WorldWideScience

Sample records for carbonate crystals precipitated

  1. Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC) for Eco-Friendly Paper

    Science.gov (United States)

    Kim, Jung-Ah; Han, Gi-Chun; Lim, Mihee; You, Kwang-Suk; Ryu, Miyoung; Ahn, Ji-Whan; Fujita, Toyohisa; Kim, Hwan

    2009-01-01

    Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process (Ca(OH)2-NaOH-Na2CO3). Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture. PMID:20087470

  2. Calcium Carbonate Precipitation for CO{sub 2} Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ribooga; Kim, Semin; Lee, Seungin; Choi, Soyoung; Kim, Minhee; Park, Youngjune, E-mail: young@gist.ac.kr [Carbon and Energy Systems, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of)

    2017-07-10

    The transformation of CO{sub 2} into a precipitated mineral carbonate through an ex situ mineral carbonation route is considered a promising option for carbon capture and storage (CCS) since (i) the captured CO{sub 2} can be stored permanently and (ii) industrial wastes (i.e., coal fly ash, steel and stainless-steel slags, and cement and lime kiln dusts) can be recycled and converted into value-added carbonate materials by controlling polymorphs and properties of the mineral carbonates. The final products produced by the ex situ mineral carbonation route can be divided into two categories—low-end high-volume and high-end low-volume mineral carbonates—in terms of their market needs as well as their properties (i.e., purity). Therefore, it is expected that this can partially offset the total cost of the CCS processes. Polymorphs and physicochemical properties of CaCO{sub 3} strongly rely on the synthesis variables such as temperature, pH of the solution, reaction time, ion concentration and ratio, stirring, and the concentration of additives. Various efforts to control and fabricate polymorphs of CaCO{sub 3} have been made to date. In this review, we present a summary of current knowledge and recent investigations entailing mechanistic studies on the formation of the precipitated CaCO{sub 3} and the influences of the synthesis factors on the polymorphs.

  3. Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism

    Directory of Open Access Journals (Sweden)

    Ribooga Chang

    2017-07-01

    Full Text Available The transformation of CO2 into a precipitated mineral carbonate through an ex situ mineral carbonation route is considered a promising option for carbon capture and storage (CCS since (i the captured CO2 can be stored permanently and (ii industrial wastes (i.e., coal fly ash, steel and stainless-steel slags, and cement and lime kiln dusts can be recycled and converted into value-added carbonate materials by controlling polymorphs and properties of the mineral carbonates. The final products produced by the ex situ mineral carbonation route can be divided into two categories—low-end high-volume and high-end low-volume mineral carbonates—in terms of their market needs as well as their properties (i.e., purity. Therefore, it is expected that this can partially offset the total cost of the CCS processes. Polymorphs and physicochemical properties of CaCO3 strongly rely on the synthesis variables such as temperature, pH of the solution, reaction time, ion concentration and ratio, stirring, and the concentration of additives. Various efforts to control and fabricate polymorphs of CaCO3 have been made to date. In this review, we present a summary of current knowledge and recent investigations entailing mechanistic studies on the formation of the precipitated CaCO3 and the influences of the synthesis factors on the polymorphs.

  4. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  5. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  6. Mucins and calcium phosphate precipitates additively stimulate cholesterol crystallization

    NARCIS (Netherlands)

    van den Berg, A. A.; van Buul, J. D.; Tytgat, G. N.; Groen, A. K.; Ostrow, J. D.

    1998-01-01

    Human biliary mucin and calcium binding protein (CBP) influence formation of both calcium salt precipitates and cholesterol crystals and colocalize in the center of cholesterol gallstones. We investigated how physiological concentrations of these proteins regulate cholesterol crystallization in

  7. Calcium carbonate precipitation in the Cueva di Watapana on Bonaire, Netherlands Antilles

    NARCIS (Netherlands)

    Meer Mohr, van der C.G.

    1978-01-01

    Calcium carbonate precipitates as low Mg-calcite and aragonite in slightly brackish water in a cave in the Pleistocene Middle Terrace of southern Bonaire. The calcium carbonate precipitates at the atmosphere-water interface forming floating calcite scales (calcite ice). Aragonite crystals frequently

  8. Ice crystal precipitation at Dome C site (East Antarctica)

    Science.gov (United States)

    Santachiara, G.; Belosi, F.; Prodi, F.

    2016-01-01

    For the first time, falling ice crystals were collected on glass slides covered with a thin layer of 2% formvar in chloroform at the Dome Concordia site (Dome C), Antarctica. Samplings were performed in the framework of the 27th Italian Antarctica expedition of the Italian National Program for Research in Antarctica in the period 21 February-6 August 2012. Events of clear-sky precipitations and precipitations from clouds were considered and the replicas obtained were examined under Scanning Electron Microscope (SEM). Several shapes of ice crystals were identified, including ;diamond dust; (plates, pyramids, hollow and solid columns), and crystal aggregates varying in complexity. Single events often contained both small (10 μm to 50 μm) and large (hundreds of microns) crystals, suggesting that crystals can form simultaneously near the ground (height of a few hundred metres) and at higher layers (height of thousands of metres). Images of sampled crystal replicas showed that single bullets are not produced separately, but by the disintegration of combinations of bullets. Rimed ice crystals were absent in the Dome C samples, i.e. the only mode of crystal growth was water vapour diffusion. On considering the aerosol in the sampled crystals, we reached the conclusion that inertial impaction, interception and Brownian motion were insufficient to explain the scavenged aerosol. We therefore presume that phoretic forces play a role in scavenging during the crystal growth process.

  9. Mass Transfer and Kinetics Study of Heterogeneous Semi-Batch Precipitation of Magnesium Carbonate

    DEFF Research Database (Denmark)

    Han, B.; Qu, H. Y.; Niemi, H.

    2014-01-01

    Precipitation kinetics and mass transfer of magnesium carbonate (MgCO3) hydrates from a reaction of magnesium hydroxide (Mg(OH)(2)) and CO2 were analyzed. The effect of CO2 flow rate and mixing intensity on precipitation was investigated under ambient temperature and atmospheric pressure. Raman...... on the dissolution of Mg(OH)(2). In the researched system, the main driver of the precipitation kinetics was the mass transfer of CO2. Nesquehonite (MgCO3 center dot 3H(2)O), as needle-like crystals, was precipitated as the main product. Raman spectroscopy can serve as a potential tool to monitor the carbonation...

  10. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    Science.gov (United States)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research

  11. Crystallization Kinetics of Precipitating Calcium from Yellow Phosphorus Slag Lixivium

    Directory of Open Access Journals (Sweden)

    Li, G. -B.

    2014-11-01

    Full Text Available The crystallization dynamic parameters of calcium sulphate were determined in the course of the precipitation conversion process of calcium in lixivium. The crystallization dynamic equations of calcium sulphate were achieved by multiple linear regression. The study results indicate that CaSO4 · 2 H2O crystal nucleation-growth kinetics equation in nitric acid leaching liquid of yellow phosphorus slag at room temperature is expressed by B0 = 2.904 · 1011 · G0.83 · MT 0.167.

  12. Biogrout, ground improvement by microbial induced carbonate precipitation

    NARCIS (Netherlands)

    Van Paassen, L.A.

    2009-01-01

    Biogrout is a new ground improvement method based on microbially induced precipitation of calcium carbonate (MICP). When supplied with suitable substrates, micro-organisms can catalyze biochemical conversions in the subsurface resulting in precipitation of inorganic minerals, which change the

  13. Crystallization characteristics of ammonium uranyl carbonate (AUC) in ammonium carbonate solutions

    International Nuclear Information System (INIS)

    Kim, T.J.; Jeong, K.C.; Park, J.H.; Chang, I.S.; Choi, C.S.

    1994-01-01

    Ammonium carbonate solutions with an excessive amount of NH 3 were produced in a commercial AUC (ammonium uranyl carbonate) conversion plant. In this study the AUC crystals, precipitated with uranyl nitrate and ammonium carbonate solutions prepared in the laboratory, were characterized to determine the feasibility of recycling ammonium carbonate solution. The AUC crystals were easily agglomerated with the increasing concentration of CO 3 2- and mole ratio of NH 4 + /CO 3 2- in ammonium carbonate solution. Effects of a mixing system for the solution in the AUC crystallizer and the feed location of the solution onthe agglomeration of AUC crystals were also studied along with the effects of agglomerated AUC powders on UO 2 powders. Finally, the feasibility of manufacturing UO 2 fuel with a sintered pellet density of 10.52 g/cm 3 , using the AUC powders generated in this experiment, was demonstrated. (orig.)

  14. Synthesis of BiFeO 3 by carbonate precipitation

    Indian Academy of Sciences (India)

    Magnetoelectric multiferroic BiFeO3 (BFO) was synthesized by a simple carbonate precipitation technique of metal nitrate solutions. X-ray powder diffraction and thermo-gravimetric analysis (TGA) revealed that the precipitate consists of an intimate mixture of crystalline bismuth carbonate and an amorphous hydroxide of ...

  15. Precipitation diagram of calcium carbonate polymorphs: its construction and significance

    International Nuclear Information System (INIS)

    Kawano, Jun; Shimobayashi, Norimasa; Miyake, Akira; Kitamura, Masao

    2009-01-01

    In order to interpret the formation mechanism of calcium carbonate polymorphs, we propose and construct a new 'precipitation diagram', which has two variables: the driving force for nucleation and temperature. The precipitation experiments were carried out by mixing calcium chloride and sodium carbonate aqueous solutions. As a result, a calcite-vaterite co-precipitation zone, a vaterite precipitation zone, a vaterite-aragonite co-precipitation zone and an aragonite precipitation zone can be defined. Theoretical considerations suggest that the steady state nucleation theory can explain well the appearance of these four zones, and the first-order importance of the temperature dependency of surface free energy in the nucleation of aragonite. Furthermore, the addition of an impurity will likely result in the change of these energies, and this precipitation diagram gives a new basis for interpreting the nature of the polymorphs precipitated in both inorganic and biological environments.

  16. A comparative study of modern carbonate mud in reefs and carbonate platforms: Mostly biogenic, some precipitated

    Science.gov (United States)

    Gischler, Eberhard; Dietrich, Sarah; Harris, Daniel; Webster, Jody M.; Ginsburg, Robert N.

    2013-06-01

    Carbonate mud from reefs and carbonate platforms in six locations of the Atlantic, Indian, and Pacific Oceans (Belize, Bahamas, Florida, the Maldives, French Polynesia, Great Barrier Reef) was systematically and quantitatively analyzed with regard to texture, composition, mineralogy, and geochemistry. Mud composition shows considerable variability, however, the data supports the contention that these muds are largely derived from the breakdown of skeletal grains and codiacean algae. Only mud from the Bahamas and northern Belize, areas which are characterized by common whitings, is interpreted to be mainly inorganically precipitated. Three grain-size fractions (63-20 μm, 20-4 μm, aragonite needles, nanograins, and coccoliths. Coccoliths are common in deeper lagoonal settings of the open ocean settings (Maldives, French Polynesia). The geochemistry of the aragonite contents and strontium concentrations, suggesting physico-chemical precipitation. The northern Belize and Great Barrier Reef samples show the highest magnesium calcite values and, accordingly, produced the lowest aragonite and strontium measurements. The high-magnesium calcite portion of the northern Belize mud is either precipitated or due to abundant micritized skeletal grains (e.g., foraminifera): more studies are needed to verify the origin. In the case of the Great Barrier Reef sample, coralline algae appear to be the source of abundant high-magnesium calcite. This study emphasizes that from a global perspective, modern muds in reefs and carbonate platforms exhibit different compositions but are in many cases biologically derived. Even though the composition of modern carbonate muds varies among the six locations investigated, they may serve as analogs for the formation of muds in Cenozoic and Mesozoic reefs and carbonate platforms. Limitations of the interpretation of carbonate-mud origin include the difficulty of identifying, quantifying, and analyzing small grains, the ease with which small

  17. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.; Ben Boubaker, H.; Ghaffour, NorEddine; Elfil, Hamza

    2013-01-01

    of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic

  18. Mechanism of calcium phosphates precipitation in liquid crystals

    International Nuclear Information System (INIS)

    Prelot, B.; Zemb, T.

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m 2 /g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  19. The role microbial sulfate reduction in the direct mediation of sedimentary authigenic carbonate precipitation

    Science.gov (United States)

    Turchyn, A. V.; Walker, K.; Sun, X.

    2016-12-01

    The majority of modern deep marine sediments are bathed in water that is undersaturated with respect to calcium carbonate. However, within marine sediments changing chemical conditions, driven largely by the microbial oxidation of organic carbon in the absence of oxygen, lead to supersaturated conditions and drive calcium carbonate precipitation. This sedimentary calcium carbonate is often called `authigenic carbonate', and is found in the form of cements and disseminated crystals within the marine sedimentary pile. As this precipitation of this calcium carbonate is microbially mediated, identifying authigenic carbonate within the geological record and understanding what information its geochemical and/or isotopic signature may hold is key for understanding its importance and what information it may contain past life. However, the modern controls on authigenic carbonate precipitation remain enigmatic because the myriad of microbially mediated reactions occurring within sediments both directly and indirectly impact the proton balance. In this submission we present data from 25 ocean sediment cores spanning the globe where we explore the deviation from the stoichiometrically predicted relationships among alkalinity, calcium and sulfate concentrations. In theory for every mol of organic carbon reduced by sulfate, two mol of alkalinity is produced, and to precipitate subsurface calcium carbonate one mol of calcium is used to consume two mol of alkalinity. We use this data with a model to explore changes in carbonate saturation state with depth below the seafloor. Alkalinity changes in the subsurface are poorly correlated with changes in calcium concentrations, however calcium concentrations are directly and tightly coupled to changes in sulfate concentrations in all studied sites. This suggests a direct role for sulfate reducing bacteria in the precipitation of subsurface carbonate cements.

  20. Micro and colloidal stickie pacification with precipitated calcium carbonate

    Science.gov (United States)

    John H. Klungness; Roland L. Gleisner; Marguerite S. Sykes

    2002-01-01

    Colloidal stickies that build up in mill process water during pulping are problematic and difficult to remove. We examined precipitated calcium carbonate (PCC) as a means to ameliorate process water stickies. The effectiveness of PCC added directly into a slurry of deinked pulp was compared with in situ precipitation of PCC by the fiber loading method. We found that...

  1. Control of calcium carbonate precipitation in anaerobic reactors

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what

  2. Precipitation of ikaite crystals in Antarctic marine sediments: implications from pore water geochemistry

    Science.gov (United States)

    Lu, Z.; Kennedy, H.; Rickaby, R. E.; Georg, B.; Shaw, S.; Lennie, A.; Pancost, R. D.

    2008-12-01

    Ikaite is a calcium carbonate hexahydrate (CaCO3•6H20) considered to be stable only at low temperatures. It has been found in form of tufa tower at locations where alkaline water mixes with water masses enriched in calcium (e.g. Ikka Fjord, Mono Lake). Large euhedral single crystals of ikaite were also recovered in marine sediments, associated with organic matter degradation, anaerobic oxidation of methane (AOM) and sulfate reduction. The hydration water in the ikaite crystals were demonstrated to record the oxygen isotope composition of the water from which they precipitated. Such a characteristic may allow using ikaite to reconstruct the ice volume in the past. For this purpose, the controls on its precipitation in the sediment column need to be investigated which is the main goal of this study. U.S. Antarctica Program cruise NBP0703 collected two cores with ikaite crystals at Antarctica Peninsula (Bransfield Strait and Firth of Tay). We determined major cation/anion concentrations, dissolved inorganic carbon (DIC) and δ13C composition of DIC in the pore waters in these two cores. Strong organic matter degradation or AOM in both cores results in quick consumption of sulfate in shallow part of the cores (SMT at around 3m).Rapid build-up of DIC is accompanied by the sharp decrease of dissolved calcium in the top 5m. Large variations were observed in δ13CDIC values (-20‰ to +13‰). The δ13C of ikaite in two cores were distinctive from each other (-19‰ and +4‰) corresponding to the DIC pools at different depths. The down core saturation state of the ikaite was modeled in PHREEQC based on the pore water chemistry, and the results are consistent with carbon isotope data, suggesting that these large crystals very likely formed within a narrow depth interval and a short time period (given high sedimentation rates of 0.5-1 cm/yr in this area).

  3. Crystal size control of sulfathiazole using high pressure carbon dioxide

    Science.gov (United States)

    Kitamura, M.; Yamamoto, M.; Yoshinaga, Y.; Masuoka, H.

    1997-07-01

    The effect of the pressurization method of carbon dioxide on the crystallization behavior and crystal size of sulphathiazole (SUT) was investigated. In the "stepwise pressurization" method exceptionally large pillar-like crystals of 2-6 mm were obtained as mainly a scaling on the wall of the crystallizer. In the "rapid pressurization" method, crystals with a size one third to half of that obtained in the stepwise method precipitated, indicating the accelerated nucleation rate by the rapid increase of the supersaturation degree with a vigorous bubbling. With the new method of "two-step pressurization", in the first step the nucleation is accelerated with a much larger pressure instantly created, and in the second step the growth rate is retarded with the lower pressure. By this method much more fine crystals (from a few tens to several hundred micrometers) were produced and the scaling was suppressed. In this method a large supersaturation degree at an interface between the gas (bubble) and liquid phase under a vigorous bubbling may play an important role in accelerating the nucleation. The average size of the crystals tended to become smaller with increase of the first pressure and the expansion ratio at a decompression point, and it tended to get larger with increase of the second pressure. These results show that the GAS method is very useful for the control of crystal size over a wide range.

  4. Rock fracture grouting with microbially induced carbonate precipitation

    Science.gov (United States)

    Minto, James M.; MacLachlan, Erica; El Mountassir, Gráinne; Lunn, Rebecca J.

    2016-11-01

    Microbially induced carbonate precipitation has been proposed for soil stabilization, soil strengthening, and permeability reduction as an alternative to traditional cement and chemical grouts. In this paper, we evaluate the grouting of fine aperture rock fractures with calcium carbonate, precipitated through urea hydrolysis, by the bacteria Sporosarcina pasteurii. Calcium carbonate was precipitated within a small-scale and a near field-scale (3.1 m2) artificial fracture consisting of a rough rock lower surfaces and clear polycarbonate upper surfaces. The spatial distribution of the calcium carbonate precipitation was imaged using time-lapse photography and the influence on flow pathways revealed from tracer transport imaging. In the large-scale experiment, hydraulic aperture was reduced from 276 to 22 μm, corresponding to a transmissivity reduction of 1.71 × 10-5 to 8.75 × 10-9 m2/s, over a period of 12 days under constantly flowing conditions. With a modified injection strategy a similar three orders of magnitude reduction in transmissivity was achieved over a period of 3 days. Calcium carbonate precipitated over the entire artificial fracture with strong adhesion to both upper and lower surfaces and precipitation was controlled to prevent clogging of the injection well by manipulating the injection fluid velocity. These experiments demonstrate that microbially induced carbonate precipitation can successfully be used to grout a fracture under constantly flowing conditions and may be a viable alternative to cement based grouts when a high level of hydraulic sealing is required and chemical grouts when a more durable grout is required.

  5. Use of seeds to control precipitation of calcium carbonate and determination of seed nature.

    Science.gov (United States)

    Donnet, Marcel; Bowen, Paul; Jongen, Nathalie; Lemaître, Jacques; Hofmann, Heinrich

    2005-01-04

    Understanding and controlling precipitation reactions is a major challenge for industrial crystallization. Calcium carbonate is a widely studied system: more than 3000 papers have been devoted to the subject over the past 10 years. The first step of the precipitation of calcium carbonate, from relatively concentrated solutions (0.01 mol/L), involves the formation of an initial gel phase which later transforms into calcite, vaterite, or a mixture of both phases. Our work aimed at controlling this first step. Nanosized seeds (8 nm), formed in situ, were used in order to control the often chaotic nucleation step which normally leads to poor phase selection and broad particle size distributions. Seeding has often been used to avoid spontaneous nucleation in metastable solutions for growth mechanism investigations of single-crystal calcium carbonate. Here the ability of a seeding method to control the precipitation reaction evolution even in the case of high supersaturation is demonstrated. The seeds and the presence of a polymeric additive (poly(acrylic acid)) allow the control of the precipitated polymorph and the specific surface area, while maintaining a narrow particle size distribution in the submicron range. Direct characterization methods did not succeed in identifying these nanoseeds; indirect methods using solubility calculations are used to demonstrate their existence and quantify size and number density of the nanosized seeds.

  6. The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.

    Science.gov (United States)

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions.

  7. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    Science.gov (United States)

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions. PMID:21799830

  8. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    Science.gov (United States)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  9. C isotope fractionation during heterotrophic activity driven carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu

    2016-04-01

    Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (-4.3 to -16.9 ‰) compared to the δ13C values of the organic compounds that ranged from -27.5 to -25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic carbonate

  10. Study of lithium extraction from brine water, Bledug Kuwu, Indonesia by the precipitation series of oxalic acid and carbonate sodium

    Science.gov (United States)

    Sulistiyono, Eko; Lalasari, Latifa Hanum; Mayangsari, W.; Prasetyo, A. B.

    2018-05-01

    Lithium is one of the key elements in the development of batteries for electric car applications. Currently, the resources of the world's lithium are derived from brine water and lithium mineral based on spodumene rock. Indonesia which is located in the area of the ring of fire, has potential brine water resources in some area, such as brine water from Bledug Kuwu, Central Java that used in this research. The purposes of this research are to characterize brine water, Bledug Kuwu and to investigate the influence of chemical solvents on Li, Na, K, Ca, Mg, Al, B ion precipitation from brine water. This research was done with 2 times the process of chemical precipitation that runs series as follows: 5 liters of brine water were chemically precipitated using 400 ml of 12.43 N oxalic acid and followed by chemical precipitation using 400 mL of 7.07 N sodium carbonate solutions. Evaporation and filtration processes were also done twice in an effort to separate white precipitate and filtrate. The filtrate was analyzed by ICP-OES and white precipitates (salts) were analyzed by SEM, XRD, and XRF. The result shows that oxalate precipitation process extracted 32.24% Al, 23.42% B, 22.43% Ca, 14.26% Fe, 3.21 % K, 9.86% Na and 14.26% Li, the following process by carbonate precipitation process extracted 98.86% Mg, 73% Ca, 22.53% Li, 82.04% Al, 14.38% B, 12.50% K, 2.27% Na. There is 63.21% lithium is not extracted from the series process. The SEM analysis shows that the structure of granules on the precipitated salts by oxalic acid form gentle cubic-shaped solid. In the other hand, oxalate precipitation followed by sodium carbonate has various particle sizes and the shape of crystals is fragments, prism and cube look like magnesium carbonate, calcium chloride, and calcite's crystal respectively. This is in accordance with XRD analysis that phases of whewellite (CaC2O4.H2O), disodium oxalate (Na2C2O4), magnesite (MgCO3), calcium lithium aluminum (Al1.19 Ca1Li0.81), dolomite (CaCO3

  11. Microbially-Mediated Precipitation of Calcium Carbonate Nanoparticles.

    Science.gov (United States)

    Kang, Ser Ku; Roh, Yul

    2016-02-01

    The objective of this study was to investigate the biomineralization of carbonate minerals using microorganisms (Wu Do-1) enriched from rhodoliths. A 16S rRNA sequence analysis showed that Wu Do-1 mainly contained Proteus mirabilis. The pH decreased from 6.5 to 5.3 over the first 4 days of incubation due to microbial oxidation of organic acids, after which it increased to 7.8 over the remaining incubation period. XRD analysis showed that the precipitates were Mg-rich cal- cite (MgxCa(1-x)CO3), whereas no precipitates were formed without the addition of Wu Do-1 in D-1 medium. SEM-EDS analyses showed that the Mg-rich calcite had a rhombohedron shape and consisted of Ca, Si and Mg with an extracelluar polymeric substance (EPS). In addition, TEM-EDS analyses revealed they were hexagon in shape, 500-700 nm in size, and composed of Ca, Mg, C, and O. These results indicated that Wu Do-1 induced precipitation of Mg-rich calcite on the cell walls and EPS via the accumulation of Ca and/or Mg ions. Therefore, microbial precipitation of carbonate nanoparticles may play an important role in metal and carbon biogeochemistry, as well as in carbon sequestration in natural environments.

  12. Black carbon and West African Monsoon precipitation. Observations and simulations

    International Nuclear Information System (INIS)

    Huang, J.; Adams, A.; Zhang, C.; Wang, C.

    2009-01-01

    We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear. (orig.)

  13. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil.

    Science.gov (United States)

    Zhu, Xuejiao; Li, Weila; Zhan, Lu; Huang, Minsheng; Zhang, Qiuzhuo; Achal, Varenyam

    2016-12-01

    Microbial carbonate precipitation is known as an efficient process for the remediation of heavy metals from contaminated soils. In the present study, a urease positive bacterial isolate, identified as Bacillus cereus NS4 through 16S rDNA sequencing, was utilized on a large scale to remove nickel from industrial soil contaminated by the battery industry. The soil was highly contaminated with an initial total nickel concentration of approximately 900 mg kg -1 . The soluble-exchangeable fraction was reduced to 38 mg kg -1 after treatment. The primary objective of metal stabilization was achieved by reducing the bioavailability through immobilizing the nickel in the urease-driven carbonate precipitation. The nickel removal in the soils contributed to the transformation of nickel from mobile species into stable biominerals identified as calcite, vaterite, aragonite and nickelous carbonate when analyzed under XRD. It was proven that during precipitation of calcite, Ni 2+ with an ion radius close to Ca 2+ was incorporated into the CaCO 3 crystal. The biominerals were also characterized by using SEM-EDS to observe the crystal shape and Raman-FTIR spectroscopy to predict responsible bonding during bioremediation with respect to Ni immobilization. The electronic structure and chemical-state information of the detected elements during MICP bioremediation process was studied by XPS. This is the first study in which microbial carbonate precipitation was used for the large-scale remediation of metal-contaminated industrial soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    Science.gov (United States)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  15. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

    International Nuclear Information System (INIS)

    Ramakrishna, Chilakala; Thenepalli, Thriveni; Ahn, Ji Whan

    2017-01-01

    This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as CO 2 flow rate, Ca (OH) 2 concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca (OH) 2 concentration and increasing the CO 2 flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

  16. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishna, Chilakala [Hanil Cement Corporation, Danyang (Korea, Republic of); Thenepalli, Thriveni; Ahn, Ji Whan [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of)

    2017-06-15

    This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as CO{sub 2} flow rate, Ca (OH){sub 2} concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca (OH){sub 2} concentration and increasing the CO{sub 2} flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

  17. Novel precipitation technique for uranium recovery from carbonate leach solutions

    International Nuclear Information System (INIS)

    Sujoy Biswas; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.; Chakravartty, J.K.

    2015-01-01

    The recovery of uranium from carbonate ore leach solution was studied using novel precipitation method. The uranium from leach liquor was recovered as magnesium diuranate with NaOH in presence of trace amount of Mg 2+ . Effects of various parameters such as addition of H 2 SO 4 , MgO, MgSO 4 as well as NaOH were investigated for maximum uranium recovery. Overall uranium recovery of the process was 97 % with improved particle size (∼57 µm). Based on the experimental findings, a process flow-sheet was developed for uranium recovery from carbonate ore leach solution with a uranium concentration of <1 g/L. (author)

  18. Complex terrain influences ecosystem carbon responses to temperature and precipitation

    Science.gov (United States)

    Reyes, W. M.; Epstein, H. E.; Li, X.; McGlynn, B. L.; Riveros-Iregui, D. A.; Emanuel, R. E.

    2017-08-01

    Terrestrial ecosystem responses to temperature and precipitation have major implications for the global carbon cycle. Case studies demonstrate that complex terrain, which accounts for more than 50% of Earth's land surface, can affect ecological processes associated with land-atmosphere carbon fluxes. However, no studies have addressed the role of complex terrain in mediating ecophysiological responses of land-atmosphere carbon fluxes to climate variables. We synthesized data from AmeriFlux towers and found that for sites in complex terrain, responses of ecosystem CO2 fluxes to temperature and precipitation are organized according to terrain slope and drainage area, variables associated with water and energy availability. Specifically, we found that for tower sites in complex terrain, mean topographic slope and drainage area surrounding the tower explained between 51% and 78% of site-to-site variation in the response of CO2 fluxes to temperature and precipitation depending on the time scale. We found no such organization among sites in flat terrain, even though their flux responses exhibited similar ranges. These results challenge prevailing conceptual framework in terrestrial ecosystem modeling that assumes that CO2 fluxes derive from vertical soil-plant-climate interactions. We conclude that the terrain in which ecosystems are situated can also have important influences on CO2 responses to temperature and precipitation. This work has implications for about 14% of the total land area of the conterminous U.S. This area is considered topographically complex and contributes to approximately 15% of gross ecosystem carbon production in the conterminous U.S.

  19. A review on the kinetics of microbially induced calcium carbonate precipitation by urea hydrolysis

    Science.gov (United States)

    van Paassen, L. A.

    2017-12-01

    In this study the kinetics of calcium carbonate precipitation induced by the ureolytic bacteria are reviewed based on experiments and mathematical modelling. The study shows how urea hydrolysis rate depends on the amount of bacteria and the conditions during growth, storage, hydrolysis and precipitation. The dynamics of Microbially Induced Carbonate Precipitation has been monitored in non-seeded liquid batch experiments. Results show that particulary for a fast hydrolysis of urea (>1 M-urea day-1) in a highly concentrated equimolar solution with calcium chloride (>0.25 M) the solubility product of CaCO3 is exceeded within a short period (less than 30 minutes), the supersaturation remains high for an exended period, resulting in prolonged periods of nucleation and crystal growth and extended growth of metastable precursor mineral phases. The pH, being a result of the speciation, quickly rises until critical supersaturation is reached and precipitation is initiated. Then pH drops (sometimes showing oscillating behaviour) to about neutral where it stays until all substrates are depleted. Higher hydrolysis rates lead to higher supersaturation and pH and relatively many small crystals, whereas higher concentrations of urea and calcium chloride mainly lead to lower pH values. The conversion can be reasonably monitored by electrical conductivity and reasonably predicted, using a simplified model based on a single reaction as long as the urea hydrolysis rate is known. Complex geochemical models, which include chemical speciciation through acid-base equilibria and kinetic equations to describe mineral precipitation, do not show significant difference from the simplified model regarding the bulk chemistry and the total amount of precipitates. However, experiments show that ureolytic MICP can result in a highly variable crystal morphologies with large variation in the affected hydraulic properties when applied in a porous medium. In order to calculate the number, size and

  20. Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study

    Science.gov (United States)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Dominguez-Vera, Jose M.; Garcia-Ruiz, Juan M.

    2003-05-01

    Several mechanisms have been proposed to explain the interactions between proteins and mineral surfaces, among them a combination of electrostatic, stereochemical interactions and molecular recognition between the protein and the crystal surface. To identify the mechanisms of interaction in the lysozyme-calcium carbonate model system, the effect of this protein on the precipitation kinetics and morphology of calcite crystals was examined. The solution chemistry and morphology of the solid were monitored over time in a set of time-series free-drift experiments in which CaCO 3 was precipitated from solution in a closed system at 25°C and 1 atm total pressure, in the presence and absence of lysozyme. The precipitation of calcite was preceded by the precipitation of a metastable phase that later dissolved and gave rise to calcite as the sole phase. With increasing lysozyme concentration, the nucleation of both the metastable phase and calcite occurred at lower Ω calcite, indicating that lysozyme favored the nucleation of both phases. Calcite growth rate was not affected by the presence of lysozyme, at least at protein concentrations ranging from 0 mg/mL to 10 mg/mL. Lysozyme modified the habit of calcite crystals. The degree of habit modification changed with protein concentration. At lower concentrations of lysozyme, the typical rhombohedral habit of calcite crystals was modified by the expression of {110} faces, which resulted from the preferential adsorption of protein on these faces. With increasing lysozyme concentration, the growth of {110}, {100}, and finally {001} faces was sequentially inhibited. This adsorption sequence may be explained by an electrostatic interaction between lysozyme and calcite, in which the inhibition of the growth of {110}, {100}, and {001} faces could be explained by a combined effect of the density of carbonate groups in the calcite face and the specific orientation (perpendicular) of these carbonate groups with respect to the calcite

  1. Precipitation of thin-film organic single crystals by a novel crystal growth method using electrospray and ionic liquid film

    Science.gov (United States)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2018-04-01

    We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N‧-bis(3-methylphenyl)-N,N‧-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.

  2. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    Science.gov (United States)

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  3. Carbonate Precipitates During Heat Evolution in FP-Type Cells

    International Nuclear Information System (INIS)

    Bruce L. Cain

    2000-01-01

    In previous work, we reported measurement of large amounts of heat generated during experiments using an FP-type open cell with concentrated LiOH/D 2 O electrolytes and thin-film Pd cathodes. During the heat evolution in several runs, which produced >100 W for more than 20 h, we consistently observed the concomitant evolution of gases from the electrolyte and the precipitation of large amounts of lithium carbonate. The carbonate production was clearly visible during production of heat, creating an opaque electrolyte even during long periods with no electrolysis current. These results indicated an unusual chemical reaction, either catalyzed by the heating process or possibly creating the heat itself. The total energy released during the earlier experiments was ∼7 MJ, while the heat of formation for the lithium carbonate in the cell was only 0.8 MJ. Hence, only ∼10% of the heat signatures from these experiments can be attributed to the precipitate formation, the balance of the heat presumably arising from nonchemical sources in the cells. The earlier experiments that produced heat also suffered from problems of reproducibility, with only 5 of 38 runs producing any heat at all. The unsuccessful runs also did not produce precipitates, and the only gas produced in these cells was due to the normal electrolysis of D 2 O to produce oxygen and deuterium in the electrodes. Recent work has focused on recreating the chemical precipitation reaction, in efforts to understand and/or trigger the heat production process. With findings from these experiments, new experiments were conducted using larger (1 L LiOH/D 2 O) cells with Pt anodes and Pd film cathodes immersed but left open-circuited. After the addition of H 2 O 2 , and subsequent heating and cooling, these cells visually reproduced the precipitation and gas evolution of the earlier heat-producing runs. However, these new runs only produced a few watts of power for several minutes, consistent with the normal exothermal

  4. Calcium carbonate as ikaite crystals in Antarctic sea ice

    Science.gov (United States)

    Dieckmann, Gerhard S.; Nehrke, Gernot; Papadimitriou, Stathys; Göttlicher, Jörg; Steininger, Ralph; Kennedy, Hilary; Wolf-Gladrow, Dieter; Thomas, David N.

    2008-04-01

    We report on the discovery of the mineral ikaite (CaCO3.6H2O) in sea-ice from the Southern Ocean. The precipitation of CaCO3 during the freezing of seawater has previously been predicted from thermodynamic modelling, indirect measurements, and has been documented in artificial sea ice during laboratory experiments but has not been reported for natural sea-ice. It is assumed that CaCO3 formation in sea ice may be important for a sea ice-driven carbon pump in ice-covered oceanic waters. Without direct evidence of CaCO3 precipitation in sea ice, its role in this and other processes has remained speculative. The discovery of CaCO3.6H2O crystals in natural sea ice provides the necessary evidence for the evaluation of previous assumptions and lays the foundation for further studies to help elucidate the role of ikaite in the carbon cycle of the seasonally sea ice-covered regions

  5. The production of precipitated calcium carbonate from industrial gypsum wastes

    CSIR Research Space (South Africa)

    De Beer, Morris

    2014-05-01

    Full Text Available -step) process was tested. Although only a low-grade CaCO3 product (86-88 mass% as CaCO3) could be produced, experimental results on the characteristics of CaS in the presence of CO2 in the CaS-H2O-CO2 system showed that the reaction proceeded in two distinct... stages. In the first stage, CaS dissolution took place, with H2S stripping occurring in the second stage. Calcium carbonation and the resulting precipitation of CaCO3 were concurrent with the CaS dissolution and the H2S stripping reactions. Because...

  6. Precipitation of hydrated Mg carbonate with the aid of carbonic anhydrase for CO2 sequestration

    Science.gov (United States)

    Power, I. M.; Harrison, A. L.; Dipple, G. M.

    2011-12-01

    Strategies for sequestering CO2 directly from the atmosphere are likely required to achieve the desired reduction in CO2 concentration and avoid the most damaging effects of climate change [1]. Numerous studies have demonstrated the accelerated precipitation of calcium carbonate minerals with the aid of carbonic anhydrase (CA) as a means of sequestering CO2 in solid carbonate form; however, no study has examined precipitation of magnesium carbonate minerals using CA. Precipitation of magnesite (MgCO3) is kinetically inhibited [2]; therefore, Mg2+ must be precipitated as hydrated carbonate minerals. In laboratory experiments, the uptake of atmospheric CO2 into brine solutions (0.1 M Mg) was rate-limiting for the precipitation of dypingite [Mg5(CO3)4(OH)2-5H2O] with initial precipitation requiring 15 days [3]. It was also found that dypingite precipitation outpaced the uptake of CO2 gas into solution. CO2 uptake is limited by the hydration of CO2 to form carbonate ions [4]. Carbonic anhydrase (CA) enzymes are among the fastest known in nature and are able to catalyze the hydration of CO2, i.e., converting CO2(aq) to CO32- and HCO3- [5]. CA plays an important role in the carbon concentrating mechanism of photoautotrophic, chemoautotrophic, and heterotrophic prokaryotes and is involved in pH homeostasis, facilitated diffusion of CO2, ion transport, and the interconversion of CO2 and HCO3- [6]. Introducing CA into buffered Mg-rich solutions should allow for more rapid precipitation of hydrated magnesium carbonate minerals. Batch experiments were conducted using 125 mL flasks containing 100 mL of Millipore deionized water with 0.2 M of MgCl2-6H2O. To buffer pH, 1.0 g of pulverized brucite [Mg(OH)2] or 1.0 g of NaOH was added to the systems, which were amended with Bovine carbonic anhydrase (BCA) (Sigma-Aldrich). Solutions were stirred continuously and kept at room temperature (~22°C) with laboratory air introduced by bubbling. Temperature and pH were measured routinely

  7. Carbon dioxide enhances fragility of ice crystals

    International Nuclear Information System (INIS)

    Qin Zhao; Buehler, Markus J

    2012-01-01

    Ice caps and glaciers cover 7% of the Earth, greater than the land area of Europe and North America combined, and play an important role in global climate. The small-scale failure mechanisms of ice fracture, however, remain largely elusive. In particular, little understanding exists about how the presence and concentration of carbon dioxide molecules, a significant component in the atmosphere, affects the propensity of ice to fracture. Here we use atomic simulations with the first-principles based ReaxFF force field capable of describing the details of chemical reactions at the tip of a crack, applied to investigate the effects of the presence of carbon dioxide molecules on ice fracture. Our result shows that increasing concentrations of carbon dioxide molecules significantly decrease the fracture toughness of the ice crystal, making it more fragile. Using enhanced molecular sampling with metadynamics we reconstruct the free energy landscape in varied chemical microenvironments and find that carbon dioxide molecules affect the bonds between water molecules at the crack tip and decrease their strength by altering the dissociation energy of hydrogen bonds. In the context of glacier dynamics our findings may provide a novel viewpoint that could aid in understanding the breakdown and melting of glaciers, suggesting that the chemical composition of the atmosphere can be critical to mediate the large-scale motion of large volumes of ice.

  8. Reduced Future Precipitation Makes Permanence of Amazonian Carbon Sinks Questionable

    Science.gov (United States)

    Arora, V.

    2011-12-01

    The tropical forests of the Amazon, considered as a tipping element in Earth's climate system, provide several ecosystem services including the maintenance of favourable regional climatic conditions in the region and storage of large amounts of carbon in their above- and below-ground pools. While it is nearly impossible, at present, to put a dollar value on these ecosystem services, the developed countries have started paying large sums of money to developing countries in the tropics to reduce deforestation. Norway recently committed up to $1 billion to the Amazon fund. The United Nations' Reducing Emissions from Deforestation and forest Degradation (REDD) program also financially supports national activities of 13 countries worldwide. The primary assumption inherent in paying for avoiding deforestation is that avoided land use change emissions contribute towards climate change mitigation. In addition, the standing forests that are spared deforestation contribute towards additional carbon sinks associated with the CO2 fertilization effect. Implicit in this reasoning is the understanding that the carbon sinks provided by avoided deforestation have some "permanence" associated with them, at least in the order of 50-100 years. Clearly, if "avoided deforestation" is essentially "delayed deforestation" then the benefits will not be long lasting. More importantly, changes in climate have the potential to adversely affect the permanence of carbon sinks, whether they are being paid for or not. This presentation will address the question of "permanence" by analyzing simulations of the second generation Canadian Earth system model (CanESM2) that are contributing results to the upcoming fifth Coupled Modeled Intercomparison Project (CMIP5). CanESM2 results for the future RCP 2.6, 4.5 and 8.5 scenarios show, that due to reduced future precipitation, the Amazonian region remains a net source of carbon over the 21st century in all scenarios. The carbon losses during the recent

  9. Image-based Modeling of Biofilm-induced Calcium Carbonate Precipitation

    Science.gov (United States)

    Connolly, J. M.; Rothman, A.; Jackson, B.; Klapper, I.; Cunningham, A. B.; Gerlach, R.

    2013-12-01

    Pore scale biological processes in the subsurface environment are important to understand in relation to many engineering applications including environmental contaminant remediation, geologic carbon sequestration, and petroleum production. Specifically, biofilm induced calcium carbonate precipitation has been identified as an attractive option to reduce permeability in a lasting way in the subsurface. This technology may be able to replace typical cement-based grouting in some circumstances; however, pore-scale processes must be better understood for it to be applied in a controlled manor. The work presented will focus on efforts to observe biofilm growth and ureolysis-induced mineral precipitation in micro-fabricated flow cells combined with finite element modelling as a tool to predict local chemical gradients of interest (see figure). We have been able to observe this phenomenon over time using a novel model organism that is able to hydrolyse urea and express a fluorescent protein allowing for non-invasive observation over time with confocal microscopy. The results of this study show the likely existence of a wide range of local saturation indices even in a small (1 cm length scale) experimental system. Interestingly, the locations of high predicted index do not correspond to the locations of higher precipitation density, highlighting the need for further understanding. Figure 1 - A micro-fabricated flow cell containing biofilm-induced calcium carbonate precipitation. (A) Experimental results: Active biofilm is in green and dark circles are calcium carbonate crystals. Note the channeling behavior in the top of the image, leaving a large hydraulically inactive area in the biofilm mass. (B) Finite element model: The prediction of relative saturation of calcium carbonate (as calcite). Fluid enters the system at a low saturation state (blue) but areas of high supersaturation (red) are predicted within the hydraulically inactive area in the biofilm. If only effluent

  10. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides

    Science.gov (United States)

    Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk

    2017-07-01

    Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.

  11. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  12. Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide

    Directory of Open Access Journals (Sweden)

    Yayuk Astuti

    2017-10-01

    How to Cite: Astuti, Y., Arnelli, Pardoyo, Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Widiyandari, H., Bhaduri, G.A. (2017. Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 478-484 (doi:10.9767/bcrec.12.3.1144.478-484

  13. Crystal precipitation and dissolution in a porous medium: Effective equations and numerical experiments

    NARCIS (Netherlands)

    Noorden, van T.L.

    2009-01-01

    We investigate a two-dimensional microscale model for crystal dissolution and precipitation in a porous medium. The model contains a free boundary and allows for changes in the pore volume. Using a level set formulation of the free boundary, we apply a formal homogenization procedure to obtain

  14. Hysteresis losses in iron oxide nanoparticles prepared by glass crystallization or wet chemical precipitation

    International Nuclear Information System (INIS)

    Mueller, Robert; Dutz, Silvio; Hergt, Rudolf; Schmidt, Christopher; Steinmetz, Hanna; Zeisberger, Matthias; Gawalek, Wolfgang

    2007-01-01

    Ferrofluids were prepared from glass crystallized as well as wet precipitated iron oxide particles. Comparing hysteresis losses versus applied field amplitude from particles in immobilized state (powder) and in fluid state (ferrofluid) shows in some cases anomalous large losses at low magnetic fields. The influence of texture on the losses was investigated

  15. PEDOGENIC CARBONATE δ13C AND ENVIRONMENTAL PRECIPITATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Marcella Catoni

    2011-12-01

    Full Text Available Carbon isotopic analysis is a useful tool for investigating paleoenvironments, as the pedogenic carbonate δ13C is related to δ13CSOM and to the proportions of C3/C4 plants. In this work we interpreted the paleoenvironmental conditions at the time of carbonate precipitation in soils formed under different climates and during different geological ages. Samples were taken from a Bk (PR1, Holocene and from two Bkm horizons (PR2 and PR3, Pleistocene. When the mean δ13C plant values and the most plausible paleotemperatures were used in the evaluation, PR1 showed a lower percentage of C4 plants (48% than Pleistocene soils (~53%, in agreement with paleoclimate changes. When instead the δ13C values of current plants were used for PR1, C4 plants ranged from 59 (12°C to 66% (18°C, suggesting two possible interpretations: either plant species changed during the Holocene, or the plant mean values normally used in the literature are not suitable for Pleistocene reconstructions

  16. Impact of dissolution and carbonate precipitation on carbon storage in basalt

    Science.gov (United States)

    Wells, R. K.; Xiong, W.; Tadeoye, J.; Menefee, A.; Ellis, B. R.; Skemer, P. A.; Giammar, D.

    2016-12-01

    The spatial evolution of silicate mineral dissolution, carbonate precipitation, and the transport of fluids influence the viability of carbon storage in basalt reservoirs. Dissolution of natural basalt and subsequent carbonate precipitation in systems with different transport processes operating were characterized using static and flow-through (5 mL/hr) experiments at 50, 100, and 150 °C, and 100 bar CO2. Intact samples and cores with milled pathways that simulate fractures were tested. Spatial and mineralogical patterns in dissolution and precipitation were analyzed using optical and electron microscopy, microCT scanning, and surface roughness data. Precipitates and fluid chemistry were analyzed using Raman spectroscopy, SEM-EDS, and ICP-MS. Analysis of the bulk solution and surface topography suggests dissolution of olivine and pyroxene grains begins within hours of the start of the experiments. In flow-through experiments, total effluent cation concentrations reach a peak concentration within a few hours then drop towards a steady state within a few days. In static experiments, the initial rate of cation release is faster than it is after several weeks. In both cases Ca2+, Mg2+, and Fe2+ are the dominant cations in solution in the initial stages of reaction. Lower concentrations of Na2+, K+, and Al3+, and the preservation of feldspar and matrix grains after several weeks of reaction indicate the slow reactivity of these minerals. As the reaction progresses, the surface roughness increases steadily with cavities developing at the sites of olivine and pyroxene grains. Post-reaction analysis of basalt samples reacted at static conditions with milled pathways reveals that both siderite and amorphous silica precipitated within diffusion-limited zones as early as 4-6 weeks. Siderite abundance varies with distance along the pathway with the highest concentration of carbonates 1-2 cm below the fracture opening. Siderite precipitates are large enough to fill fracture

  17. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  18. Liquid crystal polyester-carbon fiber composites

    Science.gov (United States)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  19. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    Science.gov (United States)

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Precipitation of Nd-Ca carbonate solid solution at 25 degrees C

    International Nuclear Information System (INIS)

    Carroll, S.A.

    1993-01-01

    The formation of a Nd-Ca carbonate solid solution was studied by monitoring the reactions of calcite with aqueous Nd, orthorhombic NdOHCO 3 (s) with aqueous Ca, and calcite with hexagonal Nd-carbonate solid phase as a function of time at 25 degrees C and controlled pCO 2 (g). All experiments reached steady state after 200 h of reaction. The dominant mechanism controlling the formation of the solid solution was precipitation of a Nd-Ca carbonate phase from the bulk solution as individual crystals or at the orthorhombic NdOHCO 3 (s)-solution interface. The lack of Nd adsorption or solid solution at the calcite-solution interface suggests that the solid solution was orthorhombic and may be modeled as a mixture of orthorhombic NdOHCO 3 (s) and aragonite. Orthorhombic NdOHCO 3 (s) was determined to be the stable Nd-carbonate phase in the Nd-CO 2 -H 2 O system at pCO 2 (g) 0.1 atmospheres at 25 degrees C. The equilibrium constant corrected to zero ionic strength for orthorhombic NdOHCO 3 (s) solubility is 10 10.41(±0.29) for the following: NdOHCO 3 (s) + 3H + = Nd 3+ + CO 2 (g) + H 2 O. Results are discussed in relation to radioactive waste disposal by burial, and specifically in relation to americium chemistry

  1. Can frequent precipitation moderate drought impact on peatmoss carbon uptake in northern peatlands?

    Science.gov (United States)

    Nijp, Jelmer; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd; Berendse, Frank; Robroek, Bjorn

    2014-05-01

    Northern peatlands represent one of the largest global carbon stores that can potentially be released by water table drawdown during extreme summer droughts. Small precipitation events may moderate negative impacts of deep water levels on carbon uptake by sustaining photosynthesis of peatmoss (Sphagnum spp.), the key species in these ecosystems. We experimentally assessed the importance of the temporal distribution of precipitation for Sphagnum water supply and carbon uptake during a stepwise decrease in water levels in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species representative of three contrasting habitats in northern peatlands (Sphagnum fuscum, S. balticum and S. majus). For shallow water levels, capillary rise was the most important source of water for peatmoss photosynthesis and precipitation did not promote carbon uptake irrespective of peatmoss species. For deep water levels, however, precipitation dominated over capillary rise and moderated adverse effects of drought on carbon uptake by peat mosses. The ability to use the transient water supply by precipitation was species-specific: carbon uptake of S. fuscum increased linearly with precipitation frequency for deep water levels, whereas S. balticum and S. majus showed depressed carbon uptake at intermediate precipitation frequencies. Our results highlight the importance of precipitation for carbon uptake by peatmosses. The potential of precipitation to moderate drought impact, however, is species specific and depends on the temporal distribution of precipitation and water level. These results also suggest that modelling approaches in which water level depth is used as the only state variable determining water availability in the living moss layer and (in)directly linked to Sphagnum carbon uptake may have serious drawbacks. The predictive power of peatland ecosystem models may be reduced when deep water levels prevail, as precipitation

  2. CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-09-01

    Full Text Available CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2–NH3–NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq and NH3(aq. We further quantified the reaction kinetic constant of the CO2–NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥ 2 mol · L − 1 leads to the precipitation of roguinite [ ( NH 4 2 Mg ( CO 3 2 · 4 H 2 O ], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration.

  3. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd E A T M; Berendse, Frank; Robroek, Bjorn J M

    2014-07-01

    Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such rewetting required for it to be effective remains unknown. We experimentally assessed the importance of precipitation frequency for Sphagnum water supply and carbon uptake during a stepwise decrease in water tables in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species (Sphagnum majus, Sphagnum balticum and Sphagnum fuscum) representative of three hydrologically distinct peatland microhabitats (hollow, lawn and hummock) and expected to differ in their water table-precipitation relationships. Precipitation contributed significantly to peatmoss water supply when the water table was deep, demonstrating the importance of precipitation during drought. The ability to exploit transient resources was species-specific; S. fuscum carbon uptake increased linearly with precipitation frequency for deep water tables, whereas carbon uptake by S. balticum and S. majus was depressed at intermediate precipitation frequencies. Our results highlight an important role for precipitation in carbon uptake by peatmosses. Yet, the potential to moderate the impact of drought is species-specific and dependent on the temporal distribution of precipitation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Sintesa Precipitated Calcium Carbonate (PCC) dari Cangkang Kerang Darah (Anadara Granosa) dengan Variasi Ukuran Partikel dan Waktu Karbonasi

    OpenAIRE

    Rahmawati, Lucy; Amri, Amun; Zultiniar, Zultiniar; Yelmida, Yelmida

    2015-01-01

    Precipitated Calcium Carbonate (PCC) is a product of the processing of natural materials containing calcium carbonate resulting from the precipitation process with high purity. Bloodcockle shell can be used as a source of calcium for precipitated Calcium Carbonate. The purpose of this study to produce PCC of waste shells blood with carbonation method and determine the particle size of the PCC and the best carbonation time. Synthesis performed using carbonation method by adding nitric acid to ...

  5. Kinetic study of nucleation and crystal growth during oxalic precipitation in the nuclear industry

    International Nuclear Information System (INIS)

    Andrieu, Murielle

    1999-01-01

    In spite of an extensive use in chemical industry, most of precipitation processes are based on global and empirical knowledge. However, in the recent years, fundamental and phenomenological theories have been developed and they can be used to better understand the mechanisms of precipitation of plutonium IV oxalate, which is a significant stage of the irradiated fuel reprocessing. For this reason, appropriate methods were developed to study nucleation and crystal growth kinetics in a nuclear environment under a wide range of operating conditions. Each phenomena was studied individually in order to reduce the free parameters of the System. This study bears on the oxalates of plutonium and elements which simulate plutonium behaviour during the precipitation, neodymium III and uranium IV. A compact apparatus of a specific construction was used for nucleation measurements in accordance with the Nielsen's method. The state of the mixing was characterised at the reactor scale (macro-mixing) and at molecular scale (micro-mixing). The experimental results for the studied oxalates are in good agreement with the Volmer and Weber's theory. We propose primary nucleation kinetic laws over a wide range of operating conditions (temperature, non-stoichiometric conditions, acidity...). An original method, using a high seed charge, was developed for the determination of crystal growth kinetics, in a batch crystallizer. The crystal growth rate is first order with respect to the supersaturation and the kinetic constant follows an Arrhenius type relation with activation energies of 14, 29 and 36 kJ.mol -1 for respectively neodymium III, uranium IV and plutonium IV oxalates. The overall growth process is surface integration controlled, with a screw dislocation mechanism. [fr

  6. Comparison of Precipitated Calcium Carbonate/Polylactic Acid and Halloysite/Polylactic Acid Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xuetao Shi

    2015-01-01

    Full Text Available PLA nanocomposites with stearate coated precipitated calcium carbonate (PCC and halloysite natural nanotubes (HNT were prepared by melt extrusion. The crystallization behavior, mechanical properties, thermal dynamical mechanical analysis (DMTA, and the morphology of the PCC/PLA, HNT/PLA, and HNT/PCC/PLA composites were discussed. Compared to halloysite nanotubes, PCC nanoparticles showed a better nucleating effect, which decreased both the glass transition and cold crystallization temperatures. The tensile performance of PLA composites showed that the addition of inorganic nanofillers increased Young’s modulus but decreased tensile strength. More interestingly, PLA composites with PCC particles exhibited an effectively increased elongation at break with respect to pure PLA, while HNT/PLA showed a decreased ultimate deformation of composites. DMTA results indicated that PLA composites had a similar storage modulus at temperatures below the glass transition and the addition of nanofillers into PLA caused Tg to shift to lower temperatures by about 3°C. The morphological analysis of fractures surface of PLA nanocomposites showed good dispersion of nanofillers, formation of microvoids, and larger plastic deformation of the PLA matrix when the PCC particles were added, while a strong aggregation was noticed in composites with HNT nanofillers, which has been attributed to a nonoptimal surface coating.

  7. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review

    Science.gov (United States)

    Zhu, Tingting; Dittrich, Maria

    2016-01-01

    Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed. PMID:26835451

  8. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review

    Directory of Open Access Journals (Sweden)

    Tingting eZhu

    2016-01-01

    Full Text Available Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation (MCP, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnology such as metal remediation, carbon sequestration, enhanced oil recovery and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed.

  9. Synthesis of Hydroxyapatite using Precipitated Calcium Carbonate (PCC) from Limestones

    Science.gov (United States)

    Wardhani, Sri; Isnaini Azkiya, Noor; Triandi Tjahjanto, Rachmat

    2018-01-01

    Hydroxyapatite (HAp) is a material that widely applied in bone and teeth implant due to its biocompatibility and bioactivity. This material can be prepared from PCC by precipitation method using CaO and H3PO4 in ethanol. In this work, variations of phosphoric acid amount and aging time were investigated. The synthesized HAp was characterized by FT-IR, AAS, UV-Vis Spectrophotometer, PSA, SEM, and powder XRD. The results showed that the high concentration of calcium in PCC gives better yields in which PCC obtained from carbonation method has higher yield than that of caustic soda method. The determination of optimum phosphoric acid addition based on targeted Ca/P ratio (1.67) from HAp was obtained on the addition of 0.1271 mol phosphoric acid with Ca/P ratio of 1.66. The aging time gave significant effect to the particle size of synthesised HAp. The smallest particle size was obtained in aging time for 48 hours as high as 49.25 μm. FTIR spectra of the synthesized HAp show the presence of hydroxyl (-OH) group at 3438.8 cm-1, PO4 3- at 557.39 and 1035.7 cm-1, and CaO at 1413.72 cm-1. The synthesized HAp forms agglomeration solid based on the SEM analysis. The powder XRD data shows three highest peaks at 2θ i.e. 27.8296; 31.1037; and 34.3578 which corresponds to β-TCP (tricalcium phosphate) in accordance with JCPDS no.09-0169. The characteristic 2θ peak of hydroxyapatite with low intensity is observed from the synthesized HAp refer to the JCPDS data no. 09-0432.

  10. The full annual carbon balance of a subtropical coniferous plantation is highly sensitive to autumn precipitation.

    Science.gov (United States)

    Xu, Mingjie; Wang, Huimin; Wen, Xuefa; Zhang, Tao; Di, Yuebao; Wang, Yidong; Wang, Jianlei; Cheng, Chuanpeng; Zhang, Wenjiang

    2017-08-30

    Deep understanding of the effects of precipitation on carbon budgets is essential to assess the carbon balance accurately and can help predict potential variation within the global change context. Therefore, we addressed this issue by analyzing twelve years (2003-2014) of observations of carbon fluxes and their corresponding temperature and precipitation data in a subtropical coniferous plantation at the Qianyanzhou (QYZ) site, southern China. During the observation years, this coniferous ecosystem experienced four cold springs whose effects on the carbon budgets were relatively clear based on previous studies. To unravel the effects of temperature and precipitation, the effects of autumn precipitation were examined by grouping the data into two pools based on whether the years experienced cold springs. The results indicated that precipitation in autumn can accelerate the gross primary productivity (GPP) of the following year. Meanwhile, divergent effects of precipitation on ecosystem respiration (Re) were found. Autumn precipitation was found to enhance Re in normal years but the same regulation was not found in the cold-spring years. These results suggested that for long-term predictions of carbon balance in global climate change projections, the effects of precipitation must be considered to better constrain the uncertainties associated with the estimation.

  11. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Directory of Open Access Journals (Sweden)

    Eva Weber

    Full Text Available Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3 (- as the first ionic interaction partner, but not necessarily for Ca(2+. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  12. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate.

    Science.gov (United States)

    Weber, Eva; Guth, Christina; Weiss, Ingrid M

    2012-01-01

    Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO(3) (-) as the first ionic interaction partner, but not necessarily for Ca(2+). The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals.

  13. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Deo, M.D.

    2001-01-12

    The objective of this project was to identify conditions at which carbon dioxide induced precipitation occurred in crude oils. Establishing compositions of the relevant liquid and solid phases was planned. Other goals of the project were to determine if precipitation occurred in cores and to implement thermodynamic and compositional models to examine the phenomenon. Exploring kinetics of precipitation was also one of the project goals. Crude oil from the Rangely Field (eastern Colorado) was used as a prototype.

  14. Liquid crystals of carbon nanotubes and graphene.

    Science.gov (United States)

    Zakri, Cécile; Blanc, Christophe; Grelet, Eric; Zamora-Ledezma, Camilo; Puech, Nicolas; Anglaret, Eric; Poulin, Philippe

    2013-04-13

    Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.

  15. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, Y.J.; Hon, M.H.

    2010-01-01

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol -1 .

  16. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, Y.J. [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hon, M.H. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-05-15

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol{sup -1}.

  17. Carbon determination in natural crystals of olivines of deeporigin

    International Nuclear Information System (INIS)

    Shilobreeva, S.N.; Kadik, A.A.; Minaev, V.M.; Kazakov, S.S.; Kuz'min, L.E.; Moskovskij Inzhenerno-Fizicheskij Inst.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1987-01-01

    Activation analysis and nuclear reaction analysis with registration of energy spectrum of forming prompt particles are used to determine carbon concentration and distribution in monocrystals of olivines. Carbon determination in olivine volume was carried out by activation analysis by 12 C(d, n) 13 N reaction and surface content - by registration of protons resulting from 12 C(d, p) 13 C reaction. The deuteron energy being 1.8-2.7 MeV, carbon determination limit and the analysis error were 10 -3 and 20 relat.%, respectively. By means of IR spectroscopy it is shown that carbon constitutes part of crystal lattice of olivines in monatomic form

  18. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  19. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  20. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    Science.gov (United States)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  1. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica

    Directory of Open Access Journals (Sweden)

    Atip Boonbumrung

    2016-01-01

    Full Text Available The properties of nitrile rubber (NBR reinforced by multiwalled carbon nanotube (MWCNT, conductive carbon black (CCB, carbon black (CB, and precipitated silica (PSi were investigated via viscoelastic behavior, bound rubber content, electrical properties, cross-link density, and mechanical properties. The filler content was varied from 0 to 15 phr. MWCNT shows the greatest magnitude of reinforcement considered in terms of tensile strength, modulus, hardness, and abrasion resistance followed by CCB, CB, and PSi. The MWCNT filled system also exhibits extremely high levels of filler network and trapped rubber even at relatively low loading (5 phr leading to high electrical properties and poor dynamic mechanical properties. Although CCB possesses the highest specific surface area, it gives lower level of filler network than MWCNT and also gives the highest elongation at break among all fillers. Both CB and PSi show comparable degree of reinforcement which is considerably lower than CCB and MWCNT.

  2. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Radha, A. V. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Forbes, Tori Z. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Killian, Christopher E. [Univ. of Wisconsin, Madison, WI (United States); Gilbert, P.U.P.A [Univ. of Wisconsin, Madison, WI (United States); Navrotsky, Alexandra [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States)

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  3. Re-crystallization of ITO films after carbon irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Muhammad, E-mail: usmanm@ncp.edu.pk [Experimental Physics Laboratories, National Centre for Physics, Shahdara Valley Road, Quaid-i-Azam University, Islamabad (Pakistan); Khan, Shahid, E-mail: shahidkhan@zju.edu.cn [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Khan, Majid [Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan); Abbas, Turab Ali [Experimental Physics Laboratories, National Centre for Physics, Shahdara Valley Road, Quaid-i-Azam University, Islamabad (Pakistan)

    2017-01-15

    Highlights: • Carbon irradiation on ITO destroys crystal structure until threshold ion fluence. • Carbon irradiation induced amorphization in ITO is recoverable at higher fluence. • Optical transmittance is reduced after carbon irradiation. • Electrical resistivity is increased after irradiation with carbon ions in ITO. • Bandgap is reduced with increasing fluence of carbon irradiation. - Abstract: 2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 10{sup 13} to 1 × 10{sup 15} ions/cm{sup 2}. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 10{sup 13} ions/cm{sup 2} fluence of carbon ions. Further increase in ion fluence to 1 × 10{sup 14} ions/cm{sup 2} re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  4. Re-crystallization of ITO films after carbon irradiation

    International Nuclear Information System (INIS)

    Usman, Muhammad; Khan, Shahid; Khan, Majid; Abbas, Turab Ali

    2017-01-01

    Highlights: • Carbon irradiation on ITO destroys crystal structure until threshold ion fluence. • Carbon irradiation induced amorphization in ITO is recoverable at higher fluence. • Optical transmittance is reduced after carbon irradiation. • Electrical resistivity is increased after irradiation with carbon ions in ITO. • Bandgap is reduced with increasing fluence of carbon irradiation. - Abstract: 2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 10"1"3 to 1 × 10"1"5 ions/cm"2. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 10"1"3 ions/cm"2 fluence of carbon ions. Further increase in ion fluence to 1 × 10"1"4 ions/cm"2 re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  5. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars

    NARCIS (Netherlands)

    Fernández-Remolar, David C.; Preston, Louisa J.; Sánchez-Román, Mónica; Izawa, Matthew R.M.; Huang, L.; Southam, Gordon; Banerjee, Neil R.; Osinski, Gordon R.; Flemming, Roberta; Gómez-Ortíz, David; Prieto-Ballesteros, Olga; Rodríguez, Nuria; Amils, Ricardo; Darby Dyar, M.

    2012-01-01

    Recent observations of carbonate minerals in ancient Martian rocks have been interpreted as evidence for the former presence of circumneutral solutions optimal for carbonate precipitation. Sampling from surface and subsurface regions of the low-pH system of Río Tinto has shown, unexpectedly, that

  6. Phosphate recovery through struvite-family crystals precipitated in the presence of citric acid: mineralogical phase and morphology evaluation.

    Science.gov (United States)

    Perwitasari, D S; Edahwati, L; Sutiyono, S; Muryanto, S; Jamari, J; Bayuseno, A P

    2017-11-01

    Precipitation strategy of struvite-family crystals is presented in this paper to recover phosphate and potassium from a synthetic wastewater in the presence of citric acid at elevated temperature. The crystal-forming solutions were prepared from crystals of MgCl 2 and NH 4 H 2 PO 4 with a molar ratio of 1:1:1 for Mg +2 , [Formula: see text], and [Formula: see text], and the citric acid (C 6 H 8 O 7 ) was prepared (1.00 and 20.00 ppm) from citric acid crystals. The Rietveld analysis of X-ray powder diffraction pattern confirmed a mixed product of struvite, struvite-(K), and newberyite crystallized at 30°C in the absence of citric acid. In the presence of citric acid at 30° and 40°C, an abundance of struvite and struvite-(K) were observed. A minute impurity of sylvite and potassium peroxide was unexpectedly found in certain precipitates. The crystal solids have irregular flake-shaped morphology, as shown by scanning electron microscopy micrograph. All parameters (citric acid, temperature, pH, Mg/P, and N/P) were deliberately arranged to control struvite-family crystals precipitation.

  7. Alignment of carbon nanotubes in nematic liquid crystals

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.; Popa-Nita, V.; Kralj, S.

    2008-01-01

    The self-organizing properties of nematic liquid crystals can be used to align carbon nanotubes dispersed in them. Because the nanotubes are so much thinner than the elastic penetration length, the alignment is caused by the coupling of the unperturbed director field to the anisotropic interfacial

  8. Effect of Ultrasound on Calcium Carbonate Crystallization

    NARCIS (Netherlands)

    Wagterveld, R.M.

    2013-01-01

    Scaling comprises the formation of hard mineral deposits on process or membrane equipment and calcium carbonate is the most common scaling salt. Especially in reverse osmosis (RO) membrane systems, scale formation has always been a serious limitation, causing flux decline, membrane degradation, loss

  9. Double crystal X-ray analysis of phosphorus precipitation in supersaturated Si-P solid solutions

    International Nuclear Information System (INIS)

    Servidori, M.; Zini, Q.; Dal Monte, C.

    1983-01-01

    The physical nature of the electrically inactive phosphorus in silicon is investigated by double crystal X-ray diffraction measurements. This analysis is performed on laser annealed supersaturated samples, doped by ion implantation up to 5 x 10 21 cm -3 . After isothermal heat treatments, these solid solutions show marked reductions in the electrically active phosphorus concentration. In particular, 850 0 C heatings give rise to a carrier concentration which corresponds to the phosphorus solubility in equilibrium with the inactive dopant. This dopant is characterized by means of lattice strain measurements: they are found consistent with the presence of perfectly coherent cubic SiP precipitates. This result is in agreement with the one obtained in preceeding works by electrical measurements and transmission electron microscopy observations and contradicts the hypothesis that the excess dopant atoms are, at least in part, charged point defects (E-centres). (author)

  10. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Mugwar, Ahmed J. [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); College of Engineering, Al-Muthanna University, Samawah (Iraq); Harbottle, Michael J., E-mail: harbottlem@cardiff.ac.uk [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom)

    2016-08-15

    Highlights: • Minimum inhibitory concentrations (MIC) are determined for S. pasteurii with a range of metals. • Zinc & cadmium bioprecipitation is strongly linked to microbial carbonate generation. • Lead & copper carbonate bioprecipitation is limited & abiotic processes may be significant. • Bioprecipitation allows survival at & remediation of higher metal concentrations than expected. - Abstract: Biological precipitation of metallic contaminants has been explored as a remedial technology for contaminated groundwater systems. However, metal toxicity and availability limit the activity and remedial potential of bacteria. We report the ability of a bacterium, Sporosarcina pasteurii, to remove metals in aerobic aqueous systems through carbonate formation. Its ability to survive and grow in increasingly concentrated aqueous solutions of zinc, cadmium, lead and copper is explored, with and without a metal precipitation mechanism. In the presence of metal ions alone, bacterial growth was inhibited at a range of concentrations depending on the metal. Microbial activity in a urea-amended medium caused carbonate ion generation and pH elevation, providing conditions suitable for calcium carbonate bioprecipitation, and consequent removal of metal ions. Elevation of pH and calcium precipitation are shown to be strongly linked to removal of zinc and cadmium, but only partially linked to removal of lead and copper. The dependence of these effects on interactions between the respective metal and precipitated calcium carbonate are discussed. Finally, it is shown that the bacterium operates at higher metal concentrations in the presence of the urea-amended medium, suggesting that the metal removal mechanism offers a defence against metal toxicity.

  11. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate

    International Nuclear Information System (INIS)

    Eloneva, Sanni; Said, Arshe; Fogelholm, Carl-Johan; Zevenhoven, Ron

    2012-01-01

    Highlights: ► An NH 4 -salt-based method utilizes CO 2 and steelmaking slags to produce pure CaCO 3 . ► It was determined if its economic potential warrants moving forward. ► Despite small solvent losses, the method was found to have economical potential. ► The method has significant CO 2 emissions reduction potential. ► Scaling up the reactor will allow for a more detailed design for the process. -- Abstract: One of the options that can contribute to the reduction of carbon dioxide emissions for climate change mitigation is the so-called CO 2 sequestration by mineral carbonation, or CO 2 mineral sequestration. Steel manufacturing could benefit from this option by utilizing its own by-products, i.e. steelmaking slags to combine with CO 2 . We have recently studied a method, where aqueous solution of ammonium salt (e.g. ammonium acetate, ammonium nitrate and ammonium chloride) is used to extract calcium selectively from the steel converter slag, followed by precipitation of pure calcium carbonate by bubbling CO 2 through the produced solution. The ammonium salt solution is recovered and re-used. The purpose of this research was to determine if the economic potential of the method warrants moving forward to large-scale application. Despite the small solvent losses, the method was found to have economical potential. In addition, it has significant CO 2 emission reduction potential as well. Scaling up the reactor from the small laboratory scale will allow more detailed design for the process to be made followed by a full economical evaluation including all of the important operational and capital investment costs.

  12. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  13. Formation and stability of Fe-rich precipitates in dilute Zr(Fe) single-crystal alloys

    International Nuclear Information System (INIS)

    Zou, H.; Hood, G.M.; Roy, J.A.; Schultz, R.J.

    1993-02-01

    The formation and stability of Fe-rich precipitates in two α-Zr(Fe) single-crystal alloys with nominal compositions (I, 50 ppma Fe, and II, 650 ppma Fe) have been investigated (the maximum solid solubility of Fe in α-Zr is 180 ppma - 800 C). Optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to examine the characteristics of Fe-rich precipitates. SEM and TEM micrographs show that in as-grown alloy II, Zr 2 Fe precipitates are located at 'stringers'. Precipitates were not observed in as-grown alloy I. During annealing, below the solvus, Fe diffuses to the surfaces to form Zr 3 Fe precipitates in both alloys. The precipitates on the surfaces of alloy I tend to be star-like (0001) or pyramidal (1010), and their distribution is heterogeneous. Dissolution of Zr 3 Fe surface precipitates of alloy I (annealing above the solvus) leaves precipitate-like features on the surfaces. Zr 2 Fe precipitates in as-grown alloy II can be dissolved only by β-phase annealing. (Author) 8 figs., 18 refs

  14. Morphological changes of gamma prime precipitates in nickel-base superalloy single crystals

    International Nuclear Information System (INIS)

    Mackay, R.A.

    1984-07-01

    Changes in the morphology of the gamma prime precipitate were examined during tensile creep at temperatures between 927 and 1038 C in 001-oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80%, the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The dimensions of the gamma and gamma prime phases were measured as directional coarsening developed in an attempt to trace the changing morphology under various stress levels. In addition, the effects of initial microstructure, as well as slight compositional variations, were related to raft development and creep properties. The results showed that directional coarsening of gamma prime began during primary creep, and under certain conditions, continued to develop after the onset of steady-state creep. The length of the rafts increased linearly with time up to a plateau region. The thickness of the rafts, however, remained equal to the initial gamma prime size at least up through the onset of tertiary creep this is a clear indication of the stability of the finely-spaced gamma-gamma prime lamellar structure. It was found that the single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma-gamma prime interfaces per unit volume of material

  15. Precipitation as driver of carbon fluxes in 11 African ecosystems

    NARCIS (Netherlands)

    Merbold, L.; Ardo, J.; Arneth, A.; Scholes, R.J.; Nouvellon, Y.; Grandcourt, de A.; Archibald, S.; Bonnefonds, J.M.; Boulain, N.; Bruemmer, C.; Brueggemann, N.; Cappelaere, B.; Ceschia, E.; El-Khidir, H.A.M.; El-Tahir, B.A.; Falk, U.; Lloyd, J.; Kergoat, L.; Dantec, Le V.; Mougin, E.; Muchinda, M.; Mukelabai, M.M.; Ramier, D.; Roupsard, O.; Timouk, F.; Veenendaal, E.M.; Kutsch, W.L.

    2009-01-01

    This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC) technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available

  16. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China].

    Science.gov (United States)

    Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang

    2010-05-01

    From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.

  17. Interactions in the Geo-Biosphere: Processes of Carbonate Precipitation in Microbial Mats

    Science.gov (United States)

    Dupraz, C.; Visscher, P. T.

    2009-12-01

    Microbial communities are situated at the interface between the biosphere, the lithosphere and the hydrosphere. These microbes are key players in the global carbon cycle, where they influence the balance between the organic and inorganic carbon reservoirs. Microbial populations can be organized in microbial mats, which can be defined as organosedimentary biofilms that are dominated by cyanobacteria, and exhibit tight coupling of element cycles. Complex interactions between mat microbes and their surrounding environment can result in the precipitation of carbonate minerals. This process refers as ‘organomineralization sensu lato' (Dupraz et al. in press), which differs from ‘biomineralization’ (e.g., in shells and bones) by lacking genetic control on the mineral product. Organomineralization can be: (1) active, when microbial metabolic reactions are responsible for the precipitation (“biologically-induced” mineralization) or (2) passive, when mineralization within a microbial organic matrix is environmentally driven (e.g., through degassing or desiccation) (“biologically-influenced” mineralization). Studying microbe-mineral interactions is essential to many emerging fields of the biogeoscience, such as the study of life in extreme environments (e.g, deep biosphere), the origin of life, the search for traces of extraterrestrial life or the seek of new carbon sink. This research approach combines sedimentology, biogeochemistry and microbiology. Two tightly coupled components that control carbonate organomineralization s.l.: (1) the alkalinity engine and (2) the extracellular organic matter (EOM), which is ultimately the location of mineral nucleation. Carbonate alkalinity can be altered both by microbial metabolism and environmental factors. In microbial mats, the net accumulation of carbonate minerals often reflect the balance between metabolic activities that consume/produce CO2 and/or organic acids. For example, photosynthesis and sulfate reduction

  18. Precipitation as driver of carbon fluxes in 11 African ecosystems

    Directory of Open Access Journals (Sweden)

    L. Merbold

    2009-06-01

    Full Text Available This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available ranged in mean annual rainfall from 320 mm (Sudan to 1150 mm (Republic of Congo and include a spectrum of vegetation types (or land cover (open savannas, woodlands, croplands and grasslands. Given the shortness of the record, the EC data were analysed across the network rather than longitudinally at sites, in order to understand the driving factors for ecosystem respiration and carbon assimilation, and to reveal the different water use strategies in these highly seasonal environments.

    Values for maximum net carbon assimilation rates (photosynthesis ranged from −12.5 μmol CO2 m−2 s−1 in a dry, open Millet cropland (C4-plants up to −48 μmol CO2 m−2 s−1 for a tropical moist grassland. Maximum carbon assimilation rates were highly correlated with mean annual rainfall (r2=0.74. Maximum photosynthetic uptake rates (Fpmax were positively related to satellite-derived fAPAR. Ecosystem respiration was dependent on temperature at all sites, and was additionally dependent on soil water content at sites receiving less than 1000 mm of rain per year. All included ecosystems dominated by C3-plants, showed a strong decrease in 30-min assimilation rates with increasing water vapour pressure deficit above 2.0 kPa.

  19. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel

    International Nuclear Information System (INIS)

    Mulholland, Michael D.; Seidman, David N.

    2011-01-01

    Nanoscale co-precipitation in a novel high-strength low-carbon steel is studied in detail after isothermal aging. Atom-probe tomography is utilized to quantify the co-precipitation of co-located Cu precipitates and M 2 C (M is any combination of Cr, Mo, Fe, or Ti) carbide strengthening precipitates. Coarsening of Cu precipitates is offset by the nucleation and growth of M 2 C carbide precipitate, resulting in the maintenance of a yield strength of 1047 ± 7 MPa (152 ± 1 ksi) for as long as 320 h of aging time at 450 deg. C. Impact energies of 153 J (113 ± 6 ft-lb) and 144 J (106 ± 2 ft-lb) are measured at -30 deg. C and -60 deg. C, respectively. The co-location of Cu and M 2 C carbide precipitates results in non-stationary-state coarsening of the Cu precipitates. Synchrotron-source X-ray diffraction studies reveal that the measured 33% increase in impact toughness after aging for 80 h at 450 deg. C is due to dissolution of cementite, Fe 3 C, which is the source of carbon for the nucleation and growth of M 2 C carbide precipitates. Less than 1 vol.% austenite is observed for aging treatments at temperatures less than 600 deg. C, suggesting that transformation-induced plasticity does not play a significant role in the toughness of specimens aged at temperatures less than 600 deg. C. Aging treatments at temperatures greater than 600 deg. C produce more austenite, in the range 2-7%, but at the expense of yield strength.

  20. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    Directory of Open Access Journals (Sweden)

    G. A. Silva-Castro

    2015-01-01

    Full Text Available The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments.

  1. Bioleaching of incineration fly ash by Aspergillus niger - precipitation of metallic salt crystals and morphological alteration of the fungus.

    Science.gov (United States)

    Xu, Tong-Jiang; Ramanathan, Thulasya; Ting, Yen-Peng

    2014-09-01

    This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger , and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter) and a swollen pellet structure. In the absence of the fly ash, the fungi showed a linear structure (with 2-4 μm hyphae diameter). Energy-dispersive X-ray spectroscopy and X-ray diffraction confirmed the precipitation of calcium oxalate hydrate crystals at the surface of hyphae in both one-step and two-step bioleaching. Calcium oxalate precipitation affects bioleaching via the weakening of the fly ash, thus facilitating the release of other tightly bound metals in the matrix.

  2. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  3. Polymer-encapsulated carbon capture liquids that tolerate precipitation of solids for increased capacity

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K

    2015-02-03

    A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.

  4. Crystallization of carbonate hydroxyapatite in the presence of strontium ranelate

    Science.gov (United States)

    Izmailov, R. R.; Golovanova, O. A.

    2015-11-01

    The influence of strontium ranelate on the crystallization of carbonate hydroxyapatite from a prototype of synovial fluid of humans has been investigated. The synthesis products are studied by IR Fourier spectroscopy, X-ray diffraction, and differential thermal analysis. The amount of strontium in the samples is determined by atomic emission analysis. The sizes of crystallites in the synthesized phases are calculated from the Selyakov-Scherrer formula; the lattice parameters are also determined. The phases obtained are found to be species of calcium-deficient strontium-containing carbonate hydroxyapatite of mixed A and B types. Schemes of chemical reactions occurring during heat treatment are proposed.

  5. [Does carbonate originate from carbonate-calcium crystal component of the human urinary calculus?].

    Science.gov (United States)

    Yuzawa, Masayuki; Nakano, Kazuhiko; Kumamaru, Takatoshi; Nukui, Akinori; Ikeda, Hitoshi; Suzuki, Kazumi; Kobayashi, Minoru; Sugaya, Yasuhiro; Morita, Tatsuo

    2008-09-01

    It gives important information in selecting the appropriate treatment for urolithiasis to confirm the component of urinary calculus. Presently component analysis of the urinary calculus is generally performed by infrared spectroscopy which is employed by companies providing laboratory testing services in Japan. The infrared spectroscopy determines the molecular components from the absorption spectra in consequence of atomic vibrations. It has the drawback that an accurate crystal structure cannot be analyzed compared with the X-ray diffraction method which analyzes the crystal constituent based on the diffraction of X-rays on crystal lattice. The components of the urinary calculus including carbonate are carbonate apatite and calcium carbonate such as calcite. Although the latter is reported to be very rare component in human urinary calculus, the results by infrared spectroscopy often show that calcium carbonate is included in calculus. The infrared spectroscopy can confirm the existence of carbonate but cannot determine whether carbonate is originated from carbonate apatite or calcium carbonate. Thus, it is not clear whether calcium carbonate is included in human urinary calculus component in Japan. In this study, we examined human urinary calculus including carbonate by use of X-ray structural analysis in order to elucidate the origin of carbonate in human urinary calculus. We examined 17 human calculi which were reported to contain calcium carbonate by infrared spectroscopy performed in the clinical laboratory. Fifteen calculi were obtained from urinary tract, and two were from gall bladder. The stones were analyzed by X-ray powder method after crushed finely. The reports from the clinical laboratory showed that all urinary culculi consisted of calcium carbonate and calcium phosphate, while the gallstones consisted of calcium carbonate. But the components of all urinary calculi were revealed to be carbonate apatite by X-ray diffraction. The components of

  6. Can frequent precipitation moderate drought impact on peatmoss carbon uptake in northern peatlands?

    NARCIS (Netherlands)

    Nijp, J.J.; Limpens, J.; Metselaar, K.; Zee, van der S.E.A.T.M.; Berendse, F.; Robroek, B.J.M.

    2015-01-01

    Northern peatlands represent a large global carbon store that potentially can be destabilised by summer water table drawdown. Precipitation can moderate negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystems’ key species. Yet, the frequency for such rewetting

  7. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?

    NARCIS (Netherlands)

    Nijp, J.J.; Limpens, J.; Metselaar, K.; Zee, van der S.E.A.T.M.; Berendse, F.; Robroek, B.J.M.

    2014-01-01

    Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such

  8. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

    Science.gov (United States)

    Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.

    2010-04-01

    This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

  9. The influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events

    Science.gov (United States)

    Jacob A. Zwart; Stephen D. Sebestyen; Christopher T. Solomon; Stuart E. Jones

    2016-01-01

    The frequency and magnitude of extreme events are expected to increase in the future, yet little is known about effects of such events on ecosystem structure and function. We examined how extreme precipitation events affect exports of terrestrial dissolved organic carbon (t-DOC) from watersheds to lakes as well as in-lake heterotrophy in three north-temperate lakes....

  10. Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa

    NARCIS (Netherlands)

    Saiz, G.; Bird, M.I.; Domingues, T.F.; Schrodt, F.; Schwartz, M.; Veenendaal, E.M.

    2012-01-01

    We examine the influence of climate, soil properties and vegetation characteristics on soil organic carbon (SOC) along a transect of West African ecosystems sampled across a precipitation gradient on contrasting soil types stretching from Ghana (15°N) to Mali (7°N). Our findings derive from a total

  11. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation; FINAL

    International Nuclear Information System (INIS)

    Deo, Milind D.

    2002-01-01

    This project was undertaken to understand fundamental aspects of carbon dioxide (CO2) induced asphaltene precipitation. Oil and asphaltene samples from the Rangely field in Colorado were used for most of the project. The project consisted of pure component and high-pressure, thermodynamic experiments, thermodynamic modeling, kinetic experiments and modeling, targeted corefloods and compositional modeling

  12. A unique model system of microbial carbonate precipitation: Stromatolites of Lagoa Vermelha, Brazil

    Science.gov (United States)

    Warthmann, R. J.; Vasoncelos, C.; van Lith, Y.; Visscher, P. T.; McKenzie, J. A.

    2003-04-01

    Modern stromatolites are recognized as analogues to fossil laminated structures, which are remains of microbial activity that are widely found in sedimentary rocks beginning in the Neo-Archean, but are quite rare today. The key difference of modern microbial mats and stromatolites compared to ancient examples is the type of lithification. A few marine and hypersaline microbial mats have been observed to precipitate carbonates, and only in Shark Bay (Western, Australia) and Highborne Cay (Bahamas) has the formation of continuous laminae of carbonates been observed. Lagoa Vermelha, a moderate hypersaline lagoon in Rio de Janeiro, Brazil, offers the ideal conditions to promote lithification. Calcified, sometimes dolomitic stromatolites grow on the sediment surface, whereas within the sediments dolomite precipitates. The factors controlling carbonate precipitation in Lagoa Vermelha are the changing water chemistry and the special hydrology, combined with a high primary production by cyanobacteria, a high rate of respiration and the absence of higher organisms. Here, we present a study of the physico-chemical parameters, microbial processes and bio-minerals associated with these stromatolites and microbial mats. This approach provides boundary conditions to better understand dolomite formation. Several discrete lithified calcium carbonate layers are present. The first lithified layer is found beneath a 2-mm-thick biofilm, which contains Gloeocapsa. Below the underlying dense Microcoleus layer, the second micrite deposit is observed at 4-5 mm depth. Successive micritic laminae are preserved in the layer of decaying cyanobacteria that harbors large numbers of purple sulfur bacteria, heterotrophic microbes and sulfate-reducing bacteria. C-isotope studies of the carbonate layers indicate a contribution of organic derived carbon associated with microbial processes, such as sulfate reduction. The O-isotopic values indicate an evaporitic enrichment of the water. Understanding

  13. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    International Nuclear Information System (INIS)

    Gallego, Daniel; Higuita, Natalia; Garcia, Felipe; Ferrell, Nicholas; Hansford, Derek J.

    2008-01-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO 2 atmosphere, allowing the formation of CaCO 3 . The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO 2 atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH) 2 on C-, and CaCO 3 on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications

  14. Precipitation kinetics of Mg-carbonates, influence of organic ligands and consequences for CO2 mineral sequestration

    International Nuclear Information System (INIS)

    Gautier, Q.

    2012-01-01

    Forming magnesium carbonate minerals through carbonation of magnesium silicates has been proposed as a safe and durable way to store carbon dioxide, with a possibly high potential to offset anthropogenic CO 2 emissions. To date however, chemical reactions involved in this process are facing strong kinetic limitations, which originate in the low reactivity of both Mg-silicates and Mg-carbonates. Numerous studies have focused on the dissolution of Mg-silicates, under the questionable hypothesis that this step limits the whole process. This thesis work focuses instead on the mechanisms and rates of formation of magnesium carbonates, which are the final products of carbonation reactions. The first part of the work is dedicated to studying the influence on magnesite precipitation kinetics of three organic ligands known to accelerate Mg-silicates dissolution rates: oxalate, citrate and EDTA. With help of mixed-flow reactor experiments performed between 100 and 150 C, we show that these ligands significantly reduce magnesite growth rates, through two combined mechanisms: (1) complexation of Mg 2+ cations in aqueous solution, which was rigorously estimated from a thermodynamic database established through a critical review of the literature, and (2) adsorption of ligands to a limited number of surface sites, leading to a decrease of the precipitation rate constant. The observed growth inhibition is maximal with citrate. We then used hydrothermal atomic force microscopy to probe the origin of the documented growth inhibition. Our observations show that citrate and oxalate interact with the crystal growth process on magnesite surface, modifying the shape of growth hillocks as well as the step generation frequency through spiral growth. We also show that the ligands adsorb preferentially on different kink-sites, which is probably related to their different structures and chemical properties. We propose that the stronger magnesite growth inhibition caused by citrate is related

  15. Removal of alkaline-earth elements by a carbonate precipitation in a chloride molten salt

    International Nuclear Information System (INIS)

    Yung-Zun Cho; In-Tae Kim; Hee-Chui Yang; Hee-Chui Eun; Hwan-Seo Park; Eung-Ho Kim

    2007-01-01

    Separation of some alkaline-earth chlorides (Sr, Ba) was investigated by using carbonate injection method in LiCl-KCl eutectic and LiCl molten salts. The effects of the injected molar ratio of carbonate([K 2 (or Li 2 )CO 3 /Sr(or Ba)Cl 2 ]) and the temperature(450-750 deg.) on the conversion ratio of the Sr or Ba carbonate were determined. In addition, the form of the Sr and Ba carbonate resulting from the carbonation reaction with carbonates was identified via XRD and SEM-EDS analysis. In these experiments, the carbonate injection method can remove Sr and Ba chlorides effectively over 99% in both LiCl-KCl eutectic and LiCl molten salt conditions. When Sr and Ba were co-presented in the eutectic molten salt, they were carbonated in a form of Ba 0.5 Sr 0.3 CO 3 . And when Sr was present in LiCl molten salt, it was carbonated in the form of SrCO 3 . Carbonation ratio increased with a decreasing temperature and it was more favorable in the case of a K 2 CO 3 injection than that of Li 2 CO 3 . Based on this experiment, it is postulated that carbonate precipitation method has the potential for removing alkali-earth chlorides from LiCl-KCl eutectic and LiCl molten salts. (authors)

  16. Statistical Optimization of Synthesis of Manganese Carbonates Nanoparticles by Precipitation Methods

    International Nuclear Information System (INIS)

    Javidan, A.; Rahimi-Nasrabadi, M.; Davoudi, A.A.

    2011-01-01

    In this study, an orthogonal array design (OAD), OA9, was employed as a statistical experimental method for the controllable, simple and fast synthesis of manganese carbonate nanoparticle. Ultrafine manganese carbonate nanoparticles were synthesized by a precipitation method involving the addition of manganese ion solution to the carbonate reagent. The effects of reaction conditions, for example, manganese and carbonate concentrations, flow rate of reagent addition and temperature, on the diameter of the synthesized manganese carbonate nanoparticle were investigated. The effects of these factors on the width of the manganese carbonate nanoparticle were quantitatively evaluated by the analysis of variance (ANOVA). The results showed that manganese carbonate nanoparticle can be synthesized by controlling the manganese concentration, flow rate and temperature. Finally, the optimum conditions for the synthesis of manganese carbonate nanoparticle by this simple and fast method were proposed. The results of ANOVA showed that 0.001 mol/ L manganese ion and carbonate reagents concentrations, 2.5 mL/ min flow rate for the addition of the manganese reagent to the carbonate solution and 0 degree Celsius temperature are the optimum conditions for producing manganese carbonate nanoparticle with 75 ± 25 nm width. (author)

  17. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  18. Investigating Interactions between the Silica and Carbon Cycles during Precipitation and Early Diagenesis of Authigenic Clay/Carbonate-Mineral Associations in the Carbonate Rock Record

    Science.gov (United States)

    McKenzie, J. A.; Francisca Martinez Ruiz, F.; Sanchez-Roman, M.; Anjos, S.; Bontognali, T. R. R.; Nascimento, G. S.; Vasconcelos, C.

    2017-12-01

    The study of authigenic clay/carbonate-mineral associations within carbonate sequences has important implications for the interpretation of scientific problems related with rock reservoir properties, such as alteration of potential porosity and permeability. More specifically, when clay minerals are randomly distributed within the carbonate matrix, it becomes difficult to predict reservoir characteristics. In order to understand this mineral association in the geological record, we have undertaken a comparative study of specially designed laboratory experiments with modern environments, where clay minerals have been shown to precipitate together with a range of carbonate minerals, including calcite, Mg-calcite and dolomite. Two modern dolomite-forming environments, the Coorong lakes, South Australia and Brejo do Espinho Rio de Janeiro, Brazil, were selected for this investigation. For comparative evaluation, enrichment microbial culture experiments, using natural pore water from Brejo do Espinho as the growth medium to promote mineral precipitation, were performed under both aerobic and anaerobic conditions. To establish the environmental parameters and biological processes facilitating the dual mineral association, the experimental samples have been compared with the natural minerals using HRTEM measurements. The results demonstrate that the clay and carbonate minerals apparently do not co-precipitate, but the precipitation of the different minerals in the same sample has probably occurred under different environmental conditions with variable chemistries, e.g., hypersalinity versus normal salinity resulting from the changing ratio of evaporation versus precipitation. Thus, the investigated mineral association is not a product of diagenetic processes but of sequential in situ precipitation processes related to changes in the silica and carbon availability. Implications for ancient carbonate formations will be presented and discussed in the context of a specific

  19. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    Science.gov (United States)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  20. Enrichment of yttrium from rare earth concentrate by ammonium carbonate leaching and peroxide precipitation

    International Nuclear Information System (INIS)

    Vasconcellos, Mari E. de; Rocha, S.M.R. da; Pedreira, W.R.; Queiroz S, Carlos A. da; Abrao, Alcidio

    2006-01-01

    The rare earth elements (REE) solubility with ammonium carbonate vary progressively from element to element, the heavy rare earth elements (HRE) being more soluble than the light rare earth elements (LRE). Their solubility is function of the carbonate concentration and the kind of carbonate as sodium, potassium and ammonium. In this work, it is explored this ability of the carbonate for the dissolution of the REE and an easy separation of yttrium was achieved using the precipitation of the peroxide from complex yttrium carbonate. For this work is used a REE concentrate containing (%) Y 2 O 3 2.4, Dy 2 O 3 0.6, Gd 2 O 3 2.7, CeO 2 2.5, Nd 2 O 3 33.2, La 2 O 3 40.3, Sm 2 O 3 4.1 and Pr 6 O 11 7.5. The mentioned concentrate was produced industrially from the chemical treatment of monazite sand by NUCLEMON in Sao Paulo. The yttrium concentrate was treated with 200 g L -1 ammonium carbonate during 10 and 30 min at room temperature. The experiments indicated that a single leaching operation was sufficient to get a rich yttrium solution with about 60.3% Y 2 O 3 . In a second step, this yttrium solution was treated with an excess of hydrogen peroxide (130 volumes), cerium, praseodymium and neodymium peroxides being completely precipitated and separated from yttrium. Yttrium was recovered from the carbonate solution as the oxalate and finally as oxide. The final product is an 81% Y 2 O 3 . This separation envisages an industrial application. The work discussed the solubility of the REE using ammonium carbonate and the subsequent precipitation of the correspondent peroxides

  1. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  2. Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum

    International Nuclear Information System (INIS)

    Song, Kyungsun; Jang, Young-Nam; Kim, Wonbaek; Lee, Myung Gyu; Shin, Dongbok; Bang, Jun-Hwan; Jeon, Chi Wan; Chae, Soo Chun

    2014-01-01

    The mineral carbonation of FGD (flue gas desulfurization) gypsum was carried out through CO 2 sorption into ammonia solution containing FGD gypsum. High-purity calcium carbonate was precipitated from DCC (dissolved calcium carbonate) solution which was extracted during the induction period. The factors affecting the preparation of pure calcium carbonate were examined under the following conditions: CO 2 flow rate (1–3 L/min), ammonia content (4–12%), and S/L (solid-to-liquid) ratio (5–300 g/L). X-Ray diffraction study revealed that the PCC (precipitated calcium carbonate) was round-shaped vaterite. The induction time for PCC decreased as the CO 2 flow rate increased. The maximum formation efficiency for pure PCC was seen to increase linearly with the ammonia content. The formation efficiency for pure PCC was the highest (90%) for S/L ratio of 5 g/L but it decreased as S/L ratio increased. On the other hand, S/L ratio didn't affect the maximum solubility limit of DCC. It is believed that the pure PCC would add an economic value to the FGD gypsum carbonation for industrial CO 2 sequestration. - Highlights: • Pure and white CaCO 3 was synthesized using induction period during direct carbonation of FGD gypsum. • Its formation efficiency was increased with ammonia content but decreased with solid-to-liquid ratio. • This method is expected to extend to other industrial CO 2 sequestration for the enhanced economic value of precipitated CaCO 3

  3. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways.

    Science.gov (United States)

    Donnet, Marcel; Bowen, Paul; Lemaître, Jacques

    2009-12-15

    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann's approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thus possible equilibrium precipitation pathways can be evaluated by calculating the evolution of surface charge, particle size and/or interfacial energy during the ongoing reaction. The approach includes the use of the Kelvin's law to express the influence of particle size on the solubility constant of precipitates, the use of Nernst's law to calculate surface potentials from solubility calculations and relate this to experimentally measured zeta potentials. Calcium carbonate precipitation and zeta potential measurements of well characterised high purity calcite have been used as a model system to validate the calculated values. The clarification of the change in zeta potential on titration illustrates the power of this approach as a tool for reaction pathway prediction and hence knowledge based tailoring of precipitation reactions.

  4. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China.

    Science.gov (United States)

    Fei, Xuehai; Song, Qinghai; Zhang, Yiping; Liu, Yuntong; Sha, Liqing; Yu, Guirui; Zhang, Leiming; Duan, Changqun; Deng, Yun; Wu, Chuansheng; Lu, Zhiyun; Luo, Kang; Chen, Aiguo; Xu, Kun; Liu, Weiwei; Huang, Hua; Jin, Yanqiang; Zhou, Ruiwu; Li, Jing; Lin, Youxing; Zhou, Liguo; Fu, Yane; Bai, Xiaolong; Tang, Xianhui; Gao, Jinbo; Zhou, Wenjun; Grace, John

    2018-03-01

    Forest ecosystems play an increasingly important role in the global carbon cycle. However, knowledge on carbon exchanges, their spatio-temporal patterns, and the extent of the key controls that affect carbon fluxes is lacking. In this study, we employed 29-site-years of eddy covariance data to observe the state, spatio-temporal variations and climate sensitivity of carbon fluxes (gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem carbon exchange (NEE)) in four representative forest ecosystems in Yunnan. We found that 1) all four forest ecosystems were carbon sinks (the average NEE was -3.40tCha -1 yr -1 ); 2) contrasting seasonality of the NEE among the ecosystems with a carbon sink mainly during the wet season in the Yuanjiang savanna ecosystem (YJ) but during the dry season in the Xishuangbanna tropical rainforest ecosystem (XSBN), besides an equivalent NEE uptake was observed during the wet/dry season in the Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS) and Lijiang subalpine coniferous forest ecosystem (LJ); 3) as the GPP increased, the net ecosystem production (NEP) first increased and then decreased when the GPP>17.5tCha -1 yr -1 ; 4) the precipitation determines the carbon sinks in the savanna ecosystem (e.g., YJ), while temperature did so in the tropical forest ecosystem (e.g., XSBN); 5) overall, under the circumstances of warming and decreased precipitation, the carbon sink might decrease in the YJ but maybe increase in the ALS and LJ, while future strength of the sink in the XSBN is somewhat uncertain. However, based on the redundancy analysis, the temperature and precipitation combined together explained 39.7%, 32.2%, 25.3%, and 29.6% of the variations in the NEE in the YJ, XSBN, ALS and LJ, respectively, which indicates that considerable changes in the NEE could not be explained by variations in the temperature and precipitation. Therefore, the effects of other factors (e.g., CO 2 concentration, N

  5. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup

  6. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  7. Optical Properties of Small Ice Crystals with Black Carbon Inclusions

    Science.gov (United States)

    Yang, X.; Geier, M.; Arienti, M.

    2013-12-01

    The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 μm. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  8. Ikaite precipitation in a lacustrine environment - implications for palaeoclimatic studies using carbonates from Laguna Potrok Aike (Patagonia, Argentina)

    Science.gov (United States)

    Oehlerich, Markus; Mayr, Christoph; Griesshaber, Erika; Lücke, Andreas; Oeckler, Oliver M.; Ohlendorf, Christian; Schmahl, Wolfgang W.; Zolitschka, Bernd

    2013-07-01

    The monoclinic mineral ikaite (CaCO3 · 6H2O) and its pseudomorphs are potentially important archives for palaeoenvironmental reconstructions. Natural ikaite occurs in a small temperature range near freezing point and is reported mainly from marine and only rarely from continental aquatic environments. Ikaite transforms to more stable anhydrous forms of CaCO3 after an increase in temperature or when exposed to atmospheric conditions. The knowledge about conditions for natural ikaite formation, its stable isotope fractionation factors and isotopic changes during transformation to calcite is very restricted. Here, for the first time, primary precipitation of idiomorphic ikaite and its calcite pseudomorphs are reported from a subsaline lake, Laguna Potrok Aike, in southern Argentina. The calculated stable oxygen isotope fractionation factor between lake water and ikaite-derived calcite (αPAI = 1.0324 at a temperature of 4.1 °C) is close to but differs from that of primarily inorganically precipitated calcite. Pseudomorphs after ikaite rapidly disintegrate into calcite powder that is indistinguishable from μm-sized calcite crystals in the sediment record of Laguna Potrok Aike suggesting an ikaite origin of sedimentary calcites. Therefore, the Holocene carbonates of Laguna Potrok Aike have the potential to serve as a recorder of past hydrological variation.

  9. Nb(C,N) precipitation kinetics in the bainite region of a low-carbon Nb-microalloyed steel

    International Nuclear Information System (INIS)

    Park, J.S.; Lee, Y.K.

    2007-01-01

    Nb(C,N) precipitation in the bainite region (580-660 deg. C) of a low-carbon Nb-microalloyed steel was investigated by electrical resistivity and transmission electron microscopy. Nb(C,N) particles started precipitating after 100-200 s at isothermal temperatures after bainite transformation and cementite formation, and precipitation finished in 1000-2000 s. The precipitation-time-temperature diagram of Nb(C,N) in the bainite region of a low-carbon microalloyed steel was a type of C-curve, with a nose temperature of about 615 deg. C

  10. Precipitation hardening of Zn0.1 at.%Ti single crystals deformed on the (0 0 0 1) system

    International Nuclear Information System (INIS)

    Boczkal, G.; Mikulowski, B.

    2004-01-01

    The mechanical properties (the critical resolved shear stress - CRSS, the work-hardening coefficient - θ A ) and a thermodynamic parameter (the activation volume--V*) have been studied in single crystals of Zn0.1 at.%Ti. The sample orientation allowed slip on the (0 0 0 1) system over a large range of strain. The investigations were conducted on samples which were both heat treated and not. The investigations were made using compression and stress relaxation tests in the range of easy glide at temperatures from 77 to 493 K. The single crystals appear to be hardened by precipitates while Ti solubility in Zn is negligible. Two types of the precipitates have been identified by TEM and microanalysis; very small precipitates were located uniformly in the matrix, and large needle-shaped obstacles with size of the order of 0.1 mm on the (0 0 0 1) orientation. The CRSS and the θ A showed a strong dependence on the temperature. The determined values of the CRSS were in the range of 4 MPa for 493 K to 12 MPa for 77 K. The obtained values of the activation volume V* were in the range of (10-110) x 10 -16 cm 3 and it was strongly dependent on the temperature and the stress at the beginning of relaxation. This value is attributed to small precipitates which are barriers for dislocation movement

  11. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    International Nuclear Information System (INIS)

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhy, A.; Eggeler, G.

    2006-01-01

    The present study shows that multiple-step martensitic transformations can be observed in aged Ni-rich NiTi single crystals. Ageing of solution-annealed and water-quenched Ni-rich NiTi single crystals results in a homogeneous precipitation of coherent Ni 4 Ti 3 particles. When the interparticle spacing reaches a critical value (order of magnitude: 200 nm), three distinct transformation processes are observed on cooling from the high-temperature phase using differential scanning calorimetry and in situ transmission electron microscopy. The transformation sequence begins with the formation of R-phase starting from all precipitate/matrix interfaces (first step). The transformation continues with the formation of B19' and its subsequent growth along all precipitate/matrix interfaces (second step). Finally, the matrix in between the precipitates transforms to B19' (third step). Elementary transformation mechanisms which account for two- and three-step transformations in a system with small-scale microstructural heterogeneities were identified

  12. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone.

    Science.gov (United States)

    Daskalakis, M I; Magoulas, A; Kotoulas, G; Catsikis, I; Bakolas, A; Karageorgis, A P; Mavridou, A; Doulia, D; Rigas, F

    2013-08-01

    Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Micro-organisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3 . Micro-organisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bioconsolidation of ornamental stone protection. Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for biorestoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates. © 2013 The Society for Applied Microbiology.

  13. Crystallization of carbon-oxygen mixtures in white dwarf stars.

    Science.gov (United States)

    Horowitz, C J; Schneider, A S; Berry, D K

    2010-06-11

    We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the 12C(α,γ)16O reaction to S(300)≤170  keV b.

  14. Precipitation of Calcium Carbonate in the Presence of Urea at 293 K and 343 K

    Directory of Open Access Journals (Sweden)

    Białowicz Katarzyna

    2014-06-01

    Full Text Available The results of the precipitation of calcium carbonate from a waste post-distillation liquid (DS and a sodium bicarbonate saturated solution – both from the Solvay method – in the presence of urea are presented. The investigation was carried out at 293 K and 343 K. Reagent dosage times of 1, 5, 10, 20 and 30 min, and urea concentrations of 5, 6 and 10 mol/dm3 were applied. The granulometric composition, the values of bulk and packing densities and the absorptiveness sorption of water and paraffin oil from the obtained calcium carbonate were investigated.

  15. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Ma, X.P. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, X.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada)

    2015-08-12

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min.

  16. Dynamics of mineral crystallization from precipitated slab-derived fluid phase: first in situ synchrotron X-ray measurements

    Science.gov (United States)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Wilhelm, Heribert; Nestola, Fabrizio

    2015-03-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. The mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet-orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatized at ~4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometres and negative crystal shapes. Infilling minerals (spinel: 10-20 vol%; amphibole, chlorite, talc, mica: 80-90 vol%) occur with constant volume proportions and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by synchrotron radiation at Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Such information is discussed in relation to the physico-chemical aspects of nucleation and growth, shedding light on the mode of mineral crystallization from a fluid phase trapped at supercritical conditions.

  17. Ion Transport and Precipitation Kinetics as Key Aspects of Stress Generation on Pore Walls Induced by Salt Crystallization

    Science.gov (United States)

    Naillon, A.; Joseph, P.; Prat, M.

    2018-01-01

    The stress generation on pore walls due to the growth of a sodium chloride crystal in a confined aqueous solution is studied from evaporation experiments in microfluidic channels in conjunction with numerical computations of crystal growth. The study indicates that the stress buildup on the pore walls is a highly transient process taking place over a very short period of time (in less than 1 s in our experiments). The analysis makes clear that what matters for the stress generation is not the maximum supersaturation at the onset of the crystal growth but the supersaturation at the interface between the solution and the crystal when the latter is about to be confined between the pore walls. The stress generation is summarized in a simple stress diagram involving the pore aspect ratio and the Damkhöler number characterizing the competition between the precipitation reaction kinetics and the ion transport towards the growing crystal. This opens up the route for a better understanding of the damage of porous materials induced by salt crystallization, an important issue in Earth sciences, reservoir engineering, and civil engineering.

  18. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    Science.gov (United States)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  19. Effect of Temperature on Precipitation Rate of Calcium Carbonate Produced through Microbial Metabolic Process of Bio Materials

    Directory of Open Access Journals (Sweden)

    Prima Yane Putri

    2016-09-01

    Full Text Available Concrete is the most widely used construction material in civil engineering. But plain concrete is a brittle material and has little resistance to cracking. The cracking in concrete promotes deterioration such as the corrosion of reinforcing rebar, therefore, repair in filling the crack is often carried out. Recently, repair methods using bio-based materials associated with microbial metabolic processes leading to precipitation of calcium carbonate have been intensively studied. In this study, influencing factors on the precipitation rate depending on the constituents of bio-based material comprising yeast, glucose and calcium acetate mixed in tris buffer solution was examined for improving the rate of initial reactions. In addition, effect of temperature change on the amount of calcium carbonate precipitation was also investigated. The precipitates were identified by X-ray diffraction. It was shown that the increase of temperature lead to a change on calcium carbonate precipitation and caused the pH decrease under 7.0.

  20. Urea Hydrolysis and Calcium Carbonate Precipitation in Gypsum-Amended Broiler Litter.

    Science.gov (United States)

    Burt, Christopher D; Cabrera, Miguel L; Rothrock, Michael J; Kissel, D E

    2018-01-01

    Broiler () litter is subject to ammonia (NH) volatilization losses. Previous work has shown that the addition of gypsum to broiler litter can increase nitrogen mineralization and decrease NH losses due to a decrease in pH, but the mechanisms responsible for these effects are not well understood. Therefore, three laboratory studies were conducted to evaluate the effect of gypsum addition to broiler litter on (i) urease activity at three water contents, (ii) calcium carbonate precipitation, and (iii) pH. The addition of gypsum to broiler litter increased ammonium concentrations ( litter pH by 0.43 to 0.49 pH units after 5 d ( litter only increased on Day 0 for broiler litter with low (0.29 g HO g) and high (0.69 g HO g) water contents, and on Day 3 for litter with medium (0.40 g HO g) water content ( litter with gypsum also caused an immediate decrease in litter pH (0.22 pH units) due to the precipitation of calcium carbonate (CaCO) from gypsum-derived calcium and litter bicarbonate. Furthermore, as urea was hydrolyzed, more urea-derived carbon precipitated as CaCO in gypsum-treated litter than in untreated litter ( litter with gypsum favors the precipitation of CaCO, which buffers against increases in litter pH that are known to facilitate NH volatilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2015-07-01

    Spatial and temporal variability of carbon species in rainwater (bulk deposition) was studied for the first time at two sites located in urban area of Poznań City and protected woodland area (Jeziory), in central Poland, between April and December 2013. The mean concentration of total carbon (TC) for the first site was 5.86 mg L(-1), whereas for the second, 5.21 mg L(-1). Dissolved organic carbon (DOC) concentration accounted for, on average, 87 and 91 % of total carbon in precipitation at urban and non-urban sites, respectively. Significant changes in TC concentrations in rainwater were observed at both sites, indicating that atmospheric transformation, transport, and removal mechanisms of carbonaceous particles were affected by seasonal fluctuations in biogenic/anthropogenic emission and meteorological conditions (i.e., precipitation height and type, atmospheric transport). During the warm season, the DOC concentration in rainwater was mostly influenced by mixed natural and anthropogenic sources. In contrast, during the cold season, the DOC concentration significantly increased mainly as a result of anthropogenic activities, i.e., intensive coal combustion, domestic wood burning, high-temperature processes, etc. In addition, during the winter measurements, significant differences in mean DOC concentration (Kruskal-Wallis test, p urban and non-urban sites. These data imply that carbonaceous compounds are of crucial importance in atmospheric chemistry and should be considered as an important parameter while considering wet deposition, reactions with different substances, especially over polluted environments.

  2. Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate.

    Science.gov (United States)

    Daitou, Fumikazu; Maruta, Michito; Kawachi, Giichiro; Tsuru, Kanji; Matsuya, Shigeki; Terada, Yoshihiro; Ishikawa, Kunio

    2010-05-01

    In this study, we investigated a novel method for fabrication of carbonate apatite block without ionic movement between precursor and solution by using precursor that includes all constituent ions of carbonate apatite. A powder mixture prepared from dicalcium phosphate anhydrous and calcite at appropriate Ca/P ratios (1.5, 1.67, and 1.8) was used as starting material. For preparation of specimens, the slurry made from the powder mixture and distilled water was packed in a split stainless steel mold and heat - treated, ranging from 60 degrees C to 100 degrees C up to 48 hours at 100% humidity. It appeared that carbonate apatite could be obtained above 70 degrees C and monophasic carbonate apatite could be obtained from the powder mixture at Ca/P ratio of 1.67. Carbonate content of the specimen was about 5-7%. Diametral tensile strength of the carbonate apatite blocks slightly decreased with increasing treatment temperature. The decrease in diametral tensile strength is thought to be related to the crystal size of the carbonate apatite formed.

  3. In situ TEM investigation on the precipitation behavior of μ phase in Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Gao, Shuang; Liu, Zhi-Quan; Li, Cai-Fu; Zhou, Yizhou; Jin, Tao

    2016-01-01

    The precipitation behavior of μ phase in Ni-base single crystal superalloys was investigated by in situ transmission electron microscopy (TEM). A layer-by-layer growth process with a ledge propagation mechanism was first observed during in situ precipitation. Three types of μ phase with different morphologies were found, which grow along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects. High-resolution TEM image and established atomic models reveal a basic growth mechanism of μ phase by stacking on (001) μ plane and randomly forming coherent planar defects, while the nucleation of incoherent (1–12) μ planar defects at the early stage of precipitation plays an important role in affecting the basic growth mechanism. The frequent faults during the stacking process of the sub-unit layers within μ lattice should be responsible for the defect formation. -- Graphical abstract: In situ transmission electron microscopy (TEM) investigations reveal the layer-by-layer growth mechanism of μ phase precipitated in Ni-base single crystal superalloys. Three types of μ phase with different morphologies were formed at 1050 °C, which grows along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects respectively. Formation of (001) μ micro-twin and stacking fault is the essential feature for precipitated μ phase, while nucleation of incoherent (1–12) μ planar defects plays an important role in changing growth method. Display Omitted

  4. The role of low-temperature organic matter diagenesis in carbonate precipitation within a marine deposit

    International Nuclear Information System (INIS)

    Miyakawa, Kazuya; Ishii, Eiichi; Hirota, Akinari; Komatsu, Daisuke D.; Ikeya, Kosuke; Tsunogai, Urumu

    2017-01-01

    degradation of organic matter has proceeded too far for any more CO_2 to be produced. Thus, carbonate precipitation is initiated when pH rises due to microbial CO_2 reduction. The contrast between the occurrence of carbonate veins in the Koetoi and Wakkanai formations can be explained by our results, which can also be applied to general carbonate behavior in marine sedimentary rocks. - Highlights: • δ"1"3C – δD systematics of coexisting CH_4 and CO_2. • Extreme-"1"3C enrichment caused by microbial CO_2 reduction in a closed system. • Organic matter diagenesis plays an important role in carbonate precipitation.

  5. Crystal structure of a diaryl carbonate: 1,3-phenylene bis(phenyl carbonate

    Directory of Open Access Journals (Sweden)

    Marina A. Solomos

    2017-12-01

    Full Text Available The whole molecule of the title compound, C20H14O6, is generated by mirror symmetry, the mirror bisecting the central benzene ring. The carbonate groups adopt an s-cis-s-cis conformation, with torsion angles of 58.7 (2 and 116.32 (15°. The crystal structure of 1,3-phenylene bis(phenyl carbonate contains no strong hydrogen bonds, though weak C—H...O and offset π–π interactions are observed, forming layers parallel to the ac plane.

  6. Towards establishing a combined rate law of nucleation and crystal growth - The case study of gypsum precipitation

    Science.gov (United States)

    Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar

    2018-03-01

    The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.

  7. Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus

    Directory of Open Access Journals (Sweden)

    Tong-Jiang Xu

    2014-09-01

    Full Text Available This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger, and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter and a swollen pellet structure. In the absence of the fly ash, the fungi showed a linear structure (with 2–4 μm hyphae diameter. Energy-dispersive X-ray spectroscopy and X-ray diffraction confirmed the precipitation of calcium oxalate hydrate crystals at the surface of hyphae in both one-step and two-step bioleaching. Calcium oxalate precipitation affects bioleaching via the weakening of the fly ash, thus facilitating the release of other tightly bound metals in the matrix.

  8. Biomediated Precipitation of Calcium Carbonate in a Slightly Acidic Hot Spring

    Science.gov (United States)

    Jiang, L.

    2015-12-01

    A slightly acidic hot spring named "Female Tower" (T=73.5 °C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite, aragonite, and sulfur. Scanning electron microscopy (SEM) analyses revealed that the microbial mats were formed of various coccoid, rod-shaped, and filamentous microbes. Transmission electron microscopy (TEM) showed that the intracellular sulfur granules were commonly associated with these microbes. A culture-independent molecular phylogenetic analysis demonstrated that the majority of the bacteria in the spring were sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We speculated that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the intracellular formation of sulfur granules. In the meantime, this reaction increased the pH in the micron-scale microdomains, which fostered the precipitation of calcium carbonate in the microbial mats. The results of this study indicated that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in slightly acidic hot spring environments.

  9. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid

    Science.gov (United States)

    Kanakiya, Shreya; Adam, Ludmila; Esteban, Lionel; Rowe, Michael C.; Shane, Phil

    2017-06-01

    One of the leading hydrothermal alteration processes in volcanic environments is when rock-forming minerals with high concentrations of iron, magnesium, and calcium react with CO2 and water to form carbonate minerals. This is used to the advantage of geologic sequestration of anthropogenic CO2. Here we experimentally investigate how mineral carbonation processes alter the rock microstructure due to CO2-water-rock interactions. In order to characterize these changes, CO2-water-rock alteration in Auckland Volcanic Field young basalts (less than 0.3 Ma) is studied before and after a 140 day reaction period. We investigate how whole core basalts with similar geochemistry but different porosity, permeability, pore geometry, and volcanic glass content alter due to CO2-water-rock reactions. Ankerite and aluminosilicate minerals precipitate as secondary phases in the pore space. However, rock dissolution mechanisms are found to dominate this secondary mineral precipitation resulting in an increase in porosity and decrease in rigidity of all samples. The basalt with the highest initial porosity and volcanic glass volume shows the most secondary mineral precipitation. At the same time, this sample exhibits the greatest increase in porosity and permeability, and a decrease in rock rigidity post reaction. For the measured samples, we observe a correlation between volcanic glass volume and rock porosity increase due to rock-fluid reactions. We believe this study can help understand the dynamic rock-fluid interactions when monitoring field scale CO2 sequestration projects in basalts.

  10. Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates

    Science.gov (United States)

    Larzabal, G.; Isasti, N.; Rodriguez-Ibabe, J. M.; Uranga, P.

    2018-03-01

    The use of microalloyed steels in the production of thick plates is expanding due to the possibility of achieving attractive combinations of strength and toughness. As market requirements for high strength plates are increasing and new applications require reduced weight and innovative designs, novel approaches to attaining cost-effective grades are being developed. The mechanism of precipitation strengthening has been widely used in thin strip products, since the optimization of the coiling strategy offers interesting combinations in terms of final properties and microalloying additions. Precipitation strengthening in thick plates, however, is less widespread due to the limitation of interphase precipitation during continuous cooling after hot rolling. With the main objective of exploring the limits of this strengthening mechanism, laboratory thermomechanical simulations that reproduced plate hot rolling mill conditions were performed using low carbon steels microalloyed with Nb, NbMo, and TiMo additions. After continuous cooling to room temperature, a set of heat treatments using fast heating rates were applied simulating the conditions of induction heat treatments. An important increase of both yield and tensile strengths was measured after induction treatment without any important impairment in toughness properties. A significant precipitation hardening is observed in Mo-containing grades under specific heat treatment parameters.

  11. Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance.

    Science.gov (United States)

    Kaialy, Waseem; Maniruzzaman, Mohammad; Shojaee, Saeed; Nokhodchi, Ali

    2014-12-30

    The purpose of this work was to develop stable xylitol particles with modified physical properties, improved compactibility and enhanced pharmaceutical performance without altering polymorphic form of xylitol. Xylitol was crystallized using antisolvent crystallization technique in the presence of various hydrophilic polymer additives, i.e., polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) at a range of concentrations. The crystallization process did not influence the stable polymorphic form or true density of xylitol. However, botryoidal-shaped crystallized xylitols demonstrated different particle morphologies and lower powder bulk and tap densities in comparison to subangular-shaped commercial xylitol. Xylitol crystallized without additive and xylitol crystallized in the presence of PVP or PVA demonstrated significant improvement in hardness of directly compressed tablets; however, such improvement was observed to lesser extent for xylitol crystallized in the presence of PEG. Crystallized xylitols produced enhanced dissolution profiles for indomethacin in comparison to original xylitol. The influence of additive concentration on tablet hardness was dependent on the type of additive, whereas an increased concentration of all additives provided an improvement in the dissolution behavior of indomethacin. Antisolvent crystallization using judiciously selected type and concentration of additive can be a potential approach to prepare xylitol powders with promising physicomechanical and pharmaceutical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of Mg/Ca ratios on microbially induced carbonate precipitation

    Science.gov (United States)

    Balci, Nurgul; Demirel, Cansu; Seref Sonmez, M.; Kurt, M. Ali

    2016-04-01

    Influence of Mg/Ca ratios on microbially induced carbonate mineralogy were investigated by series of experiments carried out under various environmental conditions (Mg/Ca ratio, temperature and salinity). Halophilic bacterial cultures used for biomineralization experiments were isolated from hypersaline Lake Acıgöl (Denizli, SW Turkey), displaying extreme water chemistry with an average pH around 8.6 (Balci eta l.,2015). Enriched bacterial culture used in the experiments consisted of Halomonas saccharevitans strain AJ275, Halomonas alimentaria strain L7B; Idiomarina sp. TBZ29, 98% Idiomarina seosensis strain CL-SP19. Biomineralization experiments were set up using above enriched culture with Mg/Ca ratios of 0.05, 1, 4 and 15 and salinity of 8% and 15% experiments at 30oC and 10oC. Additionally, long-term biomineralization experiments were set up to last for a year, for Mg/Ca=4 and Mg/Ca=15 experiments at 30oC. For each experimental condition abiotic experiments were also conducted. Solution chemistry throughout incubation was monitored for Na, K, Mg, Ca, bicarbonate, carbonate, ammonium and phosphate for a month. At the end of the experiments, precipitates were collected and morphology and mineralogy of the biominerals were investigated and results were evaluated using the software DIFFRAC.SUITE EVA. Overall the preliminary results showed chemical precipitation of calcite, halite, hydromagnesite and sylvite. Results obtained from biological experiments indicate that, low Mg/Ca ratios (0.05 and 1) favor chlorapatite precipitation, whereas higher Mg/Ca ratios favor struvite precipitation. Biomineralization of dolomite, huntite and magnesite is favorable at high Mg/Ca ratios (4 and 15), in the presence of halophilic bacteria. Moreover, results indicate that supersaturation with respect to Mg (Mg/Ca=15) combined with NaCl (15%) inhibits biomineralization and forms chemical precipitates. 15% salinity is shown to favor chemical precipitation of mineral phases more than

  13. 3D DDD modelling of dislocation-precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation

    Science.gov (United States)

    Lin, Bing; Huang, Minsheng; Zhao, Liguo; Roy, Anish; Silberschmidt, Vadim; Barnard, Nick; Whittaker, Mark; McColvin, Gordon

    2018-06-01

    Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0 0 1] and [1 1 1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ‧-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress-strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1 1 1] orientation when compared to [0 0 1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.

  14. The full annual carbon balance of Eurasian boreal forests is highly sensitive to precipitation

    Science.gov (United States)

    Öquist, Mats; Bishop, Kevin; Grelle, Achim; Klemedtsson, Leif; Köhler, Stephan; Laudon, Hjalmar; Lindroth, Anders; Ottosson Löfvenius, Mikaell; Wallin, Marcus; Nilsson, Mats

    2013-04-01

    Boreal forest biomes are identified as one of the major sinks for anthropogenic atmospheric CO2 and are also predicted to be particularly sensitive to climate change. Recent advances in understanding the carbon balance of these biomes stems mainly from eddy-covariance measurements of the net ecosystem exchange (NEE). However, NEE includes only the vertical CO2 exchange driven by photosynthesis and ecosystem respiration. A full net ecosystem carbon balance (NECB) also requires inclusion of lateral carbon export (LCE) through catchment discharge. Currently LCE is often regarded as negligible for the NECB of boreal forest ecosystems of the northern hemisphere, commonly corresponding to ~5% of annual NEE. Here we use long term (13 year) data showing that annual LCE and NEE are strongly correlated (p=0.003); years with low C sequestration by the forest coincide with years when lateral C loss is high. The fraction of NEE lost annually through LCE varied markedly from solar radiation caused by clouds. The dual effect of precipitation implies that both the observed and the predicted increases in annual precipitation at high latitudes may reduce NECB in boreal forest ecosystems. Based on regional scaling of hydrological discharge and observed spatio-temporal variations in forest NEE we conclude that our finding is relevant for large areas of the boreal Eurasian landscape.

  15. Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals

    Science.gov (United States)

    Welch, N.; Crawshaw, J.

    2017-12-01

    Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.

  16. Mechanistic Study of Magnesium Carbonate Semibatch Reactive Crystallization with Magnesium Hydroxide and CO2

    DEFF Research Database (Denmark)

    Han, B.; Qu, H. Y.; Niemi, H.

    2014-01-01

    This work investigates semibatch precipitation of magnesium carbonate at ambient temperature and pressure using Mg(OH)(2) and CO2 as starting materials. A thermal analysis method was developed that reflects the dissolution rate of Mg(OH)(2) and the formation of magnesium carbonate. The method...... the liquid and solid phases. A stirring rate of 650 rpm was found to be the optimum speed as the flow rate of CO2 was 1 L/min. Precipitation rate increased with gas flow rate, which indicates that mass transfer of CO2 plays a critical role in this precipitation case. Magnesium carbonate trihydrate...

  17. Precipitation of Calcium Carbonate in the Presence of Urea at 293 K and 343 K

    OpenAIRE

    Białowicz Katarzyna; Kiełkowska Urszula

    2014-01-01

    The results of the precipitation of calcium carbonate from a waste post-distillation liquid (DS) and a sodium bicarbonate saturated solution – both from the Solvay method – in the presence of urea are presented. The investigation was carried out at 293 K and 343 K. Reagent dosage times of 1, 5, 10, 20 and 30 min, and urea concentrations of 5, 6 and 10 mol/dm3 were applied. The granulometric composition, the values of bulk and packing densities and the absorptiveness sorption of water and para...

  18. A Layout for the Carbon Capture with Aqueous Ammonia without Salt Precipitation

    DEFF Research Database (Denmark)

    Bonalumi, Davide; Valenti, Gianluca; Lillia, Stefano

    2016-01-01

    Post-combustion carbon capture technologies seem to be necessary to realize the CO2 mitigation policies internationally shared for the next future, despite none of them appears to be ready for full-scale applications. This work considers the aqueous ammonia based process for a coal-fired Ultra....... The second layout operates at cooled conditions, which does not yield any salt precipitation. The Chilled layout reveals low specific heat duty and SPECCA equal to 2.2 and 2.86 MJ/kgco2, respectively. In contrast, the Cooled layout presents a higher specific heat duty of almost 3 MJ/kgco2 but, importantly...

  19. Zirconium oxide crystal phase: The role of the pH and time to attain the final pH for precipitation of the hydrous oxide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Harris, M.B.; Simpson, S.F.; De Angelis, R.J.; Davis, B.H.

    1988-01-01

    Precipitated hydrous zirconium oxide can be calcined to produce either a monoclinic or tetragonal product. It has been observed that the time taken to attain the final pH of the solution in contact with the precipitate plays a dominant role in determining the crystal structure of the zirconium oxide after calcination at 500 0 C. The dependence of crystal structure on the rate of precipitation is observed only in the pH range 7--11. Rapid precipitation in this pH range yields predominately monoclinic zirconia, whereas slow (8 h) precipitation produces the tetragonal phase. At pH of approximately 13.0, only the tetragonal phase is formed from both slowly and rapidly precipitated hydrous oxide. The present results, together with earlier results, show that both the pH of the supernatant liquid and the time taken to attain this pH play dominant roles in determining the crystal structure of zirconia that is formed after calcination of the hydrous oxide. The factors that determine the crystal phase are therefore imparted in a mechanism of precipitation that depends upon the pH, and it is inferred that it is the hydroxyl concentration that is the dominant factor

  20. Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide.

    Science.gov (United States)

    Kim, Kwang-Wook; Kim, Yeon-Hwa; Lee, Se-yoon; Lee, Jae-Won; Joe, Kih-Soo; Lee, Eil-Hee; Kim, Jong-Seung; Song, Kyuseok; Song, Kee-Chan

    2009-04-01

    This work studied the dissolution of uranium dioxide and precipitation characteristics of uranyl ions in alkaline and acidic solutions depending on the presence of carbonate ions and H2O2 in the solutions at different pHs controlled by adding HNO3 or NaOH in the solution. The chemical structures of the precipitates generated in different conditions were evaluated and compared by using XRD, SEM, TG-DT, and IR analyses together. The sizes and forms of the precipitates in the solutions were evaluated, as well. The uranyl ions were precipitated in the various forms, depending on the solution pH and the presences of hydrogen peroxide and carbonate ions in the solution. In a 0.5 M Na2CO3 solution with H2O2, where the uranyl ions formed mixed uranyl peroxy-carbonato complexes, the uranyl ions were precipitated as a uranium peroxide of UO4(H20)4 at pH 3-4, and precipitated as a clarkeite of Na2U2Ox(OH)y(H2O)z above pH 13. In the same carbonate solution without H2O2, where the uranyl ions formed uranyl tris-carbonato complex, the uranyl ions were observed to be precipitated as a different form of clarkeite above pH 13. The precipitate of uranyl ions in a nitrate solution without carbonate ions and H2O2 at a high pH were studied together to compare the precipitate forms in the carbonate solutions.

  1. Separation and Precipitation of Nickel from Acidic Sulfate Leaching Solution of Molybdenum-Nickel Black Shale by Potassium Nickel Sulfate Hexahydrate Crystallization

    Science.gov (United States)

    Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong

    2018-02-01

    Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.

  2. Performance of Separation Processes for Precipitated Calcium Carbonate Produced with an Innovative Method from Steelmaking Slag and Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Teir, Sebastian, E-mail: sebastian.teir@vtt.fi [VTT Technical Research Centre of Finland Ltd., Espoo (Finland); Auvinen, Toni [Outotec Dewatering Technology Center, Lappeenranta (Finland); Said, Arshe [Department of Energy Technology, School of Engineering, Aalto University, Espoo (Finland); Kotiranta, Tuukka; Peltola, Heljä [Outotec Research Center, Pori (Finland)

    2016-02-22

    In this work, experiments were performed to determine the filterability of calcium carbonate produced with an alternative calcium carbonate production concept. The concept uses steelmaking slag as raw material and has potential to fix CO{sub 2} emissions and utilize steelmaking slag, simultaneously. As calcium carbonate is precipitated in a solution containing ammonium chloride, calcium chloride, and ammonia, the product needs to be washed and hence filtered. In this work, different separation processes, including washing, filtering, and drying, were tested on two calcium carbonate slurries produced from steel converter slag and CO{sub 2} by a laboratory-scale pilot facility, with the aim of obtaining a solid product with a low chloride content using a minimum amount of washing water. The order of maximum filtration rates achievable of the calcium carbonate slurries was determined by experimental work. The tests included pressure filtration and vacuum filtration and the test series contained altogether 21 different filtration cycles with varying combinations of filtering, washing, and drying steps. The filtered cakes were analyzed by their residual moisture content, chloride content, and conductivity, and the filtrates by their residual solids content, chloride content, and conductivity. Pressure filtration gave a high capacity (400–460 kg/m{sup 2}h) and a low cake residual moisture content (12–14 wt-%). Vacuum filtration gave slightly higher filtration rates (500–610 kg/m{sup 2}h at the lowest residual chloride contents of the cakes), but the cake residual moisture also stayed higher (25–26 wt-%). As the vacuum filtration tests used a filter cloth with higher permeability than that of the pressure filtration tests, a slightly higher filtration rate was expected. However, both filtration technologies seem suitable for filtering and washing calcium carbonate prepared with the studied method as a residual chloride content as low as 10 ppm of the filtered

  3. Synthesis of Sr- and Mg- doped lanthanum gallate by carbonate co-precipitation

    International Nuclear Information System (INIS)

    Sunitha, Y.; Narasimham, K.V.N.S.V.P.L.; Raju, V.S.; Kumar, Sanjiv

    2010-01-01

    Sr- and Mg- doped lanthanum gallate (LSGM) are promising electrolytes for low temperature solid oxide fuel cells (SOFCs) in view of their high ionic conductivity and stability over a wide range of oxygen partial pressures. LSGM powders are usually prepared by solid-state reactions. However high sintering temperature (∼ 1500 deg C) required for densification and the formation of secondary phases are the major drawbacks of the method. Wet-chemical method is a suitable alternative to solid-state synthesis with the prospect of the realisation of phase pure material with good sinterability at comparatively lower temperatures. In this paper we present the results of our investigation on the synthesis of LaGaO 3 and LSGM by a wet-chemical method through carbonate co-precipitation using ammonium carbonate and ammonium bicarbonate as precipitants. Phase and microstructural evolution of the material have been studied by XRD and SEM respectively, while compositional analysis has been performed by ion beam analysis (IBA) techniques. In addition we have also investigated the incorporation of Sr and Mg in the lattice of LaGaO 3 by (a) solid-state reaction route and (b) wet-chemical approach

  4. Biocontainment of polychlorinated biphenyls (PCBs) on flat concrete surfaces by microbial carbonate precipitation.

    Science.gov (United States)

    Okwadha, George D O; Li, Jin

    2011-10-01

    In this study, a biosealant obtained from microbial carbonate precipitation (MCP) was evaluated as an alternative to an epoxy-coating system. A bacterium Sporosarcina pasteurii strain ATCC 11859, which metabolizes urea and precipitates calcite in a calcium-rich environment, was used in this study to generate the biosealant on a PCB-contaminated concrete surface. Concrete cylinders measuring 3 in (76.2 mm) by 6 in (152.4 mm) were made in accordance with ASTM C33 and C192 and used for this purpose. The PCB, urea, Ca(2+), and bacterial cell concentrations were set at 10 ppm, 666 mM, 250 mM, and about 2.1 × 10(8) cells mL(-1), respectively. The results indicate that the biosealed surfaces reduced water permeability by 1-5 orders of magnitude, and had a high resistance to carbonation. Since the MCP biosealant is thermally stable under temperatures of up to 840 °C, the high temperatures that normally exist in the surrounding equipment, which may contain PCB-based fluids, have no effect on the biosealed surfaces. Consequently, there is greater potential to obtain a stronger, coherent, and durable surface by MCP. No measurable amount of PCBs was detected in the permeating water, indicating that the leaching water, if any, will have a minimum impact on the surrounding environment. Published by Elsevier Ltd.

  5. Crystal growth of calcium carbonate in silk fibroin/sodium alginate hydrogel

    Science.gov (United States)

    Ming, Jinfa; Zuo, Baoqi

    2014-01-01

    As known, silk fibroin-like protein plays a pivotal role during the formation of calcium carbonate (CaCO3) crystals in the nacre sheets. Here, we have prepared silk fibroin/sodium alginate nanofiber hydrogels to serve as templates for calcium carbonate mineralization. In this experiment, we report an interesting finding of calcium carbonate crystal growth in the silk fibroin/sodium alginate nanofiber hydrogels by the vapor diffusion method. The experimental results indicate calcium carbonate crystals obtained from nanofiber hydrogels with different proportions of silk fibroin/sodium alginate are mixture of calcite and vaterite with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that nanofiber hydrogels play an important role in the process of crystallization. This study would help in understanding the function of organic polymers in natural mineralization, and provide a novel pathway in the design and synthesis of new materials related unique morphology and structure.

  6. Calcium Carbonate Crystal Growth in Porous Media, in the presence of Water Miscible and Non-Miscible Organic Fluids

    Science.gov (United States)

    Jaho, Sofia; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    The deposition of sparingly soluble salts (scaling) within porous media is a major problem encountered in many industrial and environmental applications. In the oil industry scaling causes severe operational malfunctions and, therefore, increasing the total operating and maintenance cost [1]. The most common types of sparingly soluble salts located in oil fields include carbonate and sulfate salts of calcium, strondium and barium[1,2]. Multiple phase flow and tubing surface properties are some of the factors affecting scale formation [3]. The main purpose of the present work was the investigation of the precipitation mechanisms of calcium carbonate (CaCO3) through in situ mixing of two soluble salt solutions in a flow granular medium, in the presence of water miscible organic fluid (ethylene glycol) or non-miscible organic fluid (n-dodecane). All series of experiments were carried out in a two dimensional porous medium made of Plexiglas. For all solutions used in the experiments, the contact angles with the surface of the porous medium and the interfacial tensions were measured. During the experiments, the calcium carbonate crystal growth was continuously monitored and recorded through an optical microscope equipped with a digital programmed video camera. The snap-shots were taken within specific time intervals and their detailed procession gave information concerning the crystal growth rate and kinetics. The pH of the effluent was measured and fluids samples were collected for calcium analysis using Atomic Absorption Spectroscopy (AAS). In all experiments effluent calcium concentration decreased as a function of time, suggesting that CaCO3 precipitation took place inside the porous medium. Crystals of the precipitated salt were identified using Infrared Spectroscopy (IR) and the morphology of the crystals was examined using Scanning Electron Microscopy (SEM). The induction time for precipitation of CaCO3 crystals in the presence of n-dodecane was significantly

  7. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation

    Science.gov (United States)

    Palandri, J.L.; Reed, M.H.

    2004-01-01

    In a series of water-rock reaction simulations, we assess the processes of serpentinization of harzburgite and related calcium metasomatism resulting in rodingite-type alteration, and seafloor carbonate chimney precipitation. At temperatures from 25 to 300??C (P = 10 to 100 bar), using either fresh water or seawater, serpentinization simulations produce an assemblage commonly observed in natural systems, dominated by serpentine, magnetite, and brucite. The reacted waters in the simulations show similar trends in composition with decreasing water-rock ratios, becoming hyper-alkaline and strongly reducing, with increased dissolved calcium. At 25??C and w/r less than ???32, conditions are sufficiently reducing to yield H2 gas, nickel-iron alloy and native copper. Hyperalkalinity results from OH- production by olivine and pyroxene dissolution in the absence of counterbalancing OH- consumption by alteration mineral precipitation except at very high pH; at moderate pH there are no stable calcium minerals and only a small amount of chlorite forms, limited by aluminum, thus allowing Mg2+ and Ca2+ to accumulate in the aqueous phase in exchange for H+. The reducing conditions result from oxidation of ferrous iron in olivine and pyroxene to ferric iron in magnetite. Trace metals are computed to be nearly insoluble below 300??C, except for mercury, for which high pH stabilizes aqueous and gaseous Hg??. In serpentinization by seawater at 300??C, Ag, Au, Pd, and Pt may approach ore-forming concentrations in sulfide complexes. Simulated mixing of the fluid derived from serpentinization with cold seawater produces a mineral assemblage dominated by calcite, similar to recently discovered submarine, ultramafic rock-hosted, carbonate mineral deposits precipitating at hydrothermal vents. Simulated reaction of gabbroic or basaltic rocks with the hyperalkaline calcium- and aluminum-rich fluid produced during serpentinization at 300??C yields rodingite-type mineral assemblages, including

  8. Micro-scale experimental study of Microbial-Induced Carbonate Precipitation (MICP) by using microfluidic devices

    Science.gov (United States)

    Wang, Y.; Soga, K.; DeJong, J. T.; Kabla, A.

    2017-12-01

    Microbial-induced carbonate precipitation (MICP), one of the bio-mineralization processes, is an innovative subsurface improvement technique for enhancing the strength and stiffness of soils, and controlling their hydraulic conductivity. These macro-scale engineering properties of MICP treated soils controlled by micro-scale factors of the precipitated carbonate, such as its content, amount and distribution in the soil matrix. The precipitation process itself is affected by bacteria amount, reaction kinetics, porous medium geometry and flow distribution in the soils. Accordingly, to better understand the MICP process at the pore scale a new experimental technique that can observe the entire process of MICP at the pore-scale was developed. In this study, a 2-D transparent microfluidic chip made of Polydimethylsiloxane (PDMS) representing the soil matrix was designed and fabricated. A staged-injection MICP treatment procedure was simulated inside the microfluidic chip while continuously monitored using microscopic techniques. The staged-injection MICP treatment procedure started with the injection of bacteria suspension, followed with the bacteria setting for attachment, and then ended with the multiple injections of cementation liquid. The main MICP processes visualized during this procedure included the bacteria transport and attachment during the bacteria injection, the bacteria attachment and growth during the bacteria settling, the bacteria detachment during the cementation liquid injection, the cementation development during the cementation liquid injection, and the cementation development after the completion of cementation liquid injection. It is suggested that the visualization of the main MICP processes using the microfluidic technique can improve understating of the fundamental mechanisms of MICP and consequently help improve the treatment technique for in situ implementation of MICP.

  9. Recovery of uranium from (U,Gd)O{sub 2} nuclear fuel scrap using dissolution and precipitation in carbonate media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Wook, E-mail: nkwkim@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); KEPCO NF 1047 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Hyun, Jun-Taek; Lee, Eil-Hee; Park, Geun-Il; Lee, Kune-Woo [Korea Atomic Energy Research Institute, 1045 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Yoo, Myung-June [KEPCO NF 1047 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Song, Kee-Chan; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, 1045 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-11-15

    Highlights: > A treatment of (U,Gd)O{sub 2} scrap with a dissolution in carbonate solution with H{sub 2}O{sub 2}. > Partial dissolution of Gd together with uranium in carbonate solution. > Solubilities of Gd in solutions with and without carbonate at several pHs. > Purification of Gd-contaminated UO{sub 4} by dissolution and precipitation of UO{sub 4}. - Abstract: This work studied a process to recover uranium from contaminated (U,Gd)O{sub 2} scraps generated from nuclear fuel fabrication processes by using the dissolution of (U,Gd)O{sub 2} scraps in a carbonate with H{sub 2}O{sub 2} and the precipitation of the dissolved uranium as UO{sub 4}. The dissolution characteristics of uranium, Gd, and impurity metal oxides were tested, and the behaviors of UO{sub 4} precipitation and Gd solubility were evaluated with changes of the pH of the solution. A little Gd was entrained in the UO{sub 4} precipitate to contaminate the uranium precipitate. Below a pH of 3, the uranium dissolved in the form of uranyl peroxo-carbonato complex ions in the carbonate solution was precipitated as UO{sub 4} with a high precipitation yield, and the Gd had a very high solubility. Using these characteristics, the Gd-contaminated UO{sub 4} could be purified using dissolution in a 1-M HNO{sub 3} solution with heating and re-precipitation upon addition of H{sub 2}O{sub 2} to the solution. Finally, an environmentally friendly and economical process to recover pure uranium from contaminated (U,Gd)O{sub 2} scraps was suggested.

  10. Impacts of Precipitation Diurnal Timing on Ecosystem Carbon Exchanges in Grasslands: A Synthesis of AmeriFlux Data

    Science.gov (United States)

    Song, X.; Xu, X.; Tweedie, C. E.

    2015-12-01

    Drylands have been found playing an important role regulating the seasonality of global atmospheric carbon dioxide concentrations. Precipitation is a primary control of ecosystem carbon exchanges in drylands where a large proportion of the annual total rainfall arrives through a small number of episodic precipitation events. While a large number of studies use the concept of "precipitation pulses" to explore the effects of short-term precipitation events on dryland ecosystem function, few have specifically evaluated the importance of the diurnal timing of these events. The primary goal of this study was to determine how the diurnal timing of rainfall events impacts land-atmosphere net ecosystem CO2 exchanges (NEE) and ecosystem respiration in drylands. Our research leverages a substantial and existing long-term database (AmeriFlux) that describes NEE, Reco and meteorological conditions at 11 sites situated in different dryland ecosystems in South West America. All sites employ the eddy covariance technique to measure land-atmosphere the CO2 exchange rates between atmosphere and ecosystem. Data collected at these sites range from 4 to 10 years, totaling up to 73 site-years. We found that episodic precipitation events stimulate not only vegetation photosynthesis but also ecosystem respiration. Specifically, the morning precipitation events decrease photosynthesis function at daytime and increase ecosystem respiration at nighttime; the afternoon precipitation events do not stimulate ecosystem photosynthesis at daytime, while stimulate ecosystem respiration; the night precipitations suppress photosynthesis at daytime, and enhance ecosystem respiration at nighttime.

  11. Production of precipitated calcium carbonate from industrial byproduct slags; Saostetun kalsiumkarbonaatin tuotanto karbonaattivapaista kuonatuotteista (SLAG2PCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, R. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.; Teir, S.; Eloneva, S.; Savolahti, J. [Helsinki Univ. of Technology, Espoo (Finland). Energy Technology and Environmental Protection

    2006-12-19

    Production of precipitate calcium carbonate from industrial by- product slags-project, 'SLAG2PCC', is a spin-off from ClimBus technology programme CO{sub 2} Nordic Plus-project, financed by the Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee. 'SLAG2PCC'-project is financed by Tekes, Ruukki Productions, UPM Kymmene and Waertsilae Finland. The possibility to produce precipitated calcium carbonate, PCC, from carbonate free industrial by-products (slags), combined with binding of carbon dioxide for climate change mitigation is studied in this project. The suitability of a process found from the literature, in which calcium used for carbonation is dissolved from calcium silicates using acetic acid as a solvent, is investigated for the carbonation of slags from the steel industry. During the calcium extraction experiments performed in the CO2 Nordic Plus - project it was found out that calcium is rapidly extracted from blast furnace and basic oxygen furnace slags. Atmospheric carbonation of the solution containing the dissolved slag and acetic acid directly has not succeeded yet due to low pH of the solution. Addition of NaOH, to increase of the solution pH, resulted in calcium carbonate precipitate in atmospheric pressure. The future goal of the project is to optimize process conditions so that the formed calcium carbonate is suitable for use as PCC. (orig.)

  12. Visual and reversible carbon dioxide sensing enabled by doctor blade coated macroporous photonic crystals.

    Science.gov (United States)

    Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta

    2017-11-15

    With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors.

    Science.gov (United States)

    Tang, Qin; Bairi, Partha; Shrestha, Rekha Goswami; Hill, Jonathan P; Ariga, Katsuhiko; Zeng, Haibo; Ji, Qingmin; Shrestha, Lok Kumar

    2017-12-27

    Fullerene C 60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C 60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g -1 (at 5 mV s -1 ) and 290 F g -1 (at 1 A g -1 ) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g -1 . The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C 60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.

  14. Thermal decomposition behavior of the co-precipitated carbonate precursor for La0.84Sr0.16MnO3

    International Nuclear Information System (INIS)

    Sankaranarayanan, A.; Kalekar, B.B.; Ramanathan, S.

    2004-01-01

    A carbonate precursor for lanthanum strontium manganite powder (La 0.84 Sr 0.16 MnO 3 - LSM) was obtained by addition of an aqueous solution of nitrates of lanthanum, strontium and manganese into a bath of ammonium carbonate solution. The precipitate was filtered, washed, dried and dry ground for homogenization. The thermal decomposition behavior of the precursor was studied by simultaneous TG-DTA-EGA technique while the precursor and intermediates formed at different temperatures were characterized by FTIR and XRD techniques for decomposition of carbonate and compound formation. It exhibited a loss in weight and endotherms in stages in the temperature ranges of 20 to 260 deg C, 260 deg to 500 deg C, 500 deg to 600 deg C, 600 deg to 900 deg C. The loss of carbon dioxide was exhibited in the EGA data and FTIR spectra while phase formation was confirmed by XRD. A comparative study of all these results showed that the processes occurring at various temperature ranges (20 deg to 260 deg C, 260 deg to 500 deg C, 500 deg to 600 deg C, 600 deg to 900 deg C) are dehydration of adsorbed moisture and water of crystallization, decomposition of manganese hydroxycarbonate to manganese dioxide, lanthanum carbonate to lanthanum oxy-carbonate and interaction between lanthanum oxy-carbonate, manganese dioxide and strontium carbonate to form finally LSM. Even though decomposition of carbonates into oxides was complete at 900 deg C, phase pure compound formation occurred at 1100 deg C, under the conditions used. (author)

  15. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    Science.gov (United States)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected

  16. Phosphate adsorption and precipitation on calcite under calco-carbonic equilibrium condition.

    Science.gov (United States)

    Li, Zhenxuan; Sun, Xiaowen; Huang, Lidong; Liu, Dagang; Yu, Luji; Wu, Hongsheng; Wei, Dongyang

    2017-09-01

    Phosphate (PO 4 3- ) removal on calcite often entails two processes: adsorption and precipitation. Separating these two processes is of great importance for assessment of PO 4 3- stability after removal. Thus, this study was aimed at finding a critical range of conditions for separating these two processes in calco-carbonic equilibrium, by adjusting PO 4 3- concentration, reaction time and pH. PO 4 3- removal kinetic results showed that: (I) At pH7.7, PO 4 3- removal was mainly by adsorption at initial PO 4 3- concentration ≤2.2 mg L -1 and reaction time ≤24 h, with dominant precipitation occurring at initial PO 4 3- concentration ≥3 mg L -1 after 24 h reaction; (II) At pH8.3, adsorption was the key removal process at initial PO 4 3- concentration ≤7.5 mg L -1 and reaction time ≤24 h, whereas precipitation was observed at initial PO 4 3- concentration of 10 mg L -1 after 24 h reaction, (III) At pH 9.1 and 10.1, PO 4 3- removal mechanism was mainly by adsorption at initial PO 4 3- concentration ≤10 mg L -1 within 24 h reaction. Based on the kinetic results, it is suggested that PO 4 3- precipitation will occur after 24 h reaction when saturation index of amorphous calcium phosphate is between 1.97 and 2.19. Besides, increasing PO 4 3- concentration does not cause a continuous decline of PO 4 3- removal percentage. Moreover, experimental removal data deviated largely from the theoretical adsorption value by CD-MUSIC model. These indicate occurrence of precipitation which is in agreement with the kinetic result. Therefore our study will provide fundamental reference information for better understanding of phosphorous stabilization after removal by calcite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    International Nuclear Information System (INIS)

    Grossmann, E.L.

    1984-01-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta 13 C of bicarbonate ion and thus aragonite-HCO 3 - and calcite-HCO 3 - isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in 18 O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have similar delta 13 C values and yield an average epsilonsub(cl-b) value of -0.2 +- 0.1 per mille between 8 deg and 10 deg C. Calcitic Uvigerina curticosta, Uvigerina peregrina, and megalospheric B, argentea, Slope and Basin dwellers, are -0.7 +- 0.1 per mille enriched relative to ambient bicarbonate for 3 to 9 deg C. (author)

  18. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, E L [University of Southern California, Los Angeles (USA). Dept. of Geological Sciences

    1984-07-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta/sup 13/C of bicarbonate ion and thus aragonite-HCO/sub 3//sup -/ and calcite-HCO/sub 3//sup -/ isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in /sup 18/O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have s

  19. Morphology and Precipitation Kinetics of MnS in Low-Carbon Steel During Thin Slab Continuous Casting Process

    Institute of Scientific and Technical Information of China (English)

    YU Hao; KANG Yong-lin; ZHAO Zheng-zhi; SUN Hao

    2006-01-01

    The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.

  20. Carbon/Liquid Crystal Polymer Prepreg for Cryogenic and High-Temp Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — KaZaK Composites proposes to develop a pultrusion process to produce carbon fiber / liquid crystal polymer (LCP) prepreg, a first for this category of materials and...

  1. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    Science.gov (United States)

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ashly P.; Bond-Lamberty, Benjamin; Benscoter, Brian W.; Tfaily, Malak M.; Hinkle, Ross; Liu, Chongxuan; Bailey, Vanessa L.

    2017-11-06

    Droughts and other extreme precipitation events are predicted to increase in intensity, duration and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-, core- and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soil moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.

  3. Nitric acid adduct formation during crystallization of barium and strontium nitrates and their co-precipitation from nitric acid media

    International Nuclear Information System (INIS)

    Mishina, N.E.; Zilberman, B.Ya.; Lumpov, A.A.; Koltsova, T.I.; Puzikov, E.A.; Ryabkov, D.V.

    2015-01-01

    The molar solubilities of Ba, Sr and Pb nitrates in nitric acid as a function of total nitrate concentration is presented and described by the mass action law, indicating on formation of the adducts with nitric acid. Precipitates of Ba(NO 3 ) 2 and Sr(NO 3 ) 2 crystallized from nitric acid were studied by ISP OES and IR spectroscopy. The data obtained confirmed formation of metastable adducts with nitric acid. IR and X-ray diffraction studies of the mixed salt systems indicated conversion of the mixed salts into (Ba,Sr)(NO 3 ) 2 solid solution of discrete structure in range of total nitrate ion concentration ∼6 mol/L. (author)

  4. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Brent Constantz; Randy Seeker; Martin Devenney

    2010-06-30

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  5. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nosbi, Norlin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Akil, Hazizan Md, E-mail: hazizan@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Cluster for Polymer Composite (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-06-15

    Graphical abstract: - Highlights: • We report that, to manipulate carbon nanotubes geometry and number of walls are by controlling the precipitate catalyst size. • Number of walls and geometry effects depend on the milling time of the precipitate catalyst. • Increasing milling of time will decrease the carbon nanotubes number of walls. • Increasing milling of time will increase the carbon nanotubes thermal conductivity. - Abstract: This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5–15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  6. Crystallization of an organic compound from an ionic liquid using carbon dioxide as anti-solvent

    NARCIS (Netherlands)

    Kroon, M.C.; Toussaint, V.A.; Shariati - Sarabi, A.; Florusse, L.J.; Spronsen, van J.; Witkamp, G.J.; Peters, C.J.

    2008-01-01

    In this paper the anti-solvency behavior of supercritical carbon dioxide (CO2) as a way to recover an organic compound from an ionic liquid by crystallization is explored. As an example, the conditions for crystallization of the organic compound methyl-(Z)-a-acetamido cinnamate (MAAC) from the ionic

  7. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  8. Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization

    Science.gov (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2018-02-01

    This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the 〈1 0 0〉 oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the 〈1 0 0〉 diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.

  9. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    Science.gov (United States)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    High CO2 partial pressure (pCO2) in deep rock reservoirs causes acidification of the porefluid. Such conditions occur during injection and subsurface storage of CO2 (to prevent the release of greenhouse gas) but also naturally in zones of strong methanogenic microbial activity in organic matter-rich ocean margin sediments. The acidic fluids are corrosive to carbonates and bear the risk of leakage of CO2 gas to the surface. Porefluid acidification may be moderated by processes that increase the alkalinity, i.e. that produce weak acid anions capable of buffering the acidification imposed by the CO2. Often, alkalinity increases as a result of anaerobic microbial activity, such as anaerobic oxidation of methane. However, on a long term the alteration of silicates, in particular, clay minerals, may be a more efficient mechanism of alkalinity production. Under altered temperature, pressure and porefluid composition at depth, clay minerals may change to thermodynamically more stable states, thereby increasing the alkalinity of the porefluid by partial leaching of Mg-(OH)2 and Ca-(OH)2 (e.g. Wallmann et al., 2008; Mavromatis et al., 2014). This alteration may even be enhanced by a high pCO2. Thus, silicate alteration can be essential for a long-term stabilization of volatile CO2 in the form of bicarbonate or may even induce precipitation of carbonate minerals, but these processes are not fully understood yet. The goal of this study is to simulate the alkalinity effect of silicate alteration under diagenetic conditions and high pCO2 by geochemical modeling. We are using the program PHREEQC (Parkhurst and Appelo, 2013) to generate high rock/fluid ratio characteristics for deep subsurface rock reservoirs. Since we are interested in the long-term evolution of diagenetic processes, over millions of years, we do not consider kinetics but calculate the theoretically possible equilibrium conditions. In a first step we are calculating the saturation state of different clay minerals

  10. Experimental evidence for carbonate precipitation and CO 2 degassing during sea ice formation

    Science.gov (United States)

    Papadimitriou, S.; Kennedy, H.; Kattner, G.; Dieckmann, G. S.; Thomas, D. N.

    2004-04-01

    -chemical processes are considered, we expect CO 2 degassing and carbonate mineral precipitation from the brine inclusions of the ice sheet, which were saturated or highly supersaturated with respect to both the anhydrous (calcite, aragonite, vaterite) and hydrated (ikaite) carbonate minerals.

  11. CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods

    International Nuclear Information System (INIS)

    Park, Sangwon; Lee, Min-Gu; Park, Jinwon

    2013-01-01

    CO 2 (carbon dioxide) is the most common greenhouse gas and most of it is emitted from human activities. The methods for CO 2 emission reduction can be divided into physical, chemical, and biochemical methods. Among the physical and chemical methods, CCS (carbon capture and storage) is a well-known reducing technology. However, this method has many disadvantages including the required storage area. In general, CCS requires capture and storage processes. In this study, we propose a method for reusing the absorbed CO 2 either in nature or in industry. The emitted CO 2 was converted into CO 3 2− using a conversion solution, and then made into a carbonate by combining the conversion solution with metal ions at normal temperature and pressure. The resulting carbonate was analyzed using FT-IR (Fourier transform infrared spectroscopy) and XRD (X-ray diffraction). We verified the formation of a solid consisting of calcite and vaterite. In addition, the conversion solution that was used could be reused in the same process of CCS technology. Our study demonstrates a successful method of reducing and reusing emitted CO 2 , thereby making CO 2 a potential future resource. - Highlights: • This study focused on a new CO 2 fixation process method. • In CCS technology, the desorption process requires high thermal energy consumption. • This new method does not require a desorption process because the CO 2 is accomplished through CaCO 3 crystallization. • A new absorption method is possible instead of the conventional absorption-desorption process. • This is not only a rapid reaction for fixing CO 2 , but also economically feasible

  12. The Effect of Cell Immobilization by Calcium Alginate on Bacterially Induced Calcium Carbonate Precipitation

    Directory of Open Access Journals (Sweden)

    Mostafa Seifan

    2017-10-01

    Full Text Available Microbially induced mineral precipitation is recognized as a widespread phenomenon in nature. A diverse range of minerals including carbonate, sulphides, silicates, and phosphates can be produced through biomineralization. Calcium carbonate (CaCO3 is one of the most common substances used in various industries and is mostly extracted by mining. In recent years, production of CaCO3 by bacteria has drawn much attention because it is an environmentally- and health-friendly pathway. Although CaCO3 can be produced by some genera of bacteria through autotrophic and heterotrophic pathways, the possibility of producing CaCO3 in different environmental conditions has remained a challenge to determine. In this study, calcium alginate was proposed as a protective carrier to increase the bacterial tolerance to extreme environmental conditions. The model showed that the highest concentration of CaCO3 is achieved when the bacterial cells are immobilized in the calcium alginate beads fabricated using 1.38% w/v Na-alginate and 0.13 M CaCl2.

  13. Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-L-amino acids.

    Science.gov (United States)

    Njegić-Dzakula, Branka; Falini, Giuseppe; Brecević, Ljerka; Skoko, Zeljko; Kralj, Damir

    2010-03-15

    Spontaneous precipitation of calcium carbonate was investigated in two precipitation systems: (1) with initial supersaturation lower than that corresponding to the solubility of amorphous calcium carbonate (ACC), at which vaterite precipitated, and (2) with initial supersaturation higher than that of ACC solubility, at which a mixture of calcite and vaterite was formed. After the addition of an acidic polypeptide, poly-L-glutamic acid (pGlu) or poly-L-aspartic acid (pAsp), into (1) a significant inhibition of nucleation, expressed as an increase in induction time, and growth of vaterite, perceived as a dead zone, was observed. Extent of inhibition decreased in the order: Inh(pAps)>Inh(pGlu)>Inh(pLys). The addition of a polypeptide into (2) caused the inhibition of precipitation and changed the morphology and polymorphic composition of the precipitate; only vaterite appeared at approximately c(pAsp)=3 ppm, c(pGlu)=6 ppm, or c(pLys)=7 ppm. This finding is explained as a consequence of kinetic constraints through the inhibition of calcite nucleation and stronger binding of acidic polypeptide by the calcite surfaces than by the vaterite surfaces. Laboratory precipitation studies using conditions that resemble those in living organism should be run at an initial supersaturation corresponding to the solubility of ACC as a limiting condition. 2009 Elsevier Inc. All rights reserved.

  14. Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature

    NARCIS (Netherlands)

    Hu, Yu-Bin; Wolthers, Mariëtte; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2015-01-01

    The effects of pH and phosphate on the precipitation of calcium carbonate polymorphs from aqueous solution were investigated. Experiments were carried out at near-freezing temperature and two different pH conditions (pH 13.4 and 9.0). At each pH condition, solutions having different concentrations

  15. Crystallization of calcium carbonate on radiation-grafted polyethylene films

    International Nuclear Information System (INIS)

    Hou Zhengchi; Zhang Fengying; Deng Bo; Yang Haijun; Chen Shuang; Sheng Kanglong

    2006-01-01

    In biomineralization processes, nucleation and growth of inorganic crystals can be regulated by organic template molecules. This has inspired great interest in studying mimic biomineralization. In our study, growing CaCO 3 crystals on PE films functionalized through radiation-induced grafting was attempted. PE films grafted with different functional groups of different distributions and densities were used as substrates for CaCO 3 nucleation and crystal growth from Ca(HCO 3 ) 2 supersaturated solution under different environmental conditions (e.g. additives and temperature) to study the effects and mechanisms. The grafted PE films were analyzed by ATR-FTIR and AFM, and the evolution of CaCO 3 crystal formation on the grafted PE film was characterized by SEM, FTIR, and XRD. The results indicated that heterogeneous nucleation of CaCO 3 crystals was significantly facilitated by the functional groups grafted on the surface of PE films, that the morphology of CaCO 3 crystals could be controlled by distribution and density of the grafted functional groups, and that polymorphism of CaCO 3 crystal could be regulated by selection of grafting functional groups. We believe that studying the effects of chemical structures on inorganic crystallization is of great importance since radiation-induced grafting is an effective method to graft desirable functional groups onto different polymers by selected monomers, in the endeavor of developing advanced organic/inorganic composites with high performance, with a wide availability of polymers, monomers and inorganic solutions. (authors)

  16. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Science.gov (United States)

    Liu, Ting; Wang, Liang; Feng, Xiaojuan; Zhang, Jinbo; Ma, Tian; Wang, Xin; Liu, Zongguang

    2018-03-01

    Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai-Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % of NEP in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC) is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  18. Comparing soil carbon loss through respiration and leaching under extreme precipitation events in arid and semiarid grasslands

    Directory of Open Access Journals (Sweden)

    T. Liu

    2018-03-01

    Full Text Available Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited, especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and the Qinghai–Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced a transient increase in CO2 release through soil respiration, equivalent to 32 and 72 % of the net ecosystem productivity (NEP in the temperate grasslands (Xilinhot and Keqi and 7 % of NEP in the alpine grasslands (Gangcha. By comparison, leaching loss of soil carbon accounted for 290, 120, and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC, biogenic DIC + lithogenic DIC as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with recurring EPEs in the soil with the highest pH due to an elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C. These results highlight the fact that leaching loss of soil carbon (particularly in the form of DIC is important in the regional carbon budget of arid and semiarid grasslands and also imply that SOC mineralization in alkaline soils might be underestimated if only measured as CO2 emission from soils into the atmosphere. With a projected increase in EPEs under climate change, soil carbon leaching processes and the influencing factors warrant a better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.

  19. Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in Inner Mongolia, China.

    Science.gov (United States)

    Yang, Fulin; Zhou, Guangsheng

    2013-01-01

    Arid grassland ecosystems have significant interannual variation in carbon exchange; however, it is unclear how environmental factors influence carbon exchange in different hydrological years. In this study, the eddy covariance technique was used to investigate the seasonal and interannual variability of CO₂ flux over a temperate desert steppe in Inner Mongolia, China from 2008 to 2010. The amounts and times of precipitation varied significantly throughout the study period. The precipitation in 2009 (186.4 mm) was close to the long-term average (183.9±47.6 mm), while the precipitation in 2008 (136.3 mm) and 2010 (141.3 mm) was approximately a quarter below the long-term average. The temperate desert steppe showed carbon neutrality for atmospheric CO₂ throughout the study period, with a net ecosystem carbon dioxide exchange (NEE) of -7.2, -22.9, and 26.0 g C m⁻² yr⁻¹ in 2008, 2009, and 2010, not significantly different from zero. The ecosystem gained more carbon in 2009 compared to other two relatively dry years, while there was significant difference in carbon uptake between 2008 and 2010, although both years recorded similar annual precipitation. The results suggest that summer precipitation is a key factor determining annual NEE. The apparent quantum yield and saturation value of NEE (NEE(sat)) and the temperature sensitivity coefficient of ecosystem respiration (R(eco)) exhibited significant variations. The values of NEE(sat) were -2.6, -2.9, and -1.4 µmol CO₂ m⁻² s⁻¹ in 2008, 2009, and 2010, respectively. Drought suppressed both the gross primary production (GPP) and R(eco), and the drought sensitivity of GPP was greater than that of R(eco). The soil water content sensitivity of GPP was high during the dry year of 2008 with limited soil moisture availability. Our results suggest the carbon balance of this temperate desert steppe was not only sensitive to total annual precipitation, but also to its seasonal distribution.

  20. Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Fulin Yang

    Full Text Available Arid grassland ecosystems have significant interannual variation in carbon exchange; however, it is unclear how environmental factors influence carbon exchange in different hydrological years. In this study, the eddy covariance technique was used to investigate the seasonal and interannual variability of CO₂ flux over a temperate desert steppe in Inner Mongolia, China from 2008 to 2010. The amounts and times of precipitation varied significantly throughout the study period. The precipitation in 2009 (186.4 mm was close to the long-term average (183.9±47.6 mm, while the precipitation in 2008 (136.3 mm and 2010 (141.3 mm was approximately a quarter below the long-term average. The temperate desert steppe showed carbon neutrality for atmospheric CO₂ throughout the study period, with a net ecosystem carbon dioxide exchange (NEE of -7.2, -22.9, and 26.0 g C m⁻² yr⁻¹ in 2008, 2009, and 2010, not significantly different from zero. The ecosystem gained more carbon in 2009 compared to other two relatively dry years, while there was significant difference in carbon uptake between 2008 and 2010, although both years recorded similar annual precipitation. The results suggest that summer precipitation is a key factor determining annual NEE. The apparent quantum yield and saturation value of NEE (NEE(sat and the temperature sensitivity coefficient of ecosystem respiration (R(eco exhibited significant variations. The values of NEE(sat were -2.6, -2.9, and -1.4 µmol CO₂ m⁻² s⁻¹ in 2008, 2009, and 2010, respectively. Drought suppressed both the gross primary production (GPP and R(eco, and the drought sensitivity of GPP was greater than that of R(eco. The soil water content sensitivity of GPP was high during the dry year of 2008 with limited soil moisture availability. Our results suggest the carbon balance of this temperate desert steppe was not only sensitive to total annual precipitation, but also to its seasonal distribution.

  1. The aging by precipitation of Nb (C,N) in extra low carbon content steel

    International Nuclear Information System (INIS)

    Bruno, J.C.; Kestenbach, H.-J.

    1982-01-01

    Carbonitride precipitation has been studied in a high-niobium acicular - ferrite - type steel. Interphase precipitation occurred only in those samples in which high transformation temperatures led to distinctly polygonal-ferrite microestructures. In this latter case, precipitation occurred during a subsequent aging treatment, with a strong tendency for heterogeneous nucleation on dislocations. (Author) [pt

  2. Improving the adsorption of lignocelluloses of prehydrolysis liquor on precipitated calcium carbonate.

    Science.gov (United States)

    Fatehi, Pedram; Shen, Jing; Hamdan, Fadia C; Ni, Yonghao

    2013-02-15

    In this work, the adsorption of lignocelluloses of pre-hydrolysis liquor (PHL) on precipitated calcium carbonate (PCC) was studied in the presence of poly diallyldimethylammonium chloride (PDADMAC) or cationic polyacrylamide (CPAM). The results revealed that adding PCC to PHL and subsequently adding cationic polymers to PHL/PCC systems was more effective than adding cationic polymers to PHL and then adding PCC to the cationic polymer/PHL systems. At the same dosage applied, PDADMAC resulted in a higher adsorption of lignocelluloses on PCC than CPAM did due to its higher charge density. The adsorption of lignocelluloses on PCC reached its maximum in 3h, and a high temperature reduced the adsorption level as the adsorption was an exothermic process. The maximum adsorptions of 530 mg/g oligo-sugars, 203 mg/g lignin and 58 mg/g furfural on PCC were achieved via adding 0.8 mg/g PDADMAC2 (i.e. higher MW PDADMAC) to PCC/PHL system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Summer precipitation influences the stable oxygen and carbon isotopic composition of tree-ring cellulose in Pinus ponderosa.

    Science.gov (United States)

    Roden, John S; Ehleringer, James R

    2007-04-01

    The carbon and oxygen isotopic composition of tree-ring cellulose was examined in ponderosa pine (Pinus ponderosa Dougl.) trees in the western USA to study seasonal patterns of precipitation inputs. Two sites (California and Oregon) had minimal summer rainfall inputs, whereas a third site (Arizona) received as much as 70% of its annual precipitation during the summer months (North American monsoon). For the Arizona site, both the delta(18)O and delta(13)C values of latewood cellulose increased as the fraction of annual precipitation occurring in the summer (July through September) increased. There were no trends in latewood cellulose delta(18)O with the absolute amount of summer rain at any site. The delta(13)C composition of latewood cellulose declined with increasing total water year precipitation for all sites. Years with below-average total precipitation tended to have a higher proportion of their annual water inputs during the summer months. Relative humidity was negatively correlated with latewood cellulose delta(13)C at all sites. Trees at the Arizona site produced latewood cellulose that was significantly more enriched in (18)O compared with trees at the Oregon or California site, implying a greater reliance on an (18)O-enriched water source. Thus, tree-ring records of cellulose delta(18)O and delta(13)C may provide useful proxy information about seasonal precipitation inputs and the variability and intensity of the North American monsoon.

  4. Microstructural evolution and stability of tetragonal precipitates in Y2O3 partially-stabilized ZrO2 single crystals

    International Nuclear Information System (INIS)

    Martinez-Fernandez, J.; Jimenez-Melendo, M.; Dominguez-Rodriguez, A.

    1995-01-01

    The microstructure and morphology of tetragonal precipitates (t-ZrO 2 ) in yttria partially-stabilized zirconia single crystals containing various amounts of Y 2 O 3 (3, 4, 4.7 and 5.8 mol%) have been studied as a function of aging time at 1,600 C in air. The precipitate size and volume fraction of t-ZrO 2 phase were determined using transmission electron microscopy. The evolution of the precipitate volume fraction with aging time indicated that the precipitation reaction was completed after 24 h of annealing, in agreement with the values of the Y 2 O 3 composition in the matrix measured by analytical electron microscopy. Further aging coarsened the precipitates which joined together forming fiber-like particles of several micrometers in length and remaining untransformed despite their large size. The stability of the t-ZrO 2 precipitates against the tetragonal to monoclinic transformation in the ZrO 2 -Y 2 O 3 system seems to be related to interactions between precipitates due to coherency stresses rather than with their morphological characteristics

  5. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    Science.gov (United States)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  6. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  7. The Origin of Magnetite Crystals in ALH84001 Carbonate Disks

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S. J.; Wentworth, S. J.; McKay, D. S.; Gibson, E. K., Jr.

    2012-01-01

    Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks believed to have formed approx 3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships between the carbonate disks, their associated magnetites and the orthopyroxene matrix in which they are embedded. Comparison of these results with experimental thermal decomposition studies of sideritic carbonates conducted under a range of heating scenarios suggests that the magnetite nanocrystals in the ALH84001 carbonate disks are not the products of thermal decomposition.

  8. Synthesis of carbonated hydroxyapatite nanorods in liquid crystals

    Directory of Open Access Journals (Sweden)

    Daniella Dias Palombino de Campos

    2009-09-01

    Full Text Available Syntheses of calcium phosphate nanoparticles, carried out in systems formed from surfactant, oil and water, have resulted in materials with promising possibilities for application. The calcium phosphate particles were synthesized using two different liquid crystals, formed from RenexTM, cyclohexane and a salts solution. The morphology of the nanoparticles synthesized in the liquid crystals is similar to that of hydroxyapatite particles that form bone mineral, where collagen fibers connect these particles so as to form a composite. Therefore, the synthesis of calcium phosphate nanoparticles in the systems used in this work can advance current understanding of mineralization processes that result in the formation of bone mineral.

  9. Crystal growth of carbonate apatite using a CaCO3 flux.

    Science.gov (United States)

    Suetsugu, Y; Tanaka, J

    1999-09-01

    Single crystals of carbonate apatite were grown using a CaCO3 flux under an Ar gas pressure of 55 MPa. The crystals obtained were observed by scanning electron microscopy, optical microscopy and X-ray diffraction. Electron probe microanalyses and thermal analyses were performed. CO3 ions in planar triangle form replaced both OH sites and PO4 tetrahedral sites in the apatite structure: in particular, the OH sites were perfectly substituted by CO3 ions using this method.

  10. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting

    KAUST Repository

    Wang, Hong

    2017-01-04

    Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting.

  11. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting

    KAUST Repository

    Wang, Hong; Min, Shixiong; Ma, Chun; Liu, Zhixiong; Zhang, Weiyi; Wang, Qiang; Li, Debao; Li, Yangyang; Turner, Stuart; Han, Yu; Zhu, Haibo; Abou-Hamad, Edy; Hedhili, Mohamed N.; Pan, Jun; Yu, Weili; Huang, Kuo-Wei; Li, Lain-Jong; Yuan, Jiayin; Antonietti, Markus; Wu, Tao

    2017-01-01

    Nanoporous graphitic carbon membranes with defined chemical composition and pore architecture are novel nanomaterials that are actively pursued. Compared with easy-to-make porous carbon powders that dominate the porous carbon research and applications in energy generation/conversion and environmental remediation, porous carbon membranes are synthetically more challenging though rather appealing from an application perspective due to their structural integrity, interconnectivity and purity. Here we report a simple bottom–up approach to fabricate large-size, freestanding and porous carbon membranes that feature an unusual single-crystal-like graphitic order and hierarchical pore architecture plus favourable nitrogen doping. When loaded with cobalt nanoparticles, such carbon membranes serve as high-performance carbon-based non-noble metal electrocatalyst for overall water splitting.

  12. The influence of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putro, Triswantoro, E-mail: tris@physics.its.ac.id; Endarko, E-mail: endarko@physics.its.ac.id [Physics Department, Faculty of Mathematics and Natural Science Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 (Indonesia)

    2016-04-19

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, around 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.

  13. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    Directory of Open Access Journals (Sweden)

    Amanda García-García

    2016-06-01

    Full Text Available Single-wall carbon nanotubes (SWCNT are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  14. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization

    DEFF Research Database (Denmark)

    Tobler, Dominique Jeanette; Rodriguez Blanco, Juan Diego; Dideriksen, Knud

    2015-01-01

    Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid-mineral inte......Understanding the role of citrate in the crystallization kinetics of amorphous calcium carbonate (ACC) is essential to explain the formation mechanisms, stabilities, surface properties, and morphologies of CaCO3 biominerals. It also contributes to deeper insight into fluid...

  15. Adsorption of crystal violet with diatomite earth&carbon by a modification of hydrothermal carbonization process.

    Science.gov (United States)

    Zhang, Yanzhuo; Li, Jun; Chen, Guanghui; Bian, Wei; Lu, Yun; Li, Wenjing; Zheng, Zhaoming; Cheng, Xiaojie

    2016-01-01

    The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption-desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m(2) g(-1) for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R(2) > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° 0 and ΔG° < 0 demonstrated that the adsorption process was spontaneous and exothermic for dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye.

  16. Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe

    OpenAIRE

    Ma, L.; Guo, C.; Xin, X.; Yuan, S.; Wang, R.

    2013-01-01

    Soil carbon (C) and nitrogen (N) cycling are sensitive to changes in environmental factors and play critical roles in the responses of terrestrial ecosystems to natural and anthropogenic perturbations. This study was conducted to quantify the effects of belowground particulate litter (BPL) addition, increased precipitation and their interactions on soil C and N mineralization in two adjacent sites where belowground photosynthate allocation was manipulated through vegetation ...

  17. The microbial mats of Pavilion Lake microbialites: examining the relationship between photosynthesis and carbonate precipitation

    Science.gov (United States)

    Lim, D. S. S.; Hawes, I.; Mackey, T. J.; Brady, A. L.; Biddle, J.; Andersen, D. T.; Belan, M.; Slater, G.; Abercromby, A.; Squyres, S. W.; Delaney, M.; Haberle, C. W.; Cardman, Z.

    2014-12-01

    Pavilion Lake in British Columbia, Canada is an ultra-oligotrophic lake that has abundant microbialite growth. Recent research has shown that photoautotrophic microbial communities are important to modern microbialite development in Pavilion Lake. However, questions remain as to the relationship between changing light levels within the lake, variation in microbialite macro-structure, microbial consortia, and the preservation of associated biosignatures within the microbialite fabrics. The 2014 Pavilion Lake Research Project (PLRP) field program was focused on data gathering to understand these complex relationships by determining if a) light is the immediate limit to photosynthetic activity and, if so, if light is distributed around microbialites in ways that are consistent with emergent microbialite structure; and b) if at more local scales, the filamentous pink and green cyanobacterial nodular colonies identified in previous PLRP studies are centers of photosynthetic activity that create pH conditions suitable for carbonate precipitation. A diver-deployed pulse-amplitude modulated (PAM) fluorometer was used to collect synoptic in situ measurements of fluorescence yield and irradiance and across microbialites, focusing on comparing flat and vertical structural elements at a range of sites and depths. As well, we collected time series measurements of photosynthetic activity and irradiance at a set depth of 18 m across three different regions in Pavilion Lake. Our initial findings suggest that all microbialite surfaces are primarily light-limited regardless of depth or location within the lake. Shore based PAM fluorometry and microelectrode profiling of diver-collected samples suggest that pink and green nodules have different photosynthetic properties and pH profiles, and that nodular growth is likely to be the primary route of calcification due to the gelatinous covering the nodule creates. On-going tests for molecular signatures and isotopic shifts will allow for

  18. Precipitation behavior of the lower bainitic carbide in a medium-carbon steel containing Si, Mn and Mo

    International Nuclear Information System (INIS)

    Liu, J.; Luo, C.P.

    2006-01-01

    The fine microstructure, crystallographic features and ε-carbides precipitation behavior of lower bainite produced by isothermal transformation in a medium-carbon steel containing Si, Mn and Mo were investigated using transmission electronic microscopy. It was found that the microstructure produced by isothermal reaction at 320 deg. C was composed of a large amount of plate-like lower bainite with retained austenite embedded between the plates, and ε-carbides precipitated within them. Midrib and subunits were readily visible in the lower bainite plate. The bainite plate kept a G-T orientation relationship (OR) with the austenite. Selected area electron diffraction patterns of 'three phases in four variants' and analysis indicated that two variants of ε-carbides precipitated in a single bainitic ferrite plate. The two (or three) variants of ε-carbides can simultaneously keep a Jack OR with its 'bainite matrix', while keeping no fixed OR with the austenite. The crystallographic features of ε-carbides precipitated within the bainite were the same as those observed in tempered martensite. The results indicated that the bainitic transformation bore an analogy to the martensitic one in carbide precipitation

  19. Precipitation and Carbon-Water Coupling Jointly Control the Interannual Variability of Global Land Gross Primary Production

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Guanter, Luis; Zhou, Sha; Ciais, Philippe; Joiner, Joanna; Sitch, Stephen; Wu, Xiaocui; Nabel, Julian; Dong, Jinwei; hide

    2016-01-01

    Carbon uptake by terrestrial ecosystems is increasing along with the rising of atmospheric CO2 concentration. Embedded in this trend, recent studies suggested that the interannual variability (IAV) of global carbon fluxes may be dominated by semi-arid ecosystems, but the underlying mechanisms of this high variability in these specific regions are not well known. Here we derive an ensemble of gross primary production (GPP) estimates using the average of three data-driven models and eleven process-based models. These models are weighted by their spatial representativeness of the satellite-based solar-induced chlorophyll fluorescence (SIF). We then use this weighted GPP ensemble to investigate the GPP variability for different aridity regimes. We show that semi-arid regions contribute to 57% of the detrended IAV of global GPP. Moreover, in regions with higher GPP variability, GPP fluctuations are mostly controlled by precipitation and strongly coupled with evapotranspiration (ET). This higher GPP IAV in semi-arid regions is co-limited by supply (precipitation)-induced ET variability and GPP-ET coupling strength. Our results demonstrate the importance of semi-arid regions to the global terrestrial carbon cycle and posit that there will be larger GPP and ET variations in the future with changes in precipitation patterns and dryland expansion.

  20. Dynamics of mineral crystallization at inclusion-garnet interface from precipitated slab-derived fluid phase: first in-situ synchrotron x-ray measurements

    Science.gov (United States)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Nestola, Fabrizio

    2015-04-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. These inclusions are frequently hosted by minerals stable at mantle depths, such as garnet, and show the same textural features as fluid inclusions. The mineral infillings of the solid multiphase inclusions are generally assumed to have crystallized by precipitation from the solute load of dense supercritical fluids equilibrating with the host rock. Notwithstanding the validity of this assumption, the mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatised at ~ 4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometers and negative crystal shapes. Infilling minerals (spinel: 10-20 vol.%; amphibole, chlorite, talc, mica: 80- 90 vol.%) occur with constant volume ratios and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by means of Synchrotron Radiation at DLS-Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and their reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Epitaxy drives a first-stage nucleation of spinel under near-to-equilibrium conditions

  1. Growth Rate and Morphology of a Single Calcium Carbonate Crystal on Polysulfone Film Measured with Time Lapse Raman Micro Spectroscopy

    NARCIS (Netherlands)

    Liszka, B.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2016-01-01

    The growth of single, self- nucleated calcium carbonate crystals on a polysulfone (PSU) film was investigated with high resolution, time lapse Raman imaging. The Raman images were acquired on the interface of the polymer with the crystal. The growth of crystals could thus be followed in time. PSU is

  2. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    Science.gov (United States)

    Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.

    1991-01-01

    The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.

  3. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    International Nuclear Information System (INIS)

    Locci, I.E.; Noebe, R.D.; Bowman, R.R.; Miner, R.V.; Nathal, M.V.

    1991-01-01

    In this paper the possibility of producing NiAl reinforced with the G-phase (Ni 16 X 6 Si 7 ), where X is Zr or Hf, has been investigated. The microstructures of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and non-uniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles (≤10 nm) in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures ≥1000 K compared to binary NiAl single crystals

  4. Assessing potential impacts of phosphate precipitation on nitrous oxide emissions and the carbon footprint of wastewater treatment plants.

    Science.gov (United States)

    Kosse, Pascal; Lübken, Manfred; Schmidt, Torsten C; Lange, Ruben-Laurids; Wichern, Marc

    2018-02-15

    Metal salts are widely used for the precipitation of phosphorus during wastewater treatment transforming soluble orthophosphate to an insoluble salt. In practice, more complex reactions are taking place including a reduction of the chemical solubility of dissolved greenhouse gases, such as nitrous oxide, present in the wastewater stream. In this respect, it was postulated that phosphorous precipitation will lead to artificial N 2 O stripping and hence to an increased carbon footprint of wastewater treatment plants. From lab-scale experiments utilizing N 2 O-saturated synthetic sewage solutions, it was evidenced that metal salt addition leads to N 2 O stripping with 20.8 g N 2 O per liter for a FeCl 2 -based precipitant to 26.4 g N 2 O per liter for a Al n (OH) m Cl3 n-m -based precipitant. Taking this maximum potential stripping effect into account for a carbon footprint analysis, a potential contribution of 16.11 kg CO 2,eq ·PE -1 ·a -1 was calculated in a case study, where FeCl 3 was considered. With respect to the defined system boundary conditions, the overall on-site and off-site CO 2 emissions were raised by 34% from 46.87 kg CO 2,eq ·PE -1 ·a -1 to 62.97 kg CO 2,eq ·PE -1 ·a -1 through CO 2,eq coming from phosphorous precipitation.

  5. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    Science.gov (United States)

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. Copyright © 2015. Published by Elsevier B.V.

  6. Simultaneous alignment and dispersion of carbon nanotubes with lyotropic liquid crystals

    NARCIS (Netherlands)

    Lagerwall, J.P.F.; Scalia, G.; Haluska, M.; Dettlaff-Weglikowska, U.; Giesselmann, F.; Roth, S.

    2006-01-01

    We demonstrate that single-wall carbon nanotubes (SWCNTs) can be macroscopically aligned by means of templating in a lyotropic nematic liquid crystal (LC), a self-assembling anisotropic fluid with orientational but no translational order. The CNTs spontaneously adopt the alignment of the host, as we

  7. Dissolved organic carbon in the precipitation of Seoul, Korea: Implications for global wet depositional flux of fossil-fuel derived organic carbon

    Science.gov (United States)

    Yan, Ge; Kim, Guebuem

    2012-11-01

    Precipitation was sampled in Seoul over a one-year period from 2009 to 2010 to investigate the sources and fluxes of atmospheric dissolved organic carbon (DOC). The concentrations of DOC varied from 15 μM to 780 μM, with a volume-weighted average of 94 μM. On the basis of correlation analysis using the commonly acknowledged tracers, such as vanadium, the combustion of fossil-fuels was recognized to be the dominant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of DOC in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from eastern and northeastern China might contribute substantially. In light of the relatively invariant organic carbon to sulfur mass ratios in precipitation over Seoul and other urban regions around the world, the global magnitude of wet depositional DOC originating from fossil-fuels was calculated to be 36 ± 10 Tg C yr-1. Our study further underscores the potentially significant environmental impacts that might be brought about by this anthropogenically derived component of organic carbon in the atmosphere.

  8. Penggunaan precipitated calcium carbonate (PCC sebagai filler untuk sol karet sepatu olah raga

    Directory of Open Access Journals (Sweden)

    Herminiwati

    2010-12-01

    Full Text Available Abstract The objective of the research was to investigate the utilization of Precipitated Calcium Carbonate (PCC as filler in producing sport shoe rubber soles. PCC is a white filler needed for production of nonblack colour rubber products. There are four types of PCC that have been used including two local PCC from Wonosari and East Java, and two imported PCC from Japan and Taiwan. The amount of PCC added into the sport shoe sole rubber compound was varied in 30,45,60,75 and 90 per hundred rubber (phr. The compounding was carried-out by using two roll mills machine, and the compound was subsequently measured their optimum vulcanization time by using rheometer. The produced compound was then subjected to vulcanistion process by using hydrolic press at temperature 1500C and pressure 150 kg/ cm2. The quality of shoes sole vulcanisates were compare to standard quality of SNI. 12-7075-2005 about cemented system sport shoes. The results indicated that the best formula of rubber compound for sport shoes sole were made by using NR 80 phr, NBR 20 phr, paraffinic oil 10 phr, aluminium silicate 30 phr, ZnO 5 phr, TiO2 10 phr, stearic acid 1 phr, vulkanox SP 1 phr, paraffin wax 1 phr, TMTD 0,5 phr, CBS 2 phr, sulphur 1,2 phr with the amount of PCC Actifort 700 of 45 phr. The best formula meet the requirement SNI 12-7075-2005 and they were characterized by tensile sterength 16,79 N/mm2, elongation at break 529,92% tear resistance 9,06 N/mm2, specific gravity 1,28 g/cm3, hardness 55 shore A, Grasselli absrassion resistancing filler. The local PCC from Wonosari can be used for substitution of the imported PCC as the white filler for the production of rubber compound sport shoes sole. However, particle size reduction and coating or surface treatment of local PCC were needed for improving the quality and the role of reinforcing filler.

  9. Endolithic microbial communities in carbonate precipitates from serpentinite-hosted hyperalkaline springs of the Voltri Massif (Ligurian Alps, Northern Italy).

    Science.gov (United States)

    Quéméneur, Marianne; Palvadeau, Alexandra; Postec, Anne; Monnin, Christophe; Chavagnac, Valérie; Ollivier, Bernard; Erauso, Gaël

    2015-09-01

    The Voltri Massif is an ophiolitic complex located in the Ligurian Alps close to the city of Genova (Northern Italy) where several springs discharge high pH (up to 11.7), low salinity waters produced by the active serpentinization of the ultramafic basement. Mixing of these hyperalkaline waters with the river waters along with the uptake of atmospheric carbon dioxide forms brownish carbonate precipitates covering the bedrock at the springs. Diverse archaeal and bacterial communities were detected in these carbonate precipitates using 454 pyrosequencing analyses of 16S ribosomal RNA (rRNA) genes. Archaeal communities were dominated by members of potential methane-producing and/or methane-oxidizing Methanobacteriales and Methanosarcinales (Euryarchaeota) together with ammonia-oxidizing Nitrososphaerales (Thaumarchaeota) similar to those found in other serpentinization-driven submarine and terrestrial ecosystems. Bacterial communities consisted of members of the Proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, Chloroflexi, and Verrucomicrobia phyla, altogether accounting for 92.2% of total retrieved bacterial 16S rRNA gene sequences. Amongst Bacteria, potential chemolithotrophy was mainly associated with Alpha- and Betaproteobacteria classes, including nitrogen-fixing, methane-oxidizing or hydrogen-oxidizing representatives of the genera Azospirillum, Methylosinus, and Hydrogenophaga/'Serpentinomonas', respectively. Besides, potential chemoorganotrophy was attributed mainly to representatives of Actinobacteria and Planctomycetales phyla. The reported 16S rRNA gene data strongly suggested that hydrogen, methane, and nitrogen-based chemolithotrophy can sustain growth of the microbial communities inhabiting the carbonate precipitates in the hyperalkaline springs of the Voltri Massif, similarly to what was previously observed in other serpentinite-hosted ecosystems.

  10. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways

    OpenAIRE

    Donnet, Marcel; Bowen, Paul; Lemaître, Jacques

    2009-01-01

    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann’s approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thu...

  11. Coprecipitation of {sup 14}C and Sr with carbonate precipitates: The importance of reaction kinetics and recrystallization pathways

    Energy Technology Data Exchange (ETDEWEB)

    Hodkin, David J. [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Stewart, Douglas I. [School of Civil Engineering, University of Leeds (United Kingdom); Graham, James T. [National Nuclear Laboratory, Sellafield, Cumbria (United Kingdom); Burke, Ian T., E-mail: I.T.Burke@leeds.ac.uk [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2016-08-15

    This study investigated the simultaneous removal of Sr{sup 2+} and {sup 14}CO{sub 3}{sup 2−} from pH > 12 Ca(OH){sub 2} solution by the precipitation of calcium carbonate. Initial Ca{sup 2+}:CO{sub 3}{sup 2−} ratios ranged from 10:1 to 10:100 (mM:mM). Maximum removal of {sup 14}C and Sr{sup 2+} both occurred in the system containing 10 mM Ca{sup 2+} and 1 mM CO{sub 3}{sup 2−} (99.7% and 98.6% removal respectively). A kinetic model is provided that describes {sup 14}C and Sr removal in terms of mineral dissolution and precipitation reactions. The removal of {sup 14}C was achieved during the depletion of the initial TIC in solution, and was subsequently significantly affected by recrystallization of the calcite precipitate from an elongate to isotropic morphology. This liberated > 46% of the {sup 14}C back to solution. Sr{sup 2+} removal occurred as Ca{sup 2+} became depleted in solution and was not significantly affected by the recrystallization process. The proposed reaction could form the basis for low cost remediation scheme for {sup 90}Sr and {sup 14}C in radioactively contaminated waters (<$0.25 reagent cost per m{sup 3} treated). - Highlights: • 99.7% of {sup 14}C and 98.6% of Sr removed from aqueous solution by CaCO{sub 3} precipitation. • Remobilization of {sup 14}C observed during calcium carbonate recrystallization. • Sr displayed variable distribution coefficient (possibly affected by Ca:Sr ratio). • Reagent cost of $0.22/m{sup 3} of treated groundwater.

  12. Thermal properties of carbon inverse opal photonic crystals

    International Nuclear Information System (INIS)

    Aliev, Ali E.; Lee, Sergey B.; Baughman, Ray H.; Zakhidov, Anvar A.

    2007-01-01

    The thermal conductivity of thin-wall glassy carbon and graphitic carbon inverse opals, fabricated by templating of silica opal has been measured in the temperature range 10-400 K using transient pulse method. The heat flow through 100 A-thick layers of graphite sheets tiled on spherical surfaces of empty overlapping spheres arrayed in face-centered-cubic lattices has been analyzed in term of anisotropy factor. Taking into account high anisotropy factor in graphite, γ=342, we found that the thermal conductivity of inverse opal prepared by chemical vapor deposition infiltration is limited by heat flow across the graphitic layers in bottleneck, κ-perpendicular =3.95 W/m K. The electronic contribution to the thermal conductivity, κ e(300K) =3.7x10 -3 W/m K is negligible comparing to the measured value, κ (300K) =0.33 W/m K. The obtained phonon mean free path, l=90 nm is comparable with the graphite segments between hexagonal array of interconnections

  13. An analysis of calcium carbonate/polymer hybrid crystals applying contrast variation SANS

    International Nuclear Information System (INIS)

    Endo, Hitoshi; Schwahn, Dietmar; Coelfen, Helmut

    2004-01-01

    The geometry of calcium carbonate (CaCO 3 )/polymer hybrid crystals was investigated by means of the contrast variation small angle neutron scattering. Our sophisticated contrast variation method led to decomposition of the measured scattering intensities into partial scattering functions of each component. These decomposed partial scattering functions gave detailed information on each component in the hybrid particle. Especially, on the basis of the Babinet principle (or incompressibility hypothesis), the comparison of the cross terms led to the relationships of each scattering amplitude. In this way, we could determine the geometry of the hybrid crystals in detail

  14. An analysis of calcium carbonate/polymer hybrid crystals applying contrast variation SANS

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Hitoshi; Schwahn, Dietmar; Coelfen, Helmut

    2004-07-15

    The geometry of calcium carbonate (CaCO{sub 3})/polymer hybrid crystals was investigated by means of the contrast variation small angle neutron scattering. Our sophisticated contrast variation method led to decomposition of the measured scattering intensities into partial scattering functions of each component. These decomposed partial scattering functions gave detailed information on each component in the hybrid particle. Especially, on the basis of the Babinet principle (or incompressibility hypothesis), the comparison of the cross terms led to the relationships of each scattering amplitude. In this way, we could determine the geometry of the hybrid crystals in detail.

  15. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    Science.gov (United States)

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  16. Electrochemical and surface characterisation of carbon-film-coated piezoelectric quartz crystals

    International Nuclear Information System (INIS)

    Pinto, Edilson M.; Gouveia-Caridade, Carla; Soares, David M.; Brett, Christopher M.A.

    2009-01-01

    The electrochemical properties of carbon films, of thickness between 200 and 500 nm, sputter-coated on gold- and platinum-coated 6 MHz piezoelectric quartz crystal oscillators, as new electrode materials have been investigated. Comparative studies under the same experimental conditions were performed on bulk electrodes. Cyclic voltammetry was carried out in 0.1 M KCl electrolyte solution, and kinetic parameters of the model redox systems Fe(CN) 6 3-/4- and [Ru(NH 3 ) 6 ] 3+/2+ as well as the electroactive area of the electrodes were obtained. Atomic force microscopy was used in order to examine the surface morphology of the films, and the properties of the carbon films and the electrode-solution interface were studied by electrochemical impedance spectroscopy. The results obtained demonstrate the feasibility of the preparation and development of nanometer thick carbon film modified quartz crystals. Such modified crystals should open up new opportunities for the investigation of electrode processes at carbon electrodes and for the application of electrochemical sensing associated with the EQCM.

  17. Microbial decomposition of dead grassland roots and its influence on the carbon cycle under changing precipitation patterns

    Science.gov (United States)

    Becerra, C.; Schimel, J.

    2013-12-01

    Soil is the largest reservoir of organic carbon in terrestrial ecosystems and as such, represents a potential sink for carbon dioxide.The decomposition products of dead roots buried in the soil is a contributor to soil organic carbon. However, changing precipitation patterns may affect its fate by influencing the microbial community responsible for decomposing dead roots. To assess the impact of changing precipitation patterns, we constructed microcosms with grassland soil collected from the UCSB Sedgwick Reserve, an active and long-term research site, and dead roots from greenhouse-grown grass, Bromus diandrus. Microcosms were wetted continuously, every seven days, or every twenty days. Sets of microcosms were periodically deconstructed to assess the soil versus the roots-associated microbial community and its function. Differences in respiration rates of microcosms continuously wetted or wetted every 7 days versus microcosms wetted every 20 days existed for the first 70 days. After which, no differences in respiration rates were seen with microcosms containing roots and the no roots control. Relatedly, after a 70% roots mass loss by day 50, there was no difference in the respiration rate of microcosms containing roots and the no roots control. More than half of the roots mass loss had occurred by 30 days. By the end of the incubation period, the roots mass loss in continuously wet and 7-day wetted microcosms were over 80% compared to 67% for the microcosms wetted every 20 days. Microbial biomass in the soil were constant over time and showed no difference in treatment except with the no roots control during the first half of the incubation period. Hydrolytic enzyme activities (β-1,4-glucosidase; α-1,4-glucosidase; β-1,4-xylosidase; β-1,4-cellobiosidase) on the roots versus the soil attached to the roots were over an order greater and decreased faster with the exception of N-acetyl-glucosaminidase and acid phosphatase. Oxidative enzyme activities (phenol

  18. Matrix effects in nilotinib formulations with pH-responsive polymer produced by carbon dioxide-mediated precipitation

    DEFF Research Database (Denmark)

    Colombo, Stefano; Brisander, Magnus; Haglöf, Jakob

    2015-01-01

    Factors determining the pH-controlled dissolution kinetics of nilotinib formulations with the pH-titrable polymer hydroxypropyl methylcellulose phthalate, obtained by carbon dioxide-mediated precipitation, were mechanistically examined in acid and neutral environment. The matrix effect, modulating...... in the polymer matrix were mediated by hydrogen bonding between the drug and the phthalate groups on the polymer. Simultaneous Raman and UV-imaging studies of the effect of drug load on the swelling and dissolution of the polymer matrix revealed that high nilotinib load prevented matrix swelling on passage from...

  19. Effect of Corrosion Inhibitors on In Situ Leak Repair by Precipitation of Calcium Carbonate in Potable Water Pipelines.

    Science.gov (United States)

    Wang, Fei; Devine, Christina L; Edwards, Marc A

    2017-08-01

    Corrosion inhibitors can affect calcium carbonate precipitation and associated in situ and in-service water distribution pipeline leak repair via clogging. Clogging of 150 μm diameter leak holes represented by glass capillary tubes, in recirculating solutions that are supersaturated with calcite (Ω calcite = 13), demonstrated that Zn, orthophosphate, tripolyphosphate, and hexametaphosphate corrosion/scaling inhibitors hinder clogging but natural organic matter (NOM) has relatively little impact. Critical concentrations of phosphates that could inhibit leak repair over the short-term in one water tested were: tripolyphophate (0.05 mg/L as P) water systems.

  20. Calcium carbonate crystallizations on hypogean mural paintings: a pilot study of monitoring and diagnostics in Roman catacombs

    Science.gov (United States)

    Tapete, D.; Fratini, F.; Mazzei, B.; Camaiti, M.; Cantisani, E.; Riminesi, C.; Manganelli Del Fà, R.; Cuzman, O.; Tiano, P.

    2012-04-01

    One of the deterioration processes affecting mural paintings and rock surfaces within manmade hypogea consists in the formation of calcium carbonate crystallizations, which can create thick coverage and incrustations, even in some cases speleothems. These chemical reactions necessarily require the availability of calcium sources, which can be also of anthropogenic origin (e.g., lime-based mortars). Microclimate parameters also represent environmental forcing factors, on which the morphology and the degree of crystallinity of the precipitated carbonates depend. Understanding past/recent dynamics of carbonate precipitation implies a deep knowledge of the relationships between the exposed surfaces and the microclimate conditions, the impacts of external factors (e.g., groundwater infiltration and percolation from the overlying soil) and how they change over time. This is particularly fundamental for the preservation of hypogean sites which have not comparison with other typologies of environment due to their uniqueness, such as the ancient catacombs carved underneath the suburbs of Rome (Italy), since the 2nd century AD. In this paper we present the multidisciplinary methodological approach designed for the instrumental monitoring of the microphysical environment of the Catacombs of Saints Mark, Marcellian and Damasus, in the framework of the co-operation between the Institute for the Conservation and Valorization of Cultural Heritage and Pontifical Commission for Sacred Archaeology, Vatican, on the project HYPOGEA. Temperature inside the catacomb and on the surfaces, air relative humidity and CO2 concentration are the main of the parameters continuously measured by means of data loggers installed within the cubicles. Contemporarily, standardized methods of photographic documentation and digital micro-photogrammetry are used for change detection analysis of the painted surfaces and ancient plasters, as well as of the test areas purposely realized by applying fresh

  1. Experimental Precipitation of Carbonate Minerals: Effect of pH, Supersaturation and Substrate

    OpenAIRE

    Tetteh, Abednego

    2012-01-01

    Understanding the controlling factors and elucidating the requirements and conditions necessary for carbon dioxide (CO2) storage by mineral trapping (or carbonation) is of paramount interest for any technical application as a means for carbon dioxide capture and storage (CCS). The effect of pH, supersaturation and substrate has been studied using non-stirred batch reactors at initial constant temperature of 150 oC. These conditions are relevant for mineral trapping. A set of experiments was c...

  2. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  3. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    Science.gov (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO 2 transforms from a separate phase to CO 2 (aq) and HCO 3 - by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO 2 (aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO 2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO 2 and formation water. A better understanding of these effects on the CO 2 -water two-phase flow will improve predictions of the long-term CO 2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO 2 exsolution and mineral dissolution/precipitation on CO 2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO 2 (sc/g), CO 2 (aq), HCO 3 - , and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO 2 dissolved water is

  4. A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry

    Science.gov (United States)

    Han, Mei; Zhao, Yanyang; Zhao, Hui; Han, Zuozhen; Yan, Huaxiao; Sun, Bin; Meng, Ruirui; Zhuang, Dingxiang; Li, Dan; Liu, Binwei

    2018-04-01

    Based on the terminology of "aragonite seas" and "calcite seas", whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.

  5. Antisolvent precipitation technique: A very promising approach to crystallize curcumin in presence of polyvinyl pyrrolidon for solubility and dissolution enhancement.

    Science.gov (United States)

    Sadeghi, Fatemeh; Ashofteh, Mohammad; Homayouni, Alireza; Abbaspour, Mohammadreza; Nokhodchi, Ali; Garekani, Hadi Afrasiabi

    2016-11-01

    Curcumin with a vast number of pharmacological activities is a poorly water soluble drug which its oral bioavailability is profoundly limited by its dissolution or solubility in GI tract. Curcumin could be a good anticancer drug if its solubility could be increased. Therefore, the aim of the present study was to increase the dissolution rate of curcumin by employing antisolvent crystallization technique and to investigate the effect of polyvinyl pyrrolidone K30 (PVP) as colloidal particles in crystallization medium on resultant particles. Curcumin was crystalized in the presence of different amounts of PVP by antisolvent crystallization method and their physical mixtures were prepared for comparison purposes. The samples were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FT-IR). The solubility and dissolution of the treated and untreated curcumin were also determined. Antisolvent crystallization of curcumin led to the formation of particles with no definite geometric shape. It was interesting to note that the DSC and XRPD studies indicated the formation of a new polymorph and less crystallinity for particles crystallized in the absence of PVP. However, the crystallized curcumin in the presence of PVP was completely amorphous. All crystalized curcumin samples showed much higher dissolution rate compared to untreated curcumin. The amount of curcumin dissolved within 10 for treated curcumin in the presence of PVP (1:1 curcumin:PVP) was 7 times higher than untreated curcumin and this enhancement in the dissolution for curcumin samples crystallized in the absence of PVP was around 5 times. Overall' the results of this study showed that antisolvent crystallization method in the absence or presence of small amounts of PVP is very efficient in increasing the dissolution rate of curcumin to achieve better efficiency for curcumin. Copyright © 2016

  6. Crystal structure of the (REE)–uranyl carbonate mineral shabaite-(Nd)

    Czech Academy of Sciences Publication Activity Database

    Plášil, Jakub; Škoda, R.

    2017-01-01

    Roč. 62, č. 2 (2017), s. 97-105 ISSN 1802-6222 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : shabaite-(Nd) * uranyl carbonate * rare-earth elements * crystal structure * mineral evolution Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 0.609, year: 2016

  7. Crystal structure of the (REE)-uranyl carbonate mineral kamotoite-(Y)

    Czech Academy of Sciences Publication Activity Database

    Plášil, Jakub; Petříček, Václav

    2017-01-01

    Roč. 81, č. 3 (2017), s. 653-660 ISSN 0026-461X R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : kamotoite-(Y) * uranyl carbonate * rare-earth elements * crystal structure Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.285, year: 2016

  8. Fabrication of calcite blocks from gypsum blocks by compositional transformation based on dissolution-precipitation reactions in sodium carbonate solution.

    Science.gov (United States)

    Ishikawa, Kunio; Kawachi, Giichiro; Tsuru, Kanji; Yoshimoto, Ayami

    2017-03-01

    Calcium carbonate (CaCO 3 ) has been used as a bone substitute, and is a precursor for carbonate apatite, which is also a promising bone substitute. However, limited studies have been reported on the fabrication of artificial calcite blocks. In the present study, cylindrical calcite blocks (ϕ6×3mm) were fabricated by compositional transformation based on dissolution-precipitation reactions using different calcium sulfate blocks as a precursor. In the dissolution-precipitation reactions, both CaSO 4 ·2H 2 O and CaSO 4 transformed into calcite, a polymorph of CaCO 3 , while maintaining their macroscopic structure when immersed in 1mol/L Na 2 CO 3 solution at 80°C for 1week. The diametral tensile strengths of the calcite blocks formed using CaSO 4 ·2H 2 O and CaSO 4 were 1.0±0.3 and 2.3±0.7MPa, respectively. The fabrication of calcite blocks using CaSO 4 ·2H 2 O and CaSO 4 proposed in this investigation may be a useful method to produce calcite blocks because of the self-setting ability and high temperature stability of gypsum precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Biosynthesis of l-Ascorbic Acid and Conversion of Carbons 1 and 2 of l-Ascorbic Acid to Oxalic Acid Occurs within Individual Calcium Oxalate Crystal Idioblasts1

    Science.gov (United States)

    Kostman, Todd A.; Tarlyn, Nathan M.; Loewus, Frank A.; Franceschi, Vincent R.

    2001-01-01

    l-Ascorbic acid (AsA) and its metabolic precursors give rise to oxalic acid (OxA) found in calcium oxalate crystals in specialized crystal idioblast cells in plants; however, it is not known if AsA and OxA are synthesized within the crystal idioblast cell or transported in from surrounding mesophyll cells. Isolated developing crystal idioblasts from Pistia stratiotes were used to study the pathway of OxA biosynthesis and to determine if idioblasts contain the entire path and are essentially independent in OxA synthesis. Idioblasts were supplied with various 14C-labeled compounds and examined by micro-autoradiography for incorporation of 14C into calcium oxalate crystals. [14C]OxA gave heavy labeling of crystals, indicating the isolated idioblasts are functional in crystal formation. Incubation with [1-14C]AsA also gave heavy labeling of crystals, whereas [6-14C]AsA gave no labeling. Labeled precursors of AsA (l-[1-14C]galactose; d-[1-14C]mannose) also resulted in crystal labeling, as did the ascorbic acid analog, d-[1-14C]erythorbic acid. Intensity of labeling of isolated idioblasts followed the pattern OxA > AsA (erythorbic acid) > l-galactose > d-mannose. Our results demonstrate that P. stratiotes crystal idioblasts synthesize the OxA used for crystal formation, the OxA is derived from the number 1 and 2 carbons of AsA, and the proposed pathway of ascorbic acid synthesis via d-mannose and l-galactose is operational in individual P. stratiotes crystal idioblasts. These results are discussed with respect to fine control of calcium oxalate precipitation and the concept of crystal idioblasts as independent physiological compartments. PMID:11161021

  10. The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions

    Directory of Open Access Journals (Sweden)

    C. Wang

    2009-10-01

    Full Text Available Previous works have suggested that the direct radiative forcing (DRF of black carbon (BC aerosols are able to force a significant change in tropical convective precipitation ranging from the Pacific and Indian Ocean to the Atlantic Ocean. In this in-depth analysis, the sensitivity of this modeled effect of BC on tropical convective precipitation to the emissions of BC from 5 major regions of the world has been examined. In a zonal mean base, the effect of BC on tropical convective precipitation is a result of a displacement of ITCZ toward the forcing (warming hemisphere. However, a substantial difference exists in this effect associated with BC over different continents. The BC effect on convective precipitation over the tropical Pacific Ocean is found to be most sensitive to the emissions from Central and North America due to a persistent presence of BC aerosols from these two regions in the lowermost troposphere over the Eastern Pacific. The BC effect over the tropical Indian and Atlantic Ocean is most sensitive to the emissions from South as well as East Asia and Africa, respectively. Interestingly, the summation of these individual effects associated with emissions from various regions mostly exceeds their actual combined effect as shown in the model run driven by the global BC emissions, so that they must offset each other in certain locations and a nonlinearity of this type of effect is thus defined. It is known that anthropogenic aerosols contain many scattering-dominant constituents that might exert an effect opposite to that of absorbing BC. The combined aerosol forcing is thus likely differing from the BC-only one. Nevertheless, this study along with others of its kind that isolates the DRF of BC from other forcings provides an insight of the potentially important climate response to anthropogenic forcings particularly related to the unique particulate solar absorption.

  11. Sustained release of nucleic acids from polymeric nanoparticles using microemulsion precipitation in supercritical carbon dioxide.

    Science.gov (United States)

    Ge, Jun; Jacobson, Gunilla B; Lobovkina, Tatsiana; Holmberg, Krister; Zare, Richard N

    2010-12-21

    A general approach for producing biodegradable nanoparticles for sustained nucleic acid release is presented. The nanoparticles are produced by precipitating a water-in-oil microemulsion in supercritical CO(2). The microemulsion consists of a transfer RNA aqueous solution (water phase), dichloromethane containing poly(l-lactic acid)-poly(ethylene glycol) (oil phase), the surfactant n-octyl β-D-glucopyranoside, and the cosurfactant n-butanol.

  12. Lanthanide-activated Na5Gd9F32 nanocrystals precipitated from a borosilicate glass: Phase-separation-controlled crystallization and optical property

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Chen, Yan; Yu, Hua; Lu, Hongwei; Ji, Zhenguo; Huang, Ping

    2015-01-01

    Highlights: • Na 5 Gd 9 F 32 nanocrystals embedded glass ceramics were fabricated for the first time. • Such glass ceramics were achieved by phase-separation-controlled crystallization. • Elemental mapping evidenced the segregation of activators into the Na 5 Gd 9 F 32 lattice. • Luminescent color could be tuned by controlling glass crystallization temperature. - Abstract: Lanthanide-activated cubic Na 5 Gd 9 F 32 nanocrystals were precipitated from a borosilicate glass with a specifically designed composition. The precursor glass is already phase-separated after melt-quenching, which is beneficial to the realization of the controllable glass crystallization for affording desirable size, morphology and activator partition. Elemental mapping in the scanning transmission electron microscopy evidenced that the segregation of lanthanide ions into the Na 5 Gd 9 F 32 lattice was in situ formed without the requirement of long-range ionic diffusion. Impressively, such fabricated glass ceramic co-doped with Yb 3+ /Er 3+ ions exhibited intense upconversion luminescence, which was about 500 times higher than that of the precursor glass, and its luminescent color could be easily tuned from red to green by controlling glass crystallization temperature. It is anticipated that such phase-separation synthesis strategy with precise control over nanostructure of glass ceramics offer a great opportunity to design other highly transparent nanocomposites with a wide range of tunable optical properties

  13. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Yu-Wei [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yang, Ko-Ho, E-mail: yangkoho@cc.kuas.edu.tw [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Dental Materials Research Center, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yeh, Sung-Wei [Metal Industries Research and Development Centre, 1001 Kaohsiung Highway, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100, Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)

    2011-06-16

    Highlights: > The thermal behavior of 3Y-TZP precursor powders had been investigated. > The crystallization behavior of 3Y-TZP nanopowders had been investigated. > The activation energy for crystallization of tetragonal ZrO{sub 2} was obtained. > The growth morphology parameter n is approximated as 2.0. > The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO{sub 2} crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 {+-} 21.9 kJ mol{sup -1}, was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO{sub 2} was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  14. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    International Nuclear Information System (INIS)

    Hsu, Yu-Wei; Yang, Ko-Ho; Chang, Kuo-Ming; Yeh, Sung-Wei; Wang, Moo-Chin

    2011-01-01

    Highlights: → The thermal behavior of 3Y-TZP precursor powders had been investigated. → The crystallization behavior of 3Y-TZP nanopowders had been investigated. → The activation energy for crystallization of tetragonal ZrO 2 was obtained. → The growth morphology parameter n is approximated as 2.0. → The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO 2 crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 ± 21.9 kJ mol -1 , was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO 2 was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  15. Crystal size effect on the electrochemical oxidation of formate on carbon-supported palladium nanoparticles

    International Nuclear Information System (INIS)

    Santos, Rayana Marcela Izidoro da Silva; Nakazato, Roberto Zenhei; Ciapina, Eduardo Goncalves

    2016-01-01

    Full text: The electrochemical oxidation of formate in alkaline electrolytes has emerged an a promising anodic reaction in the Direct Formate Fuel Cells[1]. Although palladium is considered to be one of the best electro catalyst for the oxidation of formate, important structure-activity relationships are still not understood. In the present work, we investigated the effect of the size of the palladium crystals in the electrochemical oxidation of formate in 0.1 mol L -1 KOH. Carbon-supported palladium nanoparticles (Pd/C) were prepared by chemical reduction of palladium (II) chloride in aqueous media by sodium borohydride in the presence of varying quantities of sodium citrate in the reaction media to obtain metallic crystals with distinct sizes. Analysis of the X-ray diffraction profile revealed the presence of palladium crystals in the range of 6 to 19 nm. Potentiostatic oxidation of formate on the distinct Pd/C samples revealed a volcano-like dependence of the specific activity with the size of the palladium crystals, presenting the highest activity for crystals around 7.5 nm. Reference: [1] A.M. Bartrom, J.L. Haan, The direct formate fuel cell with an alkaline anion exchange membrane, J. Power Sources. 214 (2012) 68-74. (author)

  16. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.

    Science.gov (United States)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Benning, Liane G

    2011-01-01

    The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.

  17. Radiological hazards of TENORM in precipitated calcium carbonate generated as waste at nitrophosphate fertilizer plant in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Javied, Sabiha, E-mail: sabihajavied@yahoo.com [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan); Akhtar, Nasim [Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad (Pakistan); Tufail, M. [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad (Pakistan)

    2011-08-15

    Highlights: {yields} NORM (naturally occurring radioactive material) in phosphate rock (PR) is converted to TENORM (technologically enhanced naturally occurring radioactive material) as a result of chemical processing of the PR to make phosphate fertilizers. {yields} Precipitated calcium carbonate (PCC) is generated as process waste during nitrophosphate fertilizer production, which contains TENORM. {yields} Activity concentration of the radionuclide in the TENORM was measured using gamma spectrometry and radiological hazard was derived from the measured activities. {yields} Radiological pollution in the environment from TENORM in the PCC has been addressed. {yields} Restricted application of the PCC dose not pose a significant radiological hazard. -- Abstract: The NORM (naturally occurring radioactive material) in phosphate rock is transferred as TENORM (technologically enhanced naturally occurring radioactive material) to phosphatic fertilizers and to the waste generated by the chemical processes. The waste generated at the NP (nitrophosphate) fertilizer plant at Multan in Pakistan is PCC (precipitated calcium carbonate). Thirty samples of the PCC were collected from the heaps of the waste near the fertilizer plant. Activity concentrations of radionuclides in the waste samples were measured by using the technique of gamma ray spectrometry consisting of coaxial type HPGe (high purity germanium) detector coupled with a PC (personal computer) based MCA (multichannel analyzer) through a spectroscopy amplifier. Activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K in the waste samples were determined to be 273 {+-} 23 (173-398), 32 {+-} 4 (26-39) and 56 {+-} 5 (46-66) Bq kg{sup -1} respectively. The activity concentration of {sup 226}Ra in the PCC waste was found to be higher than that in naturally occurring calcium carbonate (limestone and marble) and in worldwide soil. Radiological hazard was estimated from indoor and outdoor exposure to gamma rays from

  18. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.

    Science.gov (United States)

    Lee, Byoung-Sun; Seo, Jong-Hyun; Son, Seoung-Bum; Kim, Seul Cham; Choi, In-Suk; Ahn, Jae-Pyoung; Oh, Kyu Hwan; Lee, Se-Hee; Yu, Woong-Ryeol

    2013-07-23

    In the foreseeable future, there will be a sharp increase in the demand for flexible Li-ion batteries. One of the most important components of such batteries will be a freestanding electrode, because the traditional electrodes are easily damaged by repeated deformations. The mechanical sustainability of carbon-based freestanding electrodes subjected to repeated electrochemical reactions with Li ions is investigated via nanotensile tests of individual hollow carbon nanofibers (HCNFs). Surprisingly, the mechanical properties of such electrodes are improved by repeated electrochemical reactions with Li ions, which is contrary to the conventional wisdom that the mechanical sustainability of carbon-based electrodes should be degraded by repeated electrochemical reactions. Microscopic studies reveal a reinforcing mechanism behind this improvement, namely, that inserted Li ions form irreversible face-centered-cubic (FCC) crystals within HCNF cavities, which can reinforce the carbonaceous matrix as strong second-phase particles. These FCC Li crystals formed within the carbon matrix create tremendous potential for HCNFs as freestanding electrodes for flexible batteries, but they also contribute to the irreversible (and thus low) capacity of HCNFs.

  19. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    Science.gov (United States)

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  20. The temperature dependent strontium isotope fractionation (δ88/86Sr) during calcium carbonate precipitation

    International Nuclear Information System (INIS)

    Fietzke, J.; Eisenhauer, A.

    2006-01-01

    Full text: In order to study the influence of stable isotope fractionation during inorganic and biologically controlled CaCO 3 precipitation we have developed the analytical principles for the measurement of strontium (Sr) isotope fractionation. We have established a measurement protocol for the application on a MC-ICP-MS (AXIOM) using the common bracketing standard technique. The Sr-standard CRM NBS987 was used as reference material for all measurements and to calculate the Sr fractionation. Latter value is expressed by the δ-notation defined as: δ 88/86 Sr = [( 88 Sr/ 86 Sr)sample / ( 88 Sr/ 86 Sr)standard ] * 1000 -1. A first set of experiments focused on the temperature dependency of Sr-isotope fractionation. For this purpose inorganically precipitated aragonite and calcite was prepared under controlled conditions in a temperature range from 10 to 50 o C. In addition, cultured and naturally grown corals were analyzed for their δ 88/86 Sr values. Repeated measurements of IAPSO seawater standard showed a mean δ 88/86 Sr value of 0.383 ± 0.008 (2 SEM) being the isotopically heaviest material measured so far. The first results of the inorganically precipitated aragonite and the natural corals revealed a clear temperature dependency of the δ 88/86 Sr values. For inorganic aragonite the slope of this correlation is about 0.0055 permil/ o C. However, for naturally grown corals (Pavona clavus) a 6 fold steeper slope of 0.033 permil/ o C was determined. This strong temperature dependency implies the potential to use stable Sr isotopes as a new marine (paleo)temperature proxy. (author)

  1. Impact of elevated CO_2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO_2 sequestration

    International Nuclear Information System (INIS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.

    2017-01-01

    Interest in anthropogenic CO_2 release and associated global climatic change has prompted numerous laboratory-scale and commercial efforts focused on capturing, sequestering or utilizing CO_2 in the subsurface. Known carbonate mineral precipitating microorganisms, such as the anaerobic sulfate-reducing bacteria (SRB), could enhance the rate of conversion of CO_2 into solid minerals and thereby improve long-term storage of captured gasses. The ability of SRB to induce carbonate mineral precipitation, when exposed to atmospheric and elevated pCO_2, was investigated in laboratory scale tests with bacteria from organic-rich sediments collected from hypersaline Lake Estancia, New Mexico. The enriched SRB culture was inoculated in continuous gas flow and batch reactors under variable headspace pCO_2 (0.0059 psi to 20 psi). Solution pH, redox conditions, sulfide, calcium and magnesium concentrations were monitored in the reactors. Those reactors containing SRB that were exposed to pCO_2 of 14.7 psi or less showed Mg-calcite precipitation. Reactors exposed to 20 psi pCO_2 did not exhibit any carbonate mineralization, likely due to the inhibition of bacterial metabolism caused by the high levels of CO_2. Hydrogen, lactate and formate served as suitable electron donors for the SRB metabolism and related carbonate mineralization. Carbon isotopic studies confirmed that ∼53% of carbon in the precipitated carbonate minerals was derived from the CO_2 headspace, with the remaining carbon being derived from the organic electron donors, and the bicarbonate ions available in the liquid medium. The ability of halotolerant SRB to induce the precipitation of carbonate minerals can potentially be applied to the long-term storage of anthropogenic CO_2 in saline aquifers and other ideal subsurface rock units by converting the gas into solid immobile phases. - Highlights: • SRB under study are capable of precipitating calcite up to 14.7 psi pCO_2. • At 20 psi pCO_2, bacterial activity

  2. ANALYSIS ON THE BEHAVIOR OF PRECIPITATES IN ULTRA-THIN HOT STRIP OF PLAIN LOW CARBON STEEL PRODUCED BY COMPACT STRIP PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    H. Yu; Y.L. Kang; H.B. Dong; D.L. Liu; J. Fu

    2002-01-01

    This paper investigated the mechanism of precipitation and its influence upon prop-erties of ultra-thin hot strips of low carbon steel produced by CSP techniques usingexperiment and thermodynamics theory. The experimental results show that thereare lots of fine and dispersive precipitates in microstructures. By analysis, most ofaluminum nitrides are in grains, while coexisted precipitates of MnS are along grainboundaries. Coexisted precipitates compose cation-vacancy type oxides such as Al2O3in the core, while MnS is at the fringe of surface. The precipitation behavior of AlNand MnS in the hot strip is studied by thermodynamic calculation. At last, implica-tions between strengthening effect and techniques are analyzed using obtained solubilityproducts.

  3. Soil Dissolved Organic Carbon Fluxes are Controlled by both Precipitation and Longer-Term Climate Effects on Boreal Forest Ecosystems

    Science.gov (United States)

    Hotchkiss, E. R.; Ziegler, S. E.; Edwards, K. A.; Bowering, K.

    2017-12-01

    Water acts as a control on the cycling of organic carbon (OC). Forest productivity responses to climate change are linked to water availability while water residence time is a major control on OC loss in aquatic ecosystems. However, controls on the export of terrestrial OC to the aquatic environment remains poorly understood. Transport of dissolved OC (DOC) through soils both vertically to deeper soil horizons and into aquatic systems is a key flux of terrestrial OC, but the climate drivers controlling OC mobilized from soils is poorly understood. We installed zero-tension lysimeters across similar balsam fir forest sites within three regions that span a MAT gradient of 5.2˚C and MAP of 1050-1500 mm. Using soil water collected over all seasons for four years we tested whether a warmer and wetter climate promotes greater DOC fluxes in ecosystems experiencing relatively high precipitation. Variability within and between years was compared to that observed across climates to test the sensitivity of this flux to shorter relative to longer-term climate effects on this flux. The warmest and wettest southern site exhibited the greatest annual DOC flux (25 to 28 g C m-2 y-1) in contrast to the most northern site (8 to 10 g C m -2 y-1). This flux represented 10% of litterfall C inputs across sites and surpassed the DOC export from associated forested headwater streams (1 to 16 g C m-2 y-1) suggesting terrestrial to aquatic interface processing. Historical climate and increased soil C inputs explain the greater DOC flux in the southern region. Even in years with comparable annual precipitation among regions the DOC flux differed by climate region. Furthermore, neither quantity nor form of precipitation could explain inter-annual differences in DOC flux within each region. Region specific relationships between precipitation and soil water flux instead suggest historical climate effects may impact soil water transport efficiency thereby controlling the regional variation in

  4. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit

    International Nuclear Information System (INIS)

    Ferrio, J.P.; Voltas, J.

    2005-01-01

    Carbon and oxygen isotope compositions (δ 13 C, δ 18 O) in tree rings have been shown to bear relevant climatic signals. However, little is known about the interrelationship between both isotopes in wood constituents for species from other than relatively wet climates. We hypothesized that in a species adapted to temporary droughts (e.g. Pinus halepensis Mill.) the signal derived from δ 18 O in precipitation would be hidden by the strong variability in leaf transpirative enrichment. To test this assumption, we compared the effect of precipitation, temperature and vapour pressure deficit (VPD) on δ 18 O and δ 13 C along 23 sites covering the ecological range for this species. We extracted the cores from the south side of four to six adult dominant trees per aspect (north/south) within each site. For each aspect and site, fragments of the period 1975-1999 were pooled and milled to a fine powder. To further test the postulated need for cellulose purification in the assessment of climatic information, we studied these relationships in whole and extracted wood, holocellulose and lignin. In all wood fractions, δ 13 C was related to annual precipitation [r=0.58 (P 18 O only holocellulose showed consistent relationships with climatic data, being strongly significant for VPD [r=0.66 (P 18 O in precipitation, confirming that transpirative enrichment (driven by VPD) dampened the source signal in P. halepensis. The relationships between δ 13 C and δ 18 O were generally poor, regardless of the wood constituent, suggesting that although both variables were somewhat related to transpirative demand, they were relatively independent. This was further confirmed by building stepwise models using both isotopes to predict annual and seasonal precipitation [r 2 = 0.34 (P 2 = 0.15 (P 2 = 0.31 (P< 0.01) to 0.55 (P< 0.001)]. We concluded that, even when partially describing the same climate variables, the information underlying the two isotopes can be regarded as complementary

  5. Microbial Carbonate Precipitation by Synechococcus PCC8806, LS0519 and Synechocystis PCC6803 on Concrete Surfaces and in Low Saturation Solution

    Science.gov (United States)

    Zhu, T.; Lin, Y.; Dittrich, M.

    2015-12-01

    Microbial carbonate precipitation (MCP) by cyanobacteria has been recognized in a variety of environment such as freshwater, marine, cave, and even desert. Recently, their calcification potential has been tested in an emerging technology-- bioconcrete. This study is to explore the calcification by three cyanobacteria strains under different environmental conditions. Experiment A was carried out in 2mM NaHCO3 and 5mM CaCl2, with a cell concentration of 107 cells L-1. In experiment B, one side of the concrete surface was treated with bacteria and then immersed in the solution containing 0.4 mM NaHCO3 and 300 mM CaCl2. In experiment A, the pH of the abiotic condition remained constant around 8.55, while that of biotic conditions increased by 0.15 units in the presence of LS0519, and by 0.3 units in the presence of PCC8806 or PCC6803 within 8 hours. Over a period of 30 hours, PCC8806, LS0519 and PCC6803 removed 0.1, 0.12 and 0.2 mM calcium from the solution respectively. After 30 hours, the alkalinity of the solution decreased by 30 mg/L, 10 mg/L and 5 mg/L respectively in the presence of PCC6803, LS0519 and PCC8806. Under scanning electron microscopy (SEM), no precipitate was found in the abiotic condition, while calcium carbonate was associated by all the three strains. Among them, PCC6803 precipitated more carbonates. In experiment B, LS0519 and PCC8806 increased the pH with a value of 0.25, while PCC6803 increased the pH by 0.33 units. SEM shows LS0519 was less likely attached to the concrete surface. Neither did the precipitates on concrete surface differ from that in the abiotic condition. In comparison, PCC8806 and PCC6803 were closely associated with 8-μm porous precipitates. Cells were either found enclosed in precipitates or connecting two precipitates. In conclusion, all the three strains triggered the calcium carbonate precipitation. LS0519 has a little impact on the carbonate precipitation in the solution, but negligent influence on the concrete surface

  6. Real-time monitoring of calcium carbonate precipitation from geothermal brines

    Energy Technology Data Exchange (ETDEWEB)

    Stamatakis, E.; Muller, J.; Chatzichristos, C.

    2005-01-01

    The objective of the present work has been to study calcite scale formation in geothermal wells. Effective scale management requires on-line monitoring of scaling tendencies as well as detection and identification of scale deposits. In that respect, a gamma-ray attenuation technique was designed and evaluated in the lab for the real-time measurements of scale formation under flow conditions. As a first step we have obtained a preliminary thermodynamic prediction of the stability of a specific geothermal brine (GPK2-S2), regarding CaCO{sub 3} precipitation, under various P-T conditions, using the MultiScale simulation tool. Based on the tool's outcomes the experimental work for the study of calcite scale formation focused on confirming the results. The aim was to find the lowest system pressure at which no scale takes place under specific conditions (temperature, water composition, inhibitor concentration). The precipitation rates for calcite scale in absence and presence of a scale inhibitor were also obtained in the course of this study. (author)

  7. Kinetic study of a Layout for the Carbon Capture with Aqueous Ammonia without Salt Precipitation

    DEFF Research Database (Denmark)

    Bonalumi, Davide; Lillia, Stefano; Valenti, Gianluca

    2017-01-01

    This paper focuses on carbon capture in an Ultra Super Critical power plant. The technology selected for CO2 capture is based on cooled ammonia scrubbing in post-combustion mode, as recently investigated by the authors in another work. Here, a rate-based approach is adopted. In detail, a specific...

  8. Bainite transformation of low carbon Mn-Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention

    International Nuclear Information System (INIS)

    Jacques, P.; Catlin, T.; Geerlofs, N.; Kop, T.; Zwaag, S. van der; Delannay, F.

    1999-01-01

    Studies dealing with TRIP-assisted multiphase steels have emphasized the crucial role of the bainite transformation of silicon-rich intercritical austenite in the achievement of a good combination of strength and ductility. The present work deals with the bainite transformation in two steels differing in their silicon content. It is shown that both carbon enrichment of residual austenite and cementite precipitation influences the kinetics of the bainite transformation. A minimum silicon content is found to be necessary in order to prevent cementite precipitation from austenite during the formation of bainitic ferrite in such a way as to allow stabilisation of austenite by carbon enrichment. (orig.)

  9. Precipitation in solid solution and structural transformations in single crystals of high rhenium ruthenium-containing nickel superalloys at high-temperature creep

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A.A.; Petrushin, N.V.; Zaitsev, D.V.; Treninkov, I.A.; Filonova, E.V. [All-Russian Scientific Research Institute of Aviation Materials (VIAM), Moscow (Russian Federation)

    2010-07-01

    The phase composition and structure of single crystals of two superalloys (alloy 1 and alloy 2) were investigated in this work. For alloy 1 (Re - 9 wt%) the kinetics of precipitation in solid solution at heat treatment (HT) was investigated. TEM and X-Ray examinations have revealed that during HT rhombic phase (R-phase) precipitation (Immm class (BCR)) occurs. The TTT diagram is plotted, it contains the time-temperature area of the existence of R-phase particles. The element content of R-phase is identified (at. %): Re- 51.5; Co- 23.5; Cr- 14.8; Mo- 4.2; W- 3.3; Ta- 2.7. For alloy 2 (Re - 6.5 wt %, Ru - 4 wt %) structural transformations at high-temperature creep are investigated. By dark-field TEM methods it is established, that in alloy 2 the additional phase with a rhombic lattice is formed during creep. Particles of this phase precipitate in {gamma}-phase and their quantity increases during high-temperature creep. It is revealed that during creep 3-D dislocation network is formed in {gamma}-phase. At the third stage of creep the process of inversion structure formation is observed in the alloy, i.e. {gamma}'-phase becomes a matrix. Thus during modeling creep the volume fraction of {gamma}'-phase in the samples increases from 30% (at creep duration of 200 hrs) up to 55% (at 500 hrs). The processes of structure formation in Re and Ru-containing nickel superalloys are strongly affected by decomposition of solid solution during high-temperature creep that includes precipitation of additional TCP-phases. (orig.)

  10. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas. Phase I. Final Topical Report

    International Nuclear Information System (INIS)

    Constantz, Brent; Seeker, Randy; Devenney, Martin

    2010-01-01

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO 2 to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM(trademark) was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  11. Modification of asphaltic concrete with a mineral polymeric additive based on butadiene-styrene rubber and chemically precipitated calcium carbonate

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2016-01-01

    Full Text Available Modification of asphaltic concrete with a mineral polymeric additive based on butadiene – styrene rubber and chemically precipitated calcium carbonate. This paper presents the results of the study of physical – mechanical and service properties of the asphaltic concrete modified with the mineral polymeric composition. Calcium carbonate is used both as a filler and a coagulant. The chalk was preliminarily ground and hydrophobizated by stearic acid. These operations contribute to even distribution of the filler and interfere with lump coagulation. As a result of the experiments, it was found that the best results were obtained by combining the operations of dispersion and hydrophobization. The optimal amount of stearic acid providing the finest grinding in a ball mill is a content from 3 to 5% by weight. The optimal grinding time of the filler was found (4–6 hours. With increasing dispersion time the particles form agglomerates. Filling the butadiene styrene latex with the hydrophobic fine-grained calcium carbonate was carried out in the laboratory mixer. As a result of the experimental works, it was found that the best distribution of the filler takes place with ratio of rubber: chalk – 100:400. The resulting modifier was subjected to the thermal analysis on the derivatograph to determine its application temperature interval. A marked reduction in weight of the mineral polymeric modifier begins at 350 °C. Thus, high temperature of the modifier destruction allows to use it at the temperature of the technological process of asphaltic concrete preparation (up to 170 °C. It was found that an increase in the amount of the carbonate filler in the rubber SKS 30АRК significantly increases its thermal resistance and connection of the polymer with the chalk in the composition.

  12. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  13. Eliminating radium from uranium mill acid effluent with barium chloride-sodium carbonate precipitation

    International Nuclear Information System (INIS)

    Xiao Jiayuan

    1998-01-01

    The eliminating radium procedure, barium chloride-sodium carbonate-sand filtering, being used, radium can be eliminated to 3.7 x 10 -2 Bq/L order of magnitude from uranium mill acid effluents which contain 3.7 Bq/L Ra and pH 6∼9 when Ba 2+ is added by 3∼5 mg per litre, Na 2 CO 3 5mg. The radium elimination rate is more than 90%

  14. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    Science.gov (United States)

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling.

  15. Microbially induced carbonate precipitation (MICP) by denitrification as ground improvement method - Process control in sand column experiments

    Science.gov (United States)

    Pham, Vinh; van Paassen, Leon; Nakano, Akiko; Kanayama, Motohei; Heimovaara, Timo

    2013-04-01

    Calcite precipitation induced by microbes has been proven to be efficient in stabilizing granular soils, especially with urea hydrolysis, as it has been successfully demonstrated in a pilot application 2010. However, as a byproduct highly concentrated ammonium chloride (NH4Cl) solution is produced, which has to be removed and disposed and forms a significant disadvantage of the technique that makes an alternative process like denitrification preferred. The proof of principle of microbially induced calcite precipitation (MICP) by denitrification has been demonstrated by Van Paassen et al (2010) who suggested that instead of producing waste as a byproduct, different pre-treated waste streams could be used as substrates for in situ growth of denitrifying bacteria and simultaneous cementation without producing waste to be removed. In this study sand column experiments are performed in which calcium carbonate was successfully precipitated by indigenous denitrifying micro-organisms, which were supplied weekly with a pulse of a substrate solution containing calcium acetate and calcium nitrate. Besides the production of calcite and the growth of bacteria in biofilms, the reduction of nitrate resulted in the production of (nitrogen) gas. It was observed that this gas partly fills up the pore space and consequently contributed to a reduction of the permeability of the treated sand. The presence of gas in the pore space affected the flow of the injected substrates and influenced to the distribution of calcium carbonate. The effect of the mean particle size (D50) on the flow and transport of solutes and gas in the porous media has been evaluated by treating several columns with varying grain size distribution and comparing the change in permeability after each incubation period and analyzing the distribution of the gas throughout the columns using X-ray computed tomography (CT) scanning. The present results show that there is a considerable decrease of permeability - a

  16. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls

    International Nuclear Information System (INIS)

    Ma Yufei; Qiao Li; Feng Qingling

    2012-01-01

    For the purpose of studying the mediation of organic matrix on the crystallization of calcium carbonate, water soluble matrix (WSM), acid soluble matrix (ASM) and acid insoluble matrix (AIM) were extracted from aragonite pearls and vaterite pearls respectively. Then, in-vitro calcium carbonate crystallization experiments under the control of these six organic matrices were carried out in the present study. Scanning electron microscopy (SEM) was utilized to observe the morphology of CaCO 3 and Raman spectroscopy as a powerful technique was used to distinguish the crystal polymorph. Influences of the six kinds of organic matrices on the calcium carbonate crystal growth are proposed. ASM of vaterite pearls can induce vaterite to crystallize and WSM of aragonite pearls mediates to produce aragonite crystals. The single AIM membranes of the two pearls have no pronounced effect on the CaCO 3 crystallization. Additionally, the crystal size obtained with the additive of WSM of the two kinds of pearls is smaller than that with the additive of ASM. Moreover, self-assembly phenomenon in the biomineralization process and the distorted morphology calcite are observed. Current results demonstrate important aspects of matrix protein-controlled crystallization, which is beneficial to the understanding of nacre biomineralization mechanism. Further study of the precise control of these matrix proteins on CaCO 3 crystal growth is being processed. - Highlights: ► WSM, ASM and AIM are extracted from aragonite pearls and vaterite pearls. ► ASM of vaterite pearl induces vaterite. ► WSM of aragonite pearl mediates to produce aragonite. ► WSM can fine control crystal size smaller than that with the additive of ASM. ► Self-assembly and the distorted calcite existed in the mineralization process.

  17. Short-term dissolved organic carbon dynamics reflect water management and precipitation patterns in a subtropical estuary

    Directory of Open Access Journals (Sweden)

    Peter Regier

    2016-12-01

    Full Text Available Estuaries significantly impact the global carbon cycle by regulating the exchange of organic matter, primarily in the form of dissolved organic carbon (DOC, between terrestrial and marine carbon pools. Estuarine DOC dynamics are complex as tides and other hydrological and climatic drivers can affect carbon fluxes on short and long time scales. While estuarine and coastal DOC dynamics have been well studied, variations on short time scales are less well constrained. Recent advancements in sonde technology enable autonomous in situ collection of high frequency DOC data using fluorescent dissolved organic matter (fDOM as a proxy, dramatically improving our capacity to characterize rapid changes in DOC, even in remote ecosystems. This study utilizes high-frequency fDOM measurements to untangle rapid and complex hydrologic drivers of DOC in the Shark River estuary, the main drainage of Everglades National Park, Florida. Non-conservative mixing of fDOM along the salinity gradient suggested mangrove inputs accounted for 6% of the total DOC pool. Average changes in fDOM concentrations through individual tidal cycles ranged from less than 10% to greater than 50% and multi-day trends greater than 100% change in fDOM concentration were observed. Salinity and water level both inversely correlated to fDOM at sub-hourly and daily resolutions, while freshwater controls via precipitation and water management were observed at diel to monthly time-scales. In particular, the role of water management in rapidly shifting estuarine salinity gradients and DOC export regimes at sub-weekly time-scales was evident. Additionally, sub-hourly spikes in ebb-tide fDOM indicated rapid exchange of DOC between mangrove sediments and the river channel. DOC fluxes calculated from high-resolution fDOM measurements were compared to monthly DOC measurements with high-resolution fluxes considerably improving accuracy of fluxes (thereby constraining carbon budgets. This study provides

  18. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete.

    Science.gov (United States)

    Zhang, Jiaguang; Zhou, Aijuan; Liu, Yuanzhen; Zhao, Bowei; Luan, Yunbo; Wang, Sufang; Yue, Xiuping; Li, Zhu

    2017-11-06

    Current studies have employed various pure-cultures for improving concrete durability based on microbially induced carbonate precipitation (MICP). However, there have been very few reports concerned with microbial consortia, which could perform more complex tasks and be more robust in their resistance to environmental fluctuations. In this study, we constructed three microbial consortia that are capable of MICP under aerobic (AE), anaerobic (AN) and facultative anaerobic (FA) conditions. The results showed that AE consortia showed more positive effects on inorganic carbon conversion than AN and FA consortia. Pyrosequencing analysis showed that clear distinctions appeared in the community structure between different microbial consortia systems. Further investigation on microbial community networks revealed that the species in the three microbial consortia built thorough energetic and metabolic interaction networks regarding MICP, nitrate-reduction, bacterial endospores and fermentation communities. Crack-healing experiments showed that the selected cracks of the three consortia-based concrete specimens were almost completely healed in 28 days, which was consistent with the studies using pure cultures. Although the economic advantage might not be clear yet, this study highlights the potential implementation of microbial consortia on crack healing in concrete.

  19. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent.

    Science.gov (United States)

    Georgakopoulos, Evangelos; Santos, Rafael M; Chiang, Yi Wai; Manovic, Vasilije

    2017-02-21

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni 2+ , as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications.

  20. Bacterial carbonate precipitation improves water absorption of interlocking compressed earth block (ICEB)

    Science.gov (United States)

    Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.

    2017-11-01

    Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. The addition of many alternative materials into interlocking block in order to improve the durability has been reported. However there are currently lack of report and evidence on the application of biocalcification or microbiologically induced calcite precipitation (MICP) in improving the engineering properties of ICEB. This paper evaluate the effect of UB in improving the water absorption properties of ICEB. This paper also provide the results on SEM analysis of addition of 1%, 3% and 5% UB in ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the reduction of 14.72% with 5% UB on initial water absorption followed by the results for water absorption by 24-hour soaking which also indicates reduction of 14.68% with 5% UB on 28th days of testing compared to control specimen. It was expected that the reduction of water absorption was due to the plugging of pores by the bacterial calcite which prevent ingression of water in ICEB samples. Therefore this study hopes that the positive results from the UB as improving in water absorption of ICEB will lead to improve others ICEB properties and others construction materials.

  1. The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation.

    Science.gov (United States)

    Seifan, Mostafa; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-04-01

    Recently, magnetic iron oxide nanoparticles (IONs) have been used to control and modify the characteristics of concrete and mortar. Concrete is one of the most used materials in the world; however, it is susceptible to cracking. Over recent years, a sustainable biotechnological approach has emerged as an alternative approach to conventional techniques to heal the concrete cracks by the incorporation of bacterial cells and nutrients into the concrete matrix. Once cracking occurs, CaCO 3 is induced and the crack is healed. Considering the positive effects of IONs on the concrete properties, the effect of these nanoparticles on bacterial growth and CaCO 3 biosynthesis needs to be evaluated for their possible application in bio self-healing concrete. In the present work, IONs were successfully synthesized and characterized using various techniques. The presence of IONs showed a significant effect on both bacterial growth and CaCO 3 precipitation. The highest bacterial growth was observed in the presence of 150 μg/mL IONs. The highest concentration of induced CaCO 3 (34.54 g/L) was achieved when the bacterial cells were immobilized with 300 μg/mL of IONs. This study provides new data and supports the possibility of using IONs as a new tool in designing the next generation of bio self-healing concrete.

  2. Comparative study of neutron irradiation and carbon doping in MgB2 single crystals

    International Nuclear Information System (INIS)

    Krutzler, C.; Zehetmayer, M.; Eisterer, M.; Weber, H. W.; Zhigadlo, N. D.; Karpinski, J.

    2007-01-01

    We compare the reversible and irreversible magnetic properties of superconducting carbon doped and undoped MgB 2 single crystals before and after neutron irradiation. A large number of samples with transition temperatures between 38.3 and 22.8 K allows us to study the effects of disorder systematically. Striking similarities are found in the modification of the reversible parameters by irradiation and doping, which are discussed in terms of impurity scattering and changes of the Fermi surface. The irreversible properties are influenced by two counteracting mechanisms: they are enhanced by the newly introduced pinning centers but degraded by changes in the thermodynamic properties. Accordingly, the large neutron induced defects and the small defects from carbon doping lead to significantly different effects on the irreversible properties. Finally, the fishtail effect caused by all kinds of disorder is discussed in terms of an order-disorder transition of the flux-line lattice

  3. Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    L. Dolgov

    2012-10-01

    Full Text Available A pronounced irreversible electro-optical response (memory effect has been recently observed for nematic liquid crystal (LC EBBA doped by multi-walled carbon nanotubes (MWCNTs near the percolation threshold of the MWCNTs (0.02÷0.05 wt. %. It is caused by irreversible homeotropic-to-planar reorientation of LC in an electric field. This feature is explained by electro-hydrodynamically stimulated dispergation of MWCNTs in LC and by the formation of a percolation MWCNT network which acts as a spatially distributed surface stabilizing the planar state of the LC. This mechanism is confirmed by the absence of memory in the EBBA/MWCNT composites, whose original structure is fixed by a polymer. The observed effect suggests new operation modes for the memory type and bistable LC devices, as well as a method for in situ dispergation of carbon nanotubes in LC cells.

  4. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

  5. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  6. Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites

    Directory of Open Access Journals (Sweden)

    Purificacion eLopez-Garcia

    2015-08-01

    Full Text Available Cyanobacteria are thought to play a key role in carbonate formation due to their metabolic activity, but other organisms carrying out oxygenic photosynthesis (photosynthetic eukaryotes or other metabolisms (e.g. anoxygenic photosynthesis, sulfate reduction, may also contribute to carbonate formation. To obtain more quantitative information than that provided by more classical PCR-dependent methods, we studied the microbial diversity of microbialites from the Alchichica crater lake (Mexico by mining for 16S/18S rRNA genes in metagenomes obtained by direct sequencing of environmental DNA. We studied samples collected at the Western (AL-W and Northern (AL-N shores of the lake and, at the latter site, along a depth gradient (1, 5, 10 and 15 m depth. The associated microbial communities were mainly composed of bacteria, most of which seemed heterotrophic, whereas archaea were negligible. Eukaryotes composed a relatively minor fraction dominated by photosynthetic lineages, diatoms in AL-W, influenced by Si-rich seepage waters, and green algae in AL-N samples. Members of the Gammaproteobacteria and Alphaproteobacteria classes of Proteobacteria, Cyanobacteria and Bacteroidetes were the most abundant bacterial taxa, followed by Planctomycetes, Deltaproteobacteria (Proteobacteria, Verrucomicrobia, Actinobacteria, Firmicutes and Chloroflexi. Community composition varied among sites and with depth. Although cyanobacteria were the most important bacterial group contributing to the carbonate precipitation potential, photosynthetic eukaryotes, anoxygenic photosynthesizers and sulfate reducers were also very abundant. Cyanobacteria affiliated to Pleurocapsales largely increased with depth. Scanning electron microscopy (SEM observations showed considerable areas of aragonite-encrusted Pleurocapsa-like cyanobacteria at microscale. Multivariate statistical analyses showed a strong positive correlation of Pleurocapsales and Chroococcales with aragonite formation at

  7. Sizeable magnetic circular dichroism of artificially precipitated Co clusters in amorphous carbon

    Directory of Open Access Journals (Sweden)

    H. S. Hsu

    2012-09-01

    Full Text Available This study examines sizeable magnetic circular dichroism (MCD in Co(20%-doped amorphous carbon (a-C films. While as-grown films exhibit a non-detectable MCD signal, films that undergo rapid thermal annealing (RTA at 600°C in a vacuum yield broad MCD spectra with a large amplitude of ∼3.9 × 104 deg/cm in saturation field 0.78 T at the σ-σ* gap transition (∼5.5 eV. In such films after RTA, the metastable Co-C bonding is decomposed and suitable Co nanoparticles/a-C interfaces are thus formed. Our results indicate that the large change in MCD is contributed from Co nanoparticles and associated with the spin-dependent electronic structure at the Co/a-C interfaces.

  8. Inhibition of precipitation of carbonate apatite by trisodium citrate analysed in base of the formation of chemical complexes in growth solution

    Energy Technology Data Exchange (ETDEWEB)

    Prywer, Jolanta, E-mail: jolanta.prywer@p.lodz.pl [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Olszynski, Marcin [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Mielniczek-Brzóska, Ewa [Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University of Częstochowa, ul. Armii Krajowej 13/15, 42-200 Częstochowa (Poland)

    2015-11-15

    Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation of carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca{sup 2+} ions and causes the formation of CaCit{sup −} and Ca{sub 10}(PO{sub 4}){sub 6}CO{sub 3} complexes. Trisodium citrate binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed. - Highlights: • Trisodium citrate (TC) increases induction time of carbonate apatite (CA) formation. • TC decreases the efficiency of CA precipitation. • The inhibitory effect of TC is explained in base of chemical speciation analysis. • The inhibitory effect is mainly related with the fact that TC binds Ca{sup 2+} ions. • TC binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which CA is formed.

  9. Crystallization, characterization and preliminary X-ray crystallographic analysis of GK2848, a putative carbonic anhydrase of Geobacillus kaustophilus

    International Nuclear Information System (INIS)

    Ragunathan, Preethi; Raghunath, Gokul; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2013-01-01

    The expression, purification, characterization and crystallization of GK2848, a carbonic anhydrase from G. kaustophilus, are described. The crystals diffracted to a resolution of 2.70 Å. GK2848, a hypothetical protein from the thermophilic organism Geobacillus kaustophilus, was cloned and overexpressed in Escherichia coli. The protein was purified to homogeneity using Ni–NTA affinity-column and gel-filtration chromatography. The purified protein was crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.70 Å and belonged to the orthorhombic space group P2 1 2 1 2. GK2848 bears sequence homology to carbonic anhydrases of various bacterial species, indicating that it belongs to the carbonic anhydrase family of proteins. A subsequent carbonic anhydrase activity assay of GK2848 using the Wilbur–Anderson method confirmed its function as a carbonic anhydrase. A preliminary structure solution was obtained by molecular replacement using MOLREP. Mutation and biochemical characterization of the protein are in progress. The structure and functional analysis of GK2848 might provide valuable information on a novel class of carbonic anhydrases, as none of its homologous structures have been characterized

  10. A comparative investigation on strain induced crystallization for graphene and carbon nanotubes filled natural rubber composites

    Directory of Open Access Journals (Sweden)

    D. H. Fu

    2015-07-01

    Full Text Available Natural rubber containing graphene and carbon nanotubes (CNTs composites were prepared by ultrasonicallyassisted latex mixing. Natural rubber filled by both graphene and CNTs show significant enhanced tensile strength, while graphene exhibits a better reinforcing effect than CNTs. Strain-induced crystallization in natural rubber composites during stretching was determined by synchrotron wide-angle X-ray diffraction. With the addition of CNTs or graphene, the crystallization for natural rubber occurs at a lower strain compared to unfilled natural rubber, and the strain amplification effects were observed. The incorporation of graphene results in a faster strain-induced crystallization rate and a higher crystallinity compared to CNTs. The entanglement-bound rubber tube model was used to analyze the chain network structure and determine the network parameters of composites. The results show that the addition of graphene or CNTs has an influence on the molecular network structure and improves the contribution of entanglement to the conformational constraint, while graphene has a more marked effect than CNTs.

  11. Effect of Squareness of Initial γ' Precipitates on Creep-Rupture Life of a Ni-Base Single Crystal Superalloy at 760/982 °C

    Science.gov (United States)

    Shi, Zhenbin; Peng, Zhifang; Luo, Yushi; Xie, Hongji; Jin, Haipeng; Zhao, Yunsong; Mei, Qingsong

    2018-05-01

    An approach to determination of squareness of initial γ' precipitates (S 2D) is proposed to evaluate its effect on creep-rupture life (t r) of nickel-base single crystal (SC) superalloys. It is found that the 760/982 °C rupture life varied with the change in regional S 2D caused by redistribution of W when 1st-step aging temperature changed in full heat treatment on superalloy DD83 investigated. The longest creep-rupture life occurred at the highest value/the lowest difference in S 2D in the interdendritic regions/between the typical dendritic regions in DD83. It is also found that S 2D is a weighted function of the area fraction (F 2D), spacing (h), and size (d) of γ' precipitates and is closely related to t r in a series of SC superalloys. In addition, the variation of S 2D with F 2D (here, thermodynamic mole fraction is approximately expressed by F 2D) through lattice misfit (δ) in the SC superalloys with F 2D ranging from 60 to 75 pct is well correlated. Therefore, to reveal and to better understand these relationships and correlations may help to optimize the phase variables in order to achieve a long rupture life of SC superalloys. In addition, functions to reveal the interrelationships of F 2D, volume fraction (F 3D), S 2D, and cuboidness (S 3D) of initial γ' precipitates are derived considering their shape changes. All of these are hoped to be helpful in practical applications and in understanding the true meaning of the related variables.

  12. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita U

    2016-12-15

    In the urbanized coastal zone of the Southern Baltic, complex measurements of water soluble organic carbon (WSOC) were conducted between 2012 and 2015, involving atmospheric precipitation in its various forms (rain, snow, mixed) and PM1, PM2.5 and PM10 aerosols. WSOC constituted about 60% of the organic carbon mass in aerosols of various sizes. The average concentration of WSOC was equal to 2.6μg∙m -3 in PM1, 3.6μg∙m -3 in PM2.5 and 4.4μg∙m -3 in PM10. The lowest concentration of WSOC was noted in summer as a result of effective removal of this compound with rainfall. The highest WSOC concentrations in PM2.5 and PM10 aerosols were measured in spring, which should be associated with developing vegetation on land and in the sea. On the other hand, the highest WSOC concentrations in PM1 occurred in winter at low air temperatures and greatest atmospheric stability, when there were increased carbon emissions from fuel combustion in the communal-utility sector and from transportation. WSOC concentrations in precipitation were determined by its form. Mixed precipitation turned out to be the richest in soluble organic carbon (5.1mg·dm -3 ), while snow contained the least WSOC (1.7mg·dm -3 ). Snow and rain cleaned carbon compounds from the atmosphere more effectively when precipitation lasted longer than 24h, while in the case of mixed precipitation WSOC was removed most effectively within the first 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Structure and Properties of Multiwall Carbon Nanotubes/Polystyrene Composites Prepared via Coagulation Precipitation Technique

    Directory of Open Access Journals (Sweden)

    I. N. Mazov

    2011-01-01

    Full Text Available Coagulation technique was applied for preparation of multiwall carbon nanotube- (MWNT-containing polystyrene (PSt composite materials with different MWNT loading (0.5–10 wt.%. Scanning and transmission electron microscopies were used for investigation of the morphology and structure of produced composites. It was shown that synthesis of MWNT/PSt composites using coagulation technique allows one to obtain high dispersion degree of MWNT in the polymer matrix. According to microscopy data, composite powder consists of the polystyrene matrix forming spherical particles with diameter ca. 100–200 nm, and the surface of MWNT is strongly wetted by the polymer forming thin layer with 5–10 nm thickness. Electrical conductivity of MWNT/PSt composites was investigated using a four-probe technique. Observed electrical percolation threshold of composite materials is near to 10 wt.%, mainly due to the insulating polymer layer deposited on the surface of nanotubes. Electromagnetic response of prepared materials was investigated in broadband region (0.01–4 and 26–36 GHz. It was found that MWNT/PSt composites are almost radiotransparent for low frequency region and possess high absorbance of EM radiation at higher frequencies.

  14. Recovery of sludge from the treatment of liquid radioactive effluents by co-precipitation with calcium carbonate: laboratory study; Recuperation des boues de traitement des effluents radioactifs liquides par coprecipitation avec le carbonate de calcium: etude de laboratoire

    Energy Technology Data Exchange (ETDEWEB)

    Patti, F.; Gailledreau, C.; Cohen, P.

    1961-02-24

    As during the treatment by co-precipitation with calcium carbonate of liquid radioactive residues, a partial decontamination can be obtained by simply agitating an already formed radioactive sludge with the effluent to be processed, the authors study whether it would be possible to first perform a co-precipitation with a lower dose of calcium carbonate and then to complete decontamination by agitating with an adequate quantity of sludge stored during preceding operations. The authors report the study of the influence of reactant quantity on the chemical treatment efficiency, of the evolution of the activity of a radioactive residual solution in contact with a precipitate, of the cleaner element, of a precipitate reuse, of the technological and economic aspects, and of another possibility of reduction of the precipitate volume [French] Dans le traitement par coprecipitation avec le carbonate de calcium des residus radioactifs liquides, une decontamination partielle peut etre obtenue en agitant simplement une boue radioactive deja formee avec l'effluent a traiter. En consequence, il pourrait etre possible d'effectuer d'abord une coprecipitation avec une dose plus faible de carbonate de calcium et de completer ensuite la decontamination en agitant le liquide avec une quantite convenable de boue stockee a partir d'operations precedentes. (auteurs)

  15. Preliminary investigations on picoplankton-related precipitation of alkaline-earth metal carbonates in meso-oligotrophic lake Geneva (Switzerland

    Directory of Open Access Journals (Sweden)

    Jean-Michel Jaquet

    2013-10-01

    Full Text Available In the course of a routine water-quality survey in meso-oligotrophic lake Geneva (Switzerland, suspended matter was collected by filtration on 0.2 μm membranes in July and August 2012 at the depth of maximal chlorophyll a (Chl a concentration (2 mg m–3. Examination by scanning electron microscopy revealed the presence of numerous dark and gelatinous patches occluding the pores of the membranes, containing high numbers of picoplanktonic cells and, in places, clusters of high-reflectance smooth microspheres (1-2 μm in diameter. Their chemical composition, determined by semi-quantitative, energy-dispersive X ray spectroscopy (EDS showed magnesium (Mg, calcium (Ca, strontium (Sr and barium (Ba (alkaline earth metals to be the dominant cations. Among the anions, phosphorus (P and carbon (C were present, but only the latter is considered here (as carbonate. The microspheres were subdivided into four types represented in a Ca-Sr-Ba ternary space. All types are confined within a domain bound by Ca>45, Sr<10 and Ba<50 (in mole %. Type I, the most frequent, displays a broad variability in Ba/Ca, even within a given cluster. Types II and III are devoid of Ba, but may incorporate P. Type IV contains only Ca. The Type I composition resembles that of benstonite, a Group IIA carbonate that was recently found as intracellular granules in a cyanobacterium from alkaline lake Alchichica (Mexico.Lake Geneva microspheres are solid, featureless and embedded in a mucilage-looking substance in the vicinity of, but seemingly not inside, picoplanktonic cells morphologically similar to Chlorella and Synechococcus. In summer 2012, the macroscopic physico-chemical conditions in lake Geneva epilimnion were such as to allow precipitation of Ca but not of Sr and Ba carbonates. Favourable conditions did exist, though, in the micro-environment provided by the combination of active picoplankton and a mucilaginous envelope. Further studies are ongoing to investigate the

  16. Influence of magnetic field on the morphology of the andrographolide crystal from supercritical carbon dioxide extraction crystallization

    Science.gov (United States)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Zhang, Wencheng; Yong, Ji; Yin, Wenhong

    2003-10-01

    In this paper, a supercritical fluid extraction-crystallization of andrographolide, a kind of Chinese traditional medicine, was investigated. We have studied the extraction-crystallization process with or without magnet in the extractor, respectively. It was found that the presence of magnetic field is an important factor influencing the quality of the products. SEM images showed that the crystal was slice-like in shape, and many slices reunited together in the absence of magnet. Further research showed that pressure had a certain effect on the morphology of the crystal.

  17. Formation and Structure of Calcium Carbonate Thin Films and Nanofibers Precipitated in the Presence of Poly(Allylamine Hydrochloride) and Magnesium Ions.

    Science.gov (United States)

    Cantaert, Bram; Verch, Andreas; Kim, Yi-Yeoun; Ludwig, Henning; Paunov, Vesselin N; Kröger, Roland; Meldrum, Fiona C

    2013-12-23

    That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO 3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg 2+ on CaCO 3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures.

  18. Synthesis of gold nanoparticles on multi-walled carbon nanotubes (Au-MWCNTs) via deposition precipitation method

    Science.gov (United States)

    Zulikifli, Farah Wahida Ahmad; Yazid, Hanani; Halim, Muhammad Zikri Budiman Abdul; Jani, Abdul Mutalib Md

    2017-09-01

    Carbon nanotubes (CNTs) have received impressive consideration as support materials of noble metal catalysts in heterogeneous catalysis due to their good mechanical strength, large surface area and good durability under harsh conditions. The interaction between CNTs and noble metal nanoparticles (NPs) gives an unusual unique microstructure properties and or modification of the electron density of the noble metal clusters, and enhances the catalytic activity. In this study, the MWCNTs were first treated with a mixture of concentrated sulfuric and nitric acid by sonication to improve its dispersibility and to introduce the carboxylic (-COOH) groups on CNTs surfaces. Gold nanoparticles (Au NPs) on multiwalled carbon nanotubes (MWCNTs) were synthesized by the deposition precipitation (DP) method as this method is simpler, low cost, and excellent method. Then, the effect of reducing agent (NaBH4) on gold distribution on the support of MWCNTs was also studied. Dispersion test, Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM) are all used to characterize the functionalized MWCNTs (fCNTs) and the Au NPs-fCNTs catalyst. There are three important peaks in functionalized MWCNTs which correspond to C=O, O-H, and C-O absorption peaks, as a result of the oxidation of COOH groups on the surface of CNTs. The absorption band at 1717 cm-1 is corresponded to C=O stretching of COOH, while the absorption bands at 3384 cm-1 and 1011cm-1 are associated with O-H bending and C-O stretching, respectively. Surface morphology of Au NPs-fCNTs R4 and Au NPs- fCNTs WR catalyst by FESEM showed that the Au NPs of 19.22 ± 2.33 nm and 23.05 ± 2.57 nm size were successfully deposited on CNTs, respectively.

  19. Response of aboveground carbon balance to long-term, experimental shifts in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    Science.gov (United States)

    Reinhardt, K.; McAbee, K.; Germino, M. J.; Bosworth, A.

    2016-12-01

    Semi-arid rangelands have been identified as potential carbon (C) sinks. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, climate models predict increases in wintertime precipitation and decreases in summertime precipitation. In theory, this should boost C storage in cold-desert ecosystems that have deep-rooted woody plants due to greater wintertime soil water storage that enhances summertime productivity. However, there are few long-term, manipulative field-based studies investigating how shrub- and grass-dominated rangelands will respond to changing precipitation patterns. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over the 2014 growing season on plots that had supplemental precipitation added in either winter or summer for 21 years, in shrub- and exotic-bunchgrass-dominated plots. We hypothesized that increased winter precipitation would stimulate aboveground C uptake and storage relative to ambient conditions, in our cold-desert-adapted plant species. We further hypothesized that long-term gains in aboveground C storage due to precipitation manipulations would be greater in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, provided that the ecosystems have resisted conversion to exotic grassland.

  20. An experimental and numerical study of the light scattering properties of ice crystals with black carbon inclusions

    Science.gov (United States)

    Arienti, Marco; Geier, Manfred; Yang, Xiaoyuan; Orcutt, John; Zenker, Jake; Brooks, Sarah D.

    2018-05-01

    We investigate the optical properties of ice crystals nucleated on atmospheric black carbon (BC). The parameters examined in this study are the shape of the ice crystal, the volume fraction of the BC inclusion, and its location inside the crystal. We report on new spectrometer measurements of forward scattering and backward polarization from ice crystals nucleated on BC particles and grown under laboratory-controlled conditions. Data from the Cloud and Aerosol Spectrometer with Polarization (CASPOL) are used for direct comparison with single-particle calculations of the scattering phase matrix. Geometrical optics and discrete dipole approximation techniques are jointly used to provide the best compromise of flexibility and accuracy over a broad range of size parameters. Together with the interpretation of the trends revealed by the CASPOL measurements, the numerical results confirm previous reports on absorption cross-section magnification in the visible light range. Even taking into account effects of crystal shape and inclusion position, the ratio between absorption cross-section of the compound particle and the absorption cross-section of the BC inclusion alone (the absorption magnification) has a lower bound of 1.5; this value increases to 1.7 if the inclusion is centered with respect to the crystal. The simple model of BC-ice particle presented here also offers new insights on the effect of the relative position of the BC inclusion with respect to the crystal's outer surfaces, the shape of the crystal, and its size.

  1. Exploring the alignment of carbon nanotubes dispersed in a liquid crystal matrix using coplanar electrodes

    International Nuclear Information System (INIS)

    Volpati, D.; Massey, M. K.; Kotsialos, A.; Qaiser, F.; Pearson, C.; Tiburzi, G.; Zeze, D. A.; Petty, M. C.; Johnson, D. W.; Coleman, K. S.

    2015-01-01

    We report on the use of a liquid crystalline host medium to align single-walled carbon nanotubes in an electric field using an in-plane electrode configuration. Electron microscopy reveals that the nanotubes orient in the field with a resulting increase in the DC conductivity in the field direction. Current versus voltage measurements on the composite show a nonlinear behavior, which was modelled by using single-carrier space-charge injection. The possibility of manipulating the conductivity pathways in the same sample by applying the electrical field in different (in-plane) directions has also been demonstrated. Raman spectroscopy indicates that there is an interaction between the nanotubes and the host liquid crystal molecules that goes beyond that of simple physical mixing

  2. Organic Light Emitting Diodes with Opal Photonic Crystal Layer and Carbon Nanotube Anode

    Science.gov (United States)

    Ovalle Robles, Raquel; Del Rocio Nava, Maria; Williams, Christopher; Zhang, Mei; Fang, Shaoli; Lee, Sergey; Baughman, Ray; Zakhidov, Anvar

    2007-03-01

    We report electroluminescence intensity and spectral changes in light emission from organic light emitting diode (OLEDs) structures, which have thin transparent films of opal photonic crystal (PC). The anode in such PC-OLED is laminated on opal layer from free standing optically transparent multiwall carbon nanotubes (T-CNT) sheets made by dry spinning from CVD grown forests. Silica and polystyrene opal films were grown on glass substrates by vertical sedimentation in colloids in thermal baths and the particle size of opal spheres ranges from 300 nm to 450 nm. The use of T-CNTs, (coated by PEDOT-PSS to avoid shorting) as hole injector, allows to eliminate the use of vacuum deposition of metals and permits to achieve tunneling hole injection regime from CNT tips into Alq^3 emission layer

  3. Evaluation of calcium hydrogen carbonate mesoscopic crystals as a disinfectant for influenza A viruses

    Science.gov (United States)

    NAKASHIMA, Ryuji; KAWAMOTO, Masaomi; MIYAZAKI, Shigeru; ONISHI, Rumiko; FURUSAKI, Koichi; OSAKI, Maho; KIRISAWA, Rikio; SAKUDO, Akikazu; ONODERA, Takashi

    2017-01-01

    In this study, the virucidal effect of a novel electrically charged disinfectant CAC-717 was investigated. CAC-717 is produced by applying an electric field to mineral water containing calcium hydrogen carbonate to generate mesoscopic crystals. Virus titration analysis showed a >3 log reduction of influenza A viruses after treatment with CAC-717 for 1 min in room temperature, while infectivity was undetectable after 15 min treatment. Adding bovine serum albumin to CAC-717 solution did not affect the disinfectant effect. Although CAC-717 is an alkaline solution (pH=12.39), upon contact with human tissue, its pH becomes almost physiological (pH 8.84) after accelerated electric discharge, which enables its use against influenza viruses. Therefore, CAC-717 may be used as a preventative measure against influenza A viruses and for biosecurity in the environment. PMID:28392537

  4. Cerium oxalate precipitation

    International Nuclear Information System (INIS)

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  5. The Effect of Type and Concentration of Modifier in Supercritical Carbon Dioxide on Crystallization of Nanocrystalline Titania Thin Films.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Jandová, Věra; Dřínek, Vladislav; Daniš, E.; Matějová, L.

    2018-01-01

    Roč. 133, MAR 2018 (2018), s. 211-217 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin film * supercritical carbon dioxide * crystallization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.991, year: 2016

  6. Desiccator Volume: A Vital Yet Ignored Parameter in CaCO3 Crystallization by the Ammonium Carbonate Diffusion Method

    Directory of Open Access Journals (Sweden)

    Joe Harris

    2017-07-01

    Full Text Available Employing the widely used ammonium carbonate diffusion method, we demonstrate that altering an extrinsic parameter—desiccator size—which is rarely detailed in publications, can alter the route of crystallization. Hexagonally packed assemblies of spherical magnesium-calcium carbonate particles or spherulitic aragonitic particles can be selectively prepared from the same initial reaction solution by simply changing the internal volume of the desiccator, thereby changing the rate of carbonate addition and consequently precursor formation. This demonstrates that it is not merely the quantity of an additive which can control particle morphogenesis and phase selectivity, but control of other often ignored parameters are vital to ensure adequate reproducibility.

  7. A feasibility study of the preparation of (U,Gd)3O8 solid solutions by thermal decomposition of co-precipitated carbonate mixtures

    International Nuclear Information System (INIS)

    Ravindran, P.V.; Rajagopalan, K.V.; Mathur, K.P.

    1998-01-01

    Co-precipitation from equimolar nitrate solutions of uranium (VI) and gadolinium has been used to obtain a mixture of (NH 4 ) 4 UO 2 (CO 3 ) 3 and Gd 2 (CO 3 ) 3 .3H 2 O at a pre-determined composition. Simultaneous measurements by TG, DTA and evolved gas analysis (EGA) showed that a calcination temperature of 700 C was necessary to decompose the carbonate completely to oxides. X-ray diffraction data indicated that a solid solution of Gd 2 O 3 in U 3 O 8 cannot be obtained by heating the carbonate mixtures up to 800 C in inert atmospheres. (orig.)

  8. HOMO-LUMO analysis of multi walled carbon nanotubes doped Tetrafluoro Phthalate crystals for nonlinear optical applications

    Science.gov (United States)

    Latha, B.; Kumaresan, P.; Nithiyanantham, S.; Sampathkumar, K.

    2018-01-01

    The MWCNTs doped Tetrafluoro Phthalate (C6H2F4O4) precious stones are constantly having higher transmission rate contrasted with immaculate Tetrafluoro Phthalate crystal. The dependability of Tetrafluoro Phthalate crystal was enhanced by doping MWCNTs.The basic, synthetic, optical, mechanical and non-direct optical properties of the doped precious crystals were dissected with the portrayal concentrates, for example, powder XRD, FT-IR, UV-Visible, Hardness and SHG estimations individually. The dopants are relied upon to substitute the carbon iotas in the Tetrafluoro Phthalate grid because of their change of valency and in addition vicinity of ionic sweep. The strength and charge delocalization of the particle were additionally concentrated on by characteristic security orbital (NBO) examination. The HOMO-LUMO energies depict the charge exchange happens inside the atom. Atomic electrostatic potential has been dissected. The SHG productivity of the immaculate and colors doped TFP crystals were additionally contemplated utilizing Nd:YAG Q-exchanged laser.

  9. Crystal structures of two tetrameric β-carbonic anhydrases from the filamentous ascomycete Sordaria macrospora.

    Science.gov (United States)

    Lehneck, Ronny; Neumann, Piotr; Vullo, Daniela; Elleuche, Skander; Supuran, Claudiu T; Ficner, Ralf; Pöggeler, Stefanie

    2014-04-01

    Carbonic anhydrases (CAs) are metalloenzymes catalyzing the reversible hydration of carbon dioxide to bicarbonate (hydrogen carbonate) and protons. CAs have been identified in archaea, bacteria and eukaryotes and can be classified into five groups (α, β, γ, δ, ζ) that are unrelated in sequence and structure. The fungal β-class has only recently attracted attention. In the present study, we investigated the structure and function of the plant-like β-CA proteins CAS1 and CAS2 from the filamentous ascomycete Sordaria macrospora. We demonstrated that both proteins can substitute for the Saccharomyces cerevisiae β-CA Nce103 and exhibit an in vitro CO2 hydration activity (kcat /Km of CAS1: 1.30 × 10(6) m(-1) ·s(-1) ; CAS2: 1.21 × 10(6 ) m(-1) ·s(-1) ). To further investigate the structural properties of CAS1 and CAS2, we determined their crystal structures to a resolution of 2.7 Å and 1.8 Å, respectively. The oligomeric state of both proteins is tetrameric. With the exception of the active site composition, no further major differences have been found. In both enzymes, the Zn(2) (+) -ion is tetrahedrally coordinated; in CAS1 by Cys45, His101 and Cys104 and a water molecule and in CAS2 by the side chains of four residues (Cys56, His112, Cys115 and Asp58). Both CAs are only weakly inhibited by anions, making them good candidates for industrial applications. CAS1 and CAS2 bind by x-ray crystallography (View interaction) Structural data have been deposited in the Protein Data Bank database under accession numbers 4O1J for CAS1 and 4O1K for CAS2. © 2014 FEBS.

  10. Detailed crystallization study of co-precipitated Y1.47 Gd1.53 Fe5 O12 and relevant magnetic properties

    International Nuclear Information System (INIS)

    Serra, Rogerio Arving; Ogasawara, Tsuneharu; Ogasawara, Angelica Soares

    2007-01-01

    The crystallization process of co-precipitated Y 1.5 Gd 1.5 Fe 5 O 12 powder heated up to 1000 deg C at rate of 5 deg C min -1 was investigated. Above 810 deg C crystalline Y 1.47 Gd 1.53 Fe 5 O 12 was obtained with a lattice parameter of 12.41 A and a theoretical density of 5.84 g cm -3 . Dry pressed rings were sintered at 1270 and 1320 deg C, increasing the grain-size from 3.1 to 6.5 μm, the theoretical density by 87.6 to 95.3% and decreasing H c from 2.9725 to 1.4005 Oe. Additionally, Hc increased when the frequency of the hysteresis graph varied from 60 Hz to 10 kHz, the curie temperature was 282.4 deg C and Ms equalled 9.25 emu g -1 (0.17 kG) agreeing well with the B s -value of the hysteresis graph and literature values. (author)

  11. Influence of airflow rate and substrate nature on heterogeneous struvite precipitation.

    Science.gov (United States)

    Saidou, H; Ben Moussa, S; Ben Amor, M

    2009-01-01

    In wastewater treatment plants a hard scale consisting of struvite crystals can be formed, in pipes and recirculation pumps, during anaerobic digestion of wastewater. This study was conducted to evaluate the effect of airflow rate and substrate nature on nucleation type, induction period and supersaturation coefficient during struvite precipitation. A crystallization reactor similar to that designed for calcium carbonate precipitation was used. The pH of synthetic wastewater solution was increased by air bubbling. Experimental results indicated that the airflow increased heterogeneous precipitation of struvite. The susceptibility to scale formation was more important on polyamide and polyvinyl chloride than on stainless steel. In all cases, X-ray diffraction and infrared spectroscopy showed that the precipitated solid phase was solely struvite. No difference in crystal morphology was observed. However, at similar experimental conditions, the particle size of struvite was higher for stainless-steel material than that for plastic materials.

  12. On the complex conductivity signatures of calcite precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  13. Mesoporous MEL, BEA, and FAU zeolite crystals obtained by in situ formation of carbon template over metal nanoparticles

    DEFF Research Database (Denmark)

    Abildstrøm, Jacob Oskar; Ali, Zahra Nasrudin; Mentzel, Uffe Vie

    2016-01-01

    Here, we report the synthesis and characterization of hierarchical zeolite materials with MEL, BEA and FAU structures. The synthesis is based on the carbon templating method with an in situ-generated carbon template. Through the decomposition of methane and deposition of coke over nickel nanopart......Here, we report the synthesis and characterization of hierarchical zeolite materials with MEL, BEA and FAU structures. The synthesis is based on the carbon templating method with an in situ-generated carbon template. Through the decomposition of methane and deposition of coke over nickel...... nanoparticles supported on silica, a carbon–silica composite is obtained and exploited as a combined carbon template/silica source for the zeolite synthesis. The mesoporous zeolite materials were all prepared by hydrothermal crystallization in alkaline media followed by removal of the carbon template...... by combustion, which results in zeolite single crystals with intracrystalline pore volumes of up to 0.44 cm3 g−1. The prepared zeolite structures are characterized by XRD, SEM, TEM and N2 physisorption measurements....

  14. Temperature driven structural-memory-effects in carbon nanotubes filled with Fe3C nano crystals

    Science.gov (United States)

    Boi, Filippo S.; Zhang, Xiaotian; Corrias, Anna

    2018-02-01

    We report the observation of novel temperature-driven structural-memory-effects in carbon nanotubes (CNTs) filled with Fe3C nano-crystals. These structural-transitions were measured by means of temperature (T) dependent x-ray diffraction (XRD) in the T-range from 298 K to 12 K. A clear reversible 2θ-shift in the 002-peak of the graphitic-CNTs-walls is found with the decrease of the temperature. As determined by Rietveld refinement, such 2θ-shift translates in a not previously reported decrease in the value of the CNT graphitic c-axis with the decrease of the temperature (from 298 K to 12 K). Also, a clear reversible 2θ-shift in the 031 and 131 diffraction-peaks of Fe3C is observed within the same T-range. Rietveld refinements confirm the existence of such memory-effect and also reveal a gradual decrease of the 010-axis of Fe3C with the decrease of the temperature. These observations imply that the observed structural-memory-effect is a characteristic of CNTs when Fe3C is the encapsulated ferromagnet. The generality of such memory-effects was further confirmed by additional measurements performed on other types of CNTs characterized by continuous Fe3C-filling. XRD measurements in the T-range from 298 K to 673 K revealed also an unusual reversible decrease of the Fe3C-peak intensities with the increase of the temperature. These observations can have important implications on the magnetic data recording applications of these nanostructures by helping in better understanding the unusual temperature-dependent magnetic instabilities of iron-based nano-crystals which have been recently reported in literature.

  15. The Force of Crystallization and Fracture Propagation during In-Situ Carbonation of Peridotite

    Directory of Open Access Journals (Sweden)

    Reinier van Noort

    2017-10-01

    Full Text Available Subsurface mineralization of CO2 by injection into (hydro-fractured peridotites has been proposed as a carbon sequestration method. It is envisaged that the expansion in solid volume associated with the mineralization reaction leads to a build-up of stress, resulting in the opening of further fractures. We performed CO2-mineralization experiments on simulated fractures in peridotite materials under confined, hydrothermal conditions, to directly measure the induced stresses. Only one of these experiments resulted in the development of a stress, which was less than 5% of the theoretical maximum. We also performed one method control test in which we measured stress development during the hydration of MgO. Based on microstructural observations, as well as XRD and TGA measurements, we infer that, due to pore clogging and grain boundary healing at growing mineral interfaces, the transport of CO2, water and solutes into these sites inhibited reaction-related stress development. When grain boundary healing was impeded by the precipitation of silica, a small stress did develop. This implies that when applied to in-situ CO2-storage, the mineralization reaction will be limited by transport through clogged fractures, and proceed at a rate that is likely too slow for the process to accommodate the volumes of CO2 expected for sequestration.

  16. Electron spectroscopy of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In4Se3 crystals

    International Nuclear Information System (INIS)

    Galiy, P.V.; Musyanovych, A.V.; Nenchuk, T.M.

    2005-01-01

    The results of the quantitative X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In 4 Se 3 crystals are presented. The carbon coating formation occurs as the result of interaction of the air and residual gases atmosphere in ultra high vacuum (UHV) Auger spectrometer chamber with atomic clean interlayer cleavage surfaces of the crystals. The kinetics and peculiarities of interfacial carbon layer formation on the cleavage surfaces of the crystals, elemental and phase composition of the interface have been studied by quantitative XPS, AES and mass-spectroscopy

  17. Effects of revegetation and precipitation gradient on soil carbon and nitrogen variations in deep profiles on the Loess Plateau of China.

    Science.gov (United States)

    Tuo, Dengfeng; Gao, Guangyao; Chang, Ruiying; Li, Zongshan; Ma, Ying; Wang, Shuai; Wang, Cong; Fu, Bojie

    2018-06-01

    Precipitation is one of the most important factors affecting the variations in soil carbon (C) and nitrogen (N) following revegetation. However, the effects of revegetation and precipitation gradients on soil organic carbon (SOC), total nitrogen (TN) and C-N interactions in deep profiles over large scales are poorly understood. This study measured the SOC and TN stocks to depth of 300 cm in three revegetation types (grassland, shrubland and forestland) and paired cropland stands at seven sites along a precipitation gradient with mean annual precipitation (MAP) from 280 to 540 mm yr -1 in the Loess Plateau of China. The results showed that the SOC and TN stocks in the 0-300 cm profile increased along the precipitation gradient. Revegetation did not always result in accumulation of SOC and TN stocks, which depended on the precipitation condition and varied among different vegetation types. Grassland restoration resulted in more SOC and TN accumulation than shrubland and forestland in areas with MAP  510 mm. The changes in SOC and TN stocks following revegetation (∆SOC and ∆TN) were significantly correlated with MAP in only the 0-20 cm layer, whereas the changes in the C/N ratio of each depth were significantly and negatively correlated with MAP. The correlations between ∆SOC and ∆TN were stronger in the 0-60 cm layer than that in the 60-300 cm layer, and an accumulation of 1 g TN was associated with approximately 7.9 g increase of SOC in the 0-300 cm profile following revegetation. This study indicated that the changes in soil C and N stocks following revegetation had different patterns along precipitation gradient and among depths, and grassland restoration and N fertilizer input benefitted soil C and N sequestration in drier areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength

    Directory of Open Access Journals (Sweden)

    Feihu Li

    2016-04-01

    Full Text Available Low color visibility and poor mechanical strength of polystyrene (PS photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.

  19. Activated Fraction Of Black Carbon By Cloud Droplets And Ice Crystals At The High Alpine Site Jungfraujoch (3580 m asl)

    Energy Technology Data Exchange (ETDEWEB)

    Cozic, J.; Mertes, S. [IFT Leipzig (Georgia); Verheggen, B.; Petzold, A. [DLR, Oberpfaffenhofen (Georgia); Weingartner, E.; Baltensperger, U.

    2005-03-01

    Measurements of black carbon (BC) were made in winter and summer 2004 at the high Alpine site Jungfraujoch in order to study the activation of BC into cloud droplets and ice crystals. Main results showed that the activated fraction represents 61% in summer and that for a large temperature range between -25 C and 5 C, the activated BC fraction increases with increasing temperature and increasing liquid water content. (author)

  20. Carbon isotopes of C3 herbs correlate with temperature on removing the influence of precipitation across a temperature transect in the agro-pastoral ecotone of northern China.

    Science.gov (United States)

    Liu, Xian-Zhao; Zhang, Yong; Li, Zhen-Guo; Feng, Teng; Su, Qing; Song, Yan

    2017-12-01

    Plant δ 13 C-temperature (δ-T) relation has been established in many systems and is often used as paleotemperature transfer function. However, it is still unclear about the exact contributions of temperature variation to plant 13 C discrimination because of covariation between temperature and precipitation (aridity), which reduces confidence in reconstruction of paleoclimate. In this study, we measured carbon isotope composition (δ 13 C) of 173 samples of C3 perennial herbs from 22 sites across a temperature gradient along the 400 mm isohyet in the farming-pastoral zone of North China. The results showed that precipitation obviously affected the correlations of temperatures and foliar δ 13 C. After removing the influence of precipitation by analysis of covariance (ANCOVA), a more strongly positive relationship was obtained between site-mean foliar δ 13 C and annual mean temperature (AMT), with a regression coefficient of 0.1636‰/°C ( p  =   .0024). For widespread species, Artemisia lavandulaefolia and Artemisia capillaries , the slopes (or coefficients) of foliar δ 13 C and AMT were significantly steeper (larger) than those of foliar δ 13 C and AMT where the precipitation influence was not excluded, whereas the δ-T coefficients of Polygonum persicaria and Leymus chinensis showed little change across the transect after deducting the precipitation effect. Moreover, the positive relationship between temperature and δ 13 C over the transect could be explained by soil moisture availability related to temperature. Our results may afford new opportunities for investigating the nature of past climate variability.

  1. Nanocrystalline Ce 1- xY xO 2- x/2 (0≤ x≤0.35) Oxides via Carbonate Precipitation: Synthesis and Characterization

    Science.gov (United States)

    Li, Ji-Guang; Ikegami, Takayasu; Wang, Yarong; Mori, Toshiyuki

    2002-10-01

    A novel carbonate (co)precipitation method, employing nitrates as the starting salts and ammonium carbonate as the precipitant, has been used to synthesize nanocrystalline CeO 2 and Ce 1- xY xO 2- x/2 ( x≤0.35) solid-solutions. The resultant powders are characterized by elemental analysis, differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) analysis, and high-resolution scanning electron microscopy (HRSEM). Due to the direct formation of carbonate solid-solutions during precipitation, Ce 1- xY xO 2- x/2 solid-solution oxides are formed directly during calcination at a very low temperature of ˜300°C for 2 h. The thus-produced oxide nanopowders are essentially non-agglomerated, as revealed by BET in conjunction with XRD analysis. The solubility of YO 1.5 in CeO 2 is determined via XRD to be somewhere in the range from 27 to 35 mol%, from which a Y 2O 3-related type-C phase appears in the final product. Y 3+-doping promotes the formation of spherical nanoparticles, retards thermal decomposition of the precursors, and suppresses significantly crystallite coarsening of the oxides during calcination. The activation energy for crystallite coarsening increases gradually from 68.7 kJ mol -1 for pure CeO 2 to 138.6 kJ mol -1 for CeO 2 doped with 35 mol% YO 1.5. The dopant effects on crystallite coarsening is elaborated from the view point of solid-state chemistry.

  2. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    Science.gov (United States)

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. © 2016 John Wiley & Sons Ltd.

  3. Sucrose/bovine serum albumin mediated biomimetic crystallization

    Indian Academy of Sciences (India)

    To understand the role of the sucrose/bovine serum albumin system in the biomineralization process, we have tested the influence of different concentration of the sucrose/bovine serum albumin (BSA) on calcium carbonate (CaCO3) precipitation. The CaCO3 crystals were characterized by scanning electron microscope ...

  4. Reproducibility of Carbon and Water Cycle by an Ecosystem Process Based Model Using a Weather Generator and Effect of Temporal Concentration of Precipitation on Model Outputs

    Science.gov (United States)

    Miyauchi, T.; Machimura, T.

    2014-12-01

    GCM is generally used to produce input weather data for the simulation of carbon and water cycle by ecosystem process based models under climate change however its temporal resolution is sometimes incompatible to requirement. A weather generator (WG) is used for temporal downscaling of input weather data for models, where the effect of WG algorithms on reproducibility of ecosystem model outputs must be assessed. In this study simulated carbon and water cycle by Biome-BGC model using weather data measured and generated by CLIMGEN weather generator were compared. The measured weather data (daily precipitation, maximum, minimum air temperature) at a few sites for 30 years was collected from NNDC Online weather data. The generated weather data was produced by CLIMGEN parameterized using the measured weather data. NPP, heterotrophic respiration (HR), NEE and water outflow were simulated by Biome-BGC using measured and generated weather data. In the case of deciduous broad leaf forest in Lushi, Henan Province, China, 30 years average monthly NPP by WG was 10% larger than that by measured weather in the growing season. HR by WG was larger than that by measured weather in all months by 15% in average. NEE by WG was more negative in winter and was close to that by measured weather in summer. These differences in carbon cycle were because the soil water content by WG was larger than that by measured weather. The difference between monthly water outflow by WG and by measured weather was large and variable, and annual outflow by WG was 50% of that by measured weather. The inconsistency in carbon and water cycle by WG and measured weather was suggested be affected by the difference in temporal concentration of precipitation, which was assessed.

  5. Carbon redistribution and precipitation in high temperature ion-implanted strained Si/SiGe/Si multi-layered structures

    DEFF Research Database (Denmark)

    Gaiduk, Peter; Hansen, John Lundsgaard; Nylandsted Larsen, Arne

    2014-01-01

    Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects.......Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects....

  6. Carbon monoxide MgO from dispersed solids to single crystals: a review and new advances

    Science.gov (United States)

    Spoto, G.; Gribov, E. N.; Ricchiardi, G.; Damin, A.; Scarano, D.; Bordiga, S.; Lamberti, C.; Zecchina, A.

    2004-10-01

    In this review we describe 30 years of research on the surface properties of magnesium oxide, considered as the model prototype oxide of cubic structure. The surface properties of single crystals, thin films and powdered samples (sintered at progressive higher temperatures) are considered and compared, with the aim of demonstrating that the gap between “believed perfect” single crystal surfaces, typical of “pure” Surface Science, and high surface area samples, typical of Catalysis Science, can be progressively reduced. The surface features considered in this review are the structural (morphological), optical, absorptive and reactive properties. As the carbon monoxide molecule is able to probe the surface properties of both anions and cations, it can give a complete information of the surface structure of MgO samples. For this reason the adsorption and spectroscopy of this molecule is preferentially considered in this review. Particular emphasis is given in reviewing results obtained by high resolution transmission microscopy and in situ IR spectroscopy of adsorbed species (in both reflection and transmission modes), but also UV-Vis diffuse reflectance, photoluminescence, TDS, EPR, electron based techniques are mentioned. Reviewed experimental results are also commented in view of the important theoretical literature available on this topic and are complemented by new transmission IR data concerning CO adsorbed, down to 60 K, on powdered MgO samples with increasing surface area. These innovative experiments allow us to perform, on powdered samples, the adsorption experiments typical of single crystals (or films) Surface Science, with an increase of the S/N of the vibrational features higher than two order of magnitude. As far the new results (never published before) are concerned, we report IR spectra of CO dosed at 60 K on polycrystalline MgO samples with different surface area obtained by Mg(OH) 2 decomposition and progressive sintering at high temperature

  7. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  8. High pressure Raman and single crystal X-ray diffraction of the alkali/calcium carbonate, shortite

    Science.gov (United States)

    Williams, Q. C.; Vennari, C.; O'Bannon, E. F., III

    2015-12-01

    Raman and synchrotron-based single crystal x-ray diffraction data have been collected on shortite (Na2Ca2(CO3)3) up to 10 GPa at 300 K. Shortite is of geological importance due to its presence in the ground-mass of kimberlites, and the alkaline-/carbon-rich character of kimberlitic eruptions. This investigation focuses on shortite's high pressure behavior and is relevant to the behavior of alkali-carbonate systems within Earth's upper mantle. X-ray data demonstrate that shortite's symmetry remains stable at high pressures—retaining orthorhombic C crystal system (Amm2) up to 10 GPa; diffraction data show a 12% volume decrease from room pressure, and a bulk modulus of 71.0(3) GPa. These also demonstrate that the c-axis is twice as compressible as the a- and b-axes. This anisotropic compression is likely due to the orientation of the relatively stiff carbonate groups, a third of which are oriented close to the plane of the a- and b-axes, c axis compression primarily involves the compaction of the 9-fold coordinate sodium and calcium polyhedral. The two distinct carbonate sites within the unit cell give rise to two Raman symmetric stretching modes of the symmetric stretch; the carbonate group stretching vibration which is close to in plane with the a- and b-axes shifts at 3.75 cm-1/GPa as opposed to the carbonate groups which is closer to in plane with the b- and c-axes which shift at 4.25 cm-1/GPa. This furthers evidence for anisotropic compression observed using x-ray diffraction--as the carbonate in plane with the a- and b-axes is compressed, the strength of oxygen bonds along the c-axis with the cations increases, thus decreasing the pressure shift of the mode. The out of plane bending vibration shifts at -0.48 cm-1/GPa, indicating an enhanced interaction of the oxygens with the cations. The multiple in plane bending modes all shift positively, as do at the low frequency lattice modes, indicating that major changes in bonding do not occur up to 10 GPa. The data

  9. Effects of the carbides precipitation on the hydrogen diffusion in a low carbon steel quenched and tempered

    International Nuclear Information System (INIS)

    Luppo, M.I.; Ovejero Garcia, J.

    1996-01-01

    Hydrogen diffusivity through steels at room temperature has been known to deviate considerably from the expected Arrhenius relation. This deviation is due to the attractive interactions between dissolved hydrogen and trapping sites (imperfections in the steel lattice). In a previous work it was shown that the apparent diffusion coefficients attain a minimum value in a fresh martensite and diffusivity increases in the same material tempered at 453 k during six hours. In order to explain this difference, the variation of hydrogen trapping sites with the tempering time, at the mentioned temperature, was studied by means of hydrogen permeation tests. Carbides precipitation was followed by means of the extraction replica technique using transmission electron microscopy. The hydrogen diffusivity obtained by the hydrogen permeation tests attained a minimum value in the quenched specimens and increased with increasing tempering time up to reach a constant value between three and six hours. This change in the hydrogen diffusivity was attributed to the trapping sites decrease promoted by carbides precipitation and their precipitation kinetics was described by an Avrami equation. (author). 4 refs., 4 figs

  10. Preparation and crystal structure of carbonyltris (diethyldithiocarbamato) technetium (III): an unexpected source of co-ordinated carbon monoxide

    International Nuclear Information System (INIS)

    Baldas, J.; Bonnyman, J.; Pojer, P.M.; Williams, G.A.

    1981-10-01

    Tc(S 2 CNEt 2 ) 3 CO has been prepared by the reduction of NH 4 TcO 4 with formamidinesulphinic acid in the presence of NaS 2 CNEt 2 . It is suggested that the co-ordinated carbon monoxide is formed after co-ordination of formamidinesulphinic acid, or some decomposition product, with technetium. The crystal structure of Tc(S 2 CNEt 2 ) 3 CO has been determined by single-crystal X-ray diffraction methods at 17 deg. C. Diffractometry has provided significant Bragg intensities for 2045 independent reflections and the structure has been refined by full-matrix least-squares methods to R 0.049. The compound is isostructural with the rhenium analogue and consists of discrete Tc(S 2 CNEt 2 ) 3 CO molecules, each containing a terminal linear CO group. The technetium atom has a seven co-ordinate environment which is best described as a distorted pentagonal bipyramid

  11. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  12. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes

    International Nuclear Information System (INIS)

    Lin, Yongjie; Zheng, Mianping; Ye, Chuanyong

    2017-01-01

    The mineral hydromagnesite, Mg 5 (CO 3 ) 4 (OH) 2 ·4H 2 O, is a common form of hydrated Mg-carbonate in alkaline lakes, yet the processes involved in its formation are not well understood. This study focuses on Dujiali Lake, in the central Qinghai-Tibetan Plateau (QTP), which is one of the few environments on the earth's surface with extensive Holocene precipitation of hydromagnesite. The hydrogeochemistry of surface waters, and the mineralogical, stable isotope (δ 13 C and δ 18 O), and radiogenic isotope content of hydromagnesite deposits were analyzed to investigate formation mechanisms. The chemical composition of surface water around Dujiali Lake evolved from the rock-weathering-type waters of T1 (Ca−Mg−HCO 3 water type) to more concentrated sodic waters of T2 (Na−SO 4 −Cl water type) due to evaporation. XRD results show that the mineralogical composition of samples is pure hydromagnesite. Analysis of oxygen isotopes in the hydromagnesite indicates that supergene formation with authigenic carbonate crystallization from evaporation water is the dominant precipitation process. Combined carbon-oxygen isotope analysis suggests atmospheric CO 2 provided a carbon source for the precipitation of hydromagnesite. These findings suggest that hydromagnesite precipitation at Lake Dujiali is mainly inorganic in nature, and the greenhouse gas, CO 2 , is trapped and stored in the hydromagnesite directly from the atmosphere. AMS radiocarbon dating of samples indicates CO 2 was sequestered between 5845 ± 30 to 6090 ± 25 cal a BP in the Dujiali Lake hydromagnesite deposit. The study contributes to improved understanding of hydromagnesite formation in modern and ancient playas. - Highlights: • The stable isotopes, radiogenic isotope data are firstly obtained from the hydromagnesite deposits of Lake Dujiali in QTP. • Hydromagnesite precipitation at Lake Dujiali is mainly inorganic. • δ 18 O indicates supergene formation with authigenic carbonate

  13. Interpretation of the vacancy-ordering controlled growth morphology of Hg5In2Te8 precipitates in Hg3In2Te6 single crystals by TEM observation and crystallographic calculation

    International Nuclear Information System (INIS)

    Sun, Jie; Fu, Li; Liu, Hongwei; Ringer, S.P.; Liu, Zongwen

    2015-01-01

    Graphical abstract: The growth morphology and detailed crystallography of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 matrix to has been interpreted by means of transmission electron microscopy and invariant element deformation model. Three crystallographic equivalent variants of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 matrix were found to have different growth directions and habit planes. Such growth morphology is fully attributed to the lattice shrinkage induced by vacancy ordering under high temperature in Hg 5 In 2 Te 8 . Through near coincident site lattice and invariant strain calculation, the morphology and crystallographic features of the precipitate has been successfully interpreted. - Highlights: • The growth morphology of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 was observed by TEM. • Near-CSL calculation show 0.7577% lattice shrinkage of Hg 5 In 2 Te 8 at high temperature. • All the involved factors have inverse relationship with the move speed of interface. • The calculated crystallography features of Hg 5 In 2 Te 8 agree well with the TEM results. - Abstract: Generally, the crystal growth morphology in liquid or vapor was controlled by chemical potential, while that in solid solute was restricted by 3D strain matching between matrix and secondary phase. It is already known that the growth and evolution of the morphology of secondary phase during the solid phase transformation are highly determined by the variation of interface energy induced by lattice mismatch. In this work, the growth morphology and crystallography of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 matrix were investigated by means of transmission electron microscopy (TEM). It was found that the growth of Hg 5 In 2 Te 8 precipitates displayed an unusual growth morphology which contain three crystallographically equivalent variants with different growth directions in Hg 3 In 2 Te 6 matrix, suggesting a slight lattice constant variation of Hg 5 In 2 Te 8 precipitate

  14. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats.

    Science.gov (United States)

    Houghton, J; Fike, D; Druschel, G; Orphan, V; Hoehler, T M; Des Marais, D J

    2014-11-01

    Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ(13) C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ(13) C signatures. In the photic zone, the δ(13) C org signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ(13) C signatures similar to DIC in the overlying water column (-2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate-reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and HCO3- concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter-scale variability in the δ(13) C org signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ(13) C org signatures; these processes need to be considered when attempting to relate

  15. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    Science.gov (United States)

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

  16. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    Yuan, Q.; Yang, Y.; Chen, J.; Ramuni, V.; Misra, R.D.K.; Bertrand, K.J.

    2010-01-01

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  17. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste

    CSIR Research Space (South Africa)

    De Beer, Morris

    2015-08-01

    Full Text Available (PCC). The process used an acid gas (H2S) to improve the aqueous dissolution of CaS, which is otherwise poorly soluble. The carbonate product was primarily calcite (99.5%) with traces of quartz (0.5%). Calcite was the only CaCO3 polymorph obtained...

  18. A strategy of precipitated calcium carbonate (CaCO{sub 3}) fillers for enhancing the mechanical properties of polypropylene polymers

    Energy Technology Data Exchange (ETDEWEB)

    Thenepalli, Thriveni; Ahn, Ji Whan [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of); Ahn, Young Jun; Han, Choon [Kwangwoon University, Seoul (Korea, Republic of); Ramakrishna, Chilakala [Hanil Cement, Danyang (Korea, Republic of)

    2015-06-15

    A wide variety of fillers are currently used in more than twenty types of polymer resins, although four of them alone (polypropylene, polyamides, thermoplastic polyesters, and polyvinyl chloride) account for 90% of the market of mineral fillers in plastics. Polypropylene (PP) and PVC dominate the market for calcium carbonate. PP is a versatile reinforcement material that can meet engineering and structural specifications and is widely used for automotive components, home appliances, and industrial applications. Talc, mica, clay, kaolin, wollastonite, calcium carbonates, feldspar, aluminum hydroxide, glass fibers, and natural fibers are commonly used in fillers. Among these, calcium carbonate (both natural and synthetic) is the mos abundant and affords the possibility of improved surface finishing, control over the manufacture of products, and increased electric resistance and impact resistance. Meeting the global challenge to reduce the weight of vehicles by using plastics is a significant issue. The current the global plastic and automobile industry cannot survive without fillers, additives, and reinforcements. Polypropylene is a major component of the modern plastic industry, and currently is used in dashboards, wheel covers, and some engine parts in automobiles. This article reports that the use of calcium carbonate fillers with polypropylene is the best choice to enhance the mechanical properties of plastic parts used in automobiles.

  19. A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers

    International Nuclear Information System (INIS)

    Thenepalli, Thriveni; Ahn, Ji Whan; Ahn, Young Jun; Han, Choon; Ramakrishna, Chilakala

    2015-01-01

    A wide variety of fillers are currently used in more than twenty types of polymer resins, although four of them alone (polypropylene, polyamides, thermoplastic polyesters, and polyvinyl chloride) account for 90% of the market of mineral fillers in plastics. Polypropylene (PP) and PVC dominate the market for calcium carbonate. PP is a versatile reinforcement material that can meet engineering and structural specifications and is widely used for automotive components, home appliances, and industrial applications. Talc, mica, clay, kaolin, wollastonite, calcium carbonates, feldspar, aluminum hydroxide, glass fibers, and natural fibers are commonly used in fillers. Among these, calcium carbonate (both natural and synthetic) is the mos abundant and affords the possibility of improved surface finishing, control over the manufacture of products, and increased electric resistance and impact resistance. Meeting the global challenge to reduce the weight of vehicles by using plastics is a significant issue. The current the global plastic and automobile industry cannot survive without fillers, additives, and reinforcements. Polypropylene is a major component of the modern plastic industry, and currently is used in dashboards, wheel covers, and some engine parts in automobiles. This article reports that the use of calcium carbonate fillers with polypropylene is the best choice to enhance the mechanical properties of plastic parts used in automobiles

  20. Chemical forms of the fluorine and carbon in fly ashes recovered from electrostatic precipitators of pulverized coal-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Naoto Tsubouchi; Hidekazu Hayashi; Akiyuki Kawashima; Masahide Sato; Noboru Suzuki; Yasuo Ohtsuka [Tohoku University, Sendai (Japan). Institute of Multidisciplinary Research for Advanced Materials

    2011-01-15

    The functionalities of the fluorine and carbon present in fly ashes formed in pulverized coal combustion have been studied with X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques. The ash samples include 20-130 {mu}g/g-dry and 0.4-4.1 mass%-dry of fluorine and carbon elements, respectively, and these components are enriched at the outermost layer of the ash surface. The F consists of both inorganic and organic functionalities, and the proportion of the latter is as high as 84-98 mol%. The C has different types of surface oxygen species, such as carboxyl, lactone/acid anhydride and phenolic groups, and most of these groups decompose to CO{sub 2} or CO up to 700{sup o}C to yield carbon active sites. When the amount of the O-functional forms increases, the content of organic C-F forms tends to increase almost linearly. On the basis of the above results, it may be speculated as one possibility that the formation of covalent C-F bonds takes place mainly through secondary reactions between gaseous F-containing compounds (HF and/or F{sub 2}) in flue gas and carbon active sites produced below 700{sup o}C downstream of coal-fired boilers. 30 refs., 8 figs., 4 tabs.

  1. Contraction and Expansion of the Upper Zambezi Wetlands in Response to Precipitation Regime Changes and Impacts on Carbon, Energy and Water Fluxes

    Science.gov (United States)

    Lowman, L.; Barros, A. P.

    2017-12-01

    The Upper Zambezi River Basin (UZRB) serves as the headwater catchment of the fourth-largest river in Africa, provides essential freshwater resources to arid and semi-arid regions within its boundaries, and recharges the Northern Kalahari Aquifer. Shallow and clayey soils give way to seasonal waterlogging, especially along drainage lines, favoring the establishment of wetlands. Woodland savanna, grasslands and miombo dominate the UZRB's diverse ecosystem, marking a complex transition zone between the Congo tropical rainforest and the Kalahari Desert that reflects spatial rainfall gradients. Satellite imagery shows that permanent wetlands are located in low-lying convergence zones in the northeast and northwest corners of UZRB where surface-groundwater interactions are most vigorous. However, orographic precipitation gradients cannot fully explain interannual changes in wetland area and vegetation density. We hypothesize that changes in vegetation density result from nonlinear interactions and feedbacks among precipitation, canopy biophysical properties, soil moisture and groundwater processes modulated by topography and regional hydrogeology. This work aims to understand how changes in vegetation density, particularly in and around permanent and intermittent wetlands, impact carbon, energy and water fluxes. Using the MODIS Nadir BRDF-Adjusted Reflectance product, a seasonally-varying wetland class is derived that reflects inter-annual precipitation and groundwater variability. The Duke Coupled Hydrology Model with Prognostic Vegetation is adapted to include C4 photosynthesis for the UZRB grasslands and used to simulate changes in canopy density and impacts on gross primary productivity, evapotranspiration, and soil moisture at high spatial and temporal resolution. Initial results using the column-wise model provide a baseline for understanding surface fluxes before incorporating groundwater and subsurface flows crucial to investigating the implicit nonlinearities

  2. Precipitation of solid phase calcium carbonates and their effect on application of seawater SA–T–P models

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2009-07-01

    Full Text Available At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA, temperature (T and pressure (P. Such models rely on fixed compositional ratios of the major components (e.g., Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.. As seawater evaporates or freezes, solid phases [e.g., CaCO3(s or CaSO42H2O(s] will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric partial pressures of CO2 increase. A geochemical model (FREZCHEM was used to quantify the SA−T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on pseudo-homogeneous nucleation was extended from 25–40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate between 3°C (at SA=104 g kg− and 40°C (at SA=66 g kg−. At 2.82°C, calcite(CaCO3 transitioned to ikaite(CaCO36H2O as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of −4.93°C. Increasing atmospheric CO2 from 385 μatm (390 MPa (in Year 2008 to 550 μatm (557 MPa (in Year 2100 would increase the SA and t boundaries as much as 11 g kg−1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculation for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.

  3. Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T-P models

    Science.gov (United States)

    Marion, G. M.; Millero, F. J.; Feistel, R.

    2009-07-01

    At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g., Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases [e.g., CaCO3(s) or CaSO42H2O(s)] will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric partial pressures of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on pseudo-homogeneous nucleation was extended from 25-40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-) and 40°C (at SA=66 g kg-). At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of -4.93°C. Increasing atmospheric CO2 from 385 μatm (390 MPa) (in Year 2008) to 550 μatm (557 MPa) (in Year 2100) would increase the SA and t boundaries as much as 11 g kg-1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculation) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.

  4. Strontium hydroxyapatite and strontium carbonate as templates for the precipitation of calcium-phosphates in the absence and presence of fluoride

    Science.gov (United States)

    Sternitzke, Vanessa; Janousch, Markus; Heeb, Michèle B.; Hering, Janet G.; Johnson, C. Annette

    2014-06-01

    The heterogeneous precipitation of calcium-phosphates on calcium hydroxyapatite (Ca10(PO4)6(OH)2 or HAP) in the presence and absence of fluoride is important in the formation of bone and teeth, protection against tooth decay, dental and skeletal fluorosis and defluoridation of drinking water. Strontium hydroxyapatite (Sr10(PO4)6(OH)2 or SrHAP) and strontium carbonate (SrCO3) were used as calcium-free seed templates in precipitation experiments conducted with varying initial calcium-to-phosphate (Ca/P) or calcium-to-phosphate-to-fluoride (Ca/P/F) ratios. Suspensions of SrHAP or SrCO3 seed templates (which were calcium-limited for both templates and phosphate-limited in the case of SrCO3) were reacted at pH 7.3 (25 °C) over 3 days. The resulting solids were examined with Scanning Transmission Electron Microscopy (STEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). Calcium apatite was the predominant phase identified by all techniques independent of the added Ca/P ratios and of the presence of fluoride. It was not possible to make an unambiguous distinction between HAP and fluorapatite (Ca10(PO4)6F2, FAP). The apatite was calcium-deficient and probably contained some strontium.

  5. Genetic variation in seedling water-use efficiency of Patagonian Cypress populations from contrasting precipitation regimes assessed through carbon isotope discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Pastorino, M. J.; Aparicio, A. G.; Marchelli, P.; Gallo, L. A.

    2012-11-01

    Water-use efficiency (WUE) is a physiological parameter that plays a significant role in the evolutionary dynamics of many forest tree species. It can be estimated indirectly through carbon isotope discrimination (A). In general, plants of more arid origins have lower values of A. In order to study the degree of genetic control of this parameter and the genetic variation in A of Patagonian Cypress seedlings, three Argentinean natural populations chosen to represent two contrasting precipitation regimes were sampled in a common garden trial. The dry situation was represented by two neighboring marginal forest patches from the steppe, while the humid condition was represented by a population with 1,200 mm higher mean annual precipitation. Height (H) and A were measured in 246 five-year-old seedlings from 41 open-pollinated families. The factor family had a significant effect on both variables; however heritability for A was found not to be significant in two out of the three populations. This could be explained by low sample size in one of them and by a real evolutionary effect in the other. An inverse association between H and A was verified, which is interpreted as evidence of an adaptation process at the intra-population level. The studied populations were not shown to discriminate carbon isotopes differently; hence evidence of adaptation to current environmental conditions could not be obtained. On the other hand, the arid populations proved to be quite different in terms of genetic variation, which seems to be the consequence of genetic drift and isolation. (Author) 49 refs.

  6. Crystallization of modified hydroxyapatite on titanium implants

    International Nuclear Information System (INIS)

    Golovanova, O A; Izmailov, R R; Zaits, A V; Ghyngazov, S A

    2016-01-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface. (paper)

  7. Removal mechanism of selenite by Fe{sub 3}O{sub 4}-precipitated mesoporous magnetic carbon microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianwei; Fu, Fenglian, E-mail: fufenglian2006@163.com; Ding, Zecong; Li, Na; Tang, Bing

    2017-05-15

    Highlights: • MCMSs were prepared via green hydrothermal carbonization and coprecipitation. • MCMSs displayed effective removal of Se(IV) from wastewater. • Se(IV) formed inner-sphere complexes with MCMSs and was reduced to insoluble Se{sup 0}. • MCMSs can be easily separated and recycled by an external magnetic field. - Abstract: A mesoporous composite of magnetic carbon microspheres (MCMSs) was synthesized via introducing Fe{sub 3}O{sub 4} nanoscale particles to the surface of carbon microspheres (CMSs) by coprecipitation. Scanning electron microscopy and transmission electron microscopy showed the Fe{sub 3}O{sub 4} nanoscale particles were dispersedly immobilized on the surface of CMSs. The MCMSs demonstrated effective removal of selenite (Se(IV)) from wastewater. MCMSs showed the regular pattern where the lower pH value, the lower residual Se(IV) concentration. The coexisting sulfate, nitrate, chloride, carbonate, and silicate had no significant effect on Se(IV) removal, whereas phosphate hindered the removal of Se(IV) by competing with Se(IV) and formed inner–sphere complexes with Fe{sub 3}O{sub 4} on the surface of MCMSs. Through X–ray photoelectron spectroscopy analysis, Se(IV) can not only form inner–sphere complexes with MCMSs, but also be reduced to insoluble elemental selenium (Se{sup 0}) by Fe{sub 3}O{sub 4} which was oxidized and formed γ–Fe{sub 2}O{sub 3}. Moreover, the superparamagnetic MCMSs can be easily separated from solution by means of an external magnetic field. The high removal efficiency for Se(IV) and rapid separability of MCMSs made them promising materials for the application in the practice.

  8. A Study of the Optical Properties of Ice Crystals with Black Carbon Inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, Marco [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Yang, Xiaoyuan [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kopacz, Adrian M [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Geier, Manfred [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    The report focu ses on the modification of the optical properties of ice crystals due to atmospheric black car bon (BC) contamination : the objective is to advance the predictive capabilities of climate models through an improved understanding of the radiative properties of compound particles . The shape of the ice crystal (as commonly found in cirrus clouds and cont rails) , the volume fraction of the BC inclusion , and its location inside the crystal are the three factors examined in this study. In the multiscale description of this problem, where a small absorbing inclusion modifies the optical properties of a much la rger non - absorbing particle, state - of - the - art discretization techniques are combined to provide the best compromise of flexibility and accuracy over a broad range of sizes .

  9. Promotion of Crystal Growth on Biomass-based Carbon using Phosphoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Liwei Yu

    2015-02-01

    Full Text Available The effect of phosphoric acid treatments on graphitic microcrystal growth of biomass-based carbons was investigated using X-ray diffraction, infrared spectroscopy, and Raman spectroscopy. Although biomass-based carbons are believed to be hard to graphitize even after heat treatments well beyond 2000 °C, we found that graphitic microcrystals of biomass-based carbons were significantly promoted by phosphoric acid treatments above 800 °C. Moreover, twisted spindle-like whiskers were formed on the surface of the carbons. This suggests that phosphorus-containing groups turn graphitic microcrystalline domains into graphite during phosphoric acid treatments. In addition, the porous texture of the phosphoric acid-treated carbon has the advantage of micropore development.

  10. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    Energy Technology Data Exchange (ETDEWEB)

    Neira-Carrillo, Andronico, E-mail: aneira@uchile.cl [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Yazdani-Pedram, Mehrdad [Faculty of Chemical and Pharmaceutical Science, University of Chile, S. Livingstone 1007, PO Box 233, Santiago (Chile)

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite

  11. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin [Calera Corporation, Moss Landing, CA (United States); Gilliam, Ryan [Calera Corporation, Moss Landing, CA (United States); Seeker, Randy [Calera Corporation, Moss Landing, CA (United States)

    2015-06-30

    The objective of this project was to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updated Techno-Economic Analysis and CO2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.

  12. Drivers of radial growth and carbon isotope discrimination of bur oak (Quercus macrocarpa Michx.) across continental gradients in precipitation, vapour pressure deficit and irradiance.

    Science.gov (United States)

    Voelker, Steven L; Meinzer, Frederick C; Lachenbruch, Barbara; Brooks, J Renée; Guyette, Richard P

    2014-03-01

    Tree-ring characteristics are commonly used to reconstruct climate variables, but divergence from the assumption of a single biophysical control may reduce the accuracy of these reconstructions. Here, we present data from bur oaks (Quercus macrocarpa Michx.) sampled within and beyond the current species bioclimatic envelope to identify the primary environmental controls on ring-width indices (RWIs) and carbon stable isotope discrimination (Δ(13) C) in tree-ring cellulose. Variation in Δ(13) C and RWI was more strongly related to leaf-to-air vapour pressure deficit (VPD) at the centre and western edge of the range compared with the northern and wettest regions. Among regions, Δ(13) C of tree-ring cellulose was closely predicted by VPD and light responses of canopy-level Δ(13) C estimated using a model driven by eddy flux and meteorological measurements (R(2)  = 0.96, P = 0.003). RWI and Δ(13) C were positively correlated in the drier regions, while they were negatively correlated in the wettest region. The strength and direction of the correlations scaled with regional VPD or the ratio of precipitation to evapotranspiration. Therefore, the correlation strength between RWI and Δ(13) C may be used to infer past wetness or aridity from paleo wood by determining the degree to which carbon gain and growth have been more limited by moisture or light. © 2013 John Wiley & Sons Ltd.

  13. Coupling of carbon monoxide molecules over oxygen-defected UO2(111) single crystal and thin film surfaces.

    Science.gov (United States)

    Senanayake, S D; Waterhouse, G I N; Idriss, H; Madey, Theodore E

    2005-11-22

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO2(111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene.

  14. Coupling of Carbon Monoxide Molecules over Oxygen Defected UO2 (111) Single Crystal and Thin Film Surfaces

    International Nuclear Information System (INIS)

    Senanayake, S.; Waterhouse, G.; Idriss, H.; Madey, T.

    2005-01-01

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C 2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO 2 (111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U 4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene

  15. High Relative Abundance of Biofuel Sourced Ethanol in Precipitation in the US and Brazil Determined Using Compound Specific Stable Carbon Isotopes

    Science.gov (United States)

    Shimizu, M. S.; Felix, J. D. D.; Casas, M.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.; Willey, J. D.; Lane, C.

    2017-12-01

    Ethanol biofuel production and consumption have increased exponentially over the last two decades to help reduce greenhouse gas emissions. Currently, 85% of global ethanol production and consumption occurs in the US and Brazil. Increasing biofuel ethanol usage in these two countries enhances emissions of uncombusted ethanol to the atmosphere contributing to poor air quality. Although measurements of ethanol in the air and the precipitation reveal elevated ethanol concentrations in densely populated cities, other sources such as natural vegetation can contribute to emission to the atmosphere. Previous modeling studies indicated up to 12% of atmospheric ethanol is from anthropogenic emissions. Only one gas phase study in southern Florida attempted to constrain the two sources through direct isotopic measurements. The current study used a stable carbon isotope method to constrain sources of ethanol in rainwater from the US and Brazil. A method was developed using solid phase microextraction (SPME) with subsequent analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Stable carbon isotope signatures (δ13C) of vehicle ethanol emission sources for both the US (-9.8‰) and Brazil (-12.7‰) represented C4 plants as feedstock (corn and sugarcane) for biofuel production. An isotope mixing model using biofuel from vehicles (C4 plants) and biogenic (C3 plants) end-members was implemented to estimate ethanol source apportionment in the rain. We found that stable carbon isotope ratio of ethanol in the rain ranged between -22.6‰ and -12.7‰. Our results suggest that the contribution of biofuel to atmospheric ethanol can be higher than previously estimated. As biofuel usage increasing globally, it is essential to determine the relative abundance of anthropogenic ethanol in other areas of the world.

  16. Precipitation and measurements of precipitation

    NARCIS (Netherlands)

    Schmidt, F.H.; Bruin, H.A.R. de; Attmannspacher, W.; Harrold, T.W.; Kraijenhoff van de Leur, D.A.

    1977-01-01

    In Western Europe, precipitation is normal phenomenon; it is of importance to all aspects of society, particularly to agriculture, in cattle breeding and, of course, it is a subject of hydrological research. Precipitation is an essential part in the hydrological cycle. How disastrous local

  17. Carbon monoxide adsorption on alkali and proton-exchanged chabazite: an ab-initio periodic study using the CRYSTAL code

    Science.gov (United States)

    Ugliengo, P.; Busco, C.; Civalleri, B.; Zicovich-Wilson, C. M.

    Ab initio periodic calculations based on local Gaussian basis sets as coded in the CRYSTAL program have been performed to investigate the structure, the binding energy and the vibrational features of carbon monoxide adsorbed on H+, Li+, Na+ and K+-exchanged chabazite (Si/Al = 11/1, i.e. one Al atom per unit cell). The hybrid B3LYP functional has been adopted for all calculations with a polarized double-zeta quality basis set. The B3LYP binding energies (BSSE corrected) are 16.0, 24.6, 20.4 and 5.1 kJ/mol for H+, Li+, Na+ and K+-exchanged chabazite, respectively. Corresponding CO hypsochromic stretching frequency shifts are 47, 68, 43 and 33 cm-1, respectively. Comparison with the case of CO interacting with bare alkali cations and the available experimental data on a variety of zeolites has also been addressed.

  18. Lanthanide-activated Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals precipitated from a borosilicate glass: Phase-separation-controlled crystallization and optical property

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 (China); Wan, Zhongyi; Zhou, Yang [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, Yan, E-mail: chenyan@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Yu, Hua; Lu, Hongwei; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 (China)

    2015-03-15

    Highlights: • Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals embedded glass ceramics were fabricated for the first time. • Such glass ceramics were achieved by phase-separation-controlled crystallization. • Elemental mapping evidenced the segregation of activators into the Na{sub 5}Gd{sub 9}F{sub 32} lattice. • Luminescent color could be tuned by controlling glass crystallization temperature. - Abstract: Lanthanide-activated cubic Na{sub 5}Gd{sub 9}F{sub 32} nanocrystals were precipitated from a borosilicate glass with a specifically designed composition. The precursor glass is already phase-separated after melt-quenching, which is beneficial to the realization of the controllable glass crystallization for affording desirable size, morphology and activator partition. Elemental mapping in the scanning transmission electron microscopy evidenced that the segregation of lanthanide ions into the Na{sub 5}Gd{sub 9}F{sub 32} lattice was in situ formed without the requirement of long-range ionic diffusion. Impressively, such fabricated glass ceramic co-doped with Yb{sup 3+}/Er{sup 3+} ions exhibited intense upconversion luminescence, which was about 500 times higher than that of the precursor glass, and its luminescent color could be easily tuned from red to green by controlling glass crystallization temperature. It is anticipated that such phase-separation synthesis strategy with precise control over nanostructure of glass ceramics offer a great opportunity to design other highly transparent nanocomposites with a wide range of tunable optical properties.

  19. Cooling of low-mass carbon-oxygen dwarfs from the planetary nucleus stage through the crystallization stage

    International Nuclear Information System (INIS)

    Iben, I. Jr.; Tutukov, A.V.

    1984-01-01

    The evolution of a carbon-oxygen dwarf of mass Mroughly-equal0.6 Msun has been carried all the way from an initial nuclear burning stage, when it is the central star of a planetary nebula, to the stage of complete internal crystallization, after 10 10 yr of cooling. Shell hydrogen and helium burning, neutrino losses, and the effects of liquification and crystallization have been taken into account. We show how the luminosity-time relationship may be understood in terms of balances between competing physical processes and demonstrate that, after complete crystallization, the time scale for cooling to terrestrial-like temperatures, in our approximation, is simply the optical depth of the outer, nonisothermal layer multiplied by a dimensional constant which, in years, is of the order of unity. A luminosity function based on the results covers the range -5< or approx. =log(L/Lsun)< or approx. =4 and agrees reasonably well with the observed luminosity function extending from the brighest planetary nebula nuclei to the dimmest observed white dwarfs, except perhaps for log(L/L/sub sun/)< or approx. =-4.5. Possible reasons for the apparent discrepancy at low luminosity, apart from the extreme obstacles against discovery, are discussed, one of the simplest is that the oldest dwarfs in the solar vicinity are distributed over a distance from the galactic plane that is approx.5 times larger than is the case for the youngest dwarfs; another possibility is that the opacity in the outer layers of the oldest dwarf models has been overestimated (or underestimatedexclamation) by a factor of 5 or more

  20. On the Crystallization of Compacted and Chunky Graphite from Liquid Multicomponent Iron-Carbon-Silicon-Based Melts

    Science.gov (United States)

    Stefanescu, D. M.; Huff, R.; Alonso, G.; Larrañaga, P.; De la Fuente, E.; Suarez, R.

    2016-08-01

    Extensive SEM work was carried out on deep-etched specimens to reveal the evolution of compacted and chunky graphite in magnesium-modified multicomponent Fe-C-Si alloys during early solidification and at room temperature. The findings of this research were then integrated in the current body of knowledge to produce an understanding of the crystallization of compacted and chunky graphite. It was confirmed that growth from the liquid for both compacted and chunky graphite occurs radially from a nucleus, as foliated crystals and dendrites. The basic building blocks of the graphite aggregates are hexagonal faceted graphite platelets with nanometer height and micrometer width. Thickening of the platelets occurs through growth of additional graphene layers nucleated at the ledges of the graphite prism. Additional thickening resulting in complete joining of the platelets may occur from the recrystallization of the amorphous carbon that has diffused from the liquid through the austenite, once the graphite aggregate is enveloped in austenite. With increasing magnesium levels, the foliated graphite platelets progressively aggregate along the c-axis forming clusters. The clusters that have random orientation, eventually produce blocky graphite, as the spaces between the parallel platelets disappear. This is typical for compacted graphite irons and tadpole graphite. The chunky graphite aggregates investigated are conical sectors of graphite platelets stacked along the c-axis. The foliated dendrites that originally develop radially from a common nucleus may aggregate along the c-axis forming blocky graphite that sometimes exhibits helical growth. The large number of defects (cavities) observed in all graphite aggregates supports the mechanism of graphite growth as foliated crystals and dendrites.

  1. Remarkable crystallization morphologies of poly(4-vinylpyridine on single-walled carbon nanotubes in CO2-expanded liquids

    Directory of Open Access Journals (Sweden)

    Y. N. Wei

    2011-12-01

    Full Text Available Poly(4-vinylpyridine (P4VP is a widely studied polymer for applications in catalysis, humidity sensitive and antimicrobial materials due to its pyridine group exhibiting coordinative reactivity with transition metals. In this work, the non-covalent functionalization of single-walled carbon nanotubes (SWCNTs with P4VP in CO2-expanded liquids (CXLs is reported. It is found that P4VP stabilized SWCNTs show good dispersion in both organic solvent and aqueous solution (pH = 2. The ability to manipulate the dispersion state of CNTs in water with P4VP will likely benefit many biological applications, such as drug delivery and optical sensors. Furthermore, the structure and morphology of P4VP/SWCNTs composite are examined, with the focus on molecular weight of P4VP (MW-P4VP, the pressure of CXLs and the concentration of P4VP. It is amazing that the P4VP15470 wrapping patterns undergo a notable morphological evolution from dotlike crystals to bottle brush-like, then to compact kebab-like, and then to widely-spaced dotted kebab patterns by facile pressure tuning in the higher polymer concentration series. In other words, the CXLs method enables superior control of the P4VP crystallization patterns on SWCNTs. Meanwhile, the CXL-assisted P4VP crystal growth mechanism on SWCNT is investigated, and the dominating growth mechanism is attributed to ‘size dependent soft epitaxy’ in P4VP15470/SWCNTs composites. We believe these studies would r

  2. Effects of Amino-Functionalized Carbon Nanotubes on the Crystal Structure and Thermal Properties of Polyacrylonitrile Homopolymer Microspheres

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2017-08-01

    Full Text Available Amino-functionalized multi-walled carbon nanotube (amino-CNT/polyacrylonitrile (PAN microspheres with diameter of about 300–400 nm were prepared by in situ polymerization under aqueous solution. The morphology, crystal structure, and thermal properties of amino-CNTs on a PAN homopolymer were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, X-ray diffraction, and differential scanning calorimetry. The results showed that the amino-CNTs had a significant influence on the morphology of microspheres, and the PAN matrix were grafted onto the surface of amino-CNTs with interfacial bonding between them. The XRD studies showed that the crystal size of amino-CNT/PAN microspheres with lower crystallinity was bigger than in the control PAN homopolymer. The analysis of thermal properties indicated that the amino-CNT/PAN microspheres with lower glass transition temperature had a lower initial temperature and velocity of evolving heat during the exothermic processing as compared with the PAN homopolymer. These results suggested that the incorporation of amino-CNTs into the PAN homopolymer matrix was beneficial for controlling the heat released during the stabilization processing.

  3. Precipitous Birth

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the management of a precipitous birth in the emergency department (ED. The case is also appropriate for teaching of medical students and advanced practice providers, as well as reviewing the principles of crisis resource management, teamwork, and communication. Introduction: Patients with precipitous birth require providers to manage two patients simultaneously with limited time and resources. Crisis resource management skills will be tested once baby is delivered, and the neonate will require assessment for potential neonatal resuscitation. Objectives: At the conclusion of the simulation session, learners will be able to manage women who have precipitous deliveries, as well as perform neonatal assessment and management. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on precipitous birth management and neonatal evaluation.

  4. The force of crystallization and fracture propagation during in-situ carbonation of peridotite

    NARCIS (Netherlands)

    van Noort, Reinier; Wolterbeek, Timotheus K.T.; Drury, Martyn R.; Kandianis, Michael T.; Spiers, Christopher J.

    2017-01-01

    Subsurface mineralization of CO2 by injection into (hydro-)fractured peridotites has been proposed as a carbon sequestration method. It is envisaged that the expansion in solid volume associated with the mineralization reaction leads to a build-up of stress, resulting in the opening of further

  5. TCA precipitation.

    Science.gov (United States)

    Koontz, Laura

    2014-01-01

    Trichloroacetic acid (TCA) precipitation of proteins is commonly used to concentrate protein samples or remove contaminants, including salts and detergents, prior to downstream applications such as SDS-PAGE or 2D-gels. TCA precipitation denatures the protein, so it should not be used if the protein must remain in its folded state (e.g., if you want to measure a biochemical activity of the protein). © 2014 Elsevier Inc. All rights reserved.

  6. STRONTIUM PRECIPITATION

    Science.gov (United States)

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  7. Experimental studies of the deformation of carbonated rocks by dissolution crystallization under stress

    International Nuclear Information System (INIS)

    Zubtsov, Sergey

    2003-01-01

    The first part of this research thesis reports the experimental investigation and the modelling of the deformation of poly-mineral rocks under the influence of mechanism of dissolution-crystallization under stress. This mechanism has a significant role in the compaction of sedimentary rocks, in the folding process of the earth's crust. The author notably reports the results of the experimental deformation of calcite in presence of water (calcite is present in marls in which the deposit of nuclear wastes in planned in France). The second part deals with the fact that healing is possible between two grains of similar mineralogy, and slows down or even stops deformation

  8. Effect of carbon derivatives in sulfonated poly(etherimide)-liquid crystal polymer composite for methanol vapor sensing

    Science.gov (United States)

    Bag, Souvik; Rathi, Keerti; Pal, Kaushik

    2017-05-01

    A class of highly sensitive chemiresistive sensors is developed for methanol (MeOH) vapor detection in ambient atmosphere by introducing conductive nanofillers like carbon black, multi-wall carbon nanotubes, and reduced graphene oxide into sulfonated poly(etherimide) (PEI)/liquid crystal polymer (LCP) composite (sPEI-LCP). Polar composites are prepared by a sulfonation process for instantaneous enhancement in adsorption capability of the sensing films to the target analyte (MeOH). Sensing properties exhibit that polymer composite-based fabricated sensors are efficient for the detection of different concentration of methanol vapor from 300-1200 parts-per-million (ppm) at room temperature. The incorporation of nanofiller induces the dramatic change in sensing behavior of base composite film (sPEI-LCP). Thus, less mass fraction of nanofillers (i.e. 2 wt%) influences the nonlinear sensing behavior for the entire range of methanol vapor. The simple method and low fabrication cost of the prepared sensor are compelling reasons that methanol vapor sensor is suitable for environmental monitoring.

  9. Adsorption equilibrium and kinetic studies of crystal violet and naphthol green on torreya-grandis-skin-based activated carbon

    International Nuclear Information System (INIS)

    Dai, Wei; Yu, Huijing; Ma, Na; Yan, Xiaoyang

    2015-01-01

    A new type of activated carbon, torreya-grandis-skin-based activated carbon (TAC), has been used to remove the harmful dyes (cationic dye crystal violet (CV) and anionic dye naphthol green (NG)) from contaminated water via batch adsorption. The effects of solution pH, adsorption time and temperature were studied. The Langmuir and Freundlich adsorption models were used to describe the equilibrium isotherm and isotherm constant calculation. It was found that the maximum equilibrium adsorption capacities were 292mg/g and 545mg/g for CV and NG, respectively. Adsorption kinetics was verified by pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. Results indicated that the rate of dye adsorption followed pseudo-second-order kinetic model for the initial dye concentration range studied. Temperature-dependent adsorption behavior of CV and NG shows that the adsorption is spontaneous and endothermic, accompanying an entropy increase. This work indicates that TAC could be employed as a low-cost alternative for the removal of the textile dyes from effluents

  10. Gas Antisolvent Approach for the Precipitation of α -Methoxyphenylacetic Acid – ( R -1-Cyclohexylethylamine Diateromeric Salt

    Directory of Open Access Journals (Sweden)

    A. Zodge

    2017-10-01

    Full Text Available One of the major drawbacks of diastereomeric salt precipitation based enantioseparation is the time and solvent requirement of crystallization. In the gas antisolvent (GAS approach, supercritical carbon dioxide is applied as an antisolvent, and the precipitation takes place in a couple of minutes. By setting the process parameters diastereomeric excess, yields, and selectivity can be controlled. Applicability of the process is demonstrated on the resolution of racemic 2-methoxyphenylacetic acid with enantiopure (R-(−-1-cyclohexylethylamine. Diastereomeric excess values over 55 % along with 80 % yields were achieved at optimal conditions in a single step.

  11. High hydrogen loading of thin palladium wires through alkaline earth carbonates' precipitation on the cathodic surface - evidence of a new phase in the Pd-H system

    International Nuclear Information System (INIS)

    Celani, F.; Spallone, A.; Di Gioacchino, D.; Marini, P.; Di Stefano, V.; Nakamura, M.; Pace, S.; Vecchione, A.; Tripodi, P.

    2000-01-01

    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, containing small amounts of hydrochloric or sulfuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature coefficient of the electrical resistivity. Mainly for this purpose a thin layer of Hg was galvanically deposed on the cathodic surface, in order to prevent any H deloading during the measurements. The results have been fully reproduced in other 2 well equipped and experienced Laboratories (Italy, USA)

  12. Polycyclopentene-Crystal-Decorated Carbon Nanotubes by Convenient Large-Scale In Situ Polymerization and their Lotus-Leaf-Like Superhydrophobic Films.

    Science.gov (United States)

    Xu, Lixin; Huang, Lingqi; Ye, Zhibin; Meng, Nan; Shu, Yang; Gu, Zhiyong

    2017-02-01

    In situ Pd-catalyzed cyclopentene polymerization in the presence of multi-walled carbon nanotubes (MWCNTs) is demonstrated to effectively render, on a large scale, polycyclopentene-crystal-decorated MWCNTs. Controlling the catalyst loading and/or time in the polymerization offers a convenient tuning of the polymer content and the morphology of the decorated MWCNTs. Appealingly, films made of the decorated carbon nanotubes through simple vacuum filtration show the characteristic lotus-leaf-like superhydrophobicity with high water contact angle (>150°), low contact angle hysteresis (<10°), and low water adhesion, while being electrically conductive. This is the first demonstration of the direct fabrication of lotus-leaf-like superhydrophobic films with solution-grown polymer-crystal-decorated carbon nanotubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A study on carbon incorporation in semi-insulating GaAs crystals grown by the vapor pressure controlled Czochralski technique (VCz). Pt. I. Experiments and Results

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, K.; Frank, C.; Neubert, M.; Rudolph, P. [Institut fuer Kristallzuechtung im Forschungsverbund Berlin e.V. (IKZ) (Germany); Ulrici, W. [Institut fuer Kristallzuechtung im Forschungsverbund Berlin e.V. (IKZ) (Germany); Paul-Drude-Inst. fuer Festkoerperelektronik, Berlin (Germany); Jurisch, M. [Institut fuer Kristallzuechtung im Forschungsverbund Berlin e.V. (IKZ) (Germany); Freiberger Compound Materials GmbH, Freiberg (Germany); Korb, J. [Institut fuer Kristallzuechtung im Forschungsverbund Berlin e.V. (IKZ) (Germany); GTT Technologies, Freiberg (Germany)

    2000-07-01

    In the past it has been demonstrated that the carbon concentration of large semi-insulating (SI) GaAs single crystals grown by the conventional liquid encapsulation Czochralski (LEC) technique can be controlled by several methods including variations of growth parameters. It was the aim of the present paper to clarify which of the relationships of LEC growth could be used for a carbon control in the VCz-method characterized by the application of an inner chamber made from graphite to avoid selective As evaporation. In detail this comprised a study of the influence of several growth parameters like the water content of the boric oxide, the composition of the working atmosphere, the gas flow, a titanium gettering and additions of gallium oxide. As a result, for the first time carbon concentrations down to {approx} 10{sup 14} cm{sup -3} were obtained in 3{sup ''} (75 mm) diameter VCz crystals. (orig.)

  14. Carbon-based micro-ball and micro-crystal deposition using filamentary pulsed atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Pothiraja, Ramasamy; Bibinov, Nikita; Awakowicz, Peter

    2014-01-01

    Thin plasma filaments are produced by the propagation of ionization waves from a spiked driven electrode in a quartz tube in an argon/methane gas mixture (2400 sccm/2 sccm) at atmospheric pressure. The position of the touch point of filaments on the substrate surface is controlled in our experiment by applying various suitable substrate configurations and geometries of the grounded electrode. The gas conditions at the touch point are varied from argon to ambient air. Based on microphotography and discharge current waveforms, the duration of the filament touching the substrate is estimated to be about one microsecond. Carbon-based materials are deposited during this time at the touch points on the substrate surface. Micro-balls are produced if the filament touch points are saved from ambient air by the argon flow. Under an air admixture, micro-crystals are formed. The dimension of both materials is approximately one micrometre (0.5–2 µm) and corresponds to about 10 10 –10 12 carbon atoms. Neither the diffusion of neutral species nor drift of ions can be reason for the formation of such a big micro-material during this short period of filament–substrate interaction. It is possible that charged carbon-based materials are formed in the plasma channel and transported to the surface of the substrate. The mechanism of this transport and characterization of micro-materials, which are formed under different gas conditions in our experiment, will be studied in the future. (paper)

  15. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  16. Kinetics of cadmium hydroxide precipitation

    International Nuclear Information System (INIS)

    Patterson, J.W.; Marani, D.; Luo, B.; Swenson, P.

    1987-01-01

    This paper presents some preliminary results on the kinetics of Cd(OH)/sub 2/ precipitation, both in the absence and the presence of citric acid as an inhibiting agent. Batch and continuous stirred tank reactor (CSTR) precipitation studies are performed by mixing equal volumes of NaOH and Cd(NO/sub 3/)/sub 2/ solutions, in order to avoid localized supersaturation conditions. The rate of metal removal from the soluble phase is calculated from the mass balance for the CSTR precipitation tests. In addition, precipitation kinetics are studied in terms of nucleation and crystal growth rates, by means of a particle counter that allows a population balance analysis for the precipitation reactor at steady state conditions

  17. Comparative in vitro studies on disodium EDTA effect with and without Proteus mirabilis on the crystallization of carbonate apatite and struvite

    Science.gov (United States)

    Prywer, Jolanta; Olszynski, Marcin; Torzewska, Agnieszka; Mielniczek-Brzóska, Ewa

    2014-06-01

    Effect of disodium EDTA (salt of ethylenediamine tetraacetic acid) on the crystallization of struvite and carbonate apatite was studied. To evaluate such an effect we performed an experiment of struvite and carbonate apatite growth from artificial urine. The crystallization process was induced by Proteus mirabilis to mimic the real urinary tract infection, which usually leads to urinary stone formation. The results demonstrate that disodium EDTA exhibits the effect against P. mirabilis retarding the activity of urease - an enzyme produced by these microorganisms. The spectrophotometric results demonstrate that, with and without P. mirabilis, the addition of disodium EDTA increases the induction time and decreases the growth efficiency compared to the baseline (without disodium EDTA). These results are discussed from the standpoint of speciation of complexes formed in the solution of artificial urine in the presence of disodium EDTA. The size of struvite crystals was found to decrease in the presence of disodium EDTA. However, struvite crystals are larger in the presence of bacteria while the crystal morphology and habit remain unchanged.

  18. Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir

    Science.gov (United States)

    Chafetz, Henry; Barth, Jennifer; Cook, Megan; Guo, Xuan; Zhou, Jie

    2018-03-01

    Spherulites, spherical to elliptical allochems composed of crystals radiating from a common core, investigated from a variety of depositional settings, e.g., hot springs, ambient water temperature geyser, tufa, and caliche, are all composed of a fine-grained nucleus made-up of carbonate encrusted bacterial bodies, biofilms, and/or EPS and surrounded by a cortex of radiating crystals of either aragonite or calcite. The microbes and their by-products in the nucleus induced the precipitation of carbonate, overcoming the inhibition to initiate crystal formation. The enveloping radiating crystals comprising aragonitic cortices tended to grow abiotically producing well-formed euhedral crystals with a paucity of included bacterial fossils. Whereas those cortical crystals made-up of calcite commonly contained bacterial fossils, indicating that the bacterial colonies contributed to the calcitic cortical crystal precipitation. Similar spherulites form a thick, widespread accumulation in the Aptian Pre-Salt lacustrine deposits in the Campos Basin, offshore Brazil. As with the travertine, tufa, and caliche spherulites, the Pre-Salt spherulites most likely initiated carbonate precipitation around bacterial colonies and/or their bioproducts, probably while afloat in a lacustrine water column before settling to the water-sediment interface. Absence of inter-spherulite sediment and the spherulite-to-spherulite compaction indicate that cortical crystal growth continued while the spherulites were at the sediment-water interface rather than displacively within a sediment.

  19. Precipitation Matters

    Science.gov (United States)

    McDuffie, Thomas

    2007-01-01

    Although weather, including its role in the water cycle, is included in most elementary science programs, any further examination of raindrops and snowflakes is rare. Together rain and snow make up most of the precipitation that replenishes Earth's life-sustaining fresh water supply. When viewed individually, raindrops and snowflakes are quite…

  20. Laser-assisted one-pot fabrication of calcium phosphate-based submicrospheres with internally crystallized magnetite nanoparticles through chemical precipitation.

    Science.gov (United States)

    Nakamura, Maki; Oyane, Ayako; Sakamaki, Ikuko; Ishikawa, Yoshie; Shimizu, Yoshiki; Kawaguchi, Kenji

    2015-04-14

    In this paper, we have further developed our simple (one-pot) and rapid (short irradiation time) laser fabrication process of submicrometer spheres composed of amorphous calcium iron phosphate. In our previous process, laser irradiation was applied to a calcium phosphate (CaP) reaction mixture supplemented with ferric ions (Fe(3+)) as a light-absorbing agent. Because the intention of the present study was to fabricate magnetite-encapsulated CaP-based submicrometer spheres, ferrous ions (Fe(2+)) were used as a light-absorbing agent rather than ferric ions. The ferrous ions served as a light-absorbing agent and facilitated the fabrication of submicrometer and micrometer spheres of amorphous calcium iron phosphate. The sphere formation and growth were better promoted by the use of ferrous ions as compared with the use of ferric ions. The chemical composition of the spheres was controllable through adjustment of the experimental conditions. By the addition of sodium hydroxide to the CaP reaction mixture supplemented with ferrous ions, fabrication of CaP-based magnetic submicrometer spheres was successfully achieved. Numerous magnetite and wüstite nanoparticles were coprecipitated or segregated into the CaP-based spherical amorphous matrix via light-material interaction during the CaP precipitation process. The magnetic properties of the magnetite and wüstite formed in the CaP-based spheres were investigated by magnetization measurements. The present process and the resulting CaP-based spheres are expected to have great potential for biomedical applications.

  1. Bile salt-induced cholesterol crystal formation from model bile vesicles: a time course study

    NARCIS (Netherlands)

    van de Heijning, B. J.; Stolk, M. F.; van Erpecum, K. J.; Renooij, W.; Groen, A. K.; vanBerge-Henegouwen, G. P.

    1994-01-01

    Precipitation of cholesterol crystals from vesicles is an important step in the pathogenesis of cholesterol gallstones. Little is known, however, about the kinetics and the mechanisms involved in cholesterol crystallization. Therefore, the time course of cholesterol crystal precipitation and lipid

  2. Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells.

    Science.gov (United States)

    García, Gonzalo; Koper, Marc T M

    2011-08-01

    Herein the general concepts of fuel cells are discussed, with special attention to low temperature fuel cells working in alkaline media. Alkaline low temperature fuel cells could well be one of the energy sources in the next future. This technology has the potential to provide power to portable devices, transportation and stationary sectors. With the aim to solve the principal catalytic problems at the anode of low temperature fuel cells, a fundamental study of the mechanism and kinetics of carbon monoxide as well as water dissociation on stepped platinum surfaces in alkaline medium is discussed and compared with those in acidic media. Furthermore, cations involved as promoters for catalytic surface reactions are also considered. Therefore, the aim of the present work is not only to provide the new fundamental advances in the electrocatalysis field, but also to understand the reactions occurring at fuel cell catalysts, which may help to improve the fabrication of novel electrodes in order to enhance the performance and to decrease the cost of low temperature fuel cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    Science.gov (United States)

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  4. Aragonite precipitation by "proto-polyps" in coral cell cultures.

    Directory of Open Access Journals (Sweden)

    Tali Mass

    Full Text Available The mechanisms of coral calcification at the molecular, cellular and tissue levels are poorly understood. In this study, we examine calcium carbonate precipitation using novel coral tissue cultures that aggregate to form "proto-polyps". Our goal is to establish an experimental system in which calcification is facilitated at the cellular level, while simultaneously allowing in vitro manipulations of the calcifying fluid. This novel coral culturing technique enables us to study the mechanisms of biomineralization and their implications for geochemical proxies. Viable cell cultures of the hermatypic, zooxanthellate coral, Stylophora pistillata, have been maintained for 6 to 8 weeks. Using an enriched seawater medium with aragonite saturation state similar to open ocean surface waters (Ω(arag~4, the primary cell cultures assemble into "proto-polyps" which form an extracellular organic matrix (ECM and precipitate aragonite crystals. These extracellular aragonite crystals, about 10 µm in length, are formed on the external face of the proto-polyps and are identified by their distinctive elongated crystallography and X-ray diffraction pattern. The precipitation of aragonite is independent of photosynthesis by the zooxanthellae, and does not occur in control experiments lacking coral cells or when the coral cells are poisoned with sodium azide. Our results demonstrate that proto-polyps, aggregated from primary coral tissue culture, function (from a biomineralization perspective similarly to whole corals. This approach provides a novel tool for investigating the biophysical mechanism of calcification in these organisms.

  5. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?

    Science.gov (United States)

    Fang, Qingqing; Wang, Guoqiang; Xue, Baolin; Liu, Tingxi; Kiem, Anthony

    2018-04-23

    In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem exchange of CO 2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, R eco , and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, R eco , and NEE were more responsive to SMC at 0-20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Late Glacial temperature and precipitation changes in the lowland Neotropics by tandem measurement of δ 18O in biogenic carbonate and gypsum hydration water

    Science.gov (United States)

    Hodell, David A.; Turchyn, Alexandra V.; Wiseman, Camilla J.; Escobar, Jaime; Curtis, Jason H.; Brenner, Mark; Gilli, Adrian; Mueller, Andreas D.; Anselmetti, Flavio; Ariztegui, Daniel; Brown, Erik T.

    2012-01-01

    We applied a new method to reconstruct paleotemperature in the tropics during the last deglaciation by measuring oxygen isotopes of co-occurring gypsum hydration water and biogenic carbonate in sediment cores from two lakes on the Yucatan Peninsula. Oxygen and hydrogen isotope values of interstitial and gypsum hydration water indicate that the crystallization water preserves the isotopic signal of the lake water, and has not undergone post-depositional isotopic exchange with sediment pore water. The estimated lake water δ18O is combined with carbonate δ18O to calculate paleotemperature. Three paired measurements of 1200-yr-old gypsum and gastropod aragonite from Lake Chichancanab, Mexico, yielded a mean temperature of 26 °C (range 23-29.5 °C), which is consistent with the mean and range of mean annual temperatures (MAT) in the region today. Paired measurements of ostracods, gastropods, and gypsum hydration water samples were measured in cores from Lake Petén Itzá, Guatemala, spanning the Late Glacial and early Holocene period (18.5-10.4 ka). The lowest recorded temperatures occurred at the start of Heinrich Stadial (HS) 1 at 18.5 ka. Inferred temperatures from benthic ostracods ranged from 16 to 20 °C during HS 1, which is 6-10 °C cooler than MAT in the region today, whereas temperatures derived from shallow-water gastropods were generally warmer (20-25 °C), reflecting epilimnetic temperatures. The derived temperatures support previous findings of greater tropical cooling on land in Central America during the Late Glacial than indicated by nearby marine records. Temperature increased in two steps during the last deglaciation. The first occurred during the Bolling-Allerod (B-A; from 14.7 to 13 ka) when temperature rose to 20-24 °C towards the end of this period. The second step occurred at 10.4 ka near the beginning of the Holocene when ostracod-inferred temperature rose to 26 °C, reflecting modern hypolimnetic temperature set during winter, whereas

  7. Carbon and oxygen stable isotopes in large herbivore tooth enamel illustrate a mid-Miocene precipitation increase in the interior Pacific Northwest

    Science.gov (United States)

    Drewicz, A.; Kohn, M. J.

    2017-12-01

    The mid-Miocene Climatic Optimum (MMCO; 13.75-16.9 Ma), represents the warmest period in Earth's history during the last 35 Ma, and is distinguished by low ice volume and high ocean water temperatures. The MMCO has been associated with high atmospheric CO2 (pCO2) similar to levels anticipated in the next century. Thus, understanding MMCO climate may help enlighten predictions of future climate change. Here, using new stable oxygen and carbon isotopes of fossil ungulate tooth enamel from before, during, and after the MMCO, we show that high pCO2 corresponds with warm-wet conditions, whereas low pCO2 corresponds with cool-dry conditions. We specifically show that mean annual precipitation (MAP), as inferred from tooth enamel δ13C values and corrected for atmospheric δ13C values (Δ13C), increased with increasing pCO2. Values of Δ13C > 19.5 ‰ in the lower John Day ( 27 Ma) and Mascall ( 15.3 Ma) localities imply relatively high mean annual precipitation (MAP = 550-850 mm/yr). Values of Δ 13C < 18.5 ‰ at 18 Ma and at four levels between 15 and 3 Ma imply low MAP (≤250 mm/yr), similar to modern climate. High MAP values generally correlate with high pCO2 levels, as inferred from marine records, implicating pCO2 as a principal driver of MAP in the Pacific Northwest. A climate oscillation model best explains our δ 13C data, such that warm-wet conditions during high pCO2 events alternated with cool-dry conditions during low pCO2 events on timescales of 100 kyr. The MMCO may have been more dynamic than originally considered, with wet-warm and cool-dry cycles reflecting Milankovitch cycles. High δ18O values in specimens from the John Day (21.8±0.6 ‰ V-SMOW) and Mascall (21.3±0.5 ‰) Formations may reflect lower elevations for the upwind Cascade Range prior to 7 Ma, or its proximity to the coast compared to more inland sites (δ18O = 17.7±0.9 to 19.6±1.1 ‰). Unusually high δ18O values of Dromomeryx sp. from Red Basin (27.4±0.6 ‰) most likely reflect

  8. Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region

    Science.gov (United States)

    Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

    1989-01-01

    Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

  9. Acidity of Scandinavian precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, E; Bordin, G

    1955-01-01

    Data on the pH of the total monthly precipitation at stations of a Swedish network for sampling and chemical analysis of precipitation and atmospheric aerosols during the year July 1953 to June 1954 are presented and discussed, together with the pH data from the first two months of operation of a large pan-Scandinavian net. It is found that well-defined regions of acidity and alkalinity relative to the pH of water in equilibrium with atmospheric carbon dioxide exist, and that these regions persist to such an extent that the monthly deviations from the pattern of the annual mean pH at stations unaffected by local pollution show persistently high acidity, while inland northern stations show equally persistent alkalinity. Some possible reasons for the observed distributions are considered.

  10. Detailed crystallization study of co-precipitated Y{sub 1.47} Gd{sub 1.53} Fe{sub 5} O{sub 12} and relevant magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Rogerio Arving [Instituto de Criminalistica Carlos Eboli (ICCE), Rio de Janeiro, RJ (Brazil); Ogasawara, Tsuneharu; Ogasawara, Angelica Soares [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ogasawat@metalmat.ufrj.br

    2007-07-01

    The crystallization process of co-precipitated Y{sub 1.5}Gd{sub 1.5}Fe{sub 5}O{sub 12} powder heated up to 1000 deg C at rate of 5 deg C min{sup -1} was investigated. Above 810 deg C crystalline Y{sub 1.47}Gd{sub 1.53}Fe{sub 5}O{sub 12} was obtained with a lattice parameter of 12.41 A and a theoretical density of 5.84 g cm{sup -3}. Dry pressed rings were sintered at 1270 and 1320 deg C, increasing the grain-size from 3.1 to 6.5 {mu}m, the theoretical density by 87.6 to 95.3% and decreasing H{sub c} from 2.9725 to 1.4005 Oe. Additionally, Hc increased when the frequency of the hysteresis graph varied from 60 Hz to 10 kHz, the curie temperature was 282.4 deg C and Ms equalled 9.25 emu g{sup -1} (0.17 kG) agreeing well with the B{sub s}-value of the hysteresis graph and literature values. (author)

  11. Precipitation of fluticasone propionate microparticles using supercritical antisolvent

    Directory of Open Access Journals (Sweden)

    A Vatanara

    2009-03-01

    Full Text Available ABSTRACT Background: The ability of supercritical fluids (SCFs, such as carbon dioxide, to dissolve and expand or extract organic solvents and as result lower their solvation power, makes it possible the use of SCFs for the precipitation of solids from organic solutions. The process could be the injection of a solution of the substrate in an organic solvent into a vessel which is swept by a supercritical fluid. The aim of this study was to ascertain the feasibility of supercritical processing to prepare different particulate forms of fluticasone propionate (FP, and to evaluate the influence of different liquid solvents and precipitation temperatures on the morphology, size and crystal habit of particles. Method: The solution of FP in organic solvents, was precipitated by supercritical carbon dioxide (SCCO2 at two pressure and temperature levels. Effects of process parameters on the physicochemical characteristics of harvested microparticles were evaluated. Results: Particle formation was observed only at the lower selected pressure, whilst at the higher pressure, no precipitation of particles was occurred due to dissolution of FP in supercritical antisolvent. The micrographs of the produced particles showed different morphologies for FP obtained from different conditions. The results of thermal analysis of the resulted particles showed that changes in the processing conditions didn't influence thermal behavior of the precipitated particles. Evaluation of the effect of temperature on the size distribution of particles showed that increase in the temperature from 40 oC to 50 oC, resulted in reduction of the mean particle size from about 30 µm to about 12 μm. ‍Conclusion: From the results of this study it may be concluded that, processing of FP by supercritical antisolvent could be an approach for production of diverse forms of the drug and drastic changes in the physical characteristics of microparticles could be achieved by changing the

  12. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy

    International Nuclear Information System (INIS)

    Al-Jarba, K.A.; Fuchs, G.E.

    2004-01-01

    In an effort to reduce grain defects in large single crystal Ni-base superalloy components, carbon is intentionally added. In this study, the effect of carbon additions on the microstructure and solidification defect formation of a model Ni-based superalloy, LMSX-1, was examined. The results show that the tendency of the alloy to form all types of solidification defects decreased as the carbon content increased. The as-cast microstructures also exhibited a decrease in the amount of γ-γ' eutectic structure and an increase in the volume fraction of carbides and porosity, as the carbon content was increased. The carbides formed in these alloys were mostly of script-type MC carbides which formed continuous, dendritic networks in the interdendritic region. Microprobe analysis of the as-cast structures showed that the partitioning coefficients did not change with carbon additions. Therefore, the reduction in defect formation with increasing carbon content could not be attributed to changes in segregation behavior of alloying elements. Instead, the presence of these carbides in the interdendritic regions of the alloy appeared to have prevented the thermosolutal fluid flow

  13. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    International Nuclear Information System (INIS)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 μ in diameter and contained numerous small voids (less than 0.3 μm) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 μm in diameter and contained large voids (approximately 1 μm). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost

  14. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 ..mu.. in diameter and contained numerous small voids (less than 0.3 ..mu..m) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 ..mu..m in diameter and contained large voids (approximately 1 ..mu..m). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost.

  15. Mineral Carbonation Employing Ultramafic Mine Waste

    Science.gov (United States)

    Southam, G.; McCutcheon, J.; Power, I. M.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.

    2014-12-01

    Carbonate minerals are an important, stable carbon sink being investigated as a strategy to sequester CO2 produced by human activity. A natural playa (Atlin, BC, CAN) that has demonstrated the ability to microbially-accelerate hydromagnesite formation was used as an experimental model. Growth of microbial mats from Atlin, in a 10 m long flow-through bioreactor catalysed hydromagnesite precipitation under 'natural' conditions. To enhance mineral carbonation, chrysotile from the Clinton Creek Asbestos Mine (YT, CAN) was used as a target substrate for sulphuric acid leaching, releasing as much as 94% of the magnesium into solution via chemical weathering. This magnesium-rich 'feedstock' was used to examine the ability of the microbialites to enhance carbonate mineral precipitation using only atmospheric CO2 as the carbon source. The phototrophic consortium catalysed the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] accompanied by magnesite [MgCO3], aragonite [CaCO3], and minor dypingite [Mg5(CO3)4(OH)2·5H2O]. Scanning Electron Microscopy-Energy Dispersive Spectroscopy indicated that cell exteriors and extracellular polymeric substances (EPS) served as nucleation sites for carbonate precipitation. In many cases, entire cyanobacteria filaments were entombed in magnesium carbonate coatings, which appeared to contain a framework of EPS. Cell coatings were composed of small crystals, which intuitively resulted from rapid crystal nucleation. Excess nutrient addition generated eutrophic conditions in the bioreactor, resulting in the growth of a pellicle that sealed the bioreactor contents from the atmosphere. The resulting anaerobic conditions induced fermentation and subsequent acid generation, which in turn caused a drop in pH to circumneutral values and a reduction in carbonate precipitation. Monitoring of the water chemistry conditions indicated that a high pH (> 9.4), and relatively high concentrations of magnesium (> 3000 ppm), compared with the natural

  16. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    Jiao Yunfeng; Feng Qingling; Li Xiaoming

    2006-01-01

    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  17. A High-Resolution Crystal Structure of a Psychrohalophilic α-Carbonic Anhydrase from Photobacterium profundum Reveals a Unique Dimer Interface.

    Directory of Open Access Journals (Sweden)

    Vijayakumar Somalinga

    Full Text Available Bacterial α-carbonic anhydrases (α-CA are zinc containing metalloenzymes that catalyze the rapid interconversion of CO2 to bicarbonate and a proton. We report the first crystal structure of a pyschrohalophilic α-CA from a deep-sea bacterium, Photobacterium profundum. Size exclusion chromatography of the purified P. profundum α-CA (PprCA reveals that the protein is a heterogeneous mix of monomers and dimers. Furthermore, an "in-gel" carbonic anhydrase activity assay, also known as protonography, revealed two distinct bands corresponding to monomeric and dimeric forms of PprCA that are catalytically active. The crystal structure of PprCA was determined in its native form and reveals a highly conserved "knot-topology" that is characteristic of α-CA's. Similar to other bacterial α-CA's, PprCA also crystallized as a dimer. Furthermore, dimer interface analysis revealed the presence of a chloride ion (Cl- in the interface which is unique to PprCA and has not been observed in any other α-CA's characterized so far. Molecular dynamics simulation and chloride ion occupancy analysis shows 100% occupancy for the Cl- ion in the dimer interface. Zinc coordinating triple histidine residues, substrate binding hydrophobic patch residues, and the hydrophilic proton wire residues are highly conserved in PprCA and are identical to other well-studied α-CA's.

  18. Deposition and light absorption characteristics of precipitation dissolved organic carbon (DOC) at three remote stations in the Himalayas and Tibetan Plateau, China.

    Science.gov (United States)

    Li, Chaoliu; Yan, Fangping; Kang, Shichang; Chen, Pengfei; Hu, Zhaofu; Han, Xiaowen; Zhang, Guoshuai; Gao, Shaopeng; Qu, Bin; Sillanpää, Mika

    2017-12-15

    The concentrations, depositions and optical properties of precipitation DOC at three remote stations (Nam Co, Lulang and Everest) were investigated in the Himalayas and Tibetan Plateau (HTP). The results showed that their volume-weighted mean DOC concentrations were 1.05±1.01mgCL -1 , 0.83±0.85mgCL -1 and 0.86±0.91mgCL -1 , respectively, close to those of other remote areas in the world and lower than those of typical polluted urban cities. Combined with precipitation amounts, the DOC depositions at these three stations were calculated to be 0.34±0.32gCm -2 yr -1 , 0.84±0.86gCm -2 yr -1 and 0.16±0.17gCm -2 yr -1 , respectively. The annual DOC deposition in the HTP was approximately 0.94±0.87TgC, the highest and lowest values appeared in the southeastern and northwestern plateau, respectively. The sources of DOC in the precipitation at these three stations were remarkably different, indicating large spatial heterogeneity in the sources of precipitation DOC over the HTP. Nam Co presented combustion sources from South Asia and local residents, Lulang showed biomass combustion source from South Asia, and Everest was mainly influenced by local mineral dust. The values of the MAC DOC at 365nm were 0.48±0.47m 2 g -1 , 0.25±0.15m 2 g -1 , and 0.64±0.49m 2 g -1 , respectively, for the precipitation at the three stations. All of these values were significantly lower than those of corresponding near-surface aerosol samples because precipitation DOC contains more secondary organic aerosol with low light absorption abilities. Additionally, this phenomenon was also observed in seriously polluted urban areas, implying it is universal in the atmosphere. Because precipitation DOC contains information for both particle-bound and gaseous components from the near surface up to the altitude of clouds where precipitation occurs, the MAC DOC of precipitation is more representative than that of near-surface aerosols for a given region. Copyright © 2017 Elsevier B.V. All rights

  19. CCDC 1505386: Experimental Crystal Structure Determination : catena-[bis(mu-pyrazine)-(mu-fluoro)-(mu-oxido)-tetrafluoro-nickel-niobium carbon dioxide

    KAUST Repository

    Bhatt, Prashant

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. Aluminum precipitation from Hanford DSSF

    International Nuclear Information System (INIS)

    Borgen, D.; Frazier, P.; Staton, G.

    1994-01-01

    A series of pilot scale tests using simulated Double Shell Slurry Feed (DSSF) showed that well-settled aluminum precipitate can be produced in Hanford double shell tank (DST) high level waste by slow neutralization with carbon dioxide. This pretreatment could provide an early grout feed and free tank space, as well as facilitate downstream processes such as ion exchange by providing a less caustic feed. A total of eight test runs were completed using a 10-ft tall 3-in i.d. glass column. The 10-ft height corresponds to about one third of the vertical height of a DST, hence providing a reasonable basis for extrapolating the observed precipitate settling and compaction to the actual waste tank environment. Four runs (three with a simplified simulant and one with a chemically complete simulant) produced well settled precipitates averaging 1.5 to 2 feet high. Aluminum gel rather than settled precipitate resulted from one test where neutralization was too rapid

  1. Competitive crystallization of a propylene/ethylene random copolymer filled with a β-nucleating agent and multi-walled carbon nanotubes. Conventional and ultrafast DSC study.

    Science.gov (United States)

    Papageorgiou, Dimitrios G; Papageorgiou, George Z; Zhuravlev, Evgeny; Bikiaris, Dimitrios; Schick, Christoph; Chrissafis, Konstantinos

    2013-11-27

    A propylene/ethylene polymeric matrix was reinforced by the simultaneous addition of a β-nucleating agent (calcium pimelate) and multi-walled carbon nanotubes (MWCNTs) in various concentrations. The present manuscript explores the competitive crystallization tendency that is caused by the presence of the two fillers. On the one hand, calcium pimelate forces the material to crystallize predominantly in the β-crystalline form, while, on the other, the strong α-nucleating ability of MWCNTs compels the material to develop higher α-crystalline content. An in-depth study has been performed on the nanocomposite samples by means of conventional, temperature-modulated, and differential fast scanning calorimetry (DFSC) under various dynamic and isothermal conditions. The results showed that β-crystals are predominant at low MWCNT content (DSC, and the use of very high cooling rates by UFDSC made it possible to achieve and study the nucleation of the samples. The presence of MWCNTs enabled the nanocomposites to crystallize faster under both isothermal and dynamic conditions. The activation energy of the samples was also calculated according to Friedman's theory.

  2. Defects in silicon effect on device performance and relationship to crystal growth conditions

    Science.gov (United States)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  3. Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.W.; Liu, T. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, L., E-mail: wangli@imr.ac.cn [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Liu, X.G.; Lou, L.H. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, J. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-15

    Effect of carbon content on the microstructure and creep properties of a 3rd generation single crystal nickel-base superalloy has been investigated by the scanning electron microscope, X-ray computed tomography and electron probe microanalyzer. With the increase of the carbon content, MC carbides evolve from octahedral to well-developed dendrite, which promotes the formation of microporosity. Moreover, the volume fraction of porosity increases in the experimental alloys after solution heat treatment. As a result, the increase in the size of MC carbides and the porosity has a detrimental effect on the low temperature and high stress creep behavior of the alloys. The specimen crept at 850 °C and 586 MPa with the carbon content of 430 ppm shows the shortest rupture life due to the largest primary creep strain. However, the creep behavior of the alloy at 1120 °C and 140 MPa gets better as the carbon content increases from 88 to 430 ppm. TCP phase is observed near the fracture surfaces of the alloys, which explores as a potential cause for the creep rupture. However, the formation of TCP phase is effectively suppressed for decreasing segregation of the alloying elements, which results in the improvement of the creep life in the alloy with 430 ppm carbon at 1120 °C and 140 MPa.

  4. Preparation of Uranium Dioxide by Electrochemical Reduction in Ammonium Carbonate Solutions and Subsequent Precipitation; Preparation de bioxyde d'uranium par reduction electrochimique dans des solutions de carbonate d'ammonium et precipitation; Prigotovlenie dvuokisi urana metodom ehlektrokhimicheskogo vosstanovleniya v rastvore karbonata ammoniya s posleduyushchim osazhdeniem; Preparacion de dioxido de uranio por reduccion electroquimica en soluciones de carbonato amonico u precipitacion subsiguiente

    Energy Technology Data Exchange (ETDEWEB)

    Pravdic, V.; Branica, M.; Pucar, Z. [Department of Physical Chemistry, Rudjer Boskovic Institute, Zagreb, Yugoslavia (Serbia)

    1963-11-15

    Experiments in a small scale electrolysis cell on cathodic reduction of uranium (VI) to uranium (IV) show the possibility of an efficient way to obtain uranium (IV) in carbonate solutions. From this solution uranium (IV) hydrous oxide precipitates by merely raising the temperature. To obtain larger quantities of material needed for technological testing, a scale-up of the process was attempted. An electrolysis cell of hard PVC (polyvinylchloride) was constructed with a mercury pool cathode of approximately 2.5 dm{sup 2} and platinum anodes. The catholyte was separated from the anolyte by cationexchange membranes. The catholyte was circulated between two 50-1 reservoirs and streamed toward the vigorously stirred mercury cathode. The working potential of mercury was controlled against an Ag/AgCl/KC1 (sat.) reference electrode, the potential being held constant at -1.5 V. The current efficiency is approximately 90%; the power consumed for the reduction process is about 0.8 kWh/kg of uranium dioxide. After the electrolysis was completed the precipitation was initiated only by heating the deeply green clear solution up to 70 deg. C in a separate all-glass vessel of 60-1 volume. From 50, 1 of the catholyte solution 1 kg of a centrifuged product (containing about 20% of water) was obtained. The coulometric analysis of the oxygen-uranium ratio always gave results in the range of 2.04 to 2.09. By the procedure described uranium (IV) hydrous oxide is selectively precipitated, and the oxygen-uranium ratio in the precipitate was found to be independent of the degree of completion of the reduction. The product was identified as the alpha phase of uranium dioxide by the X-ray powder diffraction. Experiments in sintering and characterization of uranium dioxide thus obtained for the ceramic nuclear fuel requirements are under way. (author) [French] Des experiences faites dans une petite cellule d'electrolyse sur la reduction cathodique d'uranium (VI) en uranium (IV) montrent qu

  5. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    Science.gov (United States)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  6. Final report for grant number DE-FG02-06ER64244 to the University of Idaho (RW Smith)-coupling between flow and precipitation in heterogeneous subsurface environments and effects on contaminant fate and transport

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W. [Univ. of Idaho, Idaho Falls, ID (United States); Beig, Mikala S. [Univ. of Idaho, Idaho Falls, ID (United States); Gebrehiwet, Tsigabu [Univ. of Idaho, Idaho Falls, ID (United States); Corriveau, Catherine E. [Univ. of Idaho, Idaho Falls, ID (United States); Redden, George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fujita, Yoshiko [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2010-06-18

    Engineered remediation strategies for inducing mineral precipitation in the subsurface typically involve the introduction of at least one reactant either by direct injection or by in situ generation. The localization of reactant sources means a wide range of saturation states and ion ratios will be created as reactants are mixed: These conditions together can result in a wide range of precipitation rates, as well as impact which mineral phase precipitates. This is potentially important for the capacity of the precipitates to take up of trace metal contaminants, for their long term stability. Aragonite, for example, is able to sequester a larger amount of Sr than calcite. However, aragonite is less stable under typical groundwater conditions, and so may release sequestered Sr over time as the aragonite transforms to a more stable phase. In addition, previous experimental studies have indicated that other system constituents may influence calcium carbonate precipitation and consequently the Sr uptake potential of a system. For example, dissolved organic carbon (at levels typical of groundwaters) can suppress crystal growth. As a result, the continuous nucleation of small crystals, rather than growth of existing crystals, may be the dominant mode of precipitation. This has the potential for greater uptake of Sr because the smaller crystal sizes associated with nucleated calcite may more readily accommodate the distortion resulting from substitution of the larger Sr ion for Ca ions than can larger crystals. However, these smaller crystals may also be less stable and over the long term release Sr as a result of Ostwald ripening. To better understand the formation and composition of relevant calcium carbonate mineral phases two related series of mineral precipitation experiments were conducted. The first series of experiments, conducted using a Continuously Stirred Tank Reactor (CSTR) operated at steady state rates of precipitation was focused on understanding the

  7. Structural and compositional characterization of X-cut LiNbO3 crystals implanted with high energy oxygen and carbon ions

    International Nuclear Information System (INIS)

    Bentini, G.G.; Bianconi, M.; Cerutti, A.; Chiarini, M.; Pennestri, G.; Sada, C.; Argiolas, N.; Bazzan, M.; Mazzoldi, P.; Guzzi, R.

    2005-01-01

    High energy implantation of medium-light elements such as oxygen and carbon was performed in X-cut LiNbO 3 single crystals in order to prepare high quality optical waveguides. The compositional and damage profiles, obtained by exploiting the secondary ion mass spectrometry and Rutherford back-scattering techniques respectively, were correlated to the structural properties measured by the high resolution X-ray diffraction. This study evidences the development of tensile strain induced by the ion implantation that can contribute to the decrease of the ordinary refractive index variation through the photo-elastic effect

  8. Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling

    Science.gov (United States)

    Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.

    2017-12-01

    For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing

  9. Influence of non-covalent modification of multiwalled carbon nanotubes on the crystallization behaviour of binary blends of polypropylene and polyamide 6.

    Science.gov (United States)

    Mukhopadhyay, Nabaneeta; Panwar, Ajay S; Kumar, Gulshan; Samajdar, I; Bhattacharyya, Arup R

    2015-02-14

    Blends of polypropylene (PP) and polyamide 6 (PA6) with multiwalled carbon nanotubes (MWNTs) were prepared using different processing strategies in a twin-screw micro-compounder. The effect of MWNTs on the crystallization behaviour of the PP phase and the PA6 phase of the blend has been investigated through non-isothermal crystallization studies by differential scanning calorimetric analysis. Furthermore, the effect of the addition of the compatibilizer (PP-g-MA) and the modification of MWNTs (m-MWNTs) with a non-covalent organic modifier (Li-salt of 6 amino hexanoic acid, Li-AHA) has also been studied in context to the crystallization behaviour of the PP and PA6 phase in the blend. The crystallization studies have indicated a significant increase in bulk crystallization temperature of the PP phase in the blend in the presence of MWNTs. Moreover, the formation of 'trans-lamellar crystalline' structure consisting of PA6 'trans-crystalline lamellae' on MWNTs surface was facilitated in the case of blends prepared via 'protocol 2' as compared to the corresponding blends prepared via 'protocol 1'. Wide angle X-ray diffraction analysis has showed the existence of a β-polymorph of the PP phase due to incorporation of the PA6 phase in the blend. Addition of MWNTs in the blends has facilitated further β-crystalline structure formation of the PP phase. In the presence of m-MWNTs, a higher β-fraction was observed in the PP phase as compared to the blend with pristine MWNTs. Addition of PP-g-MA has suppressed the β-phase formation in the PP phase in the blend. X-ray bulk texture analysis revealed that incorporation of PA6 as well as pristine/modified MWNTs has influenced the extent of orientation of the PP chains towards specific crystalline planes in various blend compositions of PP and PA6.

  10. Controlling the size and morphology of precipitated calcite particles by the selection of solvent composition

    Science.gov (United States)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2017-11-01

    Precipitated calcium carbonate is used as an additive in the manufacture of many products. Particles with specific characteristics can be obtained by the selection of precipitation conditions, including temperature and the composition of solvent. In this work, calcium carbonate particles were obtained in the reaction of calcium hydroxide with carbon dioxide at 65 °C. Initial Ca(OH)2 suspensions were prepared in pure water and aqueous solutions of ethylene glycol or glycerol of the concentration range up to 20% (vol.). The course of reaction was monitored by conductivity measurements. Precipitated solids were analyzed by FTIR, XRD, SEM and the particles size distribution was determined by a laser diffraction method. The adsorption of ethylene glycol or glycerol on the surface of scalenohedral and rhombohedral calcite was testes by a normal-phase high-performance liquid chromatography. The addition of organic solvents changed the viscosity of reaction mixtures, the rate of carbon dioxide absorption and the solubility of inorganic components and therefore influence calcium carbonate precipitation conditions. All synthesized calcium carbonate products were in a calcite form. Scalenohedral calcite crystals were produced when water was a liquid phase, whereas addition of organic solvents resulted in the formation of rhombo-scalenohedral particles. The increase in organic compounds concentration resulted in the decrease of mean particles size from 2.4 μm to 1.7 μm in ethylene glycol solutions and to 1.4 μm in glycerol solutions. On the basis of adsorption tests, it was confirm that calcite surface interact stronger with glycerol than ethylene glycol. The interaction between scalenohedral calcite and used organic additives was higher in comparison to the pure rhombohedral form applied as a stationary phase.

  11. Influence of Mg2+ on CaCO3 precipitation during subsurface reactive transport in a homogeneous silicon-etched pore network

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Victoria [Univ. of Illinois, Urbana-Champaign, IL (United States); Yoon, Hongkyu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhang, Changyong [Exxon Mobil Upstream Research Company, Houston, TX (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hess, Nancy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fouke, Bruce W. [Univ. of Illinois, Urbana-Champaign, IL (United States); Valocchi, Albert J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-04-04

    Calcium carbonate (CaCO3) geochemical reactions exert a fundamental control on the evolution of porosity and permeability in shallow-to-deep subsurface siliciclastic and limestone rock reservoirs. As a result, these carbonate water-rock interactions play a critically important role in research on groundwater remediation, geological carbon sequestration, and hydrocarbon exploration. A study was undertaken to determine the effects of Mg2+ concentration on CaCO3 crystal morphology, precipitation rate, and porosity occlusion under flow and mixing conditions similar to those in subsurface aquifers.

  12. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy

    International Nuclear Information System (INIS)

    Liu, L.R.; Jin, T.; Zhao, N.R.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.

    2003-01-01

    Creep tests of a nickel-base single crystal superalloy with minor C addition and non-carbon were carried out at different temperatures and stresses. Correlations between microstructural change and testing temperature and stress were enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), detailing the rafting microstucture and carbides precipitation. The results showed that minor carbon addition prolonged the second stage of creep strain curves and improved creep properties. Some carbide was precipitated during creep tests in modified alloy. M 23 C 6 carbide precipitated at lower temperature (871-982 deg. C), while (M 6 C) 2 carbide precipitated at higher temperature (>1000 deg. C), all of which was considered to be beneficial to creep properties. A small amount of MC carbide formed during solidification and its decomposition product (M 6 C) 1 were detrimental to mechanical properties, which together with micropores provided the site of initiation of cracks and led to the final fracture

  13. Thermoluminescent properties of polycrystalline carbon doped LaAlO3/La(OH)3 crystals synthesized by solid state reaction for application in UV dosimetry

    International Nuclear Information System (INIS)

    Alves, N.; Oliveira de F, L.; Barbosa F, W.

    2017-10-01

    It is well known that UV radiation can induce certain deleterious effects, such as erythema, painful inflammation of the membrane of the eye and skin cancer. Therefore, it has been pushing the research for producing new and high performance UV sensitive Tl materials. There is an increasing interest in the development of new Tl materials for ultraviolet (UV) dosimetry purposes, owing to simplicity of the sample readout compared to other techniques. In this paper, thermoluminescence and dosimetric characteristics of pure and carbon doped lanthanum aluminate and hydroxide lanthanum crystals, irradiated with different UV doses, were studied and discussed. All samples studied were produced by solid state reaction method with different mixing methodologies. Characterization of sintered powders by X-ray diffraction, UV-Vis spectrophotometry and Ftir spectroscopy were performed. XRD data confirmed the LaAlO 3 and La(OH) 3 crystalline phases. The thermoluminescent study revealed that all compositions presented high UV sensibility. The sample which was grown by first sintering La 2 O 3 together carbon atoms and then sintering again in order to obtain La 2 O 3 :C together Al 2 O 3 , presented the best linear dose response over UV doses ranging from 0.042 to 0.63 mJ/cm 2 , with correlation coefficients equal to 0.99931. The synthesis methodology used was very efficient to obtain crystals with high Tl output intensities for low exposure rate UV R fields. (Author)

  14. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    Science.gov (United States)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  15. Calcite precipitates in Slovenian bottled waters.

    Science.gov (United States)

    Stanič, Tamara Ferjan; Miler, Miloš; Brenčič, Mihael; Gosar, Mateja

    2017-06-01

    Storage of bottled waters in varying ambient conditions affects its characteristics. Different storage conditions cause changes in the initial chemical composition of bottled water which lead to the occurrence of precipitates with various morphologies. In order to assess the relationship between water composition, storage conditions and precipitate morphology, a study of four brands of Slovenian bottled water stored in PET bottles was carried out. Chemical analyses of the main ions and measurements of the physical properties of water samples were performed before and after storage of water samples at different ambient conditions. SEM/EDS analysis of precipitates was performed after elapsed storage time. The results show that the presence of Mg 2+ , SO 4 2- , SiO 2 , Al, Mn and other impurities such as K + , Na + , Ba and Sr in the water controlled precipitate morphology by inhibiting crystal growth and leading to elongated rhombohedral calcite crystal forms which exhibit furrowed surfaces and calcite rosettes. Different storage conditions, however, affected the number of crystallization nuclei and size of calcite crystals. Hollow calcite spheres composed of cleavage rhombohedrons formed in the water with variable storage conditions by a combination of evaporation and precipitation of water droplets during high temperatures or by the bubble templating method.

  16. Effect of surface funcionalized carbon nanotubes on the morphology, as well as thermal, thermomechanical, and crystallization properties of polyactide

    CSIR Research Space (South Africa)

    Ramontja, J

    2011-01-01

    Full Text Available revealed homogenous dispersion of f-MWCNTs in the PLA matrix with some agglomerates. Melting and crystallization phenomena of the nanocomposite studied through differential scanning calorimeter (DSC), wide angle X-ray scattering (WAXS), and POM show that f...

  17. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O' Brien, Kevin

    2014-03-31

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily

  18. Enhanced photocatalytic activity induced by sp 3 to sp 2 transition of carbon dopants in BiOCl crystals

    KAUST Repository

    Sun, Jianguo; Wu, Sujuan; Yang, Shi-Ze; Li, Qi; Xiong, Jiawei; Yang, Zhenzhong; Gu, Lin; Zhang, Xixiang; Sun, Lidong

    2017-01-01

    The insufficient light absorption and low quantum efficiency limit the photocatalytic performance of wide bandgap semiconductors. Here, we report a facile strategy to engineer the surface disordered defects of BiOCl nanosheets via carbon doping

  19. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    Directory of Open Access Journals (Sweden)

    Aminul Islam

    Full Text Available A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3 are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  20. Precipitation behavior and effect of new precipitated β phase in AZ80 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; HAN En-hou; XU Yong-bo; LIU Lu

    2006-01-01

    Granular precipitate that was a new kind of β-Mg17Al12 phase found in aged AZ80 wrought Mg alloy at all aging temperature was studied. The structure and precipitation behavior of this granular β-Mg17Al12 precipitate were studied by environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). The effect of the granular precipitate on mechanical properties of AZ80 alloy was also studied. The new precipitate that was granular and nucleated both on grain boundaries (GBs) and twin boundaries, has the same crystal structure and lattice parameter as those of the continuous or discontinuous precipitated β-Mg17Al12. And the nucleation and growth of the granular precipitate are faster than those of the other two precipitates at higher temperatures (above 583 K), but are suppressed at lower temperatures (below 423 K). At lower temperatures, the discontinuous β-Mg17Al12 precipitates firstly and the granular β-Mg17Al12 precipitates after aged more than 40 h. The crack is easily nucleated on the phase boundaries of granular phase and matrix because of the weak binding force. As a result, the strength and ductility of AZ80 Mg alloy are decreased by the granular β-Mg17Al12 precipitate.

  1. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    Science.gov (United States)

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  2. Comparison of the use of sodium carbonate (washing soda crystals) and apomorphine for inducing emesis in dogs.

    Science.gov (United States)

    Yam, E; Hosgood, G; Smart, L

    2016-12-01

    To describe the use of sodium carbonate and apomorphine in a historical cohort of dogs, compare the occurrence of emesis and report any adverse effects recorded. This historical, observational study included information from medical records of dogs that received an emetic agent. The occurrence of emesis with apomorphine or sodium carbonate was calculated and the association between emesis and agent was explored, with the odds ratio and 95% confidence interval (CI) reported. A non-inferiority analysis of the occurrence of emesis for sodium carbonate was performed against an equivalence range of ±7% of the estimated occurrence of emesis with apomorphine. Owners were emailed a short survey about their dog's health after their visit to the hospital for induced emesis. Records for 787 dogs seen from January 2007 to December 2013 were included. For apomorphine, 382/392 dogs showed emesis (97%, 95% CI 95-100%). For sodium carbonate, 320/395 dogs showed emesis (81%, 95% CI 77-85%), which fell below the equivalence range for apomorphine (97 ± 7%, 90-100%) and was considered inferior. The odds ratio of emesis with apomorphine to sodium carbonate was 9.0 (95% CI 4.6-17.6). Of 18 responses to the survey, 5 reported abnormalities after emesis (3 with sodium carbonate, 2 with apomorphine). The occurrence of emesis with sodium carbonate was high but inferior to apomorphine. However, the advantages of sodium carbonate, including less expense and ease of accession compared with apomorphine, make it a viable choice in emergency medicine. © 2016 Australian Veterinary Association.

  3. Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Kishore, S.; Anandhakumar, S.; Sasidharan, M., E-mail: sasidharan.m@res.srmuniv.ac.in

    2017-04-01

    Highlights: • Hollow and solid carbon nanospheres were synthesized by CVD method. • NaCl was used as template for direct growth of carbon nanospheres. • Separation of NaCl from the mixture is made easy by dissolving in water. • The hollow carbon nanospheres exhibit high specific capacity in Li-ion batteries than the graphite anodes. - Abstract: Carbon nanospheres (CNS) with hollow and solid morphologies have been synthesised by a simple chemical vapour deposition method using acetylene as a carbon precursor. Sodium chloride (NaCl) powder as a template was used for the direct growth of CNS via facile and low-cost approach. The effect of various temperatures (500 °C, 600 °C and 700 °C) and acetylene flow rates were investigated to study the structural evolution on the carbon products. The purified CNS thus obtained was characterized by various physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and cyclicvoltametry. The synthesised hollow nanospheres were investigated as anode materials for Li-ion batteries. After 25 cycles of repeated charge/discharge cycles, the discharge and charge capacities were found to be 574 mAh/g and 570 mAh/g, respectively which are significantly higher than the commercial graphite samples.

  4. Magnesite dissolution and precipitation rates at hydrothermal conditions

    International Nuclear Information System (INIS)

    Saldi, Giuseppe

    2009-01-01

    Magnesite (MgCO 3 ) is the stable anhydrous member of a series of Mg-carbonates with different degrees of hydration. Despite its relative scarcity in the natural environments, it constitutes an important mineral phase for the permanent sequestration of CO 2 as carbonate minerals. Experimental determination of magnesite precipitation and dissolution rates at conditions representative of the storage sites is therefore fundamental for the assessment of magnesite sequestration potential in basaltic and ultramafic rocks and the optimization of the techniques of CO 2 storage. Magnesite precipitation rates have been measured using mixed-flow and batch reactors as a function of temperature (100 ≤ T ≤ 200 deg. C), solution composition and CO 2 partial pressure (up to 30 bar). Rates were found to be independent of aqueous solution ionic strength at 0.1 M 3 2- activity at pH > 8. All rates obtained from mixed flow reactor experiments were found to be consistent with the model of Pokrovsky et al. (1999) where magnesite precipitation rates are proportional to the concentration of the >MgOH 2 + surface species. The study of magnesite crystallization using hydrothermal atomic force microscopy (HAFM) demonstrated the consistency of the rates derived from microscopic measurements with those obtained from bulk experiments and showed that these rates are also consistent with a spiral growth mechanism. According to AFM observations this mechanism controls magnesite growth over a wide range of temperatures and saturation states (15≤ Ω ≤200 for 80 ≤T 2 to accelerate the rate of the overall carbonation process, avoiding the inhibiting effect of carbonate ions on magnesite precipitation and increasing the rates of Mg-silicate dissolution via acidification of reacting solutions. Determination of magnesite dissolution rates by mixed flow reactor at 150 and 200 deg. C and at neutral to alkaline conditions allowed us to improve and extend to high temperatures the surface

  5. Synthesis and Evaluation of Microspherical Li1.2Mn0.54Co0.13Ni0.13O2 through Carbon Dioxides-assisted Co-precipitation Method for Lithium-ion Battery

    International Nuclear Information System (INIS)

    Yan, Wenchao; Jiang, Jicheng; Liu, Wei; Yan, Xiao; Sun, Deye; Jin, Yongcheng; Wang, Jing; Xiang, Lan; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-01-01

    Lithium-rich layered electrode materials are of interest as a promising candidate of cathodes for lithium-ion batteries because of their excellent electrochemical properties. The electrochemical performance of these materials is mainly regulated by preparation conditions during synthesis and calcination process. Here, microspherical Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 (LMNCO) particles are synthesized through steady pH value control with carbon dioxides bubbling method in co-precipitation process using a simple reactor. SEM images present that CP-LMNCO sample prepared through the assistance of carbon dioxides has spherical particle morphology, while sample (TP-LMNCO) without carbon dioxides assistance shows large nanoparticles agglomeration. The CP-LMNCO electrode demonstrates superior electrochemical performance, which exhibits capacity retention of 97.76% after 100 cycles compared with only 81.94% for TP-LMNCO electrode at 1C (250 mA g −1 ). Even at a higher current density (5C), the CP-LMNCO electrode shows reversible capacity up to 105.4 mA h g −1 . The remarkably improved electrochemical performance of CP-LMNCO electrode is ascribed to spherical morphology with small surface area which decreases side reactions with electrolyte during cycling and smaller primary sizes which reduce lithium ion (Li + ) diffusion distance. Furthermore, the synthesis of spherical materials using metal sulfate with high concentration (up to 5 M) as starting agents are attempted under carbon dioxides assisted conditions, and as-prepared materials also show improved performance.

  6. An EPR spectrum decomposition study of precipitated carbonated apatites (NCAP) dried at 25 deg C: adsorption of molecules from the atmosphere on the apatite powders

    International Nuclear Information System (INIS)

    Moens, P.D.W.; Callens, F.J.; Verbeeck, R.M.H.; Naessens, D.E.

    1993-01-01

    The effect of storage under ambient conditions on the Electron Paramagnetic Resonance (EPR) spectrum of X-irradiated sodium and carbonate containing synthetic apatites has been studied. A first series of samples was X-irradiated shortly after preparation and drying at 25 o C and investigated by means of EPR. The observed spectra were decomposed in terms of five theoretical curves representing an O - radical, two CO 3 - radicals (surface and bulk) and two CO 2 - radicals (surface and bulk). Afterwards, a second series of the same samples which was stored under ambient conditions for a long period, was also X-irradiated and examined with EPR. The same five radicals were found, but in different relative amounts. It appeared that the relative contributions of the two carbon containing surface radicals increased in comparison with the corresponding bulk radicals. This is explained by an adsorption of molecules from the atmosphere on the surface of the apatite powder. (author)

  7. Enhanced photocatalytic activity induced by sp 3 to sp 2 transition of carbon dopants in BiOCl crystals

    KAUST Repository

    Sun, Jianguo

    2017-09-19

    The insufficient light absorption and low quantum efficiency limit the photocatalytic performance of wide bandgap semiconductors. Here, we report a facile strategy to engineer the surface disordered defects of BiOCl nanosheets via carbon doping. The surface defects boost the light absorption and also the quantum yields, as the doped carbon atoms exhibit a transition from sp3 to sp2 hybridization at elevated temperature, corresponding to a change of assembly state from 3D cluster to 2D graphite-like structure. This transition results in an effective charge separation and thus one order of enhancement in photocatalytic activity toward phenol degradation under visible light. The current study opens an avenue to introduce sp3 to sp2 transition of carbon dopants for simultaneous increment of light absorption and quantum efficiency for application in photocatalysis and energy conversion.

  8. A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum

    Science.gov (United States)

    Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.

    2018-01-01

    A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.

  9. Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations.

    Science.gov (United States)

    Stoffelsma, Chantal; Rodriguez, Paramaconi; Garcia, Gonzalo; Garcia-Araez, Nuria; Strmcnik, Dusan; Marković, Nenad M; Koper, Marc T M

    2010-11-17

    The role of alkali cations (Li(+), Na(+), K(+), Cs(+), and Be(2+)) on the blank voltammetric response and the oxidative stripping of carbon monoxide from stepped Pt single-crystal electrodes in alkaline media has been investigated by cyclic voltammetry. A strong influence of the nature of the cation on both the blank voltammetric profile and the CO oxidation is observed and related to the influence of the cation on the specific adsorption of OH on the platinum surface. Especially Li(+) and Be(2+) cations markedly affect the adsorption of OH and thereby have a significant promoting effect on CO(ads) oxidation. The voltammetric experiments suggest that, on Pt(111), the influence of Li(+) (and Be(2+)) is primarily through a weakening of the repulsive interactions between the OH in the OH adlayer, whereas in the presence of steps also, the onset of OH adsorption is at a lower potential, both on steps and on terraces.

  10. Thermoluminescent properties of polycrystalline carbon doped LaAlO{sub 3}/La(OH){sub 3} crystals synthesized by solid state reaction for application in UV dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Alves, N.; Oliveira de F, L. [Federal University of the State of Minas Gerais, Department of Nuclear Engineering, Av. Pres. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Barbosa F, W., E-mail: neire.radiologia@yahoo.com.br [Nuclear Technology Development Center, 941, 30161-970 Belo Horizonte, Minas Gerais (Brazil)

    2017-10-15

    It is well known that UV radiation can induce certain deleterious effects, such as erythema, painful inflammation of the membrane of the eye and skin cancer. Therefore, it has been pushing the research for producing new and high performance UV sensitive Tl materials. There is an increasing interest in the development of new Tl materials for ultraviolet (UV) dosimetry purposes, owing to simplicity of the sample readout compared to other techniques. In this paper, thermoluminescence and dosimetric characteristics of pure and carbon doped lanthanum aluminate and hydroxide lanthanum crystals, irradiated with different UV doses, were studied and discussed. All samples studied were produced by solid state reaction method with different mixing methodologies. Characterization of sintered powders by X-ray diffraction, UV-Vis spectrophotometry and Ftir spectroscopy were performed. XRD data confirmed the LaAlO{sub 3} and La(OH){sub 3} crystalline phases. The thermoluminescent study revealed that all compositions presented high UV sensibility. The sample which was grown by first sintering La{sub 2}O{sub 3} together carbon atoms and then sintering again in order to obtain La{sub 2}O{sub 3}:C together Al{sub 2}O{sub 3}, presented the best linear dose response over UV doses ranging from 0.042 to 0.63 mJ/cm{sup 2}, with correlation coefficients equal to 0.99931. The synthesis methodology used was very efficient to obtain crystals with high Tl output intensities for low exposure rate UV R fields. (Author)

  11. Two-dimensional carbon crystals. Electrical transport in single- and double-layer graphene; Zweidimensionale Kohlenstoffkristalle. Elektrischer Transport in Einzel- und Doppellagen-Graphen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Hennrik

    2012-02-03

    In his work atomically thin layers of carbon, socalled graphene, are investigated. These systems exhibit outstanding electronic properties which are analysed using magnetotransport measurements. For this purpose, different types of samples are prepared, analysed and discussed. In addition to conventional single layer and single crystal bilayer systems, folded flakes with twisted planes are examined. Since monolayer graphene is a two dimensional crystal in which every atom sits at the surface, it is very sensitive to any type of perturbation. Three different cases are investigated: Firstly, dopants are removed from the surface and the change in transport properties is monitored. Secondly, the regime of small carrier concentrations is used to observe field induced recharging of inhomogeneities. Thirdly, an atomic force microscope is used to alter the graphene itself in a defined region. The implications of this modification are again investigated using magnetotransport measurements. The influence of one layer on another one is studied in decoupled two layer samples. A folded sample with separatly contacted layers is used to show transport through the folded region. For jointly contacted layers parallel transport measurements are performed to analyse screening effects of an applied electric field and substrate influence. The interaction of the two layers is shown by a significant reduction of the Fermivelocity.

  12. Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance.

    Science.gov (United States)

    Fleischmann, Simon; Zeiger, Marco; Quade, Antje; Kruth, Angela; Presser, Volker

    2018-05-25

    Merging of supercapacitors and batteries promises the creation of electrochemical energy storage devices that combine high specific energy, power, and cycling stability. For that purpose, lithium-ion capacitors (LICs) that store energy by lithiation reactions at the negative electrode and double-layer formation at the positive electrode are currently investigated. In this study, we explore the suitability of molybdenum oxide as a negative electrode material in LICs for the first time. Molybdenum oxide-carbon nanotube hybrid materials were synthesized via atomic layer deposition, and different crystal structures and morphologies were obtained by post-deposition annealing. These model materials are first structurally characterized and electrochemically evaluated in half-cells. Benchmarking in LIC full-cells revealed the influences of crystal structure, half-cell capacity, and rate handling on the actual device level performance metrics. The energy efficiency, specific energy, and power are mainly influenced by the overpotential and kinetics of the lithiation reaction during charging. Optimized LIC cells show a maximum specific energy of about 70 W·h·kg -1 and a high specific power of 4 kW·kg -1 at 34 W·h·kg -1 . The longevity of the LIC cells is drastically increased without significantly reducing the energy by preventing a deep cell discharge, hindering the negative electrode from crossing its anodic potential limit.

  13. A crystal-structure refinement of synthetic brannerite, UTi2O6, and its bearing on rate of alkaline-carbonate leaching of brannerite in ore

    International Nuclear Information System (INIS)

    Szymanski, J.T.; Scott, J.D.

    1982-01-01

    The crystal structure of synthetic, stoichiometric brannerite, UTi 2 O 6 , has been refined to R=2.23% from MoKα radiation. Monoclinic, with space group C2/m, a 9.8123(15), b 3.7697(6), c 6.9253(9) A, β 118.957(6) 0 , brannerite is isostructural with thoruitite, ThTi 2 O 6 (Ruh β Wadsley 1966). The co-ordination of U by O is distorted octahedral, the bond distances being 2 x 2.252(2), 4 x 2.296(1) A. There is an additional pair of short nonbonded U-O contacts, 2 x 2.824(2) A. The co-ordination around Ti is also distorted octahedral, with the Ti-O distance between 1.854(3) and 2.104(3) A. The depth of penetration of an alkaline-carbonate leaching solution into natural brannerite from Eldorado, Saskatchewan, has been found to vary nonuniformly with both time and crystallographic direction of leaching attack. The rate of dissolution for a free crystal is 1.33 cubic micrometers per second or, using the density calculated from the cell data, 8.5 x 10 -12 g/s

  14. Effects of freshwater Synechococcus sp. cyanobacteria pH buffering on CaCO3 precipitation: Implications for CO2 sequestration

    International Nuclear Information System (INIS)

    Martinez, Raul E.; Weber, Sebastian; Grimm, Christian

    2016-01-01

    In the present study, a mixed-flow steady-state bio-reactor was designed to biomineralize CO 2 as a consequence of photosynthesis from active Synechococcus sp. Dissolved CO 2 , generated by constant air bubbling of inorganic and cyanobacteria stock solutions, was the only source of inorganic carbon. The release of hydroxide ion by cyanobacteria from photosynthesis maintained highly alkaline pH conditions. In the presence of Ca 2+ and carbonate species, this led to calcite supersaturation under steady state conditions. Ca 2+ remained constant throughout the experiments showing the presence of steady state conditions. Similarly, the Synechococcus sp. biomass concentration remained stable within uncertainty. A gradual pH decrease was observed for the highest Ca 2+ condition coinciding with the formation of CaCO 3 . The high degree of supersaturation, under steady-state conditions, contributed to the stabilization of calcite and maintained a constant driving force for the mineral nucleation and growth. For the highest Ca 2+ condition a fast crystal growth rate was consistent with rapid calcite precipitation as suggested further by affinity calculations. Although saturation state based kinetic precipitation models cannot accurately reflect the controls on crystal growth kinetics or reliably predict growth mechanisms, the relatively reaction orders obtained from modeling of calcite precipitation rates as function of decreasing carbonate concentration suggest that the precipitation occurred via surface-controlled rate determining reactions. These high reaction orders support in addition the hypothesis that crystal growth proceeded through complex surface controlled mechanisms. In conclusion, the steady state supersaturated conditions generated by a constant cyanobacteria biomass and metabolic activity strongly suggest that these microorganisms could be used for the development of efficient CO 2 sequestration methods in a controlled large-scale environment. - Highlights:

  15. Purification, crystallization and preliminary X-ray analysis of urease from pigeon pea (Cajanus cajan)

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Anuradha; Ponnuraj, Karthe, E-mail: pkarthe@hotmail.com [Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2008-07-01

    Urease from pigeon pea was purified and crystallized and X-ray diffraction data were collected at 2.5 Å resolution. Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized and the resulting crystals diffracted to 2.5 Å resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 Å.

  16. Purification, crystallization and preliminary X-ray analysis of urease from jack bean (Canavalia ensiformis)

    International Nuclear Information System (INIS)

    Balasubramanian, Anuradha; Ponnuraj, Karthe

    2009-01-01

    Jack bean urease was purified and crystallized and X-ray diffraction data were collected to 2.05 Å resolution. Plant urease is a seed protein that is common in most legumes. It is also common in many bacteria and fungi and several species of yeast. Urease allows organisms to use exogenous and internally generated urea as a nitrogen source by catalyzing the hydrolysis of urea to ammonia and carbon dioxide. Urease from jack bean meal was purified to electrophoretic homogeneity using a series of steps involving acetone precipitation and size-exclusion and ion-exchange chromatography. The jack bean urease was crystallized and the resulting crystals diffracted to 2.05 Å resolution using synchrotron radiation. The crystals belonged to the hexagonal space group P6 3 22, with unit-cell parameters a = b = 138.57, c = 198.36 Å

  17. Purification, crystallization and preliminary X-ray analysis of urease from pigeon pea (Cajanus cajan)

    International Nuclear Information System (INIS)

    Balasubramanian, Anuradha; Ponnuraj, Karthe

    2008-01-01

    Urease from pigeon pea was purified and crystallized and X-ray diffraction data were collected at 2.5 Å resolution. Urease is a seed protein that is common to most Leguminosae. It also occurs in many bacteria, fungi and several species of yeast. Urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, thus allowing organisms to use exogenous and internally generated urea as a nitrogen source. Urease from pigeon pea seeds has been purified to electrophoretic homogeneity using a series of steps involving ammonium sulfate fractionation, acid precipitation, ion-exchange and size-exclusion chromatography techniques. The pigeon pea urease was crystallized and the resulting crystals diffracted to 2.5 Å resolution. The crystals belong to the rhombohedral space group R32, with unit-cell parameters a = b = 176.29, c = 346.44 Å

  18. Semiconducting icosahedral boron arsenide crystal growth for neutron detection

    Science.gov (United States)

    Whiteley, C. E.; Zhang, Y.; Gong, Y.; Bakalova, S.; Mayo, A.; Edgar, J. H.; Kuball, M.

    2011-03-01

    Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors, thermoelectric converters, and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron (or B12As2 powder) and arsenic in a sealed quartz ampoule. B12As2 crystals of 10-15 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 h and slowly cooled (3.5 °C/h). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), and elemental analysis by energy dispersive X-ray spectroscopy (EDS) confirmed that the crystals had the expected rhombohedral structure and chemical stoichiometry. The concentrations of residual impurities (nickel, carbon, etc.) were low, as measured by Raman spectroscopy and secondary ion mass spectrometry (SIMS). Additionally, low etch-pit densities (4.4×107 cm-2) were observed after etching in molten KOH at 500 °C. Thus, the flux growth method is viable for growing large, high-quality B12As2 crystals.

  19. Precipitation of uranium concentrates by hydrogen peroxide

    International Nuclear Information System (INIS)

    Barbosa Filho, O.

    1986-12-01

    An experimental study on the (UO 4 .xH 2 ) uranyl peroxide precipitation from a uranium process strip solution is presented. The runs were performed in a batch reactor, in laboratory scale. The main objective was to assess the possibility of the peroxide route as an alternative to a conventional ammonium diuranate process. The chemical composition of process solution was obtained. The experiments were conducted according to a factorial design, aiming to evaluate the effects of initial pH, precipitation pH and H 2 O 2 /UO 2 2+ ratio upon the process. The responses were measured in terms of the efficiency of U precipitation, the content of U in the precipitates and the distribution of impurities in the precipitates. The results indicated that the process works is satisfactory on the studied conditions and depending on conditions, it is possible to achieve levels of U precipitation efficiency greater than 99.9% in reaction times of 2 hours. The precipitates reach grades around 99% U 3 O 8 after calcination (900 0 C) and impurities fall below the limit for penalties established by the ASTM and the Allied Chemical Standards. The precipitates are composed of large aggregates of crystals of 1-4 μm, are fast settling and filtering, and are free-flowing when dry. (Author) [pt

  20. Investigating the early stages of mineral precipitation by potentiometric titration and analytical ultracentrifugation.

    Science.gov (United States)

    Kellermeier, Matthias; Cölfen, Helmut; Gebauer, Denis

    2013-01-01

    Despite the importance of crystallization for various areas of research, our understanding of the early stages of the mineral precipitation from solution and of the actual mechanism of nucleation is still rather limited. Indeed, detailed insights into the processes underlying nucleation may enable a systematic development of novel strategies for controlling mineralization, which is highly relevant for fields ranging from materials chemistry to medicine. In this work, we describe experimental aspects of a quantitative assay, which relies on pH titrations combined with in situ metal ion potentiometry and conductivity measurements. The assay has originally been designed to study the crystallization of calcium carbonate, one of the most abundant biominerals. However, the developed procedures can also be readily applied to any compound containing cations for which ion-selective electrodes are available. Besides the possibility to quantitatively assess ion association prior to nucleation and to directly determine thermodynamic solubility products of precipitated phases, the main advantage of the crystallization assay is the unambiguous identification of the different stages of precipitation (i.e., prenucleation, nucleation, and early postnucleation) and the characterization of the multiple effects of additives. Furthermore, the experiments permit targeted access to distinct precursor species and intermediate stages, which thus can be analyzed by additional methods such as cryo-electron microscopy or analytical ultracentrifugation (AUC). Regarding ion association in solution, AUC detects entities significantly larger than simple ion pairs, so-called prenucleation clusters. Sedimentation coefficient values and distributions obtained for the calcium carbonate system are discussed in light of recent insights into the structural nature of prenucleation clusters. © 2013 Elsevier Inc. All rights reserved.

  1. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    Science.gov (United States)

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  2. Melting, growth, and faceting of lead precipitates in aluminum

    DEFF Research Database (Denmark)

    Gråbæk, L.; Bohr, J.; Andersen, H.H.

    1992-01-01

    Aluminum single crystals cut in the direction were implanted with 2 x 10(20) m-2 Pb+ ions at 75 or 150 keV. The implanted insoluble lead precipitated as epitaxially oriented crystallites in the aluminum matrix. The precipitates were studied by x-ray diffraction at Riso, DESY, and Brookhaven...

  3. Preparation of Calcined Zirconia-Carbon Composite from Metal Organic Frameworks and Its Application to Adsorption of Crystal Violet and Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Zubair Hasan

    2016-03-01

    Full Text Available Zirconia-carbon (ZC composites were prepared via calcination of Zr-based metal organic frameworks, UiO-66 and amino-functionalized UiO-66, under N2 atmosphere. The prepared composites were characterized using a series of instrumental analyses. The surface area of the ZC composites increased with the increase of calcination temperature, with the formation of a graphite oxide phase observed at 900 °C. The composites were used for adsorptive removal of a dye (crystal violet, CV and a pharmaceutical and personal care product (salicylic acid, SA. The increase of the calcination temperature resulted in enhanced adsorption capability of the composites toward CV. The composite calcined at 900 °C exhibited a maximum uptake of 243 mg·g−1, which was much greater than that by a commercial activated carbon. The composite was also effective in SA adsorption (102 mg·g−1, and N-functionalization of the composite further enhanced its adsorption capability (109 mg·g−1. CV adsorption was weakly influenced by solution pH, but was more dependent on the surface area and pore volume of the ZC composite. Meanwhile, SA adsorption showed strong pH dependence, which implies an active role of electrostatic interactions in the adsorption process. Base-base repulsion and hydrogen bonding are also suggested to influence the adsorption of CV and SA, especially for the N-functionalized composite.

  4. Raman characterization of 0.4 nm single-walled carbon nanotubes formed in the channels of AlPO4-5 zeolite single crystals

    International Nuclear Information System (INIS)

    Ye, J T; Zhai, J P; Tang, Z K

    2007-01-01

    In this paper, we review our recent research on ultra-small single-walled carbon nanotubes (SWNTs). Using Raman scattering as a tool, we systematically studied the pyrolysis process of carbon precursors in the channels of AlPO 4 -5 zeolite single crystals, and studied the formation process of the ultra-small SWNTs in the channels. The thermal expansion behaviour and thermal stability of these ultra-small SWNTs, either confined in the AlPO 4 -5 channels or in a freestanding environment, were also studied as a function of temperature. The in situ Raman-scattering measurement under 1 x 10 -5 mbar showed that the (3, 3) and (4, 2) tubes were totally destroyed at a temperature of about 700 K, while the (5, 0) tube can survive to 790 K. The electronic states of the 0.4 nm SWNTs were modulated by means of lithium doping. The continuous electron charge transfer from lithium atoms to the tubes was traced using Raman scattering. With increasing doping level, the radial breathing modes of these tubes shifted to higher frequency because the vibration perpendicular to the tube axis was depressed, in contrast to the conventional softening and downshift of the tangential G-mode vibrations

  5. Substitutional Carbon-Modified Anatase TiO2 Decahedral Plates Directly Derived from Titanium Oxalate Crystals via Topotactic Transition.

    Science.gov (United States)

    Niu, Ping; Wu, Tingting; Wen, Lei; Tan, Jun; Yang, Yongqiang; Zheng, Shijian; Liang, Yan; Li, Feng; Irvine, John Ts; Liu, Gang; Ma, Xiuliang; Cheng, Hui-Ming

    2018-03-30

    Changing the composition and/or structure of some metal oxides at the atomic level can significantly improve their performance in different applications. Although many strategies have been developed, the introduction of heteroatoms, particularly anions to the internal part of metal oxide particles, is still not adequate. Here, an effective strategy is demonstrated for directly preparing polycrystalline decahedral plates of substitutional carbon-doped anatase TiO 2 from titanium (IV) oxalate by a thermally induced topotactic transition in an inert atmosphere. Because of the carbon concentration gradient introduced in side of the plates, the carbon-doped TiO 2 (TiO 2- x C x ) shows an increased visible light absorption and a two orders of magnitude higher electrical conductivity than pure TiO 2 . Consequently, it can be used as a photocatalyst and an active material for lithium storage and shows much superior activity in generating hydroxyl radicals under visible light and greatly increased electrical-specific capacity at high charge-discharge rates. The strategy developed could also be applicable to the atomic-scale modification of other metal oxides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of acidic deposition on the erosion of carbonate stone — experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    Science.gov (United States)

    Baedecker, Philip A.; Reddy, Michael M.; Reimann, Karl J.; Sciammarella, Cesar A.

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30° to horizontal at the five NAPAP materials exposure sites range from ˜ 15 to ˜ 30 μm yr -1 for marble, and from ˜ 25 to ˜ 45 μm yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ˜ 30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ˜ 70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ("clean rain"). These results are for marble and limestone slabs exposed at an angle of 30° from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60° or 85°. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at

  7. Modelled Precipitation Over Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the annual total precipitation from 1985 to 1999 and monthly total precipitation from January 1985 to December 1999. The data is derived from...

  8. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U. S. National Acid Precipitation Assessment Program (NAPAP)

    Energy Technology Data Exchange (ETDEWEB)

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A. (US Geological Survey, Reston, VA (USA))

    1992-06-01

    Test briquettes and slabs of freshly quarried limestone and marble have been exposed to the environment to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulphur dioxide, and nitrogen oxides on stone erosion. Erosion due to grain loss did not seem to be influenced by rainfall acidity, but may be influenced by dry deposition of sulphur dioxide between rainfall events. Chemical analyses of the run-off solutions suggest that around 30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulphur dioxide and nitric acid between rain events. The remaining 70% of erosion by dissolution is accounted for by the solubility of carbonate stone in 'clean' rain. 17 refs., 4 figs., 7 tabs.

  9. Gas-Liquid Precipitation of water dissolved heavy metal ions using hydrogen sulfide gas

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.

    2004-01-01

    Precipitation of solids promoted by gas-liquid reactions is applied in many industrial processes such as the production of ammonium phosphate, ammonium sulphate, barium carbonate, calcium carbonate, calcium fluoride, ypsum (calcium sulphate), goethite, sodium bicarbonate, strontium carbonate and

  10. Benthic carbonate factories of the Phanerozoic

    NARCIS (Netherlands)

    Schlager, W.

    2003-01-01

    Marine carbonate precipitation occurs in three basic modes: abiotic (or quasi-abiotic), biotically induced, and biotically controlled. On a geologic scale, these precipitation modes combine to form three carbonate production systems, or "factories" in the benthic environment: (1) tropical

  11. Preparation and characterization of a carbon-based magnetic nanostructure via co-precipitation method: Peroxidase-like activity assay with 3,3ʹ,5,5ʹ-tetramethylbenzidine

    Directory of Open Access Journals (Sweden)

    Navvabeh Salarizadeh

    2017-09-01

    Full Text Available Objective(S: Natural and artificial enzymes have shown important roles in biotechnological processes. Recently, design and synthesis of artificial enzymes especially peroxidase mimics has been interested by many researchers. Due to disadvantages of natural peroxidases, there is a desirable reason of current research interest in artificial peroxidase mimics. Methods: In this study, magnetic multiwall carbon nanotubes with a structure of Fe3O4/MWCNTs as enzyme mimetic were fabricated using in situ co-precipitation method. The structure, composition, and morphology of Fe3O4/MWCNTs nanocomposite were characterized using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, and transmission electron microscopy (TEM. The magnetic properties were investigated by the vibrating sample magnetometer (VSM. Peroxidase-like catalytic activity of nanocomposite was investigated using colorimetric and electrochemical tests with 3,3ʹ,5,5ʹ-tetramethylbenzidine (TMB substrate. Results: The obtained data proved the synthesis of Fe3O4/MWCNTs nanocomposite. The average crystallite size of nanostructures was estimated about 12 nm by Debye–Scherer equation. It was found that Fe3O4/MWCNTs nanocomposite exhibit peroxidase-like activity. Colorimetric and electrochemical data demonstrated that prepared nanocomplex has higher catalytic activity toward H2O2 than pure MWCNT nanocatalyst. From electrochemical tests concluded that the Fe3O4/MWCNTs electrode exhibited the better redox response to H2O2, which is ~ 2 times larger than that of the MWCNTs. Conclusions: The synthesis of Fe3O4nanoparticles on MWCNTs was successfully performed by in situ co-precipitation process. Fe3O4/MWCNTs nanocatalyst exhibited a good peroxidase-like activity. These biomimetic catalysts have some advantages such as simplicity, stability and cost effectiveness that can be used in the design of enzyme-based devices for various applied fields.

  12. Pore-Scale Study of Transverse Mixing Induced CaCO 3 Precipitation and Permeability Reduction in a Model Subsurface Sedimentary System

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Changyong; Dehoff, Karl; Hess, Nancy; Oostrom, Mart; Wietsma, Thomas W.; Valocchi, Albert J.; Fouke, Bruce W.; Werth, Charles J.

    2010-10-15

    A microfluidic pore structure etched into a silicon wafer was used as a two-dimensional model subsurface sedimentary system (i.e., a micromodel) to study mineral precipitation and permeability reduction relevant to groundwater remediation and geological carbon sequestration. Solutions containing CaCl2 and Na2CO3 at four different saturation states (Ω = [Ca2+] [CO32-] / KspCaCO3) were introduced through two separate inlets and they mixed by diffusion transverse to the main flow direction along the center of the micromodel resulting in CaCO3 precipitation. Precipitation rates increased and the total amount of precipitates decreased with increasing saturation state, and only vaterite and calcite crystals were formed (no aragonite). The relative amount of vaterite increased from 80% at the lowest saturation (Ωv = 2.8 for vaterite) state to 95% at the highest saturation state (Ωv = 4.5). Fluorescent tracer tests conducted before and after CaCO3 precipitation indicate that pore spaces were completely occluded by CaCO3 precipitates along the transverse mixing zone, thus significantly reducing porosity and permeability, and potentially limiting transformation from vaterite to the more stable calcite. The results suggest that mineral precipitation along plume margins can decrease both reactant mixing during groundwater remediation, and injection and storage efficiency during CO2 sequestration.

  13. Crystal structure of cobalt hydroxide carbonate Co2CO3(OH)2: density functional theory and X-ray diffraction investigation.

    Science.gov (United States)

    González-López, Jorge; Cockcroft, Jeremy K; Fernández-González, Ángeles; Jimenez, Amalia; Grau-Crespo, Ricardo

    2017-10-01

    The cobalt carbonate hydroxide Co 2 CO 3 (OH) 2 is a technologically important solid which is used as a precursor for the synthesis of cobalt oxides in a wide range of applications. It also has relevance as a potential immobilizer of the toxic element cobalt in the natural environment, but its detailed crystal structure is so far unknown. The structure of Co 2 CO 3 (OH) 2 has now been investigated using density functional theory (DFT) simulations and powder X-ray diffraction (PXRD) measurements on samples synthesized via deposition from aqueous solution. Two possible monoclinic phases are considered, with closely related but symmetrically different crystal structures, based on those of the minerals malachite [Cu 2 CO 3 (OH) 2 ] and rosasite [Cu 1.5 Zn 0.5 CO 3 (OH) 2 ], as well as an orthorhombic phase that can be seen as a common parent structure for the two monoclinic phases, and a triclinic phase with the structure of the mineral kolwezite [Cu 1.34 Co 0.66 CO 3 (OH) 2 ]. The DFT simulations predict that the rosasite-like and malachite-like phases are two different local minima of the potential energy landscape for Co 2 CO 3 (OH) 2 and are practically degenerate in energy, while the orthorhombic and triclinic structures are unstable and experience barrierless transformations to the malachite phase upon relaxation. The best fit to the PXRD data is obtained using a rosasite model [monoclinic with space group P112 1 /n and cell parameters a = 3.1408 (4) Å, b = 12.2914 (17) Å, c = 9.3311 (16) Å and γ = 82.299 (16)°]. However, some features of the PXRD pattern are still not well accounted for by this refinement and the residual parameters are relatively poor. The relationship between the rosasite and malachite phases of Co 2 CO 3 (OH) 2 is discussed and it is shown that they can be seen as polytypes. Based on the similar calculated stabilities of these two polytypes, it is speculated that some level of stacking disorder could account for the poor

  14. Carbon photonics

    Energy Technology Data Exchange (ETDEWEB)

    Konov, V I [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-11-30

    The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)

  15. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  16. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    Directory of Open Access Journals (Sweden)

    G. Cailleau

    2011-07-01

    Full Text Available An African oxalogenic tree, the iroko tree (Milicia excelsa, has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi. Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate

  17. High hydrogen loading of thin palladium wires through alkaline earth carbonates' precipitation on the cathodic surface - evidence of a new phase in the Pd-H system

    Energy Technology Data Exchange (ETDEWEB)

    Celani, F.; Spallone, A.; Di Gioacchino, D. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Marini, P.; Di Stefano, V.; Nakamura, M. [EURESYS, Rome (Italy); Pace, S. [Salerno Univ., Salerno (Italy). Dept. of Physics, Istituto Nazionale per la Fisica della Materia; Mancini, A. [ORIM S.r.l., Piediripa, MC (Italy); Tripodi, P. [Stanford Research Institut International, Stanford, CA (United States)

    2000-07-01

    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, containing small amounts of hydrochloric or sulfuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature coefficient of the electrical resistivity. Mainly for this purpose a thin layer of Hg was galvanically deposed on the cathodic surface, in order to prevent any H deloading during the measurements. The results have been fully reproduced in other 2 well equipped and experienced Laboratories (Italy, USA).

  18. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  19. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    Science.gov (United States)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  20. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    Science.gov (United States)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  1. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    International Nuclear Information System (INIS)

    Suleman, M; Deraman, M; Othman, M A R; Omar, R; Basri, N H; Nor, N S M; Dolah, B N M; Hanappi, M F Y M; Hamdan, E; Sazali, N E S; Tajuddin, N S M; Jasni, M R M; Hashim, M A

    2016-01-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ∼ 1700 m 2 g -1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (∼3.6×10 -3 S cm -1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (∼270 F g -1 ), specific energy (∼ 36 Wh kg -1 ), and power density (∼ 33 kW kg -1 ). (paper)

  2. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  3. PRECIPITATION OF PROTACTINIUM

    Science.gov (United States)

    Moore, R.L.

    1958-07-15

    An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.

  4. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Preci