing a composite of polymer and mediator on a glassy carbon electrode (GCE). The mediator, flavin adenine dinucleotide (FAD) and the polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically deposited as a composite on the GCE by applying cyclic voltammetry (CV). This modified electrode is hereafter designated as GCE/PEDOT/FAD. FAD was found to significantly enhance the growth of PEDOT. Electrochemical quartz crystal microbalance (EQCM) analysis was performed to study the mass changes in the electrode during the electrodeposition of PEDOT, with and without the addition of FAD. The optimal cycle number for preparing the modified electrode was determined to be 9, and the corresponding surface coverage of FAD (ΓFAD) was ca. 5.11 × 10−10 mol cm−2. The amperometric detection of iodate was performed in a 100 mM buffer solution (pH 1.5). The GCE/PEDOT/FAD showed a sensitivity of 0.78 μA μM−1 cm−2, a linear range of 4–140 μM, and a limit of detection of 0.16 μM for iodate. The interference effects of 250-fold Na+, Mg2+, Ca2+, Zn2+, Fe2+, Cl−, NO3−, I−, SO42− and SO32−, with reference to the concentration of iodate were negligible. The long-term stability of GCE/PEDOT/FAD was also investigated. The GCE/PEDOT/FAD electrode retained 82% of its initial amperometric response to iodate after 7 days. The GCE/PEDOT/FAD was also applied to determine iodate in a commercial salt.

  15. Carbonylation and Loss-of-Function Analyses of SBPase Reveal Its Metabolic Interface Role in Oxidative Stress, Carbon Assimilation, and Multiple Aspects of Growth and Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xun-Liang Liu; Hai-Dong Yu; Yuan Guan; Ji-Kai Li; Fang-Qing Guo

    2012-01-01

    Sedoheptulose-1,7-bisphosphatase (SBPase) is a Calvin cycle enzyme and functions in photosynthetic carbon fixation.We found that SBPase was rapidly carbonylated in response to methyl viologen (MV) treatments in detached leaves of Arabidopsis plants.In vitro activity analysis of the purified recombinant SBPase showed that SBPase was carbonylated by hydroxyl radicals,which led to enzyme inactivation in an H2O2 dose-dependent manner.To determine the conformity with carbonylation-caused loss in enzymatic activity in response to stresses,we isolated a loss-of-function mutant sbp,which is deficient in SBPase-dependent carbon assimilation and starch biosynthesis,sbp mutant exhibited a severe growth retardation phenotype,especially for the developmental defects in leaves and flowers where SBPASE is highly expressed.The mutation of SBPASE caused growth retardation mainly through inhibition of cell division and expansion,which can be partially rescued by exogenous application of sucrose.Our findings demonstrate that ROS-induced oxidative damage to SBPase affects growth,development,and chloroplast biogenesis in Arabidopsis through inhibiting carbon assimilation efficiency.The data presented here provide a case study that such inactivation of SBPase caused by carbonyl modification may be a kind of adaptation for plants to restrict the operation of the reductive pentose phosphate pathway under stress conditions.

  16. Growth of Carbon Nanotubes on Clay: Unique Nanostructured Filler for High-Performance Polymer Nanocomposites

    NARCIS (Netherlands)

    Zhang, Wei-De; Phang, In Yee; Liu, Tianxi

    2006-01-01

    High-performance composites are produced using nanostructured clay-carbon nanotube (CNT) hybrids as a reinforcing filler. The intercalation of iron particles between the clay platelets serves as the catalyst for the growth of CNTs, while the platelets are exfoliated by the CNTs, forming the unique 3

  17. Elevated atmospheric carbon dioxide and ozone concentrations alter LAI through changes in phenology and leaf growth

    Science.gov (United States)

    Leaves are critical for harvesting light energy, taking up carbon dioxide (CO2) and transpiring water for cooling. Changes in leaf growth, expansion or development can integrate across the plant canopy and growing season to significantly impact productivity, yield and plant-atmosphere fluxes. Althou...

  18. Plasma stabilisation of metallic nanoparticles on silicon for the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Esconjauregui, S.; Fouquet, M.; Bayer, B. C.; Gamalski, A. D.; Chen Bingan; Xie Rongsi; Hofmann, S.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Cepek, C.; Bhardwaj, S. [Istituto Officina dei Materiali-CNR, Laboratorio TASC, s.s. 14 km 163.5, I-34149 Trieste (Italy); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

    2012-08-01

    Ammonia (NH{sub 3}) plasma pretreatment is used to form and temporarily reduce the mobility of Ni, Co, or Fe nanoparticles on boron-doped mono- and poly-crystalline silicon. X-ray photoemission spectroscopy proves that NH{sub 3} plasma nitrides the Si supports during nanoparticle formation which prevents excessive nanoparticle sintering/diffusion into the bulk of Si during carbon nanotube growth by chemical vapour deposition. The nitridation of Si thus leads to nanotube vertical alignment and the growth of nanotube forests by root growth mechanism.

  19. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...... from the deposition site at the free nickel surface to the perimeter of the growing graphene layer via surface or subsurface diffusion. Three different processes are identified to govern the growth of graphene layers, depending on the termination of the graphene perimeter at the nickel surface...

  20. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    Directory of Open Access Journals (Sweden)

    Sergi Abad

    2015-12-01

    Full Text Available Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1, biomass (0.7–0.8 g cells/g Substrate and product (0.14–0.15 g DHA/g cells yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.

  1. Synthesis and growth kinetics of carbon nanocoils using Sn-Fe-O xerogel film catalyst

    International Nuclear Information System (INIS)

    Carbon nanocoils (CNCs) were synthesized by a chemical vapor deposition method using tin-iron-oxide (Sn-Fe-O) xerogel film catalyst. The Sn-Fe-O catalyst was prepared by a low-cost sol–gel method using stannous acetate and ferric acetate as precursors. The growth kinetics of CNCs were monitored by a thermogravimetric analyzer, and the experimental result was correlated using one-dimensional tip growth kinetic model. The kinetic model consists of three steps: (1) dissociative chemisorption of acetylene and formation of encapsulating carbon on a leading face of the catalyst, (2) diffusion and reduction of Sn-Fe-O catalyst in bulk structure, and (3) carbon cluster nucleation on a tailing face of the catalyst. (paper)

  2. Watching Nanotubes Grow: In situ Photography of Vertically-Aligned Carbon Nanotube Growth During CVD

    Science.gov (United States)

    Geohegan, David B.; Puretzky, Alex A.; Ivanov, Ilia N.; Jesse, Stephen; Eres, Gyula

    2004-03-01

    In situ photography of growing vertically-aligned carbon nanotube arrays has been performed using remote microscopy within a conventional CVD tube furnace reactor. Time-lapse photography permits growth kinetics measurements over long times and growth to long lengths, a technique which is complementary to recently developed in situ time resolved reflectometry (which provides similar information for the first ten microns of growth). Here we report kinetics measurements and newly-discovered phenomena during the growth longer nanotube arrays (up to 4 millimeters). Vertically-aligned arrays of multiwall carbon nanotubes were grown on silicon wafers coated with metal catalyst films using gas acetylene mixtures. For example, the measurements reveal that these nanotube arrays display a cooperative growth mode and that growth sometimes terminates and spontaneously restarts. Most importantly, the technique enables in situ adjustment of the standard processing parameters and the results of exploratory treatments intended to prolong or reinitiate growth of nanotubes to long lengths - an essential milestone for energy management and and multifunctional composite applications. This research was sponsored by DARPA and the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC.

  3. Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil

    Science.gov (United States)

    Vishwakarma, Riteshkumar; Shinde, Sachin M.; Saufi Rosmi, Mohamad; Takahashi, Chisato; Papon, Remi; Mahyavanshi, Rakesh D.; Ishii, Yosuke; Kawasaki, Shinji; Kalita, Golap; Tanemura, Masaki

    2016-09-01

    The synthesis of various nitrogen-doped (N-doped) carbon nanostructures has been significantly explored as an alternative material for energy storage and metal-free catalytic applications. Here, we reveal a direct growth technique of N-doped carbon nanofibers (CNFs) on flexible nichrome (NiCr) foil using melamine as a solid precursor. Highly reactive Cr plays a critical role in the nanofiber growth process on the metal alloy foil in an atmospheric pressure chemical vapor deposition (APCVD) process. Oxidation of Cr occurs in the presence of oxygen impurities, where Ni nanoparticles are formed on the surface and assist the growth of nanofibers. Energy-dispersive x-ray spectroscopy (EDXS) and x-ray photoelectron spectroscopy (XPS) clearly show the transformation process of the NiCr foil surface with annealing in the presence of oxygen impurities. The structural change of NiCr foil assists one-dimensional (1D) CNF growth, rather than the lateral two-dimensional (2D) growth. The incorporation of distinctive graphitic and pyridinic nitrogen in the graphene lattice are observed in the synthesized nanofiber, owing to better nitrogen solubility. Our finding shows an effective approach for the synthesis of highly N-doped carbon nanostructures directly on Cr-based metal alloys for various applications.

  4. A NOVEL PARAMETER FOR EVALUATING THE FATIGUE CRACK GROWTH RATE IN CARBON STEELS

    Institute of Scientific and Technical Information of China (English)

    X.S.Wang; S.Q.Zhu; N.Kawagoishi; H.Nisitani

    2001-01-01

    A novel parameter is suggested for evaluating the fatigue crack growth rate in carbonsteels.Fatigue crack propagation tests of an annealed 0.42% carbon steel were carriedout under different conditions to investigate the relationship between this dominatingparameter and the crack opening displacement (COD).A new equation of fatiguecrack growth rate is formulated in terms of the suggested parameter.The physicalmeanings of the material parameters in this equation are explored experimentally.Considering the relation of crack growth and deformation properties,a simple andapplicable method is proposed to evaluate the fatigue crack growth rate.It is alsoobserved that the material parameters in the fatigue crack growth rate equation ofcarbon steels are related linearly to the material strength.The results are in a goodagreement with experimental results.

  5. Carbon-assisted nucleation and vertical growth of high-quality ZnO nanowire arrays

    Directory of Open Access Journals (Sweden)

    Chun Cheng

    2011-09-01

    Full Text Available We developed a carbon-assisted physical-vapor-deposition method for the growth of highly aligned ZnO nanowire arrays on any flat substrates in large area. Amorphous carbon (a-C films acted as the preferential nucleation sites to facilitate the growth of high-quality ZnO nanowire array patterns. The ultrathin a-C films can effectively retard the inclined growth of ZnO nanowires at the edge of the a-C patterns. The investigations of the nanowire structures, photoluminescence and electrical transport properties have shown that the ZnO nanowires were well crystallized and the formation of defects in the nanowires was largely suppressed.

  6. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    Science.gov (United States)

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake.

  7. Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes

    Science.gov (United States)

    Kharlamova, M. V.; Kramberger, Christian; Saito, Takeshi; Shiozawa, Hidetsugu; Pichler, Thomas

    2016-08-01

    We have synthesized cobaltocene-filled 1.7-nm-mean diameter single-walled carbon nanotubes (SWCNTs) and transformed them into double-walled carbon nanotubes by annealing at temperatures between 500 and 1000 °C for 2 h in vacuum. We analyze the temperature-dependent inner tube growth inside the filled SWCNTs by Raman spectroscopy. The changes in intensity of the Raman peaks of inner tubes with the diameters ranging from 0.832 to 1.321 nm with increasing annealing temperature are traced. It is revealed that the growth temperatures of larger diameter inner tubes are higher than the ones of smaller diameter tubes. A decrease in the diameter of the inner tubes by ~0.4 nm leads to a decrease in the growth temperature by ~200 °C.

  8. Controlling the growth of vertically aligned single walled carbon nanotubes from ethanol for electrochemical supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A.; Mohamed, M.A.; Shikoh, E.; Fujiwara, A.; Shimoda, T. [Japan Advanced Inst. of Science and Technology, Ishikawa (Japan)

    2010-07-01

    Single-walled carbon nanotubes (SWCNTs) have been proven suitable for use as electrodes in electrochemical capacitors (EC). In this study, alcohol catalytic chemical vapor deposition (ACCVD) was used to grow vertically-aligned SWCNTs (VASWCNTs). An aluminium oxide (Al{sub 2}O{sub 3})-supported cobalt (Co) catalyst and high purity ethanol carbon feedstock was used for the growth process. The Al layer and Co thin films were deposited using an electron beam evaporator. CNT growth was optimized using Si/SiO{sub 2} substrates. An atomic force microscope, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were used to characterize the synthesis of the catalyst nanoparticles and their subsequent growth. Raman spectrum of the samples demonstrated peaks of radial breathing mode (RBM) from 100 to 250 per cm. Results demonstrated that the CNTs were successfully grown on the conducting metal substrate using the ACCVD process. 4 refs.

  9. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community.

    Science.gov (United States)

    Khodakovskaya, Mariya V; Kim, Bong-Soo; Kim, Jong Nam; Alimohammadi, Mohammad; Dervishi, Enkeleda; Mustafa, Thikra; Cernigla, Carl E

    2013-01-14

    Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.

  10. Marine microalgae growth and carbon partitioning as a function of nutrient availability.

    Science.gov (United States)

    Fernandes, Tomásia; Fernandes, Igor; Andrade, Carlos A P; Cordeiro, Nereida

    2016-08-01

    To understand in which way the structural differences of three marine microalgae (Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp.) affect their carbon partitioning, growth and applicability; a stoichiometric imbalance was imposed by steady carbon and other nutrients variation. Towards high nutrients concentrations/low carbon availability a decrease of 12-51% in C/N microalgae ratio was observed and maximum cell densities were achieved. Moreover, linear correlation between the nutrient input and microalgae protein content were observed. The macromolecular ratios pointed that carbohydrate was the main contributor for the C/N decrement. Although lipid content in R. marina remained constant throughout the experiment, a rise of 37-107% in N. gaditana and Isochrysis sp. was verified. Lipid fractions revealed high percentages of glycolipids in all microalgae (57-73% of total lipids). The present study shows an easy way to understand and modulate microalgae carbon partitioning relying on the field of application. PMID:27179298

  11. Crystallographic growth and alignment of carbon nanotubes on few-layer graphene

    Science.gov (United States)

    Arash, Aram; Hunley, Patrick D.; Nasseri, Mohsen; Boland, Mathias J.; Sundararajan, Abhishek; Hudak, Bethany M.; Guiton, Beth S.; Strachan, Douglas R.

    2015-03-01

    Hybrid carbon nanotube and graphene structures are emerging as an exciting material system built from a common sp2 carbon backbone. Such hybrid systems have promise for use in improving the performance of energy storage and high-speed electronic applications. Towards the attainment of such hybrid materials, the catalytic growth and crystallographic alignment of these integrated structures are investigated along with the atomic-scale features of their interfaces. The catalytic activity of nanoparticles to form carbon nanotubes on the surface of few-layer graphene is tuned through precise feedstock application. Through careful materials synthesis, the interfaces of these hybrid carbon nanotube - graphene systems are investigated through ultra-high resolution electron microscopy.

  12. Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink.

    Science.gov (United States)

    McGarvey, Jennifer C; Thompson, Jonathan R; Epstein, Howard E; Shugart, Herman H

    2015-02-01

    Few old-growth stands remain in the matrix of secondary forests that dominates the eastern North American landscape. These remnant stands offer insight on the potential carbon (C) storage capacity of now-recovering secondary forests. We surveyed the remaining old-growth forests on sites characteristic of the general Mid-Atlantic United States and estimated the size of multiple components of forest C storage. Within and between old-growth stands, variability in C density is high and related to overstory tree species composition. The sites contain 219 ± 46 Mg C/ha (mean ± SD), including live and dead aboveground biomass, leaf litter, and the soil O horizon, with over 20% stored in downed wood and snags. Stands dominated by tulip poplar (Liriodendron tulipifera) store the most live biomass, while the mixed oak (Quercus spp.) stands overall store more dead wood. Total C density is 30% higher (154 Mg C/ha), and dead wood C density is 1800% higher (46 Mg C/ha) in the old-growth forests than in the surrounding younger forests (120 and 5 Mg C/ha, respectively). The high density of dead wood in old growth relative to secondary forests reflects a stark difference in historical land use and, possibly, the legacy of the local disturbance (e.g., disease) history. Our results demonstrate the potential for dead wood to maintain the sink capacity of secondary forests for many decades to come.

  13. Support effect on carbon nanotube growth by methane chemical vapor deposition on cobalt catalysts

    International Nuclear Information System (INIS)

    The influence of the support on carbon nanotube production by methane chemical vapor deposition (CVD) on cobalt catalysts was investigated. N2 physisorption, X-ray diffractometry (XRD), temperature programmed reduction (TPR) and H2 and CO chemisorption techniques were used to characterize the structure of cobalt catalysts supported on different metal oxides (Al2O3, SiO2, Nb2O5 and TiO2). Raman spectroscopy, temperature programmed oxidation (TPO) and scanning electron microscopy (SEM) were used for the characterization and quantification of produced carbon species. On carbon nanotube growth, the catalyst produced three main carbon species: amorphous carbon, single walled carbon nanotubes (SWNT) and multi walled carbon nanotubes (MWNT). The characterization techniques showed that the catalyst selectivity to each kind of nanotube depended on the cobalt particle size distribution, which was influenced by the textural properties of the support. Co/TiO2 showed the highest selectivity towards single wall nanotube formation. This high selectivity results from the narrow size distribution of cobalt particles on TiO2. (author)

  14. Amazon old-growth forest wind disturbance and the regional carbon balance

    Science.gov (United States)

    Chambers, J. Q.; Negron Juarez, R. I.; Marra, D. M.; Roberts, D. A.; Hurtt, G. C.; Lima, A.; Higuchi, N.

    2010-12-01

    Estimating the carbon balance of a landscape is challenging. A key problem is determining whether or not measurements made in plots are representative of the carbon state of a larger region. A key parameter for calculating landscape carbon balance is the return frequency of episodic disturbances. If disturbances are clustered and occur more frequently than the time required for biomass recovery, a spatial mixture of patches in different stages of recovery occurs. Under these shifting steady-state mosaic conditions, quantifying the mean state of ecosystem attributes such as carbon balance or tree species diversity is difficult. In this study, satellite remote sensing (Landsat) was coupled with field investigations to create ~25 year landscape-scale disturbance chronosequence for old-growth forest in the Central Amazon. The detected disturbances were caused by strong storms which resulted in tree mortality events ranging from small clusters of 7-10 downed trees, to large contiguous blowdowns larger than 30 ha in size. Using the chronosequence, a cumulative probability distribution function was developed, which followed a power law, and was used to parameterize a forest carbon balance model. Results demonstrate that for power law exponents less than about 2.0, the spatial scale at which forest carbon balance establishes is much larger than generally expected. Ultimately, an increase in wind disturbance frequency and/or intensity with a warming climate has the potential to cause a net loss of carbon from Amazon forests to the atmosphere.

  15. Supramolecular Surface Modification of Carbon Nanomaterials and Their Applicaions%碳纳米材料的超分子表面修饰及应用

    Institute of Scientific and Technical Information of China (English)

    承倩怡; 周鼎; 韩宝航

    2011-01-01

    综述了近年来碳纳米材料的超分子修饰及应用研究.重点阐述碳纳米管和石墨烯通过不同的超分子作用(如π-π相互作用、疏水相互作用、氢键相互作用和静电相互作用等)进行修饰制备得到具有不同功能的超分子碳纳米材料,及其在光电材料、药物和基因传输及化学生物传感器等领域的应用.%The carbon nanomaterials possess unique physical and chemical properties due to their special structure, and become one topic of high interests in recent years. The supramolecular surface modification could improve their surface properties and dispersion ability, which have attracted widespread attention from the scientific communities. The current status about the modification of carbon nanomaterials, especially carbon nanotube and graphene, through various intermolecular interactions, such as π-π interaction, hydropho-bic interaction, hydrogen bonding, and electrostatic interaction, as well as their applications, such as in optoelectronic materials, drug and gene delivery systems, and chem- or bio-sensors were summarized and reviewed in this paper.

  16. Growth characteristics of graphene synthesized via chemical vapor deposition using carbon tetrabromide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Taejin; Jung, Hanearl; Lee, Chang Wan [Nanodevice Laboratory, School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Mun, Ki-Yeung; Kim, Soo-Hyun [Nano-Devices and Process Laboratory, School of Materials Science and Engineering, Yeungnam University, Dae-Dong, Gyeongsan-Si 712-749 (Korea, Republic of); Park, Jusang [Nanodevice Laboratory, School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [Nanodevice Laboratory, School of Electrical and Electronics Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2015-07-15

    Highlights: • Carbon tetrabromide (CBr{sub 4}) precursor and Cu foil can be used for chemical vapor deposition (CVD) of graphene. • High yield and controllable growth are possible via CVD used with a CBr{sub 4} precursor. • CBr{sub 4} precursor is a new alternative for use in the mass production of graphene. • Low bond dissociation energy of CBr{sub 4} allows lower temperature growth (800 °C) of high-quality graphene film, compared to that (1000 °C) of methane used CVD. - Abstract: A carbon tetrabromide (CBr{sub 4}) precursor was employed for the chemical vapor deposition (CVD) of graphene, and the graphene growth characteristics as functions of the following key factors were then investigated: growth time, growth temperature, and the partial pressure of the precursor. The graphene was transferred onto a SiO{sub 2}/Si substrate and characterized using transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, and the electrical properties were measured through the fabrication of field-effect transistors. Our results show that high yield and controllable growth are possible via CVD used with a CBr{sub 4} precursor. Thus, CBr{sub 4} precursor is a new alternative candidate for use in the mass production of graphene.

  17. Growth characteristics of graphene synthesized via chemical vapor deposition using carbon tetrabromide precursor

    International Nuclear Information System (INIS)

    Highlights: • Carbon tetrabromide (CBr4) precursor and Cu foil can be used for chemical vapor deposition (CVD) of graphene. • High yield and controllable growth are possible via CVD used with a CBr4 precursor. • CBr4 precursor is a new alternative for use in the mass production of graphene. • Low bond dissociation energy of CBr4 allows lower temperature growth (800 °C) of high-quality graphene film, compared to that (1000 °C) of methane used CVD. - Abstract: A carbon tetrabromide (CBr4) precursor was employed for the chemical vapor deposition (CVD) of graphene, and the graphene growth characteristics as functions of the following key factors were then investigated: growth time, growth temperature, and the partial pressure of the precursor. The graphene was transferred onto a SiO2/Si substrate and characterized using transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, and the electrical properties were measured through the fabrication of field-effect transistors. Our results show that high yield and controllable growth are possible via CVD used with a CBr4 precursor. Thus, CBr4 precursor is a new alternative candidate for use in the mass production of graphene

  18. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01

    Institute of Scientific and Technical Information of China (English)

    QIAO Hongjin; WANG Guangce

    2009-01-01

    Heterotrophic culture of microalgae to develop methods of increasing biomass productivity and storage lipids has brought new insight to commercial biodiesel production. To understand the relationship between heterotrophy and lipid production, the effects of carbon sources on the growth and lipid accumulation of Chlorella sorokiniana GXNN01 was studied. The alga exhibited an increased growth rate in response to the addition of carbon sources, which reached the stationary phase after 48 h at 30°C. In addition, glucose and NaAc had a significant effect on the lipid accumulation during the early-stationary phase. Specifically, the lipid content was 0.237±0.026 g g~(-1) cell dry weight and 0.272±0.041 g L~(-1) when glucose was used as the carbon source, whereas the lipid content reached 0.287±0.018 g g~(-1) cell dry weight and 0.288±0.008 g L~(-1) when NaAc was used as the carbon source. The neutral lipid content was found to first decrease and then increase over time during the growth phase. A glucose concentration of 20 mmol L~(-1) gave the maximal lipid yield and the optimum harvest time was the early-stationary phase.

  19. Growth rate and calcium carbonate accumulation of Halimeda macrolobaDecaisne (Chlorophyta: Halimedaceae in Thai waters

    Directory of Open Access Journals (Sweden)

    Jaruwan Mayakun

    2014-08-01

    Full Text Available Halimeda macroloba Decaisne can utilize the CO2 used for carbon fixation in photosynthesis and use bicarbonate as the main carbon source for calcification. Although Halimeda has been recognized as a carbon sink species, the calcium accumulation of Halimeda species in Thai waters remain poorly understood. In this study, the highest density of H. macroloba was 26 thalli/m2 and Halimeda quickly produced 1-2 new segments/thallus/day or 20.1 mg dry weight/thallus/day. Its calcium carbonate accumulation rate was 16.6 mg CaCO3 /thallus/day, or 82.46 % per thallus. In Thailand, however, only three scientific papers of growth rate and CaCO3 accumulation rate of H. macroloba have been found and collected. Of these records, the mean density was 26-104 thalli/m2 . The growth rate of H. macroloba was around 1-2 mg dry weight/day and the CaCO3 accumulation rate varied around 41-91%. Thus, Halimeda has a great potential to decrease the carbon dioxide concentration in the ocean.

  20. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  1. A Simple Surface Modification of NiO Cathode with TiO{sub 2} Nano-Particles for Molten Carbonate Fuel Cells (MCFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Seon; Kim, Keon [Korea Univ., seoul (Korea, Republic of); Yi, Cheolwoo [Sungshin Women' s University, Seoul (Korea, Republic of)

    2014-04-15

    The TiO{sub 2}-modified Ni powders, prepared by the simple method (ball-milling and subsequent annealing) without resorting to any complex coating process, eventually form nickel titanate passive layer at high temperature. It as good corrosion resistance in molten carbonates media and higher electrical conductivity at high temperature. In addition, the modified cathode increases the degree of lithiation during the operation of MCFC. These positive effects provide a decrease in the internal resistance and improve the cell performance. Results obtained from this study can be applied to develop the surface modification of cathode materials and the performance of molten carbonate fuel cells. Molten carbonate fuel cells (MCFCs) are efficient energy conversion devices to convert chemical energy into electrical energy through the electrochemical reaction. Because of a lot of advantages of MCFC operated at high temperature, many researchers have been trying to apply it to large-scaled power generations, marine boats, and so on. Among various cathode materials, nickel oxide, NiO, is the most widely used cathode for MCFCs due to its stability and high electrical conductivity, but the degradation of cathode material, so-called NiO dissolution, prevents a long-term operation of MCFC. In order to overcome the drawback, numerous studies have been performed. One of the most useful ways to enhance the surface property and maintain the bulk property of the host materials is the surface modification. The most common modification method is coating and these coating procedures which need some complicated steps with the use of organic materials, but it restricts the large-scale fabrication. In this study, to improve the electrochemical performance, we have prepared an alternative MCFC cathode material, TiO{sub 2}-modified NiO, by simple method without resorting to any complex coating process. Results obtained in this study can provide an effective way to mass-produce the cathode

  2. A Simple Surface Modification of NiO Cathode with TiO2 Nano-Particles for Molten Carbonate Fuel Cells (MCFCs)

    International Nuclear Information System (INIS)

    The TiO2-modified Ni powders, prepared by the simple method (ball-milling and subsequent annealing) without resorting to any complex coating process, eventually form nickel titanate passive layer at high temperature. It as good corrosion resistance in molten carbonates media and higher electrical conductivity at high temperature. In addition, the modified cathode increases the degree of lithiation during the operation of MCFC. These positive effects provide a decrease in the internal resistance and improve the cell performance. Results obtained from this study can be applied to develop the surface modification of cathode materials and the performance of molten carbonate fuel cells. Molten carbonate fuel cells (MCFCs) are efficient energy conversion devices to convert chemical energy into electrical energy through the electrochemical reaction. Because of a lot of advantages of MCFC operated at high temperature, many researchers have been trying to apply it to large-scaled power generations, marine boats, and so on. Among various cathode materials, nickel oxide, NiO, is the most widely used cathode for MCFCs due to its stability and high electrical conductivity, but the degradation of cathode material, so-called NiO dissolution, prevents a long-term operation of MCFC. In order to overcome the drawback, numerous studies have been performed. One of the most useful ways to enhance the surface property and maintain the bulk property of the host materials is the surface modification. The most common modification method is coating and these coating procedures which need some complicated steps with the use of organic materials, but it restricts the large-scale fabrication. In this study, to improve the electrochemical performance, we have prepared an alternative MCFC cathode material, TiO2-modified NiO, by simple method without resorting to any complex coating process. Results obtained in this study can provide an effective way to mass-produce the cathode materials applied

  3. The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon.

    Science.gov (United States)

    Bashkova, Svetlana; Bandosz, Teresa J

    2009-05-01

    The removal of NO(2) on urea-modified and heat-treated wood-based activated carbons was studied. From the obtained results it was found that these modifications, especially when done at 950 degrees C, have a positive effect on NO(2) adsorption and on the retention of NO (the product of NO(2) reduction by carbon). The presence of moisture in the system enhances the removal of NO(2) but negatively affects the retention of NO. It is possible that the formation of active centers on the carbon surface and some increase in the volume of supermicropores during the high temperature treatment play a significant role in these removal processes. The surface of the carbons was analyzed in terms of the pK(a) distributions. The qualitative and quantitative analyses of the NO(2) adsorption products were carried out by means of FTIR and TA techniques, respectively. The main products found on the carbon surface were the NO(3) and NO(2) species.

  4. Aerosynthesis: Growth of Vertically-aligned Carbon Nanofibres with Air DC Plasma

    Directory of Open Access Journals (Sweden)

    A. Kodumagulla

    2014-03-01

    Full Text Available Vertically-aligned carbon nanofibres (VACNFs have been synthesized in a mixture of acetone and air using catalytic DC plasma-enhanced chemical vapour deposition. Typically, ammonia or hydrogen is used as an etchant gas in the mixture to remove carbon that otherwise passivates the catalyst surface and impedes growth. Our demonstration of the use of air as the etchant gas opens up the possibility that ion etching could be sufficient to maintain the catalytic activity state during synthesis. It also demonstrates a path toward growing VACNFs in the open atmosphere.

  5. Research Progress of Modification of Carbon Nanotubes%纳米碳管的表面改性方法研究进展

    Institute of Scientific and Technical Information of China (English)

    郑楠; 吴敏; 张迪; 宁平

    2012-01-01

    Research progress of the present several types of common carbon nanotubes CCNTs) surface modification methods was summarized. The characteristic, principle and problems of these methods were analysed. The change of the properties of CNTs after modified was briefly described. Weighing the advantages and disadvantages of the modification methods, the future direction of CNTs modification research was put forward, that is attach importance to multidisciplinary cross applications, organically combined with each modification method to improve modification effect. At the same time, the mobility and transformation in the environment and the environmental risk of modified CNTs is not clear. In the future research, we need to know more about the physicochemical properties of modified CNTs, which is the important premise for objective risk assessment.%概括了目前几类常用的纳米碳管(CNTs)表面改性方法的研究进展,分析了各方法的特点、原理及存在的问题,简单地描述了改性后CNTs性质的变化.权衡各方法的利弊,提出了未来CNTs改性的研究方向,即应注重多学科的交叉应用,将各改性手段有机结合,提高修饰效果.同时指出,改性后的CNTs在环境中的迁移转化及产生的环境风险尚不清楚,在今后的研究中还需充分认识改性后CNTs的理化性质,这是对其进行客观风险评价的重要前提.

  6. Carbon- and crack-free growth of hexagonal boron nitride nanosheets and their uncommon stacking order.

    Science.gov (United States)

    Khan, Majharul Haque; Casillas, Gilberto; Mitchell, David R G; Liu, Hua Kun; Jiang, Lei; Huang, Zhenguo

    2016-09-21

    The quality of hexagonal boron nitride nanosheets (h-BNNS) is often associated with the most visible aspects such as lateral size and thickness. Less obvious factors such as sheet stacking order could also have a dramatic impact on the properties of BNNS and therefore its applications. The stacking order can be affected by contamination, cracks, and growth temperatures. In view of the significance of chemical-vapour-decomposition (CVD) assisted growth of BNNS, this paper reports on strategies to grow carbon- and crack-free BNNS by CVD and describes the stacking order of the resultant BNNS. Pretreatment of the most commonly used precursor, ammonia borane, is necessary to remove carbon contamination caused by residual hydrocarbons. Flattening the Cu and W substrates prior to growth and slow cooling around the Cu melting point effectively facilitate the uniform growth of h-BNNS, as a result of a minimal temperature gradient across the Cu substrate. Confining the growth inside alumina boats effectively minimizes etching of the nanosheet by silica nanoparticles originating from the commonly used quartz reactor tube. h-BNNS grown on solid Cu surfaces using this method adopt AB, ABA, AC', and AC'B stacking orders, which are known to have higher energies than the most stable AA' configuration. These findings identify a pathway for the fabrication of high-quality h-BNNS via CVD and should spur studies on stacking order-dependent properties of h-BNNS.

  7. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation

    International Nuclear Information System (INIS)

    A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently “grow from below.” By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000 °C growth temperature

  8. Dynamic Recrystallization and Grain Growth Behavior of 20SiMn Low Carbon Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    DONG Lanfeng; ZHONG Yuexian; MA Qingxian; YUAN Chaolong; MA Lishen

    2008-01-01

    A senes of thermodynamics experiments were used to optimize the hot forging process of 20SiMn low-carbon alloy steel.A dynamic recrystallization and grain growth model was developed for the 20SiMn steel for common production conditions of heavy forgings by doing a nonlinear curve fit of the expenment data.Optimized forging parameters were developed based on the control of the dynamic recrystallization and the MnS secondary phase.The data shows that the initial grain size and the MnS secondary phase all affect the behavior of the 20SiMn dynamic recrystallization and grain growth.

  9. Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels

    OpenAIRE

    Macías, Carlos; Haro Remón, Marta; Rasines, Gloria; Parra Soto, José Bernardo; Ovín Ania, María Concepción

    2013-01-01

    [EN] A simple modification of the conventional sol–gel polymerization of resorcinol–formaldehyde mixtures allowed a facile preparation of ultrahigh mesoporous carbon gels. In the conventional synthesis the growth of the cluster polymer particles leading to the development of the porosity is controlled by the R/C ratio. In the presence of a carbon conductive additive, the polymerization of the reactants proceeded through the formation of less-branched polymer clusters resulting in carbon gels ...

  10. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol

    Directory of Open Access Journals (Sweden)

    Martínez-Gómez Karla

    2012-07-01

    Full Text Available Abstract Background Glycerol has enhanced its biotechnological importance since it is a byproduct of biodiesel synthesis. A study of Escherichia coli physiology during growth on glycerol was performed combining transcriptional-proteomic analysis as well as kinetic and stoichiometric evaluations in the strain JM101 and certain derivatives with important inactivated genes. Results Transcriptional and proteomic analysis of metabolic central genes of strain JM101 growing on glycerol, revealed important changes not only in the synthesis of MglB, LamB and MalE proteins, but also in the overexpression of carbon scavenging genes: lamB, malE, mglB, mglC, galP and glk and some members of the RpoS regulon (pfkA, pfkB, fbaA, fbaB, pgi, poxB, acs, actP and acnA. Inactivation of rpoS had an important effect on stoichiometric parameters and growth adaptation on glycerol. The observed overexpression of poxB, pta, acs genes, glyoxylate shunt genes (aceA, aceB, glcB and glcC and actP, suggested a possible carbon flux deviation into the PoxB, Acs and glyoxylate shunt. In this scenario acetate synthesized from pyruvate with PoxB was apparently reutilized via Acs and the glyoxylate shunt enzymes. In agreement, no acetate was detected when growing on glycerol, this strain was also capable of glycerol and acetate coutilization when growing in mineral media and derivatives carrying inactivated poxB or pckA genes, accumulated acetate. Tryptophanase A (TnaA was synthesized at high levels and indole was produced by this enzyme, in strain JM101 growing on glycerol. Additionally, in the isogenic derivative with the inactivated tnaA gene, no indole was detected and acetate and lactate were accumulated. A high efficiency aromatic compounds production capability was detected in JM101 carrying pJLBaroGfbrtktA, when growing on glycerol, as compared to glucose. Conclusions The overexpression of several carbon scavenging, acetate metabolism genes and the absence of acetate

  11. Role of the catalyst in the growth of single-wall carbon nanotubes.

    Science.gov (United States)

    Balbuena, Perla B; Zhao, Jin; Huang, Shiping; Wang, Yixuan; Sakulchaicharoen, Nataphan; Resasco, Daniel E

    2006-05-01

    Classical molecular dynamics simulations are carried out to analyze the physical state of the catalyst, and the growth of single-wall carbon nanotubes under typical temperature and pressure conditions of their experimental synthesis, emphasizing the role of the catalyst/substrate interactions. It is found that a strong cluster/substrate interaction increases the cluster melting point, modifying the initial stages of carbon dissolution and precipitation on the cluster surface. Experiments performed on model Co-Mo catalysts clearly illustrate the existence of an initial period where the catalyst is formed and no nanotube growth is observed. To quantify the nature of the Co-Mo2C interaction, quantum density functional theory is applied to characterize structural and energetic features of small Co clusters deposited on a (001) Mo2C surface, revealing a strong attachment of Co-clusters to the Mo2C surface, which may increase the melting point of the cluster and prevent cluster sintering.

  12. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation

    Science.gov (United States)

    van Oijen, M.

    2012-04-01

    • Background and Aims. The carbon balance of vegetation is dominated by the two large fluxes of photosynthesis (P) and respiration (R). Mechanistic models have attempted to simulate the two fluxes separately, each with their own set of internal and external controls. This has led to model predictions where environmental change causes R to exceed P, with consequent dieback of vegetation. However, empirical evidence suggests that the R:P ratio is constrained to a narrow range of about 0.4-0.5. Physiological explanations for the narrow range are not conclusive. We aim to introduce a novel perspective by theoretical study of the quantitative relationship between the four carbon fluxes of P, R, growth and storage (or its inverse, remobilisation). • Methods. Starting from the law of conservation of mass - in this case carbon - we derive equations for the relative magnitudes of all carbon fluxes which depend on only two parameters: the R:P ratio and the relative rate of storage of carbon into remobilisable reserves. The equations are used to explain observed flux ratios and to analyse incomplete data sets of carbon fluxes. • Key Results. Storage rate is shown to be a freely varying parameter, whereas R:P is narrowly constrained. This explains the constancy of the ratio reported in the literature. With the information thus gained, a data set of R and P in grassland was analysed, and flux estimates could be derived for the periods after cuts in which plant growth is dominated by remobilisation before photosynthesis takes over. • Conclusions. We conclude that the relative magnitudes of photosynthesis, respiration, growth and substrate storage are indeed tightly constrained, but because of mass conservation rather than for physiological reasons. This facilitates analysis of incomplete data sets. Mechanistic models, as the embodiment of physiological mechanisms, need to show consistency with the constraints. • Reference. Van Oijen, M., Schapendonk, A. & Höglind, M

  13. Heterogeneous growth of cadmium and cobalt carbonate phases at the (101¯4) calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Man; Ilton, Eugene S.; Engelhard, Mark H.; Qafoku, Odeta; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien N.

    2015-03-01

    The ability of surface precipitates to form heteroepitaxially is an important factor that controls the extent of heterogeneous growth. In this work, the growth of cadmium and cobalt carbonate phases on (10-14) calcite surfaces is compared for a range of initial saturation states with respect to otavite (CdCO3) and sphaerocobaltite (CoCO3), two isostructural metal carbonates that exhibit different lattice misfits with respect to calcite. Calcite single crystals were reacted in static conditions for 16 hours with CdCl2 and CoCl2 aqueous solutions with initial concentrations 0.3 ≤ [Cd2+]0 ≤ 100 μM and 25 ≤ [Co2+]0 ≤ 200 μM. The reacted crystals were imaged in situ with atomic force microscopy (AFM) and analyzed ex situ with X-ray photoelectron spectroscopy (XPS). AFM images of Cd-reacted crystals showed the formation of large islands elongated along the direction, clear evidence of heteroepitaxial growth, whereas surface precipitates on Co-reacted crystals were small round islands. Deformation of calcite etch pits in both cases indicated the incorporation of Cd and Co at step edges. XPS analysis pointed to the formation of a Cd-rich (Ca,Cd)CO3 solid solution coating atop the calcite substrate. In contrast, XPS measurements of the Co-reacted crystals provided evidence for the formation of a mixed hydroxy-carbonate cobalt phase. The combined AFM and XPS results suggest that the lattice misfit between CoCO3 and CaCO3 ( 15% based on surface areas) is too large to allow for heteroepitaxial growth of a pure cobalt carbonate phase on calcite surfaces in aqueous solutions and at ambient conditions. The use of the satellite structure of the Co 2p3/2 photoelectron line as a tool for determining the nature of cobalt surface precipitates is also discussed.

  14. Carbon policy in a high-growth economy: The case of China

    OpenAIRE

    Bretschger, Lucas; Zhang, Lin

    2014-01-01

    There is widespread concern that an international agreement on stringent climate policies will not be reached because it would imply too high costs for fast growing economies like China. To quantify these costs we develop a general equilibrium model with fully endogenous growth. The framework includes disaggregated industrial and energy sectors, endogenous innovation, and sector-specific investments. We find that the implementation of Chinese government carbon policies until 2020 causes a wel...

  15. Nanocomposite Scaffold for Chondrocyte Growth and Cartilage Tissue Engineering: Effects of Carbon Nanotube Surface Functionalization

    OpenAIRE

    Chahine, Nadeen O.; Collette, Nicole M.; Thomas, Cynthia B.; Genetos, Damian C.; Loots, Gabriela G

    2014-01-01

    The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and bioc...

  16. Growth of carbon structures on chrysotile surface for organic contaminants removal from wastewater.

    Science.gov (United States)

    Lemos, Bruno R S; Soares, Érico A R; Teixeira, Ana Paula C; Ardisson, José D; Fernandez-Outon, Luis E; Amorim, Camila C; Lago, Rochel M; Moura, Flávia C C

    2016-09-01

    Amphiphilic magnetic composites were produced based on chrysotile mineral and carbon structures by chemical vapor deposition at different temperatures (600-900 °C) and cobalt as catalyst. The materials were characterized by elemental analysis, X-ray diffraction, vibrating sample magnetometry, adsorption and desorption of N2, Raman spectroscopy, scanning electronic microscopy, and thermal analysis showed an effective growth of carbon structures in all temperatures. It was observed that at 800 and 900 °C, a large amount of carbon structures are formed with fewer defects than at 600 and 700 °C, what contributes to their stability. In addition, the materials present magnetic phases that are important for their application as catalysts and adsorbents. The materials have shown to be very active to remove the oil dispersed in a real sample of emulsified wastewater from biodiesel production and to remove methylene blue by adsorption and oxidation via heterogeneous Fenton mechanism. PMID:27343867

  17. Carbon nanotube-based sensor and method for detection of crack growth in a structure

    Science.gov (United States)

    Smits, Jan M. (Inventor); Kite, Marlen T. (Inventor); Moore, Thomas C. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony N. (Inventor); Williams, Phillip A. (Inventor)

    2007-01-01

    A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between the resistance of a carbon nanotube and its strain, changes experienced by the portion of the structure to which the sensor is coupled induce a corresponding change in the electrical properties of the conductors, thereby enabling detection of crack growth in the structure.

  18. Decorating multiwalled carbon nanotubes with zinc oxide nano-crystallines through hydrothermal growth process

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; QIAO YingJie; LI YuMing

    2012-01-01

    Multiwalled-carbon nanotubes coated with nano-crystalline zinc oxide (ZnO) was prepared by in situ growth of nano zinc oxide on the surfaces of carbon nanotubes through hydrothermal method.X-ray diffraction,transmission electron microscopy and scanning electron microscopy analysis techniques were used to characterize the samples.It was observed that a layer of nano-crystalline ZnO with the wurtzite hexagonal crystal structure was uniformly coated on the nanotube surfaces with good adhesion,which resulted in the formation of a novel ZnO-nanotube nano composite.In this work,the carbon nanotubes decorated by metal oxide nanoparticles were synthesized by a simple chemical-solution route which is suitable for the large-scale production with low cost.

  19. Investigating the growth mechanism and optical properties of carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Anjum, Dalaver H.

    2013-10-01

    TiO2 nanoparticles (NPs) were prepared using flame synthesis and then characterized using transmission electron microscopy. We found that the flame method yields both crystalline TiO2 and amorphous TiO 2 NPs. TEM analysis revealed that only the crystalline TiO 2 NPs were coated with carbon. Based on this observation, we proposed a growth model for the diffusion and precipitation of carbon atoms in TiO 2 NPs. The optical properties of TiO2 NPs were investigated by performing valence electron energy loss spectrometry analysis. We observed that carbon-coated TiO2 NPs have higher absorption in the visible range due to their lower band-gap energy. © 2013 Elsevier B.V.

  20. Photosynthate consumption and carbon turnover in the rhizosphere depending on plant species and growth conditions

    International Nuclear Information System (INIS)

    The root tissue which can be isolated from soils represents only part of the total plant carbon incorporation. Between 20 and 40% of the photosynthetic production of plants is expended for root growth and root metabolism. This indicates a striking turnover of energy in the rhizosphere, because relatively litle root-derived organic matter remains there until harvest time. Plant species and variety, soil conditions and temperature were shown to be the most decisive factors governing the assimilate consumption of plant root systems. A special technique is described which enables to study how this extensive turnover affects the surrounding soil depending on its proximity to the roots. Plant-derived carbon can be detected up to 20mm away from the roots. A priming effect has been found on the decomposition of soil organic matter. This explains why, in spite of the rhizo-deposition mentioned, no net-accumulation of carbon in the rhizosphere has been found. (Author)

  1. Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain?

    Science.gov (United States)

    Li, Huiying; Smith, F Andrew; Dickson, Sandy; Holloway, Robert E; Smith, Sally E

    2008-01-01

    * This study investigated effects of plant density and arbuscular mycorrhizal (AM) colonization on growth and phosphorus (P) nutrition of a cultivar of wheat (Triticum aestivum) that often shows early AM-induced growth depressions. * Two experiments were conducted. Expt 1 had three plant densities and one soil P concentration. Expt 2 had two plant densities and two P concentrations. Plants were grown in calcareous P-fixing soil, inoculated with Glomus intraradices or Gigaspora margarita, or noninoculated (nonmycorrhizal (NM)). Glomus intraradices colonized well and caused a growth depression only in Expt 1. Gigaspora margarita caused large growth depressions in both experiments even though it colonized poorly. * The results showed that growth depressions were mitigated by changes in relative competition for soil P by NM and AM plants, and probably by decreasing carbon costs of the fungi. * The different effects of the two fungi appear to be attributable to differences in the balance between P uptake by the fungal pathway and direct uptake via the roots. These differences may be important in other AM symbioses that result in growth depressions. The results show that mycorrhizal growth responses of plants grown singly may not apply at the population or community level.

  2. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  3. Adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to colloidal oxidized multiwalled carbon nanotubes: effects of humic acid and surfactant modification.

    Science.gov (United States)

    Hou, Lei; Zhu, Dongqiang; Wang, Ximeng; Wang, Lilin; Zhang, Chengdong; Chen, Wei

    2013-03-01

    Carbon nanotubes (CNTs) can exist in the form of colloidal suspension in aquatic environments, particularly in the presence of natural organic matter or surfactants, and may significantly affect the fate and transport of organic contaminants. In the present study, the authors examined the adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to three colloidal CNTs, including a stable suspension of oxidized multiwalled carbon nanotubes (O-MWNT), a humic acid (HA)-modified colloidal O-MWNT, and a sodium dodecyl sulfate (SDS)-modified colloidal O-MWNT. All three colloidal O-MWNTs exhibit strong adsorption affinities to the three test compounds (with K(OC) values orders of magnitude greater than those of natural organic matter), likely resulting from strong nonhydrophobic interactions such as π-π electron donor-acceptor interactions and Lewis acid-base interactions. When thoroughly mixed, HA (at ∼310 mg HA/g CNT) and SDS (at ∼750 mg SDS/g CNT) significantly affected the aggregation properties of O-MWNT, causing individually dispersed tubes to form a loosely entangled network. The effects of HA or SDS modification on adsorption are twofold. Adsorption of HA/SDS significantly reduces surface areas of O-MWNT; however, the entangled network allows adsorbate molecules to interact simultaneously with multiple tubes. An important implication is that humic substances and surfactant-like materials not only facilitate the formation of colloidal carbon nanoparticles but also affect how these colloidal carbon nanoparticles adsorb organic contaminants.

  4. A study of the effects of nanoparticle modification on the thermal, mechanical and hygrothermal performance of carbon/vinyl ester composites

    Science.gov (United States)

    Powell, Felicia M.

    Enhancement of mechanical, thermal and hygrothermal properties of carbon fiber/vinyl ester (CFVE) composites through nanoparticle reinforcement has been investigated. CFVE composites are becoming more and more attractive for marine applications due to two reasons: high specific strength and modulus of carbon fiber and low vulnerability of vinyl ester resin to sea water. However, the problem with this composite system is that the fiber matrix (F/M) interface is inherently weak. This leads to poor mechanical properties and fast ingress of water at the interface further deteriorating the properties. This investigation attempts to address these deficiencies by inclusion of nanoparticles in CFVE composites. Three routes of nanoparticle reinforcement have been considered: nanoparticle coating of the carbon fiber, dispersion of nanoparticles in the vinyl ester matrix, and nanoparticle modification of both the fiber and the matrix. Flexural, short beam shear and tensile testing was conducted after exposure to dry and wet environments. Differential scanning calorimetry and dynamic mechanical analysis were conducted as well. Mechanical and thermal tests show that single inclusion of nanoparticles on the fiber or in the matrix increases carbon/vinyl ester composite properties by 11--35%. However, when both fiber and matrix were modified with nanoparticles, there was a loss of properties.

  5. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Science.gov (United States)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  6. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-10-30

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  7. Low-carbon transition of iron and steel industry in China: carbon intensity, economic growth and policy intervention.

    Science.gov (United States)

    Yu, Bing; Li, Xiao; Qiao, Yuanbo; Shi, Lei

    2015-02-01

    As the biggest iron and steel producer in the world and one of the highest CO2 emission sectors, China's iron and steel industry is undergoing a low-carbon transition accompanied by remarkable technological progress and investment adjustment, in response to the macroeconomic climate and policy intervention. Many drivers of the CO2 emissions of the iron and steel industry have been explored, but the relationships between CO2 abatement, investment and technological expenditure, and their connections with the economic growth and governmental policies in China, have not been conjointly and empirically examined. We proposed a concise conceptual model and an econometric model to investigate this crucial question. The results of regression, Granger causality test and impulse response analysis indicated that technological expenditure can significantly reduce CO2 emissions, and that investment expansion showed a negative impact on CO2 emission reduction. It was also argued with empirical evidence that a good economic situation favored CO2 abatement in China's iron and steel industry, while achieving CO2 emission reduction in this industrial sector did not necessarily threaten economic growth. This shed light on the dispute over balancing emission cutting and economic growth. Regarding the policy aspects, the year 2000 was found to be an important turning point for policy evolution and the development of the iron and steel industry in China. The subsequent command and control policies had a significant, positive effect on CO2 abatement.

  8. Drawing Circuits with Carbon Nanotubes: Scratch-Induced Graphoepitaxial Growth of Carbon Nanotubes on Amorphous Silicon Oxide Substrates

    Science.gov (United States)

    Choi, Won Jin; Chung, Yoon Jang; Kim, Yun Ho; Han, Jeongho; Lee, Young-Kook; Kong, Ki-jeong; Chang, Hyunju; Lee, Young Kuk; Kim, Byoung Gak; Lee, Jeong-O

    2014-01-01

    Controlling the orientations of nanomaterials on arbitrary substrates is crucial for the development of practical applications based on such materials. The aligned epitaxial growth of single-walled carbon nanotubes (SWNTs) on specific crystallographic planes in single crystalline sapphire or quartz has been demonstrated; however, these substrates are unsuitable for large scale electronic device applications and tend to be quite expensive. Here, we report a scalable method based on graphoepitaxy for the aligned growth of SWNTs on conventional SiO2/Si substrates. The “scratches” generated by polishing were found to feature altered atomic organizations that are similar to the atomic alignments found in vicinal crystalline substrates. The linear and circular scratch lines could promote the oriented growth of SWNTs through the chemical interactions between the C atoms in SWNT and the Si adatoms in the scratches. The method presented has the potential to be used to prepare complex geometrical patterns of SWNTs by ‘drawing' circuits using SWNTs without the need for state-of-the-art equipment or complicated lithographic processes. PMID:24924480

  9. Carbon Isotope Fractionations Associated with Methanotrophic Growth with the Soluble and Particulate Methane Monooxygenases

    Science.gov (United States)

    Jahnke, Linda L.; Summons, Roger E.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Growth experiments with the RuMP-type methanotroph, Methylococcus capsulatus (Bath), have demonstrated that biomass and lipid biomarkers are significantly depleted in C-13 compared to the substrate methane and that the extent of fractionation is dependent on whether cells express the soluble (s) or particulate (p) methane monooxygenase (MMO). The presence or absence of the characteristic sMMO subunits was monitored using SDS-polyacrylamide gels. In M. capsulatus grown with no Cu supplementation, the characteristic sMMO subunits were observed in the soluble fraction throughout the entire growth period and biomass was depleted in C-13 by approximately 14,700 relative to substrate methane. In cells grown with 5uM Cu, no sMMO bands were observed and a greater fractionation of approximately 27,700 in resultant biomass was obtained. Methanol growth experiments with M. capsulatus and with a RuMP methylotroph, Methylophilus methylotrophus, in which biomass measurements yielded depletions in C-13 of 9 and 5%(sub o), respectively, suggest that oxidation of methane is the major fractionation step. Growth of M. capsulatus at a low level of oxygen, approximately 0.5%, had no significant effect on carbon isotope fractionation by either sMMO or pMMO. These observations are significant for identification of molecular biomarkers; and methanotrophic contributions to carbon isotope composition in natural environments.

  10. Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel

    Science.gov (United States)

    Edzatty, A. N.; Syazwan, S. M.; Norzilah, A. H.; Jamaludin, S. B.

    2016-07-01

    Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterization of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 - 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.

  11. Carbon changes in conterminous US forests associated with growth and major disturbances: 1992-2001

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Daolan; Ducey, Mark J [Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824 (United States); Heath, Linda S; Smith, James E, E-mail: daolan.zheng@unh.edu [USDA Forest Service, Northern Research Station, Durham, NH 03824 (United States)

    2011-01-15

    We estimated forest area and carbon changes in the conterminous United States using a remote sensing based land cover change map, forest fire data from the Monitoring Trends in Burn Severity program, and forest growth and harvest data from the USDA Forest Service, Forest Inventory and Analysis Program. Natural and human-associated disturbances reduced the forest ecosystems' carbon sink by 36% from 1992 to 2001, compared to that without disturbances in the 48 states. Among the three identified disturbances, forest-related land cover change contributed 33% of the total effect in reducing the forest carbon potential sink, while harvests and fires accounted for 63% and 4% of the total effect, respectively. The nation's forests sequestered 1.6 {+-} 0.1 Pg (10{sup 15} petagram) carbon during the period, or 0.18 Pg C yr{sup -1}, with substantial regional variation. The southern region of the United States was a small net carbon source whereas the greater Pacific Northwest region was a strong net sink. Results of the approach fit reasonably well at an aggregate level with other related estimates of the current forest US greenhouse gas inventory, suggesting that further research using this approach is warranted.

  12. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest.

    Science.gov (United States)

    Delpierre, Nicolas; Berveiller, Daniel; Granda, Elena; Dufrêne, Eric

    2016-04-01

    Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr time series of carbon fluxes and aboveground wood growth (AWG), reconstructed at a weekly time-scale through the combination of dendrometer and wood density data. Carbon inputs and AWG anomalies appeared to be uncorrelated from the seasonal to interannual scales. More than 90% of the interannual variability of AWG was explained by a combination of the growth intensity during a first 'critical period' of the wood growing season, occurring close to the seasonal maximum, and the timing of the first summer growth halt. Both atmospheric and soil water stress exerted a strong control on the interannual variability of AWG at the study site, despite its mesic conditions, whilst not affecting carbon inputs. Carbon sink activity, not carbon inputs, determined the interannual variations in wood growth at the study site. Our results provide a functional understanding of the dependence of radial growth on precipitation observed in dendrological studies. PMID:26619197

  13. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.

    Science.gov (United States)

    Zhang, Zhenzhen; Zhu, Jia-Ying; Roh, Jeehee; Marchive, Chloé; Kim, Seong-Ki; Meyer, Christian; Sun, Yu; Wang, Wenfei; Wang, Zhi-Yong

    2016-07-25

    For maintenance of cellular homeostasis, the actions of growth-promoting hormones must be attenuated when nutrient and energy become limiting. The molecular mechanisms that coordinate hormone-dependent growth responses with nutrient availability remain poorly understood in plants [1, 2]. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates nutrient and energy signaling to regulate growth and homeostasis in both animals and plants [3-7]. Here, we show that sugar signaling through TOR controls the accumulation of the brassinosteroid (BR)-signaling transcription factor BZR1, which is essential for growth promotion by multiple hormonal and environmental signals [8-11]. Starvation, caused by shifting of light-grown Arabidopsis seedlings into darkness, as well as inhibition of TOR by inducible RNAi, led to plant growth arrest and reduced expression of BR-responsive genes. The growth arrest caused by TOR inactivation was partially recovered by BR treatment and the gain-of-function mutation bzr1-1D, which causes accumulation of active forms of BZR1 [12]. Exogenous sugar promoted BZR1 accumulation and seedling growth, but such sugar effects were largely abolished by inactivation of TOR, whereas the effect of TOR inactivation on BZR1 degradation is abolished by inhibition of autophagy and by the bzr1-1D mutation. These results indicate that cellular starvation leads sequentially to TOR inactivation, autophagy, and BZR1 degradation. Such regulation of BZR1 accumulation by glucose-TOR signaling allows carbon availability to control the growth promotion hormonal programs, ensuring supply-demand balance in plant growth.

  14. TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis.

    Science.gov (United States)

    Zhang, Zhenzhen; Zhu, Jia-Ying; Roh, Jeehee; Marchive, Chloé; Kim, Seong-Ki; Meyer, Christian; Sun, Yu; Wang, Wenfei; Wang, Zhi-Yong

    2016-07-25

    For maintenance of cellular homeostasis, the actions of growth-promoting hormones must be attenuated when nutrient and energy become limiting. The molecular mechanisms that coordinate hormone-dependent growth responses with nutrient availability remain poorly understood in plants [1, 2]. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates nutrient and energy signaling to regulate growth and homeostasis in both animals and plants [3-7]. Here, we show that sugar signaling through TOR controls the accumulation of the brassinosteroid (BR)-signaling transcription factor BZR1, which is essential for growth promotion by multiple hormonal and environmental signals [8-11]. Starvation, caused by shifting of light-grown Arabidopsis seedlings into darkness, as well as inhibition of TOR by inducible RNAi, led to plant growth arrest and reduced expression of BR-responsive genes. The growth arrest caused by TOR inactivation was partially recovered by BR treatment and the gain-of-function mutation bzr1-1D, which causes accumulation of active forms of BZR1 [12]. Exogenous sugar promoted BZR1 accumulation and seedling growth, but such sugar effects were largely abolished by inactivation of TOR, whereas the effect of TOR inactivation on BZR1 degradation is abolished by inhibition of autophagy and by the bzr1-1D mutation. These results indicate that cellular starvation leads sequentially to TOR inactivation, autophagy, and BZR1 degradation. Such regulation of BZR1 accumulation by glucose-TOR signaling allows carbon availability to control the growth promotion hormonal programs, ensuring supply-demand balance in plant growth. PMID:27345161

  15. Direct growth of graphene on gallium nitride using C2H2 as carbon source

    Science.gov (United States)

    Wang, Bing; Zhao, Yun; Yi, Xiao-Yan; Wang, Guo-Hong; Liu, Zhi-Qiang; Duan, Rui-Rei; Huang, Peng; Wang, Jun-Xi; Li, Jin-Min

    2016-04-01

    Growing graphene on gallium nitride (GaN) at temperatures greater than 900°C is a challenge that must be overcome to obtain high quality of GaN epi-layers. We successfully met this challenge using C2H2 as the carbon source. We demonstrated that graphene can be grown both on copper and directly on GaN epi-layers. The Raman spectra indicated that the graphene films were about 4-5 layers thick. Meanwhile, the effects of the growth temperature on the growth of the graphene films were systematically studied, and 830°C was found to be the optimum growth temperature. We successfully grew high-quality graphene films directly on gallium nitride.

  16. Role of atomic transverse migration in growth of diamond-like carbon films

    Institute of Scientific and Technical Information of China (English)

    Ma Tian-Bao; Hu Yuan-Zhong; Wang Hui

    2007-01-01

    The growth of diamond-like carbon (DLC) films is studied using molecular dynamics simulations. The effect of impact angle on film structure is carefully studied, which shows that the transverse migration of the incident atoms is the main channel of film relaxation. A transverse-migration-induced film relaxation model is presented to elucidate the process of film relaxation which advances the original model of subplantation. The process of DLC film growth on a rough surface is also investigated, as well as the evolution of microstructure and surface morphology of the film. A preferential-to-homogeneous growth mode and a smoothing of the film are observed, which are due to the transverse migration of the incident atoms.

  17. Effect of phosphorothioate modifications on the ability of GTn oligodeoxynucleotides to specifically recognize single-stranded DNA-binding proteins and to affect human cancer cellular growth.

    Science.gov (United States)

    Morassutti, C; Scaggiante, B; Dapas, B; Xodo, L; Tell, G; Quadrifoglio, F

    1999-12-01

    We have previously identified phosphodiester oligonucleotides exclusively made of G and T bases, named GTn, that significantly inhibit human cancer cell growth and recognize specific nuclear single-stranded DNA binding proteins. We wished to examine the ability of the modified GTn oligonucleotides with different degrees of phosphorothioate modifications to bind specifically to the same nuclear proteins recognized by the GTn phosphodiester analogues and their cytotoxic effect on the human T-lymphoblastic CCRF-CEM cell line. We showed that the full phosphorothioate GTn oligonucleotide was neither able to specifically recognize those nuclear proteins, nor cytotoxic. In contrast, the 3'-phosphorothioate-protected GTn oligonucleotides can maintain the specific protein-binding activity. The end-modified phosphorothioate oligonucleotides were also able to elicit the dose-dependent cell growth inhibition effect, but a loss in the cytotoxic ability was observed increasing the extent of sulphur modification of the sequences. Our results indicate that phosphorothioate oligonucleotides directed at specific single-stranded DNA-binding proteins should contain a number of phosphorothioate end-linkages which should be related to the length of the sequence, in order to maintain the same biological activities exerted by their phosphodiester analogues.

  18. On the Growth and Microstructure of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2010-01-01

    Full Text Available Abstract Carbon nanotubes (CNTs were deposited on various substrates namely untreated silicon and quartz, Fe-deposited silicon and quartz, HF-treated silicon, silicon nitride-deposited silicon, copper foil, and stainless steel mesh using thermal chemical vapor deposition technique. The optimum parameters for the growth and the microstructure of the synthesized CNTs on these substrates are described. The results show that the growth of CNTs is strongly influenced by the substrate used. Vertically aligned multi-walled CNTs were found on quartz, Fe-deposited silicon and quartz, untreated silicon, and on silicon nitride-deposited silicon substrates. On the other hand, spaghetti-type growth was observed on stainless steel mesh, and no CNT growth was observed on HF-treated silicon and copper. Silicon nitride-deposited silicon substrate proved to be a promising substrate for long vertically aligned CNTs of length 110–130 μm. We present a possible growth mechanism for vertically aligned and spaghetti-type growth of CNTs based on these results.

  19. Modeling plasma-assisted growth of graphene-carbon nanotube hybrid

    Science.gov (United States)

    Tewari, Aarti

    2016-08-01

    A theoretical model describing the growth of graphene-CNT hybrid in a plasma medium is presented. Using the model, the growth of carbon nanotube (CNT) on a catalyst particle and thereafter the growth of the graphene on the CNT is studied under the purview of plasma sheath and number density kinetics of different plasma species. It is found that the plasma parameter such as ion density; gas ratios and process parameter such as source power affect the CNT and graphene dimensions. The variation in growth rates of graphene and CNT under different plasma power, gas ratios, and ion densities is analyzed. Based on the results obtained, it can be concluded that higher hydrocarbon ion densities and gas ratios of hydrocarbon to hydrogen favor the growth of taller CNTs and graphene, respectively. In addition, the CNT tip radius reduces with hydrogen ion density and higher plasma power favors graphene with lesser thickness. The present study can help in better understanding of the graphene-CNT hybrid growth in a plasma medium.

  20. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.

    Directory of Open Access Journals (Sweden)

    Xiaolu Liu

    Full Text Available Assimilable organic carbon (AOC is one of the most important factors affecting the re-growth of microorganisms in drinking water. High AOC concentrations result in biological instability, but disinfection kills microbes to ensure the safety of drinking water. Free chlorine is an important oxidizing agent used during the disinfection process. Therefore, we explored the combined effects of AOC and free chlorine on bacterial growth in drinking water using flow cytometry (FCM. The initial AOC concentration was 168 μg.L(-1 in all water samples. Without free chlorine, the concentrations of intact bacteria increased but the level of AOC decreased. The addition of sodium hypochlorite caused an increase and fluctuation in AOC due to the oxidation of organic carbon. The concentrations of intact bacteria decreased from 1.1 × 10(5 cells.mL(-1 to 2.6 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.6 mg.L(-1 to 4.8 × 10(4 cells.mL(-1 at an initial free chlorine dose of 0.3 mg.L(-1 due to free chlorine originating from sodium hypochlorite. Additionally, free chlorine might be more obviously affected AOC concentrations than microbial growth did. These results suggested that AOC and free chlorine might have combined effects on microbial growth. In this study, our results showed concentrations determined by FCM were higher than those by HPC, which indicated that some E. coli detected by FCM might not be detected using HPC in drinking water. The level of free chlorine might restrain the consumption of AOC by inhibiting the growth of E. coli; on the other hand, chlorination might increase the level of AOC, thereby increase the potential for microbial growth in the drinking water network.

  1. Growth of orthorhombic and tetragonal modifications of TlInS{sub 2} from its monoclinic phase

    Energy Technology Data Exchange (ETDEWEB)

    Alekperov, O.Z.; Ibragimov, G.B.; Axundov, I.A.; Nadjafov, A.I.; Fakix, A.R. [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2009-05-15

    Orthorhombic (O) and tetragonal (T) modifications of TlInS{sub 2} were grown by sulfur vapor annealing of monoclinic (M) crystals. Lattice parameters and syngony of the grown crystals were determined from X-ray investigations (Laue, Weissenberg, rocking crystal and powder diffractions). The lattice parameters a =6.88 A, b=14.04 A, c=4.02 A, Z=4 and a=b=7.76 A, c=26.6 A, Z=20 as well as space groups (SG), P2{sub 1}2{sub 1}2{sub 1} and P4{sub 1}2{sub 1}2 were ascribed to O and T modifications, correspondingly. The transition of M-crystals to O- or T-phase takes place through the intermediate disordered state of M-phase in which the unit packets with c{approx}15 A are randomly positioned along the c-axis. From photoconductivity (PC) edge it was found that the band gap of O-TlInS{sub 2} (E{sub g}=2.52{+-}0.01 eV) is slightly higher whereas that of T-TlInS{sub 2} (E{sub g}=1.87{+-}0.01 eV) is noticeably lower than the band gap of M-TlInS{sub 2}. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Crystallite growth kinetics of TiO2 surface modification with 9 mol% ZnO prepared by a coprecipitation process

    International Nuclear Information System (INIS)

    Highlights: • TiO2 powder surface modification with 9 mol% ZnO was obtained. • Phase transformation from anatase to rutile was hindered by ZnO added. • Growth kinetic of anatase TiO2 nanocrystallites in T-9Z powders was described as: DA,92=2.42×105×exp(-39.9×103/RT). • Growth kinetic of rutile TiO2 nanocrystallites in T-9Z powders was described as: DR,92=8.49×105×exp(-47.6×103/RT) rutile TiO2. -- Abstract: The nanocrystallite growth of TiO2 surface modification with 9 mol% ZnO prepared by a coprecipitation process has been studied. Thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–VIS–NIR spectrophotometry have been utilized to characterize the TiO2 nanocrystallites surface modification with 9 mol% ZnO (denoted by T-9Z). The DTA result shows that the anatase TiO2 first formed at 533 K and the completion of anatase TiO2 crystallization occurred at 745 K for the T-9Z freeze-dried precursor powders. XRD results reveal that the anatase and rutile TiO2 coexist when the T-9Z freeze-dried precursor powders were calcined at 523–973 K for 2 h. When the T-9Z freeze-dried precursor powders were calcined at 973 K for 2 h, rutile TiO2 was the major phase, and the minor phases were anatase TiO2 and Zn2Ti3O8. The phase was composed of the rutile TiO2 and Zn2TiO4 for the T-9Z freeze-dried precursor powders after calcination at 1273 K for 2 h. The growth kinetics of TiO2 nanocrystallites in T-9Z powders were described as: DA,92=2.42×105×exp(-39.9×103/RT)and DR,92=8.49×105×exp(-47.6×103/RT) for anatase and rutile TiO2 nanocrystallites respectively. The analysis results of UV/VIS/NIR spectra reveal that the T-9Z freeze-dried precursor powders after calcination have a red-shifted effect with increasing calcination temperature and can be used as a UVA-attenuating agent

  3. Electron-beam assisted selective growth of graphenic carbon thin films on SiO2/Si and quartz substrates

    OpenAIRE

    Knyazev, Maxim; Sedlovets, Daria; Trofimov, Oleg; Redkin, Arkady

    2015-01-01

    The first selective growth of graphenic carbon thin films on silicon dioxide is reported. A preliminary e-beam exposure of the substrate is found to strongly affect the process of such films growth. The emphasis is placed on the influence of substrate exposure on the rate of carbon deposition. The explanation of this effect is proposed. The data of electrical and optical measurements and the results of atomic force and scanning electron microscopy and Raman spectroscopy studies are reported. ...

  4. Carbon : nickel nanocomposite templates - predefined stable catalysts for diameter-controlled growth of single-walled carbon nanotubes

    Science.gov (United States)

    Melkhanova, Svetlana; Haluska, Miro; Hübner, René; Kunze, Tim; Keller, Adrian; Abrasonis, Gintautas; Gemming, Sibylle; Krause, Matthias

    2016-08-01

    Carbon : nickel (C : Ni) nanocomposite templates (NCTs) were used as catalyst precursors for diameter-controlled growth of single-walled carbon nanotubes (SWCNTs) by chemical vapor deposition (CVD). Two NCT types of 2 nm thickness were prepared by ion beam co-sputtering without (type I) or with assisting Ar+ ion irradiation (type II). NCT type I comprised Ni-rich nanoparticles (NPs) with defined diameter in an amorphous carbon matrix, while NCT type II was a homogenous C : Ni film. Based on the Raman spectra of more than 600 individual SWCNTs, the diameter distribution obtained from both types of NCT was determined. SWCNTs with a selective, monomodal diameter distribution are obtained from NCT type I. About 50% of the SWCNTs have a diameter of (1.36 +/- 0.10) nm. In contrast to NCT type I, SWCNTs with a non-selective, relatively homogeneous diameter distribution from 0.80 to 1.40 nm covering 88% of all SWCNTs are obtained from NCT type II. From both catalyst templates predominantly separated as-grown SWCNTs are obtained. They are free of solvents or surfactants, exhibit a low degree of bundling and contain negligible amounts of MWCNTs. The study demonstrates the advantage of predefined catalysts for diameter-controlled SWCNT synthesis in comparison to in situ formed catalysts.Carbon : nickel (C : Ni) nanocomposite templates (NCTs) were used as catalyst precursors for diameter-controlled growth of single-walled carbon nanotubes (SWCNTs) by chemical vapor deposition (CVD). Two NCT types of 2 nm thickness were prepared by ion beam co-sputtering without (type I) or with assisting Ar+ ion irradiation (type II). NCT type I comprised Ni-rich nanoparticles (NPs) with defined diameter in an amorphous carbon matrix, while NCT type II was a homogenous C : Ni film. Based on the Raman spectra of more than 600 individual SWCNTs, the diameter distribution obtained from both types of NCT was determined. SWCNTs with a selective, monomodal diameter distribution are obtained from NCT

  5. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    Li, P.; Zhu, J.; Hu, H.; Guo, Z.; Pan, Y.; Birdsey, R.; Fang, J.

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms that control forest C sinks and it is helpful for developing sustainable forest management policies in the face of climate change. Using the Forest Identity concept and forest inventory data, this study quantified the spatial and temporal changes in the relative contributions of forest areal expansion and increased biomass growth to China's forest biomass C sinks from 1977 to 2008. Over the last 30 years, the areal expansion of forests has been a larger contributor to C sinks than forest growth for planted forests in China (62.2 % vs. 37.8 %). However, for natural forests, forest growth has made a larger contribution than areal expansion (60.4 % vs. 39.6 %). For all forests (planted and natural forests), growth in area and density has contributed equally to the total C sinks of forest biomass in China (50.4 % vs. 49.6 %).The relative contribution of forest growth of planted forests showed an increasing trend from an initial 25.3 % to 61.0 % in the later period of 1998 to 2003, but for natural forests, the relative contributions were variable without clear trends, owing to the drastic changes in forest area and biomass density over the last 30 years. Our findings suggest that afforestation will continue to increase the C sink of China's forests in the future, subject to sustainable forest growth after the establishment of plantations.

  6. In-Situ Growth of Carbon Nanotubes in a Microreactor Environment

    Science.gov (United States)

    Kona, Silpa; Harnett, Cindy

    2010-03-01

    This work presents an approach to the in-situ growth of Carbon Nanotubes (CNTs) inside a micro scale environment using thermal chemical vapor deposition technique (Thermal CVD). Microreactors provide an ideal environment for exploration of extreme nanomaterial growth conditions, because they provide homogenous reactant temperature and concentrations, and the ability to work safely and economically at high temperatures and pressures over a broad range of flows. The study of Carbon Nanotube synthesis inside sub-mm channels and microfabricated reactors is of interest both fundamentally and for applications such as chromatographic channels. Carbon nanotubes (CNTs) are also excellent materials to be used as gas sensing elements as they exhibit changes in their electronic properties on being exposed to gases and are of interest in developing gas sensors operating at room temperature. Such micro scale CNT based sensing devices offer several practical advantages over the current sensors designs available, along with opening up avenues for a more efficient and better way of sensing gases.

  7. The effect of synthesis time on graphene growth from palm oil as green carbon precursor

    Science.gov (United States)

    Salifairus, M. J.; Hamid, S. B. Abd; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    Graphene is the new material that arises after carbon nanotubes (CNTs) era and has extraordinary optical, electronic and mechanical properties compared to CNTs. The 2D graphene is the sp2 carbon allotropes compared to other dimensionality. It also can be in three forms that are zero-dimensional, one-dimensional or three-dimensional. The different dimensionality also called fullerenes, nanotubes and graphite. Therefore, the graphene is known as centre potential materials in expanding research area than others ever. The 2cm × 2cm silicon wafer was seeded with nickel (Ni) at different thickness by using sputter coater. The palm oil, carbon source, was placed in the precursor furnace and the silicon was placed in the second furnace (deposition furnace). The palm oil will mix with Nitrogen gas was used as carrier gas in the CVD under certain temperature and pressure to undergo pyrolysis proses. The deposition temperature was set at 1000 °C. The deposition time varied from 3 minutes, 5 minutes and 7 minutes. The graphene was growth at ambient pressure in the CVD system. Electron microscopy and Raman Spectrometer revealed the structural properties and surface morphology of the grapheme on the substrate. The D and G band appear approximately at 1350 cm-1 and 1850 cm-1. It can be concluded that the growth of graphene varies at different deposition time.

  8. Unveiling carbon dimers and their chains as precursor of graphene growth on Ru(0001)

    Science.gov (United States)

    Gao, Min; Zhang, Yan-Fang; Huang, Li; Pan, Yi; Wang, Yeliang; Ding, Feng; Lin, Yuan; Du, Shi-Xuan; Gao, Hong-Jun

    2016-09-01

    Carbon precursor that forms on the catalyst surface by the dissociation of feedstock gas plays an important role in the controllable growth of graphene on metal substrates. However, the configuration about the precursor has so far remained elusive. Here, we report the direct observation of uniformly structured precursor units and their chain formation at the nucleation stage of graphene growing on Ru(0001) substrate by using scanning tunneling microscopy. Combining this experimental information with density function theory calculations, the atomic-resolved structures of carbon precursor are characterized as adsorbed CH2 segments on the substrate. The dissociated carbon feedstock molecules or radicals further react to form nonplanar -[C2H4]- chains adsorbed on hexagonal-close-packed hollow sites of the Ru(0001) substrate before incorporating into the graphene island. These findings reveal that CH2 and nonplanar -[C2H4]- segments act as precursors in graphene growth and are helpful to improve the quality and the domain size of desired graphene by precursor or feedstock control.

  9. Numerical Simulation of Dendritic Growth of Continuously Cast High Carbon Steel

    Science.gov (United States)

    Wang, Weiling; Luo, Sen; Zhu, Miaoyong

    2015-01-01

    Considering the influence of the latent heat released during the solidification of high carbon liquid steel, a cellular automaton (CA) model coupled with the heat transfer was developed to investigate the growth of equiaxed dendrites which is controlled by the solute diffusion during the continuous casting process. Additionally, the growth of columnar dendrites and primary dendrite arm spacings were predicted and measured. The results show that the CA model is able to describe the growth behavior of equiaxed dendrites, especially at 5 K to 7 K melt undercoolings, and the approach adjusting the cooling medium temperature is reliable to keep the undercooling condition stable for equiaxed dendrites although its hysteresis is reinforced as the pre-set undercooling increases. With the increase of the melt undercooling, the growth of equiaxed dendrites becomes faster, and the thickness of dendritic arms increases slightly, however, the thickness of the diffusion layer in front of dendritic tips keeps constant. The growth of thin and tiny columnar dendrites will be confined due to the competition and absorbed by neighboring strong columnar dendrites, giving rise to the coarsening of columnar dendrites, which is observed both from the experimental observation and the numerical simulation. With the decrease of the cooling intensity, columnar dendrites get sparser, primary dendrite arm spacings increase, and secondary dendritic arms become undeveloped.

  10. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

    Science.gov (United States)

    Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan

    2016-05-01

    HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.

  11. Influence of Ni Catalyst Layer and TiN Diffusion Barrier on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    Mérel Philippe

    2010-01-01

    Full Text Available Abstract Dense, vertically aligned multiwall carbon nanotubes were synthesized on TiN electrode layers for infrared sensing applications. Microwave plasma-enhanced chemical vapor deposition and Ni catalyst were used for the nanotubes synthesis. The resultant nanotubes were characterized by SEM, AFM, and TEM. Since the length of the nanotubes influences sensor characteristics, we study in details the effects of changing Ni and TiN thickness on the physical properties of the nanotubes. In this paper, we report the observation of a threshold Ni thickness of about 4 nm, when the average CNT growth rate switches from an increasing to a decreasing function of increasing Ni thickness, for a process temperature of 700°C. This behavior is likely related to a transition in the growth mode from a predominantly “base growth” to that of a “tip growth.” For Ni layer greater than 9 nm the growth rate, as well as the CNT diameter, variations become insignificant. We have also observed that a TiN barrier layer appears to favor the growth of thinner CNTs compared to a SiO2 layer.

  12. Kinetics of austenite grain growth in medium-carbon niobium-bearing steel

    Institute of Scientific and Technical Information of China (English)

    Ying-li ZHAO; Jie SHI; Wen-quan CAO; Mao-qiu WANG; Gang XIE

    2011-01-01

    In order to locate a reasonable heating system, the austenite grain growth behavior of Nb microalloyed medium carbon steel has been experimentally studied at various austenitizing temperatures and for different holding times. It is indicated that austenite grain growth increases with increasing austenitizing temperatures and holding times. Particularly when the austenitizing temperature was above 1100 ℃, austenite grains grew rapidly, and an abnormal austenite grain growth was observed. When the austenitizing temperature was lower than 1100 ℃, austenite grain size and growth rate were small. The activation energy of grain growth in the tested steel is 397 679.5 J/mol. To ensure an absence of coarse grains in microstructures, the heating technology of the tested steel should be controlled for 1 h at 1100 ℃. The relationships of austenite average grain size with soaking temperature and time of tested steel were obtained by mathematical calculation, and austenite average grain size was found to be in agreement with the measured size for different holding times.

  13. The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth

    International Nuclear Information System (INIS)

    The paper investigates the contributions of foreign direct investment (FDI) net inflows to clean energy use, carbon emissions, and economic growth. The paper employs cointegration tests to examine a long-run equilibrium relationship among the variables and fixed effects models to examine the magnitude of FDI contributions to the other variables. The paper analyzes panel data of 19 nations of the G20 from 1971 to 2009. The test results indicate that FDI has played an important role in economic growth for the G20 whereas it limits its impact on an increase in CO2 emissions in the economies. The research finds no compelling evidence of FDI link with clean energy use. Given the results, the paper discusses FDI's potential role in achieving green growth goals. - Highlights: ► FDI inflows strongly lead to economic growth in the G20. ► FDI inflows lead to an increase in energy use in the G20. ► FDI inflows are in no relation to CO2 emissions in the G20. ► FDI inflows are in no relation to clean energy use in the G20. ► Economic growth is in negative relation to CO2 emissions in the G20

  14. Effects of carbon nanotubes incorporation on the grain growth and properties of WC/Co nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Faming; Sun Jianfei; Shen Jun [School of Materials Science and Engineering, Harbin Inst. of Tech. (China)

    2005-07-01

    Carbon nanotubes (CNTs) combining unique mechanical and physical properties could offer a kind of nanosized reinforcements for composite materials. Incorporating of CNTs to develop advance engineering composites has become an interesting concept, but the cermets based CNTs composites have been less focused. WC-Co-CNTs nanocomposites were consolidated by spark plasma sintering (SPS) to investigate the effects of CNTs incorporation on the grain growth and mechanical properties of WC-Co nanocomposites. Experimental results show that CNTs could preserve their tubular structures in high temperature SPS process, some CNTs are surviving in the WC-Co fracture surfaces featured bridging and pulling out manner. The interaction between the CNTs and the matrix has a retardation effect of grain growth of WC, but CNTs additions could be resulted in an increase of carbon content in the binder phase that causes enhanced tendency of grain growth, either of which plays the dominated role depending on the CNTs content. The WC-10Co-0.5wt% CNTs nanocomposites possess superior hardness to toughness combinations, which hardness is about 15% and fracture toughness is about 40% higher than that of the pure nano-WC-10Co cermets consolidated under the same process. (orig.)

  15. Influence of the Tussock Growth Form on Arctic Ecosystem Carbon Stocks

    Science.gov (United States)

    Curasi, S.; Rocha, A. V.; Sonnentag, O.; Wullschleger, S. D.; Myers-Smith, I. H.; Fetcher, N.; Mack, M. C.; Natali, S.; Loranty, M. M.; Parker, T.

    2015-12-01

    The influence of plant growth forms on ecosystem carbon (C) cycling has been under appreciated. In arctic tundra, environmental factors and plant traits of the sedge Eriophorum vaginatum cause the formation of mounds that are dense amalgamations of belowground C called tussocks. Tussocks have important implications for arctic ecosystem biogeochemistry and C stocks, but the environmental and biological factors controlling their size and distribution across the landscape are poorly understood. In order to better understand how landscape variation in tussock size and density impact ecosystem C stocks, we formed the Carbon in Arctic Tussock Tundra (CATT) network and recruited an international team to sample locations across the arctic. The CATT network provided a latitudinal and longitudinal gradient along which to improve our understanding of tussocks' influence on ecosystem structure and function. CATT data revealed important insights into tussock formation across the arctic. Tussock density generally declined with latitude, and tussock size exhibited substantial variation across sites. The relationship between height and diameter was similar across CATT sites indicating that both biological and environmental factors control tussock formation. At some sites, C in tussocks comprised a substantial percentage of ecosystem C stocks that may be vulnerable to climate change. It is concluded that the loss of this growth form would offset C gains from projected plant functional shifts from graminoid to shrub tundra. This work highlights the role of plant growth forms on the magnitude and retention of ecosystem C stocks.

  16. Crack-Growth Behavior of Laser Surface-Alloyed Low-Carbon Steel

    Science.gov (United States)

    Šturm, Roman; Žnidaršič, Matjaž; Grum, Janez

    2013-09-01

    Crack-growth behavior of Nd:YAG laser surface-alloyed as-received low-carbon steel Fe360B was evaluated. Thin surface layer was alloyed with silicon carbide SiC. During laser surface alloying process SiC powder dissolved in the melted pool. The surface-alloyed layer had as-solidified structure composed mainly of dendrites of ferrite, fine martensite needles, and retained austenite. The micro-hardness of the laser surface-alloyed layer was about 850 HV0.1. In laser surface-alloyed layer compressive residual stresses of average amount of σ RS = -100 MPa were obtained. In crack-growth tests comparison between specimens of as-received low-carbon steel Fe360B and the same steel with laser-alloyed surface was made. As the crack propagation was perpendicular to the interface between the laser-alloyed layers and the base metal, laser surface-alloyed specimens exhibited higher crack-growth resistance in the low stress intensity factor range Δ K th than as-received steel specimens.

  17. Mild and efficient strategy for site-selective aldehyde modification of glycosaminoglycans: tailoring hydrogels with tunable release of growth factor.

    Science.gov (United States)

    Wang, Shujiang; Oommen, Oommen P; Yan, Hongji; Varghese, Oommen P

    2013-07-01

    Aldehydes have been used as an important bioorthogonal chemical reporter for conjugation of large polymers and bioactive substances. However, generating aldehyde functionality on carbohydrate-based biopolymers without changing its native chemical structure has always persisted as a challenging task. The common methods employed to achieve this require harsh reaction conditions, which often compromise the structural integrity and biological function of these sensitive molecules. Here we report a mild and simple method to graft aldehydes groups on glycosaminoglycans (GAGs) in a site-selective manner without compromising the structural integrity of the biopolymer. This regio-selective modification was achieved by conjugating the amino-glycerol moiety on the carboxylate residue of the polymer, which allowed selective cleavage of pendent diol groups without interfering with the C2-C3 diol groups of the native glucopyranose residue. Kinetic evaluation of this reaction demonstrated significant differences in second-order reaction rate for periodate oxidation (by four-orders of magnitude) between the two types of vicinal diols. We employed this chemistry to develop aldehyde modifications of sulfated and nonsulfated GAGs such as hyaluronic acid (HA), heparin (HP), and chondroitin sulfate (CS). We further utilized these aldehyde grafted GAGs to tailor extracellular matrix mimetic injectable hydrogels and evaluated its rheological properties. The composition of the hydrogels was also found to modulate release of therapeutic protein such as FGF-2, demonstrating controlled release (60%) for over 14 days. In short, our result clearly demonstrates a versatile strategy to graft aldehyde groups on sensitive biopolymers under mild conditions that could be applied for various bioconjugation and biomedical applications such as drug delivery and regenerative medicine.

  18. How sea level rise affects sedimentation, plant growth, and carbon accumulation on coastal salt marshes

    Science.gov (United States)

    Mudd, S. M.; Howell, S. M.; Morris, J. T.

    2009-12-01

    The rate of accretion on coastal salt marshes depends on feedbacks between flow, macrophyte growth, and sedimentation. Under favourable conditions, marsh accretion rates will keep pace with the local rate of sea level rise. Marsh accretion is driven by both organic and inorganic sedimentation; mineral rich marshes will need less organic sedimentation to keep pace with sea level rise. Here we use a numerical model of marsh accretion, calibrated by sediment cores, to explore the relationship between sea level rise and carbon sequestration on salt marshes in the face of differing supplies of inorganic sediment. The model predicts that changes in carbon storage resulting from changing sediment supply or sea-level rise are strongly dependant on the background sediment supply: if inorganic sediment supply is reduced in an already sediment poor marsh the storage of organic carbon will increase to a far greater extent than in a sediment-rich marsh, provided that the rate of sea-level rise does not exceed a threshold. These results imply that altering sediment supply to estuaries (e.g., by damming upstream rivers or altering littoral sediment transport) could lead to significant changes in the carbon budgets of coastal salt marshes.

  19. Low temperature plasma processing for cell growth inspired carbon thin films fabrication.

    Science.gov (United States)

    Kumar, Manish; Piao, Jin Xiang; Jin, Su Bong; Lee, Jung Heon; Tajima, Satomi; Hori, Masaru; Han, Jeon Geon

    2016-09-01

    The recent bio-applications (i.e. bio-sensing, tissue engineering and cell proliferation etc.) are driving the fundamental research in carbon based materials with functional perspectives. High stability in carbon based coatings usually demands the high density deposition. However, the standard techniques, used for the large area and high throughput deposition of crystalline carbon films, often require very high temperature processing (typically >800 °C in inert atmosphere). Here, we present a low temperature (thermal treatments. It is found that the control over plasma power density and pulsed frequency governs the density and kinetic energy of carbon ions participating during the film growth. Subsequently, it controls the contents of sp(3) and sp(2) hybridizations via conversion of sp(2) to sp(3) hybridization by ion's energy relaxation. The role of plasma parameters on the chemical and surface properties are presented and correlated to the bio-activity. Bioactivity tests, carried out in mouse fibroblast L-929 and Sarcoma osteogenic (Saos-2) bone cell lines, demonstrate promising cell-proliferation in these films. PMID:27036854

  20. CONTROLLED GROWTH OF CARBON NANOTUBES ON CONDUCTIVE METAL SUBSTRATES FOR ENERGY STORAGE APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.; Engtrakul, C.

    2009-01-01

    The impressive mechanical and electronic properties of carbon nanotubes (CNTs) make them ideally suited for use in a variety of nanostructured devices, especially in the realm of energy production and storage. In particular, vertically-aligned CNT “forests” have been the focus of increasing investigation for use in supercapacitor electrodes and as hydrogen adsorption substrates. Vertically-aligned CNT growth was attempted on metal substrates by waterassisted chemical vapor deposition (CVD). CNT growth was catalyzed by iron-molybdenum (FeMo) nanoparticle catalysts synthesized by a colloidal method, which were then spin-coated onto Inconel® foils. The substrates were loaded into a custom-built CVD apparatus, where CNT growth was initiated by heating the substrates to 750 °C under the fl ow of He, H2, C2H4 and a controlled amount of water vapor. The resultant CNTs were characterized by a variety of methods including Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and the growth parameters were varied in an attempt to optimize the purity and growth yield of the CNTs. The surface area and hydrogen adsorption characteristics of the CNTs were quantifi ed by the Brunauer- Emmett-Teller (BET) and Sieverts methods, and their capacitance was measured via cyclic voltammetry. While vertically-aligned CNT growth could not be verifi ed, TEM and SEM analysis indicated that CNT growth was still obtained, resulting in multiwalled CNTs of a wide range in diameter along with some amorphous carbon impurities. These microscopy fi ndings were reinforced by Raman spectroscopy, which resulted in a G/D ratio ranging from 1.5 to 3 across different samples, suggestive of multiwalled CNTs. Changes in gas fl ow rates and water concentration during CNT growth were not found to have a discernable effect on the purity of the CNTs. The specifi c capacitance of a CNT/FeMo/Inconel® electrode was found to be 3.2 F/g, and the BET surface area of

  1. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.

    Science.gov (United States)

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto

    2015-12-01

    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. PMID:26342557

  2. Analysis of Effluent Gases During the CCVD Growth of Multi Wall Carbon Nanotubes from Acetylene

    Science.gov (United States)

    Schmitt, T. C.; Biris, A. S.; Miller, D. W.; Biris, A. R.; Lupu, D.; Trigwell, S.; Rahman, Z. U.

    2005-01-01

    Catalytic chemical vapor deposition was used to grow multi-walled carbon nanotubes on a Fe:Co:CaCO3 catalyst from acetylene. The influent and effluent gases were analyzed by gas chromatography and mass spectrometry at different time intervals during the nanotubes growth process in order to better understand and optimize the overall reaction. A large number of byproducts were identified and it was found that the number and the level for some of the carbon byproducts significantly increased over time. The CaCO3 catalytic support thermally decomposed into CaO and CO2 resulting in a mixture of two catalysts for growing the nanotubes, which were found to have outer diameters belonging to two main groups 8 to 35 nm and 40 to 60 nm, respectively.

  3. Fullerenic particles for the growth of carbon nanowall-like flowers on multilayer graphene

    Science.gov (United States)

    Guermoune, Abdeladim; Hilke, Michael

    2016-04-01

    Carbon nanowalls (CNWs) are composed of stacks of planar graphene layers with open edges that grow almost vertically on a substrate. Their morphology makes them a promising material for field emission, batteries, light absorbers and enhanced detectors for electrochemical and gas sensors. However, three main challenges prevent the fast development of CNWs: the synthesis is energetically demanding, poorly transferable to suitable substrates, and the growth mechanism is not understood. Here, we present a simple method to grow carbon nanowall-like flowers on multilayer graphene through fullerenic particles using thermal CVD and copper. The hydrophobicity of the fabricated hybrid material facilitates its transfer to any substrate. Our findings can boost the understanding of the physical properties and the practical applicability of CNWs. At the same time, our work is a concrete example of the role of multilayer graphene as a platform to one-step synthesis of new transferable graphenic materials.

  4. The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite)

    International Nuclear Information System (INIS)

    The suitability of clay minerals - kaolinite, nontronite and sepiolite - is studied for synthesis of nanocomposites based on carbon nanotubes. Particles of iron were used as catalysts. Prior to synthesis, kaolinite and sepiolite were doped by the catalytically active metal, whereas in the case of nontronite the presence was used of this metal in the matrix of this mineral. Synthesis of CNTs was performed by hot filament chemical vapor deposition method. The produced nanocomposites were examined by transmission and scanning electron microscopies and energy dispersive X-ray spectroscopy. The experiment verified the potential of the three microcrystalline phyllosilicates for the growth of carbon nanotubes. Under the same technology conditions, the type of catalyst carrier affects the morphology and structure of the nanotube product markedly.

  5. Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth.

    Science.gov (United States)

    Susi, Toma; Lanzani, Giorgio; Nasibulin, Albert G; Ayala, Paola; Jiang, Tao; Bligaard, Thomas; Laasonen, Kari; Kauppinen, Esko I

    2011-06-21

    We have studied the mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth illustrated for the case of a floating catalyst chemical vapor deposition system, which uses carbon monoxide (CO) and ammonia (NH(3)) as precursors and iron as a catalyst. We performed first-principles electronic-structure calculations, fully incorporating the effects of spin polarization and magnetic moments, to investigate the bonding and chemistry of CO, NH(3), and their fragments on a model Fe(55) icosahedral cluster. A possible dissociation path for NH(3) to atomic nitrogen and hydrogen was identified, with a reaction barrier consistent with an experimentally determined value we measured by tandem infrared and mass spectrometry. Both C-C and C-N bond formation reactions were found to be barrierless and exothermic, while a parasitic reaction of HCN formation had a barrier of over 1 eV.

  6. Surface morphology stabilization by chemical sputtering in carbon nitride film growth

    Energy Technology Data Exchange (ETDEWEB)

    Buijnsters, J G [Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Vazquez, L [Instituto de Ciencia de Materiales de Madrid (CSIC), C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2008-01-07

    We have studied the influence of chemical sputtering effects on the morphology of carbon nitride films grown on silicon substrates by electron cyclotron resonance chemical vapour deposition. This study has been performed by comparing the evolution of their morphology with that of hydrogenated amorphous carbon films grown under similar conditions, where these effects are not present. When chemical sputtering effects operate we observe a film surface stabilization for length scales in the 60-750 nm range after a threshold roughness of about 3-4 nm has been developed. This stabilization is explained on the basis of the re-emission of nitrogen etching species, which is confirmed by growth experiments on microstructured substrates. (fast track communication)

  7. The relative contributions of forest growth and areal expansion to forest biomass carbon sinks in China

    Science.gov (United States)

    Li, P.; Zhu, J.; Hu, H.; Guo, Z.; Pan, Y.; Birdsey, R.; Fang, J.

    2015-06-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms that control forest C sinks and is helpful for developing sustainable forest management policies in the face of climate change. Using the Forest Identity concept and forest inventory data, this study quantified the spatial and temporal changes in the relative contributions of forest areal expansion and increased biomass growth to China's forest C sinks from 1977 to 2008. Over the last 30 years, the areal expansion of forests was a larger contributor to C sinks than forest growth for all forests and planted forests in China (74.6 vs. 25.4 % for all forests, and 62.4 vs. 37.8 % for plantations). However, for natural forests, forest growth made a larger contribution than areal expansion (60.4 vs. 39.6 %). The relative contribution of forest growth of planted forests showed an increasing trend from an initial 25.3 to 61.0 % in the later period of 1998 to 2003, but for natural forests, the relative contributions were variable without clear trends owing to the drastic changes in forest area and biomass density over the last 30 years. Our findings suggest that afforestation can continue to increase the C sink of China's forests in the future subject to persistently-increasing forest growth after establishment of plantation.

  8. The relative contributions of forest growth and areal expansion to forest biomass carbon sinks in China

    Directory of Open Access Journals (Sweden)

    P. Li

    2015-06-01

    Full Text Available Forests play a leading role in regional and global terrestrial carbon (C cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area and forest growth (increase in biomass density. Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms that control forest C sinks and is helpful for developing sustainable forest management policies in the face of climate change. Using the Forest Identity concept and forest inventory data, this study quantified the spatial and temporal changes in the relative contributions of forest areal expansion and increased biomass growth to China's forest C sinks from 1977 to 2008. Over the last 30 years, the areal expansion of forests was a larger contributor to C sinks than forest growth for all forests and planted forests in China (74.6 vs. 25.4 % for all forests, and 62.4 vs. 37.8 % for plantations. However, for natural forests, forest growth made a larger contribution than areal expansion (60.4 vs. 39.6 %. The relative contribution of forest growth of planted forests showed an increasing trend from an initial 25.3 to 61.0 % in the later period of 1998 to 2003, but for natural forests, the relative contributions were variable without clear trends owing to the drastic changes in forest area and biomass density over the last 30 years. Our findings suggest that afforestation can continue to increase the C sink of China's forests in the future subject to persistently-increasing forest growth after establishment of plantation.

  9. Contribution of radicals and ions in catalyzed growth of single-walled carbon nanotubes from low-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Marvi, Z. [Physics Department, Faculty of Science, Sahand University of Technology, 51335-1996 Tabriz (Iran, Islamic Republic of); Plasma Sources and Applications Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 Singapore (Singapore); Xu, S. [Plasma Sources and Applications Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 Singapore (Singapore); Foroutan, G. [Physics Department, Faculty of Science, Sahand University of Technology, 51335-1996 Tabriz (Iran, Islamic Republic of); Ostrikov, K. [Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Plasma Nanoscience Center Australia (PNCA), Manufacturing Flagship, CSIRO, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, NSW 2522 (Australia); School of Physics and Advanced Materials, University of Technology Sydney, Sydney, NSW 2006 (Australia)

    2015-01-15

    The growth kinetics of single-walled carbon nanotubes (SWCNTs) in a low-temperature, low-pressure reactive plasma is investigated using a multiscale numerical simulation, including the plasma sheath and surface diffusion modules. The plasma-related effects on the characteristics of SWCNT growth are studied. It is found that in the presence of reactive radicals in addition to energetic ions inside the plasma sheath area, the effective carbon flux, and the growth rate of SWCNT increase. It is shown that the concentration of atomic hydrogen and hydrocarbon radicals in the plasma plays an important role in the SWCNT growth. The effect of the effective carbon flux on the SWCNT growth rate is quantified. The dependence of the growth parameters on the substrate temperature is also investigated. The effects of the plasma sheath parameters on the growth parameters are different in low- and high-substrate temperature regimes. The optimum substrate temperature and applied DC bias are estimated to maximize the growth rate of the single-walled carbon nanotubes.

  10. Electrochemical study on screen-printed carbon electrodes with modification by iron nanoparticles in Fe(CN)(6) (4-/3-) redox system.

    Science.gov (United States)

    Lee, Shyh-Hwang; Fang, Hung-Yuan; Chen, Wen-Chang; Lin, Hong-Ming; Chang, C Allen

    2005-10-01

    The remarkable enhancement of electron transfer on screen-printed carbon electrodes (SPCEs) with modification by iron nanoparticles (Fe(nano)), coupled with Fe(CN)(6) (4-/3-) redox species, was characterized with an increase of electroactive area (A (ea)) at electrode surface together with a decrease of heterogeneous electron transfer rate constant (k degrees ) in the system. Hence, Fe(nano)-Fe(CN)(6) (3-) SPCEs with deposition of glucose oxidase (GOD) demonstrated a higher sensitivity to various glucose concentrations than Fe(CN)(6) (3-)/GOD-deposited SPCEs. In addition, an inhibited diffusion current from cyclic voltammograms was also observed with an increase in redox concentration and complicated the estimation of A (ea). Further analysis by the electrochemical impedance method, it was shown that this effect might be resulted from the electrode surface blocking by the products of activated complex decomposition. PMID:16136306

  11. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Fernández, Ana; López, Mercedes; Arenas, Ricardo; Bernardo, Ana

    2008-04-30

    The effects of growth temperature (in the range 10-45 degrees C) and acidification up to pH 4.5 of the culture medium (Brain Heart Infusion, BHI) with different organic acids (acetic, citric and lactic) and hydrochloric acid on membrane fatty acid composition and heat resistance of Salmonella typhimurium CECT 443 were studied. The heat resistance was maximal in cells grown at 45 degrees C (cells grown in non-acidified BHI showed a D58-value of 0.90 min) and decreased with decreasing growth temperature up to 10 degrees C (D58-value of 0.09 min). The growth of cells in acidified media caused an increase in their heat resistance. In general, acid adapted cells showed D-values of between 1.5 and 2 times higher than the corresponding for non-acid adapted control cells. This cross-protection response, which has important implications in food processing, was not dependent on the pH value and the acid used to acidify the growth medium. A membrane adaptation corresponding to an increase in the unsaturated to saturated fatty acids ratio (UFA/SFA) and membrane fluidity was observed at low growth temperature. Moreover, the acidification of the growth medium caused a decrease in UFA/SFA ratio and in the C18:1 relative concentration, and an increase in cyclopropane fatty acids (CFA) content mainly due to the increase in cyc19 relative concentration. Thus, acid adapted cells showed CFA levels 1.5 times higher than non-acid adapted control cells. A significant proportion of unsaturated fatty acids were converted to their cyclopropane derivatives during acid adaptation. These changes in membrane fatty acid composition result in cells with decreased membrane fluidity. A clear relation between membrane fatty acid composition and heat resistance was observed. In general, D-values were maximum for cells with low UFA/SFA ratio, and, consequently, with low membrane fluidity. Moreover, CFA formation played a major role in protecting acid adapted cells from heat inactivation. However

  12. Growth of Aligned Carbon Nanotubes on Large Scale by Methane Decomposition with Deactivation Inhibitor

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Zhili Li; Cheng Zhang; Feng Peng; Hongjuan Wang

    2007-01-01

    The effects of additives containing iron or nickel during chemical vapor deposition (CVD) on the growth of carbon nanotubes (CNTs) by methane decomposition on Mo/MgO catalyst were investigated. Ferrocene and nickel nitrate were introduced as deactivation inhibitors by in-situ evaporation during CVD. The precisely controlled in-situ introduction of these inhibitors increased the surface renewal of catalyst, and therefore prevented the catalyst from deactivation. Using this method, aligned multi-walled CNTs with parallel mesopores can be produced on a large scale.

  13. Understanding the growth mechanism of carbon nanotubes via the ``cluster volume to surface area" model

    Science.gov (United States)

    Mandati, Sreekanth; Kunstmann, Jens; Boerrnert, Felix; Schoenfelder, Ronny; Ruemmeli, Mark; Kar, Kamal K.; Cuniberti, Gianaurelio

    2010-03-01

    The influence of mixed catalysts for the high yield production of carbon nanotubes (CNTs) has been studied systematically. Based on extensive experimental data a ``Catalyst Volume to Surface Area'' (CVSA) model was developed to understand the influence of the process parameters on the yield and CNT diameter distribution [1]. In our study, we present a refined version of the CVSA model developed by combining experiments and simulations. We discuss our current understanding of the growth mechanism and how the model might be used to increase CNT yields by using mixed catalysts.[4pt] [1] S. Tetali et al., ACS Nano (2009), DOI: 10.1021/nn9012548.

  14. The effect of carbon dioxide on growth of juvenile Atlantic cod Gadus morhua L

    DEFF Research Database (Denmark)

    Moran, Damian; Støttrup, Josianne

    2011-01-01

    substantially reduced with increasing CO2 dosage. The size-specific growth trajectories of fish reared under the medium and high CO2 treatments were approximately 2.5 and 7.5 times lower (respectively) than that of fish in the low treatment. Size variance and mortality rate was not significantly different...... experiments using marine fish species. The test concentrations were recalculated from the reported carbonate chemistry conditions, and indicated that the CO2 concentration effect threshold may have been overestimated in two of these studies. Our study suggests that juvenile Atlantic cod are more susceptible...

  15. Evolution of graphene growth on Cu and Ni studied by carbon isotope labeling

    OpenAIRE

    Li, Xuesong; Cai, Weiwei; Colombo, Luigi; Ruoff, Rodney S.

    2009-01-01

    Large-area graphene is a new material with properties that make it desirable for advanced scaled electronic devices1. Recently, chemical vapor deposition (CVD) of graphene and few-layer graphene using hydrocarbons on metal substrates such as Ni and Cu has shown to be a promising technique2-5. It has been proposed in recent publications that graphene growth on Ni occurs by C segregation2 or precipitation3, while that on Cu is by surface adsorption5. In this letter, we used a carbon isotope lab...

  16. Effect of Particle Density on the Aligned Growth of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng-gao; WANG Jian-hua; HAN Jian-jun

    2004-01-01

    Aligned carbon nanotubes (CNTs) were prepared on Ni-coated Ni substrate by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at temperature of 550℃.The experimental results show a direct correlation between the alignment of CNTs and the density of the catalyst particles at low temperature.When the particle density is high enough,among CNTs there are strong interactions that can inhibit CNTs from growing randomly.The crowding effect among dense CNTs results in the aligned growth of CNTs at low temperature.

  17. MODELING OF FERRITE GRAIN GROWTH OF LOW CARBON STEELS DURING HOT ROLLING

    Institute of Scientific and Technical Information of China (English)

    Y.T. Zhang; D.Z. Li; Y.Y. Li

    2002-01-01

    For most commercial steels the prediction of the final properties depends on accuratelycalculating the room temperature ferrite grain size. A grain growth model is proposedfor low carbon steels Q235B during hot rolling. By using this model, the initial ferritegrain size after continuous cooling and ferrite grain growing in coiling procedure canbe predicted. Finally, in-plant trials were performed in the hot strip mill of Ansteel.The calculated final ferrite grain sizes are in good agreement with the experimentalones. It is helpful both for simulation of microstructure evolution and prediction ofmechanical properties.

  18. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  19. Recent Advances in the Blending Modification of Poly(propylene carbonate)%聚碳酸亚丙酯共混改性研究进展

    Institute of Scientific and Technical Information of China (English)

    宋鹏飞; 孙海荣; 王荣民; 张雪峰; 王永霞

    2012-01-01

    Poly(propylene carbonate) (PPC), a new kind of aliphatic polycarbonate, has attracted much attention owing to its good properties, such as biocompatibility, biodegradability and abnormally low permeability toward oxygea However, its high cost, poor thermal performance and mechanical properties, hinder its commercial application on a large scale. Blending modification is an effective way to improve the performance of PPC, therefore, the recent progress in blending modification of PPC with synthetic polymers, natural polymers, inorganic particles and organic compounds are reviewed%聚碳酸亚丙酯(PPC)是一种新型脂肪族聚碳酸酯,具有良好的生物相容性、降解性和极低的氧透过率,但其热性能和机械强度较差.聚碳酸亚丙酯的共混改性可以有效改善其性能.综述了近年来国内外聚碳酸亚丙酯共混改性的研究情况,分别介绍了聚碳酸亚丙酯/合成聚合物、聚碳酸亚丙酯/天然聚合物、聚碳酸亚丙酯/无机粒子、聚碳酸亚丙酯/有机小分子复合材料的制备方法与性能,并展望了其发展前景.

  20. Growth of Pd-Filled Carbon Nanotubes on the Tip of Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Tomokazu Sakamoto

    2009-01-01

    Full Text Available We have synthesized Pd-filled carbon nanotubes (CNTs oriented perpendicular to Si substrates using a microwave plasma-enhanced chemical vapor deposition (MPECVD for the application of scanning probe microscopy (SPM tip. Prior to the CVD growth, Al thin film (10 nm was coated on the substrate as a buffer layer followed by depositing a 5∼40 nm-thick Pd film as a catalyst. The diameter and areal density of CNTs grown depend largely on the initial Pd thickness. Scanning electron microscopy (SEM and transmission electron microscopy (TEM images clearly show that Pd is successfully encapsulated into the CNTs, probably leading to higher conductivity. Using optimum growth conditions, Pd-filled CNTs are successfully grown on the apex of the conventional SPM cantilever.

  1. Dysprosium-Catalyzed Growth of Single-Walled Carbon Nanotube Arrays on Substrates

    Directory of Open Access Journals (Sweden)

    Qian Yong

    2009-01-01

    Full Text Available Abstract In this letter, we report that dysprosium is an effective catalyst for single-walled carbon nanotubes (SWNTs growth via a chemical vapor deposition (CVD process for the first time. Horizontally superlong well-oriented SWNT arrays on SiO2/Si wafer can be fabricated by EtOH-CVD under suitable conditions. The structure and properties are characterized by scanning electron microscopy, transition electron microscopy, Raman spectroscopy and atomic force microscopy. The results show that the SWNTs from dysprosium have better structural uniformity and better conductivity with fewer defects. This rare earth metal provides not only an alternative catalyst for SWNTs growth, but also a possible method to generate high percentage of superlong semiconducting SWNT arrays for various applications of nanoelectronic device.

  2. Carbon out-diffusion mechanism for direct graphene growth on a silicon surface

    International Nuclear Information System (INIS)

    Direct growth of graphene on silicon (Si) through chemical vapor deposition has predominantly focused on surface-mediated processes due to the low carbon (C) solubility in Si. However, a considerable quantity of C atoms was incorporated in Si and formed Si1−xCx alloy with a reduced lattice dimension even in the initial stage of direct graphene growth. Subsequent high temperature annealing promoted active C out-diffusion, resulting in the formation of a graphitic layer on the Si surface. Furthermore, the significantly low thermal conductivity of the Si1−xCx alloy shows that the incorporated C atoms affect the properties of a semiconductor adjacent to the graphene. These findings provide a key guideline for controlling desirable properties of graphene and designing hybrid semiconductor/graphene architectures for various applications

  3. Growth of small diameter multi-walled carbon nanotubes by arc discharge process

    Science.gov (United States)

    T. Chaudhary, K.; J., Ali; P. Yupapin, P.

    2014-03-01

    Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 torr, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure.

  4. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    Science.gov (United States)

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-01

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. PMID:22619167

  5. STUDY ON FATIGUE SHORT CRACK GROWTH LAW AND FATIGUE LIFE FOR MEDIUM CARBON STEELS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The fatigue crack initiation from notch root and the short-crack growth laws of two medium carbon alloying structural steels-35CrMo and 42CrMo are investigated under the different stress ratios R=0.1, 0.3) and three-point bending condition. The relationships between the maximum stress range at the notch root Δσmax and the number of cycles before fatigue crack initiation Ni are determined. The threshold stresses of fatigue crack initiation (Δσmax)th are got, and the smallcrack growth laws are obtained for these steels. An effective and convenient method is proposed for predicting the fatigue life of the notch specimens.

  6. Growth inhibitory response and ultrastructural modification of oral-associated candidal reference strains (ATCC) by Piper betle L. extract

    Institute of Scientific and Technical Information of China (English)

    Mohd-Al-Faisal Nordin; Wan Himratul-Aznita Wan Harun; Fathilah Abdul Razak; Md Yusoff Musa

    2014-01-01

    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments:(i) in the absence of P. betle extract;and in the presence of P. betle extract at respective concentrations of (ii) 1 mg?mL21;(iii) 3 mg?mL21;and (iv) 6 mg?mL21. The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (m). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the m-values of the treated cells were significantly different than those of the untreated cells (P,0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.443106 to 1.783106 viable cell counts (CFU)?mL21. SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity.

  7. Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen

    Science.gov (United States)

    Li, Kui; Su, Feng-Yun; Zhang, Wei-De

    2016-07-01

    Carbon quantum dots (CQDs) were deposited onto graphite-like carbon nitride nanosheets (CNNS) to form CNNS/CQDs composites. The prepared CNNS/CQDs composites exhibit much higher photocatalytic activity under visible light irradiation than pure CNNS do. The CNNS/CQDs-7 sample displays the highest photocatalytic performance, with H2 production rate of 116.1 μmol h-1, which is three times of that over pure CNNS (37.8 μmol h-1). Photoluminescence spectroscopy and photoelectrochemical (PEC) analysis reveal that the CQDs are favorable for trapping electrons and promoting the separation of photogenerated electron-hole pairs in CNNS. A possible photocatalytic mechanism of the enhanced photocatalytic performance for H2 generation over CNNS/CQDs will be proposed in this paper.

  8. Electron Density Modification of Single Wall Carbon Nanotubes (SWCNT by Liquid-Phase Molecular Adsorption of Hexaiodobenzene

    Directory of Open Access Journals (Sweden)

    Hirofumi Kanoh

    2013-02-01

    Full Text Available Electron density of single wall carbon nanotubes (SWCNT is effectively modified by hexaiodobenzene (HIB molecules using liquid-phase adsorption. UV-Vis-NIR absorption spectra of the HIB-adsorbed SWCNT, especially in the NIR region, showed a disappearance of S11 transitions between the V1 valance band and the C1 conduction band of van Hove singularities which can be attributed to the effective charge transfer between HIB and the SWCNT. The adsorption of HIB also caused significant peak-shifts (lower frequency shift around 170 cm−1 and higher shift around 186 cm‑1 and an intensity change (around 100–150 cm−1 and 270–290 cm−1 in the radial breathing mode of Raman spectra. The charge transfer from SWCNT to HIB was further confirmed by the change in the C1s peak of X-ray photoelectron spectrum, revealing the oxidation of carbon in SWCNT upon HIB adsorption.

  9. Modification of carbon-coated TiO2 by iron to increase adsorptivity and photoactivity for phenol.

    Science.gov (United States)

    Tryba, B; Toyoda, M; Morawski, A W; Inagaki, M

    2005-07-01

    Carbon-coated TiO(2) modified by iron, were prepared from TiO(2) of anatase structure and PET modified by FeC(2)O(4). Catalysts were prepared by mixing powders of TiO(2) and modified PET and heating at different temperatures, from 400 to 800 degrees C under flow of Ar gas. High adsorption of phenol was observed on the catalyst heated at 400 degrees C, confirmed by FT-IR analysis. On this catalyst, fast rate of phenol decomposition was achieved by addition of small amount of H(2)O(2) to the reaction mixture. Phenol decomposition proceeded mainly through the direct oxidation of phenol species adsorbed on the catalyst surface due to the photo-Fenton reaction. Iron-modified carbon-coated TiO(2) catalysts heated at 500-800 degrees C showed almost no phenol adsorption or oxidation. PMID:15950040

  10. The Effect of Mesoporous Carbon Nitride Modification by Titanium Oxide Nanoparticles on Photocatalytic Degradation of 1,3-Dinitrobenzene

    Directory of Open Access Journals (Sweden)

    Seyyed Ershad Moradi

    2015-11-01

    Full Text Available In the present work, well ordered, mesoporous carbon nitride (MCN sorbent with uniform mesoporous wall, high surface area and pore volume has been fabricated using the simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and then modified by TiO2 nanoparticles (Ti-MCN. The structural order and textural properties of the nanoporous materials were studied by XRD, elemental analysis, and nitrogen adsorption–desorption experiments. Photodegradation experiments for 1,3-dinitrobenzene were conducted in batch mode, the Ti-MCN catalysts were found to be more active compared to the free TiO2 nanoparticles for 1,3-dinitrobenzene degradation.

  11. Shock tube measurements of growth constants in the branched-chain ethane-carbon monoxide-oxygen system

    Science.gov (United States)

    Brokaw, R. S.; Brabbs, T. A.; Snyder, C. A.

    1985-01-01

    Exponential free radical growth constants have been measured for ethane carbon monoxide oxygen mixtures by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 1700 K. The data were analyzed using an ethane oxidation mechanism involving seven elementary reaction steps. Calculated growth constants were close to experimental values at lower temperatures, up to about 1400 K, but at higher temperatures computed growth constants were considerably smaller than experiment. In attempts to explain these results additional branching reactions were added to the mechanism. However, these additional reactions did not appreciably change calculated growth constants.

  12. The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants

    OpenAIRE

    Ying LI; Mukherjee, Indrani; Thum, Karen E; Tanurdzic, Milos; Katari, Manpreet S.; Obertello, Mariana; Edwards, Molly B; McCombie, W Richard; Martienssen, Robert A.; Coruzzi, Gloria M.

    2015-01-01

    Background Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histo...

  13. Fe-Ti-O based catalyst for large-chiral-angle single-walled carbon nanotube growth

    DEFF Research Database (Denmark)

    He, Maoshuai; Zhang, Lili; Jiang, Hua;

    2016-01-01

    Catalyst selection is very crucial for controlled growth of single-walled carbon nanotubes (SWNTs). Here we introduce a well-designed Fe-Ti-O solid solution for SWNT growth with a high preference to large chiral angles. The Fe-Ti-O catalyst was prepared by combining Ti layer deposition onto premade...... Fe nanoparticles with subsequent high-temperature air calcination, which favours the formation of a homogeneous Fe-Ti-O solid solution. Using CO as the carbon feedstock, chemical vapour deposition growth of SWNTs at 800 °C was demonstrated on the Fe-Ti-O catalyst. Nanobeam electron diffraction...

  14. Tuning the electronic properties by width and length modifications of narrow-diameter carbon nanotubes for nanomedicine

    KAUST Repository

    Poater, Albert

    2012-10-01

    The distinctive characteristics of nanoparticles, resulting from properties that arise at the nano-scale, underlie their potential applications in the biomedical sector. However, the very same characteristics also result in widespread concerns about the potentially toxic effects of nanoparticles. Given the large number of nanoparticles that are being developed for possible biomedical use, there is a need to develop rapid screening methods based on in silico methods. This study illustrates the application of conceptual Density Functional Theory (DFT) to some carbon nanotubes (CNTs) optimized by means of static DFT calculations. The computational efforts are focused on the geometry of a family of packed narrow-diameter carbon nanotubes (CNTs) formed by units from four to twelve carbons evaluating the strength of the C-C bonds by means of Mayer Bond Orders (MBO). Thus, width and length are geometrical features that might be used to tune the electronic properties of the CNTs. At infinite length, partial semi-conductor characteristics are expected. © 2012 Bentham Science Publishers.

  15. A carbon balance model of peach tree growth and development for studying the pruning response.

    Science.gov (United States)

    Génard, Michel; Pagès, Loïc; Kervella, Jocelyne

    1998-06-01

    We modeled tree responses to pruning on the basis of growth rules established on unpruned trees and a simple principle governing root-shoot interactions. The model, which integrates architectural and ecophysiological approaches, distinguishes four types of anatomical organs in a tree: rootstock, main axis, secondary axes and new roots. Tree structure is described by the position of secondary axes on the main axis. The main processes considered are plastochronal activity, branching, assimilate production, respiration and assimilate partitioning. Growth and development rules were based on measurements of two unpruned trees. The model was used to simulate growth of peach trees (Prunus persica (L.) Batsch) in their first growing season. Assuming that the equilibrium between roots and shoots tends to be restored after pruning, the response to removal of the main axis above the twentieth internode in mid-July was simulated and compared to the response measured in three pruned trees. The model fit the unpruned tree data reasonably well and predicted the main traits of tree behavior after pruning. Dry matter growth of the secondary axes of pruned trees was increased so that shoot seasonal carbon balance was hardly modified by pruning. Rhythmicity of growth was enhanced by pruning, and might result from variations induced in the root:shoot ratio. Variation in pruning severity had greater effects than variation in pruning date. A sensitivity analysis indicated that: (1) root-shoot partitioning was a critical process of the model; (2) tree growth was mainly dependent on assimilate availability; and (3) tree shape was highly dependent on the branching process.

  16. Reliable Growth of Vertically Aligned Carbon Nanotube Arrays by Chemical Vapor Deposition and In-situ Measurement of Fundamental Growth Kinetics in Oxygen-free Conditions

    OpenAIRE

    IN, JUNG BIN

    2011-01-01

    Vertically-aligned carbon nanotube (VACNT) arrays are both an important technological system, and a fascinating system for studying basic principles of nanomaterial synthesis. However, despite continuing efforts for the past decade, important questions about this process remain largely unexplained. Recently, nanotube research investigations have been conducted, aiming at revealing the underlying growth mechanisms, rather than merely studying the feasibility on new growth methods. Nonetheless,...

  17. Dietary intake, growth and development of children with ADHD in a randomized clinical trial of Ritalin and Melatonin co-administration: Through circadian cycle modification or appetite enhancement?

    Directory of Open Access Journals (Sweden)

    Seyed-Ali Mostafavi

    2012-09-01

    Full Text Available Objective: It is postulated that ritalin may adversely affect sleep, appetite, weight and growth of some children with ADHD. Therefore, we aimed to evaluate melatonin supplementation effects on dietary intake, growth and development of children with ADHD treated with ritalin through circadian cycle modification and appetite mechanisms.Method: After obtaining consent from parents, 50 children aged 7-12 with combined form of AD/HD were randomly divided into two groups based on gender blocks: one received melatonin (3 or 6 mg based on weight combined with ritalin (1mg/kg and the other took placebo combined with ritalin (1mg/kg in a double blind randomized clinical trial. Three-day food record, and standard weight and height of children were evaluated prior to the treatment and 8 weeks after the treatment. Children’s appetite and sleep were evaluated in weeks 0, 2, 4 and 8. Hypotheses were then analyzed using SPSS17.Results: Paired sample t-test showed significant changes in sleep latency (23.15±15.25 vs. 17.96±11.66; p=0.047 and total sleep disturbance score (48.84±13.42 vs. 41.30±9.67; p=0.000 before and after melatonin administration, respectively. However, appetite and food intake did not change significantly during the study. Sleep duration and appetite were significantly correlated in melatonin group (Pearson r=0.971, p=0.029. Mean height (138.28±16.24 vs. 141.35±16.78; P=0.000 and weight (36.73±17.82 vs. 38.97±17.93; P=0.005 were significantly increased in melatonin treated children before and after the trial.Conclusion: Administration of melatonin along with ritalin improves height and weight growth of children. These effects may be attributed to circadian cycle modification, increasing sleep duration and the consequent more growth hormone release during sleep.

  18. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    Science.gov (United States)

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    in the mid-IR range (800 to 7000 cm(-1)) also showed no significant changes in either the real or the imaginary parts of the refractive indices for brown carbon aerosol particles when compared to ammonium sulfate. Therefore, changes in the optical properties of ammonium sulfate in the mid-IR spectral range due to reaction with methylglyoxal appear to be insignificant. In addition to these measurements, we have characterized additional physicochemical properties of the brown carbon aerosol particles including hygroscopic growth using a tandem-differential mobility analyzer. Compared to ammonium sulfate, brown carbon aerosol particles are found to have lower deliquescence relative humidity (DRH), efflorescence relative humidity (ERH), and hygroscopic growth at the same relative humidities. Overall, our study provides new details of the optical and physicochemical properties of a class of secondary organic aerosol which may have important implications for atmospheric chemistry and climate. PMID:27253434

  19. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase.

    Science.gov (United States)

    Wang, Y; Shao, L; Shi, S; Harris, R J; Spellman, M W; Stanley, P; Haltiwanger, R S

    2001-10-26

    The O-fucose modification is found on epidermal growth factor-like repeats of a number of cell surface and secreted proteins. O-Fucose glycans play important roles in ligand-induced receptor signaling. For example, elongation of O-fucose on Notch by the beta1,3-N-acetylglucosaminyltransferase Fringe modulates the ability of Notch to respond to its ligands. The enzyme that adds O-fucose to epidermal growth factor-like repeats, GDP-fucose protein O-fucosyltransferase (O-FucT-1), was purified previously from Chinese hamster ovary (CHO) cells. Here we report the isolation of a cDNA that encodes human O-FucT-1. A probe deduced from N-terminal sequence analysis of purified CHO O-FucT-1 was used to screen a human heart cDNA library and expressed sequence tag and genomic data bases. The cDNA contains an open reading frame encoding a protein of 388 amino acids with a predicted N-terminal transmembrane sequence typical of a type II membrane orientation. Likewise, the mouse homolog obtained from an expressed sequence tag and 5'-rapid amplification of cDNA ends of a mouse liver cDNA library encodes a type II transmembrane protein of 393 amino acids with 90.4% identity to human O-FucT-1. Homologs were also found in Drosophila and Caenorhabditis elegans with 41.2 and 29.4% identity to human O-FucT-1, respectively. The human gene (POFUT1) is on chromosome 20 between PLAGL2 and KIF3B, near the centromere at 20p11. The mouse gene (Pofut1) maps near Plagl2 on a homologous region of mouse chromosome 2. POFUT1 gene transcripts were expressed in all tissues examined, consistent with the widespread localization of the modification. Expression of a soluble form of human O-FucT-1 in insect cells yielded a protein of the predicted molecular weight with O-FucT-1 kinetic and enzymatic properties similar to those of O-FucT-1 purified from CHO cells. The identification of the gene encoding protein O-fucosyltransferase I now makes possible mutational strategies to examine the functions of the

  20. Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR).

    Science.gov (United States)

    Kim, Hyun Woo; Marcus, Andrew K; Shin, Jeong Hoon; Rittmann, Bruce E

    2011-06-01

    A membrane carbonation (MC) module uses bubbleless gas-transfer membranes to supply inorganic carbon (C(i)) for photoautotrophic cyanobacterial growth in a photobioreactor (PBR); this creates the novel MCPBR system, which allows precise control of the CO(2)-delivery rate and minimal loss of CO(2) to the atmosphere. Experiments controlled the supply rate of C(i) to the main PBR by regulating the recirculation rate (Q(R)) between the module of MC chamber and the main PBR. The experiments evaluated how Q(R) controls the CO(2) mass transport in MC chamber and how it connects with the biomass production rate, C(i) concentration, pH in the PBR, and CO(2)-utilization efficiency. The biomass production rate and C(i) concentration increased in response to the C(i) supply rate (controlled by Q(R)), but not in linear proportion. The biomass production rate increased less than C(i) due to increased light limitation. Except for the highest Q(R), when the higher C(i) concentration caused the pH to decrease, CO(2) loss to gas ventilation was negligible. The results demonstrate that this MCPBR offers independent control over the growth of photoautotrophic biomass, pH control, and minimal loss of CO(2) to the atmosphere.

  1. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease.

    Science.gov (United States)

    Rush, E C; Katre, P; Yajnik, C S

    2014-01-01

    This review brings together human and animal studies and reviews that examine the possible role of maternal vitamin B12 (B12) on fetal growth and its programming for susceptibility to chronic disease. A selective literature review was undertaken to identify studies and reviews that investigate these issues, particularly in the context of a vegetarian diet that may be low in B12 and protein and high in carbohydrate. Evidence is accumulating that maternal B12 status influences fetal growth and development. Low maternal vitamin B12 status and protein intake are associated with increased risk of neural tube defect, low lean mass and excess adiposity, increased insulin resistance, impaired neurodevelopment and altered risk of cancer in the offspring. Vitamin B12 is a key nutrient associated with one carbon metabolic pathways related to substrate metabolism, synthesis and stability of nucleic acids and methylation of DNA which regulates gene expression. Understanding of factors regulating maternal-fetal one carbon metabolism and its role in fetal programming of non communicable diseases could help design effective interventions, starting with maternal nutrition before conception. PMID:24219896

  2. STUDY ON THE MODIFICATION OF COAL TAR PITCH FOR CARBON PRECURESOR%炭材料用基体前驱体沥青的改性研究

    Institute of Scientific and Technical Information of China (English)

    林起浪; 李铁虎; 单玲; 陈彦

    2001-01-01

    首次以二乙烯基苯为交联剂,在酸性催化剂的作用下对煤沥青进行了改性研究,同时对改性后的煤沥青进行显微结构和耐热性分析。研究结果表明:改性后的煤沥青不仅出现大量的中间相小球,而且耐热性优良,可作为炭材料优质的基体前驱体。%Modification of coal tar pitch as a carbon precursor was studied using divinylbenzene (DVB) as a cross-linking agent by the aid of acid catalyst. The microstructure and thermostability of modified coal tar pitch had been studied. It was indicated that the modified coal pitch, which had not only a great deal of mesophase microbead but good thermostability as well, can be qualified to be an excellent carbon precursor.

  3. Surface modification of pitch-based spherical activated carbon by CVD of NH{sub 3} to improve its adsorption to uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chaojun [State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237 (China); Liang Xiaoyi [State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237 (China)], E-mail: xyliang@ecust.edu.cn; Liu Xiaojun; Wang Qin; Zhan Liang; Zhang Rui; Qiao Wenming; Ling Licheng [State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237 (China)

    2008-08-30

    Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH{sub 3} (NH{sub 3}-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N{sub 2} adsorption, pH{sub PZC} (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH{sub 3}-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH{sub 3}-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH{sub PZC}, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.

  4. Growth of CuPd nanoalloys encapsulated in carbon-shell

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H. Y.; Wang, H. P., E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering (China)

    2013-05-15

    Preparation of nanostructured copper-palladium (CuPd) alloys is getting more attention because specific catalytic properties can be tuned by controlling their composition, size, and shape. Thus, a better understanding especially in the formation mechanism of the CuPd nanoalloys is of great importance in designing the catalysts. Growth of CuPd nanoalloys encapsulated in carbon-shell (CuPd-C) was, therefore, studied by in situ synchrotron small-angle X-ray scattering during temperature-programed carbonization (TPC) of the Cu{sup 2+}- and Pd{sup 2+}-{beta}-cyclodextrin complexes. A rapid reduction of Cu{sup 2+} and Pd{sup 2+} with nucleation is found at the temperatures of <423 K, followed by coalescence at 453-573 K. The well-dispersed CuPd nanoalloys having the sizes of 7.6-7.9 nm in diameter are encapsulated in carbon-shell of 1.4-1.8 nm in thickness. The refined extended X-ray absorption fine structure spectra indicate that the bond distances of the first-shell Cu-Pd are 2.61-2.64 A with the coordination numbers of 5.1-5.6. A homogeneous CuPd alloy at the Cu/Pd atomic ratio of 1 is observed. Note that at the high Cu/Pd ratio, Cu is enriched on the CuPd nanoalloy surfaces, attributable to the relatively low surface free energy of Cu.

  5. Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila.

    Science.gov (United States)

    Gillmaier, Nadine; Schunder, Eva; Kutzner, Erika; Tlapák, Hana; Rydzewski, Kerstin; Herrmann, Vroni; Stämmler, Maren; Lasch, Peter; Eisenreich, Wolfgang; Heuner, Klaus

    2016-03-18

    Legionella pneumophila, the causative agent of Legionnaires disease, has a biphasic life cycle with a switch from a replicative to a transmissive phenotype. During the replicative phase, the bacteria grow within host cells in Legionella-containing vacuoles. During the transmissive phenotype and the postexponential (PE) growth phase, the pathogens express virulence factors, become flagellated, and leave the Legionella-containing vacuoles. Using (13)C labeling experiments, we now show that, under in vitro conditions, serine is mainly metabolized during the replicative phase for the biosynthesis of some amino acids and for energy generation. During the PE phase, these carbon fluxes are reduced, and glucose also serves as an additional carbon substrate to feed the biosynthesis of poly-3-hydroxybuyrate (PHB), an essential carbon source for transmissive L. pneumophila. Whole-cell FTIR analysis and comparative isotopologue profiling further reveal that a putative 3-ketothiolase (Lpp1788) and a PHB polymerase (Lpp0650), but not enzymes of the crotonyl-CoA pathway (Lpp0931-0933) are involved in PHB metabolism during the PE phase. However, the data also reflect that additional bypassing reactions for PHB synthesis exist in agreement with in vivo competition assays using Acanthamoeba castellannii or human macrophage-like U937 cells as host cells. The data suggest that substrate usage and PHB metabolism are coordinated during the life cycle of the pathogen. PMID:26792862

  6. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.; Liu, H.; Hu, Y.; Zhou, L.; Zheng, B. [Department of Chemistry and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2009-03-15

    Sulfate-reducing bacteria (SRB) have been identified as the main corrosive microorganisms causing unpredictable failure of materials. In this present work, a strain of thermophile SRB isolated from Bohai oilfield of China has been characterized and preliminarily identified. Furthermore, its effects on carbon steel at 60 C in SRB culture media were studied by electrochemical methods such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), and weight loss measurements. The results show that the bacteria belong to Desulfotomaculum. The optimum growth temperature and pH of the bacteria were 60 C and 7.0, respectively. Weight loss measurements suggested that the corrosion rate of carbon steel in the culture media inoculated with thermophile SRB at 60 C was 2.2 times less than that at 37 C. At 60 C, SRB shifted the freely corroding potential of carbon steel toward a more positive value in the first 10 days, which later change to a negative value. Results obtained from potentiodynamic polarization and EIS were in good agreement. The changes in biofilm structure with increase in bacteria supply offers some kind of protection to the base material in the early culture days at 60 C. Subsequently, it accelerated corrosion. Energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) methods indicate that corrosion products such as iron sulfides (FeS{sub x}) in biofilm play an important role in the biocorrosion process. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes.

    Science.gov (United States)

    Dai, Xuan; Wildgoose, Gregory G; Salter, Chris; Crossley, Alison; Compton, Richard G

    2006-09-01

    Gold nanoparticles (approximately 30-60 nm in diameter) were deposited onto the surface of glassy carbon microspheres (10-20 microm) through electroless plating to produce bulk (i.e., gram) quantities of nanoparticle surface-modified microspheres. The gold nanoparticle-modified powder was then characterized by means of scanning electron microscopy and cyclic voltammetry. The voltammetric response of a macroelectrode consisting of a film of gold nanoparticle-modified glassy carbon microspheres, bound together and "wired-up" using multiwalled carbon nanotubes (MWCNTs), was investigated. We demonstrate that by intelligently exploiting both nano- and microchemical architectures and wiring up the electroactive centers using MWCNTs in this way, we can obtain macroelectrode voltammetric behavior while only using approximately 1% by mass of the expensive gold material that would be required to construct the equivalent gold film macrodisk electrode. The potential utility of electrodes constructed using chemical architectures such as this was demonstrated by applying them to the analytical determination of arsenic(III) concentration. An optimized limit of detection of 2.5 ppb was obtained.

  8. Effects of charge distribution on water filling process in carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    MENG LingYi; LI QiKai; SHUAI ZhiGang

    2009-01-01

    Using umbrella sampling technique with molecular dynamics simulation, we investigated the nanoflu-idic transport of water in carbon nanotube (CNT). The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process, while the negative charge modification to the carbon nanotube will, on the other hand, quicken the water column growth process. The free energy curves were obtained through the statistical process of water column growth under different charge distributions, and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

  9. Effects of charge distribution on water filling process in carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using umbrella sampling technique with molecular dynamics simulation,we investigated the nanoflu-idic transport of water in carbon nanotube(CNT).The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process,while the negative charge modification to the carbon nanotube will,on the other hand,quicken the water column growth process.The free energy curves were obtained through the statistical process of water column growth under different charge distributions,and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

  10. A facile, covalent modification of single-wall carbon nanotubes by thiophene for use in organic photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Stylianakis, Minas M.; Mikroyannidis, John A. [Chemical Technology Laboratory, Department of Chemistry, University of Patras, GR-26500, Patras (Greece); Kymakis, Emmanuel [Electrical Engineering Department, Technological Educational Institute (TEI) of Crete, School of Applied Technology, Estavromenos, PB 1939, Heraklion, GR-71004, Crete (Greece)

    2010-02-15

    Thiophene was nitrated to afford 2-nitrothiophene. The hydrogenation of the latter gave 2-aminothiophene that was used for amidation of single-wall carbon nanotubes functionalized with carboxylic acid groups (SWCNT-COOH). The modified carbon nanotubes (SWCNT-CONHTh) were fully characterized by FT-IR, {sup 1}H NMR, UV-vis absorption, photoluminescence (PL) emission, Raman spectroscopy, X-ray, and TGA. The properties of the modified nanotubes were compared with those of the pristine SWCNT, indicating that the thiophenes were covalently attached to the SWCNTs via amide linkages. The modified SWCNT showed enhanced solubility, and thus better dispersion in common organic solvents. Furthermore, the SWCNT-CONHTh was used as dopant in polymer-fullerene photovoltaic cells. The power conversion efficiency (1.78%) of the polymer-fullerene cell with the SWCNT-CONHTh was superior to both the pristine cell without nanotubes (1.00%) and the cell with the unmodified SWCNTs (1.41%). The device takes advantage of the electron accepting feature of fullerenes and the high electron transport capability of the SWCNTs. The enhancement of the photovoltaic response with the use of the SWCNTs modified by thiophene compared with the as-prepared SWCNTs is believed to be due to more efficient dispersion of the modified SWCNTs resulting in a more homogenous photoactive layer. (author)

  11. Antifungal activity of clotrimazole against Candida albicans depends on carbon sources, growth phase and morphology.

    Science.gov (United States)

    Kasper, Lydia; Miramón, Pedro; Jablonowski, Nadja; Wisgott, Stephanie; Wilson, Duncan; Brunke, Sascha; Hube, Bernhard

    2015-07-01

    Vulvovaginal candidiasis, a superficial infection caused predominantly by the pathogenic fungus Candida albicans, is frequently treated with clotrimazole. Some drug formulations contain lactate for improved solubility. Lactate may modify C. albicans physiology and drug sensitivity by serving as a carbon source for the fungus and/or affecting local pH. Here, we explored the effects of lactate, in combination with pH changes, on C. albicans proliferation, morphology and clotrimazole sensitivity. Moreover, we determined the influence of growth phase and morphology per se on drug sensitivity. We showed that utilization of lactate as a carbon source did not promote fast fungal proliferation or filamentation. Lactate had no influence on clotrimazole-mediated killing of C. albicans in standard fungal cultivation medium but had an additive effect on the fungicidal clotrimazole action under in vitro vagina-simulative conditions. Moreover, clotrimazole-mediated killing was growth-phase and morphology dependent. Post-exponential cells were resistant to the fungicidal action of clotrimazole, whilst logarithmic cells were sensitive, and hyphae showed the highest susceptibility. Finally, we showed that treatment of pre-formed C. albicans hyphae with sublethal concentrations of clotrimazole induced a reversion to yeast-phase growth. As C. albicans hyphae are considered the pathogenic morphology during mucosal infections, these data suggest that elevated fungicidal activity of clotrimazole against hyphae plus clotrimazole-induced hyphae-to-yeast reversion may help to dampen acute vaginal infections by reducing the relative proportion of hyphae and thus shifting to a non-invasive commensal-like population. In addition, lactate as an ingredient of clotrimazole formulations may potentiate clotrimazole killing of C. albicans in the vaginal microenvironment. PMID:25976001

  12. Nano-Scale Interface Modification of the Co/Cu System: Metallic Surface Modifiers in the Growth of Smooth Thin Films

    International Nuclear Information System (INIS)

    This review is a collection of twelve original papers concerning growth and interface modification in the Co/Cu system. Most of this research has been carried out in the Laboratory of Surface and Thin Film Physics at the Institute of Nuclear Physics. The Laboratory was created by the author of this review in 1996 in strong collaboration with the Institute of Nuclear Physics Wilhelms-Universitaet in Muenster, Germany and the Institute of Applied Physics Ukrainian Academy of Science in Sumy, Ukraine. The big international team worked under the leadership of Dr Marta Marszalek, initially developing a multicomponent ultrahigh vacuum setup for thin film preparation and analysis, and next accompanying her in studies of the structural, magnetic and magnetotransport properties of Co/Cu multilayers. Systems that exhibit giant magnetoresistance effect have been receiving intensive attentions over recent years since they are possible candidates for applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this research is the growth of magnetic Co/Cu multilayers modified by using metallic surface modifiers called surfactants. The different approaches have been used. Surfactant metals were introduced once into growth process as a buffer layer or they were deposited sequentially at each interface of Co/Cu multilayers. The growth was performed by molecular beam epitaxy technique which allows to tailor carefully deposition conditions. The results showed that two approaches gave different results. Surfactant buffer layers resulted in loss of layered character of multilayers being a kind of an intermediate cluster-like phase combined with a layered area. Small amount of surfactants introduced at each interface lead to well-ordered structures with small roughness and smoother interfaces than in the case of pure Co/Cu multilayers. Despite of the differences, in both cases the improvement of magnetoresistance value was observed. The atomic scale study

  13. Surface modification of nanocrystalline anatase with CTAB in the acidic condition and its effects on photocatalytic activity and preferential growth of TiO2

    International Nuclear Information System (INIS)

    The nanocrystalline anatase TiO2, which was synthesized by a sol-hydrothermal process in advance, has successfully modified with cetyltrimethylammonium bromide (CTAB) in the acidic condition as well as in the basic condition. On the basis of the measurements of infrared spectrum and X-ray photoelectron spectroscopy of the resulting TiO2, together with the phase-transfer experiments, it is suggested that the modification mechanism in the acidic condition is closely related to Br-. Interestingly, compared with un-modified TiO2, the modified TiO2 exhibits high photocatalytic activity for degrading Rhodamine B (RhB) solution, especially for that modified in the acid. The enhanced photocatalytic activity of modified TiO2 in the acid is attributed to the role that the Br- can easily capture photo-induced holes and then form active Br, consequently effectively inducing photocatalytic oxidation reactions, based on the surface photovoltage responses of the resulting TiO2. After that, a one-pot sol-hydrothermal route at the temperature as low as 80 deg. C is developed to directly synthesize CTAB-modified nanocrystalline TiO2 with a little preferred growth along direction, which can be easily dispersed in the organic system and possess good photocatalytic performance. This work provides a feasible strategy to further improve the photocatalytic performance of nanocrystalline anatase and to synthesize TiO2 nanocrystals with preferential growth.

  14. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir

    International Nuclear Information System (INIS)

    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of the cast MWCNTssuspension, number of electropolymerization cycles and accumulation time was optimized by monitoring the LSV response of the modified electrode toward ACV. The best response was observed at pH 7.0 after accumulation at open circuit for 160 s. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of ACV on the modified electrode surface relative to the bare GCE, resulting in a wide linear dynamic range (0.03–10.0 μM) and a low detection limit (10.0 nM) for ACV. Besides high sensitivity, the sensor represented high stability and good reproducibility for ACV analysis, and provided satisfactory results for the determination of this compound in pharmaceutical and clinical preparations. - Highlights: • A simple method was employed to construct a thin film modified electrode. • Tiron-doped polypyrrole was electropolymerized on MWCNT precast glassy carbon electrode. • Electrode surface characterization was performed by microscopic and spectroscopic techniques. • The modified electrode showed nano-molar detection limit for acyclovir. • The modified electrode was applied for the detection of ACV in pharmaceutical and clinical preparations

  15. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-3516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azimzadeh, Mahnaz [Department of Chemistry, Sharif University of Technology, Tehran 11155-3516 (Iran, Islamic Republic of); Amini, Mohammad K. [Department of Chemistry, Isfahan University, Isfahan (Iran, Islamic Republic of)

    2015-08-01

    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of the cast MWCNTssuspension, number of electropolymerization cycles and accumulation time was optimized by monitoring the LSV response of the modified electrode toward ACV. The best response was observed at pH 7.0 after accumulation at open circuit for 160 s. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of ACV on the modified electrode surface relative to the bare GCE, resulting in a wide linear dynamic range (0.03–10.0 μM) and a low detection limit (10.0 nM) for ACV. Besides high sensitivity, the sensor represented high stability and good reproducibility for ACV analysis, and provided satisfactory results for the determination of this compound in pharmaceutical and clinical preparations. - Highlights: • A simple method was employed to construct a thin film modified electrode. • Tiron-doped polypyrrole was electropolymerized on MWCNT precast glassy carbon electrode. • Electrode surface characterization was performed by microscopic and spectroscopic techniques. • The modified electrode showed nano-molar detection limit for acyclovir. • The modified electrode was applied for the detection of ACV in pharmaceutical and clinical preparations.

  16. Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Luais, E. [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); IMN, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); PCI, Universite du Maine, CNRS, rue Aristote, 72085 Le Mans cedex 9 (France); Thobie-Gautier, C. [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); Tailleur, A.; Djouadi, M.-A.; Granier, A.; Tessier, P.Y. [IMN, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); Debarnot, D.; Poncin-Epaillard, F. [PCI, Universite du Maine, CNRS, rue Aristote, 72085 Le Mans cedex 9 (France); Boujtita, M., E-mail: mohammed.boujtita@univ-nantes.f [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France)

    2010-11-30

    An electrochemical transducer based on vertically aligned carbon nanotubes (CNT) was prepared as a platform for biosensor development. Prior to enzyme immobilization, the CNT were treated using a microwave plasma system (CO{sub 2} and N{sub 2}/H{sub 2}) in order to functionalize the CNT surface with oxygenated and aminated groups. The morphological aspect of the electrode surface was examined by SEM and its chemical structure was also elucidated by XPS analysis. It was found out that microwave plasma system (CO{sub 2} and N{sub 2}/H{sub 2}) not only functionalizes the CNT but also permits to avoid the collapse phenomena retaining thus the alignment structure of the electrode surface. The electrochemical properties of the resulting new material based on CNT were carried out by cyclic voltammetry and were found suitable to develop high sensitive enzyme (HRP) biosensors operating on direct electron transfer process.

  17. Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength

    Directory of Open Access Journals (Sweden)

    Feihu Li

    2016-04-01

    Full Text Available Low color visibility and poor mechanical strength of polystyrene (PS photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.

  18. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study

    CERN Document Server

    Parodi, K; Kraemer, M; Sommerer, F; Naumann, J; Mairani, A; Brons, S

    2010-01-01

    Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been an...

  19. Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water

    Science.gov (United States)

    Patowary, Manoj; Ananthakrishnan, Rajakumar; Pathak, Khanindra

    2014-11-01

    The wettability of hygroscopic magnesium carbonate has been modified to develop a superhydrophobic and oleophilic sorbent for oil spill clean-ups via a simple chemical process using palmitic acid. The prepared material was characterized using X-ray diffraction, Fourier transform infra-red spectroscopy, and scanning electron microscopy. Wettability test infers that the sorbent has a static water contact angle of 154 ± 1°, thereby indicating its superhydrophobic character. The sorbent was capable of scavenging oil for about three times its weight, as determined from oil sorption studies, carried out using the sorbent on model oil-water mixture. Interestingly, the chemically modified sorbent has high selectivity, buoyancy, and rate of uptake of oil. Further, the reusability studies confirm the repeatable usage of the sorbent and its efficacy in oil spill remediation.

  20. Effects of Size and Surfaee Modification of Multi-walled Carbon Nanotubes on Mechanical Properties of Polyurethane-based Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fang; HUANGJin; ZHANG Hao; SU Zhongmin; ZHANG Qiaoxin

    2012-01-01

    Polyurethanes/multi-walled carbon nanotube (PU/CNT) composites were prepared with a help of ultrasonically dispersing CNT in the traditional procedure of synthesizing polyurethane.In this case,the various loading levels,sizes and surface-modified groups were considered to regulate the mechanical performances of the PU/CNT nanocomposites.Moreover,the structure and mechanical properties of all the PU/CNT nanocomposites were investigated by attenuated total reflection-Fourier transform infrared spectroscopy,dynamic mechanical analysis,scanning electron microscope,transmission electron microscope,and tensile testing.The experimental results showed that a moderate loading-level of 0.1 wt% and a diameter of 10-15 nm for CNT could produce the maximum tensile strength and elongation while it was worth noting that the surface carboxylation of CNT could further enhance the tensile strength and elongation of the PU/CNT nanocomposites.

  1. Crystallite growth kinetics of TiO{sub 2} surface modification with 9 mol% ZnO prepared by a coprecipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Horng-Huey [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsi, Chi-Shiung [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Zhao, Xiujian, E-mail: opluse@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 (China)

    2014-03-05

    Highlights: • TiO{sub 2} powder surface modification with 9 mol% ZnO was obtained. • Phase transformation from anatase to rutile was hindered by ZnO added. • Growth kinetic of anatase TiO{sub 2} nanocrystallites in T-9Z powders was described as: D{sub A,9}{sup 2}=2.42×10{sup 5}×exp(-39.9×10{sup 3}/RT). • Growth kinetic of rutile TiO{sub 2} nanocrystallites in T-9Z powders was described as: D{sub R,9}{sup 2}=8.49×10{sup 5}×exp(-47.6×10{sup 3}/RT) rutile TiO{sub 2}. -- Abstract: The nanocrystallite growth of TiO{sub 2} surface modification with 9 mol% ZnO prepared by a coprecipitation process has been studied. Thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–VIS–NIR spectrophotometry have been utilized to characterize the TiO{sub 2} nanocrystallites surface modification with 9 mol% ZnO (denoted by T-9Z). The DTA result shows that the anatase TiO{sub 2} first formed at 533 K and the completion of anatase TiO{sub 2} crystallization occurred at 745 K for the T-9Z freeze-dried precursor powders. XRD results reveal that the anatase and rutile TiO{sub 2} coexist when the T-9Z freeze-dried precursor powders were calcined at 523–973 K for 2 h. When the T-9Z freeze-dried precursor powders were calcined at 973 K for 2 h, rutile TiO{sub 2} was the major phase, and the minor phases were anatase TiO{sub 2} and Zn{sub 2}Ti{sub 3}O{sub 8}. The phase was composed of the rutile TiO{sub 2} and Zn{sub 2}TiO{sub 4} for the T-9Z freeze-dried precursor powders after calcination at 1273 K for 2 h. The growth kinetics of TiO{sub 2} nanocrystallites in T-9Z powders were described as: D{sub A,9}{sup 2}=2.42×10{sup 5}×exp(-39.9×10{sup 3}/RT)and D{sub R,9}{sup 2}=8.49×10{sup 5}×exp(-47.6×10{sup 3}/RT) for anatase and rutile TiO{sub 2} nanocrystallites respectively. The analysis results of UV/VIS/NIR spectra reveal that the T-9Z freeze

  2. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation

    International Nuclear Information System (INIS)

    Highlights: • Graphene modified well-define TiO2 sphere on carbon cloth has been fabricated. • RGO/TiO2/CC exhibits efficient visible light photoelectrocatalytic activity. • RGO/TiO2/CC electrode shows enhanced PEC activity for degradation of MB pollutant. • A synergetic effect of photocatalysis and electrocatalysis in the PEC process. -- Abstract: Reduced graphene oxide nanosheets modified TiO2 nanospheres on carbon cloth electrodes (RGO/TiO2/CC) have been fabricated and used for photoelectrocatalytic (PEC) degradation of organic pollutants under visible light irradiation. The fabricated RGO/TiO2/CC electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. Compared with TiO2/CC electrode, the RGO modified TiO2/CC electrode evidently shows improved visible light-driven PEC activity for degradation of an often used model pollutant, methylene blue (MB). Moreover, the efficiency of MB degradation by PEC process (0.0133 min−1) is about 13-fold and 7-fold faster than that of electrochemical process (0.001 min−1) and photocatalytic process (0.0018 min−1), respectively. The improved catalytic activity for PEC degradation of MB pollutants could be attributed to the existence of RGO, which extends the absorption onset of TiO2 to longer wavelength direction and promotes the separation of electron–hole pairs generated under visible light irradiation. The promotion effect on the electron–hole separation is supported by photocurrent and electrochemical impedance measurements. In addition, a synergetic effect of photocatalysis and electrocatalysis is involved in the PEC process, by which the recombination of photogenerated electron–hole pairs is significantly suppressed

  3. A vertically discretised canopy description for ORCHIDEE (SVN r2290 and the modifications to the energy, water and carbon fluxes

    Directory of Open Access Journals (Sweden)

    K. Naudts

    2014-12-01

    Full Text Available Since 70% of global forests are managed and forests impact the global carbon cycle and the energy exchange with the overlying atmosphere, forest management has the potential to mitigate climate change. Yet, none of the land surface models used in Earth system models, and therefore none of today's predictions of future climate, account for the interactions between climate and forest management. We addressed this gap in modelling capability by developing and parametrizing a version of the land surface model ORCHIDEE to simulate the biogeochemical and biophysical effects of forest management. The most significant changes between the new branch called ORCHIDEE-CAN (SVN r2290 and the trunk version of ORCHIDEE (SVN r2243 are the allometric-based allocation of carbon to leaf, root, wood, fruit and reserve pools; the transmittance, absorbance and reflectance of radiation within the canopy; and the vertical discretisation of the energy budget calculations. In addition, conceptual changes towards a~better process representation occurred for the interaction of radiation with snow, the hydraulic architecture of plants, the representation of forest management and a~numerical solution for the photosynthesis formalism of Farquhar, von Caemmerer and Berry. For consistency reasons, these changes were extensively linked throughout the code. Parametrization was revisited after introducing twelve new parameter sets that represent specific tree species or genera rather than a group of unrelated species, as is the case in widely used plant functional types. Performance of the new model was compared against the trunk and validated against independent spatially explicit data for basal area, tree height, canopy strucure, GPP, albedo and evapotranspiration over Europe. For all tested variables ORCHIDEE-CAN outperformed the trunk regarding its ability to reproduce large-scale spatial patterns as well as their inter-annual variability over Europe. Depending on the data

  4. Microbial growth and carbon use efficiency in the rhizosphere and root-free soil.

    Directory of Open Access Journals (Sweden)

    Evgenia Blagodatskaya

    Full Text Available Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE-the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed.

  5. Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Zhou Kai

    2010-01-01

    Full Text Available Abstract The structure of vertically aligned carbon nanotubes (CNTs severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future.

  6. Growth process and mechanism of a multi-walled carbon nanotube nest deposited on a silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Jian Lv; Yang Xiaohui [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Li Xinjian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2010-03-01

    A large scale nest array of multi-walled carbon nanotubes (NACNTs) was grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Through observing its macro/micromorphology and structure, ascertaining the catalyst component and its locations at different growth time by hiring field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, the growth process was deduced. Its thermal properties were also investigated by using a thermogravimetric analyzer. Our experiments demonstrated that the CNTs growth by means of root-growth mechanism at the initial growth stage, then a continuous growth process with its tip open is suggested, finally, a schematic growth model of NACNT/Si-NPA was presented.

  7. Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles

    DEFF Research Database (Denmark)

    He, Maoshuai; Jiang, Hua; Liu, Bilu;

    2013-01-01

    on crystalline substrates via epitaxial growth techniques. Here, we have accomplished epitaxial formation of monometallic Co nanoparticles with well-defined crystal structure, and its use as a catalyst in the selective growth of SWNTs. Dynamics of Co nanoparticles formation and SWNT growth inside an atomic......Controlling chirality in growth of single-walled carbon nanotubes (SWNTs) is important for exploiting their practical applications. For long it has been conceptually conceived that the structural control of SWNTs is potentially achievable by fabricating nanoparticle catalysts with proper structures...

  8. Effects of a carbon convection field on large diamond growth under high-pressure high-temperature conditions

    Institute of Scientific and Technical Information of China (English)

    Hu Mei-Hua; Li Shang-Sheng; Ma Hong-An; Su Tai-Chao; Li Xiao-Lei; Hu Qiang; Jia Xiao-Peng

    2012-01-01

    Large diamond crystals were successfully synthesized by a FeNi-C system using the temperature gradient method under high-pressure high-temperature conditions.The assembly of the growth cell was improved and the growth process of diamond was investigated.Effects of the symmetry of the carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of the seed crystal in the melted catalyst/solvent.The results indicate that the morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature.Moreover,the finite element method was applied to analyze the carbon convection mode of the melted catalyst/solvent around the diamond crystal.This work is helpful for understanding the growth mechanism of diamond.

  9. Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources.

    Science.gov (United States)

    Resat, Haluk; Bailey, Vanessa; McCue, Lee Ann; Konopka, Allan

    2012-05-01

    We have developed a new kinetic model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment and by different strategies for hydrolysis of polymeric carbon. The hybrid model represented the dynamics of substrates and enzymes using a continuum representation and the dynamics of the cells were modeled individually. Individual-based biological model allowed us to explicitly simulate microbial diversity, and to model cell physiology as regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions in heterogeneous media such as soil and by the functional attributes of individual microbes. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20-μm size portions of the soil physical structure and in 111-μm size soil aggregates with a random pore structure. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences suggested different functional niches for these two microbe types in cellulose utilization. Our model predicted an emergent behavior in which co-existence of membrane-associated hydrolase and extracellular hydrolases releasing organisms led to higher cellulose utilization efficiency and reduced stochasticity. Our analysis indicated that their co-existence mutually benefits these organisms, where basal cellulose degradation activity by membrane-associated hydrolase-expressing cells shortened the soluble hydrolase buildup time and, when enzyme buildup allowed for cellulose degradation to be fast enough to sustain exponential growth, all the

  10. Growth of Few-Layer Graphene on Sapphire Substrates by Directly Depositing Carbon Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Chao-Yang; TANG Jun; LIU Zhong-Liang; LI Li-Min; YAN Wen-Sheng; WEI Shi-Qiang; XU Peng-Shou

    2011-01-01

    Few-layer graphene (FLG) is successfully grown on sapphire substrates by directly depositing carbon atoms at the substrate temperature of 1300℃ in a molecular beam epitaxy chamber.The reflection high energy diffraction,Raman spectroscopy and near-edge x-ray absorption fine structure are used to characterize the sample,which confirm the formation of graphene layers.The mean domain size of FLG is around 29.2 nm and the layer number is about 2-3.The results demonstrate that the grown FLG displays a turbostratic stacking structure similar to that of the FLG produced by annealing C-terminated a-SiC surface.Graphene,a monolayer of sp2-bonded carbon atoms,is a quasi two-dimensional (2D) material.It has attracted great interest because of its distinctive band structure and physical properties.[1] Graphene can now be obtained by several different approaches including micromechanical[1] and chemical[2] exfoliation of graphite,epitaxial growth on hexagonal SiC substrates by Si sublimation in vacuum,[3] and CVD growth on metal substrates.[4] However,these preparation methods need special substrates,otherwise,in order to design microelectronic devices,the prepared graphene should be transferred to other appropriate substrates.Thus the growth of graphene on the suitable substrates is motivated.%Few-layer graphene (FLG) is successfully grown on sapphire substrates by directly depositing carbon atoms at the substrate temperature of 1300℃ in a molecular beam epitaxy chamber. The reflection high energy diffraction, Raman spectroscopy and near-edge x-ray absorption fine structure are used to characterize the sample, which confirm the formation of graphene layers. The mean domain size of FLG is around 29.2nm and the layer number is about 2-3. The results demonstrate that the grown FLG displays a turbostratic stacking structure similar to that of the FLG produced by annealing C-terminated α-SiC surface.

  11. Expression of soluble human Neonatal Fc-receptor (FcRn) in Escherichia coli through modification of growth environment.

    Science.gov (United States)

    Ng, Woei Kean; Lim, Theam Soon; Lai, Ngit Shin

    2016-11-01

    Neonatal Fc-receptor (FcRn) with its affinity to immunoglobulin G (IgG) has been the subject of many pharmacokinetic studies in the past century. This protein is well known for its unique feature in maintaining the circulating IgG from degradation in blood plasma. FcRn is formed by non-covalent association between the α-chain with the β-2-microglobulin (β2m). Many studies have been conducted to produce FcRn in the laboratory, mainly using mammalian tissue culture as host for recombinant protein expression. In this study, we demonstrate a novel strategy to express the α-chain of FcRn using Escherichia coli as the expression host. The expression vector that carries the cDNA of the α-chain was transformed into expression host, Rosetta-gami 2 strain for inducible expression. The bacterial culture was grown in a modified growth medium which constitutes of terrific broth, sodium chloride (NaCl), glucose and betaine. A brief heat shock at 45 °C was carried out after induction, before the temperature for expression was reduced to 22 °C and grown for 16 h. The soluble form of the α-chain of FcRn expressed was tested in the ELISA and dot blot immunoassay to confirm its native functionality. The results implied that the α-chain of FcRn expressed using this method is functional and retains its pH-dependent affinity to IgG. Our study significantly suggests that the activity of human FcRn remain active and functional in the absence of β2m. PMID:27412717

  12. The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand dates

    Science.gov (United States)

    Asgari, Parinaz; Moradi, Omid; Tajeddin, Behjat

    2014-03-01

    In this work, nanocomposite low-density polyethylene films with carbon nanotube base were prepared by solution casting from boiling xylene. Fresh Mazafati dates were placed on the packages obtained from films and stored at ambient temperature. In addition, the fungal growth and sensory attributes were monitored on the 0th, 30th, 60th, and 90th days of storage. Although films containing carbon nanotube increased shelf life of Mazafati dates compared to controls, some of the characteristics of sensory were lost.

  13. Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction

    DEFF Research Database (Denmark)

    He, Maoshuai; Liu, Bilu; Chernov, Alexander I.;

    2012-01-01

    Chiralities of single-walled carbon nanotubes grown on an atomic layer deposition prepared bimetallic FeCu/MgO catalyst were evaluated quantitatively using nanobeam electron diffraction. The results reveal that the growth yields nearly 90% semiconducting tubes, 45% of which are of the (6,5) type...... by impregnation, showing similar catalytic performance as the atomic layer deposition-prepared catalyst, yielding single-walled carbon nanotubes with a similar narrow chirality distribution....

  14. Response of vegetation to carbon dioxide. Growth, yield and plant water relationships in sweet potatoes in response to carbon dioxide enrichment 1986

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    In the summer of 1985, under the joint program of US Department of Energy, Carbon Dioxide Division, and Tuskegee University, experiments were conducted to study growth, yield, photosynthesis and plant water relationships in sweet potato plants growth in an enriched CO{sub 2} environment. The main experiment utilized open top chambers to study the effects of CO{sub 2} and soil moisture on growth, yield and photosynthesis of field-grown plants. In addition, potted plants in open top chambers were utilized in a study of the effects of different CO{sub 2} concentrations on growth pattern, relative growth rate, net assimilation rate and biomass increment at different stages of development. The interaction effects of enriched CO{sub 2} and water stress on biomass production, yield, xylem potential, and stomatal conductance were also investigated. The overall results of the various studies are described.

  15. The relationship between carbon dioxide emission and economic growth: Hierarchical structure methods

    Science.gov (United States)

    Deviren, Seyma Akkaya; Deviren, Bayram

    2016-06-01

    Carbon dioxide (CO2) emission has an essential role in the current debate on sustainable development and environmental protection. CO2 emission is also directly linked with use of energy which plays a focal role both for production and consumption in the world economy. Therefore the relationship between the CO2 emission and economic growth has a significant implication for the environmental and economical policies. In this study, within the scope of sociophysics, the topology, taxonomy and relationships among the 33 countries, which have almost the high CO2 emission and economic growth values, are investigated by using the hierarchical structure methods, such as the minimal spanning tree (MST) and hierarchical tree (HT), over the period of 1970-2010. The average linkage cluster analysis (ALCA) is also used to examine the cluster structure more clearly in HTs. According to their proximity, economic ties and economic growth, different clusters of countries are identified from the structural topologies of these trees. We have found that the high income & OECD countries are closely connected to each other and are isolated from the upper middle and lower middle income countries from the MSTs, which are obtained both for the CO2 emission and economic growth. Moreover, the high income & OECD clusters are homogeneous with respect to the economic activities and economic ties of the countries. It is also mentioned that the Group of Seven (G7) countries (CAN, ENG, FRA, GER, ITA, JPN, USA) are connected to each other and these countries are located at the center of the MST for the results of CO2 emission. The same analysis may also successfully apply to the other environmental sources and different countries.

  16. Accelerated OH(-) transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells.

    Science.gov (United States)

    Wang, Xin; Feng, Cuijuan; Ding, Ning; Zhang, Qingrui; Li, Nan; Li, Xiaojing; Zhang, Yueyong; Zhou, Qixing

    2014-04-01

    Activated carbon (AC) is a promising catalyst for the air cathode of microbial fuel cells (MFCs) because of its high performance and low cost. To increase the performance of AC air cathodes, the acceleration of OH(-) transport is one of the most important methods, but it has not been widely investigated. Here we added quaternary ammonium to ACs by in situ anchoring of a quaternary ammonium/epoxide-reacting compound (QAE) or ex situ mixing with anion exchange resins in order to modify ACs from not only the external surface but also inside the pores. In 50 mM phosphate buffer solution (PBS), the in situ anchoring of QAE was a more effective way to increase the power. The highest power density of 2781 ± 36 mW/m(2), which is 10% higher than that of the control, was obtained using QAE-anchored AC cathodes. When the medium was switched to an unbuffered NaCl solution, the increase in maximum power density (885 ± 25 mW/m(2)) was in accordance with the anion exchange capacity (0.219 mmol/g). The highest power density of the anion exchange resin-mixed air cathode was 51% higher than that of the control, indicating that anion exchange is urgently needed in real wastewaters. Excess anchoring of QAE blocked both the mesopores and micropores, causing the power output to be inhibited. PMID:24597673

  17. Carbon nanotube surface modification with polyelectrolyte brushes endowed with quantum dots and metal oxide nanoparticles through in situ synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Llarena, Irantzu; Romero, Gabriela; Moya, Sergio E [CIC biomaGUNE Paseo Miramon, 182 Edificio Empresarial C, E-20009 San Sebastian, Gipuzkoa (Spain); Ziolo, Ronald F, E-mail: smoya@cicbiomagune.es [Centro de Investigacion en Quimica Aplicada, Blv. Enrique Reyna No. 140, Saltillo, Coahuila 25253 (Mexico)

    2010-02-05

    Carbon nanotubes (CNTs) have been successfully coated with a covalently bonded polymer brush of negatively charged poly(3-sulfopropylamino methacrylate) (PSPM) by in situ polymerization employing atomic transfer radical polymerization (ATRP) from initiating silanes attached to the CNTs before the polymerization. The CNT-bonded brush forms a polymer layer or shell-like structure around the CNTs and provides colloidal stabilization for the CNTs in aqueous media. In situ syntheses of nanocrystalline CdS and magnetic iron oxide in the polymer brushes lead to the formation of hybrid nanocomposites consisting of nanoparticle-containing PSPM-coated CNTs that remain readily dispersible and stable in aqueous media. The hybrid nanostructures are synthesized by ion exchange with the cations of the sulfonate groups of the PSPM followed by precipitation and were followed by stepwise zeta potential measurements and TEM. Such structures could have applications in the design of more complex structures and devices. The general synthetic scheme can be extended to include other nanoparticles as brush cargo to broaden the utility or functionality of the CNTs. TEM data shows nanocrystalline CdS in the range of 5-8 nm embedded in the PSPM brush and nanocrystalline iron oxide with a size between 2 and 4 nm, with the former consistent with UV-vis spectroscopy and fluorescence measurements.

  18. A novel cysteine sensor based on modification of carbon paste electrode by Fe(II)-exchanged zeolite X nanoparticles.

    Science.gov (United States)

    Hashemi, Habibeh-Sadat; Nezamzadeh-Ejhieh, Alireza; Karimi-Shamsabadi, Maryam

    2016-01-01

    An electrochemical sensor based on carbon paste electrode (CPE) modified with iron(II) doped into a synthesized nano-particles of zeolite X (Fe(II)-NX/ZCME) was constructed, which is highly sensitive for detection of cysteine (Cys). The modified electrode showed an excellent electro-activity for oxidation of Cys in phosphate buffer at pH7.4. It has been found that anodic peak potential of Cys oxidation, compared with the unmodified CPE (UCPE), was shifted towards negative values at the surface of the modified electrode under the optimum condition. The peak current increased linearly with the Cys concentration in the wide range of 5.0 × 10(-9)-3.0 × 10(-3) mol L(-1). The very low detection limit was obtained to be 1.5 × 10(-10) mol L(-1). Finally, the modified electrode was used as a selective, simple and precise new electrochemical sensor for the determination of Cys in the real samples, such as pharmaceutical and biological fluids.

  19. Carbon nanotube surface modification with polyelectrolyte brushes endowed with quantum dots and metal oxide nanoparticles through in situ synthesis.

    Science.gov (United States)

    Llarena, Irantzu; Romero, Gabriela; Ziolo, Ronald F; Moya, Sergio E

    2010-02-01

    Carbon nanotubes (CNTs) have been successfully coated with a covalently bonded polymer brush of negatively charged poly(3-sulfopropylamino methacrylate) (PSPM) by in situ polymerization employing atomic transfer radical polymerization (ATRP) from initiating silanes attached to the CNTs before the polymerization. The CNT-bonded brush forms a polymer layer or shell-like structure around the CNTs and provides colloidal stabilization for the CNTs in aqueous media. In situ syntheses of nanocrystalline CdS and magnetic iron oxide in the polymer brushes lead to the formation of hybrid nanocomposites consisting of nanoparticle-containing PSPM-coated CNTs that remain readily dispersible and stable in aqueous media. The hybrid nanostructures are synthesized by ion exchange with the cations of the sulfonate groups of the PSPM followed by precipitation and were followed by stepwise zeta potential measurements and TEM. Such structures could have applications in the design of more complex structures and devices. The general synthetic scheme can be extended to include other nanoparticles as brush cargo to broaden the utility or functionality of the CNTs. TEM data shows nanocrystalline CdS in the range of 5-8 nm embedded in the PSPM brush and nanocrystalline iron oxide with a size between 2 and 4 nm, with the former consistent with UV-vis spectroscopy and fluorescence measurements. PMID:20032551

  20. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta).

    Science.gov (United States)

    Rautenberger, Ralf; Fernández, Pamela A; Strittmatter, Martina; Heesch, Svenja; Cornwall, Christopher E; Hurd, Catriona L; Roleda, Michael Y

    2015-02-01

    Carbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated [Formula: see text] dehydration and alter the stable carbon isotope (δ (13)C) signatures toward more CO2 use to support higher growth rate. At pHT 9.0 where CO2(aq) is net photosynthesis (NPS) by only 56-83%, leaving the carbon uptake mechanism for the remaining 17-44% of the NPS unaccounted. An in silico search for carbon-concentrating mechanism elements in expressed sequence tag libraries of Ulva found putative light-dependent [Formula: see text] transporters to which the remaining NPS can be attributed. The shift in δ (13)C signatures from -22‰ toward -10‰ under saturating light but not under elevated CO2(aq) suggest preference and substantial [Formula: see text] use to support photosynthesis and growth. U. rigida is Ci saturated, and growth was primarily controlled by light. Therefore, increased levels of CO2(aq) predicted for the future will not, in isolation, stimulate Ulva blooms. PMID:25750714

  1. Decomposing Industrial Energy-Related CO2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth

    Directory of Open Access Journals (Sweden)

    Mingxiang Deng

    2016-01-01

    Full Text Available As a less-developed province that has been chosen to be part of a low-carbon pilot project, Yunnan faces the challenge of maintaining rapid economic growth while reducing CO2 emissions. Understanding the drivers behind CO2 emission changes can help decouple economic growth from CO2 emissions. However, previous studies on the drivers of CO2 emissions in less-developed regions that focus on both production and final demand have been seldom conducted. In this study, a structural decomposition analysis-logarithmic mean Divisia index (SDA-LMDI model was developed to find the drivers behind the CO2 emission changes during 1997–2012 in Yunnan, based on times series energy consumption and input-output data. The results demonstrated that the sharp rise in exports of high-carbon products from the metal processing and electricity sectors increased CO2 emissions, during 2002–2007. Although increased investments in the construction sector also increased CO2 emissions, during 2007–2012, the carbon intensity of Yunnan’s economy decreased substantially because the province vigorously developed hydropower and improved energy efficiency in energy-intensive sectors. Construction investments not only carbonized the GDP composition, but also formed a carbon-intensive production structure because of high-carbon supply chains. To further mitigate CO2 emissions in Yunnan, measures should promote the development and application of clean energy and the formation of consumption-based economic growth.

  2. Meta-code for systematic analysis of chemical addition (SACHA): application to fluorination of C70 and carbon nanostructure growth.

    Science.gov (United States)

    Ewels, Christopher P; Lier, Gregory Van; Geerlings, Paul; Charlier, Jean-Christophe

    2007-01-01

    We present a new computer program able to systematically study chemical addition to and growth or evolution of carbon nanostructures. SACHA is a meta-code able to exploit a wide variety of pre-existing molecular structure codes, automating the otherwise onerous task of constructing, running, and analyzing the large number of input files that are required when exploring structural isomers and addition paths. By way of examples we consider fluorination of the fullerene cage C70 and carbon nanostructure growth through C2 addition. We discuss the possibilities for extension of this technique to rapidly and efficiently explore structural energy landscapes and application to other areas of chemical and materials research.

  3. Carbon nanotube growth on a pointed bulk electrode using femtosecond laser nonlinear lithography

    Science.gov (United States)

    Nishiyama, Hiroaki; Iba, Tomohiro; Hirata, Yoshinori

    2013-11-01

    Carbon nanotube (CNT) bundles were synthesized on pointed bulk electrodes using femtosecond laser nonlinear lithography. A resist mask of 1.5 μm diameter was formed on a pointed bulk cathode by translating a laser focus three-dimensionally inside the spherical photoresist. Metal masks obtained by pattern transfers of the resists effectively suppressed CNT growth during plasma-enhanced chemical vapor deposition, resulting in synthesis of CNT bundles only at the electrode tip. Irradiation of field emission currents from the pointed cathode enables local melting and subsequent removal of anode materials. The damaged region size and the threshold voltage for this removal process were reduced by spatial limitations of emission sites using the metal mask.

  4. Syntheses and growth mechanisms of 3C-SiC nanostructures from carbon and silicon powders.

    Science.gov (United States)

    Zhu, J; Xiong, X; Chen, H T; Wu, X L; Zhang, W C; Chu, Paul K

    2009-11-01

    Cubic silicon carbide (3C-SiC) nanostructures such as needle- and Y-shaped nanowhiskers, smooth and pagoda-shaped nanorods are synthesized on a large scale from activated carbon and silicon powders at 1250 degrees C under atmospheric pressure. The use of ball-milled silicon powders results in the formation of nanowires and nanowhiskers, whereas non-milled silicon powders lead to nanorods together with unreacted silicon powders. Residual oxygen in the growth chamber initiates the carburization reactions which can proceed without further oxygen consumption. The size and morphology of the as-synthesized 3C-SiC nanostructures are observed to be related to the size and morphology of the starting silicon particles. An oxygen-assisted gas-solid model is proposed to explain the observed nanostructures. PMID:19908579

  5. Fatigue crack initiation and crack growth studies for pipes made of carbon steel

    International Nuclear Information System (INIS)

    Leak-Before-Break (LBB), a fail-safe design philosophy, is based on fatigue/fracture mechanics concepts and requires rigorous integrity assessment of piping component with postulated part through thickness flaw. It is required to be demonstrated that the unstable tearing will never occur before the crack penetrates through thickness and gives easily detectable leakage. This requires investigation on fatigue crack initiation followed by fatigue crack growth (FCG) of piping components with different postulated part through flaws for the qualification of LBB design criterion. In view of it, six numbers of tests were carried out on 8-inches Sch.100 straight pipes having circumferential part through wall notch and made of SA333Gr6 carbon steel and subjected to pure alternating bending moment using four point bend setup. The material is similar to that used in primary heat transport (PHT) piping of Indian Pressurised Heavy Water Reactor (PHWR)

  6. Tunable growth of silver nanobelts on monolithic activated carbon with size-dependent plasmonic response

    Science.gov (United States)

    Zhao, Hong; Ning, Yuesheng; Zhao, Binyuan; Yin, Fujun; Du, Cuiling; Wang, Fei; Lai, Yijian; Zheng, Junwei; Li, Shuan; Chen, Li

    2015-09-01

    Silver is one of the most important materials in plasmonics. Tuning the size of various silver nanostructures has been actively pursued in the last decade. However, silver nanobelt, a typical one-dimensional silver nanostructure, has not been systematically studied as to tuning its size for controllable plasmonic response. Here we show that silver nanobelts, with mean width ranging from 45 to 105 nm and thickness at ca. 13 nm, can grow abundantly on monolithic activated carbon (MAC) through a galvanic-cell reaction mechanism. The widths of silver nanobelts are positively correlated to the growth temperatures. The width/thickness ratio of the silver nanobelts can be adjusted so that their transversal plasmonic absorption peaks can nearly span the whole visible light band, which endows them with different colours. This work demonstrates the great versatility of a simple, green and conceptually novel approach in controlled synthesis of noble metal nanostructures.

  7. Understanding the Causality between Carbon Dioxide Emission, Fossil Energy Consumption and Economic Growth in Developed Countries: An Empirical Study

    Directory of Open Access Journals (Sweden)

    Bing Xue

    2014-02-01

    Full Text Available Issues on climate change have been recognized as serious challenges for regional sustainable development both at a global and local level. Given the background that most of the artificial carbon emissions are resulted from the energy consumption sector and the energy is also the key element resource for economic development, this paper investigated the relationship between CO2 emission, fossil energy consumption, and economic growth in the period 1970–2008 of nine European countries, based on the approach of Granger Causality Test, followed by the risk analysis on impacts of CO2 reduction to local economic growth classified by the indicator of causality degree. The results show that there are various feedback causal relationships between carbon emission, energy consumption and economic growth, with both unidirectional and dual-directional Granger causality. The impact of reducing CO2 emission to economic growth varies between countries as well.

  8. Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker.

    Science.gov (United States)

    Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin

    2016-06-14

    As a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24 h. In contrast to this, TFAAD shows strong cross-polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability.

  9. Carbon stocks of an old-growth forest and an anthropogenic peatland in southern Chile

    Science.gov (United States)

    Perez-Quezada, Jorge; Brito, Carla; Cabezas, Julian; Salvo, Patricia; Lemunao, Pedro; Flores, Ernesto; Valdés, Ariel; Fuentes, Juan Pablo; Galleguillos, Mauricio; Pérez, Cecilia

    2015-04-01

    The distribution of carbon in the different ecosystem stocks may change with direct human perturbation or climate change. We present a detailed description of the carbon stocks of an old-growth forest and an anthropogenic peatland (i.e., created by flooding, as a consequence of forest fires or logging). The study area was located in a private reserve in the Chiloé Island, southern Chile (41° 52' S, 73° 40' W). Sampling was done on plots separated 60 m from each other, in areas of approximately 30 ha for each ecosystem type. Total C was 1523 ± 117 Mg ha-1 in the forest and 130 ± 13.8 Mg ha-1 in the peatland, with 69.7% and 91.7% of this found belowground, respectively. In the forest, the necromass stock composed by logs and snags was high (183 Mg C ha-1), compared with the live-tree stock (264 Mg C ha-1) and with the C stored in the understory vegetation (14 Mg C ha-1). In the peatland, most of the C was stored in the most decomposed layer of peat, deeper in the ground. Because the anthropogenic peatland is experiencing a secondary succession, there is great potential to sequester back the C lost due to the perturbation. However, in most of the area where these ecosystems are found, the moss is being harvested for horticultural purposes.

  10. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations

    Science.gov (United States)

    Madigan, M. T.; Takigiku, R.; Lee, R. G.; Gest, H.; Hayes, J. M.

    1989-01-01

    Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacteriochlorophyll from photoautotrophically grown cultures of C. tepidum yielded 13C fractionation factors near -20%. Cells of C. tepidum grown on excess acetate, wherein synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase ribulose bisphosphate carboxylase) was greatly repressed, were isotopically heavier, fractionation factors of ca. -7% being observed. Fractionation factors determined by isotopic analyses of cells and pigment fractions of natural populations of C. tepidum growing in three different sulfide thermal springs in Yellowstone National Park were approximately -20%, indicating that this purple sulfur bacterium grows as a photoautotroph in nature.

  11. Poly(trimethylene carbonate-co-ε-caprolactone promotes axonal growth.

    Directory of Open Access Journals (Sweden)

    Daniela Nogueira Rocha

    Full Text Available Mammalian central nervous system (CNS neurons do not regenerate after injury due to the inhibitory environment formed by the glial scar, largely constituted by myelin debris. The use of biomaterials to bridge the lesion area and the creation of an environment favoring axonal regeneration is an appealing approach, currently under investigation. This work aimed at assessing the suitability of three candidate polymers - poly(ε-caprolactone, poly(trimethylene carbonate-co-ε-caprolactone (P(TMC-CL (11∶89 mol% and poly(trimethylene carbonate - with the final goal of using these materials in the development of conduits to promote spinal cord regeneration. Poly(L-lysine (PLL coated polymeric films were tested for neuronal cell adhesion and neurite outgrowth. At similar PLL film area coverage conditions, neuronal polarization and axonal elongation was significantly higher on P(TMC-CL films. Furthermore, cortical neurons cultured on P(TMC-CL were able to extend neurites even when seeded onto myelin. This effect was found to be mediated by the glycogen synthase kinase 3β (GSK3β signaling pathway with impact on the collapsin response mediator protein 4 (CRMP4, suggesting that besides surface topography, nanomechanical properties were implicated in this process. The obtained results indicate P(TMC-CL as a promising material for CNS regenerative applications as it promotes axonal growth, overcoming myelin inhibition.

  12. The over-step coalescence of carbon atoms on copper surface in the CVD growth of graphene: density functional calculations

    Directory of Open Access Journals (Sweden)

    Yingfeng Li

    2013-05-01

    Full Text Available The ways in which carbon atoms coalesce over the steps on copper (111 surface are ascertained by density functional theory (DFT calculations in the context of chemical vapor deposition (CVD growth of graphene. Two strategies, (1 by putting carbon atoms on and under the steps separately and (2 by importing additional carbon atoms between the ones separated by the steps, have been attempted to investigate if an over-step coalescence of carbon atoms could take place. Based on analyses about the optimized configurations and adsorption energies of carbon atoms nearby the steps, as well as the energy evolution curve of the system throughout the geometry optimizations process, we determined the main way in which graphene grows over the steps continuously: the carbon atoms, adsorbed additionally on the locations between the already existing ones which are separated by the steps, link them (these carbon atoms separated by the steps together. The direct over-step coalescence of the carbon atoms separated by the steps is very difficult, although the energy barrier preventing their coalescence can be weakened by importing carbon atoms on and under the steps gradually. Our results imply potential applications in directing the fabrication of graphene with particular structure by controlling the surface topography of copper substrate.

  13. The response of herbaceous plants to elevated CO{sub 2}. Short-term modification of C and N partitioning and growth of Plantago Major SSP. Pleiosperma

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, F.G.

    1996-12-31

    The aim of this thesis was to characterise the short- and long-term growth response of Plantago at elevated CO{sub 2}, in terms of related changes in plant morphology, sink-source balance and carbon and nitrogen metabolism components, in an attempt to identify the chain of events and some of the mechanisms leading to the cessation of whole plant RGR stimulation. The results presented in this thesis are based on controlled environment experiments in which seedlings of an inbred line of Plantago major ssp. pleiosperma (L.) Pilger, grown in aerated nutrient solution were exposed to elevated CO2 (700 {mu}l.l{sup -1}). Chapters 2 and 3 refer to data from long-term experiments, aimed at (1) describing the growth response at elevated CO{sub 2}, in terms of duration of growth stimulation as dependent of plant size and/or development of new sinks; (2) identifying and characterising the presence and time course of sink activity; (3) following related changes in starch and soluble sugar concentration in roots and shoots; (4) investigating the relations between sink growth and changes in soluble sugar concentration and in leaf net photosynthetic rate. In chapter 4, the short-term response of Plantago at elevated CO{sub 2} is analysed in detail, mainly the mechanisms behind the transient stimulation of root metabolism. Elevated CO{sub 2} effects on nitrogen metabolism components, mediated by increased availability of soluble sugars in leaves and roots, are investigated at the physiological (soluble sugar concentration, root respiration rate, NRA in vivo and in vitro) and at the molecular level (NR mRNA). In chapter 5, data from independent isotope labelling experiments ({sup 14}C and {sup 15}N) are presented, as a more accurate line of evidence for increased export of carbon from the shoots and increased rate of translocation from root to shoot and cycling of reduced nitrogen between root and shoot at elevated CO{sub 2}. In chapter 6, a general discussion of the results, based

  14. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations

    OpenAIRE

    Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice r...

  15. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays.

    Science.gov (United States)

    Johnen, Sandra; Meißner, Frank; Krug, Mario; Baltz, Thomas; Endler, Ingolf; Mokwa, Wilfried; Walter, Peter

    2016-01-01

    Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT), used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe) or mixtures of iron-platinum (Fe-Pt) and iron-titanium (Fe-Ti) acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28) cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue. PMID:27200182

  16. Properties of Retinal Precursor Cells Grown on Vertically Aligned Multiwalled Carbon Nanotubes Generated for the Modification of Retinal Implant-Embedded Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Sandra Johnen

    2016-01-01

    Full Text Available Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT, used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe or mixtures of iron-platinum (Fe-Pt and iron-titanium (Fe-Ti acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28 cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue.

  17. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest.

    Science.gov (United States)

    Klein, Tamir; Vitasse, Yann; Hoch, Günter

    2016-07-01

    In deciduous trees growing in temperate forests, bud break and growth in spring must rely on intrinsic carbon (C) reserves. Yet it is unclear whether growth and C storage occur simultaneously, and whether starch C in branches is sufficient for refoliation. To test in situ the relationships between growth, phenology and C utilization, we monitored stem growth, leaf phenology and stem and branch nonstructural carbohydrate (NSC) dynamics in three deciduous species: Carpinus betulus L., Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. To quantify the role of NSC in C investment into growth, a C balance approach was applied. Across the three species, >95% of branchlet starch was consumed during bud break, confirming the importance of C reserves for refoliation in spring. The C balance calculation showed that 90% of the C investment in foliage (7.0-10.5 kg tree(-1) and 5-17 times the C needed for annual stem growth) was explained by simultaneous branchlet starch degradation. Carbon reserves were recovered sooner than expected, after leaf expansion, in parallel with stem growth. Carpinus had earlier leaf phenology (by ∼25 days) but delayed cambial growth (by ∼15 days) than Fagus and Quercus, the result of a competitive strategy to flush early, while having lower NSC levels. PMID:27126226

  18. Carbon-assisted growth and high visible-light optical reflectivity of amorphous silicon oxynitride nanowires

    Directory of Open Access Journals (Sweden)

    Tang Zirong

    2011-01-01

    Full Text Available Abstract Large amounts of amorphous silicon oxynitride nanowires have been synthesized on silicon wafer through carbon-assisted vapor-solid growth avoiding the contamination from metallic catalysts. These nanowires have the length of up to 100 μm, with a diameter ranging from 50 to 150 nm. Around 3-nm-sized nanostructures are observed to be homogeneously distributed within a nanowire cross-section matrix. The unique configuration might determine the growth of ternary amorphous structure and its special splitting behavior. Optical properties of the nanowires have also been investigated. The obtained nanowires were attractive for their exceptional whiteness, perceived brightness, and optical brilliance. These nanowires display greatly enhanced reflection over the whole visible wavelength, with more than 80% of light reflected on most of the wavelength ranging from 400 to 700 nm and the lowest reflectivity exceeding 70%, exhibiting performance superior to that of the reported white beetle. Intense visible photoluminescence is also observed over a broad spectrum ranging from 320 to 500 nm with two shoulders centered at around 444 and 468 nm, respectively.

  19. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth

    Science.gov (United States)

    Ding, Feng; Rosén, Arne; Bolton, Kim

    2004-08-01

    The molecular dynamics method, based on an empirical potential energy surface, was used to study the effect of catalyst particle size on the growth mechanism and structure of single-walled carbon nanotubes (SWNTs). The temperature for nanotube nucleation (800-1100 K), which occurs on the surface of the cluster, is similar to that used in catalyst chemical vapor deposition experiments, and the growth mechanism, which is described within the vapor-liquid-solid model, is the same for all cluster sizes studied here (iron clusters containing between 10 and 200 atoms were simulated). Large catalyst particles, which contain at least 20 iron atoms, nucleate SWNTs that have a far better tubular structure than SWNTs nucleated from smaller clusters. In addition, the SWNTs that grow from the larger clusters have diameters that are similar to the cluster diameter, whereas the smaller clusters, which have diameters less than 0.5 nm, nucleate nanotubes that are ≈0.6-0.7 nm in diameter. This is in agreement with the experimental observations that SWNT diameters are similar to the catalyst particle diameter, and that the narrowest free-standing SWNT is 0.6-0.7 nm.

  20. Growth, dispersion, and electronic devices of nitrogen-doped single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Oikonomou, Antonios [School of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Susi, Toma; Kauppinen, Esko I. [Nanomaterials Group, Department of Applied Physics, Aalto University School of Science, PO Box 15100, 00076 Aalto (Finland); Vijayaraghavan, Aravind [School of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Centre for Mesoscience and Nanotechnology, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2012-12-15

    This paper describes the complete processes from growth to electronic devices of nitrogen-doped single-wall carbon nanotubes (N-SWCNTs). The N-SWCNTs were synthesized using a floating catalyst chemical vapor deposition method. The dry-deposited N-SWCNT films were dispersed in N-methylpyrolidone followed by sonication and centrifugation steps to yield a stable dispersion of N-SWCNTs in solution. The length and diameter distribution as well as concentration of N-SWCNTs in solution were measured by atomic force microscopy and optical absorption spectroscopy, respectively. The N-SWCNTs were then assembled into electronic devices using bottom-up dielectrophoresis and characterized as field-effect transistors. Finally, the potential for application of N-SWCNTs in sensors is discussed. The three stages of N-doped SWCNT processing: (a) growth and collection on filter, (b) dispersion in NMP, and (c) dielectrophoretic assembly into transistor device. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Carbon Nanostructure: Its Evolution During its Impact Upon Soot Growth and Oxidation

    Science.gov (United States)

    2001-01-01

    The proposed work is a ground-based study to define and quantify soot nanostructural changes in response to growth conditions, thermal and oxidative treatments and to quantify their impact upon further oxidation and growth of highly ordered carbon materials. Experimental data relating soot oxidation rates to multiple oxidizing species concentrations will directly test for additive or synergistic soot oxidation rates. Such validation is central for assessing the applicability of individual soot oxidation rates and designing oxidative strategies for controlling soot loadings in and emissions from turbulent combustion processes. Through these experiments, new insights into soot nanostructure evolution during and its impact upon oxidation by O2 and OH will be realized. It is expected that the results of this effort will spawn new research directions in future microgravity and 1g environments. Issues raised by positive or even negative demonstration of the hypotheses of this proposal have direct bearing on modelling and controlling soot formation and its destruction in nearly every combustion process producing soot.

  2. Modeling microbial dynamics in heterogeneous environments: Growth on soil carbon sources

    Energy Technology Data Exchange (ETDEWEB)

    Resat, Haluk; Bailey, Vanessa L.; McCue, Lee Ann; Konopka, Allan

    2012-01-01

    We have developed a new hybrid model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment. The modeling framework can represent porous media such as soil. The individual based biological model can explicitly simulate microbial diversity, and cell metabolism is regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions and by the functional attributes of individual microbes. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences may suggest different functional roles for these two classes of microbes in cellulose utilization. Our model predicted an emergent behavior in which co-existence led to higher cellulose utilization efficiency and reduced stochasticity. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20 {micro}m size portions of the soil physical structure and in 111 {micro}m size soil aggregates with a random pore structure. Trends in dynamic properties were very similar at these two scales, implying that micro-scale studies can be useful approximations to aggregate scale studies when local effects on microbial dynamics are studied.

  3. Effects of chronic carbon monoxide exposure on fetal growth and development in mice

    Directory of Open Access Journals (Sweden)

    Venditti Carolina C

    2011-12-01

    Full Text Available Abstract Background Carbon monoxide (CO is produced endogenously, and can also be acquired from many exogenous sources: ie. cigarette smoking, automobile exhaust. Although toxic at high levels, low level production or exposure lends to normal physiologic functions: smooth muscle cell relaxation, control of vascular tone, platelet aggregation, anti- inflammatory and anti-apoptotic events. In pregnancy, it is unclear at what level maternal CO exposure becomes toxic to the fetus. In this study, we hypothesized that CO would be embryotoxic, and we sought to determine at what level of chronic CO exposure in pregnancy embryo/fetotoxic effects are observed. Methods Pregnant CD1 mice were exposed to continuous levels of CO (0 to 400 ppm from conception to gestation day 17. The effect on fetal/placental growth and development, and fetal/maternal CO concentrations were determined. Results Maternal and fetal CO blood concentrations ranged from 1.12- 15.6 percent carboxyhemoglobin (%COHb and 1.0- 28.6%COHb, respectively. No significant difference was observed in placental histological morphology or in placental mass with any CO exposure. At 400 ppm CO vs. control, decreased litter size and fetal mass (p Conclusions Exposure to levels at or below 300 ppm CO throughout pregnancy has little demonstrable effect on fetal growth and development in the mouse.

  4. Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication

    Directory of Open Access Journals (Sweden)

    Zhu Yanwu

    2011-01-01

    Full Text Available Abstract Carbon nanowalls (CNWs, two-dimensional "graphitic" platelets that are typically oriented vertically on a substrate, can exhibit similar properties as graphene. Growth of CNWs reported to date was exclusively carried out at a low pressure. Here, we report on the synthesis of CNWs at atmosphere pressure using "direct current plasma-enhanced chemical vapor deposition" by taking advantage of the high electric field generated in a pin-plate dc glow discharge. CNWs were grown on silicon, stainless steel, and copper substrates without deliberate introduction of catalysts. The as-grown CNW material was mainly mono- and few-layer graphene having patches of O-containing functional groups. However, Raman and X-ray photoelectron spectroscopies confirmed that most of the oxygen groups could be removed by thermal annealing. A gas-sensing device based on such CNWs was fabricated on metal electrodes through direct growth. The sensor responded to relatively low concentrations of NO2 (g and NH3 (g, thus suggesting high-quality CNWs that are useful for room temperature gas sensors. PACS: Graphene (81.05.ue, Chemical vapor deposition (81.15.Gh, Gas sensors (07.07.Df, Atmospheric pressure (92.60.hv

  5. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording.

    Science.gov (United States)

    Pan, Alice Ian; Lin, Min-Hsuan; Chung, Hui-Wen; Chen, Hsin; Yeh, Shih-Rung; Chuang, Yung-Jen; Chang, Yen-Chung; Yew, Tri-Rung

    2016-01-01

    A novel 3D carbon nanotube (CNT) microelectrode was developed through direct growth of CNTs on a gold pin-shaped 3D microelectrode at a low temperature (400 °C) for applications in neural and cardiac recording. With an electroplated Ni catalyst layer covering the entire surface of the pin-shaped structure, CNTs were synthesized on a 3D microelectrode by catalytic thermal chemical vapor deposition (CVD). According to the analyses by electrochemical impedance spectroscopy, the impedance of 3D microelectrodes after CNT growth and UV/O3 treatment decreased from 9.3 Ω mm(-2) to 1.2 Ω mm(-2) and the capacitance increased largely from 2.2 mF cm(-2) to 73.3 mF cm(-2). The existence of UVO3-treated CNT led to a large improvement of interfacial capacitance, contributing to the decrease of impedance. The electrophysiological detection capability of this 3D CNT microelectrode was demonstrated by the distinguished P waves, QRS complex and T waves in the electrocardiogram of the zebrafish heart and the action potential recorded from individual rat hippocampal neurons. The compatibility of integration with ICs, high resolution in space, electrophysiological signals, and non-invasive long-term recording suggest that the 3D CNT microelectrode exhibits promising potential for applications in electrophysiological research and clinical trials.

  6. Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth.

    Science.gov (United States)

    Ratnikova, Tatsiana A; Podila, Ramakrishna; Rao, Apparao M; Taylor, Alan G

    2015-01-01

    Seed coat permeability was examined using a model that tested the effects of soaking tomato (Solanum lycopersicon) seeds in combination with carbon-based nanomaterials (CBNMs) and ultrasonic irradiation (US). Penetration of seed coats to the embryo by CBNMs, as well as CBNMs effects on seed germination and seedling growth, was examined. Two CBNMs, C60(OH)20 (fullerol) and multiwalled nanotubes (MWNTs), were applied at 50 mg/L, and treatment exposure ranged from 0 to 60 minutes. Bright field, fluorescence, and electron microscopy and micro-Raman spectroscopy provided corroborating evidence that neither CBNM was able to penetrate the seed coat. The restriction of nanomaterial (NM) uptake was attributed to the semipermeable layer located at the innermost layer of the seed coat adjacent to the endosperm. Seed treatments using US at 30 or 60 minutes in the presence of MWNTs physically disrupted the seed coat; however, the integrity of the semipermeable layer was not impaired. The germination percentage and seedling length and weight were enhanced in the presence of MWNTs but were not altered by C60(OH)20. The combined exposure of seeds to NMs and US provided insight into the nanoparticle-seed interaction and may serve as a delivery system for enhancing seed germination and early seedling growth.

  7. Growth of single-walled gold nanotubes confined in carbon nanotubes, studied by molecular dynamics simulations

    Science.gov (United States)

    Han, Yang; Hu, Ting; Dong, Jinming

    2013-01-01

    Growth of the single-walled gold nanotube (SWGNT), confined in the single-walled carbon nanotube (SWCNT) has been studied by using the classical molecular dynamics (MD) simulations, in which two different empirical potentials (the glue and EAM potentials) are used for the interaction between gold atoms. It is found that under the glue potential, three new SWGNTs, (3, 2), (4, 2) and (6, 3) gold tubes can be formed, in addition to the previously found (3, 3), (4, 3) and (5, 3) ones, among which two achiral ones, (4, 2) and (6, 3) gold tubes are particularly interesting because they were thought to be not the tube-like structures, or to have large enough diameter, permitting an extra gold atom chain in it. However, when the EAM potential is used, only four SWGNTs, i.e., (3, 2), (4, 2), (4, 3) and (5, 3) gold tubes could be formed in our MD simulations. After comparing all the MD simulation results with those of the first principles calculations, it is found that the EAM potential is better to describe the interaction between gold atoms than the glue potential for the MD simulation on the growth of gold tubular structure in confined CNT.

  8. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimin; Wang, Qiang, E-mail: wangqiang@njtech.edu.cn; Shan, Xiaoye; Zhu, Hongjun, E-mail: zhuhj@njtech.edu.cn [Department of Applied Chemistry, College of Science, Nanjing Tech University, Nanjing 211816 (China); Li, Wei-qi [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Chen, Guang-hui [Department of Chemistry, Shantou University, Shantou, Guangdong 515063 (China)

    2015-02-21

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  9. Enhancement in Mode II Interlaminar Fracture Toughness at Cryogenic Temperature of Glass Fiber/Epoxy Composites through Matrix Modification by Carbon Nanotubes and n-Butyl Glycidyl Ether

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2015-01-01

    Full Text Available A typical diglycidyl ether of bisphenol-F (DGEBF/diethyl toluene diamine (DETD epoxy system modified by multiwalled carbon nanotubes (MWCNTs and a reactive aliphatic diluent named n-butyl glycidyl ether (BGE was used as the matrix for glass fiber composites. The glass fiber (GF reinforced composites based on the unmodified and modified epoxy matrices were prepared by the hand lay-up hot-press process. Mode II interlaminar fracture toughness at both room temperature (RT and cryogenic temperature (77 K of the GF reinforced epoxy composites was investigated to examine the effect of the matrix modification. The result showed that the introduction of MWCNTs and BGE at their previously reported optimal contents led to the remarkable enhancement in mode II interlaminar fracture toughness of the composites. Namely, the 22.9% enhancement at RT and the 31.4% enhancement at 77 K were observed for mode II interlaminar fracture toughness of the fiber composite based on the optimally modified epoxy matrix by MWCNTs and BGE compared to the unmodified case.

  10. Rabi Wave Packets and Peculiarities of Raman Scattering in Carbon Nanotubes, Produced by High Energy Ion Beam Modification of Diamond Single Crystals

    CERN Document Server

    Yearchuck, Dmitry

    2011-01-01

    QED-model for multichain coupled qubit system, proposed in \\cite{Part1}, was confirmed by Raman scattering studies of quasi-1D carbon zigzag-shaped nanotubes (CZSNTs), produced by high energy ion beam modification of natural diamond single crystals. Multichain coupled qubit system represents itself Su-Schriffer-Heeger $\\sigma$-polaron lattice, formed in CZSNTs plus quantized external electromagnetic (EM) field. New quantum optics phenomenon - Rabi waves, predicted in \\cite{Slepyan_Yerchak} has experimentally been identified for the first time. It is shown, that Raman spectra in quasi-1D CZSNTs are quite different in comparison with well known Raman spectra in 2D those ones. They characterized by semiclassical consideration by the only one vibronic mode of Su-Schriffer-Heeger $\\sigma$-polaron lattice instead of longitudinal and transverse optical phonon $G^+$ and $G^-$modes and the out-of-plane radial breathing mode, which are observed in Raman spectra of 2D single wall nanotubes. It is consequence of 2D - 1D ...

  11. Covalent versus Charge Transfer Modification of Graphene/Carbon-Nanotubes with Vitamin B1: Co/N/S-C Catalyst toward Excellent Oxygen Reduction.

    Science.gov (United States)

    Vij, Varun; Tiwari, Jitendra N; Kim, Kwang S

    2016-06-29

    High-performance nonprecious cathodic catalysts for oxygen reduction are highly demanded for low-temperature polymer electrolyte membrane fuel cells (PEMFCs). Here, we report a noble-meta- free, nitrogen and sulfur codoped graphene(G)/carbon-nanotube(CNT) material decorated with Co nanoparticles (NPs), which serve as catalytic sites for excellent oxygen reduction reaction (ORR) in basic and acidic media. Out of the cathodic catalysts synthesized by either covalent (cov) or charge transfer (CT) modification of graphen oxide (GO) with thiamine (Th: Vitamin B1), ThG/CNT/Co-cov shows more promising ORR properties than ThG/CNT/Co-CT. Catalyst ThG/CNT/Co-cov exhibits onset/halfwave potentials of 0.95/0.86 V in 0.1 M KOH and 0.92/0.83 V in 0.1 M HClO4, which are comparable to those of commercial catalyst Pt/C (0.95/0.86 V). As compared to Pt/C, our catalyst shows higher current densities of 6.72 mA cm(-2) in basic medium and 7.08 mA cm(-2) in acidic medium at 0.55 V (vs reversible hydrogen electrode (RHE)). It also exhibits better catalytic stability and methanol tolerance. High catalytic efficiency and stability of ThG/CNT/Co-cov show a promising prospect of materialization of PEMFCs for clean energy production. PMID:27255326

  12. Surface Modification of Multiwall Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl-methacrylate) Composites

    KAUST Repository

    Ezzeddine, Alaa

    2015-05-22

    This research investigates the modification and dispersion and of pristine multiwalled carbon nanotubes (MWCNTs) through a simple solution mixing technique based on noncovalent interactions between poly(phenylene ethynylene) based conjugated polyelectrolytes functionalized with cationic imidazolium solubilizing groups (PIM-2 and PIM-4) and MWCNTs. Spectroscopic studies demonstrated the ability of PIMs to strongly interact with and efficiently disperse MWCNTs in different solvents mainly due to π-interactions between the PIMs and MWCNTs. Transmission electron microscopy and atomic force microscopy revealed the coating of the polyelectrolytes on the walls of the nanotubes. Scanning electron microscopy (SEM) studies confirm the homogenous dispersion of PIM modified MWCNTs in poly(methyl methacrylate) (PMMA) matrix. The addition of 1 wt% PIM modified MWCNTs to the matrix has led to a significant decrease in DC resistivity of the composite (13 orders of magnitude). The increase in electrical conductivity and the improvement in thermal and mechanical properties of the membranes containing the PIM modified MWCNTs is ascribed to the formation of MWCNTs networks and cross-linking sites that provided channels for the electrons to move in throughout the matrix and reinforced the interface between MWCNTs and PMMA.

  13. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time. PMID:25173323

  14. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Akito Takashima

    2014-07-01

    Full Text Available The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.

  15. Surface modification of poly-L-lactic acid films by electrostatic self-assembly to promote vascular smooth muscle cells growth

    Institute of Scientific and Technical Information of China (English)

    XU Li; HU Kun; JIAO Yanpeng; CUI Fuzhai; AI Hongbin

    2007-01-01

    The intention of this study was to surface modify the poly-L-1actic acid(PLLA)film and evaluate the effects of the surfaces on the growth of vascular smooth muscle eells (VSMCs)in vitro.Collagen and hyaluronic acid(HA) were utilized as polycation and polyanion in this study.Layerby-1ayer(LBL)self-assembly technique was used to lead to the formation of multilayer moleculer on the poly-L-lactic acid(PLLA)film surfaces.Collagen/HA layers was overcasted coating on the PLLA surface after the activation layers by poly-(ethyleneimine)(PEI).The structure and morphology of the multilayer molecular were examined by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrophotometer and atomic force microscope (AFM),respectively.The ATR-FTIR analysis illuminated the presence of collagen on the PLLA surface.The AFM results showed the multilayer appeared on PLLA surface.The VSMCs were adopted to evaluate me cyto-compatibility of the modified PLLA films.It was found that the viability of VSMCs on the modified PLLA films were greater than that on original PLLA films and tissue culture plastic after ten days culture (p<0.05).Scanning electron microscopy(SEM) and laser scanning confocal microscopy (LSCM) data also confirmed the homogeneous results.These data suggest that collagen/HA coat Can be successfully adopted in the surface modification of PLLA film through LBL technique,and also can enhance its eell compatibility.

  16. Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013.

    Science.gov (United States)

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-07-01

    In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future. PMID:27030236

  17. Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013.

    Science.gov (United States)

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-07-01

    In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future.

  18. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets.

    Science.gov (United States)

    Almkhelfe, Haider; Carpena-Núñez, Jennifer; Back, Tyson C; Amama, Placidus B

    2016-07-21

    Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpet