WorldWideScience

Sample records for carbonate aquifer beneath

  1. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  2. Nitrate in aquifers beneath agricultural systems.

    Science.gov (United States)

    Burkart, M R; Stoner, J D

    2007-01-01

    Research from several regions of the world provides spatially anecdotal evidence to hypothesize which hydrologic and agricultural factors contribute to groundwater vulnerability to nitrate contamination. Analysis of nationally consistent measurements from the U.S. Geological Survey's NAWQA program confirms these hypotheses for a substantial range of agricultural systems. Shallow unconfined aquifers are most susceptible to nitrate contamination associated with agricultural systems. Alluvial and other unconsolidated aquifers are the most vulnerable and also shallow carbonate aquifers that provide a substantial but smaller contamination risk. Where any of these aquifers are overlain by permeable soils the risk of contamination is larger. Irrigated systems can compound this vulnerability by increasing leaching facilitated by additional recharge and additional nutrient applications. The system of corn, soybean, and hogs produced significantly larger concentrations of groundwater nitrate than all other agricultural systems because this system imports the largest amount of N-fertilizer per unit production area. Mean nitrate under dairy, poultry, horticulture, and cattle and grains systems were similar. If trends in the relation between increased fertilizer use and groundwater nitrate in the United States are repeated in other regions of the world, Asia may experience increasing problems because of recent increases in fertilizer use. Groundwater monitoring in Western and Eastern Europe as well as Russia over the next decade may provide data to determine if the trend in increased nitrate contamination can be reversed. If the concentrated livestock trend in the United States is global, it may be accompanied by increasing nitrogen contamination in groundwater. Concentrated livestock provide both point sources in the confinement area and intense non-point sources as fields close to facilities are used for manure disposal. Regions where irrigated cropland is expanding, such as

  3. Recharge Rates and Chemistry Beneath Playas of the High Plains Aquifer - A Literature Review and Synthesis

    Science.gov (United States)

    Gurdak, Jason J.; Roe, Cassia D.

    2009-01-01

    Playas are ephemeral, closed-basin wetlands that are important zones of recharge to the High Plains (or Ogallala) aquifer and critical habitat for birds and other wildlife in the otherwise semiarid, shortgrass prairie and agricultural landscape. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on ground water from the High Plains aquifer has prompted many questions regarding the contribution of recharge from playas to the regional aquifer. To address these questions and concerns, the U.S. Geological Survey, in cooperation with the Playa Lakes Joint Venture, present a review and synthesis of the more than 175 publications about recharge rates and chemistry beneath playas and interplaya settings. Although a number of questions remain regarding the controls on recharge rates and chemistry beneath playas, the results from most published studies indicate that recharge rates beneath playas are substantially (1 to 2 orders of magnitude) higher than recharge rates beneath interplaya settings. The synthesis presented here supports the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this synthesis yield science-based implications for the protection and management of playas and ground-water resources of the High Plains aquifer and directions for future research.

  4. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.;

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...... penetrating radar survey profiled 20 m into lake ice and facilitated bathymetric mapping of the upper lake basin. An airborne transient electromagnetic survey revealed a low-resistivity zone 30-100 m beneath the lake surface. Based on previous knowledge of brine chemistry and local geology, we interpret...

  5. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  6. Hydrogeology and trichloroethene contamination in the sea-level aquifer beneath the Logistics Center, Fort Lewis, Washington

    Science.gov (United States)

    Dinicola, Richard S.

    2005-01-01

    The U.S. Army disposed of waste trichloroethene (TCE) and other materials in the East Gate Disposal Yard near the Logistics Center on Fort Lewis, Washington, from the 1940s to the early 1970s. As a result, ground water contaminated with primarily TCE extends more than 3 miles downgradient from the East Gate Disposal Yard. The site is underlain by a complex and heterogeneous sequence of glacial and non-glacial deposits that have been broadly categorized into an upper and a lower aquifer (the latter referred to as the sea-level aquifer). TCE contamination was detected in both aquifers. This report describes an investigation by the U.S. Geological Survey (USGS) of the source, migration, and attenuation of TCE in the sea-level aquifer. A refined conceptual model for ground-water flow and contaminant migration into and through the sea-level aquifer was developed in large part from interpretation of environmental tracer data. The tracers used included stable isotopes of oxygen (18O), hydrogen (2H), and carbon (13C); the radioactive hydrogen isotope tritium (3H); common ions and redox-related analytes; chlorofluorocarbons; and sulfur hexafluoride. Tracer and TCE concentrations were determined for samples collected by the USGS from 37 wells and two surface-water sites in American Lake during 1999-2000. Ground-water levels were measured by the USGS in more than 40 wells during 2000-01, and were combined with measurements by the U.S. Army and others to create potentiometric-surface maps. Localized ground-water flow features were identified that are of particular relevance to the migration of TCE in the study area. A ridge of ground water beneath American Lake diverts the flow of TCE-contaminated ground water in the sea-level aquifer to the west around the southern end of the lake. Tracer data provided clear evidence that American Lake is a significant source of recharge to the sea-level aquifer that has created that ridge of ground water. High ground-water altitudes at

  7. Injection and trapping of carbon dioxide in deep saline aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, B.Z.; Zerai, B. [Case Western Reserve University, Cleveland, OH (United States). Dept. of Geological Sciences

    2004-10-22

    Carbon dioxide collected from the waste streams of point sources can be injected into deep geologic formations in order to limit the emission of greenhouse gases to the atmosphere. Deep saline aquifers provide the largest potential subsurface storage capacity for injected CO{sub 2}. Once injected, free CO{sub 2} can be retained in deep aquifers for long time periods by slow-moving, downward-directed formation waters. Over time, the injected CO{sub 2} will dissolve in the formation waters and through reactions with formation minerals, may be converted to carbonate minerals, resulting in permanent sequestration. Factors that influence the mass of CO{sub 2} that can be injected and stored in free or aqueous form, and as mineral phases, are reviewed and applied to estimate storage capacity of the Rose Run Sandstone, a saline aquifer beneath eastern Ohio, USA. It is estimated that 30 years of CO{sub 2} emissions from five of Ohio's largest coal-fired power plants can be injected into the Rose Run Sandstone and, over time, converted to aqueous and ultimately, mineral phases. 48 refs., 7 figs., 2 tabs.

  8. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    Energy Technology Data Exchange (ETDEWEB)

    R.G. Allis; J. Moore; S. White

    2003-01-30

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region represent unique natural laboratories for studying the conditions that control long-term storage of CO{sub 2}. Under appropriate conditions, the trapping of CO{sub 2} in mineral phases could equal or exceed the amount of CO{sub 2} sequestered in the pore fluids in deep aquifers. Core samples from the Springerville-St. Johns CO{sub 2} field has allowed investigation of naturally occurring mineral reactions. The presence of travertine deposits over the field provide evidence of the leakage of CO{sub 2} to the atmosphere and justify further study. During reporting period covered here (January 1 to March 30, 2003), the main achievements were: (1) Preparation of three papers to be presented at the Second Annual Conference on Carbon Sequestion (May 5-8, Alexandria, Virginia) and (2) Preparation of two papers for submission to a special volume of Chemical Geology on CO{sub 2} Sequestration.

  9. New York and New England carbonate-rock aquifers

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the New York and New England carbonate-rock aquifers in the states of New York, Vermont, Maine, Massachusetts, Connecticut,...

  10. Hydraulic conductivities of fractures and matrix in Slovenian carbonate aquifers

    Directory of Open Access Journals (Sweden)

    Timotej Verbovšek

    2008-12-01

    Full Text Available Hydraulic conductivities and specific storage coefficients of fractures and matrix in Slovenian carbonate aquifers were determined by Barker’s method for pumping test analysis, based on fractional flow dimension. Values are presented for limestones and mainly for dolomites, and additionally for separate aquifers, divided by age andlithology in several groups. Data was obtained from hydrogeological reports for 397 water wells, and among these, 79 pumping tests were reinterpreted. Hydraulic conductivities of fractures are higher than the hydraulic conductivities of matrix, and the differences are highly statistically significant. Likewise, differences are significant for specific storage, and the values of these coefficients are higher in the matrix. Values of all coefficients vary in separate aquifers, and the differences can be explained by diagenetic effects, crystal size, degree of fracturing, andcarbonate purity. Comparison of the methods, used in the reports, and the Barker’s method (being more suitable for karstic and fractured aquifers, shows that the latter fits real data better.

  11. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    Energy Technology Data Exchange (ETDEWEB)

    R.G. Allis; J. Moore; S. White

    2003-06-30

    The six coal-fired power plants located in the Colorado Plateau and southern Rocky Mountain region of the U.S. produce 100 million tons of CO{sub 2} per year. Thick sequences of collocated sedimentary rocks represent potential sites for sequestration of the CO{sub 2}. Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. The results are being incorporated into a series of two-dimensional numerical models that represent the major chemical and physical processes induced by injection. During reporting period covered here (March 30 to June 30, 2003), the main achievements were: Presentation of three papers at the Second Annual Conference on Carbon Sequestration (May 5-8, Alexandria, Virginia); Presentation of a poster at the American Association of Petroleum Geologists meeting; Co-PI organized and chaired a special session on Geologic Carbon Dioxide Sequestration at the American Association of Petroleum Geologists annual convention in Salt Lake City (May 12-15).

  12. Reactive Multiphase behavior of CO2 in Saline Aquifers beneath the Colorado Plateau

    Energy Technology Data Exchange (ETDEWEB)

    R. G. Allis; J. Moore; S. White

    2002-06-30

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO{sub 2}. They also provide sites for storing additional CO{sub 2} if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO{sub 2}-charged groundwater and springs in the vicinity of known CO{sub 2} occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO{sub 2} from reservoirs, and justify further study. During reporting period covered here (the second quarter of Year 2 of the project, i.e. January 1-March 31, 2002), the main achievements were: (1) Field trips to the central Utah and eastern Arizona travertine areas to collect data and water samples to support study of surface CO{sub 2}-rich fluid leakage in these two areas. (2) Partial completion of a manuscript on natural analogues CO{sub 2} leakage from subsurface reservoirs. The remaining section on the chemistry of the fluids is in progress. (3) Improvements to CHEMTOUGH code to incorporate kinetic effects on reaction progress. (4) Submission of two abstracts (based on the above work) to the topical session at the upcoming GSA meeting in Denver titled ''Experimental, Field, and Modeling Studies of Geological Carbon Sequestration''. (5) Submission of paper to upcoming GGHT-6 conference in Kyoto. Co-PI S. White will attend this conference, and will also be involved in three other papers.

  13. Geochemical detection of carbon dioxide in dilute aquifers

    Directory of Open Access Journals (Sweden)

    Aines Roger

    2009-03-01

    Full Text Available Abstract Background Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. Results For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux ≥ 104 t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase

  14. A method for quantifying bioavailable organic carbon in aquifer sediments

    Science.gov (United States)

    Rectanus, H.V.; Widdowson, M.; Novak, J.; Chapelle, F.

    2005-01-01

    The fact that naturally occurring microorganisms can biodegrade PCE and TCE allows the use of monitored natural attenuation (MNA) as a remediation strategy at chlorinated solvent-contaminated sites. Research at numerous chlorinated solvent sites indicates an active dechlorinating microbial population coupled with an ample supply of organic carbon are conditions needed to sustain reductive dechlorination. A series of extraction experiments was used to compare the ability of the different extractants to remove organic carbon from aquifer sediments. The different extractants included pyrophosphate, sodium hydroxide, and polished water. Pyrophosphate served as a mild extractant that minimally alters the organic structure of the extracted material. Three concentrations (0.1, 0.5, and 1%) of pyrophosphate extracted 18.8, 24.9, and 30.8% of sediment organic carbon, respectively. Under alkali conditions (0.5 N NaOH), which provided the harshest extractant, 30.7% of the sediment organic carbon was recovered. Amorphous organic carbon, measured by potassium persulfate oxidization, consisted of 44.6% of the sediment organic carbon and served as a baseline control for maximum carbon removal. Conversely, highly purified water provided a minimal extraction control and extracted 5.7% of the sediment organic carbon. The removal of organic carbon was quantified by aqueous TOC in the extract and residual sediment organic carbon content. Characterization of the organic carbon extracts by compositional analysis prior and after exposure to the mixed culture might indicate the type organic carbon and functional groups used and/or generated by the organisms. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  15. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique

    2003-12-18

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous

  16. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  17. Internal corrosion of carbon steel piping in hot aquifers service

    Directory of Open Access Journals (Sweden)

    Simičić Miloš V.

    2011-01-01

    Full Text Available Internal corrosion of carbon steel pipelines is a major problem encountered in water service. In terms of prediction of the remaining lifetime for water pipelines based on the corrosion allowance, the three main approaches are corrosion modelling, corrosion inhibitor availability, and corrosion monitoring. In this study we used two theoretical corrosion models, CASSANDRA and NORSOK M-506 of quite different origin in order to predict uniform corrosivity of hot aquifers in eight different pipelines. Because of the varying calculation criteria for the different models, these can give very different corrosion rate predictions for the same data input. This is especially true under conditions where the formation of protective films may occur, such as at elevated temperatures. The evaluation of models was conducted by comparison using weight-loss coupons and three corrosion inhibitors were obtained from commercial suppliers. The tests were performed during the 60-day period. Even though inhibitors’ efficiencies of 98% had been achieved in laboratory testing, inhibitors’ availabilities of 85% have been used due to logistics problems and other issues. The results, given in mmpy, i.e. millimeter per year, are very consistent with NORSOK M-506 prediction. This is presumably because the model considers the effect of the formation of a passive iron carbonate film at temperatures above 80 °C and significant reduction in corrosion rate. Corrosion inhibitor A showed a better performance than inhibitors B and C in all cases but the target corrosion rates of less than 0.1 mmpy were achieved for all inhibitors. The chemical type of corrosion inhibitor A is based on quaternary amines mixed with methanol, isopropyl alcohol, xylene and ethylbenzene. Based on the obtained results the carbon steel lifetime of 30 years, provided proper inhibitors are present and 3mm corrosion allowance, can be achieved for hot aquifers service with presented water compositions.

  18. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China

    Science.gov (United States)

    Liu, Sheng-Ao; Wang, Ze-Zhou; Li, Shu-Guang; Huang, Jian; Yang, Wei

    2016-06-01

    A large set of zinc (Zn) stable isotope data for continental basalts from eastern China were reported to investigate the application of Zn isotopes as a new tracer of deep carbonate cycling. All of the basalts with ages of 120 Ma basalts from eastern China (0.27 ± 0.06‰; 2sd). Given that Zn isotope fractionation during magmatic differentiation is limited (≤0.1‰), the elevated δ66Zn values reflect the involvement of isotopically heavy crustal materials (e.g., carbonates with an average δ66Zn of ∼0.91‰) in the mantle sources. SiO2 contents of the recycled Mg (Zn)-rich carbonates in the mantle beneath eastern China since the Late Mesozoic. Since Zn is a trace element in the mantle and Zn isotopic compositions of marine carbonates and the mantle differ markedly, we highlight Zn isotopes as a new and useful tool of tracing deep carbonate cycling in the Earth's mantle.

  19. Microbial Response to Carbon Dioxide Injection in a Shallow Aquifer

    Science.gov (United States)

    Rook, A.; Faehndrich, D.; O'Mullan, G.; Mailloux, B.; Matter, J.; Stute, M.; Goldberg, D.

    2007-12-01

    Extensive research is underway to investigate the geophysical and geochemical dynamics of subsurface carbon sequestration, but there has been only theoretical consideration of the microbial response. Microbial dynamics are capable of altering the range and rates of geochemical reactions in the subsurface. The goal of this field experiment is to link geochemical changes due to CO2 injection to alterations in the microbial community and to provide an initial characterization of the microbial response. A seven week push-pull experiment was conducted at the Lamont-Doherty Earth Observatory Test Well. 200L of groundwater was extracted, bubbled with carbon dioxide, augmented with a bromide tracer, and injected to 230m depth below ground surface. The hydraulically isolated injection zone marked the contact area between dolerite sill and sedimentary rock. Samples were taken on a weekly basis. Geochemically, a drop in pH from 9.4 to 4.5 at injection was coupled with a release of Fe2+ from the formation. As neutralization and mixing caused pH to return toward background levels, Fe2+ concentrations decreased. The aquifer remained anoxic throughout the experiment. DNA was successfully extracted and the gene encoding 16S ribosomal RNA was amplified from all samples with the exception of the injection fluid. Sequencing from clone libraries and tRFLP analyses were used to characterize microbial dynamics during the seven week study. Whereas the number of microbial groups detected remained relatively constant over the course of the experiment, changes were observed in both the dominant microbes phylogenetic identity and relative abundance. Methane concentrations increased from background levels (below 50 nM) to 4.2 nM after injection, but initial attempts to amplify archaeal and methanogen-specific genes were unsuccessful, bringing into question the presence of a significant methanogenic population. These results confirm that there is a microbial response to carbon dioxide

  20. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia

    Directory of Open Access Journals (Sweden)

    Sonja Cerar

    2013-01-01

    Full Text Available Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1 Ljubljansko polje aquifer, with higher Ca2+ values, as limestone predominates in its recharge area, (2 northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3 central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4 Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg2+ in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years.

  1. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia

    Science.gov (United States)

    2013-01-01

    Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1) Ljubljansko polje aquifer, with higher Ca2+values, as limestone predominates in its recharge area, (2) northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3) central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4) Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg2+ in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years. PMID:24453928

  2. Carbonate chemistry and isotope characteristics of groundwater of Ljubljansko polje and Ljubljansko Barje aquifers in Slovenia.

    Science.gov (United States)

    Cerar, Sonja; Urbanc, Janko

    2013-01-01

    Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1) Ljubljansko polje aquifer, with higher Ca(2+)values, as limestone predominates in its recharge area, (2) northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3) central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4) Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg(2+) in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years.

  3. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana H.; Qafoku, Nikolla; Dai, Zhenxue; Keating, Elizabeth; Brown, Christopher F.

    2016-01-01

    Multiphase, reactive transport modeling was used to identify the mechanisms controlling trace metal release under elevated CO2 conditions from a well-characterized carbonate aquifer. Modeling was conducted for two experimental scenarios: batch experiments to simulate sudden, fast, and short-lived release of CO2 as would occur in the case of well failure during injection, and column experiments to simulate more gradual leaks such as those occurring along undetected faults, fractures, or well linings. Observed and predicted trace metal concentrations are compared to groundwater concentrations from this aquifer to determine the potential for leaking CO2 to adversely impact drinking water quality. Finally, a three-dimensional multiphase flow and reactive-transport simulation of CO2 leakage from an abandoned wellbore into a generalized model of the shallow, unconfined portion of the aquifer is used to determine potential impacts on groundwater quality. As a measure of adverse impacts on groundwater quality, both the EPA’s MCL limits and the maximum trace metal concentration observed in the aquifer were used as threshold values.

  4. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  5. Density and stability of soil organic carbon beneath impervious surfaces in urban areas.

    Science.gov (United States)

    Wei, Zongqiang; Wu, Shaohua; Yan, Xiao; Zhou, Shenglu

    2014-01-01

    Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those in open areas in Yixing City, China. The SOC density (0-20 cm) under impervious surfaces was, on average, 68% lower than that in open areas. Furthermore, there was a significantly (Psoils, whereas the correlation was not apparent for the impervious-covered soils, suggesting that the artificial soil sealing in urban areas decoupled the cycle of C and N. Cumulative CO2-C evolved during the 28-d incubation was lower from the impervious-covered soils than from the open soils, and agreed well with a first-order decay model (Ct = C1+C0(1-e-kt)). The model results indicated that the SOC underlying capped surfaces had weaker decomposability and lower turnover rate. Our results confirm the unique character of urban SOC, especially that beneath impervious surface, and suggest that scientific and management views on regional SOC assessment may need to consider the role of urban carbon stocks.

  6. Conceptual model of the Great Basin carbonate and alluvial aquifer system

    Science.gov (United States)

    Heilweil, Victor M.; Brooks, Lynette E.

    2011-01-01

    A conceptual model of the Great Basin carbonate and alluvial aquifer system (GBCAAS) was developed by the U.S. Geological Survey (USGS) for a regional assessment of groundwater availability as part of a national water census. The study area is an expansion of a previous USGS Regional Aquifer Systems Analysis (RASA) study conducted during the 1980s and 1990s of the carbonate-rock province of the Great Basin. The geographic extent of the study area is 110,000 mi2, predominantly in eastern Nevada and western Utah, and includes 165 hydrographic areas (HAs) and 17 regional groundwater flow systems.

  7. Major geochemical processes in the evolution of carbonate-Aquifer systems

    Science.gov (United States)

    Hanshaw, B.B.; Back, W.

    1979-01-01

    As a result of recent advances by carbonate petrologists and geochemists, hydrologists are provided with new insights into the origin and explanation of many aquifer characteristics and hydrologic phenomena. Some major advances include the recognition that: (1) most carbonate sediments are of biological origin; (2) they have a strong bimodal size-distribution; and (3) they originate in warm shallow seas. Although near-surface ocean water is oversaturated with respect to calcite, aragonite, dolomite and magnesite, the magnesium-hydration barrier effectively prevents either the organic or inorganic formation of dolomite and magnesite. Therefore, calcareous plants and animals produce only calcite and aragonite in hard parts of their bodies. Most carbonate aquifers that are composed of sand-size material have a high initial porosity; the sand grains that formed these aquifers originated primarily as small shells, broken shell fragments of larger invertebrates, or as chemically precipitated oolites. Carbonate rocks that originated as fine-grained muds were initially composed primarily of aragonite needles precipitated by algae and have extremely low permeability that requires fracturing and dissolution to develop into aquifers. Upon first emergence, most sand beds and reefs are good aquifers; on the other hand, the clay-sized carbonate material initially has high porosity but low permeability, a poor aquifer property. Without early fracture development in response to influences of tectonic activity these calcilutites would not begin to develop into aquifers. As a result of selective dissolution, inversion of the metastable aragonite to calcite, and recrystallization, the porosity is collected into larger void spaces, which may not change the overall porosity, but greatly increases permeability. Another major process which redistributes porosity and permeability in carbonates is dolomitization, which occurs in a variety of environments. These environments include back

  8. Sequestration of carbon in saline aquifers - mathematical and numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nordbotten, Jan Martin

    2004-01-01

    The work in this thesis focuses equally on two main topics. The set of these subjects deals with development of criteria for monotonicity of control volume methods. These methods are important and frequently used for solving the pressure equation arising in porous media flow. First we consider homogeneous parallelogram grids, and subsequently general logical Cartesian grids in heterogeneous media. This subject is concluded by the development of a new class of Multi Point Flux Approximation methods, motivated by the monotonicity results obtained. The second topic of this thesis is the development of analytical and semi- analytical solutions to the problem of leakage through abandoned wells. More specially, we look at a set of aquifers, separated by impermeable layers (aquicludes), where injection of water or CO{sub 2} takes place in some or all the aquifers. The aquifers and aquicludes are frequently penetrated by abandoned wells from oil exploration, and our problem consists of finding solutions to flow and leakage through these wells. The goal is to obtain expressions for leakage rates that may be evaluated quickly enough such that Monte Carlo realizations over statistical distributions of properties for abandoned wells can be performed. (author)

  9. Multiphase fluid-rock reactions among supercritical carbon dioxide, brine, aquifer, and caprock: relevance to geologic sequestration of carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kaszuba, J. P. (John P.); Janecky, D. R. (David R.); Snow, M. G. (Marjorie G.)

    2004-01-01

    The reactive behavior of a multiphase fluid (supercritical CO{sub 2} and brine) under physical-chemical conditions relevant to geologic storage and sequestration in a carbon repository is largely unknown. Experiments were conducted in a flexible cell hydrothermal apparatus to evaluate multiphase fluid-rock (aquifer plus caprock) reactions that may impact repository integrity.

  10. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    Science.gov (United States)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  11. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

    Science.gov (United States)

    Sorey, M.L.; Evans, William C.; Kennedy, B.M.; Farrar, C.D.; Hainsworth, L.J.; Hausback, B.

    1998-01-01

    Carbon dioxide and helium with isotopic compositions indicative of a magmatic source (??13C = -4.5 to -5???, 3He/4He = 4.5 to 6.7 RA) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO2 discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills are associated with CO2 concentrations of 30-90% in soil gas and gas flow rates of up to 31,000 g m-2 d-1 at the soil surface. Each of the tree-kill areas and one area of CO2 discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO2 flux from the mountain is approximately 520 t/d, and that 30-50 t/d of CO2 are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO2 and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N2/Ar ratios and nitrogen isotopic values

  12. Inorganic carbon cycle in soil-rock-groundwater system in karst and fissured aquifers

    Directory of Open Access Journals (Sweden)

    Ajda Koceli

    2013-12-01

    Full Text Available The paper presents a systematic analysis of the isotopic composition of carbon (δ13CCaCO3 in carbonate rocks in central Slovenia, representing karst and fissured aquifers, and share of carbon contributions from carbonate dissolution and degradation of organic matter in aquifers, calculated from the mass balance equation. 59 samples of rocks (mainly dolomites from Upper Permian to Upper Triassic age were analyzed. Samples of carbonate rocks were pulverized and ground to fraction of 45 μm and for determination of δ13CCaCO3 analyzed with mass spectrometer for analyses of stable isotopes of light elements-IRMS. The same method was used for determination of isotopic composition of dissolved inorganic carbon (δ13CDIC in groundwater for 54 of 59 locations. Values of δ13CCaCO3 are in the range from -2.0 ‰ to +4.1 ‰, with an average δ13CCaCO3 value of +2.2 ‰. These values are typical for marine carbonates with δ13CCaCO3 around 0 ‰, although δ13CCaCO3 values differ between groups depending on the origin and age. Early diagenetic dolomites have relatively higher values of δ13CCaCO3 compared to other analyzed samples. The lowest values of δ13CCaCO3 were observed in Cordevolian and Bača dolomite, probably due to late diagenesis, during which meteoric water with lower isotopic carbon composition circulated in the process of sedimentation. Values of δ13CDIC range from -14.6 ‰ to -8.2 ‰. Higher δ13CDIC values (-8.2 ‰ indicate a low proportion of soil CO2 in the aquifer and rapid infiltration, while lower values (-14.6 ‰ indicate higher proportion of soil CO2 in the aquifer and slower infiltration. Calculated contributions of carbon from organic matter / dissolution of carbonates in the karstic and fissured aquifers s how a similar proportion (50 % : 50 %.

  13. Potentially bioavailable natural organic carbon and hydrolyzable amino acids in aquifer sediments

    Science.gov (United States)

    Thomas, Lashun K.; Widdowson, Mark A.; Novak, John T.; Chapelle, Francis H.; Benner, Ronald; Kaiser, Karl

    2012-01-01

    This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic -carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene--contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.

  14. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyatt [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  15. Water-Table and Potentiometric-Surface Altitudes in the Upper Glacial, Magothy, and Lloyd Aquifers beneath Long Island, New York, March-April 2006

    Science.gov (United States)

    Monti, Jack; Busciolano, Ronald J.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects ground-water data at varying measurement frequencies to monitor the hydrologic situation on Long Island, New York. Each year during March and April, the USGS conducts a synoptic survey of hydrologic conditions to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island - the upper glacial, Magothy, and Lloyd aquifers. These data and the maps constructed from them are commonly used in studies of Long Island's hydrology, and by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 502 wells across Long Island during March-April 2006, were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured using these measurements. The water-table contours were interpreted using water-level data collected from 341 wells screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer's potentiometric-surface contours were interpreted from measurements at 102 wells screened in the middle to deep Magothy aquifer and (or) contiguous and hydraulically connected Jameco aquifer; and the Lloyd aquifer's potentiometric-surface contours were interpreted from measurements at 59 wells screened in the Lloyd aquifer or contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less

  16. Uranium isotopes in carbonate aquifers of arid region setting

    DEFF Research Database (Denmark)

    Alshamsi, Dalal M.; Murad, Ahmed A.; Aldahan, Ala

    2013-01-01

    Groundwater in arid and semiarid regions is vital resource for many uses and therefore information about concentrations of uranium isotopes among other chemical parameters are necessary. In the study presented here, distribution of 238U and 235U in groundwater of four selected locations in the so......Groundwater in arid and semiarid regions is vital resource for many uses and therefore information about concentrations of uranium isotopes among other chemical parameters are necessary. In the study presented here, distribution of 238U and 235U in groundwater of four selected locations...... in the southern Arabian peninsula, namely at two locations within the United Arab Emirates (UAE) and two locations in Oman are discussed. The analyses of the uranium isotopes were performed using ICP-MS and the results indicated a range of concentrations for 235U and 238 U at 3–39 ng L-1 (average: 18 ng L-1......) and 429–5,293 ng L-1 (average: 2,508 ng L-1) respectively. These uranium concentrations are below the higher permissible WHO limit for drinking water and also comparable to averages found in groundwater from similar aquifers in Florida and Tunisia. Negative correlation between rainfall and uranium...

  17. Carbonate microstructure determination by inversion of acoustic and electrical data: Application to a south Florida aquifer

    Science.gov (United States)

    Kazatchenko, E.; Markov, M.; Mousatov, A.; Parra, J.

    2006-05-01

    We demonstrate the feasibility of a petrophysical inversion technique to reconstruct the secondary pore-space microstructure in carbonate double-porosity aquifers. This technique consists of the joint inversion of acoustic (P- and S-wave velocities) and electrical resistivity well logs using a unified pore-space model and a self-consistent effective media approximation for theoretically calculating the elastic moduli and electrical conductivity. We invert experimental well log data from a South Florida aquifer in the western Hillsboro Basin of Palm Beach County, Florida. The inversion results allow us to find the detailed vertical distribution of primary and secondary porosities in the carbonate aquifer formation associated with high total porosity. The secondary-porosity system of this formation has a complex microstructure and corresponds to a model with two types of pore shapes: cracks approximated by flattered ellipsoids, and spheroid-shaped vugs. The quantitative pore-structure characteristics agreed with the qualitative description of computed tomography core images and optical microscope thin sections. The relationship between primary and secondary porosities is an important and informative characteristic of carbonate formations that demonstrates a good correlation with nuclear magnetic resonance-derived permeability. This suggests that knowledge of a formation's different porosities can be used to infer relative formation permeability, based on a joint inversion of acoustic and resistivity well logs.

  18. Assessing groundwater availability in a folded carbonate aquifer through the development of a numerical model

    Science.gov (United States)

    Di Salvo, Cristina; Romano, Emanuele; Guyennon, Nicolas; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2015-04-01

    The study of aquifer systems from a quantitative point of view is fundamental for adopting water management plans aiming at preserving water resources and reducing environmental risks related to groundwater level and discharge changes. This is also what the European Union Water Framework Directive (WFD, 2000/60/EC) states, holding the development of numerical models as a key aspect for groundwater management. The objective of this research is to i) define a methodology for modeling a complex hydrogeological structure in a structurally folded carbonate area and ii) estimate the concurrent effects of exploitation and climate changes on groundwater availability through the implementation of a 3D groundwater flow model. This study concerns the Monte Coscerno karst aquifer located in the Apennine chain in Central Italy in the Nera River Valley.This aquifer, is planned to be exploited in the near future for water supply. Negative trends of precipitation in Central Italy have been reported in relation to global climate changes, which are expected to affect the availability of recharge to carbonate aquifers throughout the region . A great concern is the combined impact of climate change and groundwater exploitation, hence scenarios are needed taking into account the effect of possible temperature and precipitation trends on recharge rates. Following a previous experience with model conceptualization and long-term simulation of groundwater flow, an integrated three-dimensional groundwater model has been developed for the Monte Coscerno aquifer. In a previous paper (Preziosi et al 2014) the spatial distribution of recharge to this aquifer was estimated through the Thornthwaite Mather model at a daily time step using as inputs past precipitation and temperature values (1951-2013) as well as soil and landscape properties. In this paper the numerical model development is described. On the basis of well logs from private consulting companies and literature cross sections the

  19. Geostatistical borehole image-based mapping of karst-carbonate aquifer pores

    Science.gov (United States)

    Michael Sukop,; Cunningham, Kevin J.

    2016-01-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.

  20. Mixing of water in a carbonate aquifer, southern Italy, analysed through stable isotope investigations

    Directory of Open Access Journals (Sweden)

    Petrella Emma

    2013-01-01

    Full Text Available Mixing of water was analysed in a carbonate aquifer, southern Italy, through stable isotope investigations (18O,δ2H. The input signal (rainwater was compared with the isotopic content of a 35-meter groundwater vertical prof ile, over a 1-year period. Within the studied aquifer, recharge and f low are diffuse in a well-connected f issure network.At the test site, the comparison between input and groundwater isotopic signals illustrates that no eff icient mixing takes place in the whole unsaturated zone, between the fresh inf iltration water and the stored water.When analysing the stable isotope composition of groundwater, signif icant variations were observed above the threshold elevation of 1062 m asl, while a nearly constant composition was observed below the same threshold. Thus, temporal variations in stable isotope composition of rainwater are completely attenuated just in the deeper phreatic zone.On the whole, taking into consideration also the results of previous studies in the same area, the investigations showed that physical characteristics of the carbonate bedrock, as well as aquifer heterogeneity, are factors of utmost importance in inf luencing the complete mixing of water. These f indings suggest a more complex scenario at catchment scale.

  1. Water-table and Potentiometric-surface altitudes in the Upper Glacial, Magothy, and Lloyd aquifers beneath Long Island, New York, April-May 2010

    Science.gov (United States)

    Monti, Jack; Como, Michael D.; Busciolano, Ronald

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the USGS conducts a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers (Smolensky and others, 1989)—and the hydraulically connected Jameco (Soren, 1971) and North Shore aquifers (Stumm, 2001). These data and the maps constructed from them are commonly used in studies of Long Island’s hydrology and are used by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 503 monitoring wells, a network of observation and supply wells, and 16 streamgage locations across Long Island during April–May 2010 were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured by using these measurements. The water-table contours were interpreted by using water-level data collected from 16 streamgages, 349 observation wells, and 1 supply well screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer’s potentiometric-surface contours were interpreted from measurements at 67 observation wells and 27 supply wells screened in the middle to deep Magothy aquifer and (or) the contiguous and hydraulically connected Jameco aquifer. The Lloyd aquifer’s potentiometric-surface contours were interpreted from measurements at 55 observation wells and 4 supply wells screened in the Lloyd aquifer or the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were

  2. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    Science.gov (United States)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  3. STABLE CARBON ISOTOPES OF HCO//3 IN THE AQUIA AQUIFER, MARYLAND: EVIDENCE FOR AN ISOTOPICALLY HEAVY SOURCE OF CO//2.

    Science.gov (United States)

    Chapelle, Francis H.; Knobel, LeRoy L.

    1985-01-01

    Identifying sources and sinks of dissolved inorganic carbon species is an important step in understanding the geochemistry of ground-water systems. This is particularly important for Atlantic Coastal Plain aquifers because bicarbonate (HCO//3** minus ) is frequently the major dissolved anion. The purpose of this paper is to document the stable carbon isotope composition of dissolved inorganic carbon in the Aquia aquifer, Maryland, and to use this data to help identify sources and sinks of dissolved HCO//3** minus . Subjects covered include hydrogeology, ground-water chemistry, sources and sinks, and others. Refs.

  4. Isotopic characterization of the Precambrian carbonate aquifers under the city of Bangui (Central African Republic)

    Science.gov (United States)

    Huneau, Frederic; Djebebe-Ndjiguim, Chantal-Laure; Foto, Eric; Ito, Mari; Celle-Jeanton, Helene; Garel, Emilie; Mabingui, Joseph

    2013-04-01

    The city of Bangui, the capital of the Central African Republic, is located on the right bank of the Ubangi River which is the northernmost tributary of the Congo River. From its foundation in 1889 this city has always suffered from serious problems of water management. This is related to the specificity of the site configuration (steep hills surrounding a large swampy flat valley poorly drained) and to the urbanisation process responsible for the waterproofing of soils and the associated increased runoff processes under tropical humid condition.This paper presents the results of a geochemical and isotopic survey carried out in 2011 aiming at evaluating the type and chemical quality of the groundwater resources of the Bangui region. By combining geological, hydrogeochemical and isotopic data it appears that the underground of Bangui seems favourable to the development of a secured and sustainable water supply from groundwater provided that the conditions of exploitation would be constrained by the local authorities. The deep fractured (and locally kastified) Precambrian carbonate aquifers known as Bimbo and Fatima formations are identified as target resources considering the relatively good quality of the resource from the chemical point of view, and the semi-confined structure of the aquifer preventing the mixing with shallow aquifers already strongly impacted by domestic and industrial pollutions.

  5. Transport of zero-valent iron nanoparticles in carbonate-rich porous aquifers

    Science.gov (United States)

    Laumann, S.; Micic, V.; Hofmann, T.

    2012-04-01

    Use of nanoscale zero-valent iron (nZVI) for in situ dechlorination of chlorinated solvents in groundwater is a promising remediation technology, due to a high dechlorination efficiency of nZVI and possible applications in e.g., great depth or under above-ground infrastructure. The success of the in situ nZVI dechlorination strongly depends on the particle delivery to the contaminants. Previous studies reported a limited transport of nZVI through porous media (cm- to dm-range) and this has been recognized as one of the major obstacles in a widespread utilization of this technology (TRATNYEK & JOHNSON, 2006). Factors that limit the transport are particle aggregation and deposition onto the aquifer solids. Both depend on particle properties (e.g., size, shape, iron content, surface coating, surface charge), on concentrations of suspensions, and on site-specific parameters, such as the groundwater chemistry and the properties and inhomogeneity of the aquifer material. Adsorbed anionic polyelectrolyte coatings provide electrostatic double layer repulsions between negatively charged nZVI particles (SALEH ET AL., 2007), hindering their aggregation and also deposition on the negatively charged quartz surfaces (usually prevailing in aquifers). However, it is shown that the presence of surface charge heterogeneities in the aquifer effects the particle transport (JOHNSON ET AL., 1996). Carbonates, iron oxides, and the edges of clay minerals, for instance, carry a positive surface charge at neutral pH (often encountered in groundwater). This leads to a favorable deposition of negatively charged nZVI particles onto carbonates, metal oxide impurities or clay edges, and finally to a decreased particle transport. Considering the high proportion of carbonates commonly encountered in Alpine porous aquifers, in this study we aimed to evaluate the transport of commercially available polyelectrolyte coated nZVI (polyacrylic acid coated-nZVI, NANOIRON s.r.o., CZ) in both quartz and

  6. Electrical Resistivity Tomography (ERT) Applied to Karst Carbonate Aquifers: Case Study from Amdoun, Northwestern Tunisia

    Science.gov (United States)

    Redhaounia, Belgacem; Ilondo, Batobo Ountsche; Gabtni, Hakim; Sami, Khomsi; Bédir, Mourad

    2016-04-01

    The Amdoun region is characterized by a high degree of karstification due to the climate impact (±1500 mm year-1) and the development of fracture network. Survey using electrical resistivity tomography (ERT) is deployed to provide a cost-effective characterization of the subsurface karst environments. A total of seven ERT profiles with lengths of 315 m were evaluated at the Béja governorate (NW Tunisia). The area represents a small syncline of Boudabbous limestone rocks (Lower Eocene), which is covered by a thin layer of clay. In this study, an ERT survey was conducted to examine the spatial distribution and shape of underground cavities in the karst area in Jebel Sabah anticline and Aïn Sallem-Zahret Medien syncline. In this study, geological, hydro-geological and electrical resistivity tomography (ERT) methods were applied to determine the geometry of the perched aquifer in the Amdoun region (NW Tunisia). The area is characterized by fractured and karstic limestone aquifer of Late Cretaceous (Abiod Fm.) and Lower Eocene (Boudabbous Fm.). The aquifers have a karstic functioning and drain aquifers of economical interest, despite some wells exploiting them. Seven resistivity profiles were conducted along the survey area at three sites. The orientation, extension and the degree of inclination of those profiles are shown in the location map. The correct resistivity data were interpreted using Earth Imager 2D software. The results of the interpreted geo-electrical sections showed that the resistivity of the carbonate aquifer varied between 2.5 to over 5794 Ωm. The thickness of the perched aquifer ranged from 15 to 50 m, while its depth from the surface lies between 10 and 60 m. The ERT not only provided precise near surface information, but was also very useful for establishing the 3D geometry and the position of several potential cavities and karts. The results show the presence of small to large isolated cavities at various depths. The low resistivity of cavities

  7. Mg Isotope Evolution During Water-Rock Interaction in a Carbonate Aquifer

    Science.gov (United States)

    Zhang, Z.; Jacobson, A. D.; Lundstrom, C. C.; Huang, F.

    2008-12-01

    To better understand how Mg isotopes behave during weathering and aqueous transport, we used a Nu Plasma MC-ICP-MS to measure δ26Mg values (relative to DSM-3) in water samples along a 236 km flow path in the Madison aquifer of South Dakota, a confined carbonate aquifer recharging in the igneous Black Hills. We also analyzed local granite and dolomite samples to characterize the Mg isotope composition of source rocks constituting the recharge zone and aquifer, respectively. Repeated analyses of Mg standard solutions yielded external precisions (2σ) better than 0.1 permil for δ26Mg(CAM-1, - 2.584±0.071, n=13; UIMg-1, -2.217±0.087, n=9.). The Madison aquifer provides a unique opportunity to quantify Mg isotope effects during water-rock interaction because (1) fluids and rock have chemically equilibrated over a much longer timescale (up to ~15 kyr) than can be simulated in laboratory experiments and (2) previous studies have determined the rates and mass-balances of de- dolomitization and other geochemical reactions controlling solute evolution along the flow path. Reactions important for changing the concentration and isotope composition of Mg include dolomite dissolution, Mg-for- Na ion exchange, calcite precipitation, and isotope exchange. δ26Mg values within the recharge region (0-17 km along flow path) vary between -1.08 and -1.63 permil, and then remain essentially constant at -1.408±0.010 permil(1σ, 5 samples) from 17 to 189 km. A final sample at 236 km shows an increase to -1.09 permil. Either mixing between different recharge waters or rapid isotope exchange between infiltrating waters and dolomite could control δ26Mg variability between 0 and 17 km. Likewise, reactive transport modeling suggests that preferential uptake of 24Mg during Mg-for-Na ion exchange might cause an increase in δ26Mg between 189 and 236 km. However, unchanging δ26Mg values observed throughout most of the aquifer clearly demonstrate that Mg isotopes are not fractionated during

  8. Estimation of groundwater residence time using environmental radioisotopes (14C,T) in carbonate aquifers, southern Poland.

    Science.gov (United States)

    Samborska, Katarzyna; Różkowski, Andrzej; Małoszewski, Piotr

    2013-01-01

    Triassic carbonate aquifers in the Upper Silesia region, affected by intense withdrawal, have been investigated by means of isotopic analyses of (14)C, δ(13)C, δ(2)H, δ(18)O and (3)H. The isotopic examinations were carried out in the 1970s and in the early 1980s, and it was the first application of tracers to estimate age and vulnerability for the contamination of groundwater in this region. Similar isotopic analyses were conducted in 2007 and 2008 with the same Triassic carbonate formation. The isotopic examinations were performed within the confined part of the carbonate formation, wherein aquifers are covered by semi-permeable deposits. The direct recharge of the aquifer occurs in the outcrop areas, but it mainly takes place due to percolation of the water through aquitards and erosional windows. The Triassic aquifer has been intensively drained by wells and by lead-zinc mines. Nowadays, the declining water demand and closure of some mines have induced a significant increase in the water table level. The detailed analysis of the results, including the radiocarbon age corrections and the comparison of radioisotope activities, has made it possible to estimate the range of residence time within the carbonate Triassic aquifer. This range from several tens to several tens of thousands indicates that the recharge of aquifers might have occurred between modern times and the Pleistocene. The apparent age of the water estimated on the basis of (14)C activity was corrected considering the carbon isotope exchange and the diffusion between mobile water in fractures and stagnant water in micropores. The obtained corrected period of recharge corresponds to the result of investigations of noble gases, which were carried out in the 1990s. In almost half of the cases, groundwater is a mixture of young and old water. The mixing processes occur mainly in areas of heavy exploitation of the aquifer.

  9. Melting and Reactive Flow of Carbonated Peridotite Beneath Mid-Ocean Ridges

    Science.gov (United States)

    Keller, T.; Katz, R. F.

    2015-12-01

    The mantle carbon reservoir is four orders of magnitude more massive than that of the atmosphere and ocean combined. The behaviour of carbon in the mantle, especially its transport and extraction, is thus of crucial importance to understanding the coupling between the deep interior and the surface environment of Earth. Laboratory experiments indicate that even small concentrations of carbon dioxide (and other volatiles like H2O) in the upper mantle significantly affect silicate melting [HK96,DH06] by stabilising carbon-rich melt at high pressure. The presence of carbon in the mantle substantially extends the region where partial melt is stable and has important consequences for the dynamics of magma transport and chemical differentiation [H10,DH10]. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+carbonated MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84]. The thermo-chemical formulation of the system is represented by a novel, disequilibrium, multi-component melting model based on thermodynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. First results show that carbon and other volatiles cause a qualitative difference to the style of melt transport, potentially enhancing its extraction efficiency - measured in the carbon mass flux arriving at the mid-ocean ridge axis - by at least an order of magnitude. The process that controls magma transport in our models is a volatile flux-induced reactive infiltration instability, causing carbonated melt to rise from depth in localized channels. These results add to our understanding of melt formation and transport at mid-ocean ridges (the most important magmatic system in the mantle) and may have important implications for subduction zones. REFERENCESHK96 Hirth

  10. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  11. The importance of some carbonate aquifers in the Guadalquivir river basin; Importancia de algunos acuiferos carbonatados representativos de la cuenca del Guadalquivir

    Energy Technology Data Exchange (ETDEWEB)

    Pulido Boch, A.; Lopez Chicano, M.

    1995-07-01

    Carbonate aquifers play an important role in the Guadalquivir river basin, although, until present days, there are very few wells exploiting them. We can distinguish two kinds of carbonate aquifers: fissurated and karstic. In the first group, we consider the Alpujarride carbonates from the western Sierra Nevada- Alfaguara border; in the second, the most important are: Cazorla and Segura Sierras-source of the Guadalquivir river- and Sierra Gorda. The main hydrogeological characteristics of these aquifers are described and we make some reflexions about the role that the aquifers can play in the total resources of the basin. (Author)

  12. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  13. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common

  14. Implementation of a 3d numerical model of a folded multilayer carbonate aquifer

    Science.gov (United States)

    Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2016-04-01

    The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and

  15. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  16. Quantifying and timing of long-term carbonate mobilisation in a limestone aquifer

    Science.gov (United States)

    Kirstein, J.; Gaupp, R.

    2012-04-01

    . The goal is to deliver basic data for a quantification of carbonate export and carbon dioxide consumption within the Thuringian basin Muschelkalk aquifer during the Late Quaternary.

  17. Analysis of groundwater mining in two carbonate aquifers in Sierra de Estepa (SE Spain) based on hydrodynamic and hydrochemical data

    Science.gov (United States)

    Martos-Rosillo, Sergio; Rodríguez-Rodríguez, Miguel; Moral, Francisco; Cruz-Sanjulián, José Javier; Rubio, Juan Carlos

    2009-11-01

    The carbonate aquifers of Lora and Mingo form part of the hydrogeological unit of Sierra de Estepa (SE Spain). By means of time series analysis and a 1D numerical groundwater model, groundwater exploitation was quantified and the mean annual recharge in both systems was estimated (2001-2004). During this period, the Lora and Mingo aquifers received an average groundwater recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year, respectively, whereas an average of 0.34 × 106 m3/year and 0.21 × 106 m3/year, respectively, was extracted. These conditions led to a conspicuous lowering of the water table in both systems. In addition, the analysis of the evolution of the main hydrogeochemical parameters of the groundwater showed that the increased pumping rates produced an increase in total dissolved solids, and chloride and sodium ions in both aquifers. In the case of the Lora aquifer, the only ion that presented decreased levels was nitrate. The results show that groundwater pumping in both aquifers should not exceed the mean annual recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year in the Lora and Mingo aquifers, respectively. Nevertheless, it would be advisable to reduce pumping rates to below these values in order to restore piezometric levels and improve groundwater quality for different uses in the future.

  18. Application of a probabilistic modelling approach for evaluation of nitrogen, phosphorus and organic carbon removal efficiency during four successive cycles of aquifer storage and recovery (ASR) in an anoxic carbonate aquifer.

    Science.gov (United States)

    Vanderzalm, Joanne L; Page, Declan W; Barry, Karen E; Dillon, Peter J

    2013-05-01

    Aquifer storage is increasingly being recognised in its role as a treatment process barrier within a multiple barrier approach to water reuse. Aquifers are postulated to have the ability to provide sustainable treatment for removal of nitrogen, phosphorus and organic carbon, the dominant nutrient hazards in water recycling, but, to date this treatment performance has remained difficult to validate in field studies. This study applied a statistical method, proposed for validation of the performance of advanced water treatment processes, to evaluate nutrient removal during aquifer storage and recovery (ASR) with recycled water. Analysis of observed water quality changes during four successive ASR cycles with highly variable source water quality was used to describe the removal efficiencies for selected nutrients by an anoxic carbonate aquifer. The use of this method was found to be suitable to calculate removal efficiencies for total organic carbon (TOC) and total nitrogen (TN) over four ASR cycles with temporally variable concentrations of nutrients in the tertiary treated wastewater injectant. TOC and TN removal was dominated by redox processes, aerobic respiration and denitrification. Median removal of TOC ranged from 25 to 40% and TN from 46 to 87% over the four cycles. There was no observable reduction in this removal with time, suggesting that removal of TOC and TN by redox processes can be sustained in an ASR system. Contrastingly, total phosphorous (TP) was subject to reversible removal via adsorption and desorption processes and as a result, removal efficiency could not be calculated with this method. Thus in general, results indicated that this statistical method could be used to characterise the capacity of the anoxic carbonate aquifer treatment barrier for removal of carbon and nitrogen, but not for removal of phosphorus.

  19. Influence of topsoil of pyroclastic origin on microbial contamination of groundwater in fractured carbonate aquifers

    Science.gov (United States)

    Naclerio, Gino; Petrella, Emma; Nerone, Valentina; Allocca, Vincenzo; de Vita, Pantaleone; Celico, Fulvio

    2008-09-01

    The aim of the research was to analyse the influence of a topsoil of pyroclastic origin on microbial contamination of groundwater in a carbonate aquifer and verify the reliability of thermotolerant coliforms and fecal enterococci as bacterial indicators. The research was carried out through hydrogeological and microbiological monitoring at an experimental field site in Italy during two hydrologic years and through column tests in a laboratory. The taxonomic classification of fecal indicators detected in spring water samples was performed using API20 galleries. Fecal enterococci were also identified by means of 16S rRNA gene sequencing. The topsoil of pyroclastic origin significantly retains both thermotolerant coliforms and fecal enterococci. Results of column tests carried out in soil blocks collected randomly within the test site suggest that Escherichia coli was more retained than Enterococcus faecalis, even though this difference is statistically significant in only two out of six soil samples. Thus, a non-uniform difference in retention is expected at field scale. This suggestion is in agreement with the results of the microbiological monitoring. In fact, fecal enterococci were a more reliable indicator than thermotolerant coliforms for detecting contamination at both seasonal springs of the aquifer system, while no significant differences were observed at the perennial spring.

  20. Hydrochemistry of surface water and groundwater from a fractured carbonate aquifer in the Helwan area, Egypt

    Indian Academy of Sciences (India)

    Fathy A Abdalla; Traugott Scheytt

    2012-02-01

    Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.

  1. Hydrochemical changes due to intensive use of groundwater in the carbonate aquifers of Sierra de Estepa (Seville, Southern Spain)

    Science.gov (United States)

    Martos-Rosillo, S.; Moral, F.

    2015-09-01

    The carbonate aquifers of Sierra de Estepa, situated in southern Spain, are undergoing intensive groundwater exploitation. Consequently, the volume of pumping surpasses the average recharge for periods of several consecutive years. Under such conditions, nearby springs have either dried up or only function during short time periods, after very rainy episodes followed by long droughts. During the brief periods when the springs are active, their water and the water extracted by pumping are calcium bicarbonates, with a spatial-temporal variability of their physico-chemical characteristics that is mainly conditioned by the degree of functional karstification of each system. When the springs are inactive, the pumping water gradually increases in salinity and becomes HCO3ClCaNa, ClHCO3NaCa and ClNa. Under the new conditions caused by so much pumping, the main factors determining the hydrochemical changes are the mixing of waters and the subsequent reactions of dissolution-precipitation between (1) the recharge coming from rainwater, (2) the hypersaline inputs from the clay-evaporite aquitards situated on the edges and at the base of the aquifer, and (3) the water stored in each aquifer. The hydrochemical information acquired allowed us to characterize and model the groundwater of these aquifers, to study the causes of its great spatial and temporal variability, and explain the influence of exploitation. This research shows that making sustainable use of water resources associated with carbonate aquifers calls for sound knowledge of the relationship between the aquifer and other bodies of groundwater or surface water, the hydrochemical quality of these possible inputs, and the vulnerability of the aquifer to exploitation, which in turn is conditioned by the ratio between water reserves and recharge.

  2. Steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system

    Science.gov (United States)

    Brooks, Lynette E.; Masbruch, Melissa D.; Sweetkind, Donald S.; Buto, Susan G.

    2014-01-01

    This report describes the construction, calibration, evaluation, and results of a steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system that was developed as part of the U.S. Geological Survey National Water Census Initiative to evaluate the nation’s groundwater availability. The study area spans 110,000 square miles across five states. The numerical model uses MODFLOW-2005, and incorporates and tests complex hydrogeologic and hydrologic elements of a conceptual understanding of an interconnected groundwater system throughout the region, including mountains, basins, consolidated rocks, and basin fill. The level of discretization in this model has not been previously available throughout the study area.

  3. Carbon Sequestration in Saline Aquifers: Modeling Diffusive and Convective Transport Of a Carbon-­Dioxide Cap

    KAUST Repository

    Allen, Rebecca

    2011-05-01

    An increase in the earth’s surface temperature has been directly linked to the rise of carbon dioxide (CO2) levels In the atmosphere and an enhanced greenhouse effect. CO2 sequestration is one of the proposed mitigation Strategies in the effort to reduce atmospheric CO2 concentrations. Globally speaking, saline aquifers provide an adequate storage capacity for the world’s carbon emissions, and CO2 sequestration projects are currently underway in countries such as Norway, Germany, Japan, USA, and others. Numerical simulators serve as predictive tools for CO2 storage, yet must model fluid transport behavior while coupling different transport processes together accurately. With regards to CO2 sequestration, an extensive amount of research has been done on the diffusive-convective transport that occurs under a cap of CO2-saturated fluid, which results after CO2 is injected into an aquifer and spreads laterally under an area of low permeability. The diffusive-convective modeling reveals an enhanced storage capacity in saline aquifers, due to the density increase between pure fluid and CO2‐saturated fluid. This work presents the transport modeling equations that are used for diffusive- convective modeling. A cell-centered finite difference method is used, and simulations are run using MATLAB. Two cases are explored in order to compare the results from this work’s self-generated code with the results published in literature. Simulation results match relatively well, and the discrepancy for a delayed onset time of convective transport observed in this work is attributed to numerical artifacts. In fact, onset time in this work is directly attributed to the instability of the physical system: this instability arises from non-linear coupling of fluid flow, transport, and convection, but is triggered by numerical errors in these simulations. Results from this work enable the computation of a value for the numerical constant that appears in the onset time equation that

  4. Characterization of Organic Carbon and Its Bioavailability in Recharge Waters and Aquifer Sediments: Implications for Groundwater Arsenic Contamination in Bangladesh

    Science.gov (United States)

    Pracht, L. E.; Ardissono, R. J.; Polizzotto, M.; Badruzzaman, A. B. M.; Ali, M. A.; Paša-Tolić, L.; Neumann, R. B.

    2014-12-01

    Arsenic contamination of groundwater in Bangladesh affects millions of people, as groundwater is the primary source of both drinking and irrigation water in the country. The arsenic is of geologic origin, naturally-occurring in the aquifer sediment. However, the source of organic carbon that fuels the microbial reactions responsible for mobilizing arsenic off the sediment and into the groundwater has been debated for over a decade. The outstanding question is whether this organic carbon is sedimentary carbon that was co-deposited when the aquifers were formed, or surface-derived organic carbon transported into the subsurface along with recharge water. The answer to this question has implications for managing the contamination problem. Here we present results of recent laboratory incubations of aquifer sediment with recharge waters collected from our field site in Bangladesh. The incubations revealed a hitherto undocumented pool of biodegradable sedimentary organic carbon. Despite the carbon being old (thousands of years), it was rapidly utilized by the native microbial population. The results imply that within the aquifer this pool of sedimentary organic carbon is largely unavailable to the microbial community, but that chemical and/or physical perturbations to the subsurface, induced, for example, by large-scale groundwater pumping or microbial activity, could mobilize this bioavailable organic carbon off the sediment. Currently, we are using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and spectroscopic techniques to understand the initial character of the mobilized organic carbon in our incubation experiments, and to track how its composition changes over time as it is degraded by microbes. These efforts will help clarify the in situ processes that could destabilize the sedimentary organic carbon and identify the components that make the carbon biologically available. Collectively, our data suggest a possible role for both surface-derived and

  5. Isotopes as Tracers of Water Origin in and Near a Regional Carbonate Aquifer: The Southern Sacramento Mountains, New Mexico

    Directory of Open Access Journals (Sweden)

    Christopher J. Eastoe

    2014-01-01

    Full Text Available High-elevation groundwater sampled in 2003 in the Sacramento Mountains defines a line resembling an evaporation trend in δD-δ18O space. The trend results from recharge of winter precipitation into fractured limestone, with evaporation prior to recharge in broad mountain valleys. The same trend occurs in basin groundwater east and west of the range, indicating the high Sacramento Mountains as the principal regional water source, either direct from the limestone aquifers or from mountain-derived surface water. Tritium and carbon-14 indicate bulk residence times of a few decades in the high Sacramento Mountains and at Alamogordo, and of thousands of years south of Alamogordo and in the artesian aquifer near Artesia. Stable O, H isotope data fail to demonstrate the presence of Sacramento Mountains water in a saline aquifer of the Hueco Bolson (Texas.

  6. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    Science.gov (United States)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  7. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon.

    Science.gov (United States)

    Bortone, I; Di Nardo, A; Di Natale, M; Erto, A; Musmarra, D; Santonastaso, G F

    2013-09-15

    In this work, an array of deep passive wells filled with activated carbon, namely a Discontinuous Permeable Adsorptive Barrier (PAB-D), has been proposed for the remediation of an aquifer contaminated by tetrachloroethylene (PCE). The dynamics of the aquifer in the particular PAB-D configuration chosen, including the contaminant transport in the aquifer and the adsorption onto the barrier material, has been accurately performed by means of a computer code which allows describing all the phenomena occurring in the aquifer, simultaneously. A PAB-D design procedure is presented and the main dimensions of the barrier (number and position of passive wells) have been evaluated. Numerical simulations have been carried out over a long time span to follow the contaminant plume and to assess the effectiveness of the remediation method proposed. The model results show that this PAB-D design allows for a complete remediation of the aquifer under a natural hydraulic gradient, the PCE concentrations flowing out of the barrier being always lower than the corresponding Italian regulation limit. Finally, the results have been compared with those obtained for the design of a more traditional continuous barrier (PAB-C) for the same remediation process.

  8. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

    Science.gov (United States)

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-05-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.

  9. Selected Basin Characterization Model Parameters for the Great Basin Carbonate and Alluvial Aquifer System of Nevada, Utah, and Parts of Adjacent States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on ground-water resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  10. 1:1,000,000-scale hydrographic areas and flow systems for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a U.S. Geological Survey (USGS) study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer...

  11. Evapotranspiration units in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Accurate estimates of ground-water discharge are crucial in the development of a water budget for the Basin and Range Carbonate-rock Aquifer System (BARCAS) study...

  12. Three-dimensional hydrogeologic framework for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  13. 1:1,000,000-scale potentiometric contours and control points for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a U.S. Geological Survey (USGS) study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer...

  14. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    Science.gov (United States)

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

  15. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system

    Science.gov (United States)

    Choung, Sungwook; Zimmerman, Lisa R.; Allen-King, Richelle M.; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-01

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc = 0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen + black carbon was the dominant CM fraction extracted from the sediments and accounted for > 60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that > 80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration < 1000 μg L- 1. These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

  16. Residence time, mineralization processes and groundwater origin within a carbonate coastal aquifer with a thick unsaturated zone

    Science.gov (United States)

    Santoni, S.; Huneau, F.; Garel, E.; Vergnaud-Ayraud, V.; Labasque, T.; Aquilina, L.; Jaunat, J.; Celle-Jeanton, H.

    2016-09-01

    This study aims at establishing groundwater residence times, identifying mineralization processes and determining groundwater origins within a carbonate coastal aquifer with thick unsaturated zone and lying on a granitic depression. A multi-tracer approach (major ions, SiO2, Br-, Ba+, Sr2+, 18O, 2H, 13C, 3H, Ne, Ar) combined with a groundwater residence time determination using CFCs and SF6 allows defining the global setting of the study site. A typical mineralization conditioned by the sea sprays and the carbonate matrix helped to validate the groundwater weighted residence times from using a binary mixing model. Terrigenic SF6 excesses have been detected and quantified, which permits to identify a groundwater flow from the surrounding fractured granites towards the lower aquifer principally. The use of CFCs and SF6 as a first hydrogeological investigation tool is possible and very relevant despite the thick unsaturated zone and the hydraulic connexion with a granitic environment.

  17. Innovative environmental tracer techniques for evaluating sources of spring discharge from a carbonate aquifer bisected by a river.

    Science.gov (United States)

    Heilweil, Victor M; Sweetkind, Donald S; Gerner, Steven J

    2014-01-01

    Littlefield Springs discharge about 1.6 m³ /s along a 10-km reach of the Virgin River in northwestern Arizona. Understanding their source is important for salinity control in the Colorado River Basin. Environmental tracers suggest that Littlefield Springs are a mixture of older groundwater from the regional Great Basin carbonate aquifer and modern (post-1950s) seepage from the Virgin River. While corrected ¹⁴C apparent ages range from 1 to 9 ka, large amounts of nucleogenic ⁴He and low ³He/⁴He ratios suggest that the carbonate aquifer component is likely even older Pleistocene recharge. Modeled infiltration of precipitation, hydrogeologic cross sections, and hydraulic gradients all indicate recharge to the carbonate aquifer likely occurs in the Clover and Bull Valley Mountains along the northern part of the watershed, rather than in the nearby Virgin Mountains. This high-altitude recharge is supported by relatively cool noble-gas recharge temperatures and isotopically depleted δ²H and δ¹⁸O. Excess (crustal) SF₆ and ⁴He precluded dating of the modern component of water from Littlefield Springs using SF₆ and ³H/³He methods. Assuming a lumped-parameter model with a binary mixture of two piston-flow components, Cl⁻ /Br⁻, Cl⁻ /F⁻, δ²H, and CFCs indicate the mixture is about 60% Virgin River water and 40% groundwater from the carbonate aquifer, with an approximately 30-year groundwater travel time for Virgin River seepage to re-emerge at Littlefield Springs. This suggests that removal of high-salinity sources upstream of the Virgin River Gorge would reduce the salinity of water discharging from Littlefield Springs into the Virgin River within a few decades.

  18. Disposal of carbon dioxide in aquifers in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Winter, E.M.; Bergman, P.D.

    1995-11-01

    Deep saline aquifers were investigated as potential disposal sites for CO{sub 2}. The capacity of deep aquifers for CO{sub 2} disposal in the U.S. is highly uncertain. A rough estimate, derived from global estimates, is 5,500 Gt of CO{sub 2}. Saline aquifers underlie the regions in the U.S. where most utility power plants are situated. Therefore, approximately 65 percent of CO{sub 2} from power plants could possibly be injected directly into deep saline aquifers below these plants, without the need for long pipelines.

  19. Plume Migration of Different Carbon Dioxide Phases During Geological Storage in Deep Saline Aquifers

    Directory of Open Access Journals (Sweden)

    Chien-Hao Shen

    2015-01-01

    Full Text Available This study estimates the plume migration of mobile supercritical phase (flowing, aqueous phase (dissolved, and ionic phase CO2 (bicarbonate, and evaluates the spatial distribution of immobile supercritical phase (residual and mineral phase CO2 (carbonates when CO2 was sequestered. This utilized a simulation, in an anticline structure of a deep saline aquifer in the Tiechenshan (TCS field, Taiwan. All of the trapping mechanisms and different CO2 phases were studied using the fully coupled geochemical equation-of-state GEM compositional simulator. The mobile supercritical phase CO2 moved upward and then accumulated in the up-dip of the structure because of buoyancy. A large amount of immobile supercritical phase CO2 was formed at the rear of the moving plume where the imbibition process prevailed. Both the aqueous and ionic phase CO2 finally accumulated in the down-dip of the structure because of convection. The plume volume of aqueous phase CO2 was larger than that of the supercritical phase CO2, because the convection process increased vertical sweep efficiency. The up-dip of the structure was not the major location for mineralization, which is different from mobile supercritical phase CO2 accumulation.

  20. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    Science.gov (United States)

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  1. Methane and Dissolved Organic Carbon Sustain an Ecosystem within a Density Stratified Coastal Aquifer of the Yucatan Peninsula, Mexico. Evidence for a Subterranean Microbial Loop?

    Science.gov (United States)

    Brankovits, David; Pohlman, John W.; Niemann, Helge; Leigh, Mary Beth; Casso, Michael; Alvarez Noguera, Fernando; Lehmann, Moritz F.; Iliffe, Thomas M.

    2016-04-01

    In coastal karst terrains, anchialine caves that meander in density stratified aquifers provide an exceptional opportunity for scientists to study in situ biogeochemical processes within the groundwater. The Caribbean coast of Mexico's Yucatan Peninsula contains over 1000 km of mapped cave passages, the densest known accumulation of anchialine caves in the world. A decades-old study based on the simple observation of 13C-depleted biomass in the cave-adapted fauna suggested biogeochemical processes related to methane-linked carbon cycling and/or other chemoautotrophic pathways as a source of energy and carbon. In this study, we utilized cave diving and a novel sampling device (the Octopipi) to obtain cm-scale water column profiles of methane, DOC and DIC concentrations and stable carbon isotope ratios to identify the energy sources and microbial processes that sustain life in these subterranean estuaries. High concentrations (up to 9522 nM) low-δ13C (as low as -67.5 permil) methane near the ceiling of the cave (in the fresh water section of the stratified water column) and evidence for methane oxidation in the brackish water portion of the water column suggest methane availability and consumption. Profiles obtained by the Octopipi demonstrate that virtually all of the methane (˜99%) is oxidized at the interface of anoxic freshwater and hypoxic brackish water masses. The high-methane water mass near the ceiling also contained elevated concentrations of DOC (851 μM) that displayed comparatively high δ13C (-27.8 to -28.2 permil), suggesting terrestrial organic matter input from the overlying soils. Low-methane brackish and saline water was characterized by lower DOC concentration (15 to 97 μM), yet with similar δ13C (-25.9 to -27.2 permil), suggesting significant terrestrial organic matter consumption or removal with increasing depth, from fresh to saline water, within the water column. The presence of 13C-depleted fatty acids (e.g., C16:1ω7c with δ13C

  2. Groundwater quality in the Valley and Ridge and Piedmont and Blue Ridge carbonate-rock aquifers, eastern United States

    Science.gov (United States)

    Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Valley and Ridge and Piedmont and Blue Ridge carbonate-rock aquifers constitute two of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 15 percent of the study area and at moderate concentrations in about 17 percent. Organic constituents were not detected at high concentrations in the study area. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 2 percent of the study area.

  3. Dissolved Organic Carbon Influences Microbial Community Composition and Diversity in Managed Aquifer Recharge Systems

    KAUST Repository

    Li, D.

    2012-07-13

    This study explores microbial community structure in managed aquifer recharge (MAR) systems across both laboratory and field scales. Two field sites, the Taif River (Taif, Saudi Arabia) and South Platte River (Colorado), were selected as geographically distinct MAR systems. Samples derived from unsaturated riverbed, saturated-shallow-infiltration (depth, 1 to 2 cm), and intermediate-infiltration (depth, 10 to 50 cm) zones were collected. Complementary laboratory-scale sediment columns representing low (0.6 mg/liter) and moderate (5 mg/liter) dissolved organic carbon (DOC) concentrations were used to further query the influence of DOC and depth on microbial assemblages. Microbial density was positively correlated with the DOC concentration, while diversity was negatively correlated at both the laboratory and field scales. Microbial communities derived from analogous sampling zones in each river were not phylogenetically significantly different on phylum, class, genus, and species levels, as determined by 16S rRNA gene pyrosequencing, suggesting that geography and season exerted less sway than aqueous geochemical properties. When field-scale communities derived from the Taif and South Platte River sediments were grouped together, principal coordinate analysis revealed distinct clusters with regard to the three sample zones (unsaturated, shallow, and intermediate saturated) and, further, with respect to DOC concentration. An analogous trend as a function of depth and corresponding DOC loss was observed in column studies. Canonical correspondence analysis suggests that microbial classes Betaproteobacteria and Gammaproteobacteria are positively correlated with DOC concentration. Our combined analyses at both the laboratory and field scales suggest that DOC may exert a strong influence on microbial community composition and diversity in MAR saturated zones.

  4. Geostatistical Evaluation of Spring Water Quality in an Urbanizing Carbonate Aquifer

    Science.gov (United States)

    McGinty, A.; Welty, C.

    2003-04-01

    As part of an investigation of the impacts of urbanization on the hydrology and ecology of Valley Creek watershed near Philadelphia, Pennsylvania, we have analyzed the chemical composition of 110 springs to assess the relative influence of geology and anthropogenic activities on water quality. The 60 km^2 watershed is underlain by productive fractured rock aquifers composed of Cambrian and Ordovician carbonate rocks in the central valley and Cambrian crystalline and siliciclastic rocks (quartzite and phyllite) in the north and south hills that border the valley. All tributaries of the surface water system originate in the crystalline and siliciclastic hills. The watershed is covered by 17% impervious area and contains 6 major hazardous waste sites, one active quarrying operation and one golf course; 25% of the area utilizes septic systems for sewage disposal. We identified 172 springs, 110 of which had measurable flow rates ranging from 0.002 to 5 l/s. The mapped surficial geology appears as an anisotropic pattern, with long bands of rock formations paralleling the geographic orientation of the valley. Mapped development appears as a more isotropic pattern, characterized by isolated patches of land use that are not coincident with the evident geologic pattern. Superimposed upon these characteristics is a dense array of depressions and shallow sinkholes in the carbonate rocks, and a system of major faults at several formation contacts. We used indicator geostatistics to quantitatively characterize the spatial extent of the major geologic formations and patterns of land use. Maximum correlation scales for the rock types corresponded with strike direction and ranged from 1000 to 3000 m. Anisotropy ratios ranged from 2 to 4. Land-use correlation scales were generally smaller (200 to 500 m) with anisotropy ratios of around 1.2, i.e., nearly isotropic as predicted. Geostatistical analysis of spring water quality parameters related to geology (pH, specific conductance

  5. Assessing Connectivity Between an Overlying Aquifer and a Coal Seam Gas Resource Using Methane Isotopes, Dissolved Organic Carbon and Tritium

    Science.gov (United States)

    Iverach, Charlotte P.; Cendón, Dioni I.; Hankin, Stuart I.; Lowry, David; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.; Baker, Andy; Kelly, Bryce F. J.

    2015-11-01

    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity.

  6. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers

    Science.gov (United States)

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; Mazo D'Affonseca, Fernando

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (> 1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  7. The effect of heterogeneity identifying the leakage of carbon dioxide in a shallow aquifer: an experimental study

    Science.gov (United States)

    Ha, S. W.; Lee, S. H.; Jeon, W. T.; Joo, Y. J.; Lee, K. K.

    2014-12-01

    Carbon dioxide (CO2) leakage into the shallow aquifer is one of the main concerns at a CO2 sequestration site. Various hydrogeochemical parameters have been suggested to determine the leakage (i.e., pH, EC, Alkalinity, Ca and δ13C). For the practical point of view, direct and continuous measurement of the dissolved CO2 concentration at the proper location can be the most useful strategy for the CO2 leakage detection in a shallow aquifer. In order to enhance possibility of identifying leaked CO2, monitoring location should be determined with regard to the shallow aquifer heterogeneity. In this study, a series of experiments were conducted to investigate the effects of heterogeneity on the dissolved CO2 concentrations. A 2-D sand tank of homogeneous medium sands including a single heterogeneity layer was designed. Two NDIR CO2 sensors, modified for continuous measuring in aquatic system, were installed above and below the single heterogeneous layer (clay, fine and medium sand lenses). Also, temperature and water contents were measured continuously at a same position. Bromocresol purple which is one of the acid-base indicator was used to visualize CO2 migration. During the gas phase CO2 injection at the bottom of the sand tank, dissolved CO2 in the water is continuously measured. In the results, significant differences of concentrations were observed due to the presence of heterogeneity layer, even the locations were close. These results suggested that monitoring location should be determined considering vertical heterogeneity of shallow aquifer at a CO2 leakage site.

  8. Impact of background flow on dissolution trapping of carbon dioxide injected into saline aquifers

    CERN Document Server

    Rapaka, Saikiran

    2011-01-01

    While there has been a large interest in studying the role of dissolution-driven free convection in the context of geological sequestration, the contribution of forced convection has been largely ignored. This manuscript considers CO$_2$ sequestration in saline aquifers with natural background flow and uses theoretical arguments to compute the critical background velocity needed to establish the forced convective regime. The theoretical arguments are supported by two dimensional high-resolution numerical simulations which demonstrate the importance of forced convection in enhancing dissolution in aquifers characterised by low Rayleigh numbers.

  9. Diversity and geochemical structuring of bacterial communities along a salinity gradient in a carbonate aquifer subject to seawater intrusion.

    Science.gov (United States)

    Héry, Marina; Volant, Aurélie; Garing, Charlotte; Luquot, Linda; Elbaz Poulichet, Françoise; Gouze, Philippe

    2014-12-01

    In aquifers subject to saline water intrusion, the mixing zone between freshwater and saltwater displays strong physico-chemical gradients. Although the microbial component of these specific environments has been largely disregarded, the contribution of micro-organisms to biogeochemical reactions impacting water geochemistry has previously been conjectured. The objective of this study was to characterize and compare bacterial community diversity and composition along a vertical saline gradient in a carbonate coastal aquifer using high throughput sequencing of 16S rRNA genes. At different depths of the mixing zone, stable geochemical and hydrological conditions were associated with autochthonous bacterial communities harboring clearly distinct structures. Diversity pattern did not follow the salinity gradient, although multivariate analysis indicated that salinity was one of the major drivers of bacterial community composition, with organic carbon, pH and CO2 partial pressure. Correlation analyses between the relative abundance of bacterial taxa and geochemical parameters suggested that rare taxa may contribute to biogeochemical processes taking place at the interface between freshwater and saltwater. Bacterial respiration or alternative metabolisms such as sulfide oxidation or organic acids production may be responsible for the acidification and the resulting induced calcite dissolution observed at a specific depth of the mixing zone.

  10. Identifying microbial carbon sources during ethanol and toluene biodegradation in a pilot-scale experimental aquifer system using isotopic analysis

    Science.gov (United States)

    Clay, S.; McLeod, H.; Smith, J. E.; Roy, J. W.; Slater, G. F.

    2013-12-01

    Combining ethanol with gasoline has become increasingly common in order to create more environmentally conscience transportation fuels. These blended fuels are favourable alternatives since ethanol is a non-toxic and highly labile renewable biomass-based resource which is an effective fuel oxygenate that reduces air pollution. Recent research however, has indicated that upon accidental release into groundwater systems, the preferential microbial metabolism of ethanol can cause progressively reducing conditions leading to slower biodegradation of petroleum hydrocarbons. Therefore, the presence of ethanol can result in greater persistence of BTEX compounds and longer hydrocarbon plumes in groundwater systems. Microbial biodegradation and community carbon sources coupled to aqueous geochemistry were monitored in a pilot-scale laboratory tank (80cm x 525cm x 175cm) simulating an unconfined sand aquifer. Dissolved ethanol and toluene were continuously injected into the aquifer at a controlled rate over 330 days. Carbon isotope analyses were performed on phospholipid fatty acid (PLFA) samples collected from 4 different locations along the aquifer. Initial stable carbon isotope values measured over days 160-185 in the bacterial PLFA ranged from δ13C = -10 to -21‰, which is indicative of dominant ethanol incorporation by the micro-organisms based on the isotopic signature of ethanol derived from corn, a C4 plant. A negative shift to δ13C = -10 to -30‰ observed over days 185-200, suggests a change in microbial metabolisms associated with less ethanol incorporation. This generally corresponds to a decrease in ethanol concentrations from day 40 to full attenuation at approximately day 160, and the onset of toluene depletion observed on day 120 and continuing thereafter. In addition, aqueous methane concentrations first detected on day 115 continued to rise to 0.38-0.70 mmol/L at all monitoring locations, demonstrating a significant redox shift to low energy methanogenic

  11. Microbial and geochemical investigations of dissolved organic carbon and microbial ecology of native waters from the Biscayne and Upper Floridan Aquifers

    Science.gov (United States)

    Lisle, John T.; Harvey, Ron W.; Aiken, George R.; Metge, David W.

    2010-01-01

    Groundwater resources in the United States are under ever-increasing demands for potable, irrigation, and recreational uses. Additionally, aquifer systems are being used or targeted for use as storage areas for treated surface waters and (or) groundwaters via injection (for example, aquifer storage and recovery). To date, the influence that the nutrients, including carbon, in the injected water have on native microbial communities and the biogeochemistry in the subsurface zones used for storage of the injectate has not been determined. In this report, we describe a series of experiments that establishes a baseline dataset for the quantity and quality of organic and inorganic carbon and nutrients in the Biscayne Aquifer (BA) and Upper Floridan Aquifer (UFA) in south Florida. The most significant differences between the BA (26 meters below surface) and UFA (366 meters below surface) are the average specific conductance (0.552 and 6.12 microsiemens per centimeter, respectively), dissolved oxygen (1.6 and 0 milligrams per liter, respectively), and oxidation-reduction potential (40.3 and -358 millivolts, respectively). The dissolved organic carbon from the BA is characterized by carbon originating from terrestrial sources and microbial activities, while the UFA has a distinctive microbial signature. Acetate and lactate are the dominant carbon constituents in both aquifers. Additionally, components of the dissolved organic carbon from the UFA have a total trihalomethane-formation potential that is approximately threefold greater than the maximum contaminat level of 80 micrograms per liter established by the U.S. Environmental Protection Agency. The average native bacterial abundances in the aquifers are similar with 4.69x10^4 cells per milliliter in the BA and 1.33x10^4 cells per milliliter in the UFA. The average bacteriophage abundances are also similar with 1.15x10^5 virus-like particles in the BA and 1.92x10^5 virus-like particles in the UFA. Interestingly, ciliated

  12. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations

    KAUST Repository

    Li, Dong

    2013-05-01

    This study investigates the evolution of the microbial community in laboratory-scale soil columns simulating the infiltration zone of managed aquifer recharge (MAR) systems and analogous natural aquifer sediment ecosystems. Parallel systems were supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment-associated microbial community structure were analyzed. Total microbial biomass associated with sediments was positively correlated with BDOC concentration where a significant decline in BDOC was observed along the column length. Analysis of 16S rRNA genes indicated dominance by Bacteria with Archaea comprising less than 1 percent of the total community. Proteobacteria was found to be the major phylum in samples from all column depths with contributions from Betaproteobacteria, Alphaproteobacteria and Gammaproteobacteria. Microbial community structure at all the phylum, class and genus levels differed significantly at 1 cm between columns receiving moderate and low BDOC concentrations; in contrast strong similarities were observed both between parallel column systems and across samples from 30 to 120 cm depths. Samples from 1 cm depth of the low BDOC columns exhibited higher microbial diversity (expressed as Shannon Index) than those at 1 cm of moderate BDOC columns, and both increased from 5.4 to 5.9 at 1 cm depth to 6.7-8.3 at 30-120 cm depths. The microbial community structure reached steady state after 3-4 months since the initiation of the experiment, which also resulted in an improved DOC removal during the same time period. This study suggested that BDOC could significantly influence microbial community structure regarding both composition and diversity of artificial MAR systems and analogous natural aquifer sediment ecosystems. © 2013 Elsevier Ltd.

  13. Carbon, metals and grain size correlate with bacterial community composition in sediments of a high arsenic aquifer

    Directory of Open Access Journals (Sweden)

    Teresa eLegg

    2012-03-01

    Full Text Available Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As. This has globally important implications since As toxicity in drinking water affects the health of millions of people worldwide, including in the Ganges-Brahmaputra Delta region of Bangladesh where geogenic groundwater arsenic concentrations can be more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across environmental gradients in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flowpath, at a range of depths between 1.5 and 15 m. We identified significant shifts in bacterial community composition along the groundwater flowpath in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C, manganese (Mn, and iron (Fe concentrations. Deltaproteobacteria and Chloroflexi were more abundant in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were more abundant in sediments with higher concentrations of sand and Si, and lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance- reducers in the high C and metal sediments. It is well-documented that C, Mn and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community.

  14. Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: Natural sources versus human pollution

    Science.gov (United States)

    Kreitler, Charles W.; Browning, Lawrence A.

    1983-02-01

    Results of nitrogen-isotope analyses of nitrate in the waters of the Cretaceous Edwards aquifer in Texas, U.S.A., indicate that the source of the nitrate is naturally-occurring nitrogen compounds in the recharge streams. In contrast, nitrogen isotopes of nitrate in the fresh waters of the Pleistocene Ironshore Formation on Grand Cayman Island, West Indies, indicate that human wastes are the source of the nitrate. The Cretaceous Edwards Limestone is a prolific aquifer that produces principally from fracture porosity along the Balcones Fault Zone. Recharge is primarily by streams crossing the fault zone. Rainfall is ˜ 70 cm yr. -1, and the water table is generally deeper than 30 m below land surface. The δ15 N of 73 samples of nitrate from Edwards waters ranged from + 1.9 to + 10‰ with an average of + 6.2‰. This δ15 N range is within the range of nitrate in surface water in the recharge streams ( δ 15N range = + 1 to + 8.3‰ ) and within the range of nitrate in surface water from the Colorado River, Texas, ( δ 15N range = + 1 to + 11‰ ). No sample was found to be enriched in 15N, which would suggest the presence of nitrate from animal waste ( δ 15N range = + 10 to + 22‰ ). The Ironshore Formation contains a small freshwater lens that is recharged entirely by percolation through the soil. Average rainfall is 165 cm yr. -1, and the water table is within 3 m of land surface. The δ15 N of four nitrate samples from water samples of the Ironshore Formation ranged from + 18 to + 23.9‰, which indicates a cesspool/septictank source of the nitrate. Limestone aquifers in humid environments that are recharged by percolation through the soil appear to be more susceptible to contamination by septic tanks than are aquifers in subhumid environments that feature thick unsaturated sections and are recharged by streams.

  15. CO2-SO3-rich (carbonate-sulfate) melt/fluids in the lithosphere beneath El Hierro, Canary Islands.

    Science.gov (United States)

    Oglialoro, E.; Ferrando, S.; Malaspina, N.; Villa, I. M.; Frezzotti, M. L.

    2015-12-01

    Mantle xenoliths from the island of El Hierro, the youngest of the Canary Islands, have been studied to characterize fluxes of carbon in the lithosphere of an OIB volcanism region. Fifteen xenoliths (4-10 cm in diameter) were collected in a rift lava flow (15-41 ka) at a new xenolith locality in El Julan cliff (S-SW of the island). Peridotites consist of protogranular to porphyroblastic spinel harzburgites, lherzolites, and subordinate dunites. One spinel clinopyroxenite, and one olivine-websterite were also analyzed. Ultramafic xenoliths were classified as HEXO (harzburgite and dunite with exsolved orthopyroxene), HLCO (harzburgite and lherzolite containing orthopyroxene without visible exsolution lamellae), and HTR (transitional harzburgite with exsolved orthopyroxene porphyroclasts, and poikilitic orthopyroxene) following [1]. While HLCO and HTR peridotites contain mostly CO2 fluid inclusions, HEXO peridotites preserve an early association of melt/fluid inclusions containing dominantly carbonate/sulfate/silicate glass, evolving to carbonate/sulfate/phosphate/spinel aggregates, with exsolved CO2 (± carbonates, anhydrite and H2O). Chemical and Raman analyses identify dolomite, Mg-calcite, anhydrite, sulfohalite [Na6(SO4)2FCl] (± other anhydrous and hydrous alkali-sulfates), apatite, and Cr-spinel in the inclusions. Sulfides are noticeably absent. The microstructure and chemical composition of the metasomatic fluids indicate that the peridotites were infiltrated by a carbonate-sulfate-silicate melt/fluid enriched in CO2, H2O, and P. A mantle origin for this fluid is supported by high densities of CO2inclusions (> 1g/cm3), determined by Raman microspectroscopy and cross-checked by microthermometry. Consequently, El Julan peridotites provide the first evidence for liberating oxidized C and S fluxes from the Earth lithosphere in an OIB source region, and suggest that oxidation of sulfide to sulfate can occur during small-degree partial melting of the upper mantle

  16. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    Science.gov (United States)

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values.

  17. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA

    Science.gov (United States)

    Plummer, Niel; Sprinkle, Craig

    2001-03-01

    Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in δ18O of approximately 2.0‰. Résumé. Les modèles de réactions géochimiques ont été évalués afin de tester la datation par le radiocarbone du carbone minéral dissous (CMD) des eaux souterraines dans les parties captives de la nappe supérieure de Floride, en Floride centrale et nord-orientale (États-Unis). Les réactions géochimiques prédominantes affectant l'activité en 14C du CMD comprennent (1) la dissolution de la dolomite et de l'anhydrite accompagnée de la précipitation de la calcite (d

  18. Assessing diffuse and concentrated recharge in average and dry rainfall year in a semiarid carbonate sloping aquifer a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Alcala, F. J.; Were, A.; Serrano-Ortiz, P.; Canton, Y.; Sole, A.; Villagarcia, L.; Contreras, S.; Kowalski, A. S.; Marrero, R.; Puigdefabregas, J.; Domingo, F.

    2009-07-01

    The chloride mass balance (CMB) method was applied in the unsaturated zone to estimate potential recharge (R{sub t}) rainfall in two small catchment of southern mid-to-high slope of Sierra de Gador carbonate aquifer (SE Spain) , in the average hydrological year 2003-04 and the unusually dry 2004-05. Unknown fractions of diffuse (R{sub D}) and concentrated recharge (R{sub c}) into R{sub t} were firstly evaluated to fit average and lower R{sub T} thresholds for modeling further long-term recharge. Daily rainfall and actual evapotranspiration (AET) from the Eddy Covariance (EC) technique provided yearly R{sub T} of 189 mm year{sup -}1 in 2003-04 and 8 mm year{sup -}1 in 2004-05.

  19. Analysis of Responses From Hydraulic Testing of the Lower Carbonate Aquifer at Yucca Flat, Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Bhark, E. W.; Ruskauff, G.

    2005-12-01

    The Yucca Flat corrective action unit extends over an approximately 120 square-mile basin at the Nevada Test Site (NTS), southern Nevada, and was the site for over 650 historical underground nuclear tests. The lower carbonate aquifer (LCA), roughly 1,800 feet below ground surface at Yucca Flat and with a confined thickness of several thousand feet, is the primary aquifer for much of southern Nevada and underlies the full extent of Yucca Flat. Within the last decade, long-term (multiple-day) single- and multiple-well hydraulic tests have been performed to better define aquifer properties over larger scales. The LCA is highly heterogeneous, both laterally and vertically across Yucca Flat, reflecting differences in fracturing and fault density. As such, analysis of the recent testing data requires the consideration of heterogeneous hydraulic properties at multiple spatial scales. Three individual hydraulic tests are presented that portray the marked spatial variability of hydraulic properties related to both local fracturing and basin-scale faulting across Yucca Flat. Two ten-day single-well tests (wells ER-7-1, ER-6-2) and one ninety-day multiple-well test (well cluster ER-6-1) are considered. Interpretive and numerical analyses are based upon the log-log diagnostic plots of drawdown and recovery from pumping, utilizing both the head change and derivative. Heterogeneity is considered using the flow dimension, which represents a variable formation area of flow away from the well, and proves to be a fundamental analytical tool. All hydraulic parameter estimates, including flow dimension, are complete with a measure of uncertainty. The composite interpretation of all data results in a conceptual flow model representative of two spatially continuous scales. At the larger basin (km) scale, the data indicate a fracture- or high permeability strip-dominated flow regime created by fault-related features. Ubiquitous north-south trending faults throughout Yucca Flat appear to

  20. HADES : A Mission Concept for the Identification of New Saline Aquifer Sites Suitable for Carbon Capture & Storage (CCS)

    Science.gov (United States)

    Pechorro, Ed; Lecuyot, Arnaud; Bacon, Andrew; Chalkley, Simon; Milnes, Martin; Williams, Ivan; Williams, Stuart; Muthu, Kavitha

    2014-05-01

    The Hidden Aquifer & Deep Earth Sounder (HADES) is a ground penetrating radar mission concept for identifying new saline aquifer sites suitable for Carbon Capture & Storage (CCS). HADES uses a newly proposed type of Earth Observation technique, previously deployed in Mars orbit to search for water. It has been proposed to globally map the sub-surface layers of Earth's land area down to a maximum depth of 3km to detect underground aquifers of suitable depth and geophysical conditions for CCS. We present the mission concept together with the approach and findings of the project from which the concept has arisen, a European Space Agency (ESA) study on "Future Earth Observation Missions & Techniques for the Energy Sector" performed by a consortium of partners comprising CGI and SEA. The study aims to improve and increase the current and future application of Earth Observation in provision of data and services to directly address long term energy sector needs for a de-carbonised economy. This is part of ESA's cross-agency "Space and Energy" initiative. The HADES mission concept is defined by our specification of (i) mission requirements, reflecting the challenges and opportunities with identifying CCS sites from space, (ii) the observation technique, derived from ground penetrating radar, and (iii) the preliminary system concept, including specification of the resulting satellite, ground and launch segments. Activities have also included a cost-benefit analysis of the mission, a defined route to technology maturation, and a preliminary strategic plan towards proposed implementation. Moreover, the mission concept maps to a stakeholder analysis forming the initial part of the study. Its method has been to first identify the user needs specific to the energy sector in the global transition towards a de-carbonised economy. This activity revealed the energy sector requirements geared to the identification of suitable CCS sites. Subsequently, a qualitative and quantitative

  1. Reactive Transport Modeling of the Enhancement of Density-Driven CO2 Convective Mixing in Carbonate Aquifers and its Potential Implication on Geological Carbon Sequestration.

    Science.gov (United States)

    Islam, Akand; Sun, Alexander Y; Yang, Changbing

    2016-01-01

    We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration.

  2. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale

    Science.gov (United States)

    Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander

    2016-04-01

    Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.

  3. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 1. Sulfate from confining beds as an oxidant in microbial CO2 production

    Science.gov (United States)

    Chapelle, F.H.; McMahon, P.B.

    1991-01-01

    A primary source of dissolved inorganic carbon (DIC) in the Black Creek aquifer of South Carolina is carbon dioxide produced by microbially mediated oxidation of sedimentary organic matter. Groundwater chemistry data indicate, however, that the available mass of inorganic electron acceptors (oxygen, Fe(III), and sulfate) and observed methane production is inadequate to account for observed CO2 production. Although sulfate concentrations are low (approximately 0.05-0.10 mM) in aquifer water throughout the flow system, sulfate concentrations are greater in confining-bed pore water (0.4-20 mM). The distribution of culturable sulfate-reducing bacteria in these sediments suggests that this concentration gradient is maintained by greater sulfate-reducing activity in sands than in clays. Calculations based on Fick's Law indicate that possible rates of sulfate diffusion to aquifer sediments are sufficient to explain observed rates of CO2 production (about 10-5 mmoll-1 year-1), thus eliminating the apparent electron-acceptor deficit. Furthermore, concentrations of dissolved hydrogen in aquifer water are in the range characteristic of sulfate reduction (2-6 nM), which provides independent evidence that sulfate reduction is the predominant terminal electron-accepting process in this system. The observed accumulation of pyrite- and calcite-cemented sandstones at sand-clay interfaces is direct physical evidence that these processes have been continuing over the history of these sediments. ?? 1991.

  4. Hydrology of the Poverty Bay flats aquifers, New Zealand: recharge mechanisms, evolution of the isotopic composition of dissolved inorganic carbon, and ground-water ages

    Science.gov (United States)

    Taylor, C. B.

    1994-06-01

    With the exception of water-bearing remnants of earlier fluvial gravels overlying basement, the sediments of the Poverty Bay flats have accumulated during the postglacial period of the past 14 000 years, and have been tilted and deformed by recent tectonism. A sequence of gravel aquifers, separated by poorly permeable silt layers, lies between surface and basement, which is at depths varying between 50 and 200 m. A shallow sand/silt aquifer is situated near the coast. This study applies evidence of chemical and isotopic properties of river and ground water to clarify the recharge mechanisms, chemical evolution and age of the ground water in the aquifers. Particular attention is paid to the evolution of dissolved inorganic carbon content, applying carbon-14 data measured by accelerator mass spectrometry. Most of the ground water is recharged from the Waipaoa River, which flows across the flats and discharges into Poverty Bay. The two deepest aquifers (Matokitoki and Makauri) are both tritium-free; the deeper Matokitoki Gravels yield water of age about 4300 years since recharge (possibly up to 1300 years greater), but the Makauri water is no older than 100-200 years, discharging slowly through overlying aquitards near the limit of closest approach to the present coast.

  5. Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: Evidence for episodic diamond formation beneath the Siberian Craton

    Science.gov (United States)

    Wiggers de Vries, D. F.; Bulanova, G. P.; De Corte, K.; Pearson, D. G.; Craven, J. A.; Davies, G. R.

    2013-01-01

    The internal structure and growth history of six macro-diamonds from kimberlite pipes in Yakutia (Russia) were investigated with cathodoluminescence imaging and coupled carbon isotope and nitrogen abundance analyses along detailed core to rim traverses. The diamonds are characterised by octahedral zonation with layer-by-layer growth. High spatial resolution SIMS profiles establish that there is no exchange of the carbon isotope composition across growth boundaries at the μm scale and that isotopic variations observed between (sub)zones within the diamonds are primary. The macro-diamonds have δ13C values that vary within 2‰ of -5.3‰ and their nitrogen contents range between 0-1334 at. ppm. There are markedly different nitrogen aggregation states between major growth zones within individual diamonds that demonstrate Yakutian diamonds grew in multiple growth events. Growth intervals were punctuated by stages of dissolution now associated with <10 μm wide zones of nitrogen absent type II diamond. Across these resorption interfaces carbon isotope ratios and nitrogen contents record shifts between 0.5-2.3‰ and up to 407 at. ppm, respectively. Co-variation in δ13C value-nitrogen content suggests that parts of individual diamonds precipitated in a Rayleigh process from either oxidised or reduced fluids/melts, with two single diamonds showing evidence of both fluid types. Modelling the co-variation establishes that nitrogen is a compatible element in diamond relative to its growth medium and that the nitrogen partition coefficient is different between oxidised (3-4.1) and reduced (3) sources. The reduced sources have δ13C values between -7.3‰ and -4.6‰, while the oxidised sources have higher δ13C values between -5.8‰ and -1.8‰ (if grown from carbonatitic media) or between -3.8‰ and +0.2‰ (if grown from CO2-rich media). It is therefore concluded that individual Yakutian diamonds originate from distinct fluids/melts of variable compositions. The

  6. 1:1,000,000-scale estimated outer extent of areas of groundwater discharge as evapotranspiration for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  7. Hydrogeologic and geospatial data for the assesment of focused recharge to the Carbonate-Rock Aquifer in Genesee County, New York

    Science.gov (United States)

    Reddy, James E.; Kappel, William M.

    2010-01-01

    Existing hydrogeologic and geospatial data useful for the assessment of focused recharge to the carbonate-rock aquifer in the central part of Genesee County, NY, were compiled from numerous local, State, and Federal agency sources. Data sources utilized in this pilot study include available geospatial datasets from Federal and State agencies, interviews with local highway departments and the Genesee County Soil and Water Conservation District, and an initial assessment of karst features through the analysis of ortho-photographs, with minimal field verification. The compiled information is presented in a series of county-wide and quadrangle maps. The county-wide maps present generalized hydrogeologic conditions including distribution of geologic units, major faults, and karst features, and bedrock-surface and water-table configurations. Ten sets of quadrangle maps of the area that overlies the carbonate-rock aquifer present more detailed and additional information including distribution of bedrock outcrops, thin and (or) permeable soils, and karst features such as sinkholes and swallets. Water-resource managers can utilize the information summarized in this report as a guide to their assessment of focused recharge to, and the potential for surface contaminants to reach the carbonate-rock aquifer.

  8. Localized sulfate-reducing zones in a coastal plain aquifer

    Science.gov (United States)

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  9. Potential methane reservoirs beneath Antarctica.

    Science.gov (United States)

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H

    2012-08-30

    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.

  10. PRINCIPLES OF TREATING UNCONSOLIDATED AQUIFERS AND AN ENGINEERING INSTANCE

    Institute of Scientific and Technical Information of China (English)

    SHENBaohong; GENGDeyong; XUYanchunt; LIANGHuaiqin; YUCaiying; LIChengming; RUIPin

    1995-01-01

    Based on practical experience of coal mining beneath water bodies, unconsolidated aquifers are divided into 5 types with Fuzzy theory. A suitable treatment method for each type of water body is given. An engineering instance is introduced.

  11. The Role of Dissolved Organic Carbon and Preadaptation in the Biotransformation of Trace Organic Chemicals during Aquifer Recharge and Recovery

    KAUST Repository

    Ouf, Mohamed

    2012-05-01

    Aquifer recharge and recovery (ARR) is a low-cost and environmentally-friendly treatment technology which uses conventionally treated wastewater effluent for groundwater recharge and subsequent recovery for agricultural, industrial or drinking water uses. This study investigated the effect of different dissolved organic carbon (DOC) composition in wastewater effluent on the fate of trace organic chemicals (TOrCs) during ARR. Four biologically active columns were setup receiving synthetic wastewater effluent with varying DOC compositions. The difference in DOC composition triggered variations in the microbial community’s diversity and hence its ability to degrade TOrCs. It was found that the presence of protein-like DOC enhances the removal of DOC in comparison with the presence of humic-like DOC. On the other hand, the presence of humic-like DOC, which is more difficult to degrade, improved the removal of several degradable TOrCs. Other column experiments were also carried out to investigate the role of previous and continuous exposure to TOrCs in their removal. The use of soil pre-exposed to low concentrations of TOrCs and DOC provided better removal of both DOC and TOrCs. The findings of this study suggest that the presence of more humic-like DOC in the effluent enhances the biotransformation of TOrCs during ARR. In addition, long exposure to both DOC and TOrCs increases the degree of their removal over time

  12. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  13. U-isotopes and (226)Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas.

    Science.gov (United States)

    Guerrero, José Luis; Vallejos, Ángela; Cerón, Juan Carlos; Sánchez-Martos, Francisco; Pulido-Bosch, Antonio; Bolívar, Juan Pedro

    2016-07-01

    Sierra de Gádor is a karst macrosystem with a highly complex geometry, located in southeastern Spain. In this arid environment, the main economic activities, agriculture and tourism, are supported by water resources from the Sierra de Gádor aquifer system. The aim of this work was to study the levels and behaviour of some of the most significant natural radionuclides in order to improve the knowledge of the hydrogeochemical processes involved in this groundwater system. For this study, 28 groundwater and 7 surface water samples were collected, and the activity concentrations of the natural U-isotopes ((238)U, (235)U and (234)U) and (226)Ra by alpha spectrometry were determined. The activity concentration of (238)U presented a large variation from around 1.1 to 65 mBq L(-1). Elevated groundwater U concentrations were the result of oxidising conditions that likely promoted U dissolution. The PHREEQC modelling code showed that dissolved U mainly existed as uranyl carbonate complexes. The (234)U/(238)U activity ratios were higher than unity for all samples (1.1-3.8). Additionally, these ratios were in greater disequilibrium in groundwater than surface water samples, the likely result of greater water-rock contact time. (226)Ra presented a wide range of activity concentrations, (0.8 up to about 4 × 10(2) mBq L(-1)); greatest concentrations were detected in the thermal area of Alhama. Most of the samples showed (226)Ra/(234)U activity ratios lower than unity (median = 0.3), likely the result of the greater mobility of U than Ra in the aquifer system. The natural U-isotopes concentrations were strongly correlated with dissolution of sulphate evaporites (mainly gypsum). (226)Ra had a more complex behaviour, showing a strong correlation with water salinity, which was particularly evident in locations where thermal anomalies were detected. The most saline samples showed the lowest (234)U/(238)U activity ratios, probably due to fast uniform bulk mineral dissolution

  14. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  15. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  16. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria)

    Science.gov (United States)

    Bauer, H.; Schröckenfuchs, T. C.; Decker, K.

    2016-08-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria's capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

  17. Role of the bottom sediments immediately beneath the lake water-groundwater interface in the transport and removal of cyanobacteria, cyanophage, and dissolved organic carbon during natural lake-bank filtration at a kettle pond subject to harmful algal blooms

    Science.gov (United States)

    Harvey, R. W.; Metge, D. W.; LeBlanc, D. R.; Underwood, J. C.; Aiken, G.; McCobb, T. D.; Jasperse, J.

    2015-12-01

    Bank filtration has proven to be a sustainable, cost-effective method of removing cyanobacteria and their harmful toxins from surface water during filtration through bottom and aquifer sediments. The biologically active layer of sediments immediately beneath the sediment-water interface (colmation layer) is believed to be particularly important in this process. An in situ experiment was conducted that involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophages, 110 nm long), MS2 (coliphages, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The constituents were monitored as they advected through the colmation layer and underlying aquifer sediments at Ashumet Pond in Cape Cod, MA, a mesotrophic kettle pond that recharges a portion of a sole-source, drinking water aquifer. Because the pond DOC includes the various cyanotoxins produced during harmful algal bloom senescence, the DOC and aforementioned colloids were tracked concomitantly. The tracer test constituents were monitored as they advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-points samplers placed at ~30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ~42% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d-1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by 3 orders of magnitude) at removing microspheres than was the

  18. Correlation of Benzene, 1,1,1-Trichloroethane, and Naphthalene Distribution Coefficients to the Characteristics of Aquifer Materials With Low Organic Carbon Content

    DEFF Research Database (Denmark)

    Larsen, Thomas; Kjeldsen, Peter; Christensen, Thomas Højlund

    1992-01-01

    area of the aquifer materials as a second regression parameter did not significantly improve the correlation. Estimated Koc values were up to 3 times higher than those predicted from regression equations based on the octanol-water partition coefficient. The reason for this is not known, but may...... by the distribution coefficient, Kd, since the isotherms were linear: Kd(benzene): 0.05–0.65, Kd(TCA): 0.04–0.55, and Kd(naphthalene): 0.1–15.7 ml/g. Correlating observed Kd values to the organic carbon content of the aquifer materials explained only 52–65 % of the variance in Kd. Introducing the specific surface...

  19. Water quality assessment of carbonate aquifers in southern Latium region, Central Italy: a case study for irrigation and drinking purposes

    Science.gov (United States)

    Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia

    2014-06-01

    In southern Latium region, Central Italy, groundwater and spring water resources in the carbonate aquifers are the major contributors of drinking and irrigation water supply. The aim of this study was to review hydrochemical processes that control the groundwater chemistry and to determine the suitability of springs and groundwater for irrigation and drinking purposes on the basis of the water quality indices. Physical (pH, electrical conductivity, total dissolved solids) and hydrochemical characteristics (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, and SO4 -) of springs and groundwater were determined. To assess the water quality, chemical parameters like sodium adsorption ratio (SAR), total hardness, Mg-hazard (MH), sodium percentage (Na %), salinity hazard, permeability index, and Kelly's ratio were calculated based on the analytical results. A Durov diagram plot revealed that the groundwater has been evolved from Ca to HCO3 recharge water, followed by mixing and reverse ion exchange processes, due to the respective dominance of Na-Cl and Ca-Cl water types. According to Gibbs's diagram plots, chemical weathering of rock forming minerals is the major driving force controlling water chemistry in this area. Groundwater and spring samples were grouped into six categories according to irrigation water quality assessment diagram of US Salinity Laboratory classification and most of the water samples distributed in category C2-S1 and C3-S1 highlighting medium to high salinity hazard and low sodium content class. The results of hydrochemical analyses and the calculated water quality parameters suggest that most of the water samples are suitable for irrigation and drinking purposes, except for the samples influenced by seawater and enhanced water-rock interaction. High values of salinity, Na %, SAR, and MH at certain sites, restrict the suitability for agricultural uses.

  20. Influence of Carbon and Microbial Community Priming on the Attenuation of Uranium in a Contaminated Floodplain Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, Paula J.; N' Guessan, A. Lucie; Qafoku, Nikolla; Sinha, M.; Williams, K. H.; Dangelmayr, M.; Resch, Charles T.; Peacock, Aaron D.; Wang, Zheming; Figueroa, Linda A.; Long, P. E.

    2015-07-01

    The capacity for subsurface sediments to sequester metal contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to site stewardship. Sediments enriched in natural organic matter are capable of sequestering significant quantities of U, but may also serve as sources to the aquifer, contributing to plume persistence. Two types of sediments were compared to better understand the mechanisms contributing to the sequestration and release of U in the presence of organic matter. Artificially bioreduced sediments were retrieved from a field experimental plot previously stimulated with acetate while naturally bioreduced sediments were collected from a location enriched in organic matter but never subject to acetate amendment. Batch incubations demonstrated that the artificially bioreduced sediments were primed to rapidly remove uranium from the groundwater whereas naturally bioreduced sediments initially released a sizeable portion of sediment U before U(VI)-removal commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally bioreduced sediments, demonstrating the sink-source behavior of this sediment. Acetate addition to artificially bioreduced sediments shifted the microbial community from one dominated by sulfate-reducing bacteria within Desulfobacteraceae to the iron-reducing family Geobacteraceae and Firmicutes during U(VI) reduction. In contrast, initial Geobacteraceae communities innaturally reduced sediments were replaced by clone sequences with similarity to opportunistic Pseudomonas spp. during U release, while U(VI) removal occurred concurrent with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U contaminated sites prior to the determination of a remedial strategy.

  1. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Fenelon, Joseph M.; Laczniak, Randell J.; Halford, Keith J.

    2008-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types?volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in

  2. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in

  3. Groundwater flow in an `underfit' carbonate aquifer in a semiarid climate: application of environmental tracers to the Salt Basin, New Mexico (USA)

    Science.gov (United States)

    Sigstedt, Sophia C.; Phillips, Fred M.; Ritchie, Andre B. O.

    2016-06-01

    The Salt Basin is a semiarid hydrologically closed drainage basin in southern New Mexico, USA. The aquifers in the basin consist largely of Permian limestone and dolomite. Groundwater flows from the high elevations (˜2,500 m) of the Sacramento Mountains south into the Salt Lakes, which are saline playas. The aquifer is `underfit' in the sense that depths to groundwater are great (˜300 m), implying that the aquifer could transmit much more water than it does. In this study, it is speculated that this characteristic is a result of a geologically recent reduction in recharge due to warming and drying at the end of the last glacial period. Water use is currently limited, but the basin has been proposed for large-scale groundwater extraction and export projects. Wells in the basin are of limited utility for hydraulic testing; therefore, the study focused on environmental tracers (major-ion geochemistry, stable isotopes of O, H, and C, and 14C dating) for basin analysis. The groundwater evolves from a Ca-HCO3 type water into a Ca-Mg (Na) - HCO3-Mg (Cl) water as it flows toward the center of the basin due to dedolomitization driven by gypsum dissolution. Carbon-14 ages corrected for dedolomitization ranged from less than 1,000 years in the recharge area to 19,000 years near the basin center. Stable isotopes are consistent with the presence of glacial-period recharge that is much less evaporated than modern. This supports the hypothesis that the underfit nature of the aquifer is a result of a geologically recent reduction in recharge.

  4. Hydrogeology of, and ground-water flow in, a valley-fill and carbonate-rock aquifer system near Long Valley in the New Jersey Highlands

    Science.gov (United States)

    Nicholson, R.S.; McAuley, S.D.; Barringer, J.L.; Gordon, A.D.

    1996-01-01

    The hydrogeology of and ground-water flow in a valley-fill and carbonate-rock aquifer system were evaluated by using numerical-modeling techniques and geochemical interpretations to address concerns about the adequacy of the aquifer system to meet increasing demand for water. The study was conducted during 1987-90 by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and Energy. The effects of recent and anticipated ground-water withdrawals on water levels, stream base flows, and water budgets were estimated. Simulation results indicate that recent withdrawals of 4.7 million gallons per day have resulted in water-level declines of up to 35 feet. Under conditions of increases in withdrawals of 121 percent, water levels would decline up to an additional 28 feet. The magnitude of predicted average base-flow depletion, when compared with historic low flows, indicates that projected increases in withdrawals may substantially deplete seasonal low flow of Drakes Brook and South Branch Raritan River. Results of a water-budget analysis indicate that the sources of water to additional supply wells would include leakage from the overlying valley-fill aquifer and induced leakage of surface water into the aquifer system. Results of water-quality analyses indicate that human activities are affecting the quality of the ground water. With the exception of an elevated iron concentration in water from one well, concentrations of inorganic constituents in water from 75 wells did not exceed New Jersey primary or secondary drinking-water regulations. Volatile organic compounds were detected in water from several wells; in two samples, concentrations of specific compounds exceeded drinking-water regulations.

  5. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  6. Assessing the transformation of chlorinated ethenes in aquifers with limited potential for natural attenuation: added values of compound-specific carbon isotope analysis and groundwater dating.

    Science.gov (United States)

    Amaral, Helena I F; Aeppli, Christoph; Kipfer, Rolf; Berg, Michael

    2011-10-01

    The evaluation of biotransformation of chlorinated ethenes (CEs) in contaminated aquifers is challenging when variable redox conditions and groundwater flow regime are limiting factors. By using compound-specific stable carbon isotope analysis (C-CSIA) and ³H-³He based groundwater dating, we assessed three CE-contaminated field sites that differed in groundwater flow velocities, redox conditions, and level of contamination. CE isotopic signatures and carbon isotopic mass balances were applied to quantify CE transformation, whereas groundwater dating allowed determining degradation timescales and assessing hydrodynamic regimes. The combination of these techniques enabled at all field sites to indicate zones within the aquifers where CE dechlorination preferably occurred, sometimes even to metabolites of no toxic concern. However, the natural transformation processes were insufficient to mitigate the entire CE contamination at the studied sites. Such situations of limited transformation are worldwide far more common than sites where optimal natural (mainly redox) conditions are enabling complete CEs degradation. Despite such constraints for natural transformation, this study showed that even under non-favorable biogeochemical CEs degradation, the combination of CSIA and groundwater dating provide valuable information to the understanding of the fate of the CEs, thus, being an important contribution in the definition of efficient remediation measures at any given biogeochemical conditions.

  7. Ozark Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base and top, the extent, and the potentiometric surface of the Ozark aquifer in Kansas. The Ozark...

  8. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field.

    Science.gov (United States)

    Pierro, Lucia; Matturro, Bruna; Rossetti, Simona; Sagliaschi, Marco; Sucato, Salvatore; Alesi, Eduard; Bartsch, Ernst; Arjmand, Firoozeh; Papini, Marco Petrangeli

    2016-11-27

    A pilot-scale study aiming to evaluate the potential use of poly-3-hydroxy-butyrate (PHB) as an electron donor source for in situ bioremediation of chlorinated hydrocarbons in groundwater was conducted. Compared with commercially available electron donors, PHB offers a restricted fermentation pathway (i.e., through acetic acid and molecular hydrogen) by avoiding the formation of any residual carbon that could potentially spoil groundwater quality. The pilot study was carried out at an industrial site in Italy, heavily contaminated by different chlorinated aliphatic hydrocarbons (CAHs). Prior to field testing, PHB was experimentally verified as a suitable electron donor for biological reductive dechlorination processes at the investigated site by microcosm studies carried out on site aquifer material and measuring the quantitative transformation of detected CAHs to ethene. Owing to the complex geological characteristics of the aquifer, the use of a groundwater circulation well (GCW) was identified as a potential strategy to enable effective delivery and distribution of electron donors in less permeable layers and to mobilise contaminants. A 3-screened, 30-m-deep GCW coupled with an external treatment unit was installed at the site. The effect of PHB fermentation products on the in situ reductive dechlorination processes were evaluated by quantitative real-time polymerase chain reaction (qPCR). The results from the first 4 months of operation clearly demonstrated that the PHB fermentation products were effectively delivered to the aquifer and positively influenced the biological dechlorination activity. Indeed, an increased abundance of Dehalococcoides mccartyi (up to 6.6 fold) and reduced CAH concentrations at the installed monitoring wells were observed.

  9. Modeling vertical stratification of CO 2 injected into a deep layered aquifer

    Science.gov (United States)

    Hayek, Mohamed; Mouche, Emmanuel; Mügler, Claude

    2009-03-01

    The vertical stratification of carbon dioxide (CO 2) injected into a deep layered aquifer made up of high-permeability and low-permeability layers, such as Utsira aquifer at Sleipner site in Norway, is investigated with a Buckley-Leverett equation including gravity effects. In a first step, we study both by theory and simulation the application of this equation to the vertical migration of a light phase (CO 2), in a denser phase (water), in 1D vertical columns filled with different types of porous media: homogeneous, piecewise homogeneous, layered periodic and finally heterogeneous. For each case, we solve the associated Riemann problems and propose semi-analytical solutions describing the spatial and temporal evolution of the light phase saturation. These solutions agree well with simulation results. We show that the flux continuity condition at interfaces between high-permeability and low-permeability layers leads to CO 2 saturation discontinuities at these interfaces and, in particular, to a saturation increase beneath low-permeability layers. In a second step, we analyze the vertical migration of a CO 2 plume injected into a 2D layered aquifer. We show that the CO 2 vertical stratification under each low-permeability layer is induced, as in 1D columns, by the flux continuity condition at interfaces. As the injection takes place at the bottom of the aquifer the velocity and the flux function decrease with elevation and this phenomenon is proposed to explain the stratification under each mudstone layer as observed at Sleipner site.

  10. Estimating groundwater mixing and origin in an overexploited aquifer in Guanajuato, Mexico, using stable isotopes (strontium-87, carbon-13, deuterium and oxygen-18).

    Science.gov (United States)

    Horst, Axel; Mahlknecht, Jürgen; Merkel, Broder J

    2007-12-01

    Stable Isotopes (strontium-87, deuterium and oxygen-18, carbon-13) have been used to reveal different sources of groundwater and mixing processes in the aquifer of the Silao-Romita Valley in the state of Guanajuato, Mexico. Calcite dissolution appeared to be the main process of strontium release leading to relatively equal (87)Sr/(86)Sr ratios of 0.7042-0.7062 throughout the study area which could be confirmed by samples of carbonate rocks having similar Sr ratios (0.7041-0.7073). delta(13)C values (-11.91- -6.87 per thousand VPDB) of groundwaters confirmed the solution of carbonates but indicated furthermore influences of soil-CO(2). Deuterium and (18)O contents showed a relatively narrow range of-80.1- -70.0 per thousand VSMOW and -10.2- -8.8 per thousand, VSMOW, respectively but are affected by evaporation and mixing processes. The use of delta(13)C together with (87)Sr/(86)Sr revealed three possible sources: (i) carbonate-controlled waters showing generally higher Sr-concentrations, (ii) fissure waters with low-strontium contents and (iii) infiltrating water which is characterized by low delta(13)C and (87)Sr/(86)Sr ratios. The third component is affected by evaporation processes taking place before and during infiltration which might be increased by extraction and reinfiltration (irrigation return flow).

  11. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma

    Science.gov (United States)

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files The data sets in this report include digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid isolated terrace aquifer covers approximately 82 square miles and supplies water for irrigation, domestic, municipal, and industrial use for the City of Enid and western Garfield County. The Quaternary-age Enid isolated terrace aquifer is composed of terrace deposits that consist of discontinuous layers of clay, sandy clay, sand, and gravel. The aquifer is unconfined and is bounded by the underlying Permian-age Hennessey Group on the east and the Cedar Hills Sandstone Formation of the Permian-age El Reno Group on the west. The Cedar Hills Sandstone Formation fills a channel beneath the thickest section of the Enid isolated terrace aquifer in the midwestern part of the aquifer. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Enid isolated terrace aquifer. The maps digitized were published at a scale of 1:62,500. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  12. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.

    Science.gov (United States)

    Magal, Einat; Arbel, Yuval; Caspi, Sarit; Glazman, Hilel; Greenbaum, Noam; Yechieli, Yoseph

    2013-02-01

    This work combines the monitoring of two incidents of spring water pollution in the Western Galilee region of Israel, together with artificial tracer tests that provided valuable information regarding karst system connections and direct estimation of groundwater velocities. Almost simultaneous contamination of seven springs endangered the water supply for the region. The variations over time in contaminant concentration in the different springs were not similar, indicating more than one contamination source. Tracer tests revealed two different pollution sources that contributed to two different conduit pathways in the karst system. Breakthrough data for the tracers were modeled by a two-region non-equilibrium transport model, which provided the transport parameters of the karst conduit. Groundwater velocities in the conduits were found to be in a range of 2-3 km/day. The rapid response of the system was also demonstrated by the short recovery time of the springs, where, after the elimination of the pollution source, most water quality parameters reverted to their background concentrations in less than 3 months. The coexistence of highly polluted springs and uncontaminated groundwater in boreholes penetrating into the same aquifer demonstrates the complexity of groundwater flow in karst systems. In such systems, the fast groundwater flow in localized karst conduits seems to coexist with a slower flow within other portions of the aquifer.

  13. Bioremediation of RDX in the vadose zone beneath the Pantex Plant

    Energy Technology Data Exchange (ETDEWEB)

    Shull, T.L.; Speitel, G.E. Jr.; McKinney, D.C. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1999-01-01

    The presence of dissolved high explosives (HE), in particular RDX and HMX, is well documented in the perched aquifer beneath the Pantex Plant, but the distribution of HE in the vadose zone has not yet been well defined. Although current remediation activities focus on the contamination in the perched aquifer, eventually regulatory concern is likely to turn to the residual contamination in the vadose zone. Sources of HE include the infiltration of past wastewater discharges from several HE-processing facilities through the ditch drainage system and leachate from former Landfill 3. With limited existing data on the HE distribution in the vadose zone and without preventive action, it must be assumed that residual HE could be leached into infiltrating water, providing a continuing supply of contamination to the perched aquifer. The purpose of this project was to more closely examine the fate and transport of HE in the vadose zone through mathematical modeling and laboratory experimentation. In particular, this report focuses on biodegradation as one possible fate of HE. Biodegradation of RDX in the vadose zone was studied because it is both present in highest concentration and is likely to be of the greatest regulatory concern. This study had several objectives: determine if indigenous soil organisms are capable of RDX biodegradation; determine the impact of electron acceptor availability and nutrient addition on RDX biodegradation; determine the extent of RDX mineralization (i.e., conversion to inorganic carbon) during biodegradation; and estimate the kinetics of RDX biodegradation to provide information for mathematical modeling of fate and transport.

  14. Sr-Nd-Pb-C-O isotope systematics of carbonated ultramafic xenoliths from Mafu, Taiwan: Evidence for an extremely enriched lithospheric mantle source beneath the extended margin of the South China block

    Science.gov (United States)

    Smith, A. D.; Wen, D.; Chung, S.; Wang, K.; Chiang, H.; Tsai, C.

    2008-12-01

    Deep-seated carbonate melt is widely proposed as an effective agent to metasomatize the lithospheric mantle. However, such carbonate melts may have a great diversity of composition and a mantle or recycled origin remains unclear. Here we present the evidence for unique carbonate metasomatism of the continental lithospheric mantle (CLM) beneath the extended southeast margin of the South China block from severely replaced spinel peridotite xenoliths from Mafu, northwestern Taiwan. The metasomatic calcitic carbonates and whole carbonated xenoliths from Mafu have unusually low trace element abundances (total REE abundance residue (86Sr/87Sr = 0.7041; ɛ Nd = +4.9, one residual sample up to +12; 206Pb/204Pb = 18.3), the Sr-Nd-Pb-C-O isotope systematics of the carbonates (86Sr/87Sr = 0.7044-0.7045; ɛ Nd = -6.9 to -7.7; 206Pb/204Pb = 18.5; δ13C = -4.5 to -5.7; δ18O = +21.8 to +22.9) reveal an extremely enriched and heterogeneous CLM. According to the Nd model age, the enriched component evolved for at least 1 Gyrs after isolation from the depleted CLM, before the Late Miocene entrapment. Coupled with high Sr/Nd, Ba/Th, La/Yb, Zr/Hf, and low Nb/U, Ce/Pb, Th/U, Ti/Eu ratios, this EM1-like metasomatic agent may be one of the most efficient percolating melt to cause disequlibrium interaction or Sr-Nd isotope decoupling. To a broader interpretation, it offers an alternative to account for some enriched signatures in mantle lithosphere, such as the extreme components of the Hawaiian plume. Instead of the "ghost plagioclase" (Sobolev et al., 2000), melting of depleted lithosphere which was metasomatized by this kind of enriched carbonate melt with high Sr, Ba, Pb but low Al and REE contents, may even better explain the geochemical features observed from the melt inclusions in Mauna Loa olivines.

  15. Determinism beneath Quantum Mechanics

    CERN Document Server

    Hooft, G

    2002-01-01

    Contrary to common belief, it is not difficult to construct deterministic models where stochastic behavior is correctly described by quantum mechanical amplitudes, in precise accordance with the Copenhagen-Bohr-Bohm doctrine. What is difficult however is to obtain a Hamiltonian that is bounded from below, and whose ground state is a vacuum that exhibits complicated vacuum fluctuations, as in the real world. Beneath Quantum Mechanics, there may be a deterministic theory with (local) information loss. This may lead to a sufficiently complex vacuum state, and to an apparent non-locality in the relation between the deterministic ("ontological") states and the quantum states, of the kind needed to explain away the Bell inequalities. Theories of this kind would not only be appealing from a philosophical point of view, but may also be essential for understanding causality at Planckian distance scales.

  16. Role of dissolved organic carbon upon re-entrainment and surface properties of aquifer bacteria and bacteria-sized microspheres during subsurface transport (Invited)

    Science.gov (United States)

    Harvey, R. W.; Metge, D. W.; Mohanram, A.; Gao, X.; Chorover, J.

    2010-12-01

    Susceptibilities for in-situ re-entrainment of attached 0.2 and 1.0 μm (diameter) microspheres and groundwater bacteria (Pseudomonas stuzeri and uncultured, native bacteria) were assessed during transport studies involving an organically contaminated, sandy aquifer in Cape Cod, MA. Aquifer sediments between pairs of injection and sampling wells were initially loaded with fluorescently labeled, carboxylated microspheres and bacteria that had been stained with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole. In response to subsequent hydrodynamic perturbations and injections of deionized water (ionic strength reduction), anionic surfactants (77 μM linear alkylbenzene sulfonates, LAS) and non-ionic surfactant (76 μM polyoxyethylene sorbitan monooleate, Tween 80), differing patterns of re-entrainment were evident for the two colloids. Injections of anionic surfactant and deionized water were the most efficient in causing detachment of the highly hydrophilic and negatively charged microspheres, but largely ineffective in causing re-entrainment of bacteria. In contrast, the nonionic surfactant was highly effective in re-entraining bacteria, but not microspheres. The hydrophobicities and zeta potentials of the indigenous bacteria were highly sensitive to modest concentration changes (0.6 to 1.3 mg L-1) in groundwater dissolved organic carbon (DOC), whereas the microspheres were largely unaffected. The most hydrophilic and negatively charged bacterial community was isolated from groundwater having the lowest DOC. FTIR spectra indicated that the community from the lowest DOC groundwater also had the highest average density of surface carboxyl groups. This indicates that DOC may have a biological effect on native bacteria resulting in changes to surface structures or changes in the makeup of the bacterial community.

  17. Comparative analysis of the evaluation of the intrinsic vulnerability in carbonate aquifers (Canete Mountain Range, province of Malaga); Analisis comparativo de la evaluacion de la vulnerabilidad intrinseca de acuiferos carbonaticos (Sierra de Canete, provincia de Malaga)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Madrid, A.; Carrasco Cantos, F.; Martinez Navarrete, C.

    2009-07-01

    Groundwater of the carbonate aquifers of Canete Mountain Range constitute a basic source for water supply to different populations. Vulnerability intrinsic assesment is one of the most useful tools for the protection of the groundwater bodies, for this reason, this area has been chosen, to realize a comparative analysis, by means of the use of tools of spatial analysis and technical statistics of a Geographical Information System. In this work, Reduced DRASTIC, COP and RISK method have been applied, due to the fact that they are the methods used by Spain, both first ones, to evaluate the vulnerability of the groundwater bodies in the inter communal basins of the whole national territory, and for BRGM of France, the last one, to approach the carbonate aquifers protection. The obtained results show as the COP and RISK methods, specifics of carbonate aquifers, there show results more according to the characteristics of Canete Mountain Range that the obtained ones with Reduced DRASTIC, which unsaturated zone valuation causes an undervaluing the results of vulnerability obtained. (Author) 35 refs.

  18. Risks attributable to water quality changes in shallow potable aquifers from geological carbon sequestration leakage into sediments of variable carbonate content

    DEFF Research Database (Denmark)

    Cahill, Aaron Graham; Jakobsen, Rasmus; Mathiesen, Tina Bay

    2013-01-01

    Denmark including; siliceous, carbonate and clay materials. Sediments were exposed to CO2 and hydro-geochemical effects were observed in order to improve general understanding of trace metal mobility, quantify carbonate influence, assess risks attributable to fresh water resources from a potential leak...... and aid monitoring measurement and verification (MMV) program design. Results demonstrate control of water chemistry by sediment mineralogy and most significantly carbonate content, for which a potential semi-logarithmic relationship with pH and alkalinity was observed. In addition, control of water...... chemistry by calcite equilibrium was inferred for sediments containing >2% total inorganic carbon (TIC), whereby pH minima and alkalinity maxima of approximately 6 and 20mequiv./l respectively were observed. Carbonate dominated (i.e. >2% TIC) and mixed (i.e. clay containing) sediments showed the most severe...

  19. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    Science.gov (United States)

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  20. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    Science.gov (United States)

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  1. Solute changes during aquifer storage recovery testing in a limestone/clastic aquifer

    Science.gov (United States)

    Mirecki, J.E.; Campbell, B.G.; Conlon, K.J.; Petkewich, M.D.

    1998-01-01

    Aquifer storage recovery (ASR) was tested in the Santee Limestone/Black Mingo Aquifer near Charleston, South Carolina, to assess the feasibility for subsurface storage of treated drinking water. Water quality data obtained during two representative ASR tests were interpreted to show three things: (1) recovery efficiency of ASR in this geological setting; (2) possible changes in physical characteristics of the aquifer during ASR testing; and (3) water quality changes and potability of recovered water during short (one- and six-day) storage durations in the predominantly carbonate aquifer. Recovery efficiency for both ASR tests reported here was 54%. Successive ASR tests increased aquifer permeability of the Santee Limestone/Black Mingo Aquifer. It is likely that aquifer permeability increased during short storage periods due to dissolution of carbonate minerals and amorphous silica in aquifer material by treated drinking water. Dissolution resulted in an estimated 0.3% increase in pore volume of the permeable zones. Ground water composition generally evolved from a sodium-calcium bicarbonate water to a sodium chloride water during storage and recovery. After short duration, stored water can exceed the U.S. Environmental Protection Agency maximum contaminant level (MCL) for chloride (250 mg/L). However, sulfate, fluoride, and trihalomethane concentrations remained below MCLs during storage and recovery.Aquifer storage recovery (ASR) was tested in the Santee Limestone/Black Mingo Aquifer near Charleston, South Carolina, to assess the feasibility for subsurface storage of treated drinking water. Water quality data obtained during two representative ASR tests were interpreted to show three things: (1) recovery efficiency of ASR in this geological setting; (2) possible changes in physical characteristics of the aquifer during ASR testing; and (3) water quality changes and potability of recovered water during short (one- and six-day) storage durations in the predominantly

  2. Hydrogeology, water quality, and saltwater intrusion in the Upper Floridan Aquifer in the offshore area near Hilton Head Island, South Carolina, and Tybee Island, Georgia, 1999-2002

    Science.gov (United States)

    Falls, W. Fred; Ransom, Camille; Landmeyer, James E.; Reuber, Eric J.; Edwards, Lucy E.

    2005-01-01

    -mile site, the chloride concentration in the Upper Floridan borehole-water sample and the pore-water samples from the Oligocene and Eocene strata support the conclusion of no noticeable modern saltwater intrusion in the Upper Floridan aquifer. The chloride concentration of 370 milligrams per liter in the borehole-water sample at the 7-mile site from the Upper Floridan aquifer at 78 to 135 feet below North American Vertical Datum of 1988 is considerably higher than the chloride concentration of 25 milligrams per liter measured at the 10-mile site. The higher concentration probably is the result of downward leakage of saltwater through the confining unit at the 7-mile site or could reflect downward leakage of saltwater through an even thinner layer of the upper confining unit beneath the paleochannel to the northeast and lateral movement (encroachment) from the paleochannel to the 7-mile site. Carbon-14 concentrations at both sites, however, are low and indicate that most of the water is relict fresh ground water. The hydrogeology at the 15-mile site includes 17 feet of the upper confining unit. The chloride concentration in the Upper Floridan aquifer is 6,800 milligrams per liter. The setting for the Upper Floridan aquifer beneath the 15-mile site is interpreted as a transitional mixing zone between relict freshwater and relict saltwater. At the Calibogue site, 35 feet of fine-grained paleochannel-fill sediments overlies the Oligocene strata of the Upper Floridan aquifer. The vertical hydraulic conductivity of the paleochannel fill at this site is similar to the upper confining unit and effectively replaces the missing upper confining unit. Chloride concentrations and low carbon-14 and tritium concentrations in borehole water from the Upper Floridan aquifer, and low chloride concentrations in pore water from the upper confining unit indicate relict freshwater confined in the Upper Floridan aquifer at the Calibogue site. The coarse-grained paleochannel-f

  3. Differential effects of dissolved organic carbon upon re-entrainment and surface properties of groundwater bacteria and bacteria-sized microspheres during transport through a contaminated, sandy aquifer

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.; Mohanram, A.; Gao, X.; Chorover, J.

    2011-01-01

    Injection-and-recovery studies involving a contaminated, sandy aquifer (Cape Cod, Massachusetts) were conducted to assess the relative susceptibility for in situ re-entrainment of attached groundwater bacteria (Pseudomonas stuzeri ML2, and uncultured, native bacteria) and carboxylate-modified microspheres (0.2 and 1.0 ??m diameters). Different patterns of re-entrainment were evident for the two colloids in response to subsequent injections of groundwater (hydrodynamic perturbation), deionized water (ionic strength alteration), 77 ??M linear alkylbenzene sulfonates (LAS, anionic surfactant), and 76 ??M Tween 80 (polyoxyethylene sorbitan monooleate, a very hydrophobic nonionic surfactant). An injection of deionized water was more effective in causing detachment of micrsopheres than were either of the surfactants, consistent with the more electrostatic nature of microsphere's attachment, their extreme hydrophilicity (hydrophilicity index, HI, of 0.99), and negative charge (zeta potentials, ??, of -44 to -49 mv). In contrast, Tween 80 was considerably more effective in re-entraining the more-hydrophobic native bacteria. Both the hydrophilicities and zeta potentials of the native bacteria were highly sensitive to and linearly correlated with levels of groundwater dissolved organic carbon (DOC), which varied modestly from 0.6 to 1.3 mg L-1. The most hydrophilic (0.52 HI) and negatively charged (?? -38.1 mv) indigenous bacteria were associated with the lowest DOC. FTIR spectra indicated the latter community had the highest average density of surface carboxyl groups. In contrast, differences in groundwater (DOC) had no measurable effect on hydrophilicity of the bacteria-sized microspheres and only a minor effect on their ??. These findings suggest that microspheres may not be very good surrogates for bacteria in field-scale transport studies and that adaptive (biological) changes in bacterial surface characteristics may need to be considered where there is longer

  4. High Temperature Aquifer Storage

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  5. Hydrogeology and geochemistry of aquifers underlying the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California

    Science.gov (United States)

    Izbicki, John A.; Borchers, James W.; Leighton, David A.; Kulongoski, Justin T.; Fields, Latoya; Galloway, Devin L.; Michel, Robert L.

    2003-01-01

    The East Bay Plain, on the densely populated eastern shore of San Francisco Bay, contains an upper aquifer system to depths of 250 feet below land surface and an underlying lower aquifer system to depths of more than 650 feet. Injection and recovery of imported water has been proposed for deep aquifers at two sites within the lower aquifer system. Successful operation requires that the injected water be isolated from surface sources of poor-quality water during storage and recovery. Hydraulic, geochemical, and isotopic data were used to evaluate the isolation of deeper aquifers. Ground-water responses to tidal changes in the Bay suggest that thick clay layers present within these deposits effectively isolate the deeper aquifers in the northern part of the study area from overlying surficial deposits. These data also suggest that the areal extent of the shallow and deep aquifers beneath the Bay may be limited in the northern part of the study area. Despite its apparent hydraulic isolation, the lower aquifer system may be connected to the overlying upper aquifer system through the corroded and failed casings of abandoned wells. Water-level measurements in observation wells and downward flow measured in selected wells during nonpumped conditions suggest that water may flow through wells from the upper aquifer system into the lower aquifer system during nonpumped conditions. The chemistry of water from wells in the East Bay Plain ranges from fresh to saline; salinity is greater than seawater in shallow estuarine deposits near the Bay. Water from wells completed in the lower aquifer system has higher pH, higher sodium, chloride, and manganese concentrations, and lower calcium concentrations and alkalinity than does water from wells completed in the overlying upper aquifer system. Ground-water recharge temperatures derived from noble-gas data indicate that highly focused recharge processes from infiltration of winter streamflow and more diffuse recharge processes from

  6. Modeling vertical stratification of CO{sub 2} injected into a deep layered aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Hayek, M.; Mouche, E.; Mugler, C. [CEA CNRS UVSQ, UMR, Lab Sci Climat et Environm, Ctr Etud Saclay, F-91191 Gif Sur Yvette, (France)

    2009-07-01

    The vertical stratification of carbon dioxide CO{sub 2} injected into a deep layered aquifer made up of high-permeability and low-permeability layers, such as Utsira aquifer at Sleipner site in Norway, is investigated with a Buckley-Leverett equation including gravity effects. In a first step, we study both by theory and simulation the application of this equation to the vertical migration of a light phase CO{sub 2}, in a denser phase (water), in 1D vertical columns filled with different types of porous media: homogeneous, piece-wise homogeneous, layered periodic and finally heterogeneous. For each case, we solve the associated Riemann problems and propose semi-analytical solutions describing the spatial and temporal evolution of the light phase saturation. These solutions agree well with simulation results. We show that the flux continuity condition at interfaces between high-permeability and low-permeability layers leads to CO{sub 2} saturation discontinuities at these interfaces and. in particular, to a saturation increase beneath low-permeability layers. In a second step, we analyze the vertical migration of a CO{sub 2} plume injected into a 2D layered aquifer. We show that the CO{sub 2} vertical stratification under each low-permeability layer is induced, as in 1D columns, by the flux continuity condition at interfaces. As the injection takes place at the bottom of the aquifer the velocity and the flux function decrease with elevation and this phenomenon is proposed to explain the stratification under each mudstone layer as observed at Sleipner site. (authors)

  7. Hydrogeochemistry and Origin of Thermal Groundwater in Bedrock Aquifers in Tianjin, China

    Institute of Scientific and Technical Information of China (English)

    Zhou Xun; Fang Bin; Shen Ye; Zhang Hua; Lin Li; Lin Jianwang

    2004-01-01

    Thermal groundwater resources were found to have occurred in deep-seated bedrock aquifers in the northeastern North China plain near Tianjin, China. Meso- to Neo-Proterozoic and Paleozoic carbonate rocks on the Cangxian uplift are capable of yielding 960-4 200 m3/d of 60 to 96 ℃ water from the wells ranging in depth between 1 000 and 4 000 m. Conductive heat flow of 0.063 to 0.144 2 W/m2 from the deep crust is responsible for this anomalous geothermal field. The water in the Ordovician aquifer is characterized by relatively high TDS, high concentrations of SO4 and SO4*Cl-Na*Ca type, but the waters from the Meso- to Neo-Proterozoic and Cambrian aquifers, by relatively low TDS, low concentrations of SO4 and predominantly Cl*SO4-Na type. It is noted that when the temperature of the waters increases at a rate of 10 ℃ in the range of 30-100 ℃, the content of SiO2 increases at a rate of 12 to 15 mg/L, and fluoride concentration increases at a rate of 2.3 to 2.5 mg/L. Hydrochemical and isotopic data suggest that the thermal water in the bedrock aquifers is of meteoric origin and recharged in the northern mountain area to the north of the Baodi-Ninghe fault, and then flows laterally for a long distance from the north to the south to the city of Tianjin. Temperature of the waters increases because of heat exchange with the rocks and recharge by conductive heat flow from beneath.

  8. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

  9. Hydrogeologic characteristics and water quality of a confined sand unit in the surficial aquifer system, Hunter Army Airfield, Chatham County, Georgia

    Science.gov (United States)

    Gonthier, Gerard J.

    2012-01-01

    An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.

  10. Assessment of managed aquifer recharge from Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2010

    Science.gov (United States)

    Heilweil, Victor M.; Marston, Thomas M.

    2011-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2009, total surface-water diversions of about 154,000 acre-feet to Sand Hollow Reservoir have allowed it to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir water-level altitude and nearby pumping from production wells. Between 2004 and 2009, a total of about 13,000 acre-feet of groundwater has been withdrawn by these wells for municipal supply. In addition, a total of about 14,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2009, about 86,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water-quality sampling was conducted at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge moving through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2010, this recharge arrived at monitoring wells within about 1,000 feet of the reservoir.

  11. Tracing groundwater with low-level detections of halogenated VOCs in a fractured carbonate-rock aquifer, Leetown Science Center, West Virginia, USA

    Science.gov (United States)

    Plummer, L. Niel; Sibrell, Philip L.; Casile, Gerolamo C.; Busenberg, Eurybiades; Hunt, Andrew G.; Schlosser, Peter

    2013-01-01

    Measurements of low-level concentrations of halogenated volatile organic compounds (VOCs) and estimates of groundwater age interpreted from 3H/3He and SF6 data have led to an improved understanding of groundwater flow, water sources, and transit times in a karstic, fractured, carbonate-rock aquifer at the Leetown Science Center (LSC), West Virginia. The sum of the concentrations of a set of 16 predominant halogenated VOCs (TDVOC) determined by gas chromatography with electron-capture detector (GC–ECD) exceeded that possible for air–water equilibrium in 34 of the 47 samples (median TDVOC of 24,800 pg kg−1), indicating that nearly all the water sampled in the vicinity of the LSC has been affected by addition of halogenated VOCs from non-atmospheric source(s). Leakage from a landfill that was closed and sealed nearly 20 a prior to sampling was recognized and traced to areas east of the LSC using low-level detection of tetrachloroethene (PCE), methyl chloride (MeCl), methyl chloroform (MC), dichlorodifluoromethane (CFC-12), and cis-1,2-dichloroethene (cis-1,2-DCE). Chloroform (CHLF) was the predominant VOC in water from domestic wells surrounding the LSC, and was elevated in groundwater in and near the Fish Health Laboratory at the LSC, where a leak of chlorinated water occurred prior to 2006. The low-level concentrations of halogenated VOCs did not exceed human or aquatic-life health criteria, and were useful in providing an awareness of the intrinsic susceptibility of the fractured karstic groundwater system at the LSC to non-atmospheric anthropogenic inputs. The 3H/3He groundwater ages of spring discharge from the carbonate rocks showed transient behavior, with ages averaging about 2 a in 2004 following a wet climatic period (2003–2004), and ages in the range of 4–7 a in periods of more average precipitation (2008–2009). The SF6 and CFC-12 data indicate older water (model ages of 10s of years or more) in the low-permeability shale of the Martinsburg

  12. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  13. Climate variability effects on urban recharge beneath low impact development

    Science.gov (United States)

    Newcomer, M. E.; Gurdak, J. J.

    2012-12-01

    Groundwater resources in urban and coastal environments are highly vulnerable to human pressures and climate variability and change, and many communities face water shortages and need to find alternative water supplies. Therefore, understanding how low impact development (LID) site planning and integrated/best management practices (BMPs) affect recharge rates and volumes is important because of the increasing use of LID and BMP to reduce stormwater runoff and improve surface-water quality. Often considered a secondary management benefit, many BMPs may also enhance recharge to local aquifers; however these hypothesized benefits have not been thoroughly tested or quantified. In this study, we quantify stormwater capture and recharge enhancement beneath a BMP infiltration trench of the LID research network at San Francisco State University, San Francisco, California. Stormwater capture and retention was analyzed using the SCS TR-55 curve number method and in-situ infiltration rates to assess LID storage. Recharge was quantified using vadose zone monitoring equipment, a detailed water budget analysis, and a Hydrus-2D model. Additionally, the effects of historical and predicted future precipitation on recharge rates were examined using precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. Observed recharge rates beneath the infiltration trench range from 1,600 to 3,700 mm/year and are an order of magnitude greater than recharge beneath an irrigated grass lawn and a natural setting. The Hydrus-2D model results indicate increased recharge under the GFDL A1F1 scenario compared with historical and GFDL modeled 20th century rates because of the higher frequency of large precipitation events that induce runoff into the infiltration trench. However, under a simulated A1F1 El Niño year, recharge calculated by a water budget does not increase compared with current El Niño recharge rates. In comparison, simulated recharge rates were

  14. Arsenic in Groundwater: The Deep Late Pleistocene Aquifers of the Western Bengal Basin.

    Science.gov (United States)

    McArthur, J M; Ghosal, U; Sikdar, P K; Ball, J D

    2016-04-05

    in groundwaters from 145 wells across central West Bengal, India, those from Pleistocene aquifers at depths >70 m beneath paleo-interfluves contain aquifers beneath deep paleo-channels typically host groundwaters containing 10-100 μg/L As at depths between 120 and 180 m. The depth profiles of As and SO4 and the conservative tracers Cl/Br, δ(18)O, and δ(2)H show that the As in Pleistocene groundwater beneath deep paleo-channels is relict and does not arise from migration downward of As-polluted groundwater in overlying aquifers. We postulate that the As was liberated in situ by reduction of minimal iron oxyhydroxides in the gray Pleistocene sands by organic matter infiltrating from riverbeds during late Pleistocene or earliest Holocene times. Mitigation of the widespread As-pollution in shallow aquifers through exploitation of deep Pleistocene aquifers would improve if guided by an understanding of the distribution of buried paleo-channels and paleo-interfluves and the knowledge that As may be present naturally in groundwater at depths >150 m beneath deep paleo-channels.

  15. Chemical characteristics of water in the surficial aquifer system, Broward County, Florida

    Science.gov (United States)

    Howie, Barbara

    1987-01-01

    Water quality data was collected in 1981 and 1982 during the drilling of test holes at 27 sites throughout Broward County, Florida. Determinations were made for the following physical properties and chemical constituents: pH, alkalinity, specific conductance, major ions, selected nutrients and dissolved iron, aluminum, and manganese. Determinations for the trace elements-arsenic, barium, cadmium, chromium, lead, zinc, selenium, and mercury-were made at 14 wells. Water in the surficial aquifer system between the coastal ridge and the conservation areas is potable and usually is a calcium bicarbonate type for the first 140 ft or more below land surface. Between depths of 140 and 230 ft, groundwater generally grades into a mixed-ion water type. In some areas, diluted seawater occurs beneath the mixed water zone. Dissolved iron concentrations between the coastal ridge and the conservation areas are variable but generally exceed 1,000 micrograms/L. Beneath the conservation areas and the western edge of Broward County, groundwater in the first 100 ft below land surface generally is either a calcium bicarbonate type or a mixed-ion type. At depths between 100 and 200 ft, diluted residual seawater occurs, except along the far western edge of the county. Residual seawater is least diluted in the north. Dissolved iron concentrations generally are between 300 and 1 ,000 micrograms/L but increase to the east of the conservation areas. Other findings of the investigation include: (1) groundwater in some areas west of the coastal ridge probably would be suitable for most domestic, agricultural, and industrial uses if it were treated for carbonate hardness; (2) groundwater in much of Broward County is chemically altered by natural softening and magnesium enrichment (natural softening increases to the west and is very pronounced beneath the far western edge of the county); and (3) there is evidence of mineralized water from the conservation areas mixing with groundwater east of the

  16. Crustal structure beneath Eastern Greenland

    DEFF Research Database (Denmark)

    Reiche, Sönke; Thybo, H.; Kaip, G.

    2011-01-01

    is recorded by 350 Reftek Texan receivers for 10 equidistant shot points along the profile. We use forward ray tracing modelling to construct a two-dimensional velocity model from the observed travel times. These results show the first images of the subsurface velocity structure beneath the Greenland ice...... these mountain belts is needed for assessing the isostatic balance of the crust and to gain insight into possible links between crustal composition, rifting history and present-day topography of the North Atlantic Region. However, the acquisition of geophysical data onshore Greenland is logistically complicated...

  17. A Multi-Model Approach Using Statistical Index and Information Criteria to Evaluate the Adequacy of the Model Geometry in a Fissured Carbonate Aquifer (Italy

    Directory of Open Access Journals (Sweden)

    Marco Giacopetti

    2016-06-01

    Full Text Available A conceptual model related to a mountain aquifer that is characterized by a lack of data of hydrogeological parameters and boundary conditions, which were based on a single available observational dataset used for calibration, was studied using numerical models. For the first time, a preliminary spatial-temporal analysis has been applied to the study area in order to evaluate the real extension of the aquifer studied. The analysis was based on four models that were characterized by an increasing degree of complexity using a minimum of two zones and a maximum of five zones, which consequently increased the number of adjustable parameters from a minimum of 10 to a maximum of 22, calibrated using the parameter estimation code PEST. Statistical index and information criteria were calculated for each model, which showed comparable results; the information criteria indicated that the model with the low number of adjustable parameters was the optimal model. A comparison of the simulated and observed spring hydrographs showed a good shape correspondence but a general overestimation of the discharge, which indicated a good fit with the rainfall time series and a probably incorrect extension of the aquifer structure: the recharge contributes more than half of the total outflow at the springs but is not able to completely feed the springs.

  18. Geophysical investigation of seepage beneath an earthen dam.

    Science.gov (United States)

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A

    2015-01-01

    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone.

  19. Landfill leachate effects on sorption of organic micropollutants onto aquifer materials

    DEFF Research Database (Denmark)

    Larsen, Thomas; Christensen, Thomas Højlund; Pfeffer, Fred M.;

    1992-01-01

    content. The experiments showed that hydrophobic organic micropollutants do partition into dissolved organic carbon found in landfill leachate potentially increasing their mobility. However, landfill leachate interacted with aquifer materials apparently increases the sorbent affinity for the hydrophobic......The effect of dissolved organic carbon as present in landfill leachate, on the sorption of organic micropollutants in aquifer materials was studied by laboratory batch and column experiments involving 15 non-polar organic chemicals, 5 landfill leachates and 4 aquifer materials of low organic carbon......, the effect of landfill leachate on retardation of organic micropollutants in aquifer material seems limited....

  20. Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis.

    Science.gov (United States)

    Lojkasek-Lima, Paulo; Aravena, Ramon; Parker, Beth L; Cherry, John A

    2012-01-01

    A dual isotope approach based on compound-specific isotope analysis (CSIA) of carbon (C) and chlorine (Cl) was used to identify sources of persistent trichloroethylene (TCE) that caused the shut-down in 1994 of a municipal well in an extensive fractured dolostone aquifer beneath Guelph, Ontario. Several nearby industrial properties have known subsurface TCE contamination; however, only one has created a comprehensive monitoring network in the bedrock. The impacted municipal well and many monitoring wells were sampled for volatile organic compounds (VOCs), inorganic parameters, and CSIA. A wide range in isotope values was observed at the study site. The TCE varies between -35.6‰ and -21.8‰ and from 1.6‰ to 3.2‰ for δ(13) C and δ(37) Cl, respectively. In case of cis-1,2-dichloroethene, the isotope values range between -36.3‰ and -18.9‰ and from 2.4‰ to 4.7‰ for δ(13) C and δ(37) Cl, respectively. The dual isotope approach represented by a plot of δ(13) C vs. δ(37) Cl shows the municipal well samples grouped in a domain clearly separate from all other samples from the property with the comprehensive well network. The CSIA results collected under non-pumping and short-term pumping conditions thus indicate that this particular property, which has been studied intensively for several years, is not a substantial contributor of the TCE presently in the municipal well under non-pumping conditions. This case study demonstrates that CSIA signatures would have been useful much earlier in the quest to examine sources of the TCE in the municipal well if bedrock monitoring wells had been located at several depths beneath each of the potential TCE-contributing properties. Moreover, the CSIA results show that microbial reductive dechlorination of TCE occurs in some parts of the bedrock aquifer. At this site, the use of CSIA for C and Cl in combination with analyses of VOC and redox parameters proved to be important due to the complexity introduced by

  1. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Jordi, E-mail: jordi.palau@unine.ch [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Marchesi, Massimo [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Chambon, Julie C.C. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Aravena, Ramon [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Canals, Àngels [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain); Binning, Philip J.; Bjerg, Poul L. [Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby (Denmark); Otero, Neus; Soler, Albert [Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona, Martí i Franquès, s/n 08028 Barcelona (Spain)

    2014-03-01

    The use of compound specific multi-isotope approach (C and Cl) in the characterization of a chlorinated ethenes contaminated fractured aquifer allows the identification of several sources and contaminant plumes, as well as the occurrence of biodegradation and mixing processes. The study site is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon, showed a wide range in δ{sup 13}C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ{sup 37}Cl values for TCE in the contaminant sources, ranging from + 0.53 to + 0.66‰. Variations of δ{sup 37}Cl and δ{sup 13}C in the different contaminant plumes were used to investigate the role of biodegradation in groundwater. Moreover, the isotopic data were incorporated into a reactive transport model for determination of whether the isotope pattern observed downstream from the tank's source could be explained by the simultaneous effect of mixing and biodegradation. The results demonstrate that a multi-isotope approach is a valuable tool for characterization of complex sites such as fractured bedrock aquifer contaminated by multiple sources, providing important information which can be used by consultants and site managers to prioritize and design more successful remediation strategies. - Highlights: • Origin and fate of CAHs in groundwater by means of multi CSIA ({sup 13}C,{sup 35}Cl) survey • Innovative/new approach tested in a fractured bedrock site • Differentiation of distinct CAH sources • Biodegradation and source mixing recognition in the aquifer.

  2. A dynamic perennial firn aquifer

    Science.gov (United States)

    Kohler, J.; Christianson, K.; van Pelt, W. J. J.

    2015-12-01

    Ice-penetrating radar and GPS observations are used to reveal a perennial firn aquifer (PFA) on a high icefield in Svalbard. This PFA appears to be fully analogous to those found in Greenland. A bright, widespread radar reflector separates relatively dry and water-saturated firn. This surface, the phreatic firn water table, is deeper beneath local surface elevation maxima, shallower in surface lows, and steeper where the surface is steep. The PFA is recharged by downward percolation of near-surface meltwater, and drained by flow subparallel to ice flow and the glacier surface. The water table of the PFA rises with increasing meltwater supply during summer, especially during warm years, and drops during winter. The reflector cross-cuts snow stratigraphy; we use the apparent deflection of accumulation layers due to the higher dielectric permittivity below the water table to infer that the firn pore space becomes progressively more saturated as depth increases. Radar data collected over several years indicate that the PFA responds rapidly (sub-annually) to the surface melt forcing. We use a coupled surface energy-balance and firn model, forced with from regional climate model data for the years 1961-2012, to estimate the amount of retained surface melt available to recharge the PFA. Results suggest that the water amount flowing into and out of the PFA is substantial, such that the PFA is capable of providing significant input to the englacial hydrology system.

  3. Imaging cross fault multiphase flow using time resolved high pressure-temperature synchrotron fluid tomography: implications for the geological storage of carbon dioxide within sandstone saline aquifers

    Science.gov (United States)

    Seers, Thomas; Andrew, Matthew; Bijeljic, Branko; Blunt, Martin; Dobson, Kate; Hodgetts, David; Lee, Peter; Menke, Hannah; Singh, Kamaljit; Parsons, Aaron

    2015-04-01

    Applied shear stresses within high porosity granular rocks result in characteristic deformation responses (rigid grain reorganisation, dilation, isovolumetric strain, grain fracturing and/or crushing) emanating from elevated stress concentrations at grain contacts. The strain localisation features produced by these processes are generically termed as microfaults (also shear bands), which occur as narrow tabular regions of disaggregated, rotated and/or crushed grains. Because the textural priors that favour microfault formation make their host rocks (esp. porous sandstones) conducive to the storage of geo-fluids, such structures are often abundant features within hydrocarbon reservoirs, aquifers and potential sites of CO2 storage (i.e. sandstone saline aquifers). The porosity collapse which accompanies microfault formation typically results in localised permeability reduction, often encompassing several orders of magnitude. Given that permeability is the key physical parameter that governs fluid circulation in the upper crust, this petrophysical degradation implicates microfaults as being flow impeding structures which may act as major baffles and/or barriers to fluid flow within the subsurface. Such features therefore have the potential to negatively impact upon hydrocarbon production or CO2 injection, making their petrophysical characterisation of considerable interest. Despite their significance, little is known about the pore-scale processes involved in fluid trapping and transfer within microfaults, particularly in the presence of multiphase flow analogous to oil accumulation, production and CO2 injection. With respect to the geological storage of CO2 within sandstone saline aquifers it has been proposed that even fault rocks with relatively low phyllosilicate content or minimal quartz cementation may act as major baffles or barriers to migrating CO2 plume. Alternatively, as ubiquitous intra-reservoir heterogeneities, micro-faults also have the potential to

  4. Experimental and modeling results on geochemical impacts of leaking CO2 from subsurface storage reservoirs to an unconfined oxidizing carbonate aquifer

    Science.gov (United States)

    Qafoku, N. P.; Bacon, D. H.; Shao, H.; Lawter, A.; Wang, G.; Brown, C. F.

    2013-12-01

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate risks to groundwater quality and develop a systematic understanding on how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Solid materials (rocks and slightly weathered rocks) from an unconfined aquifer, i.e., the Edwards Aquifer in Texas, were used in this investigation. The experimental part consisted of: 1) wet chemical acid extractions (8M HNO3 solution at 90 0C); 2) batch experiments conducted at low solid to solution ratios to study time-dependent releases of major, minor and trace elements during periodic or continuous exposure to CO2 gas; 3) hydraulically saturated column experiments conducted under continuous and stop-flow conditions using a CO2 gas saturated synthetic groundwater; 4) pre- and post-treatment solid phase characterization studies. Major variables tested included reaction time (0-336 hours), CO2 flow rate (50 to 350 ml/min), brine concentration (0.1 and 1 M NaCl), rock type and particle size fraction. We are currently investigating the solution composition effects (i.e., presence of contaminants in the initial solution) on the fate and behavior of potential contaminants (As, Pb and Cd) in these systems. Results from the solid phase characterization studies showed that the mineralogy of the Edwards aquifer materials was dominated by calcite. Quartz and montmorillonite were also present in some samples. Acid extractions confirmed that the solid phase had appreciable amounts of potential contaminants (As, Cd, Cr, Cu, Pb and Zn). However, the results from the batch and column experiments demonstrated that these contaminants

  5. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  6. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes

    DEFF Research Database (Denmark)

    Palau, Jordi; Marchesi, Massimo; Chambon, Julie Claire Claudia;

    2014-01-01

    is located in Spain with contamination resulting in groundwater concentrations of up to 50 mg/L of trichloroethene (TCE), the most abundant chlorinated ethene, and 7 mg/L of tetrachloroethene (PCE). The potential sources of contamination including abandoned barrels, an underground tank, and a disposal lagoon......, showed a wide range in δ13C values from − 15.6 to − 40.5‰ for TCE and from − 18.5 to − 32.4‰ for PCE, allowing the use of isotope fingerprinting for tracing of the origin and migration of these contaminants in the aquifer. In contrast, there is no difference between the δ37Cl values for TCE...

  7. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.

    2007-03-16

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  8. Assessment of intrinsic bioremediation of gasoline contamination in the shallow aquifer, Laurel Bay Exchange, Marine Corps Air Station Beaufort, South Carolina

    Science.gov (United States)

    Landmeyer, J.E.; Chapelle, Francis; Bradley, P.M.

    1996-01-01

    Laboratory, field, and digital solute-transport- modeling studies demonstrate that microorganisms indigenous to the shallow ground-water system at Laurel Bay Exchange, Marine Corps Air Station Beaufort, South Carolina, can degrade petroleum hydrocarbons in gasoline released at the site. Microorganisms in aquifer sediments incubated in the laboratory under aerobic and anaerobic conditions mineralized radiolabeled carbon 14-toluene to 14C-carbon dioxide with first-order rate constants of Kbio = -0.640 per day and Kbio = -0.003 per day, respectively. Digital solute- transport modeling using the numerical code SUTRA revealed that anaerobic biodegradation of benzene occurs with a first-order rate constant near Kbio = -0.00025 per day. Sandy aquifer material beneath Laurel Bay Exchange is characterized by relatively high hydraulic conductivities (Kaq = 8.9 to 17.3 feet per day), average ground-water flow rate of about 60 feet per year, and a relatively uniform hydraulic gradient of 0.004 feet per foot. The sandy aquifer material also has low adsorptive potentials for toluene and benzene (both about Kad = 2.0 x 10-9 cubic feet per milligram), because of the lack of natural organic matter in the aquifer. The combination of this ground-water-flow rate and absence of significant adsorptive capacity in the aquifer permits toluene and benzene concentrations to be detected downgradient from the source area in monitoring wells, even though biodegradation of these compounds has been demonstrated. Solute-transport simulations, however, indicate that toluene and benzene will not reach the Broad River, the nearest point of contact with wildlife or human populations, about 3,600 feet west of the site boundary. These simulations also show that contamination will not be transported to the nearest Marine Corps property line about 2,400 feet south of the site. This is primarily because the source of contaminants has essentially been removed, and the low adsorptive capacity of the aquifer

  9. Using Sealed Wells to Measure Water Levels Beneath Streams and Floodplains.

    Science.gov (United States)

    Noorduijn, Saskia L; Cook, Peter G; Wood, Cameron; White, Nick

    2015-01-01

    The design of wells beneath streams and floodplains has often employed with tall standpipes to prevent incursion of surface water into the well during flood events. Here, an approach has been presented to minimise the infrastructure demands in these environments by sealing the well top (e.g., prevent water entering the well) and monitor the total pressure in the water column using an absolute (non-vented) pressure transducer. The sealed well design was tested using a laboratory experiment where the total pressure responses were monitored in both an unsealed and sealed well, while the water level was varied. It is observed that, whether the well is sealed or not, the total pressure at a given depth in the aquifer will be equal to that within the well. This indicates that the sealed well design is a viable alternative to tall standpipes and also facilitates installation of wells beneath streams and floodplains.

  10. Lower Cretaceous aquifers

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Lower Cretaceous aquifers in the states of Montana, Wyoming, South Dakota, Kansas, Nebraska, Iowa, and Minnesota..

  11. EPA Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information on sole source aquifers (SSAs) is widely used in assessments under the National Environmental Policy Act and at the state and local level. A national...

  12. Hydrologic analysis of data for the Lost Lake Aquifer Zone of the Steel Pond Aquifer at recovery well RWM-16

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.; Cook, J.W.; Hiergesell, R.A.

    1993-04-01

    This report presents the results of an analysis of data obtained from a large-scale, multiple-well aquifer test of the sandy unit referred to as the Lost Lake Aquifer Zone of the Steed Pond Aquifer in an area just south of the A and M Areas. Pumping was conducted at recovery well RWM-16, which is located near the MSB-40 well cluster, approximately 4000 feet south of the M-Area Basin. RWM-16 is located in the lower left portion of Figure 1, which also illustrates the general relationship of the testing site to the A and M Areas and other monitor wells. The data generated from testing RWM-16 was used to calculate estimates of transmissivity and storage for the aquifer system within which RWM-16 is screened. These parameters are related to hydraulic conductivity and storativity of the aquifer system by the vertical thickness of the unit. The leakage coefficient for the overlying confining unit is also estimated. This information is needed to refine conceptual understanding of the groundwater flow system beneath the A and M Areas. The refined conceptual model will more adequately describe the pattern of groundwater flow, and will contribute to updating the {open_quotes}Zone of Capture{close_quotes} model that has been used in the initial phases of designing a groundwater remediation system in the A and M Areas.

  13. Historical potentiometric surface of the Edwards-Trinity aquifer system and contiguous hydraulically connected units, west-central Texas

    Science.gov (United States)

    Bush, Peter W.; Ardis, Ann F.; Wynn, Kirby H.

    1993-01-01

    The Edwards-Trinity aquifer system is a sequence of near-surface, hydraulically connected, Cretaceous carbonate and quartzose clastic rocks that underlie about 42,000 mi2 of west-central Texas (fig. 1). The aquifer system is currently (1991) being studied as a part of the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) program, which is intended to describe the regional hydrogeology of important aquifer systems nationwide.

  14. Origin and structures of groundwater humic substances from three Danish aquifers

    DEFF Research Database (Denmark)

    Grøn, C.; Wassenaar, L.; Krog, M.

    1996-01-01

    Structural, chemical, and isotopic parameters were used to identify the origins of groundwater humic substances from three Danish aquifers. A variety of analytical techniques (visible light absorption, molecular weight distribution, C-13-NMR spectroscopy, elemental composition with major elements...... and halogens, hydrolyzable amino acids and carbohydrates, carbon isotopes) applied to aquatic humic and fulvic acids led to consistent structural interpretations for each of the three aquifers studied. For humic substances in two-aquifers, the analyses suggested source rocks in agreement with geological...... and hydrogeochemical information. In a third aquifer, source rock identification was inconclusive, and multiple fossil and recent organic carbon sources are suggested....

  15. Factors affecting the movement and persistence of nitrate and pesticides in the surficial and upper Floridan aquifers in two agricultural areas in the southeastern United States

    Science.gov (United States)

    Katz, B.G.; Berndt, M.P.; Crandall, C.A.

    2014-01-01

    Differences in the degree of confinement, redox conditions, and dissolved organic carbon (DOC) are the main factors that control the persistence of nitrate and pesticides in the Upper Floridan aquifer (UFA) and overlying surficial aquifer beneath two agricultural areas in the southeastern US. Groundwater samples were collected multiple times from 66 wells during 1993–2007 in a study area in southwestern Georgia (ACFB) and from 48 wells in 1997–98 and 2007–08 in a study area in South Carolina (SANT) as part of the US Geological Survey National Water-Quality Assessment Program. In the ACFB study area, where karst features are prevalent, elevated nitrate-N concentrations in the oxic unconfined UFA (median 2.5 mg/L) were significantly (p = 0.03) higher than those in the overlying oxic surficial aquifer (median 1.5 mg/L). Concentrations of atrazine and deethylatrazine (DEA; the most frequently detected pesticide and degradate) were higher in more recent groundwater samples from the ACFB study area than in samples collected prior to 2000. Conversely, in the SANT study area, nitrate-N concentrations in the UFA were mostly <0.06 mg/L, resulting from anoxic conditions and elevated DOC concentrations that favored denitrification. Although most parts of the partially confined UFA in the SANT study area were anoxic or had mixed redox conditions, water from 28 % of the sampled wells was oxic and had low DOC concentrations. Based on the groundwater age information, nitrate concentrations reflect historic fertilizer N usage in both the study areas, but with a lag time of about 15–20 years. Simulated responses to future management scenarios of fertilizer N inputs indicated that elevated nitrate-N concentrations would likely persist in oxic parts of the surficial aquifer and UFA for decades even with substantial decreases in fertilizer N inputs over the next 40 years.

  16. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    Science.gov (United States)

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  17. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2012

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2013-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2011, surface-water diversions of about 199,000 acre-feet to Sand Hollow Reservoir have allowed the reservoir to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir altitude and nearby pumping from production wells. Between 2004 and 2011, a total of about 19,000 acre-feet of groundwater was withdrawn by these wells for municipal supply. In addition, a total of about 21,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2011, about 106,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water quality was sampled at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge as it moved through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2012, this recharge arrived at four monitoring wells located within about 1,000 feet of the reservoir. Changing geochemical conditions at five other monitoring wells could indicate other processes, such as changing groundwater levels and mobilization of vadose-zone salts, rather than arrival of reservoir recharge.

  18. How important are biogeochemical hotspots at aquifer-river interfaces for surface water and groundwater quality?

    Science.gov (United States)

    Krause, S.; Blume, T.; Weatherill, J.; Munz, M.; Tecklenburg, C.; Angermann, L.; Cassidy, N. J.

    2012-04-01

    The mixing of groundwater (GW) and surface water (SW) can have substantial impact on the transformation of solutes transported between aquifer and river. The assessment of biogeochemical cycling at reactivity hotspots as the aquifer-river interface and its implications for GW and SW quality require detailed understanding of the complex patterns of GW-SW exchange fluxes and residence time distributions in particular under changing climatic and landuse conditions. This study presents combined experimental and model-based investigations of the physical drivers and chemical controls of nutrient transport and transformation at the aquifer-river interfaces of two upland and lowland UK rivers. It combines the application of in-stream geophysical exploration techniques, multi-level mini-piezometer networks, active and passive heat tracing methods (including fibre-optic distributed temperature sensing - FO-DTS) for identifying hyporheic exchange fluxes and residence time distributions with multi-scale approaches of hyporheic pore-water sampling and reactive tracers for analysing the patterns of streambed redox conditions and chemical transformation rates. The analysis of hyporheic pore water from nested multi-level mini piezometers and passive gel probe samplers revealed significant spatial variability in streambed redox conditions and concentration changes of nitrogen species, dissolved oxygen and bio-available organic carbon. Hot spots of increased nitrate attenuation were identified beneath semi-confining peat lenses in the streambed of the investigated lowland river. The intensity of concentration changes underneath the confining peat pockets correlated with the state of anoxia in the pore water as well as the supply of organic carbon and hyporheic residence times. In contrast, at locations where flow inhibiting peat layers were absent or disrupted - fast exchange between aquifer and river caused a break-through of nitrate without significant concentration changes along

  19. Hydrogeology, ground-water movement, and subsurface storage in the Floridan aquifer system in southern Florida

    Science.gov (United States)

    Meyer, Frederick W.

    1989-01-01

    The Floridan aquifer system of southern Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the aquifer system in southern Florida generally is at depths ranging from 500 to 1,000 feet, and the average thickness is about 3,000 feet. It is divided into three general hydrogeologic units: (1) the Upper Floridan aquifer, (2) the middle confining unit, and (3) the Lower Floridan aquifer. The Upper Floridan aquifer contains brackish ground water, and the Lower Floridan aquifer contains salty ground water that compares chemically to modern seawater. Zones of high permeability are present in the Upper and Lower Floridan aquifers. A thick, cavernous dolostone in the Lower Floridan aquifer, called the Boulder Zone, is one of the most permeable carbonate units in the world (transmissivity of about 2.5 x 107 feet squared per day). Ground-water movement in the Upper Floridan aquifer is generally southward from the area of highest head in central Florida, eastward to the Straits of Florida, and westward to the Gulf of Mexico. Distributions of natural isotopes of carbon and uranium generally confirm hydraulic gradients in the Lower Floridan aquifer. Groundwater movement in the Lower Floridan aquifer is inland from the Straits of Florida. The concentration gradients of the carbon and uranium isotopes indicate that the source of cold saltwater in the Lower Floridan aquifer is seawater that has entered through the karat features on the submarine Miami Terrace near Fort Lauderdale. The relative ages of the saltwater suggest that the rate of inland movement is related in part to rising sea level during the Holocene transgression. Isotope, temperature, and salinity anomalies in waters from the Upper Floridan aquifer of southern Florida suggest upwelling of saltwater from the Lower Floridan aquifer. The results of the study support the hypothesis of circulating relatively modern seawater and cast doubt on the theory that the

  20. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.; Macdonald, Q.C.; Schubert, S.E.

    1994-11-01

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changes in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.

  1. SRP baseline hydrogeologic investigation: Aquifer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  2. Adsorption/desorption of phosphorus on limestone from the Biscayne Aquifer under freshwater and seawater conditions.

    Science.gov (United States)

    Areas of seawater intrusion are known geochemically active regions particularly in limestone aquifers, where carbonate mineral dissolution and ion exchange reactions are important. Both of these processes can lead to a release of phosphorus from the aquifer matrix to the groundwater as seawater int...

  3. Inquiry and Aquifers.

    Science.gov (United States)

    Leuenberger, Ted; Shepardson, Daniel; Harbor, Jon; Bell, Cheryl; Meyer, Jason; Klagges, Hope; Burgess, Willie

    2001-01-01

    Presents inquiry-oriented activities that acquaint students with groundwater sources, movement of water through aquifers, and contamination of groundwater by pollution. In one activity, students use well log data from web-based resources to explore groundwater systems. Provides sample well log data for those not having access to local information.…

  4. Thickness of the surficial aquifer, Delmarva Peninsula, Maryland and Delaware

    Science.gov (United States)

    Denver, Judith; Nardi, Mark R.

    2017-01-01

    ). Stream incision through the surficial aquifer into older fine-textured sediments is more common in the northern part of the Peninsula where confined aquifers and their confining beds subcrop beneath the surficial aquifer. The potential for nitrate transport is greatest where relatively coarse sediments of the unconfined surficial aquifer (such as sand and gravel), are present beneath uplands and streams. Where these sediments are truncated and the streambed is incised into underlying fine-textured sediments, the potential for nitrate transport is much less and typically limited to stream-bank seeps that flow across the floodplain. In parts of south-central Maryland and southern Delaware the surficial aquifer sediments are complex with surficial sandy sediments generally less than 20 ft thick (indicated as 19 ft on the map). They include the Parsonsburg Sand and some surficial sandy facies of the Omar Fm. underlain by predominantly fine-textured sediments of the Walston Silt and Omar Fm. (Denney and others, 1979; Owens and Denney, 1979). Even though the surficial aquifer is relatively thin in this area, extensive ditching of flat poorly drained farmland allows seasonal transport of nitrate from groundwater to streams when the water table is above the base of the ditches (Lindsey and others, 2003). Geologic units of the Coastal Lowlands that surround the Peninsula are relatively thin in many areas and are primarily composed of fine-grained estuarine deposits with some coarse-textured sediments, in particular remnant beach-ridge and dune deposits (Ator and others, 2005). The Kent Island Fm. (Owens and Denney, 1986), which is part of the Coastal Lowlands on the western side of the Peninsula, has predominantly fine-grained sediments and is not included in the surficial aquifer in Maryland, as defined by Bachman and Wilson (1984); the surficial aquifer is shown to have 0 ft thickness on the map in the area mapped as Kent Island Fm. Also shown on the map as 0 ft thickness are

  5. Investigating groundwater flow between Edwards and Trinity aquifers in central Texas.

    Science.gov (United States)

    Wong, C I; Kromann, J S; Hunt, B B; Smith, B A; Banner, J L

    2014-01-01

    Understanding the nature of communication between aquifers can be challenging when using traditional physical and geochemical groundwater sampling approaches. This study uses two multiport wells completed within Edwards and Trinity aquifers in central Texas to determine the degree of groundwater inter-flow between adjacent aquifers. Potentiometric surfaces, hydraulic conductivities, and groundwater major ion concentrations and Sr isotope values were measured from multiple zones within three hydrostratigraphic units (Edwards and Upper and Middle Trinity aquifers). Physical and geochemical data from the multiport wells were combined with historical measurements of groundwater levels and geochemical compositions from the region to characterize groundwater flow and identify controls on the geochemical compositions of the Edwards and Trinity aquifers. Our results suggest that vertical groundwater flow between Edwards and Middle Trinity aquifers is likely limited by low permeability, evaporite-rich units within the Upper and Middle Trinity. Potentiometric surface levels in both aquifers vary with changes in wet vs. dry conditions, indicating that recharge to both aquifers occurs through distinct recharge areas. Geochemical compositions in the Edwards, Upper, and Middle Trinity aquifers are distinct and likely reflect groundwater interaction with different lithologies (e.g., carbonates, evaporites, and siliceous sediments) as opposed to mixing of groundwater between the aquifers. These results have implications for the management of these aquifers as they indicate that, under current conditions, pumping of either aquifer will likely not induce vertical cross-formational flow between the aquifers. Inter-flow between the Trinity and the Edwards aquifers, however, should be reevaluated as pumping patterns and hydrogeologic conditions change.

  6. Imaging of subducted lithosphere beneath South America

    NARCIS (Netherlands)

    Engdahl, E.R.; Hilst, R.D. van der; Berrocal, J.

    1995-01-01

    Tomographic images are produced for the deep structure of the Andean subduction zone beneath western South America. The data used in the imaging are the delay times of P, pP and pwP phases from relocated teleseismic earthquakes in the region. Regionally, structural features larger than about 150 km

  7. Management of aquifer recharge in Lebanon by removing seawater intrusion from coastal aquifers.

    Science.gov (United States)

    Masciopinto, Costantino

    2013-11-30

    This study investigates the feasibility of management of aquifer recharge (MAR) in Lebanon by designing well barriers to remove seawater intrusion from the fractured carbonate aquifers. Groundwater flow and saltwater/freshwater 50% sharp interface have been modeled along the coastal area using the Ghyben-Herzberg theory. The groundwater flow simulations have been supported by field transmissivity estimations and depth measurements carried out on 44 wells during 2003. Results have shown the seawater intrusion in coastal aquifers at Jieh and Damour regions. Three well-injection barriers have been proposed. The water volumes for recharge and the barrier positions have been defined by means of groundwater flow simulations. MAR can provide a valuable contribution to colloid (even pathogen) removal from injectant water, although during water infiltration in subsoil the reduction of aquifer permeability causes clogging. A simple new model for estimating the soil-rock permeability reduction due to the well clogging has been presented. The MAR, including the soil aquifer treatment at Damour and Jieh regions, has been studied by considering aquifer transmissivity (and soil porosity) reduction caused by clogging. Furthermore, the appropriate mixing of the injectant water by using reclaimed water, groundwater and surface water can be simulated using the proposed models. The time required to achieve 5% of rock permeability reduction at the proposed well barriers ranged from 71 to 935 d, by changing water quality and flow rate for recharge. This study can assist regional governments with water management in areas affected by scarcity of freshwater by implementing appropriate well-barrier projects.

  8. Application of nitrate and water isotopes to assessment of groundwater quality beneath dairy farms in California

    Science.gov (United States)

    Young, M. B.; Harter, T.; Kendall, C.; Silva, S. R.

    2009-12-01

    In California’s Central Valley, nitrate contamination of drinking water wells is a significant concern, and there are multiple potential sources of nitrate in this area including septic discharge, synthetic and manure fertilizers, and concentrated animal feeding operations. Dairies represent the majority of animal feeding operations in California, and have been shown to be potential sources of nitrate, salinity, dissolved organic carbon, and pathogens to groundwater. Within individual dairies, different land use areas including barns and freestalls, corrals, liquid waste lagoons, and fields for forage crops (often fertilized with animal waste, synthetic fertilizer, or both), each of which may have different impacts on the groundwater. In this study, groundwater samples were collected from two dairies in the San Joaquin Valley, where the water table is fairly shallow, and from five dairies in the Tulare Lake Basin, where the water table is much deeper. In each dairy, nitrate isotopes, water isotopes, nutrient concentrations, and other chemical and physical parameters were measured in monitoring wells located within different land use areas of the dairies. Across all sampled dairy wells, δ15N-NO3 ranged from +3.2 to +49.4‰, and δ18O-NO3 ranged from -3.1 to +19.2‰. Mean nitrate concentrations, δ15N-NO3, and δ18O-NO3 were significantly higher in the northern (San Joaquin Valley) dairy wells in comparison to the southern (Tulare Lake Basin) dairy wells. No consistent differences in nitrate isotopic compositions were found between the different land use areas, and large spatial variability in both nitrate concentrations and nitrate isotopic composition was observed within most of the individual dairies. These results emphasize the challenges associated with monitoring groundwater beneath dairies due to high spatial heterogeneity in the aquifer and groundwater constituents. At four of the seven dairies, δ18O and δ2H of the ground water in wells located

  9. Biotite and chlorite weathering at 25 degrees C: the dependence of pH and (bi)carbonate on weathering kinetics, dissolution stoichiometry, and solubility; and the relation to redox conditions in granitic aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Malmstroem, M.; Banwart, S. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Inorganic Chemistry; Duro, L. [Universidad Politecnica de Cataluna, Barcelona (Spain). Dept. de Ingneria Quimica; Wersin, P.; Bruno, J. [MBT Technologia Ambiental, Cerdanyola (Spain)

    1995-01-01

    We have studied the kinetics and thermodynamics of biotite and chlorite weathering in the pH range 2aquifers (810{sup 2}-10{sup 2} year); and 2. the development of characteristic Fe(III) concentrations (10{sup -5} M in 10{sup -}1 years). The Fe(III)-bearing clay minerals formed during these experiments are similar to the fracture-filling-material observed at the Aespoe Hard Rock Laboratory. Such clays can provide reducing capacity to a repository. They can help maintain anoxic conditions by consuming oxygen that enters the repository during the construction and operation phases thereby helping maintain the redox stability of the repository regarding canister corrosion. The half-life of oxygen trapped in the repository at the time of closure depends on the rate of oxygen uptake by Fe(II) minerals, sulfide minerals and organic carbon. Fe(II)-clay minerals are important to the redox stability of a repository, as well as providing a sorption barrier to radionuclide migration. 107 refs, 52 figs, 35 tabs.

  10. Numerical Modeling of Natural and Enhanced Denitrification Processes in Aquifers

    Science.gov (United States)

    Kinzelbach, Wolfgang; SchäFer, Wolfgang; Herzer, JöRg

    1991-06-01

    Nitrate modeling in the groundwater environment must incorporate microbial denitrification as the major process of nitrate elimination. A multispecies transport model is presented which describes the interaction of oxygen, nitrate, organic carbon, and bacteria. Three phases (mobile pore water, biophase, and aquifer material) are taken into account. The model is applied to a natural aquifer situation as well as to an in situ remediation case where nitrate is employed as an oxidant. In the natural aquifer it is shown that the release of organic carbon from the matrix is the controlling factor for denitrification. In the remediation case, on the other hand, the data suggest that diffusion limitation of the nutrient supply to the biophase controls bacterial growth.

  11. Aquifer test at well SMW-1 near Moenkopi, Arizona

    Science.gov (United States)

    Carruth, Rob; Bills, Donald J.

    2012-01-01

    The Hopi villages of Lower Moencopi and Upper Moenkopi are on the Hopi Indian Reservation south of Tuba City in northern Arizona. These adjacent Hopi villages, located west and north of the confluence of Pasture Canyon Wash and Moenkopi Wash, are dependent on groundwater withdrawals from three wells that penetrate the N aquifer and from two springs that discharge from the N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and is composed of thick beds of sandstone between less permeable layers of siltstone and mudstone. The fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells; however, the aquifer is moderately productive at yields generally less than 25 gallons per minute in the study area. In recent years, the water level has declined in the three public-supply wells and the flow from the springs has decreased, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. In addition to the challenge imposed by declining groundwater levels, the water-supply wells and springs are located about 2 miles downgradient from the Tuba City Landfill site where studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are higher than regional concentrations in the N aquifer. In August 2008, the U.S. Geological Survey, in cooperation with the Hopi Tribe, conducted an aquifer test on well SMW-1, designed to help the Hopi Tribe determine the potential yield and water quality of the N aquifer south of Moenkopi Wash as a possible source of additional water supply. Well SMW-1 was drilled south of Moenkopi Wash to a depth of 760 feet below land surface before being backfilled and cased to about 300 feet. The well penetrates, in descending order, the Navajo Sandstone and the Kayenta Formation, both units of the N aquifer. The pre-test water level in the well was 99.15 feet below land

  12. Microbiology of shallow subsurface aquifer and carbonate rocks studied by culture-dependent and culture-independent methods. Preliminary results on an underground laboratory, the LSBB, Rustrel, France

    Directory of Open Access Journals (Sweden)

    Galès Grégoire

    2016-01-01

    Full Text Available We investigated the microbiology of a shallow subsurface site, the LSBB, located near Avignon. This site lies in carbonate rocks, belonging to the Urgonian facies. Rock, concrete and water samples were collected and directly transferred to the laboratory. Studies of microorganisms as pure cultures are the only way to get their real physiological properties. Nevertheless, microbiologists cannot cultivate and isolate the majority of microorganisms for several reasons, one being our lack of understanding of their minimal needs. Molecular studies, e.g. extraction and sequencing of the total nucleic acids present in an environment provide phylogenetic and metabolic information on uncultivated microorganisms. We performed aerobic and anaerobic culture with various electron acceptors and donors, searching for heterotrophic, methanogenic, sulphate- nitrate- and FeIII- reducing Prokaryotes. We also performed DNA extractions and PCR amplification of ribosomal RNA genes, to test if our protocols were adapted to this environment. Our results show that the LSBB galleries are colonized by a low diversity microbiote, with a strong influence of anthropogenic activities. Further studies will link the microorganisms biodiversity and the petrophysic properties of rocks.

  13. Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer

    Science.gov (United States)

    Ulrich, G.A.; Breit, G.N.; Cozzarelli, I.M.; Suflita, J.M.

    2003-01-01

    Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 ??M SO4-2??day-1, respectively. The concentration of sulfate in the core of the leachate plume was well below 20 ??M and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (???100 ??M) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide

  14. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  15. Reactivity of Organic Matter and other Reductants in Aquifer Sediments

    NARCIS (Netherlands)

    Hartog, N.

    2003-01-01

    The molecular composition and the carbon isotope signature of sedimentary organic matter (SOM) and indicate that SOM is predominantly derived from higher land plants in sediments of both terrestrial as marine origins. The reactivity of SOM in the aquifer sediments studied is determined by the extent

  16. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    Energy Technology Data Exchange (ETDEWEB)

    R.G. Allis; J. Moore; S. White

    2005-05-16

    Soil CO{sub 2} flux surveys have been conducted over known CO{sub 2} reservoirs at Farnham Dome, Utah, Crystal Geyser-Ten Mile Graben in Utah and Springerville-St. Johns, Arizona. No anomalous CO{sub 2} flux was detected at the Farnham Dome and Springerville-St. Johns. At Crystal Geyser-Ten Mile Graben, localized areas of anomalously high CO{sub 2} flux ({approx}100 g m{sup -2} day{sup -1}) occur along a fault zone near visibly degassing features. Isotopic measurements on CO{sub 2} collected from nearby springs indicate that it originated at depth. Evidence of widespread vein calcite at the surface (Farnham Dome) and travertine deposits at the other two areas suggests that discharge of CO{sub 2}-rich fluids has occurred in the past. Despite the lack of evidence for significant present day leakage of CO{sub 2} to the atmosphere at Springerville-St. Johns and Crystal Geyser-Ten Mile Graben, there are significant outflows of high-bicarbonate water in both areas suggesting continuous migration of CO{sub 2} in the aqueous phase from depth. The very localized nature of the CO{sub 2} flux anomalies, and the outflow of ground water containing dissolved CO{sub 2} present challenges for effective, long term monitoring of CO{sub 2} leakage.

  17. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  18. Sole Source Aquifers for NY and NJ

    Data.gov (United States)

    U.S. Environmental Protection Agency — This layer is the designated sole source aquifers of New York and New Jersey. A Sole Source Aquifer, is an aquifer that supplies 50% or more of the drinking water...

  19. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  20. Reef and nonreef aquifers - A comparison of hydrogeology and geochemistry, northwestern Indiana

    Science.gov (United States)

    Schnoebelen, D.J.; Krothe, N.C.

    1999-01-01

    The principal bedrock aquifer system across much of Indiana consists of carbonate rocks of Silurian and Devonian age. The Silurian-Devonian aquifer system is used extensively for irrigation in northwestern Indiana and is approximately 170 m thick. Reef and nonreef carbonate aquifers in northwestern Indiana were assessed using hydrogeology (lithology, geophysical logs, aquifer tests) and geochemistry (major ions and stable isotopes). The study showed differences in water quantity and quality between the reef and nonreef aquifers. The reef aquifer had few shales, abundant fossiliferous material (up to 100 m thick), and high porosities (10 to 15%). The nonreef aquifer had abundant shales, less fossiliferous material (a few meters thick), and low porosities. Total transmissivities at the reef sites were 697 m2/d, (meters squared per day) and 4831 m2/d, compared to 46 m2/d at the nonreef site. Flowpaths in the nonreef aquifer were associated with fractures and poorly connected moldic porosity with larger fractures and better connected vuggy porosity in the reef aquifer. Water chemistry data for the nonreef aquifer showed mean concentrations of sodium (235 mg/L [milligrams per liter]), sulfate (160 mg/L), sulfide (13 mg/L), fluoride (2.7 mg/L), and dissolved solids (635 mg/L) approximately two to five times larger when compared to mean concentrations in the reef aquifer. Ground water at the nonreef site was classified as a sodium-bicarbonate type while that at the reef sites was calcium-magnesium bicarbonate. The oxygen/deuterium isotope data indicates recharge from modern precipitation and not Pleistocene-age recharge.The principal bedrock aquifer system across much of Indiana consists of carbonate rocks of Silurian and Devonian age. The Silurian-Devonian aquifer system is used extensively for irrigation in northwestern Indiana and is approximately 170 m thick. Reef and nonreef carbonate aquifers in northwestern Indiana were assessed using hydrogeology (lithology

  1. Geochemical processes during five years of aquifer storage recovery.

    Science.gov (United States)

    Herczeg, Andrew L; Rattray, Karen J; Dillon, Peter J; Pavelic, Paul; Barry, Karen E

    2004-01-01

    A key factor in the long-term viability of aquifer storage recovery (ASR) is the extent of mineral solution interaction between two dissimilar water types and consequent impact on water quality and aquifer stability. We collected geochemical and isotopic data from three observation wells located 25, 65, and 325 m from an injection well at an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia. The experiment involved five major injection cycles of a total of 2.5 x 10(5) m3 of storm water (total dissolved solids [TDS] approximately 150 mg/L) into the brackish (TDS approximately 2400 mg/L) aquifer. Approximately 60% of the mixture was pumped out during the fifth year of the experiment. The major effect on water quality within a 25 m radius of the injection well following injection of storm water was carbonate dissolution (35 +/- 6 g of CaCO3 dissolved/m3 of aquifer) and sulfide mineral oxidation (50 +/- 10 g as FeS2/m3 after one injection). < 0.005% of the total aquifer carbonate matrix was dissolved during each injection event, and approximately 0.2% of the total reduced sulfur. Increasing amounts of ambient ground water was entrained into the injected mixture during each of the storage periods. High 14C(DIC) activities and slightly more negative delta13C(DIC) values measured immediately after injection events show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant. There were no detectable geochemical reactions while pumping during the recovery phase in the fifth year of the experiment.

  2. University of Minnesota Aquifer Thermal Energy Storage Field Test Facility

    Science.gov (United States)

    Walton, M.; Hoyer, M. C.

    1982-12-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) Field Test Facility became operational. Experiments demonstrated that the Franconia-Ironton-Galesville aquifer will accept injection of 300 gpm (18.9 1 sec (-1)) at reasonable pressures with a heat buildup in the injection well of about 44 psi (31.6 m) over 8 days. Heating of the ground water caused precipitation of carbonate in the piping and injection well, but with proper water conditioning, the system will work satisfactorily at elevated temperatures.

  3. Specific yield, High Plains aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres (176,000...

  4. Hydrogeology of the gray limestone aquifer in southern Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2000-01-01

    Results from 35 new test coreholes and aquifer-test, water-level, and water-quality data were combined with existing hydrogeologic data to define the extent, thickness, hydraulic properties, and degree of confinement of the gray limestone aquifer in southern Florida. This aquifer, previously known to be present only in southeastern Florida (Miami-Dade, Broward, and Palm Beach Counties) below, and to the west of, the Biscayne aquifer, extends over most of central-south Florida, including eastern and central Collier County and southern Hendry County; it is the same as the lower Tamiami aquifer to the north, and it becomes the water-table aquifer and the upper limestone part of the lower Tamiami aquifer to the west. The aquifer generally is composed of gray, shelly, lightly to moderately cemented limestone with abundant shell fragments or carbonate sand, abundant skeletal moldic porosity, and minor quartz sand. The gray limestone aquifer comprises the Ochopee Limestone of the Tamiami Formation, and, in some areas, the uppermost permeable part of an unnamed formation principally composed of quartz sand. Underlying the unnamed formation is the Peace River Formation of the upper Hawthorn Group, the top of which is the base of the surficial aquifer system. Overlying the aquifer and providing confinement in much of the area is the Pinecrest Sand Member of the Tamiami Formation. The thickness of the aquifer is comparatively uniform, generally ranging from 30 to 100 feet. The unnamed formation part of the aquifer is up to 20 feet thick. The Ochopee Limestone accumulated in a carbonate ramp depositional system and contains a heterozoan carbonate-particle association. The principal rock types of the aquifer are pelecypod lime rudstones and floatstones and permeable quartz sands and sandstones. The pore types are mainly intergrain and separate vug (skeletal-moldic) pore spaces. The rock fabric and associated primary and secondary pore spaces combine to form a dual diffuse-carbonate

  5. Sources and sinks of methane beneath polar ice

    Science.gov (United States)

    Priscu, J. C.; Adams, H. E.; Hand, K. P.; Dore, J. E.; Matheus-Carnevali, P.; Michaud, A. B.; Murray, A. E.; Skidmore, M. L.; Vick-Majors, T.

    2014-12-01

    Several icy moons of the outer solar system carry subsurface oceans containing many times the volume of liquid water on Earth and may provide the greatest volume of habitable space in our solar system. Functional sub-ice polar ecosystems on Earth provide compelling models for the habitability of extraterrestrial sub-ice oceans. A key feature of sub-ice environments is that most of them receive little to no solar energy. Consequently, organisms inhabiting these environments must rely on chemical energy to assimilate either carbon dioxide or organic molecules to support their metabolism. Methane can be utilized by certain bacteria as both a carbon and energy source. Isotopic data show that methane in Earth's polar lakes is derived from both biogenic and thermogenic sources. Thermogenic sources of methane in the thermokarst lakes of the north slope of Alaska yield supersaturated water columns during winter ice cover that support active populations of methanotrophs during the polar night. Methane in the permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica varies widely in concentration and is produced either by contemporary methanogenesis or is a relic from subglacial flow. Rate measurements revealed that microbial methane oxidation occurs beneath the ice in both the arctic and Antarctic lakes. The first samples collected from an Antarctic subglacial environment beneath 800 m of ice (Subglacial Lake Whillans) revealed an active microbial ecosystem that has been isolated from the atmosphere for many thousands of years. The sediments of Lake Whillans contained high levels of methane with an isotopic signature that indicates it was produced via methanogenesis. The source of this methane appears to be from the decomposition of organic carbon deposited when this region of Antarctica was covered by the sea. Collectively, data from these sub-ice environments show that methane transformations play a key role in microbial community metabolism. The discovery of

  6. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  7. Hydrologic assessment of the shallow groundwater flow system beneath the Shinnecock Nation tribal lands, Suffolk County, New York

    Science.gov (United States)

    Noll, Michael L.; Rivera, Simonette L.; Busciolano, Ronald

    2016-12-02

    Defining the distribution and flow of shallow groundwater beneath the Shinnecock Nation tribal lands in Suffolk County, New York, is a crucial first step in identifying sources of potential contamination to the surficial aquifer and coastal ecosystems. The surficial or water table aquifer beneath the tribal lands is the primary source of potable water supply for at least 6 percent of the households on the tribal lands. Oyster fisheries and other marine ecosystems are critical to the livelihood of many residents living on the tribal lands, but are susceptible to contamination from groundwater entering the embayment from the surficial aquifer. Contamination of the surficial aquifer from flooding during intense coastal storms, nutrient loading from fertilizers, and septic effluent have been identified as potential sources of human and ecological health concerns on tribal lands.The U.S. Geological Survey (USGS) facilitated the installation of 17 water table wells on and adjacent to the tribal lands during March 2014. These wells were combined with other existing wells to create a 32-well water table monitoring network that was used to assess local hydrologic conditions. Survey-grade, global-navigation-satellite systems provided centimeter-level accuracy for positioning wellhead surveys. Water levels were measured by the USGS during May (spring) and November (fall) 2014 to evaluate seasonal effects on the water table. Water level measurements were made at high and low tide during May 2014 to identify potential effects on the water table caused by changes in tidal stage (tidal flux) in Shinnecock Bay. Water level contour maps indicate that the surficial aquifer is recharged by precipitation and upgradient groundwater flow that moves from the recharge zone located generally beneath Sunrise Highway, to the discharge zone beneath the tribal lands, and eventually discharges into the embayment, tidal creeks, and estuaries that bound the tribal lands to the east, south, and

  8. Potential for formation of disinfection by-products from storage of chlorinated surface water in the Basalt aquifer near Fallon, Nevada

    Science.gov (United States)

    Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.

    2005-01-01

    that the amount of organic carbon released from the rocks during successive cycles of recharge, storage, and recovery of chlorinated surface water may be relatively small. The chlorine demand of the rocks is so large that all of the free chlorine in the entire volume of recharged water likely would be consumed by only a very small volume of the aquifer surrounding an injection well, or beneath an infiltration bed. The majority of the volume of the aquifer filled by the stored water likely would never come in contact with free chlorine, and the increases in concentration of DOC observed in these experiments likely would occur in a very small volume of the stored water. For this reason, increases in concentration of THMs for the entire volume of water stored also likely would be considerably less than those measured in these experiments. To test this hypothesis, additional laboratory experiments using varying levels of chlorination, varying lengths of reaction periods, and repeated cycles of chlorination would be useful. A field experiment made at a small scale in an isolated part of the basalt aquifer would aid in the design of an operational system.

  9. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  10. Digital data sets that describe aquifer characteristics of the Elk City aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized aquifer boundaries for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately 193,000 acres and...

  11. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized aquifer boundaries for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid isolated terrace aquifer covers...

  12. Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa-lake, southern Spain

    Science.gov (United States)

    Pedrera, A.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Rodríguez-Rodríguez, M.; Benavente, J.; Martín-Rodríguez, J. F.; Zúñiga-López, M. I.

    2016-06-01

    The hydrological regime of Fuente de Piedra playa-lake (Málaga, southern Spain) has been significantly affected by the intensive exploitation of groundwater in the area. The playa-lake is situated above clays, marls, and gypsum, and under unaltered conditions received surface-subsurface runoff within the watershed as well as groundwater discharge from two carbonate aquifers. We have analyzed the structure of the main one, the Mollina-Camorra carbonate aquifer, by combining controlled source audio magnetotellurics (CSAMT), gravity prospecting, and time-domain electromagnetic (TDEM) soundings. This geophysical information, together with new structural and hydrogeological data, was gathered to develop a new conceptual hydrogeological model. This model allows the hydrological linkage of the carbonate aquifer with the playa-lake system to be established. Moreover, the intensive exploitation in the carbonate aquifer, even outside the watershed of the playa-lake, has affected the hydrological regime of the system. This multidisciplinary work demonstrates the potential of geophysical methods for understanding wetland-aquifer interaction, having important groundwater management implications.

  13. Mississippi River Valley alluvial aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Mississippi River Valley alluvial aquifer in the states of Missouri, Kentucky, Tennessee, Arkansas, Mississippi, and...

  14. Region 9 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — There are 7 polygons representing 6 individual sole source aquifer boundaries and one streamflow source area in California, Arizona, and Nevada. Various efforts were...

  15. Southeastern Coastal Plain aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Southeastern Coastal Plain aquifer system in Kentucky, Tennessee, Mississippi, Alabama, Georgia, and South Carolina.

  16. Microbial dynamics in natural aquifers

    OpenAIRE

    Bajracharya, Bijendra Man

    2016-01-01

    Microorganisms in groundwater form ecosystems that can transform chemical compounds. Quantitatively understanding microbial dynamics in soils and groundwater is thus essential for pollutant dynamics and biogeochemistry in the subsurface. This dissertation addresses three factors influencing microbial dynamics in aquifers and soils, namely: (1) the influence of grazing on bacteria in eutrophic aquifers, posing the question whether the carrying capacity of bacteria, which has been observed i...

  17. Active convection beneath ridges: a new spin

    Science.gov (United States)

    Katz, R. F.

    2009-12-01

    The role of buoyancy-driven, "active" upwelling beneath mid-ocean ridges has been long debated [1,2,3], with the naysayers holding sway in recent years. Recent work on tomographic imaging of the sub-ridge mantle has revealed patterns in velocity variation that seem inconsistent with what we expect of passive upwelling and melting [4]. The irregular distribution, asymmetry, and off-axis locations of slow regions in tomographic results are suggestive of time-dependent convective flow. Using 2D numerical simulations of internally consistent mantle and magmatic flow plus melting/freezing [5,6], I investigate the parametric subspace in which active convection is expected to occur. For low mantle viscosities, interesting symmetry-breaking behavior is predicted. References: [1] Rabinowicz, et al., EPSL, 1984; [2] Buck & Su, GRL, 1989; [3] Scott & Stevenson, JGR, 1989; [4] Toomey et al., Nature, 2007; [5] McKenzie, J.Pet., 1984; [6] Katz, J.Pet., 2008;

  18. Electromagnetic evidence for volatile-rich upwelling beneath the society hotspot, French Polynesia

    Science.gov (United States)

    Tada, Noriko; Tarits, Pascal; Baba, Kiyoshi; Utada, Hisashi; Kasaya, Takafumi; Suetsugu, Daisuke

    2016-12-01

    We have conducted a seafloor magnetotelluric survey that images, for the first time, three-dimensional electrical conductivity structure in the upper mantle beneath the Society hotspot. A striking feature in our model is a high-conductivity anomaly a few hundred kilometers in diameter, which is continuous from the lowest part of the upper mantle to a depth of approximately 50 km below sea level. Using theoretical and experimental results from mineral physics, we interpret the high-conductivity anomaly as evidence of the melt fraction up to 2.2 vol.%, which is robust regardless of assumed temperature, and the existence of carbonated silicate melt beneath the hotspot. Our results suggest that the Society hotspot is a pathway for ascending volatiles from the deeper part of the upper mantle to the surface.

  19. Geochemical evolution of waters within the north coast limestone aquifers of Puerto Rico; a conceptualization based on a flow path in the Barceloneta area

    Science.gov (United States)

    Roman-Mas, A. J.; Lee, R.W.

    1987-01-01

    Water samples along a groundwater flow path in the Barceloneta area, Puerto Rico, were collected from wells screened in the Montebello Limestone Member of the Cibao Formation (artesian aquifer) and in the overlying Aguada and Aymamon Limestones (water table aquifer). The groundwater chemistry changes as water migrates from recharge areas to downgradient zones in the aquifers. Dissolved magnesium, dissolved sulfate, pH, and carbon-13 isotope generally increase down-gradient. Total inorganic carbon and calcium decrease within the freshwater parts of the aquifer. Mass transfer calculations show that the likely reaction model is carbon dioxide incorporation as water infiltrates through the soil zone, followed by calcite dissolution as water recharges the aquifer. As water moves downgradient within the artesian aquifer, carbon dioxide may degas as a result of calcite precipitation while gypsum and dolomite are dissolved. Within the water table aquifer, continuous recharge of waters rich in carbonic acid maintains the dissolution of the carbonate minerals. Near the coast the mixing of fresh groundwater with saltwater is the primary process affecting water chemistry within the water table aquifer. (Author 's abstract)

  20. The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe

    Science.gov (United States)

    Chen, Zhao; Auler, Augusto S.; Bakalowicz, Michel; Drew, David; Griger, Franziska; Hartmann, Jens; Jiang, Guanghui; Moosdorf, Nils; Richts, Andrea; Stevanovic, Zoran; Veni, George; Goldscheider, Nico

    2017-01-01

    Karst aquifers contribute substantially to freshwater supplies in many regions of the world, but are vulnerable to contamination and difficult to manage because of their unique hydrogeological characteristics. Many karst systems are hydraulically connected over wide areas and require transboundary exploration, protection and management. In order to obtain a better global overview of karst aquifers, to create a basis for sustainable international water-resources management, and to increase the awareness in the public and among decision makers, the World Karst Aquifer Mapping (WOKAM) project was established. The goal is to create a world map and database of karst aquifers, as a further development of earlier maps. This paper presents the basic concepts and the detailed mapping procedure, using France as an example to illustrate the step-by-step workflow, which includes generalization, differentiation of continuous and discontinuous carbonate and evaporite rock areas, and the identification of non-exposed karst aquifers. The map also shows selected caves and karst springs, which are collected in an associated global database. The draft karst aquifer map of Europe shows that 21.6% of the European land surface is characterized by the presence of (continuous or discontinuous) carbonate rocks; about 13.8% of the land surface is carbonate rock outcrop.

  1. Subduction or delamination beneath the Apennines? Evidence from regional tomography

    NARCIS (Netherlands)

    Koulakov, I.; Jakovlev, A.; Zabelina, I.; Roure, F.; Cloetingh, S.; El Khrepy, S.; Al-Arifi, N.

    2015-01-01

    In this study we present a new regional tomography model of the upper mantle beneath Italy and the surrounding area derived from the inversion of travel times of P and S waves from the updated International Seismological Centre (ISC) catalogue. Beneath Italy, we identify a high-velocity anomaly whic

  2. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  3. Hydrologic and Geochemical Evaluation of Aquifer Storage Recovery in the Santee Limestone/Black Mingo Aquifer, Charleston, South Carolina, 1998-2002

    Science.gov (United States)

    Petkewich, Matthew D.; Parkhurst, David L.; Conlon, Kevin J.; Campbell, Bruce G.; Mirecki, June E.

    2004-01-01

    The hydrologic and geochemical effects of aquifer storage recovery were evaluated to determine the potential for supplying the city of Charleston, South Carolina, with large quantities of potable water during emergencies, such as earthquakes, hurricanes, or hard freezes. An aquifer storage recovery system, including a production well and three observation wells, was installed at a site located on the Charleston peninsula. The focus of this study was the 23.2-meter thick Tertiary-age carbonate and sand aquifer of the Santee Limestone and the Black Mingo Group, the northernmost equivalent of the Floridan aquifer system. Four cycles of injection, storage, and recovery were conducted between October 1999 and February 2002. Each cycle consisted of injecting between 6.90 and 7.19 million liters of water for storage periods of 1, 3, or 6 months. The volume of recovered water that did not exceed the U.S. Environmental Protection Agency secondary standard for chloride (250 milligrams per liter) varied from 1.48 to 2.46 million liters, which is equivalent to 21 and 34 percent of the total volume injected for the individual tests. Aquifer storage recovery testing occurred within two productive zones of the brackish Santee Limestone/Black Mingo aquifer. The individual productive zones were determined to be approximately 2 to 4 meters thick, based on borehole geophysical logs, electromagnetic flow-meter testing, and specific-conductance profiles collected within the observation wells. A transmissivity and storage coefficient of 37 meters squared per day and 3 x 10-5, respectively, were determined for the Santee Limestone/Black Mingo aquifer. Water-quality and sediment samples collected during this investigation documented baseline aquifer and injected water quality, aquifer matrix composition, and changes in injected/aquifer water quality during injection, storage, and recovery. A total of 193 water-quality samples were collected and analyzed for physical properties, major and

  4. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    Science.gov (United States)

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  5. Saline Groundwater from Coastal Aquifers As a Source for Desalination.

    Science.gov (United States)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yoseph; Rahav, Eyal; Oren, Yoram; Kasher, Roni

    2016-02-16

    Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs.

  6. Channelization of plumes beneath ice shelves

    KAUST Repository

    Dallaston, M. C.

    2015-11-11

    © 2015 Cambridge University Press. We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

  7. Turbulence beneath finite amplitude water waves

    Energy Technology Data Exchange (ETDEWEB)

    Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)

    2012-05-15

    Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)

  8. [Guided bone regeneration beneath titanium foils].

    Science.gov (United States)

    Otto, Katharina; Schopper, Christian; Ewers, Rolf; Lambrecht, J Thomas

    2004-01-01

    The aim of this study was to examine the clinical and histological bony healing process beneath titanium foils used for guided tissue regeneration as well as of the Frios Algipore graft which was applied with autologous bone. 66 sinus floor elevations were carried out and examined over a period of three years and eight months. A success rate of 64% was recorded with foil incorporation. Complications occurred in form of primary and secondary disturbances in the healing process caused by exposure of the foil. 12 of the 66 foils had to be removed early. In all but one case, the augmented bone material was macroscopically well integrated despite the loss of the foil. Primary stability of the inserted dental implants into the ossified augmented site after operations of the sinus maxillaris was reached in all cases with absence of post-operative complications, and in 94% when there was postoperative exposure of the membrane. Histologically, a thin layer of connective tissue poor in cells but rich in collagen fibers appeared underneath the titanium foil. This was followed by newly-formed bony tissue transforming into osseous lamella parallel to the membrane underneath the new periost. In 65 out of 66 cases a sufficient amount of stable bone was built up locally suggesting good bio-compatibility and barrier function. Further, the foil also provided mechanical rest and supporting function for the space underneath. However, the occurrence of healing complications in 36% of the cases showed a need to improve on the titanium foils.

  9. Saturated thickness, High Plains aquifer, 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents the saturated thickness of the High Plains aquifer of the United States, 2009, in feet. The High Plains aquifer underlies...

  10. National Sole Source Aquifer GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains indexes and Esri shape files of boundaries of the designated sole source aquifers and related aquifer boundaries. Data provide a vector...

  11. ANALYTICAL ELEMENT MODELING OF COASTAL AQUIFERS

    Science.gov (United States)

    Four topics were studied concerning the modeling of groundwater flow in coastal aquifers with analytic elements: (1) practical experience was obtained by constructing a groundwater model of the shallow aquifers below the Delmarva Peninsula USA using the commercial program MVAEM; ...

  12. Water-quality assessment of the Trinity River basin, Texas : ground-water quality of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers, February-August 1994

    Science.gov (United States)

    Reutter, David C.; Dunn, David D.

    2000-01-01

    Ground-water samples were collected from wells in the outcrops of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers during February-August 1994 to determine the quality of ground water in the three major aquifers in the Trinity River Basin study unit, Texas. These samples were collected and analyzed for selected properties, nutrients, major inorganic constituents, trace elements, pesticides, dissolved organic carbon, total phenols, methylene blue active substances, and volatile organic compounds as part of the U.S. Geological Survey National Water-Quality Assessment Program. Quality-control practices included the collection and analysis of blank, duplicate, and spiked samples. Samples were collected from 12 shallow wells (150 feet or less) and from 12 deep wells (greater than 150 feet) in the Trinity aquifer, 11 shallow wells and 12 deep wells in the Carrizo-Wilcox aquifer, and 14 shallow wells and 10 deep wells in the Gulf Coast aquifer. The three aquifers had similar water chemistries-calcium was the dominant cation and bicarbonate the dominant anion. Statistical tests relating well depths to concentrations of nutrients and major inorganic constituents indicated correlations between well depth and concentrations of ammonia nitrogen, nitrite plus nitrate nitrogen, bicarbonate, sodium, and dissolved solids in the Carrizo-Wilcox aquifer and between well depth and concentrations of sulfate in the Gulf Coast aquifer. The tests indicated no significant correlations for the Trinity aquifer. Concentrations of dissolved solids were larger than the secondary maximum contaminant level of 500 milligrams per liter established for drinking water by the U.S. Environmental Protection Agency in 12 wells in the Trinity aquifer, 4 wells in the Carrizo-Wilcox aquifer, and 6 wells in the Gulf Coast aquifer. Iron concentrations were larger than the secondary maximum contaminant level of 300 micrograms per liter in at least 3 samples from each aquifer, and manganese concentrations

  13. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama; area 4

    Science.gov (United States)

    Planert, Michael; Pritchett, J.L.

    1989-01-01

    The U.S. Geological Survey, in cooperation with the Alabama Department of Environmental Management, is conducting a series of geohydrologic studies to delineate the major aquifers (those which provide water for public supplies) in Alabama, their recharge areas, and areas susceptible to contamination. This report summarizes these factors for two major aquifers in Area 4--Calhoun, Jefferson, St. Clair, Shelby, and Talladega Counties. The major aquifers in the study area are in Cambrian and Ordovician and Mississippian rocks. Highest yields from aquifers are associated with solution openings in carbonate rocks. Springs in the area provide substantial amounts of water for municipal supply. Coldwater Spring provides 17 million gal of water/day to the city of Anniston, the largest groundwater user in the area. All recharge areas for the aquifers are susceptible to contamination from land surface. Two conditions exist in the study area that may cause the aquifers to be highly susceptible to contamination on a local scale: fracturing of rock materials due to faulting and the production of a porous cherty soil through weathering. Where sinkholes are present, there may be a direct connection between the land surface and the aquifer. Areas with sinkholes are considered to be extremely susceptible to contamination. (USGS)

  14. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems.

    Science.gov (United States)

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.

  15. Mantle Structure Beneath Central South America

    Science.gov (United States)

    Vandecar, J. C.; Silver, P. G.; James, D. E.; Assumpcao, M.; Schimmel, M.; Zandt, G.

    2003-12-01

    Making use of 60 digital broadband seismic stations that have operated across central South America in recent years, we have undertaken an inversion for the upper- and uppermost lower-mantle P- and S-wave velocity structures beneath the region. We have combined data from four portable PASSCAL-type experiments as well as the 3 GTSN permanent stations (LPAZ, BDFB and CPUP) and 1 Geoscope station (SPB) located in the region. The portable data were deployed at various times between 1992 and 1999 and include: 28 sites from the Brazilian Lithosphere Seismic Project (BLSP: Carnegie Institution of Washington and Universidade de Sao Paulo), 16 sites from the Broadband ANdean JOint experiment (BANJO: Carnegie Institution of Washington and University of Arizona), 8 sites from the Seismic Exploration of the Deep Altiplano project (SEDA: Lawrence Livermore National Laboratory) and 4 sites from the University of Brasilia. The P- and S-wave relative delay times are independently obtained via a multi-channel cross correlation of band-passed waveforms for each teleseismic event. These data are then inverted using an iterative, robust, non-linear scheme which parameterizes the 3-D velocity variations as splines under tension constrained at over 120,000 nodes across South America between latitudes of 15 and 30 degrees South. Amongst other features, we robustly image the high-velocity subducting Nazca plate penetrating into the lower mantle and the high-velocity root of the ~3.2 Gyr old Sao Francisco Craton extending to depths of 200-300 km. We will discuss the consistency between our tomographic models and predictions of dynamic mantle models based on plate tectonic reconstructions of subduction.

  16. Assessing the vulnerability of public-supply wells to contamination: Rio Grande aquifer system in Albuquerque, New Mexico

    Science.gov (United States)

    Jagucki, Martha L.; Bexfield, Laura M.; Heywood, Charles E.; Eberts, Sandra M.

    2012-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Albuquerque, New Mexico (hereafter referred to as “the study well”). The study well produces about 3,000 gallons of water per minute from the Rio Grande aquifer system. Water samples were collected at the study well, at two other nearby public-supply wells, and at monitoring wells installed in or near the simulated zone of contribution to the study well. Untreated water samples from the study well contained arsenic at concentrations exceeding the Maximum Contaminant Level (MCL) of 10 micrograms per liter (µg/L) established by the U.S. Environmental Protection Agency for drinking water. Volatile organic compounds (VOCs) and nitrate also were detected, although at concentrations at least an order of magnitude less than established drinking-water standards, where such standards exist. Overall, study findings point to four primary influences on the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Albuquerque: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) groundwater development (introduction of manmade recharge and discharge sources), (3) natural geochemical conditions of the aquifer, and (4) seasonal pumping stresses. Concentrations of the isotope carbon-14 indicate that groundwater from most sampled wells in the local study area is predominantly water that entered, or recharged, the aquifer more than 6,000 years ago. However, the additional presence of the age tracer tritium in several groundwater samples at concentrations above 0.3 tritium units indicates that young (post-1950) recharge is reaching the aquifer across broad areas beneath Albuquerque. This young recharge is mixing with the thousands-of-years-old water, is migrating to depths as great as 245 feet below the water table, and is traveling to some (but not all) of the public-supply wells sampled. Most groundwater samples containing a

  17. Mantle structure beneath the western edge of the Colorado Plateau

    Science.gov (United States)

    Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.

    2008-01-01

    Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.

  18. Remote Oil Spill Detection and Monitoring Beneath Sea Ice

    Science.gov (United States)

    Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.

    2016-08-01

    The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.

  19. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    Science.gov (United States)

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process.

  20. Transient bacterial contamination of the dual-porosity aquifer at Walkerton, Ontario, Canada

    Science.gov (United States)

    Worthington, Stephen R. H.; Smart, C. Christopher

    2017-01-01

    Contamination of the Paleozoic carbonate aquifer at Walkerton (Ontario, Canada) by pathogenic bacteria following heavy rain in May 2000 resulted in 2,300 illnesses and seven deaths. Subsequent tracer testing showed that there was rapid groundwater flow in the aquifer, and also rapid exchange between the aquifer and the ground surface. Electrical conductivity (EC) profiling during a 3-day pumping test showed that most flow was through bedding-plane fractures spaced about 10 m apart, that there were substantial contrasts in EC in the major fracture flows, and that there were rapid changes over time. Total coliform sampling revealed transient groundwater contamination, particularly after heavy rain and lasting up to a few days. These characteristics can be understood in terms of the dual-porosity nature of the aquifer. Most of the storage is in the matrix, but this can be considered to be static in the short term. Almost all transport is through the fracture network, which has rapid groundwater flow (˜100 m/day) and rapid transmission of pressure pulses due to the high hydraulic diffusivity. Rapid recharge can occur through thin and/or fractured overburden and at spring sites where flow is reversed by pumping during episodes of surface flooding. These characteristics facilitated the ingress of surface-derived bacteria into the aquifer, and their rapid transport within the aquifer to pumping wells. Bacterial presence is common in carbonate aquifers, and this can be explained by the well-connected, large-aperture fracture networks in these dual-porosity aquifers, even though many, such as at Walkerton, lack karst landforms.

  1. Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia

    Science.gov (United States)

    Heywood, Charles E.; Pope, Jason P.

    2009-01-01

    The groundwater model documented in this report simulates the transient evolution of water levels in the aquifers and confining units of the Virginia Coastal Plain and adjacent portions of Maryland and North Carolina since 1890. Groundwater withdrawals have lowered water levels in Virginia Coastal Plain aquifers and have resulted in drawdown in the Potomac aquifer exceeding 200 feet in some areas. The discovery of the Chesapeake Bay impact crater and a revised conceptualization of the Potomac aquifer are two major changes to the hydrogeologic framework that have been incorporated into the groundwater model. The spatial scale of the model was selected on the basis of the primary function of the model of assessing the regional water-level responses of the confined aquifers beneath the Coastal Plain. The local horizontal groundwater flow through the surficial aquifer is not intended to be accurately simulated. Representation of recharge, evapotranspiration, and interaction with surface-water features, such as major rivers, lakes, the Chesapeake Bay, and the Atlantic Ocean, enable simulation of shallow flow-system details that influence locations of recharge to and discharge from the deeper confined flow system. The increased density of groundwater associated with the transition from fresh to salty groundwater near the Atlantic Ocean affects regional groundwater flow and was simulated with the Variable Density Flow Process of SEAWAT (a U.S. Geological Survey program for simulation of three-dimensional variable-density groundwater flow and transport). The groundwater density distribution was generated by a separate 108,000-year simulation of Pleistocene freshwater flushing around the Chesapeake Bay impact crater during transient sea-level changes. Specified-flux boundaries simulate increasing groundwater underflow out of the model domain into Maryland and minor underflow from the Piedmont Province into the model domain. Reported withdrawals accounted for approximately

  2. Major disruption of D'' beneath Alaska: D'' Beneath Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daoyuan [Laboratory of Seismology and Physics of Earth' s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei Anhui China; National Geophysics Observatory at Mengcheng, Anhui China; Helmberger, Don [Seismological Laboratory, California Institute of Technology, Caltech, Pasadena California USA; Miller, Meghan S. [Department of Earth Sciences, University of Southern California, Los Angeles California USA; Jackson, Jennifer M. [Seismological Laboratory, California Institute of Technology, Caltech, Pasadena California USA

    2016-05-01

    D'' represents one of the most dramatic thermal and compositional layers within our planet. In particular, global tomographic models display relatively fast patches at the base of the mantle along the circum-Pacific which are generally attributed to slab debris. Such distinct patches interact with the bridgmanite (Br) to post-bridgmanite (PBr) phase boundary to generate particularly strong heterogeneity at their edges. Most seismic observations for the D'' come from the lower mantle S wave triplication (Scd). Here we exploit the USArray waveform data to examine one of these sharp transitions in structure beneath Alaska. From west to east beneath Alaska, we observed three different characteristics in D'': (1) the western region with a strong Scd, requiring a sharp δVs = 2.5% increase; (2) the middle region with no clear Scd phases, indicating a lack of D'' (or thin Br-PBr layer); and (3) the eastern region with strong Scd phase, requiring a gradient increase in δVs. To explain such strong lateral variation in the velocity structure, chemical variations must be involved. We suggest that the western region represents relatively normal mantle. In contrast, the eastern region is influenced by a relic slab that has subducted down to the lowermost mantle. In the middle region, we infer an upwelling structure that disrupts the Br-PBr phase boundary. Such an interpretation is based upon a distinct pattern of travel time delays, waveform distortions, and amplitude patterns that reveal a circular-shaped anomaly about 5° across which can be modeled synthetically as a plume-like structure rising about 400 km high with a shear velocity reduction of ~5%, similar to geodynamic modeling predictions of upwellings.

  3. The fissured East Yorkshire Chalk, UK - a 'sustainable' aquifer under stress ?

    Science.gov (United States)

    Elliot, T.; Younger, P. L.; Chadha, D. S.

    2003-04-01

    , G., Custodio, E., Elliot, T., Manzano, M. &Sauter, M. (2002) Assessments of the sensitivity to climate change of flow and natural water quality in four major carbonate aquifers of Europe. In Hiscock, K.M, Rivett, M.O., Davison, R.M. (Eds.), Sustainable Groundwater Development. Geological Society Special Publication No 193, The Geological Society, London, UK. pp.303-323.

  4. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria.

  5. Data to Accompany the Regional Potentiometric-Surface Map of the Great Basin Carbonate and Alluvial Aquifer System in Snake Valley and Surrounding Areas, Juab, Millard, and Beaver Counties, Utah and White Pine and Lincoln Counties, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and...

  6. Pathogen inactivation during passage of stormwater through a constructed reedbed and aquifer transfer, storage and recovery.

    Science.gov (United States)

    Sidhu, J P S; Toze, S; Hodgers, L; Shackelton, M; Barry, K; Page, D; Dillon, P

    2010-01-01

    A study was undertaken to determine the potential inactivation rates of selected enteric microorganisms in captured urban stormwater within a constructed reedbed and in tertiary carbonated aquifer during an Aquifer Storage, Transfer and Recovery (ASTR) scheme. The study was undertaken in-situ in the constructed reedbed and aquifer using diffusion chambers. The results showed that all tested bacteria had one log(10) reduction time of less than 6 and 2.5 days respectively in constructed reedbeds and aquifer, which suggests that presence of enteric bacteria in the recovered water is unlikely. However, adenovirus and Cryptosporidium oocysts showed lower inactivation rates with one log(10) reduction times of more than 33 days in the constructed reedbeds. This means that the constructed reedbed with a mean residence time 10 days cannot be relied upon as an efficient treatment barrier for virus and protozoa. Storage of stormwater in aquifer with brackish water resulted in slow inactivation of enteric viruses over the 35 day incubation period with adenovirus and rotavirus showing slowest inactivation times (extrapolated T(90) of >100 days). Cryptosporidium oocysts showed similar inactivation rate in the constructed reedbed and aquifer.

  7. {sup 34}S and {sup 18}O in dissolved sulfate as tracers of hydrogeochemical evolution of the Triassic carbonate aquifer exposed to intense groundwater exploitation (Olkusz-Zawiercie region, southern Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Samborska, Katarzyna, E-mail: samborska@ietu.katowice.pl [Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice (Poland); Halas, Stanislaw [Mass Spectrometry Laboratory, Marie Curie-Sklodowska University, 20-031 Lublin (Poland)

    2010-09-15

    Research highlights: {yields} Groundwater table rebound in aquifer containing sulfide ore. {yields} Degradation of water quality causes by the significant increase in sulfate concentrations. {yields} Isotopic examinations of sulfate and sulfate concentrations along flow path. {yields} Sulfate concentrations as a result of binary mixing of sources (sulfide and evaporate). {yields} Changes in isotopic composition of sulfide in extended vadose zone. - Abstract: The objective of this study was to determine the sources of SO{sub 4}{sup 2-} in groundwater of the Olkusz-Zawiercie Major Groundwater Body. The quality of groundwater was relatively good in the past, but fluctuations of the water table level have caused degradation of water quality. Variations in the water table level and the formation of the depression cone have resulted from both groundwater withdrawal and Zn-Pb mine dewatering. As a result within the extended vadose zone of the aquifer, weathering of pyrite and accompanying sulfides has taken place. Since 1992 the water table has risen and this process has been associated with an increase in concentrations of SO{sub 4}{sup 2-}, Ca and Mg. At the same time, the pH has decreased and periodically high Fe concentrations have been detected. High concentrations of Mg and Sr have been observed and, since gypsum layers are known to be present, a de-dolomitisation process has been hypothesized. The PHREEQC program for Windows was used to estimate saturation indices for calcite, dolomite, gypsum and epsomite. Isotopic data for SO{sub 4}{sup 2-} dissolved in the groundwater and archival data on isotopic composition of ore sulfides were used to solve the isotope balance equation and to estimate the fraction of dissolved SO{sub 4}{sup 2-} that originated from pyrite oxidation and gypsum dissolution. The results have shown that dissolution of pyrite oxidation products has a significant influence on chemical composition of groundwater, especially in the southern part of

  8. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid isolated terrace aquifer...

  9. Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized aquifer boundaries of the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone is an important...

  10. Digital data sets that describe aquifer characteristics of the Elk City aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately 193,000...

  11. Digital data sets that describe aquifer characteristics of the Elk City aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant recharge values for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately...

  12. Digital data sets that describe aquifer characteristics of the Elk City aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant hydraulic conductivity values for the Elk City aquifer in western Oklahoma. The aquifer covers an area of...

  13. Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital aquifer boundaries for the High Plains aquifer in western Oklahoma. This area encompasses the panhandle counties of Cimarron,...

  14. Digital data sets that describe aquifer characteristics of the Central Oklahoma aquifer in central Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized aquifer boundaries created for a previously published report about the Central Oklahoma aquifer in central Oklahoma. This area...

  15. Digital data sets that describe aquifer characteristics of the Rush Springs aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized aquifer boundaries for the Rush Springs aquifer in western Oklahoma. This area encompasses all or part of Blaine, Caddo,...

  16. Vertical Gradients in Water Chemistry and Age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer's importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards. Mass-balance models indicate that changes in ground-water chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite and

  17. Viruses and Bacteria in Karst and Fractured Rock Aquifers in East Tennessee, USA

    Science.gov (United States)

    A survey of enteric viruses and indicator bacteria was carried out in eight community water supply sources (four wells and four springs) in east Tennessee. Seven of the sites were in carbonate aquifers and the other was in fractured sandstone. Four sites (three wells and one sp...

  18. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    Energy Technology Data Exchange (ETDEWEB)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  19. The Effects of Subsurface Heterogeneity on Detectability of CO2 Leakage to Shallow Groundwater Aquifers

    Science.gov (United States)

    Wolaver, B. D.; Sun, A. Y.; Nicot, J.; Hovorka, S. D.; Nuñez-Lopez, V.; Young, M.

    2011-12-01

    Numerical simulations of CO2 storage reservoir leakage can be used to assess risks of shallow groundwater aquifer contamination during monitoring network design. Improperly plugged and abandoned wells are well known to represent one of the greatest risks to successful containment at geologic carbon sequestration sites. Casing and cement seal failure of wells penetrating the confining layer may create fast-flow pathways for CO2 and brine migration from the storage reservoir into the shallow subsurface. To protect drinking water aquifers from possible leaks, injection permits require identification of artificial penetrations and evaluation that wells are adequately plugged and abandoned. However, assumptions made during well evaluation may overlook the likelihood of well failure leading to a leak into an aquifer. We present a monitoring approach that provides quick and accurate detection in the event of a leak to an aquifer. Sand and shale facies are classified to simulate aquifer heterogeneity using representative borehole geophysical data from Texas, U.S.A. Gulf Coast Aquifer System wells. Numerical models simulate pressure perturbations in response to a leak to an aquifer overlying a storage reservoir. Candidate monitoring well locations for a possible leak of randomly selected location are chosen from a suite of possible wells based on the detectability of CO2 leakage from the groundwater model. We first show that the locations and magnitudes of leakage can be identified for homogeneous aquifers by using an inversion procedure and pressure observations. We then consider the effects of conceptual model uncertainty, pressure measurement error, and background noise on detectability of leaky wells. While substantial previous work quantified pressure perturbations caused by leaky wells using analytical solutions or simple numerical model configurations, the effects of formation heterogeneity on pressure perturbation and other uncertain factors are not well examined

  20. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination

    KAUST Repository

    Dehwah, Abdullah H A

    2016-10-18

    An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.

  1. Simulated effects of groundwater withdrawals from aquifers in Ocean County and vicinity, New Jersey

    Science.gov (United States)

    Cauller, Stephen J.; Voronin, Lois M.; Chepiga, Mary M.

    2016-10-21

    Township), and in Ship Bottom Borough have particle travel times from 140 to 12,000 years and flow paths that originated under Barnegat Bay or the Atlantic Ocean from the simulation of average maximum-allocation withdrawal conditions.Travel time along flow paths to wells screened in the Rio Grande water-bearing zone and the Atlantic City 800-foot sand from recharge to discharge point ranged from nearly 530 years to greater than 3.73 million years from the simulation of average 2000–03 withdrawal conditions. Particle tracking indicated that most wells screened in these aquifers derived a large part of their recharge from the Oswego River Basin, with a small portion of flow originating either beneath Barnegat Bay or to the east beneath the Atlantic Ocean. Travel time along flow paths that start beneath either Barnegat Bay or the Atlantic Ocean ranged from 2,300 to approximately 134,000 years from the simulation of average maximum-allocation withdrawal conditions."

  2. Mantle discontinuities beneath Izu-Bonin and the implications

    Institute of Scientific and Technical Information of China (English)

    臧绍先; 周元泽; 蒋志勇

    2003-01-01

    The SdP, pdP and sdP phases are picked up with the Nth root slant stack method from the digital waveform data recorded by the networks and arrays in USA, Germany and Switzerland for the earthquakes occurring beneath Izu-Bonin and Japan Sea. The mantle discontinuities and the effects of subducting slab on the 660 km and 410 km discontinuities are studied. It is found that there are mantle discontinuities existing at the depths of 170, 220, 300, 410, 660, 850 and 1150 km. Beneath Izu-Bonin, the 410 km discontinuity is elevated, while the 660 km discontinuity is depressed; for both discontinuities, there are regionalized differences. Beneath Japan Sea, however, there is no depth variation of the 410 km discontinuity, and the 660 km discontinuity is depressed without obvious effect of the subducting slab.

  3. Groundwater Remediation in a Floodplain Aquifer at Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [Navarro Research and Engineering; Miller, David [Navarro Research and Engineering; Kautsky, Mark [U. S. Department of Energy, Office of Legacy Management; Dander, David [Navarro Research and Engineering; Nofchissey, Joni [Navajo Nation Division of Natural Resources

    2016-03-06

    A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoing activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.

  4. Simulation of Wave-Plus-Current Scour beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu

    2016-01-01

    A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed and suspen......A fully coupled hydrodynamic and morphologic numerical model was utilized for the simulation of wave-plus-current scour beneath submarine pipelines. The model was based on incompressible Reynolds-averaged Navier–Stokes equations, coupled with k-ω turbulence closure, with additional bed...

  5. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet.

    Science.gov (United States)

    Tilmann, Frederik; Ni, James

    2003-05-30

    A tomographic image of the upper mantle beneath central Tibet from INDEPTH data has revealed a subvertical high-velocity zone from approximately 100- to approximately 400-kilometers depth, located approximately south of the Bangong-Nujiang Suture. We interpret this zone to be downwelling Indian mantle lithosphere. This additional lithosphere would account for the total amount of shortening in the Himalayas and Tibet. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus could explain the presence of warm mantle beneath north-central Tibet.

  6. Reconstruction of the Friuli Venezia Giulia Plain aquifers

    Science.gov (United States)

    Calligaris, Chiara; Cimolino, Aurelie; Cucchi, Franco; Deana, Alberto; Treu, Francesco; Zini, Luca

    2010-05-01

    The constantly increasing of water demand for human consumptions has necessitated a reconstruction of the hydrogeologic characteristics and properties as well isotopic features of the aquifers of the Friuli Venezia Giulia Plain (FP). The DiSGAM and DICA have been engaged by the Hydraulic Survey of the FVG Region in order to coordinate an integrated study finalized to the FP confined and unconfined aquifer geometries reconstruction and to provide guide-lines for water rational exploitation (Agreement D.G.R. n. 1827 dd. 27.07.2007). The Friuli Venezia Giulia Plain, located in the northeastern sector of Italy, hosts well developed Plio-Quaternary unconfined and confined alluvial aquifers. The main surface drainage of the Plain is the Tagliamento River. The regional hydrogeological situation is characterized in the north by an extensive alluvial unconfined aquifer mostly contained in carbonate gravels. This area extends from the Pre-Alps to the resurgence belt. The resurgence belt is 2 to 8 km wide and 80 kilometres long. In this area the water table intersects the topographic surface forming numerous plain springs and rivers. The resurgence belt sets a geohydrological boundary between the Upper and Lower Friulian Plain. In this strip the unconfined aquifer changes into a multi-layered confined that reach a thickness of up to 500 m with a progressive increase in a westward direction towards the Adriatic Sea. In order to define underground aquifer relations and patterns, more than 1800 stratigraphic columns have been collected from different public departments water well database. Well logs have been georeferred, missing elevations calculated by regional DTM, possible correspondences controlled and datasets updated. In order to better correlate spatial data, an unique implemented lithostratigraphy legend has been created from present different ones; it is composed of: Lithological Entries (relating lithology and granulometric features; permeability linked different

  7. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    Science.gov (United States)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology

  8. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized aquifer boundaries for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important source of water...

  9. Digital data sets that describe aquifer characteristics of the Tillman terrace and alluvial aquifer in southwestern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital aquifer boundaries for the Tillman terrace and alluvial aquifer in southwestern Oklahoma. The Tillman terrace aquifer encompasses...

  10. Hydrogeophysical methods for analyzing aquifer storage and recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Minsley, B.J.; Ajo-Franklin, J.; Mukhopadhyay, A.; Morgan, F.D.

    2009-12-01

    Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity {approx}500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.

  11. Hydrogeophysical methods for analyzing aquifer storage and recovery systems.

    Science.gov (United States)

    Minsley, Burke J; Ajo-Franklin, Jonathan; Mukhopadhyay, Amitabha; Morgan, Frank Dale

    2011-01-01

    Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity ∼500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.

  12. Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand

    Science.gov (United States)

    Lawrence, A. R.; Gooddy, D. C.; Kanatharana, P.; Meesilp, W.; Ramnarong, V.

    2000-09-01

    Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30-50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Résumé. De nombreuses villes du sud et du sud-est de l'Asie ne possèdent pas de réseaux d'égouts et les eaux usées domestiques s'écoulent souvent directement sur le sol ou dans des canaux et des cours d'eau de surface. Ces pratiques peuvent provoquer une contamination dispersée de la nappe phréatique. A Hat Yai (sud de la Thaïlande), les infiltrations d'eaux usées domestiques sont responsables d'une détérioration notable de la qualité de la nappe phréatique directement sous la ville. Pour cette raison, la majorité de l'eau potable est prélevée dans des aquifères semi-captifs plus profonds, situés entre 30 et 50 m sous la surface. Cependant, une drainance à partir de la nappe phréatique sous la ville constitue une composante significative de la recharge

  13. Analysis and interpretation of data obtained in tests of the geothermal aquifer at Klamath Falls, Oregon

    Science.gov (United States)

    Sammel, E.A.

    1984-01-01

    Water with temperatures to 130 C occurs in an extensive, heterogeneous aquifer at depths of a few hundred to nearly 2,000 feet. Chemical and isotopic analyses suggest that 190 C water mixes with cooler recharge water in a ratio of about 2 to 3 in zone within and beneath the aquifer. The water spreads from a fault zone and is tapped for space heating by more than 450 wells over a 2 square-mile area. Data obtained during a 50-day pumping and reinjection test in July and August, 1983, were fitted to theoretical double-porosity type curves. Predictions of water-level changes were made for two hypothetical pumping and reinjection schemes. It was determined that reinjection can generally offset declines due to pumping, although water levels will decline near pumped wells and will rise near injection wells. Tracer tests confirmed the double-porosity behavior of the aquifer. Discharge from thermal wells averages about 540 gallons per minute and heat discharge is about 18 x 10 to the 12th power British Thermal Units per year. Down-hole heat exchangers discharge about 13 x 10 to the 10th power British Thermal Units per year. Additional development probably is feasible. (USGS)

  14. Simulating transport and removal of xylene during remediation of a sandy aquifer

    Science.gov (United States)

    Schäfer, Wolfgang; Therrien, René

    1995-09-01

    Xylene, originating from a spill, is present both as a nonaqueous-phase liquid (NAPL) at residual saturation near the water table, and as a dissolved groundwater component contaminating a sandy aquifer beneath an abandoned refinery. Three remediation wells are in operation on the site to prevent further xylene migration in the groundwater. Field observations indicate that microbially-mediated xylene degradation and oxygen and nitrate reduction occur in the aquifer. To realistically simulate dissolved xylene migration at this site, a three-dimensional numerical flow and transport model incorporating biochemical multispecies interactions and xylene dissolution from the NAPL has been developed. In the calibration process the variable contact area between the NAPL and groundwater and the vertical transverse dispersivity were identified as crucial parameters controlling the fate of xylene. The simultaneous modeling of a whole set of related reactive species made it also possible to quantify the observed biodegradation. Results indicate that it contributes in the same order of magnitude to total xylene removal than does extraction by the wells. The calibrated model will be used to assist in the design of an in situ bioremediation scheme, where biodegradation in the aquifer is enhanced by injection of an electron acceptor.

  15. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.

    2011-08-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  16. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

    Energy Technology Data Exchange (ETDEWEB)

    King, Michael J; Bredehoeft, John D., Dr.

    2010-09-03

    Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.

  17. Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater.

    Science.gov (United States)

    Li, Yuan; Guo, Huaming; Hao, Chunbo

    2014-12-01

    Indigenous microbes play crucial roles in arsenic mobilization in high arsenic groundwater systems. Databases concerning the presence and the activity of microbial communities are very useful in evaluating the potential of microbe-mediated arsenic mobilization in shallow aquifers hosting high arsenic groundwater. This study characterized microbial communities in groundwaters at different depths with different arsenic concentrations by DGGE and one sediment by 16S rRNA gene clone library, and evaluated arsenic mobilization in microcosm batches with the presence of indigenous bacteria. DGGE fingerprints revealed that the community structure changed substantially with depth at the same location. It indicated that a relatively higher bacterial diversity was present in the groundwater sample with lower arsenic concentration. Sequence analysis of 16S rRNA gene demonstrated that the sediment bacteria mainly belonged to Pseudomonas, Dietzia and Rhodococcus, which have been widely found in aquifer systems. Additionally, NO3(-)-reducing bacteria Pseudomonas sp. was the largest group, followed by Fe(III)-reducing, SO4(2-)-reducing and As(V)-reducing bacteria in the sediment sample. These anaerobic bacteria used the specific oxyanions as electron acceptor and played a significant role in reductive dissolution of Fe oxide minerals, reduction of As(V), and release of arsenic from sediments into groundwater. Microcosm experiments, using intact aquifer sediments, showed that arsenic release and Fe(III) reduction were microbially mediated in the presence of indigenous bacteria. High arsenic concentration was also observed in the batch without amendment of organic carbon, demonstrating that the natural organic matter in sediments was the potential electron donor for microbially mediated arsenic release from these aquifer sediments.

  18. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    Science.gov (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  19. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  20. Overview of the Ogallala Aquifer Program

    Science.gov (United States)

    Irrigation increased markedly on the Southern High Plains during the second half of the 20th century, drawing water primarily from the Ogallala Aquifer. During this time, irrigation sustained regional farm incomes and rural economies. Withdrawals from the aquifer, however, have exceeded recharge, re...

  1. Geochemistry of the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.

    2009-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.

  2. Modelling the Crust beneath the Kashmir valley in Northwestern Himalaya

    Science.gov (United States)

    Mir, R. R.; Parvez, I. A.; Gaur, V. K.; A.; Chandra, R.; Romshoo, S. A.

    2015-12-01

    We investigate the crustal structure beneath five broadband seismic stations in the NW-SE trendingoval shaped Kashmir valley sandwiched between the Zanskar and the Pir Panjal ranges of thenorthwestern Himalaya. Three of these sites were located along the southwestern edge of the valley andthe other two adjoined the southeastern. Receiver Functions (RFs) at these sites were calculated usingthe iterative time domain deconvolution method and jointly inverted with surface wave dispersiondata to estimate the shear wave velocity structure beneath each station. To further test the results ofinversion, we applied forward modelling by dividing the crust beneath each station into 4-6homogeneous, isotropic layers. Moho depths were separately calculated at different piercing pointsfrom the inversion of only a few stacked receiver functions of high quality around each piercing point.These uncertainties were further reduced to ±2 km by trial forward modelling as Moho depths werevaried over a range of ±6 km in steps of 2 km and the synthetic receiver functions matched with theinverted ones. The final values were also found to be close to those independently estimated using theH-K stacks. The Moho depths on the eastern edge of the valley and at piercing points in itssouthwestern half are close to 55 km, but increase to about 58 km on the eastern edge, suggesting thathere, as in the central and Nepal Himalaya, the Indian plate dips northeastwards beneath the Himalaya.We also calculated the Vp/Vs ratio beneath these 5 stations which were found to lie between 1.7 and1.76, yielding a Poisson's ratio of ~0.25 which is characteristic of a felsic composition.

  3. Crustal structure beneath northeast India inferred from receiver function modeling

    Science.gov (United States)

    Borah, Kajaljyoti; Bora, Dipok K.; Goyal, Ayush; Kumar, Raju

    2016-09-01

    We estimated crustal shear velocity structure beneath ten broadband seismic stations of northeast India, by using H-Vp/Vs stacking method and a non-linear direct search approach, Neighbourhood Algorithm (NA) technique followed by joint inversion of Rayleigh wave group velocity and receiver function, calculated from teleseismic earthquakes data. Results show significant variations of thickness, shear velocities (Vs) and Vp/Vs ratio in the crust of the study region. The inverted shear wave velocity models show crustal thickness variations of 32-36 km in Shillong Plateau (North), 36-40 in Assam Valley and ∼44 km in Lesser Himalaya (South). Average Vp/Vs ratio in Shillong Plateau is less (1.73-1.77) compared to Assam Valley and Lesser Himalaya (∼1.80). Average crustal shear velocity beneath the study region varies from 3.4 to 3.5 km/s. Sediment structure beneath Shillong Plateau and Assam Valley shows 1-2 km thick sediment layer with low Vs (2.5-2.9 km/s) and high Vp/Vs ratio (1.8-2.1), while it is observed to be of greater thickness (4 km) with similar Vs and high Vp/Vs (∼2.5) in RUP (Lesser Himalaya). Both Shillong Plateau and Assam Valley show thick upper and middle crust (10-20 km), and thin (4-9 km) lower crust. Average Vp/Vs ratio in Assam Valley and Shillong Plateau suggest that the crust is felsic-to-intermediate and intermediate-to-mafic beneath Shillong Plateau and Assam Valley, respectively. Results show that lower crust rocks beneath the Shillong Plateau and Assam Valley lies between mafic granulite and mafic garnet granulite.

  4. Assessment of nonpoint-source contamination of the High Plains Aquifer in south-central Kansas, 1987

    Science.gov (United States)

    Helgesen, John O.; Stullken, Lloyd E.; Rutledge, A.T.

    1994-01-01

    Ground-water quality was assessed in a 5,000-square-mile area of the High Plains aquifer in south-central Kansas that is susceptible to nonpoint-source contamination from agricultural and petroleum-production activities. Of particular interest was the presence of agricultural chemicals and petroleum-derived hydrocarbons that might have been associated with brines that formerly were disposed into unlined ponds. Random sampling of ground water was done within a framework of discrete land-use areas (irrigated cropland, petroleum-production land containing former brine-disposal ponds, and undeveloped rangeland) of 3-10 square miles. Although true baseline water-quality conditions probably are rare, in this region they are represented most closely by ground water in areas of undeveloped rangeland. The sampling design enabled statistical hypothesis testing, using nonparametric procedures, of the effects of land use, unsaturated-zone lithology, and type of well sampled. Results indicate that regional ground-water quality has been affected by prevailing land-use activities, as shown by increased concentrations of several inorganic constituents. Ground water beneath irrigated cropland was characterized by significantly larger concentrations of hardness, alkalinity, calcium, magnesium, potassium, fluofide, and nitrite plus nitrate than was water beneath undeveloped rangeland. Few nondegraded pesticides were detected in the aquifer, probably because of degradation and sorption. Atrazine was the most common, but only in small concentrations. round water beneath petroleum-production land was characterized by significantly larger concentrations of hardness, alkalinity, dissolved solids, sodium, and chloride than was water beneath undeveloped rangeland. Nonpoint-source contamination by oil-derived hydrocarbons was not discernible. The occurrences of trace organic compounds were similar between petroleum-production land and undeveloped rangeland, which indicates a natural origin

  5. Hydrogeology of a zone of secondary permeability in the surficial aquifer of eastern Palm Beach County, Florida

    Science.gov (United States)

    Swayze, L.J.; Miller, W.L.

    1984-01-01

    The surficial aquifer is the primary source of freshwater for the heavily developed coastal area in eastern Palm Beach County, Florida. Well fields are generally located in a discontinuous zone of higher secondary permeability, the northernmost extension of the Biscayne aquifer in the surficial aquifer, that extends from the Juno Beach area south to Broward County and varies in width from about 4 to 15 miles. The zone was formed by varying dissolution of aquifer limestone materials during Pleistocene age changes in sea level, and ranges in depth from about sea level to 220 feet below sea level. Because of proximity to the Atlantic Ocean and saltwater estuaries, the aquifer is susceptible to saltwater intrusion. Ground water to the west of the zone of higher secondary permeability is of poor quality. The ground water is calcium bicarbonate dominant. Dissolved solids, calcium carbonate hardness, and chloride are greatest along the saltwater intruded coastline and in the western part of the study area where diluted residual seawater exists. Total organic carbon increases inland due to infiltration of rainwater through thicker layers of organic soils. Ground-water levels in the surficial aquifer in eastern Palm Beach County are strongly influenced by controlled levels in canals. In March 1981, after 12 months of below average rainfall, ground-water levels ranged from about 2 feet above sea level along the coast to nearly 21 feet above sea level 15 miles inland in the northwest section of the study area. (USGS)

  6. Deep aquifer prokaryotic community responses to CO2 geosequestration

    Science.gov (United States)

    Mu, A.; Moreau, J. W.

    2015-12-01

    Little is known about potential microbial responses to supercritical CO2 (scCO2) injection into deep subsurface aquifers, a currently experimental means for mitigating atmospheric CO2 pollution being trialed at several locations around the world. One such site is the Paaratte Formation of the Otway Basin (~1400 m below surface; 60°C; 2010 psi), Australia. Microbial responses to scCO2 are important to understand as species selection may result in changes to carbon and electron flow. A key aim is to determine if biofilm may form in aquifer pore spaces and reduce aquifer permeability and storage. This study aimed to determine in situ, using 16S rRNA gene, and functional metagenomic analyses, how the microbial community in the Otway Basin geosequestration site responded to experimental injection of 150 tons of scCO2. We demonstrate an in situ sampling approach for detecting deep subsurface microbial community changes associated with geosequestration. First-order level analyses revealed a distinct shift in microbial community structure following the scCO2 injection event, with proliferation of genera Comamonas and Sphingobium. Similarly, functional profiling of the formation revealed a marked increase in biofilm-associated genes (encoding for poly-β-1,6-N-acetyl-D-glucosamine). Global analysis of the functional gene profile highlights that scCO2 injection potentially degraded the metabolism of CH4 and lipids. A significant decline in carboxydotrophic gene abundance (cooS) and an anaerobic carboxydotroph OTU (Carboxydocella), was observed in post-injection samples. The potential impacts on the flow networks of carbon and electrons to heterotrophs are discussed. Our findings yield insights for other subsurface systems, such as hydrocarbon-rich reservoirs and high-CO2 natural analogue sites.

  7. Potential Risks of Freshwater Aquifer Contamination with Geosequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Robert

    2013-09-30

    Substantial leakage of CO{sub 2} from deep geological strata to shallow potable aquifers is likely to be rare, but chemical detection of potential leakage nonetheless remains an integral component of any safe carbon capture and storage system. CO{sub 2} that infiltrates an unconfined freshwater aquifer will have an immediate impact on water chemistry by lowering pH in most cases and by altering the concentration of total dissolved solids. Chemical signatures in affected waters provide an important opportunity for early detection of leaks. In the presence of CO{sub 2}, trace elements such as Mn, Fe, and Ca can increase by an order of magnitude or more above control concentrations within 100 days. Therefore, these and other elements should be monitored along with pH as geochemical markers of potential CO{sub 2} leaks. Dissolved inorganic carbon and alkalinity can also be rapidly responsive to CO{sub 2} and are stable indicators of a leak. Importantly, such changes may be detectable long before direct changes in CO{sub 2} are observed. The experimental results also suggest that the relative severity of the impact of leaks on overlying drinking-water aquifers should be considered in the selection of CO{sub 2} sequestration sites. One primary selection criteria should be metal and metalloid availability, such as uranium and arsenic abundance, to carefully monitor chemical species that could trigger changes above maximum contaminant levels (MCLs). Overall, the risks of leakage from underground CO{sub 2} storage are real but appear to be manageable if systems are closely monitored.

  8. Economics of Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Robert G. Maliva

    2014-05-01

    Full Text Available Managed aquifer recharge (MAR technologies can provide a variety of water resources management benefits by increasing the volume of stored water and improving water quality through natural aquifer treatment processes. Implementation of MAR is often hampered by the absence of a clear economic case for the investment to construct and operate the systems. Economic feasibility can be evaluated using cost benefit analysis (CBA, with the challenge of monetizing benefits. The value of water stored or treated by MAR systems can be evaluated by direct and indirect measures of willingness to pay including market price, alternative cost, value marginal product, damage cost avoided, and contingent value methods. CBAs need to incorporate potential risks and uncertainties, such as failure to meet performance objectives. MAR projects involving high value uses, such as potable supply, tend to be economically feasible provided that local hydrogeologic conditions are favorable. They need to have low construction and operational costs for lesser value uses, such as some irrigation. Such systems should therefore be financed by project beneficiaries, but dichotomies may exist between beneficiaries and payers. Hence, MAR projects in developing countries may be economically viable, but external support is often required because of limited local financial resources.

  9. Transient deformation of karst aquifers due to seasonal and multiyear groundwater variations observed by GPS in southern Apennines (Italy)

    Science.gov (United States)

    Silverii, Francesca; D'Agostino, Nicola; Métois, Marianne; Fiorillo, Francesco; Ventafridda, Gerardo

    2016-11-01

    We present GPS, hydrological, and GRACE (Gravity Recovery and Climate Experiment) observations in southern Apennines (Italy) pointing to a previously unnoticed response of the solid Earth to hydrological processes. Transient patterns in GPS horizontal time series near to large karst aquifers are controlled by seasonal and interannual phases of groundwater recharge/discharge of karst aquifers, modulating the extensional ˜3 mm/yr strain within the tectonically active Apennines. We suggest that transient signals are produced, below the saturation level of the aquifers and above a poorly constrained depth in the shallow crust, by time-dependent opening of subvertical, fluid-filled, conductive fractures. We ascribe this process to the immature karstification and intense tectonic fracturing, favoring slow groundwater circulation, and to multiyear variations of the water table elevation, influenced by variable seasonal recharge. The vertical component displays seasonal and multiyear signals more homogeneously distributed in space and closely correlated with estimates of total water storage from GRACE, reflecting the elastic response of the lithosphere to variations of surface water loads. The different sensitivities of vertical and horizontal components to the hydrologically induced deformation processes allow us to spatially and temporally resolve the different phases of the water cycle, from maximum hydrological loading at the surface to maximum hydrostatic pressure beneath karst aquifers. Finally, we suggest that transient deformation signals in the geodetic series of the Apennines are correlated to large-scale climatic patterns (Northern Atlantic Oscillation) through their influence on precipitation variability and trends at the regional scale.

  10. Managed aquifer recharge with low impact development under a changing climate (Invited)

    Science.gov (United States)

    Gurdak, J. J.; Newcomer, M. E.; Sklar, L. S.; Nanus, L.

    2013-12-01

    Groundwater resources in urban environments are highly vulnerable to human pressures and climate variability and change, and many communities face water shortages and need to find alternative water supplies. Therefore, understanding how low impact development (LID) planning and best management practices (BMPs) affect recharge rates and volumes is important because of the increasing use of LID and BMPs to reduce stormwater runoff and improve surface-water quality. Some BMPs may also enhance recharge, which has often been considered a secondary management benefit. Enhancing the capacity for managed aquifer recharge with stormwater beneath LID is an important step toward the sustainable and conjunctive use of surface and groundwater resources in urban environments. This field and modeling study quantifies urban recharge rates, volumes, and efficiency beneath a BMP infiltration trench and irrigated lawn considering historical El Niño/Southern Oscillation (ENSO) variability and future climate change using simulated precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. Using results from a suite of methods to measure and model recharge beneath a recently installed (2009) BMP infiltration trench, this study addresses three main questions: (1) What are the benefits of measuring recharge using in-situ methods compared to model-based and other simple estimates of recharge beneath a LID BMP? (2) What are recharge rates and volumes beneath the infiltration trench, how do they compare to an irrigated lawn that represents a non-LID source of urban recharge, and what are the important factors controlling recharge beneath the two sites? (3) How effective is the LID BMP in capturing and recharging urban stormwater considering historical ENSO variability and future climate change? We find that in-situ and modeling methods are complementary, particularly for simulating historical and future recharge scenarios, and the in-situ data are critical for

  11. Diversity of methanotroph communities in a basalt aquifer.

    Science.gov (United States)

    Newby, D T; Reed, D W; Petzke, L M; Igoe, A L; Delwiche, M E; Roberto, F F; McKinley, J P; Whiticar, M J; Colwell, F S

    2004-06-01

    Methanotrophic bacteria play an important role in global cycling of carbon and co-metabolism of contaminants. Methanotrophs from pristine regions of the Snake River Plain Aquifer (SRPA; Idaho, USA) were studied in order to gain insight into the native groundwater communities' genetic potential to carry out TCE co-metabolism. Wells were selected that were proximal to a TCE plume believed to be undergoing natural attenuation. Methane concentrations ranged from 1 to >1000 nM. Carbon isotope ratios and diversity data together suggest that the SRPA contains active communities of methanotrophs that oxidize microbially produced methane. Microorganisms removed from groundwater by filtration were used as inocula for enrichments or frozen immediately and DNA was subsequently extracted for molecular characterization. Primers that specifically target methanotroph 16S rRNA genes or genes that code for subunits of soluble or particulate methane monooxygenase, mmoX and pmoA, respectively, were used to characterize the indigenous methanotrophs via PCR, cloning, RFLP analysis, and sequencing. Type I methanotroph clones aligned with Methylomonas, Methylocaldum, and Methylobacter sequences and a distinct 16S rRNA phylogenetic lineage grouped near Methylobacter. The majority of clone sequences in type II methanotroph 16S rRNA, pmoA, and mmoX gene libraries grouped closely with sequences in the Methylocystis genus. A subset of the type II methanotroph clones from the aquifer had sequences that aligned most closely to Methylosinus trichosporium OB3b and Methylocystis spp., known TCE-co-metabolizing methanotrophs.

  12. Corrosion of Carbon Steel Beneath KCl and ZnCl2 + ZnCl Deposits in Flowing O2 at 450 ℃%20钢在450℃ZnCl2及ZnCl2+KCl混合盐膜下的腐蚀

    Institute of Scientific and Technical Information of China (English)

    李远士; 牛焱; 吴维

    2000-01-01

    利用热重试验研究了表面沉积有ZnCl12和ZnCl2+KCl盐膜的20钢在450℃流动氧气中的腐蚀行为。20钢在单纯氧气中具有很低的氧化增重,涂盐条件下加速腐蚀,氧化层明显变厚,而ZnCl2+KCl比在单一ZnCl2盐膜下腐蚀更为严重,在氧化膜/合金界面均检测到金属氯化物,在基体局部区域还出现球状的含氯腐蚀产物,讨论了合金在盐膜下的加速腐蚀机理。%The corrosion behavior of 20 steel beneath ZnCl2 and ZnCl2 + KCl deposits in flowing O2 was studied by means of thermogravimetric experiment. 20 steel was oxidized very slowly in pure O2, whereas a significantly accelerated corrosion was observed in the presence of salt deposition, and the corrosion was more serious in ZnCl2 + KCl mixture than in ZnCl2 . Iron chloride was also detected at the interface of oxide and metal matrix. The effect of the salts on the corrosion mechanism was discussed.

  13. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.

    Science.gov (United States)

    Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D

    2014-11-15

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ(18)OH2O and δ(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns.

  14. Seismic Evidence for a Low-Velocity Zone in the Upper Crust Beneath Mount Vesuvius

    Science.gov (United States)

    Zollo, A.; Gasparini, P.; Virieux, J.; Le Meur, H.; de Natale, G.; Biella, G.; Boschi, E.; Capuano, P.; de Franco, R.; dell'Aversna, P.; de Matteis, R.; Guerra, I.; Iannaccone, G.; Mirabile, L.; Vilardo, G.

    1996-10-01

    A two-dimensional active seismic experiment was performed on Mount Vesuvius: Explosive charges were set off at three sites, and the seismic signal along a dense line of 82 seismometers was recorded. A high-velocity basement, formed by Mesozoic carbonates, was identified 2 to 3 kilometers beneath the volcano. A slower (P-wave velocity V_P backsimeq 3.4 to 3.8 kilometers per second) and shallower high-velocity zone underlies the central part of the volcano. Large-amplitude late arrivals with a dominant horizontal wave motion and low-frequency content were identified as a P to S phase converted at a depth of about 10 kilometers at the top of a low-velocity zone (V_P < 3 kilometers per second), which might represent a melting zone.

  15. Assessing controls on perched saturated zones beneath the Idaho Nuclear Technology and Engineering Center, Idaho

    Science.gov (United States)

    Mirus, Benjamin B.; Perkins, Kim S.; Nimmo, John R.

    2011-01-01

    Waste byproducts associated with operations at the Idaho Nuclear Technology and Engineering Center (INTEC) have the potential to contaminate the eastern Snake River Plain (ESRP) aquifer. Recharge to the ESRP aquifer is controlled largely by the alternating stratigraphy of fractured volcanic rocks and sedimentary interbeds within the overlying vadose zone and by the availability of water at the surface. Beneath the INTEC facilities, localized zones of saturation perched on the sedimentary interbeds are of particular concern because they may facilitate accelerated transport of contaminants. The sources and timing of natural and anthropogenic recharge to the perched zones are poorly understood. Simple approaches for quantitative characterization of this complex, variably saturated flow system are needed to assess potential scenarios for contaminant transport under alternative remediation strategies. During 2009-2011, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, employed data analysis and numerical simulations with a recently developed model of preferential flow to evaluate the sources and quantity of recharge to the perched zones. Piezometer, tensiometer, temperature, precipitation, and stream-discharge data were analyzed, with particular focus on the possibility of contributions to the perched zones from snowmelt and flow in the neighboring Big Lost River (BLR). Analysis of the timing and magnitude of subsurface dynamics indicate that streamflow provides local recharge to the shallow, intermediate, and deep perched saturated zones within 150 m of the BLR; at greater distances from the BLR the influence of streamflow on recharge is unclear. Perched water-level dynamics in most wells analyzed are consistent with findings from previous geochemical analyses, which suggest that a combination of annual snowmelt and anthropogenic sources (for example, leaky pipes and drainage ditches) contribute to recharge of shallow and

  16. Large sedimentary aquifer system and sustainable management: investigations of hydrogeological and geochemical variations in Eocene sand aquifer, south western France

    Science.gov (United States)

    Malcuit, E.; Negrel, P. J.; Petelet-Giraud, E.; Durst, P.

    2010-12-01

    In the sedimentary Aquitaine Basin, the Eocene Sand Aquifer system, mostly confined, represents strategic resources for drinking water, irrigation, gas storage and geothermal resources. Therefore, its quantity and quality issues are essential for the sustainable management in this large region that extends over 116,000 km2 (i.e. one-fifth of the French territory). The Eocene Sand Aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands, early Eocene, middle Eocene, and late Eocene. The extension and thickness of Eocene aquifer layers and negative confined layers vary throughout the basin, from several tens of metres to a hundred metres. The deposit sequences characterizing the Eocene Aquifer System are progradational westward from detrital deposits to carbonates. Eocene sands and Eocene limestones are hydraulically connected and covered by an aquiclude of up to several hundred metres thick of molassic sediments. The groundwater recharge is assumed to occur through the Eocene outcrops located in the north and north-east, and in the south east in contact with the Montagne Noire as well as by vertical leakage from the upper and lower aquifers. Another recharge is suspected in the south near the Petites Pyrenees. According to isotopic data, both present-day recharge and old recharge (16-35 ky) can be evidenced. The north and south evolutions of the piezometric surface are different. In the north, because of years of pumping, a trough in the potentiometric surface has been formed. The piezometric decline is roughly one meter per year in the depression centre. In the south, the decline of the water table is roughly half a meter per year. Furthermore, in the south part, around two sites of gas storage, significant fluctuations of the potentiometric surface are superimposed to the variations resulting from water abstraction, due to the injection and abstraction of gas. However, a major difficulty for the sustainable management is the lack of

  17. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons

    Science.gov (United States)

    Eaton, David W.; Darbyshire, Fiona; Evans, Rob L.; Grütter, Herman; Jones, Alan G.; Yuan, Xiaohui

    2009-04-01

    The lithosphere-asthenosphere boundary (LAB) is a first-order structural discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Although it is the most extensive type of plate boundary on the planet, its definitive detection, especially beneath cratons, is proving elusive. Different proxies are used to demarcate the LAB, depending on the nature of the measurement. Here we compare interpretations of the LAB beneath three well studied Archean regions: the Kaapvaal craton, the Slave craton and the Fennoscandian Shield. For each location, xenolith and xenocryst thermobarometry define a mantle stratigraphy, as well as a steady-state conductive geotherm that constrains the minimum pressure (depth) of the base of the thermal boundary layer (TBL) to 45-65 kbar (170-245 km). High-temperature xenoliths from northern Lesotho record Fe-, Ca- and Ti-enrichment, grain-size reduction and globally unique supra-adiabatic temperatures at 53-61 kbar (200-230 km depth), all interpreted to result from efficient advection of asthenosphere-derived melts and heat into the TBL. Using a recently compiled suite of olivine creep parameters together with published geotherms, we show that beneath cratons the probable deformation mechanism near the LAB is dislocation creep, consistent with widely observed seismic and electrical anisotropy fabrics. If the LAB is dry, it is probably diffuse (> 50 km thick) and high levels of shear stress (> 2 MPa or > 20 bar) are required to accommodate plate motion. If the LAB is wet, lower shear stress is required to accommodate plate motion and the boundary may be relatively sharp (≤ 20 km thick). The seismic LAB beneath cratons is typically regarded as the base of a high-velocity mantle lid, although some workers infer its location based on a distinct change in seismic anisotropy. Surface-wave inversion studies provide depth-constrained velocity models, but are relatively insensitive to the sharpness of the LAB

  18. Pathline-calibrated groundwater flow models of Nile Valley aquifers, Esna, upper Egypt

    Science.gov (United States)

    Brikowski, Tom H.; Faid, Abdallah

    2006-06-01

    Strongly concentrated agriculture along the River Nile in Egypt, combined with hydrologic changes related to the construction of the Aswan High Dam in the 1970's, has led to increasing salinization and waterlogging of agricultural areas. Successful control and remediation of these problems requires accurate understanding of the shallow Quaternary aquifers within the Nile Valley. While extensive conceptual models have been developed by the Egyptian RIGW, published numerical models have yet to incorporate all features of the conceptual model. In particular, marine affinity of some shallow groundwaters within the valley (Cl -as the predominant anion) indicates significant leakage from deeper Cretaceous aquifers into the shallow Quaternary aquifers, a feature that is not present in current models. In this study, groundwater profile modeling incorporating the bedrock leakage demonstrates that its shallow appearance requires hydraulic separation of surficial from deep-recharged zones of the Quaternary aquifer. This separation occurs near the boundary between reclaimed and traditional agricultural lands, which is also the primary site of waterlogging. Apparently, excessive recharge presumed to occur beneath the reclaimed lands does not penetrate deeply, and therefore might be easily remediated with shallow drains. Profound similarities exist between the Nile Valley salinization cases and the occurrence of shallow 'nuisance water' in desert southwestern U.S. cities (e.g. Las Vegas). The U.S. experience with this problem may provide useful guidance in addressing Nile Valley salinization and waterlogging issues in the future. In general, irrigation-related recharge from the reclaimed lands in the Nile Valley may have a much more localized impact on traditional lands than previously thought.

  19. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.

    1983-04-01

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO/sub 2/), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established.

  20. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.

    Science.gov (United States)

    Meredith, Karina; Cendón, Dioni I; Pigois, Jon-Philippe; Hollins, Suzanne; Jacobsen, Geraldine

    2012-01-01

    The Gnangara Mound and the underlying Perth Basin aquifers are the largest source of groundwater for the southwest of Australia, supplying between 35 and 50% of Perth's potable water (2009-2010). However, declining health of wetlands on the Mound coupled with the reduction in groundwater levels from increased irrigation demands and drier climatic conditions means this resource is experiencing increased pressures. The northern Gnangara is an area where the Yarragadee aquifer occurs at shallow depths (~50 m) and is in direct contact with the superficial aquifer, suggesting the possibility of direct recharge into a generally confined aquifer. Environmental isotopes ((14)C and (3)H) and hydrochemical modelling were used to assess the presence of a recharge 'window' as well as understand the groundwater residence time within different aquifers. Forty-nine groundwater samples were collected from depths ranging from 11 to 311 m below ground surface. The isotopic variation observed in the superficial aquifer was found to be controlled by the different lithologies present, i.e. quartz-rich Bassendean Sand and carbonate-rich sediments of the Ascot Formation. Rainfall recharge into the Bassendean Sand inherits its dissolved inorganic carbon from the soil CO(2). Organic matter throughout the soil profile is degraded by oxidation leading to anoxic/acidic groundwater, which if in contact with the Ascot Formation leads to enhanced dissolution of carbonates. Hydrochemical mass balance modelling showed that carbonate dissolution could contribute 1-2 mmol kg(-1) of carbon to groundwaters recharged through the Ascot Formation. The corrected groundwater residence times of the Yarragadee aquifer in the northern part of the study area ranged from 23 to 35 ka, while waters in the southeastern corner ranged from sub-modern to 2 ka. Groundwater ages increase with distance radiating from the recharge 'window'. This study delineates a recharge 'window' into the commonly presumed confined

  1. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts

    Science.gov (United States)

    Darby, B.J.; Neher, D.A.; Belnap, J.

    2007-01-01

    Biological soil crusts are key mediators of carbon and nitrogen inputs for arid land soils and often represent a dominant portion of the soil surface cover in arid lands. Free-living soil nematode communities reflect their environment and have been used as biological indicators of soil condition. In this study, we test the hypothesis that nematode communities are successionally more mature beneath well-developed, late-successional stage crusts than immature, early-successional stage crusts. We identified and enumerated nematodes by genus from beneath early- and late-stage crusts from both the Colorado Plateau, Utah (cool, winter rain desert) and Chihuahuan Desert, New Mexico (hot, summer rain desert) at 0-10 and 10-30 cm depths. As hypothesized, nematode abundance, richness, diversity, and successional maturity were greater beneath well-developed crusts than immature crusts. The mechanism of this aboveground-belowground link between biological soil crusts and nematode community composition is likely the increased food, habitat, nutrient inputs, moisture retention, and/or environmental stability provided by late-successional crusts. Canonical correspondence analysis of nematode genera demonstrated that nematode community composition differed greatly between geographic locations that contrast in temperature, precipitation, and soil texture. We found unique assemblages of genera among combinations of location and crust type that reveal a gap in scientific knowledge regarding empirically derived characterization of dominant nematode genera in deserts soils and their functional role in a crust-associated food web. ?? 2006 Elsevier B.V. All rights reserved.

  2. Characterization of aquifer heterogeneity using Cyclostratigraphy and geophysical methods in the upper part of the Karstic Biscayne Aquifer, Southeastern Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Carlson, Janine L.; Wingard, G. Lynn; Robinson, Edward; Wacker, Michael A.

    2004-01-01

    This report identifies and characterizes candidate ground-water flow zones in the upper part of the shallow, eogenetic karst limestone of the Biscayne aquifer in the Lake Belt area of north-central Miami-Dade County using cyclostratigraphy, ground-penetrating radar (GPR), borehole geophysical logs, and continuously drilled cores. About 60 miles of GPR profiles were used to calculate depths to shallow geologic contacts and hydrogeologic units, image karst features, and produce qualitative views of the porosity distribution. Descriptions of the lithology, rock fabrics, and cyclostratigraphy, and interpretation of depositional environments of 50 test coreholes were linked to the geophysical interpretations to provide an accurate hydrogeologic framework. Molluscan and benthic foraminiferal paleontologic constraints guided interpretation of depositional environments represented by rockfabric facies. Digital borehole images were used to characterize and quantify large-scale vuggy porosity. Preliminary heat-pulse flowmeter data were coupled with the digital borehole image data to identify candidate ground-water flow zones. Combined results show that the porosity and permeability of the karst limestone of the Biscayne aquifer have a highly heterogeneous and anisotropic distribution that is mostly related to secondary porosity overprinting vertical stacking of rock-fabric facies within high-frequency cycles (HFCs). This distribution of porosity produces a dual-porosity system consisting of diffuse-carbonate and conduit flow zones. The nonuniform ground-water flow in the upper part of the Biscayne aquifer is mostly localized through secondary permeability, the result of solution-enlarged carbonate grains, depositional textures, bedding planes, cracks, root molds, and paleokarst surfaces. Many of the resulting pore types are classified as touching vugs. GPR, borehole geophysical logs, and whole-core analyses show that there is an empirical relation between formation porosity

  3. Lithospheric thinning beneath rifted regions of Southern California.

    Science.gov (United States)

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  4. Detection of Cracks in Aluminum Structure Beneath Inconel Repair Bushings

    Science.gov (United States)

    2008-04-01

    conductivity (i.e. Inconel 718 ) – Primary challenge then becomes detecting the weak eddy current field in the structure beyond the bushing wall...was able to be selected with inspectability as a goal. – Inconel 718 • low permeability (~μ0) • low conductivity (< 2% IACS) • Combined with...Detection of Cracks in Aluminum Structure beneath Inconel Repair Bushings Mr. Kenneth J. LaCivita (USAF) AFRL/RXSA Air Force Research Laboratory

  5. The Dumbarton Oaks Tlazolteotl: looking beneath the surface

    OpenAIRE

    MacLaren Walsh, Jane

    2014-01-01

    The Dumbarton Oaks Tlazolteotl: looking beneath the surface. Some of the earliest and most revered pre-Columbian artifacts in the world’s major museum and private collections were collected prior to the advent of systematic, scientific archaeological excavation, and have little or no reliable provenience data. They have consistently posed problems for researchers due to anomalies of theme, material, size, technical virtuosity and iconography. This paper offers a historical and scientific appr...

  6. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

    Science.gov (United States)

    Quirchmayr, Ronald

    2016-08-01

    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  7. Lithospheric instability beneath the Transverse Ranges of California

    OpenAIRE

    Houseman, Gregory A.; Neil, Emily A.; Kohler, Monica D.

    2000-01-01

    Recent high-resolution seismic experiments reveal that the crust beneath the San Gabriel Mountains portion of the Transverse Ranges thickens by 10–15 km (contrary to earlier studies). Associated with the Transverse Ranges, there is an anomalous ridge of seismically fast upper mantle material extending at least 200 km into the mantle. This high-velocity anomaly has previously been interpreted as a lithospheric downwelling. Both lithospheric downwelling and crustal thickening are associated wit...

  8. New interpretation of the deep mantle structure beneath eastern China

    Science.gov (United States)

    Ma, Pengfei; Liu, Shaofeng; Lin, Chengfa; Yao, Xiang

    2016-04-01

    Recent study of high resolution seismic tomography presents a large mass of high velocity abnormality beneath eastern China near the phase change depth, expanding more than 1600km-wide in East-west cross-section across the North China plate. This structure high is generally believed to be the subducted slab of Pacific plate beneath the Eurasia continent, while its origin and dynamic effect on the Cenozoic tectonic evolution of eastern China remain to be controversial. We developed a subduction-driven geodynamic mantle convection model that honors a set of global plate reconstruction data since 230Ma to help understand the formation and evolution of mantle structure beneath eastern China. The assimilation of plate kinematics, continuous evolving plate margin, asymmetric subduction zone, and paleo seafloor age data enables the spatial and temporal consistency between the geologic data and the mantle convection model, and guarantees the conservation of the buoyancy flux across the lithosphere and subducted slabs. Our model achieved a first order approximation between predictions and the observed data. Interestingly, the model suggests that the slab material stagnated above discontinuity didn't form until 15Ma, much later than previous expected, and the fast abnormality in the mid-mantle further west in the tomographic image is interpreted to be the remnants of the Mesozoic Izanagi subduction. Moreover, detailed analysis suggests that the accelerated subduction of Philippine Sea plate beneath Eurasia plate along the Ryukyu Trench and Nankai Trough since 15Ma may largely contribute to extending feature above 670km discontinuity. The long distance expansion of the slab material in the East-west direction may be an illusion caused by the approximate spatial perpendicularity between the cross-section and the subduction direction of the Philippine Sea plate. Our model emphasizes the necessity of the re-examination on the geophysical observation and its tectonic and

  9. Radial Dupuit interface flow to assess the aquifer storage and recovery potential of saltwater aquifers

    OpenAIRE

    Bakker, M

    2009-01-01

    A new accurate numerical solution is presented for aquifer storage and recovery (ASR) systems in coastal aquifers; flow is approximated as radial Dupuit interface flow. The radial velocities of points on the interface are a function of time, the vertical coordinate, and the dimensionless parameter D (the discharge of the well divided by the product of the hydraulic conductivity, the square of the aquifer thickness, and the dimensionless density difference). The recovery efficiency of an ASR s...

  10. Geochemistry of Paleokarst Aquifers of the Knox Group in Tennessee and Kentucky

    Science.gov (United States)

    Bradley, Michael W.; Parris, Thomas

    2014-01-01

    Water-quality samples were collected from deep carbonate formations in the Cambrian- and Ordovician-age Knox Group in the central areas of Kentucky and Tennessee as part of an evaluation of the formations for carbon sequestration (Kentucky) and the geohydrology of the paleokarst aquifers (Tennessee). Geochemical data from the deep carbonate formations have been used to evaluate the chemical evolution of the groundwater, residence time, and the degree of confinement. The geochemical data indicate differences in groundwater evolution in the different structural settings including the Nashville Dome, Cincinnati Arch, and Illinois Basin (fig. 1).

  11. Lithosphere and Asthenosphere Properties beneath Oceans and Continents and their Relationship with Domains of Partial Melt Stability in the Mantle

    Science.gov (United States)

    Dasgupta, R.

    2014-12-01

    The depth of the lithosphere-asthenosphere boundary (LAB) and the change in properties across the lithosphere, asthenosphere, and LAB in various tectonic settings are captured in a variety of geophysical data, including seismic velocities and electrical conductivity. A sharp drop in shear wave velocity and increase in electrical conductivity can potentially be caused by the appearance of partial melt at or below the LAB but the chemical and dynamic stability of partial melt across lithosphere and at LAB remain debated. Here I apply the recent models of mantle melting in the presence of water and carbon [1, 2] to evaluate the domains of stability of partial melt both beneath continents and oceans. The model allows prediction of the possible presence, the fraction, and composition of partial melt as a function of depth, bulk C and H2O content, and fO2 [3] in various geologic/tectonic settings. The results show that while a hydrous, carbonated melt is stable only beneath LAB and in the asthenospheric mantle beneath oceans, continental mantle can contain a carbonate-rich melt within the lithosphere. For geotherms corresponding to surface heat flux (SHF) of 40-50 mW m-2, which also match P-T estimates beneath cratons based on thermo-barometry of peridotite xenoliths [4], the solidus of fertile peridotite with trace amount of CO2 and H2O is crossed at depths as shallow as 80-120 km [5]. If elevated geotherms of the Proterozoic and Phanerozoic terrains are applied, carbonatitic melt becomes stable somewhat shallower. These depths are similar to those argued for a mid-lithospheric discontinuity (MLD) where a negative velocity gradient has been detected much shallower than the proposed depth of LAB in many places. With a drop in oxygen fugacity with depth, a freezing of carbonatitic melt may be expected at intermediate depths (~150-200 km). At 200-250 km a hydrous, carbonated silicate melt may reappear owing to the interplay of fO2 and freezing point depression effect of CO

  12. Crustal structure beneath the southern Korean Peninsula from local earthquakes

    Science.gov (United States)

    Kim, Kwang-Hee; Park, Jung-Ho; Park, Yongcheol; Hao, Tian-Yao; Kim, Han-Joon

    2017-02-01

    The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  13. Descending lithosphere slab beneath the Northwest Dinarides from teleseismic tomography

    Science.gov (United States)

    Šumanovac, Franjo; Dudjak, Darko

    2016-12-01

    The area of study covers the marginal zone between the Adriatic microplate (African plate) and the Pannonian segment (Eurasian plate). We present a tomography model for this area, with special emphasis on the northwest Dinarides. A dense distribution of temporary seismic stations in the area of the Northern Dinarides along with permanent seismic stations located in the area, allowed us to construct this P-wave tomographic model. We assembled our travel-time dataset based on 26 seismic stations were used to collect the dataset. Teleseismic events were recorded for a period of 18 months and a set of 76 distant earthquakes were used to calculate the P-wave travel-time residuals. We calculated relative rather than absolute arrival-time residuals in the inversion to obtain depths of 0-400 km. We imaged a pronounced fast velocity anomaly below the NW Dinarides which directly indicates a lithosphere slab downgoing beneath the Dinarides. This fast anomaly extends towards the NW direction to at least 250 km depth, and we interpreted it as a descending lithosphere slab. The thrusting of the Adriatic microplate may be brought about by sub-lithosphere rising movement beneath the Pannonian region, along with a push from African plate. In our interpretation, the Adriatic lower lithosphere has been detached from the crust, and steeply sinks beneath the Dinarides. A lithosphere model of the contact between the Adriatic microplate and Pannonian tectonic segment was constructed based on the tomographic velocity model and results of previous crustal studies.

  14. What lies beneath the Cerro Prieto geothermal field?

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.; Williams, A.E.; Biehler, S. [Univ. of California, Riverside, CA (United States)

    1997-12-31

    Although the Cerro Prieto geothermal reservoir is one of the world`s largest geothermal developments, conflicting ideas persist about the basement beneath it. The current plan to drill a 6 km deep exploratory well in the eastern part of the field has brought this controversy into sharper focus. This paper discusses criteria which any model of what lies beneath the reservoir must meet, in terms of regional tectonics and geophysics, of the metamorphic and igneous rocks thus far encountered in drilling, and of models of possible heat sources and coupling between the hydrothermal and magmatic systems. Our analysis confirms the interpretation that the crystalline basement beneath the sediments, rather than being granitic, is oceanic in character, resembling an ophiolite complex. The heat source is most likely a cooling gabbroic intrusion, several kilometers in diameter, overlain by a sheeted dike swarm. A 6 km deep bore-hole centered over such an intrusion would not only be one of the world`s deepest geothermal wells but could also be one of the hottest.

  15. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  16. Schaben field, Kansas: Improving performance in a Mississippian shallow-shelf carbonate

    Science.gov (United States)

    Montgomery, S.L.; Franseen, E.K.; Bhattacharya, S.; Gerlach, P.; Byrnes, A.; Guy, W.; Carr, T.R.

    2000-01-01

    Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores recovered from three new data wells identify three main facies: Spicule-rich wackestone-packstone, echinoderm wackestone/packstone/grainstone, and dolomitic mudstone-wackestone. Reservoir quality is highest in spicule-rich wackestone/packstones but is subject to a very high degree of vertical heterogeneity due to facies interbedding, silification, and variable natural fracturing. The oil reservoir is underlain by an active aquifer, which helps maintain reservoir pressure but supports significant water production. Reservoir simulation, using public-domain, PC-based software, suggests that infill drilling is an efficient approach to enhanced recovery. Recent drilling directed by simulation results has shown considerable success in improving field production rates. Results from the Schaben field demonstration project are likely to have wide application for independent oil and exploration companies in western Kansas.Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores

  17. Microbial methane production in deep aquifer associated with the accretionary prism in Japan.

    Science.gov (United States)

    Kimura, Hiroyuki; Nashimoto, Hiroaki; Shimizu, Mikio; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-04-01

    To identify the methanogenic pathways present in a deep aquifer associated with an accretionary prism in Southwest Japan, a series of geochemical and microbiological studies of natural gas and groundwater derived from a deep aquifer were performed. Stable carbon isotopic analysis of methane in the natural gas and dissolved inorganic carbon (mainly bicarbonate) in groundwater suggested that the methane was derived from both thermogenic and biogenic processes. Archaeal 16S rRNA gene analysis revealed the dominance of H(2)-using methanogens in the groundwater. Furthermore, the high potential of methane production by H(2)-using methanogens was shown in enrichments using groundwater amended with H(2) and CO(2). Bacterial 16S rRNA gene analysis showed that fermentative bacteria inhabited the deep aquifer. Anaerobic incubations using groundwater amended with organic substrates and bromoethanesulfonate (a methanogen inhibitor) suggested a high potential of H(2) and CO(2) generation by fermentative bacteria. To confirm whether or not methane is produced by a syntrophic consortium of H(2)-producing fermentative bacteria and H(2)-using methanogens, anaerobic incubations using the groundwater amended with organic substrates were performed. Consequently, H(2) accumulation and rapid methane production were observed in these enrichments incubated at 55 and 65 degrees C. Thus, our results suggested that past and ongoing syntrophic biodegradation of organic compounds by H(2)-producing fermentative bacteria and H(2)-using methanogens, as well as a thermogenic reaction, contributes to the significant methane reserves in the deep aquifer associated with the accretionary prism in Southwest Japan.

  18. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer.

    Science.gov (United States)

    Wrighton, Kelly C; Castelle, Cindy J; Wilkins, Michael J; Hug, Laura A; Sharon, Itai; Thomas, Brian C; Handley, Kim M; Mullin, Sean W; Nicora, Carrie D; Singh, Andrea; Lipton, Mary S; Long, Philip E; Williams, Kenneth H; Banfield, Jillian F

    2014-07-01

    Fermentation-based metabolism is an important ecosystem function often associated with environments rich in organic carbon, such as wetlands, sewage sludge and the mammalian gut. The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain poorly understood. Here we used metagenomics and proteomics to characterize microbial communities sampled from an aquifer adjacent to the Colorado River at Rifle, CO, USA, and document interlinked microbial roles in geochemical cycling. The organic carbon content in the aquifer was elevated via acetate amendment of the groundwater occurring over 2 successive years. Samples were collected at three time points, with the objective of extensive genome recovery to enable metabolic reconstruction of the community. Fermentative community members include organisms from a new phylum, Melainabacteria, most closely related to Cyanobacteria, phylogenetically novel members of the Chloroflexi and Bacteroidales, as well as candidate phyla genomes (OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER and OP11). These organisms have the capacity to produce hydrogen, acetate, formate, ethanol, butyrate and lactate, activities supported by proteomic data. The diversity and expression of hydrogenases suggests the importance of hydrogen metabolism in the subsurface. Our proteogenomic data further indicate the consumption of fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate and iron reduction. Thus, fermentation carried out by previously unknown members of sediment microbial communities may be an important driver of nitrogen, hydrogen, sulfur, carbon and iron cycling.

  19. Monitoring induced denitrification in an artificial aquifer recharge system.

    Science.gov (United States)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    As demands on groundwater increase, artificial recharge is becoming a common method for enhancing groundwater supply. The Llobregat River is a strategic water supply resource to the Barcelona metropolitan area (Catalonia, NE Spain). Aquifer overexploitation has leaded to both a decrease of groundwater level and seawater intrusion, with the consequent deterioration of water quality. In the middle section of the aquifer, in Sant Vicenç del Horts, decantation and infiltration ponds recharged by water from the Llobregat River (highly affected from wastewater treatment plant effluents), were installed in 2007, in the framework of the ENSAT Life+ project. At the bottom of the infiltration pond, a vegetal compost layer was installed to promote the growth of bacteria, to induce denitrification and to create favourable conditions for contaminant biodegradation. This layer consists on a mixture of compost, aquifer material, clay and iron oxide. Understanding the fate of contaminants, such as nitrate, during artificial aquifer recharge is required to evaluate the impact of artificial recharge in groundwater quality. In order to distinguish the source of nitrate and to evaluate the capability of the organic reactive layer to induce denitrification, a multi-isotopic approach coupled with hydrogeochemical data was performed. Groundwater samples, as well as river samples, were sampled during artificial and natural recharge periods. The isotopic analysis included: δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δ2H and δ18O of water. Dissolved nitrate isotopic composition (δ15NNO3 from +9 to +21 o and δ18ONO3 from +3 to +16 ) demonstrated that heterotrophic denitrification induced by the reactive layer was taking place during the artificial recharge periods. An approximation to the extent of nitrate attenuation was calculated, showing a range between 95 and 99% or between 35 and 45%, by using the extreme

  20. Aquifer vulnerability for Colorado and New Mexico

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey Data Series provides raster data representing an estimate of aquifer vulnerability calculated for each 30-meter raster cell. Depth to...

  1. Hydrogeology - MO 2014 Thermoclines Ozark Aquifer (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Ozark Aquifer thermo cline correlates the temperature data throughout the state in the Ordovician System and the Upper Cambrian Series, consisting of the Eminence...

  2. Assessment of natural recharges of the Plio-Plistocene shallow aquifer system in Al Uja area /Lower Jordan Valley / Occupied Palestinian Territories

    Science.gov (United States)

    Manasra, Kayan; Marei, Amer; Sbiah, Mohamed; Uter, Hussam; Abu Thaher, Ayman

    2013-04-01

    Al Uja area locates in the Lower Jordan Valley/West Bank at 250 m below sea level. The availability of ground water, fertile soil, and warm climate during winter months make it remarkable for its agricultural activities where 600 hectares are under irrigation. Al Uja karstic spring that drain water from the Mountain carbonate aquifer system with a discharge rate between 0.5 and 8 MCM/a , and nine groundwater boreholes that tape water from the shallow Plio-Plistocene aquifer system, with an annual abstraction of 3.5 MCM are the water sources. The south-north fault system of the Jordan Rift Valley separates the two aquifer system. The shallow aquifer system locates to the east of the fault, where the Mountain aquifer system locates to the west. The Mountain aquifer consists of high fractured and karstified limestone and dolomite of Upper Cretaceous age, and the shallow aquifer system consists of gravel, sand, silt, and clay layers of the Dead Sea group. Groundwater recharge of the Mountain aquifer system takes place in the highland area in the West with an annual precipitation of about 550 mm. Formations of the shallow aquifer system crop out in the Jordan Valley where rainfall does not exceed 250 mm/a . Due to the high evaporation rate, direct recharge is neglected. Only small portion of flooding water about 0.4MCM/a infiltrate through wadi Al Uja drainage system in to the Alluvial deposits to the shallow aquifer system. In the other hand, and since more than 40 years, the nine groundwater boreholes are taping about 3 MCM/a, water table decline of about 5 m. Currently, water table locates between -290 m in the west and decrease to - 311 m in the east. Groundwater flows from the Mountain aquifer in the west to the Shallow aquifer in the east through the major fault system. The permeability of the Mountain carbonate layers is 2.49E-1 m/min and decrease to 1.6 E-2 m/min in the layers of the Shallow aquifer system, this decrease of Kf-value east wards cause a semi

  3. Geochemistry of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama

    Science.gov (United States)

    Sprinkle, Craig L.

    1989-01-01

    The chemical quality of the ground water in the Floridan aquifer system is determined primarily by mineral-water interaction. However, some changes in water quality have been imposed by development, particularly near coastal pumping centers. A total of 601 chemical analyses, all from different wells, most completed in the upper part of the aquifer system, were used to describe the variations in water chemistry and to study the processes responsible for observed changes. The Floridan aquifer system is a vertically continuous sequence of Tertiary carbonate rocks that are of generally high permeability and are hydraulically connected in varying degrees. The rocks are principally limestone and dolomite, but they grade into limy sands and clays near the aquifer system's updip limits. Major minerals in the aquifer system are calcite, dolomite, and, locally, gypsum or quartz; minor minerals include apatite, glauconite, and clay minerals such as kaolinite and montmorillonite. Trace amounts of metallic oxides or sulfides are present in some areas. The aquifer system consists of the Upper and Lower Floridan aquifers, separated in most places by a less permeable confining unit that has highly variable hydraulic properties. Only the Upper Floridan aquifer is present throughout the study area. Freshwater enters the aquifer system in outcrop areas located primarily in central Georgia and north-central Florida. Discharge occurs chiefly to streams and springs and, to a lesser extent, directly into the sea. Most of the flow into and out of the system takes place where it is unconfined or where the upper confining unit is thin. Secondary permeability developed by dissolution of aquifer material is most prominent in these areas of dynamic flow. Dissolved-solids concentrations in water from the Upper Floridan aquifer generally range from less than 25 milligrams per liter near outcrops to more than 25,000 milligrams per liter along the coasts. The dominant cations in the ground water

  4. Transport of nonlinearly biodegradable contaminants in aquifers

    OpenAIRE

    Keijzer, H.

    2001-01-01

    This thesis deals with the transport behavior of nonlinearly biodegradable contaminants in aquifers. Such transport occurs during in situ bioremediation which is based on the injection of an electron acceptor or electron donor. The main interests in this thesis are the mutual influences of underlying processes, i.e. transport, adsorption and biodegradation, and their influence on in situ bioremediation performance. To gain insight in these influences, the processes in a homogeneous aquifer ar...

  5. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    Science.gov (United States)

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    section near River Mile 8. Salinity increases of up to 4.0 parts per thousand (ppt) were indicated by the model incorporating hydrogeologic conceptualizations with both a semiconfining bed over the limestone unit and a preferential flow layer within the limestone along the cross section near River Mile 8. Simulated increases in salinity greater than 0.2 ppt in this area were generally limited to portions of the limestone unit within about 75 feet of the channel on the north side of the river. The potential for saltwater to move from the river channel to the surficial aquifer system is limited, but may be present in areas where the head gradient from the aquifer to the river is small or negative and the salinity of the river is sufficient to induce density-driven advective flow into the aquifer. In some areas, simulated increases in salinity were exacerbated by the presence of laterally extensive semiconfining beds in combination with a high-conductivity preferential flow zone in the limestone unit of the surficial aquifer system and an upgradient source of saline water, such as beneath the salt marshes near Fanning Island. The volume of groundwater pumped in these areas is estimated to be low; therefore, saltwater intrusion will not substantially affect regional water supply, although users of the surficial aquifer system east of Dames Point along the northern shore of the river could be affected. Proposed dredging operations pose no risk to salinization of the Floridan aquifer system; in the study area, the intermediate confining unit ranges in thickness from more than 300 to about 500 feet and provides sufficient hydraulic separation between the surficial and Floridan aquifer systems.

  6. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    Science.gov (United States)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    open steppe dominated by Stipa tenacissima. In February 2009 representative soil samples from the top 10 cm were taken beneath grass tussock and from bare soil. Soil samples in three replicates were incubated after rewetting with distilled water (basal microbial activities) and after rewetting with the glucose solution and with the mixture of glucose and peptone solution (potential microbial activities). The CO2, C2H4 evolved under controlled conditions (60% WHC, 24°C) during a 37-day aerobic incubation were determined. Ammonia and nitrate nitrogen were estimated in percolates after simulated rainfall (on the 16th day of incubation) and in the incubated soil samples at the end of incubation. Net ammonification and net nitrification rates were determined by subtracting initial soil mineral N from both mineral N in percolates plus final mineral N contents at 37th day. Basal, potential microbial respiration and net nitrification in the soils beneath S. tenacissima were, in general, not significantly different from the bare soils. The differences between plant-covered soil and bare soil in cumulative values of CO2 production and in amounts of accumulated NO3--N (net nitrification) were less than ± 10%. Greater differences were found in the net ammonification, which were higher beneath S. tenacissima, mainly in the control (basal activities) variant (about 38 %). Significantly less ethylene produced by microbial activity in soils beneath S. tenacissima after the addition of glucose indicates the dependence of rhizospheric microbial communities on available carbon compounds mainly from root exudates. It can be concluded, similarly as published Goberna et al., (2007), that the distribution of soil microbial properties in semi-arid Mediterranean ecosystems is not necessarily associated with the patchy plant distribution and that some microbial activities characteristics can be unexpectedly homogenous.

  7. Aquifer performance under the Mactaquac Dam

    Energy Technology Data Exchange (ETDEWEB)

    Tawil, A.H. [Acres International, Niagara Falls, ON (Canada); Harriman, F.B. [New Brunswick Power, Fredericton, NB (Canada)

    2001-10-01

    The highest dam in the whole of the Maritimes and New Brunswick in particular is the Mactaquac Dam, with a height of 58 m above the foundation. It forms an integral part of the Mactaquac Hydroelectric Development and the construction of the dam was completed in 1967. Composed of a central core of clay till and external shells of rockfill, it is a zoned embankment. The high artesian pressure rising 6 m above the Saint John River dominates, and the foundation under the dam is composed of a stratum of stiff glacial till underlain with a thick, water bearing aquifer. The aquifer needed to be depressurized during the construction phase and in the long term, and special measures were required to accomplish this. Measurements obtained over a period exceeding 30 years were used to describe the performance of the aquifer, which is discussed in this presentation. A continuous reduction in the yield from the six permanent relief wells in the aquifer was indicated by the instrumentation data. The outflow from the wells diminished by two-thirds over the thirty-four years since first filling the reservoir. The piezometric pressure in the aquifer remained constant over the same period. The sparse results of a two-hour pump test had formed the basis for the design decision not to install a costly foundation seepage cut-off to bedrock, as the conclusions drawn from the pump test were that the aquifer was hydrogeologically confined. 3 refs., 4 tabs., 9 figs.

  8. Using 81Kr-age of groundwater in the Guarani Aquifer, Brazil, to constrain estimates of continental degassing flux of 4He

    Science.gov (United States)

    Aggarwal, P. K.; Matsumoto, T.; Sturchio, N. C.; Chang, H. K.; Gastmans, D.; Lu, Z.; Jiang, W.; Müller, P.; Yokochi, R.; Han, L.; Klaus, P.; Torgersen, T.

    2013-12-01

    Continental degassing flux of helium is the dominant component of dissolved helium in deep groundwater together with that produced in-situ in the aquifer. A reliable estimate of the degassing flux is critical to the use of 4He as a dating tool in groundwater studies. The degassing flux is also important for understanding fluid and heat transport in the mantle and the rust. An independent tracer of groundwater age is required in order to deconvolute the two signals of the external, degassing flux and in situ production. Estimates of degassing flux mostly have relied upon shorter-lived radionuclides such as 14C and tritium and the resulting flux estimates have a significant variability (Torgersen, 2010). In the Guarani Aquifer in Brazil, an effective crustal 4He degassing flux into the aquifer was estimated from 81Kr ages ranging from about 70 Ka to 570 Ka. We then used the model framework of Toregesen and Ivey (1985), modified to include a diffusive reduction of originally uniform crustal helium flux from basement rocks through a thick sedimentary layer beneath the aquifer, to calculate a distribution of radiogenic 4He within the aquifer. With this framework, we obtain 4He ages that are consistent with ages based on 81Kr and 14C, and with a crustal degassing flux equivalent to that estimated from U and Th contents in the crust. The model framework for the Guarani Aquifer is also applied to data from other deep aquifers in Africa and Australia and our results suggest that the continental flux of 4He may be uniform, at least in stable continental areas. Additionally, a reliable estimate of the 4He degassing flux also helps to constrain the surficial discharge of deep groundwater.

  9. Digital data sets that describe aquifer characteristics of the Elk City Aquifer in western Oklahoma

    Science.gov (United States)

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Elk City aquifer in western Oklahoma. The aquifer covers an area of approximately 193,000 acres and supplies ground water for irrigation, domestic, and industrial purposes in Beckham, Custer, Roger Mills, and Washita Counties along the divide between the Washita and Red River basins. The Elk City aquifer consists of the Elk City Sandstone and overlying terrace deposits, made up of clay, silt, sand and gravel, and dune sands in the eastern part and sand and gravel of the Ogallala Formation (or High Plains aquifer) in the western part of the aquifer. The Elk City aquifer is unconfined and composed of very friable sandstone, lightly cemented with clay, calcite, gypsum, or iron oxide. Most of the grains are fine-sized quartz but the grain size ranges from clay to cobble in the aquifer. The Doxey Shale underlies the Elk City aquifer and acts as a confining unit, restricting the downward movement of ground water. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Elk City aquifer. The maps digitized were published at a scale of 1:63,360. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  10. Water quality and chemical evolution of ground water within the north coast limestone aquifers of Puerto Rico

    Science.gov (United States)

    Roman-Mas, Angel J.; Lee, Roger W.

    1985-01-01

    Waters within the north coastal limestoneaquifers are suitable for public supply, industrial and agricultural uses. For the artesian aquifer and the updip parts of the watertable aquifer, calcium and bicarbonate are the dominant ionic species with total dissolved solids and chloride concentrations below 500 and 250 mg/L, respectively. In coastal areas of thewater table aquifer, where a freshwater-saltwater mixing zone occurs, the calcium bicarbonate facie grade to a sodium-chloride facie. Within this zone, concentrations of total dissolved solids and chloride are greater than 250 and 500 mg/L respectively, affecting the suitability of the water for some uses. Geochemical models were constructed to determine the physical and chemicalreasons for the prevailing water quality patterns of the north coastlimestone aquifers. Models indicate that calcite and carbon dioxide dissolution, precipitation or degassing are the primary processes. The mixing of recharge water or saltwater with aquifer waters is an important feature within the water table aquifer. The models provide further evidence that support the circulation of groundwater within the north coast limestone.

  11. Investigating the Spatial and Temporal Variability of Water Saturation Within the Greenland Firn Aquifer Using Ground Penetrating Radar

    Science.gov (United States)

    Brautigam, N.

    2015-12-01

    Ground Penetrating Radar (GPR) is used to investigate the spatial and temporal saturation of the Greenland firn aquifer, using a method recently developed on a Svalbard icesheet (Christianson et. al., 2015). Currently, saturation of the firn is assumed to be 100% (Koenig et. al., 2014; Forster et. al., 2014), and using a firn density correction this saturation level drives the present liquid water volume estimate (140±20 Gt) of the Greenland firn aquifer (Koenig et. al., 2014). Based on earlier studies on mountain glacier firn aquifers, we suspect that saturation levels vary with depth, annual precipitation patterns, and local topography (Fountain, 1989; Christianson et. al., 2015). Refining the liquid water volume estimation is an important parameter as it allows for a better determination of the amount of water potentially available for release and consequent sea level rise, as well as to better model glacial processes such as englacial flow, crevasse fracture, and basal lubrication. GPR and GPS data collected along a 2.6 km transect in 2011, 2013, and 2014 in southeastern Greenland is used to measure the spatial and temporal variability of saturation levels within the aquifer. A bright reflector seen in the GPR at the water table depth responds to local topography. At surface lows, the reflector rises, intersecting annual density change layers visible in the GPR data. At these intersections, the annual layers deflect down beneath the water table before being lost due to signal attenuation. We assume that this deflection is due to a change in dielectric permittivity, and that by measuring the angle of deflection, and implementing a mixing model and density correction from nearby firn cores, we can determine the saturation level at each point along a deflection. This allows us to investigate the spatial and temporal variability of saturation within the firn aquifer.

  12. Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA

    Science.gov (United States)

    Vesper, Dorothy J.; White, William B.

    Continuous records of discharge, specific conductance, and temperature were collected through a series of storm pulses on two limestone springs at Fort Campbell, western Kentucky/Tennessee, USA. Water samples, collected at short time intervals across the same storm pulses, were analyzed for calcium, magnesium, bicarbonate, total organic carbon, and pH. Chemographs of calcium, calcite saturation index, and carbon dioxide partial pressure were superimposed on the storm hydrographs. Calcium concentration and specific conductance track together and dip to a minimum either coincident with the peak of the hydrograph or lag slightly behind it. The CO2 pressure continues to rise on the recession limb of the hydrograph and, as a result, the saturation index decreases on the recession limb of the hydrograph. These results are interpreted as being due to dispersed infiltration through CO2-rich soils lagging the arrival of quickflow from sinkhole recharge in the transport of storm flow to the springs. Karst spring hydrographs reflect not only the changing mix of base flow and storm flow but also a shift in source of recharge water over the course of the storm. L'enregistrement en continu du débit, de la conductivité et de la température de l'eau a été réalisé au cours d'une série de crues à deux sources émergeant de calcaires, à Fort Campbell (Kentucky occidental, Tennessee, États-Unis). Des échantillons d'eau, prélevés à de courts pas de temps lors de ces crues, ont été analysés pour le calcium, le magnésium, les bicarbonates, le carbone organique total et le pH. Les chimiogrammes de calcium, d'indice de saturation de la calcite et de la pression partielle en CO2 ont été superposés aux hydrogrammes de crue. La concentration en calcium et la conductivité de l'eau se suivent bien et passent par un minimum correspondant au pic de l'hydrogramme ou légèrement retardé. La pression partielle en CO2 continue de croître au cours de la récession de l

  13. In-situ metal precipitation in a zinc-aerobic, sandy aquifer by means of biological sulfate reduction

    NARCIS (Netherlands)

    Janssen, G.M.C.M.; Temminghoff, E.J.M.

    2004-01-01

    The applicability of in situ metal precipitation (ISMP) based on bacterial sulfate reduction (BSR) with molasses as carbon source was tested for the immobilization of a zinc plume in an aquifer with highly unsuitable initial conditions (high Eh, low pH, low organic matter content, and low sulfate co

  14. Radial Dupuit interface flow to assess the aquifer storage and recovery potential of saltwater aquifers

    NARCIS (Netherlands)

    Bakker, M.

    2009-01-01

    A new accurate numerical solution is presented for aquifer storage and recovery (ASR) systems in coastal aquifers; flow is approximated as radial Dupuit interface flow. The radial velocities of points on the interface are a function of time, the vertical coordinate, and the dimensionless parameter D

  15. Estimating annual effective infiltration coefficient and groundwater recharge for karst aquifers of the southern Apennines

    Directory of Open Access Journals (Sweden)

    V. Allocca

    2013-08-01

    Full Text Available To assess the mean annual groundwater recharge of the karst aquifers in southern Apennines (Italy, the estimation of the mean annual effective infiltration coefficient (AEIC was conducted by means of an integrated approach based on hydrogeological, hydrological, geomorphological, land use and soil cover analyses. We studied a large part of the southern Apennines that is covered by a meteorological network and containing 40 principal karst aquifers. Using precipitation and air temperature time series gathered through monitoring stations operating in the period 1926–2012, the annual effective precipitation (AEP was estimated, and its distribution was modelled, by considering the orographic barrier and rain shadow effects of the Apennines chain, as well as the altitudinal control. Four sample karst aquifers with available long spring discharge time series were identified for estimating the AEIC by means of the hydrological budget equation. The resulting AEIC values were correlated with other parameters that control groundwater recharge, such as the extension of outcropping karst-rock, morphological settings, land use and covering soil type. A simple correlation relationship between AEIC, lithology and the summit flat and endorheic areas was found. This empirical model has been used to estimate AEIC and mean annual groundwater recharge in other regional karst aquifers. The estimated AEIC values ranged between 48% and 78%, thus matching intervals estimated for other karst aquifers in European and Mediterranean countries. These results represent a deeper understanding of an aspect of groundwater hydrology in karst aquifers which is fundamental for the formulation of appropriate management models of groundwater resources, also taking into account mitigation strategies for climate change impacts. Finally, the proposed hydrological characterisations are also perceived as useful for the assessment of mean annual runoff over carbonate mountains, which is

  16. Denitrification in a Sand and Gravel Aquifer: An Overview of a Long-Term Study

    Science.gov (United States)

    Smith, R. L.

    2002-12-01

    Denitrification can be a key process affecting the concentration and transport of nitrate in the subsurface. As a dissimilatory process, it has the potential to consume significant amounts of nitrate, once oxygen has been depleted, while serving as the predominant terminal electron-accepting reaction for the microbial food chain. Although denitrification has been extensively studied in soils and some surface water systems, relatively little is known about the process in the saturated subsurface. Consequently, a long-term study was established to examine the occurrence of denitrification in a sewage-contaminated, sand and gravel aquifer on Cape Cod, Massachusetts. This study included a characterization of the effect of the process on spatial and temporal distribution of inorganic nitrogen species along aquifer flow paths, the effect on nitrogen stable isotope distributions, and the overall effect on the process of dispersion and consumption of dissolved oxygen and dissolved organic carbon. A variety of laboratory and field studies have been conducted to quantify the overall rate of denitrification relative to subsurface flow, factors that control the process in the Cape Cod aquifer, and the steady-state dynamics of electron flow through the individual steps of the denitrification pathway. Under some conditions, the pathway was found to be unbalanced in the aquifer, causing accumulation of nitrogen oxide intermediates (nitrite, nitrous oxide, and nitric oxide) in the groundwater. Another aspect of this study was utilization of denitrification as a tool to remediate subsurface nitrate contamination. This included in situ enhancement tests using formate as an added electron donor and a laboratory project testing specific groups of denitrifiers isolated from the aquifer. Overall this long-term study has demonstrated that small-scale heterogeneity is a major factor that dictates and controls denitrification in an aquifer at any given locale, even systems viewed as

  17. Groundwater ages from the freshwater zone of the Edwards aquifer, Uvalde County, Texas—Insights into groundwater flow and recharge

    Science.gov (United States)

    Hunt, Andrew G.; Landis, Gary P.; Faith, Jason R.

    2016-02-23

    Tritium–helium-3 groundwater ages of the Edwards aquifer in south-central Texas were determined as part of a long-term study of groundwater flow and recharge in the Edwards and Trinity aquifers. These ages help to define groundwater residence times and to provide constraints for calibration of groundwater flow models. A suite of 17 samples from public and private supply wells within Uvalde County were collected for active and noble gases, and for tritium–helium-3 analyses from the confined and unconfined parts of the Edwards aquifer. Samples were collected from monitoring wells at discrete depths in open boreholes as well as from integrated pumped well-head samples. The data indicate a fairly uniform groundwater flow system within an otherwise structurally complex geologic environment comprised of regionally and locally faulted rock units, igneous intrusions, and karst features within carbonate rocks. Apparent ages show moderate, downward average, linear velocities in the Uvalde area with increasing age to the east along a regional groundwater flow path. Though the apparent age data show a fairly consistent distribution across the study area, many apparent ages indicate mixing of both modern (less than 60 years) and premodern (greater than 60 years) waters. This mixing is most evident along the “bad water” line, an arbitrary delineation of 1,000 milligrams per liter dissolved solids that separates the freshwater zone of the Edwards aquifer from the downdip saline water zone. Mixing of modern and premodern waters also is indicated within the unconfined zone of the aquifer by high excess helium concentrations in young waters. Excess helium anomalies in the unconfined aquifer are consistent with possible subsurface discharge of premodern groundwater from the underlying Trinity aquifer into the younger groundwater of the Edwards aquifer.

  18. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  19. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences.

    Science.gov (United States)

    Bhowmick, Subhamoy; Nath, Bibhash; Halder, Dipti; Biswas, Ashis; Majumder, Santanu; Mondal, Priyanka; Chakraborty, Sudipta; Nriagu, Jerome; Bhattacharya, Prosun; Iglesias, Monica; Roman-Ross, Gabriela; Guha Mazumder, Debendranath; Bundschuh, Jochen; Chatterjee, Debashis

    2013-11-15

    A comparative hydrogeochemical study was carried out in West Bengal, India covering three physiographic regions, Debagram and Chakdaha located in the Bhagirathi-Hooghly alluvial plain and Baruipur in the delta front, to demonstrate the control of geogenic and anthropogenic influences on groundwater arsenic (As) mobilization. Groundwater samples (n = 90) from tube wells were analyzed for different physico-chemical parameters. The low redox potential (Eh = -185 to -86 mV) and dominant As(III) and Fe(II) concentrations are indicative of anoxic nature of the aquifer. The shallow (100 m) aquifers of Bhagirathi-Hooghly alluvial plains as well as shallow aquifers of delta front are characterized by Ca(2+)HCO3(-) type water, whereas Na(+) and Cl(-) enrichment is found in the deeper aquifer of delta front. The equilibrium of groundwater with respect to carbonate minerals and their precipitation/dissolution seems to be controlling the overall groundwater chemistry. The low SO4(2-) and high DOC, PO4(3-) and HCO3(-) concentrations in groundwater signify ongoing microbial mediated redox processes favoring As mobilization in the aquifer. The As release is influenced by both geogenic (i.e. geomorphology) and anthropogenic (i.e. unsewered sanitation) processes. Multiple geochemical processes, e.g., Fe-oxyhydroxides reduction and carbonate dissolution, are responsible for high As occurrence in groundwaters.

  20. Hydrogeology, digital solute-transport simulation, and geochemistry of the Lower Cretaceous aquifer system near Baltimore, Maryland

    Science.gov (United States)

    Chapelle, Francis H.; with a section compiled by Kean, Tracey M.

    1985-01-01

    aquifer has a smaller zone of brackish-water contamination that has decreased in size since 1945. Borehole data demonstrate that the Arundel Formation has been breached by Pleistocene river channels near the Harbor district. These erosional channels provide a conduit for brackish water to intrude into the Patuxent aquifer. A two-dimensional areal solute-transport model of the Patuxent aquifer was constructed. This model was designed to estimate the future movement of the brackish-water plume based on alternative scenarios of aquifer use. Model simulations suggest that the plume will remain relatively immobile if 1982 pumping patterns continue into the foreseeable future. However, increased pumpage in the Marley Neck peninsula could draw the plume to the southeast and increase contamination of the Fairfield area. The water quality of the Patuxent aquifer is extremely variable. Because of this variability, it is useful to divide the aquifer into three water-quality zones: Zone 1 -- This zone corresponds to the plume of brackish-water contamination. Zone 2 -- This zone exhibits evidence of urbanization-related contamination such as measurable concentrations of organic chemicals and elevated concentrations of trace elements and total organic carbon. Zone 3 -- Water composition in this zone is controlled exclusively by naturally occurring chemical processes. These processes are dominated by reactions involving dissolved iron. Near the outcrop area, oxidation of pyrite and lignite consumes dissolved oxygen and produces ledges of iron hydroxide-cemented sandstones and conglomerates. The predominant dissolved iron species in oxic water is Fe(OH)2+. Downgradient, the water becomes anoxic and sulfate reduction becomes an important process. The predominant dissolved iron species in anoxic water is Fe2+.

  1. A magmatic probe of dynamic topography beneath western North America

    Science.gov (United States)

    Klöcking, M.; White, N. J.; Maclennan, J.

    2014-12-01

    A region centered on the Yellowstone hotspot and encompassing the Colorado Plateau sits at an elevation 2 km higher than the cratonic North America. This difference broadly coincides with tomographically observed variations in lithospheric thickness: ~120 km beneath western North America, ~240 km beneath the craton. Thermochronology of the Grand Canyon area, sedimentary flux to the Gulf of Mexico, and river profile inversion all suggest that regional uplift occurred in at least two separate stages. High resolution seismic tomographic models, using USArray data, have identified a ring of low velocity material beneath the edges of the Colorado Plateau. Magmatism coincides with these low velocity zones and shows distinct phases: an overall increase in volume around 40 Ma and a change from lithospheric to asthenospheric signatures around 5 Ma. Volcanism is also observed to migrate north-east with time. Here, we attempt to integrate these different observations with lithospheric thickness. A dynamic topography model of progressive lithospheric erosion over a hot mantle plume might account for uplift as well as the temporal and spatial distribution of magmatism across western North America. Thinning of the lithosphere around the edges of the Colorado Plateau in combination with the hotter mantle potential temperature of a plume could create isostatic and dynamic uplift as well as allowing for melt production. To test this model, we have analysed around 100 samples from volcanic centers across western North America by ICP-MS for rare earth elements (REE). Most of the samples are younger than 5 Ma, and all of them have previously been analysed by XRF. Using trace element ratios such as La/Yb and Nb/Y we assess depth of melting and melt fraction, respectively. In addition, we use REE inversion modelling to estimate melt fractions as a function of depth and temperature of melting. The results are compared to existing constraints on lithospheric thickness and mantle potential

  2. A Bed-Deformation Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2001-12-01

    Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a

  3. Multidepth pumping tests in deep aquifers.

    Science.gov (United States)

    Alam, N; Olsthoorn, T N

    2014-09-01

    Multidepth pumping tests (MDPTs), in which different sections of a screen are pumped in sequence, are not being used by hydrogeologists, despite the capability of such tests to resolve uncertainties in the estimation of aquifer characteristics. MDPTs can be used to discern the effects of partial penetration and vertical anisotropy. This article demonstrates the use of MDPTs for a deep and vertically anisotropic aquifer, based on a real and unique series of pumping tests conducted in the Indus Basin. Traditional single-layer methods, which incorporate partial penetration and vertical scaling, were employed to evaluate these tests. However, the drawdowns of the 19 piezometers at different depths for which times series data were available could not be matched, presumably because of the layered structure of the aquifer. Numerical (MODFLOW) and multilayer analytical (Hemker and Maas 1987; Hemker 1999) approaches were used to assess the benefits of using MDPTs in the analysis of deep layered and anisotropic aquifers. The multilayer analytical solution results are consistent with the measured and numerically computed drawdowns. The original step-drawdown data were used to verify the model independently. The results of statistical analyses indicate that the parameters for a three-layer system are uniquely estimated. A sensitivity analysis showed that aquifer depths greater than 900 m do not affect the drawdown. The multilayer analytical solution was implemented in MATLAB and can be found in the online version of this article. This multilayer analytical approach was implemented in MLU by Hemker and Randall (2013) for up to 40 layers. The results of this study will be useful in groundwater management, exploration, and optimal well depth estimation for the Indus Basin aquifer and other vertically heterogeneous aquifers.

  4. Stochastic analysis of virus transport in aquifers

    Science.gov (United States)

    Campbell, Rehmann L.L.; Welty, C.; Harvey, R.W.

    1999-01-01

    A large-scale model of virus transport in aquifers is derived using spectral perturbation analysis. The effects of spatial variability in aquifer hydraulic conductivity and virus transport (attachment, detachment, and inactivation) parameters on large-scale virus transport are evaluated. A stochastic mean model of virus transport is developed by linking a simple system of local-scale free-virus transport and attached-virus conservation equations from the current literature with a random-field representation of aquifer and virus transport properties. The resultant mean equations for free and attached viruses are found to differ considerably from the local-scale equations on which they are based and include effects such as a free-virus effective velocity that is a function of aquifer heterogeneity as well as virus transport parameters. Stochastic mean free-virus breakthrough curves are compared with local model output in order to observe the effects of spatial variability on mean one-dimensional virus transport in three-dimensionally heterogeneous porous media. Significant findings from this theoretical analysis include the following: (1) Stochastic model breakthrough occurs earlier than local model breakthrough, and this effect is most pronounced for the least conductive aquifers studied. (2) A high degree of aquifer heterogeneity can lead to virus breakthrough actually preceding that of a conservative tracer. (3) As the mean hydraulic conductivity is increased, the mean model shows less sensitivity to the variance of the natural-logarithm hydraulic conductivity and mean virus diameter. (4) Incorporation of a heterogeneous colloid filtration term results in higher predicted concentrations than a simple first-order adsorption term for a given mean attachment rate. (5) Incorporation of aquifer heterogeneity leads to a greater range of virus diameters for which significant breakthrough occurs. (6) The mean model is more sensitive to the inactivation rate of viruses

  5. On the Turbulence Beneath Finite Amplitude Water Waves

    CERN Document Server

    Babanin, Alexander V

    2015-01-01

    The paper by Beya et al. (2012, hereinafter BPB) has a general title of Turbulence Beneath Finite Amplitude Water Waves, but is solely dedicated to discussing the experiment by Babanin and Haus (2009, hereinafter BH) who conducted measurements of wave-induced non-breaking turbulence by particle image velocimetry (PIV). The authors of BPB conclude that their observations contradict those of BH. Here we argue that the outcomes of BPB do not contradict BH. In addition, although the main conclusion of BPB is that there is no turbulence observed in their experiment, it actually is observed.

  6. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.

    Science.gov (United States)

    Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E

    2005-05-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  7. Clay Mineralogy of AN Alluvial Aquifer in a Mountainous, Semiarid Terrain, AN Example from Rifle, Colorado

    Science.gov (United States)

    Elliott, W. C.; Lim, D.; Zaunbrecher, L. K.; Pickering, R. A.; Williams, K. H.; Navarre-Sitchler, A.; Long, P. E.; Noel, V.; Bargar, J.; Qafoku, N. P.

    2015-12-01

    Alluvial sediments deposited along the Colorado River corridor in the semi-arid regions of central to western Colorado can be important hosts for legacy contamination including U, V, As and Se. These alluvial sediments host aquifers which are thought to provide important "hot spots" and "hot moments" for microbiological activity controlling organic carbon processing and fluxes in the subsurface. Relatively little is known about the clay mineralogy of these alluvial aquifers and the parent alluvial sediments in spite of the fact that they commonly include lenses of silt-clay materials. These lenses are typically more reduced than coarser grained materials, but zones of reduced and more oxidized materials are present in these alluvial aquifer sediments. The clay mineralogy of the non-reduced parent alluvial sediments of the alluvial aquifer located in Rifle, CO (USA) is composed of chlorite, smectite, illite, kaolinite and quartz. The clay mineralogy of non-reduced fine-grained materials at Rifle are composed of the same suite of minerals found in the sediments plus a vermiculite-smectite intergrade that occurs near the bottom of the aquifer near the top of the Wasatch Formation. The clay mineral assemblages of the system reflect the mineralogically immature character of the source sediments. These assemblages are consistent with sediments and soils that formed in a moderately low rainfall climate and suggestive of minimal transport of the alluvial sediments from their source areas. Chlorite, smectite, smectite-vermiculite intergrade, and illite are the likely phases involved in the sorption of organic carbon and related microbial redox transformations of metals in these sediments. Both the occurrence and abundance of chlorite, smectite-vermiculite, illite and smectite can therefore exert an important control on the contaminant fluxes and are important determinants of biogeofacies in mountainous, semiarid terrains.

  8. Hydrogeology of the stratified-drift aquifers in the Cayuta Creek and Catatonk Creek valleys in parts of Tompkins, Schuyler, Chemung, and Tioga Counties, New York

    Science.gov (United States)

    Miller, Todd S.; Pitman, Lacey M.

    2012-01-01

    Creek stratified-drift aquifers is predominantly from the valley walls toward the main streams in the valleys. The groundwater discharges from the aquifer system to the main-stem streams in the valleys. Locally, the direction of groundwater flow is radially away from groundwater mounds that have formed beneath upland tributaries that typically lose water where they flow on alluvial fans in the valleys. In some places, groundwater that would normally flow toward streams is intercepted by pumping wells.

  9. Innovative reactive layer to enhance soil aquifer treatment: successful installation in the Llobregat aquifer (Catalonia, ne Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.; Gilbert, O.; Bernat, X.; Valhondo, C.; Kock-Schulmeyer, M.; Huerta-Fontela, M.; Colomer, M. V.

    2014-10-01

    The Life+ ENSAT project has demonstrated the effectiveness of a reactive organic layer on the improvement of recharge water quality in an aquifer recharge system. The vegetal compost layer was installed at the bottom of an existing infiltration pond in the Llobregat Lower Valley (Barcelona region) with the purpose of promoting biodegradation and improving the removal emerging micro-pollutants from Llobregat River water. A comprehensive monitoring of water quality including bulk chemistry, emerging micro-pollutants and priority substances indicated that hydro biochemical changes within the organic layer enhance denitrification processes and reduce the levels of gemfibrozil and carbamazepine TP. This effect is due to the release of dissolved organic carbon which promotes biodegradation processes at local scale in the unsaturated zones, without affecting the furthest piezometers. The reactive layer is still active more than 3 years after its installation. The economic assessment of this innovative reactive layer shows that it is a promising solution for the improvement of aquifer recharge with low quality waters, not only technically but also from the economic sustainability standpoint. (Author)

  10. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Wrighton, Kelly C.; Castelle, Cindy; Wilkins, Michael J.; Hug, Laura A.; Sharon, I.; Thomas, Brian C.; Handley, Kim M.; Mullin, Sean W.; Nicora, Carrie D.; Singh, Andrea; Lipton, Mary S.; Long, Philip E.; Williams, Kenneth H.; Banfield, Jillian F.

    2014-07-08

    Fermentation-based metabolism is an important ecosystem function often associated with environments rich in organic carbon, such as wetlands, sewage sludge, and the mammalian gut. The diversity of microorganisms and pathways involved in carbon and hydrogen cycling in sediments and aquifers and the impacts of these processes on other biogeochemical cycles remain poorly understood. Here we used metagenomics and proteomics to characterize microbial communities sampled from an aquifer adjacent to the Colorado River at Rifle, Colorado, USA, and document interlinked microbial roles in geochemical cycling. The organic carbon content in the aquifer was elevated via two acetate-based biostimulation treatments. Samples were collected at three time points, with the objective of extensive genome recovery to enable metabolic reconstruction of the community. Fermentative community members include genomes from a new phylum (ACD20), phylogenetically novel members of the Chloroflexi and Bacteroidetes, as well as candidate phyla genomes (OD1, BD1-5, SR1, WWE3, ACD58, TM6, PER, and OP11). These organisms have the capacity to produce hydrogen, acetate, formate, ethanol, butyrate, and lactate, activities supported by proteomic data. The diversity and expression of hydrogenases suggests the importance of hydrogen currency in the subsurface. Our proteogenomic data further indicate the consumption of fermentation intermediates by Proteobacteria can be coupled to nitrate, sulfate, and iron reduction. Thus, fermentation carried out by previously unstudied members of sediment microbial communities may be an important driver of diverse subsurface biogeochemical cycles.

  11. Ecological assessment of water quality in relation to hydrogeology in a shallow urban aquifer: Somesul Mic River aquifer (North-Western, Romania)

    Science.gov (United States)

    Iepure, Sanda; Marin, Constantin; Fekete, Alexandru; Rajka, Geza; Brad, Traian; Samsudean, Cristian

    2014-05-01

    The River Basin Management Plan is the main instrument for the implementation of the Water Framework Directive (2000/60/CE), one of its main requirements being the evaluation and quantification of human impacts on aquatic environments including the groundwater or groundwater dependent ecosystems. The Someş-Tisa basin is the largest hydrographical basin in NW Romania (22,380 km2), containing 15 Quaternary detrital groundwater bodies prone to intensive agricultural and urban industrial use. So far, no studies have addressed the groundwater fauna assemblages and their ecological response to human disturbances and aquifer contamination. Here we investigate a Quaternary shallow detrital aquifer (urban-industrial and agricultural contaminants, aiming to evaluate the sensitivity and structural patterns of groundwater crustaceans communities to aquifer contamination with trace metals (Cr, Mn, Co, Ni, Cu, Zn, Cd, Mo, Pb), As, Se and nitrates. We conducted a survey in seven monitoring boreholes (1-8 m beneath the surface) through the Quaternary porrous aquifer of the Somesul Mic River on a 10 km long longitudinal transect. Hydrologic and geologic variables (rainfall amount, drainage network density, aquifer and drainage elevation, transmisivity and aquifer porosity) were extracted from previous works and Pearson correlations were calculated for paired variables. Water and faunal sampling was performed on a seasonal basis at one pristine and six impacted sites during 2013. Invertebrates were sampled with a submersible pump by extracting a volume of 50-100 l of water and filtering through a 63 microns planktonic net. Subsequently, 2 l of water was extracted after pumping for compositional analyses of major constituents, trace elements (by ICP-MS) and nutrients. The results of water geochemical analyses indicate a significant pollutant charge of groundwater with Mn (max. 29.26 μg/l), Ni (16.55 μg/l), Fe (509.74 μg/l), As (3.87 μg/l), Se (5.07 μg/l), sulphates (549.9

  12. Hydrogeochemical study of water in some aquifers of the Estado de Mexico; Estudio hidrogeoquimico de agua de algunos manantiales del Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Lopez, A.; Balcazar, M.; Flores, J.H.; Cardenas, S. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Schubert, M. [UFZ Centre for Environmental Research Leipzig-Halle GMBH, Permoser Str. 15, 04318 Leipzig (Germany)

    2005-07-01

    The National Institute of Nuclear Research of Mexico (ININ), has developed a technique that allows to study the association of recharge mechanisms, residence times of the water in the aquifers, as well as the local lithology and the geochemical parameters. The viability of this technique was proven on November 2004 in the aquifers (La Perita, El Tunel y El Pedregal) located in the Asuncion Tepexoyuca, Estado de Mexico. It was observed that so much the aquifer El Tunel like La Perita are used for the human consumption, the aquifer of El Pedregal is used for the fish cultivation. The studies were carried out during March 2003 to November 2004. In the aquifer La Perita the maximum values of the radon concentration (0.76 Bq L{sup -1}) they were observed in the summertime time (December). In the spring El Tunel the maximum values of the radon concentration (4.08 Bq L{sup -1}) they were observed in the rainy season (September) this increment can be due to the contributions of the recharge of aquifers that it allows the haulage of the radon of other alternating roads of infiltration of the rain water. Of the physicochemical and radiochemical analyses carried out in the water samples of the studied aquifers, it is deduced that they are waters of good quality since for the human consumption since that they are inside on the maximum permissible limits as for their potability according to national and international standards. Likewise it was observed that the water of the aquifers is a single aquifer, since that its differences they due to the time of permanency of the water inside the aquifer. The classification of the underground water deduced that it is calcic and/or magnesic bi carbonated water belonging to the type of meteoric waters of recent infiltration. (Author)

  13. Conditions in the deeper parts of the hot spring systems of Yellowstone National Park, Wyoming. [Proposed aquifer at depth of 2 to 4 km. , at 340 to 370/sup 0/C, and containing about 1,000 ppM NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Truesdell, A.H.; Fournier, R.O.

    1976-01-01

    It is suggested that beneath Yellowstone thermal systems there is a large aquifer at a depth of 2 to 4 kilometers which contains a relatively homogeneous body of water at 340 to 370/sup 0/C containing about 1,000 ppM NaCl. This aquifer may be controlled entirely or in part by solution or fracture permeability that transects rock types. Water flows upwards from the deep aquifer along available fractures, losing steam in the process, and into more shallow aquifers that in turn feed the geyser and hot spring systems. In these shallow systems, it is diluted, reacts with rocks and fluids, and loses more steam to produce the varied hot spring waters of the Park. The deposition of silica at the bottom of the system and increased convection at near-critical temperatures will limit the maximum temperatures and depth of circulation of dilute high temperature thermal waters such as those of Yellowstone.

  14. Integrated onshore-offshore investigation of a Mediterranean layered coastal aquifer.

    Science.gov (United States)

    Lofi, Johanna; Pezard, Philippe; Bouchette, Frédéric; Raynal, Olivier; Sabatier, Pierre; Denchik, Nataliya; Levannier, Arnaud; Dezileau, Laurent; Certain, Raphaël

    2013-01-01

    Most of the Mediterranean coastal porous aquifers are intensively exploited. Because of climatic and anthropogenic effects, understanding the physical and geological controls on groundwater distribution and flow dynamics in such aquifers is crucial. This study presents the results of a structural investigation of a system located along the coastline of the Gulf of Lions (NW Mediterranean). A key aspect of this study relies on an onshore-offshore integrated approach combining outcrops, seismic profiles, and borehole data analysis. This multidisciplinary approach provides constraints on pore-fluid salinity distribution and stratigraphic organization, which are crucial in assessing the modes of groundwater/seawater exchanges. Onshore, Lower Pliocene deposits dip gently seaward. They are unconformably overlain by Holocene clays in the lagoons. Offshore the Pliocene deposits either outcrop at the seabed or are buried below nonconsolidated sands infilling paleo-valleys. Beneath the lido, the groundwater salinity distribution consists of salty pore water, overlying fresher pore water. Active circulation of groundwater masses is inferred from the geophysical results. In particular, offshore outcrops and paleo-valleys may play an important role in salt water intrusion.

  15. Flow and transport within a coastal aquifer adjacent to a stratified water body

    Science.gov (United States)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  16. Potential for saltwater intrusion into the lower Tamiami aquifer near Bonita Springs, southwestern Florida

    Science.gov (United States)

    Shoemaker, W. Barclay; Edwards, K. Michelle

    2003-01-01

    A study was conducted to examine the potential for saltwater intrusion into the lower Tamiami aquifer beneath Bonita Springs in southwestern Florida. Field data were collected, and constant- and variable-density ground-water flow simulations were performed that: (1) spatially quantified modern and seasonal stresses, (2) identified potential mechanisms of saltwater intrusion, and (3) estimated the potential extent of saltwater intrusion for the area of concern. MODFLOW and the inverse modeling routine UCODE were used to spatially quantify modern and seasonal stresses by calibrating a constant-density ground-water flow model to field data collected in 1996. The model was calibrated by assuming hydraulic conductivity parameters were accurate and by estimating unmonitored ground-water pumpage and potential evapotranspiration with UCODE. Uncertainty in these estimated parameters was quantified with 95-percent confidence intervals. These confidence intervals indicate more uncertainty (or less reliability) in the estimates of unmonitored ground-water pumpage than estimates of pan-evaporation multipliers, because of the nature and distribution of observations used during calibration. Comparison of simulated water levels, streamflows, and net recharge with field data suggests the model is a good representation of field conditions. Potential mechanisms of saltwater intrusion into the lower Tamiami aquifer include: (1) lateral inland movement of the freshwater-saltwater interface from the southwestern coast of Florida; (2) upward leakage from deeper saline water-bearing zones through natural upwelling and upconing, both of which could occur as diffuse upward flow through semiconfining layers, conduit flow through karst features, or pipe flow through leaky artesian wells; (3) downward leakage of saltwater from surface-water channels; and (4) movement of unflushed pockets of relict seawater. Of the many potential mechanisms of saltwater intrusion, field data and variable

  17. Shear wave anisotropy in D" region beneath the western Pacific

    Institute of Scientific and Technical Information of China (English)

    DAI Zhi-yang; LIU Bin; WANG Xiao-xiang; ZHA Xian-jie; ZHANG Hu; YANG Feng-qin

    2007-01-01

    Using seismic shear phases from 47 Tonga-Fiji and its adjacent region events recorded by the CENC and IRIS, and from 26 northeast Asia and north Pacific events recorded by IRIS, we studied the shear wave anisotropy in D" region beneath the western Pacific utilizing the ScS-S differential travel time method and obtained the splitting time values between the radial and transverse components of each ScS wave corresponding to each core-mantle boundary (CMB) reflection point. We found that most shear waves involved horizontally polarized shear wave components traveling faster than vertically polarized shear wave components through the D" region. The splitting time values of ScS wave range from (0.91 s to 3.21 s with an average value of 1.1 s. The strength of anisotropy varies from (0.45% to 1.56% with an average value of 0.52%. The observations and analyses show that in the D" region beneath the western Pacific the lateral flow is expected to be dominant and the vertical transverse isotropy may be the main anisotropic structure. This structure feature may be explained by the shape preferred orientation of the CMB chemical reaction products or partial melt and the lattice preferred orientation of the lower mantle materials caused by the lateral flow at lowermost mantle.

  18. Anelastic properties beneath the Niigata-Kobe Tectonic Zone, Japan

    Science.gov (United States)

    Nakajima, Junichi; Matsuzawa, Toru

    2017-02-01

    We estimate the three-dimensional (3D) P-wave attenuation structure beneath the Niigata-Kobe Tectonic Zone (NKTZ), central Japan, using high-quality waveform data from a large number of stations. The obtained results confirm the segmentation of the NKTZ into three regions, as suggested by 3D seismic velocity models, and reveal characteristic structures related to surface deformation, shallow subduction of the Philippine Sea slab, and magmatism. The lower crust beneath the NKTZ west of the Itoigawa-Shizuoka Tectonic Line (ISTL) is overall characterized by distinct high attenuation, whereas the upper crust shows marked high attenuation to the east of the ISTL. Differences in the depths of anelastically weakened parts of the crust probably result in a first-order spatial variation in surface deformation, forming wide (width of 100 km) and narrow (width of 25-40 km) deformation zones on the western and eastern sides of the ISTL, respectively. Many M ≥ 6.5 earthquakes occur in the upper crust where seismic attenuation in the underlying lower crust varies sharply, suggesting that spatial variations in rates of anelastic deformation in the lower crust result in stress concentration in the overlying brittle crust. We interpret a moderate- to low-attenuation zone located in the lower crust at the northeast of Biwa Lake to reflect low-temperature conditions that are developed locally as a result of shallow subduction of the cold Philippine Sea slab.

  19. D'' beneath the Arctic from inversion of shear waveforms

    Science.gov (United States)

    Kawai, Kenji; Geller, Robert J.; Fuji, Nobuaki

    2007-11-01

    The structure of the D'' region beneath the Arctic has not previously been studied in detail. Using waveform inversion, we find that the average S-wave velocity in D'' beneath the Arctic is about 0.04 km/s higher than PREM, which is consistent with the existence of post-perovskite (ppv) in D''. It is difficult to strongly constrain the fine structure of S-velocity within D'' due to the small number of stations at epicentral distances Δ weighting those stations heavily in the inversion, we show that the data suggest the existence of high S-velocity in the upper half of D'' and low S-velocity in the lower half, consistent with the possibility of a double crossing (ppv -> pv reverse phase transition) within D''. We conduct a computational experiment to show that resolution of the velocity structure within D'' could be significantly improved by temporary installation of a portable array of seismographs in northern Canada, which would greatly increase the number of stations in the range 70° < Δ < 90°.

  20. Shear Wave Splitting Observations Beneath Uturuncu Volcano, Bolivia

    Science.gov (United States)

    Sims, N. E.; Christensen, D. H.; Moore-Driskell, M. M.

    2015-12-01

    Anisotropy in the upper mantle is often associated with mantle flow direction through the lattice preferred orientation of anisotropic minerals such as olivine in the upper mantle material. The flow of the mantle around subduction zones can be particularly complex, and thus difficult to explain. Because of its relationship to anisotropy, analysis of shear wave splitting measurements can help to answer questions regarding the upper mantle flow that surrounds subducting slabs. Here we present SK(K)S shear wave splitting measurements from a temporary broadband network (PLUTONS) of 33 stations deployed from April 2009 to October 2012 on the Altiplano plateau around Uturuncu volcano in Bolivia. The stations are spaced 10-20 km apart, providing a high spatial resolution of the region of the mantle directly below Uturuncu volcano. Despite the lack of numerous splitting results to analyze, preliminary measurements indicate a relatively consistent pattern of fast-polarization directions in a NW-SE orientation of about N80ºW. We think that it is likely that these observations come from anisotropy in the mantle wedge above the subducting Nazca plate indicating a direction of flow in the mantle wedge that is sub-parallel to the subduction direction of the Nazca plate. Although W-E flow beneath the subducting Nazca plate cannot be completely ruled out, these results appear to be consistent with the simple model of two-dimensional corner flow in the mantle wedge and slab-entrained mantle flow beneath the slab.

  1. Subglacial Sediment Deformation: An Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Fischer, U. H.; Iverson, N. R.; Hooyer, T. S.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    A detailed study of sediment deformation processes was carried out beneath Engabreen, Norway, by taking advantage of unique access to the bed of the glacier beneath 230 m of temperate ice via the Svartisen Subglacial Laboratory. One of the strengths of this novel approach is that many interpretive limitations caused by un- certainties inherent in similarly motivated borehole investigations are eliminated. A trough (approx. 2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 per cent sand and gravel, 20 per cent silt, 5 per cent clay). Instruments were placed in the sediment to record shear deformation, dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding wa- ter to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sed- iment, shear deformation and volume change stopped, and total normal stress became constant at 2.1 MPa. Pump tests conducted subsequently, which lasted several hours, induced pore-water pressures > 70 per cent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice sep- arated from the sediment when effective pressure was lowest, and shear deformation stopped. Velocity profiles averaged over the duration of pump tests indicate that rates of shear strain increase upward toward the glacier sole.

  2. Locating voids beneath pavement using pulsed electromagnetic waves

    Science.gov (United States)

    Steinway, W. J.; Echard, J. D.; Luke, C. M.

    1981-11-01

    The feasibility of using pulsed electromagnetic wave technology for locating and sizing voids beneath reinforced and nonreinforced portland cement concrete pavements is determined. The data processing techniques developed can be implemented to provide information for void depth and sizing to + or - 1/2 in. and spatial location within + or - 6 in. A very short pulse radar directly connected to a microcomputer was chosen as the equipment necessary to obtain measurements. This equipment has the required accuracy and reliability, and is a cost effective solution for the void locating problem. The radar provides a signal return from voids that has unique characteristics that can be examined to provide information regarding the location, depth, and shape of the void. The microcomputer provides a means of real time processing to extract the information from the radar signal return and record the results. Theoretical modeling of signal returns from voids led to suitable techniques for locating and sizing voids beneath the pavement. Analysis and application of these techniques to radar measurements verified the theoretical predictions that radar can be used to determine the location, size, and shape of actual voids.

  3. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2014

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2016-09-08

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2014, diversions of about 216,000 acre-feet from the Virgin River to Sand Hollow Reservoir have allowed the reservoir to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir stage and nearby pumping from production wells. Between 2004 and 2014, about 29,000 acre-feet of groundwater was withdrawn by these wells for municipal supply. In addition, about 31,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2014, about 127,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer.Water quality continued to be monitored at various wells in Sand Hollow during 2013–14 to evaluate the timing and location of reservoir recharge as it moved through the aquifer. Changing geochemical conditions at monitoring wells WD 4 and WD 12 indicate rising groundwater levels and mobilization of vadose-zone salts, which could be a precursor to the arrival of reservoir recharge.

  4. Pesticide sorption by low organic carbon sediments: A sceening for seven herbicides

    DEFF Research Database (Denmark)

    Madsen, Lene; Lindhardt, Bo; Rosenberg, Per;

    2000-01-01

    The sorption of seven pesticides in 10 Danish aquifer sediments has been studied. These sediments all have a total organic carbon (TOC) content below 1 g kg(-1), and include carbonate-bearing and carbonate-free Quatenary sand deposits and a Cretaceous chalk aquifer. Batch experiments were carried...... by the specific surface area (SSA) and TOC. The present results illustrate the importance of choosing sediments of different geological origin in order to describe the influence of sediment properties on pesticide sorption....

  5. Water-level change, High Plains aquifer, 2005 to 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 2005 to 2009, in feet. The High Plains aquifer underlies...

  6. Water-level change, High Plains aquifer, 2000 to 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 2000 to 2005, in feet. The High Plains aquifer underlies...

  7. Water-level change, High Plains aquifer, 1995 to 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 1995 to 2000, in feet. The High Plains aquifer underlies...

  8. Snake River Plain Basin-fill aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Snake River Plain aquifer system, which includes both the basaltic and basin-fill aquifers. This dataset does not...

  9. Water-level change, High Plains aquifer, 1980 to 1995

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents water-level change in the High Plains aquifer of the United States from 1980 to 1995, in feet. The High Plains aquifer underlies...

  10. Aquifers of Alluvial and Glacial Origin - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the alluvial and glacial aquifers north of the southern-most line of glaciation. Aquifers are shown in the States of Maine,...

  11. Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah

    Science.gov (United States)

    Freethey, Geoffrey W.; Stolp, Bernard J.

    2010-01-01

    The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection. The Glen Canyon aquifer within the study area is conceptualized in two parts-an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter. Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result

  12. Evaluation of Four Water Management Policies for Ogallala Aquifer Sustainability in the Texas High Plains

    Science.gov (United States)

    Hernandez, J. E.; Gowda, P. H.; Howell, T. A.; Marek, T. H.; Ha, W.; Almas, L. K.

    2010-12-01

    Diminishing groundwater supply in the Ogallala Aquifer will severely reduce regional crop and animal production in the absence of a sustainable water management policy. It is essential to mitigate adverse impacts on the regional economy due to future withdrawals of the limited groundwater resource. Currently, approximately ten alternative water management policies are being debated by policy makers in the Central and Southern High Plains of the Ogallala Aquifer region. Before implementing any new policy or modifying current policies, newer alternative policies should be evaluated for their impact on groundwater levels with eventual extension to regional economic impacts. The main objective of this study was to evaluate four water management policies, from the debated ones, on future groundwater levels in the Ogallala Aquifer beneath four heavily irrigated counties (Dallam, Sherman, Hartley, and Moore) located in the northwest corner of the Texas High Plains using a calibrated ModFlow model. The four water management policies were (1) voluntary permanent conversion to dry land production up to 10% of the total irrigated area, (2) adoption of advances in biotechnology that allow water use reductions at a rate of 1% per year up to 10% of current use, (3) mandatory water use reduction to decrease the total water pumped by 10% (volume per unit land area per year), and (4) voluntary temporary conversion to dry land production during 15 years for a maximum area of 10% of the total irrigated area. The water management policies were converted into water demand rates for ModFlow model inputs. Simulations were conducted for a 50-year (2010-2060) period. Preliminary results indicate that a combination of more than one policy will be required to produce a significant reduction in the current groundwater depletion rates.

  13. Geochemical mapping of magmatic gas water rock interactions in the aquifer of Mount Etna volcano

    Science.gov (United States)

    Brusca, L.; Aiuppa, A.; D'Alessandro, W.; Parello, F.; Allard, P.; Michel, A.

    2001-08-01

    Systematic analysis of major and minor elements in groundwaters from springs and wells on the slopes of Mt. Etna in 1995-1998 provides a detailed geochemical mapping of the aquifer of the volcano and of the interactions between magmatic gas, water bodies and their host rocks. Strong spatial correlations between the largest anomalies in pCO 2 (pH and alkalinity) K, Rb, Mg, Ca and Sr suggest a dominating control by magmatic gas (CO 2) and consequent basalt leaching by acidified waters of the shallow (meteoric) Etnean aquifer. Most groundwaters displaying this magmatic-type interaction discharge within active faulted zones on the S-SW and E lower flanks of the volcanic pile, but also in a newly recognised area on the northern flank, possibly tracking a main N-S volcano-tectonic structure. In the same time, the spatial distribution of T°C, TDS, Na, Li, Cl and B allows us to identify the existence of a deeper thermal brine with high salinity, high content of B, Cl and gases (CO 2, H 2S, CH 4) and low K/Na ratio, which is likely hosted in the sedimentary basement. This hot brine reaches the surface only at the periphery of the volcano near the Village of Paternò, where it gives rise to mud volcanoes called "Salinelle di Paternò". However, the contribution of similar brines to shallower groundwaters is also detected in other sectors to the W (Bronte, Maletto), SW (Adrano) and SE (Acireale), suggesting its possible widespread occurrence beneath Etna. This thermal brine is also closely associated with hydrocarbon fields all around the volcano and its rise, generally masked by the high outflow of the shallow aquifer, may be driven by the ascent of mixed sedimentary-magmatic gases through the main faults cutting the sedimentary basement.

  14. Model Simulations of a Field Experiment on Cation Exchange-affected Multicomponent Solute Transport in a Sandy Aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Ammentorp, Hans Christian; Christensen, Thomas Højlund

    1993-01-01

    A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic...... of 800 days due to a substantially attenuation in the aquifer. The observed and the predicted breakthrough curves showed a reasonable accordance taking the duration of the experiment into account. However, some discrepancies were observed probably caused by the revealed non-ideal exchange behaviour of K+....

  15. Estimating ground water recharge using flow models of perched karstic aquifers.

    Science.gov (United States)

    Weiss, Menachem; Gvirtzman, Haim

    2007-01-01

    The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.

  16. Isotope geochemistry and modelling of the multi-aquifer system in the eastern part of Lithuania

    Science.gov (United States)

    Mokrik, Robert; Juodkazis, Vytautas; Štuopis, Anicetas; Mažeika, Jonas

    2014-06-01

    A steady-state groundwater flow model of three Quaternary intertill aquifers in the eastern part of Lithuania has been compiled. The distinction of separate modelled layers is based on hydraulic and isotope-hydrochemistry data criteria. 3H data were used to estimate the corrected groundwater age and were coupled with a groundwater-flow-dynamics model of the Quaternary aquifer system along a cross-section flow pathway from the Baltic Upland recharge area in eastern Lithuania towards the discharge area in the lowlands near the city of Kaunas in central Lithuania. The bicarbonate content in groundwater (214-462 mg/l) increases downgradient towards the lowland area. The other major constituents and total dissolved solids (TDS) have a trend analogous to the bicarbonate. The 14C activity of dissolved inorganic carbon (DIC) in the groundwater ranges from 41.4 to 85.7 pMC. With aquifer-system depth, active precipitation of aqueous solution takes place by dissolving minerals of calcite and dolomite and leakage of "old" groundwater from lower aquifers; the process is also traced by lower 14C and 3H activities and by more positive δ18O values in lowland areas.

  17. Estimation of uranium migration parameters in sandstone aquifers.

    Science.gov (United States)

    Malov, A I

    2016-03-01

    The chemical composition and isotopes of carbon and uranium were investigated in groundwater samples that were collected from 16 wells and 2 sources in the Northern Dvina Basin, Northwest Russia. Across the dataset, the temperatures in the groundwater ranged from 3.6 to 6.9 °C, the pH ranged from 7.6 to 9.0, the Eh ranged from -137 to +128 mV, the total dissolved solids (TDS) ranged from 209 to 22,000 mg L(-1), and the dissolved oxygen (DO) ranged from 0 to 9.9 ppm. The (14)C activity ranged from 0 to 69.96 ± 0.69 percent modern carbon (pmC). The uranium content in the groundwater ranged from 0.006 to 16 ppb, and the (234)U:(238)U activity ratio ranged from 1.35 ± 0.21 to 8.61 ± 1.35. The uranium concentration and (234)U:(238)U activity ratio increased from the recharge area to the redox barrier; behind the barrier, the uranium content is minimal. The results were systematized by creating a conceptual model of the Northern Dvina Basin's hydrogeological system. The use of uranium isotope dating in conjunction with radiocarbon dating allowed the determination of important water-rock interaction parameters, such as the dissolution rate:recoil loss factor ratio Rd:p (a(-1)) and the uranium retardation factor:recoil loss factor ratio R:p in the aquifer. The (14)C age of the water was estimated to be between modern and >35,000 years. The (234)U-(238)U age of the water was estimated to be between 260 and 582,000 years. The Rd:p ratio decreases with increasing groundwater residence time in the aquifer from n × 10(-5) to n × 10(-7) a(-1). This finding is observed because the TDS increases in that direction from 0.2 to 9 g L(-1), and accordingly, the mineral saturation indices increase. Relatively high values of R:p (200-1000) characterize aquifers in sandy-clayey sediments from the Late Pleistocene and the deepest parts of the Vendian strata. In samples from the sandstones of the upper part of the Vendian strata, the R:p value is ∼ 24, i.e., sorption processes are

  18. Collecting a multi-disciplinary field dataset to model the interactions between a flood control reservoir and the underlying porous aquifer

    Science.gov (United States)

    Borgatti, L.; Corsini, A.; Chiapponi, L.; D'Oria, M.; Giuffredi, F.; Lancellotta, R.; Mignosa, P.; Moretti, G.; Orlandini, S.; Pellegrini, M.; Remitti, F.; Ronchetti, F.; Tanda, M.; Zanini, A.

    2008-12-01

    During the last decades, a large number of flood control reservoirs were developed in Northern Italy, in order to mitigate flood risk in urban areas. The city of Parma, located on the large alluvial fan of the Parma River, is served by a flood control reservoir (i.e., dry dam), completed in 2004. The reservoir can store a volume of 12·106 m3 over an area of 1.2 km2 surrounded by about 4 km of artificial levees and closed downstream by a concrete dam 15 m high, equipped with 3 movable floodgates. The structure has the purpose to store the excess water in the case of high return period flood events, releasing it downstream at a controlled rate. A stilling basin is located downstream the dam in order to dissipate the kinetic energy of the discharged flow. The stilling basin is made up of 2 m thick concrete slabs, on which 3 dissipating blocks are located. The deposits below the stilling basin are surrounded by a grout wall (20 m deep) with the aim of realizing a confined "box". Groundwater levels inside the box are controlled by a 110 m long drainage trench located upstream the stilling basin, 3 m below its floor. In the perspective of a long-term management of the reservoir, after the completion of the works, a phase of investigation, control and monitoring of the efficiency of the entire system has been carried out, mainly to highlight the interactions between the reservoir and the underlying aquifer. This task was accomplished filling the reservoir at the maximum retaining level by means of capturing the tails of spring 2008 flood events. The aquifer beneath and surrounding the structure has been investigated by means of several tests, such analysis. Moreover, a groundwater monitoring system made up by 44 piezometers with dataloggers and real- time data transmission to a dedicated website has been set up. Monitoring data before, during, and after the infilling of the reservoir show that the aquifer below the structure is multilayered, with prevailing silty gravels

  19. Genetic algorithms and aquifer parameter identification

    Institute of Scientific and Technical Information of China (English)

    LI Jing-sheng(李竞生); YAO Lei-hua(姚磊华); LI Yang(李杨)

    2003-01-01

    In order to identify aquifer parameter,authors develops an improved combinatorial method called best chromosome clone plus younger generation chromosome prepotency genetic algorithm (BCC-YGCP-GA), based on a decimal system simple genetic algorithm (SGA). The paper takes unsteady state flows in a two-dimensional, inhomogeneous, confined aquifer for a ideal model, and utilizes SGA and BCC-YGCP-GA coupled to finite element method for identifying aquifer hydraulic conductivity K1,K2,K3 and storage S1,S2,S3, respectively. It is shown from the result that GSA does not reach convergence with 100 generations, whereas convergence rate of BCC-YGCD-GA is very fast. Objective function value calculated by BCC-YGCD-GA is 0.001 29 with 100 generations, and hydraulic conductivity and storage of three zones are almost equal to the "true" values of ideal model.

  20. Groundwater Mounding in Non-uniform Aquifers with Implications for Managed Aquifer Recharge

    Science.gov (United States)

    Zlotnik, V. A.; Noel, P.; Kacimov, A. R.; Al Maktoumi, A. K.

    2015-12-01

    Many areas of the world (e.g. the Middle East and North Africa countries) are deficient in observation networks and hydrogeological data needed for Managed Aquifer Recharge (MAR) design. Therefore, diagnostic analytical approaches are appropriate for feasibility studies of MAR. It was found that the common assumption of aquifer thickness uniformity often does not hold, especially in mountainous watersheds. However, the only practical result available for non-uniform aquifers was developed for well hydraulics applications (point sinks or sources) by Hantush (1962), while the recharge zones may cover large areas on the scale of kilometers, such as temporarily filled impoundments (natural and engineered reservoirs in wadis, depressions, trenches, etc.) or perennial streams accepting massive treated wastewater discharge. To address these important, but overlooked MAR problems in sloping aquifers, a set of new closed-form analytical solutions for water table elevations were obtained. Interestingly, the 2D groundwater flow equation acquires the advection-dispersion equation form in these cases. The quadratures in closed-form solutions obtained by the Green's function method converge rapidly. These models account for both shapes and orientations of sources with respect to the direction of the aquifer base gradient. Qualitatively, solutions in sloping aquifers have an important trait: the mounding is limited in time and space, unlike in aquifers with a horizontal base. Aquifers with the greater slopes have the lesser potential of waterlogging from the rising water table and different storage characteristics (height and volume of locally stored water). Computational aspects of these solutions for MAR analyses are illustrated by example utilizing regional aquifer properties near Az Zarqa River, Jordan. (This study was supported by a grant from USAID-FABRI, project contract: AID-OAA-TO-11-00049, Subcontract: 1001624 -12S-19745).

  1. SRP baseline hydrogeologic investigation: Aquifer characterization. Groundwater geochemistry of the Savannah River Site and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  2. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  3. Constraining the thermal structure beneath Lusi: insights from temperature record in erupted clasts

    Science.gov (United States)

    Malvoisin, Benjamin; Mazzini, Adriano; Miller, Stephen

    2016-04-01

    Sedimentary units beneath Lusi from surface to depth are the Pucangan formation, the Upper Kalibeng formation where shales and then volcanoclastic clasts are found, the Kujung-Propuh-Tuban formation composed of carbonates and the Ngimbang formation composed of shales. Water and gas geochemistry as well as surface deformation indicate that Lusi is a hydrothermal system rooted at >4 km depth. However, the thermal structure beneath Lusi is still poorly constrained whereas it has first-order impacts on the physical and chemical processes observed during the eruption. In the framework of the Lusi Lab project (ERC grant n° 308126) and of a project of the Swiss National Science Foundation (n°160050) we studied erupted clasts collected at the crater site to determine their source and temperature record. Three types of clasts were studied based on morphological and mineralogical basis. The first type is limestones mainly composed of Ca- and Fe-bearing carbonates. The clasts of the second type are light grey shales (LGS) containing carbonaceous matter, illite/smectite mixture, plagioclase and quartz. The third type is also a shale with a black colour containing hydrocarbons (black shales, BS) and with the additional presence of Na-rich plagioclase, biotite and chlorite. The presence of these latter minerals indicates hydrothermal activity at relatively high temperature. Better constraints on temperature were obtained by using both Raman spectroscopic carbonaceous material thermometry (RSCM) and chlorite geothermometry. Temperatures below 200°C were determined for the LGS with RSCM. BS recorded two temperatures. The first one, around 170°C, is rather consistent with an extrapolation of the geothermal gradient measured before the eruption up to 4,000 m depth. Combined with mineralogical observations, this suggests that BS originate from the Ngimbang formation. The second recorded higher temperature around 250°C indicates heating, probably through interaction with high

  4. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant recharge values for the Vamoosa-Ada aquifer, in east-central Oklahoma. The Vamoosa-Ada aquifer is an...

  5. EPA Region 6 Sole Source Aquifers in Louisiana, Geographic NAD83, EPA (1996) [sole_source_aquifers_LA_EPA_1996

    Data.gov (United States)

    Louisiana Geographic Information Center — Polygon layer of EPA Region 6 sole source aquifers in Louisiana. The sole source aquifers represented are Chicot and Southern Hills in Louisiana/Mississippi.

  6. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important...

  7. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant hydraulic conductivity values for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer...

  8. Predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This product "Predicted nitrate and arsenic concentrations in basin-fill aquifers of the Southwest Principal Aquifers study area" is a 1:250,000-scale vector dataset...

  9. In situ microcosms in aquifer bioremediation studies.

    Science.gov (United States)

    Mandelbaum, R T; Shati, M R; Ronen, D

    1997-07-01

    The extent to which aquifer microbiota can be studied under laboratory or simulated conditions is limited by our inability to authentically duplicate natural conditions in the laboratory. Therefore, extrapolation of laboratory results to real aquifer situations is often criticized, unless validation of the data is performed in situ. Reliable data acquisition is critical for the estimation of chemical and biological reaction rates of biodegradation processes in groundwater and as input data for mathematical models. Typically, in situ geobiochemical studies relied on the injection of groundwater spiked with compounds or bacteria of interest into the aquifer, followed by monitoring the changes over time and space. In situ microcosms provide a more confined study site for measurements of microbial reactions, yet closer to natural conditions than laboratory microcosms. Two basic types of in situ aquifer microcosm have been described in recent years, and both originated from in situ instruments initially designed for geochemical measurements. Gillham et al. [Ground Water 28 (1990) 858-862] constructed an instrument that isolates a portion of an aquifer for in situ biochemical rate measurements. More recently Shati et al. [Environ. Sci. Technol. 30 (1996) 2646-2653] modified a multilayer sampler for studying the activity of inoculated bacteria in a contaminated aquifer Keeping in mind recent advances in environmental microbiology methodologies such as immunofluorescence direct counts, oligonucleotide and PCR probes, fatty acid methyl esther analysis for the detection and characterization of bacterial communities, measurement of mRNA and expression of proteins, it is evident that much new information can now be gained from in situ work. Using in situ microcosms to study bioremediation efficiencies, the fate of introduced microorganisms and general geobiochemical aquifer processes can shed more realistic light on the microbial underworld. The aim of this paper is to

  10. Review: The Yucatán Peninsula karst aquifer, Mexico

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Gondwe, Bibi Ruth Neuman; Charvet, Guillaume

    2011-01-01

    The Yucatán Peninsula karst aquifer is one of the most extensive and spectacular karst aquifer systems on the planet. This transboundary aquifer system extends over an area of approximately 165,000 km2 in México, Guatemala and Belize. The Triassic to Holocene Yucatán limestone platform is located...

  11. 40 CFR 146.4 - Criteria for exempted aquifers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Criteria for exempted aquifers. 146.4... for exempted aquifers. An aquifer or a portion thereof which meets the criteria for an “underground source of drinking water” in § 146.3 may be determined under 40 CFR 144.8 to be an “exempted aquifer”...

  12. Hydrostratigraphic Framework and Selection and Correlation of Geophysical Log Markers in the Surficial Aquifer System, Palm Beach County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Wacker, Michael A.

    2007-01-01

    system and the seemingly indistinct and repetitious nature of the most common lithologies, which include sand, shell, sandstone, and limestone. Model construction and layer definition in a simulation of ground-water flow within the surficial aquifer system of Palm Beach County utilized only the boundaries of one or two major hydrogeologic zones, such as the Biscayne aquifer and surficial aquifer system; otherwise layers were defined by average elevations rather than geologic structure or stratigraphy (Shine and others, 1989). Additionally, each major permeable zone layer in the model was assumed to have constant hydraulic conductivity with no allowance for the possibility of discrete (thin) flow zones within the zone. The key to understanding the spatial distribution and hydraulic connectivity of permeable zones in the surficial aquifer system beneath Palm Beach County is the development of a stratigraphic framework based on a consistent method of county-wide correlation. Variability in hydraulic properties in the system needs to be linked to the stratigraphic units delineated in this framework, and proper delineation of the hydrostratigraphic framework should provide a better understanding and simulation of the ground-water flow system. In 2004, the U.S. Geological Survey, in cooperation with the South Florida Water Management District, initiated an investigation to develop a hydrostratigraphic framework for the surficial aquifer system in Palm Beach County.

  13. Imaging Transition Zone Thickness Beneath South America from SS Precursors

    Science.gov (United States)

    Schmerr, N.; Garnero, E.

    2006-12-01

    We image detailed upper mantle discontinuity structure beneath a number of geologically active regions, including the South American subduction zone, the Scotia plate subduction zone, and several volcanic hotspots (e.g., the Galapagos Islands), in a region ~10,000 km by 10,000 km wide, spanning 70° S to 20° N and 20° W to 110° W. Precursors to the seismic phase SS are analyzed, which form as a result of underside reflections off seismic discontinuities beneath the midpoint of the SS path and are highly sensitive to discontinuity depth and sharpness. Our SS dataset consists of over 15,000 high-quality transverse component broadband displacement seismograms collected from the Incorporated Research Institutions for Seismology (IRIS), the Canadian National Seismic Network (CNSN), as well as data from EarthScope seismic stations, and from the Canadian Northwest Experiment (CANOE) temporary broadband array deployment. This dataset densely samples several regions in our study area and significantly improves the sampling for this area compared to previous precursor studies. Data with common central SS bouncepoints are stacked to enhance precursory phases. Solution discontinuity structure depends on a number of factors, including dominant seismic period, crustal correction, signal-to-noise ratio threshold, and tomography model used for mantle heterogeneity correction. We exclude precursor data predicted to interfere with other seismic phases, such as topside reflections (e.g., s670sS), which have been demonstrated to contaminate final stacks. Solution transition zone thickness is at least 20 km thicker than global average estimates of 242 km along the northwestern portion of the South American subduction complex (Peru, Ecuador, and Columbia); this thickening extends 1000-1500 km to the east beneath the continent, but does not appear to continue south of -20° latitude along the convergent margin. A minimum of 10 km of thickening is imaged to the west of the Scotia

  14. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.; Rasmussen, D. J.; Weis, D.

    2016-07-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO > 7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  15. Pn anisotropic tomography and mantle dynamics beneath China

    Science.gov (United States)

    Zhou, Zhigang; Lei, Jianshe

    2016-08-01

    We present a new high-resolution Pn anisotropic tomographic model of the uppermost mantle beneath China inferred from 52,061 Pn arrival-time data manually picked from seismograms recorded at provincial seismic stations in China and temporary stations in Tibet and the Tienshan orogenic belt. Significant features well correlated with surface geology are revealed and provide new insights into the deep dynamics beneath China. Prominent high Pn velocities are visible under the stable cratonic blocks (e.g., the Tarim, Junngar, and Sichuan basins, and the Ordos block), whereas remarkable low Pn velocities are observed in the tectonically active areas (e.g., Pamir, the Tienshan orogenic belt, central Tibet and the Qilian fold belt). A distinct N-S trending low Pn velocity zone around 86°E is revealed under the rift running from the Himalayan block through the Lhasa block to the Qiangtang block, which indicates the hot material upwelling due to the breaking-off of the subducting Indian slab. Two N-S trending low Pn velocity belts with an approximate N-S Pn fast direction along the faults around the Chuan-Dian diamond block suggest that these faults may serve as channels of mantle flow from Tibet. The fast Pn direction changes from N-S in the north across 27°N to E-W in the south, which may reflect different types of mantle deformation. The anisotropy in the south could be caused by the asthenospheric flow resulted from the eastward subduction of the Indian plate down to the mantle transition zone beneath the Burma arc. Across the Talas-Fergana fault in the Tienshan orogenic belt, an obvious difference in velocity and anisotropy is revealed. To the west, high Pn velocities and an arc-shaped fast Pn direction are observed, implying the Indo-Asian collision, whereas to the east low Pn velocities and a range-parallel Pn fast direction are imaged, reflecting the northward underthrusting of the Tarim lithosphere and the southward underthrusting of the Kazakh lithosphere. In

  16. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    Science.gov (United States)

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  17. Mixing of groundwaters with uncertain end-members: case study in the Tepalcingo-Axochiapan aquifer, Mexico

    Science.gov (United States)

    Morales-Casique, Eric

    2012-05-01

    Groundwater geochemical data from the northern portion of the Tepalcingo-Axochiapan Valley, in the state of Morelos, Mexico, are analyzed to improve the conceptual hydrogeologic model of the region. The geochemical data suggest that the chemical composition of groundwater is the result of a mixing process between two end-members represented by groundwater from an upper aquifer composed of volcanic-sedimentary rocks and groundwater from a lower aquifer composed of carbonate rocks. Analysis of published data demonstrates that the chemical composition of at least one of the end-members varies significantly in time. Mixing ratios are computed, taking into account the uncertainty in identifying end-members and the time variability in their chemical composition, using published methods. Computed mixing ratios suggest there is a significant contribution from the lower aquifer to the water pumped by the wells in the area, which should be taken into account in the conceptual hydrogeologic model of the region.

  18. Monitoring CO2 gas-phase migration in a shallow sand aquifer using cross-borehole ground penetrating radar

    DEFF Research Database (Denmark)

    Lassen, Rune Nørbæk; Sonnenborg, T.O.; Jensen, Karsten Høgh

    2015-01-01

    Understanding potential pathways of gaseous CO2 into and through the shallow subsurface from deep geological storage is one of many requirements related to risk assessment of a carbon capture and storage (CCS) site. In this study, a series of field experiments were carried out at a site located...... in Vrøgum in western Denmark. Up to 45 kg of gaseous CO2 was injected into a shallow aquifer approximately 8 m below the groundwater table. In the upper 6 m, the aquifer consisted of fine Aeolian sand underlain by coarser glacial sand. The migration of the gaseous CO2 was tracked using cross-borehole ground...... penetrating radar (GPR). A total of six GPR-boreholes were installed around the injection well and in the dominant flow direction of the groundwater. The GPR measurements were collected before, during, and after the CO2-injection. The GPR method proved to be very sensitive to desaturation of the aquifer when...

  19. The quality of our nation's waters: water quality in the Principal Aquifers of the Piedmont, Blue Ridge, and Valley and Ridge regions, eastern United States, 1993-2009

    Science.gov (United States)

    Lindsey, Bruce D.; Zimmerman, Tammy M.; Chapman, Melinda J.; Cravotta, Charles A.; Szabo, Zoltan

    2015-01-01

    The aquifers of the Piedmont, Blue Ridge, and Valley and Ridge regions underlie an area with a population of more than 40 million people in 10 states. The suburban and rural population is large, growing rapidly, and increasingly dependent on groundwater as a source of supply, with more than 550 million gallons per day withdrawn from domestic wells for household use. Water from some of these aquifers does not meet human-health benchmarks for drinking water for contaminants with geologic or human sources. Water from samples in crystalline- and siliciclastic-rock aquifers frequently exceeded standards for contaminants with geologic sources, and samples in carbonate-rock aquifers frequently exceeded standards for contaminants with human sources, most often nitrate and bacteria.

  20. Multicomponent seismic forward modeling of gas hydrates beneath the seafloor

    Institute of Scientific and Technical Information of China (English)

    Yang Jia-Jia; He Bing-Shou; Zhang Jian-Zhong

    2014-01-01

    We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves (P-waves) and shear waves (S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottom-simulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P-and S-waves, which increases the complexity of the wavefield record.

  1. Ocean mixing beneath Pine Island Glacier Ice Shelf

    Science.gov (United States)

    Kimura, Satoshi; Dutrieux, Pierre; Jenkins, Adrian; Forryan, Alexander; Naveira Garabato, Alberto; Firing, Yvonne

    2016-04-01

    Ice shelves around Antarctica are vulnerable to increase in ocean-driven melting, with the melt rate depending on ocean temperature and strength of sub-ice-shelf-cavity circulations. We present repeated measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate and thermal variance dissipation rate beneath Pine Island Glacier Ice Shelf, collected by CTD, ADCP and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The turbulence quantities measured by the AUV outside the ice shelf are in good agreement with ship-based measurements. The highest rate of turbulent kinetic energy dissipation is found near the grounding line, while its temporal fluctuation over seabed ridge within the cavity corresponds to the tidal fluctuation predicted in the Pine Island Bay to the west. The highest thermal variance dissipation rate is found when the AUV was 0.5 m away from the ice, and the thermal variance dissipation generally increases with decreasing distance between the AUV and ice.

  2. Can slabs melt beneath forearcs in hot subduction zones?

    Science.gov (United States)

    Ribeiro, J.; Maury, R.; Gregoire, M.

    2015-12-01

    At subduction zones, thermal modeling predict that the shallow part of the downgoing oceanic crust (test the hypothesis that adakites are pristine slab melts. We find that adakites from Baja California and Philippines formed by two distinct petrogenetic scenarios. In Baja California, hydrous mantle melts mixed/mingled with high-pressure (HP) adakite-type, slab melts within a lower crustal (~30 km depth) magma storage region before stalling into the upper arc crust (~7-15 km depth). In contrast, in the Philippines, primitive mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature. Thereby, slab melting is not required to produce an adakitic geochemical fingerprint in hot subduction zones. However, our results also suggest that the downgoing crust potentially melted beneath Baja California.

  3. Similarity law of fluctuating pressure spectrum beneath hydraulic jump

    Institute of Scientific and Technical Information of China (English)

    LIAN JiJian; WANG JiMin; GU JinDe

    2008-01-01

    Similarity law is the conversion rule between model and prototype, on which a lot of research works have been done, with no agreement reached referring to the similarity law of fluctuating pressure fre-quency spectrum. Experimental data of peak frequency and dominant frequency range of fluctuating pressure spectrum beneath hydraulic jump obtained from serial models of scales 1:1, 1:2 and 1:5 are compared. As a result, similarity law of fluctuating pressure spectrum in the strongly rolling area agrees with the gravity law. As peak frequency and dominant frequencies of fluctuating pressures in hydraulic normalized spectrums of fluctuating pressures show that the similarity nearly agrees with the gravity law.

  4. Downbursts and microbursts - An aviation hazard. [downdrafts beneath thunderstorms

    Science.gov (United States)

    Fujita, T. T.

    1980-01-01

    Downburst and microburst phenomena occurring since 1975 are studied, based on meteorological analyses of aircraft accidents, aerial surveys of wind effects left behind downbursts, and studies of sub-mesoscale wind systems. It is concluded that microbursts beneath small, air mass thunderstorms are unpredictable in terms of weather forecast. Most aircraft incidents, however, were found to have occurred in the summer months, June through August. An intense microburst could produce 150 mph horizontal winds as well as 60 fps downflows at the tree-top level. The largest contributing factor to aircraft difficulties seemed to be a combination of the headwind decrease and the downflow. Anemometers and/or pressure sensors placed near runways were found effective for detecting gust fronts, but not for detecting downbursts. It is recommended that new detection systems placed on the ground or airborne, be developed, and that pilots be trained for simulated landing and go-around through microbursts.

  5. Digital data sets that describe aquifer characteristics of the Rush Springs aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the Rush Springs aquifer in western Oklahoma. This area encompasses all or part of Blaine,...

  6. Aquifer Boundary of the Wood River Valley Aquifer System, South-Central Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains the boundary of the Wood River Valley aquifer system as modified and expanded from that defined by Skinner and others (2007): It has been...

  7. State Aquifer Recharge Atlas Plates, Geographic NAD83, LDEQ (1999) [aquifer_recharge_potential_LDEQ_1988

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a polygon dataset depicting the boundaries of aquifer systems in the state of Louisiana and adjacent areas of Texas, Arkansas and a portion of Mississippi....

  8. Digital data sets that describe aquifer characteristics of the Rush Springs aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant recharge values for the Rush Springs aquifer in western Oklahoma. This area encompasses all or part of...

  9. Can Remote Sensing Detect Aquifer Characteristics?: A Case Study in the Guarani Aquifer System

    Science.gov (United States)

    Richey, A. S.; Thomas, B.; Famiglietti, J. S.

    2013-12-01

    Global water supply resiliency depends on groundwater, especially regions threatened by population growth and climate change. Aquifer characteristics, even as basic as confined versus unconfined, are necessary to prescribe regulations to sustainably manage groundwater supplies. A significant barrier to sustainable groundwater management exists in the difficulties associated with mapping groundwater resources and characteristics at a large spatial scale. This study addresses this challenge by investigating if remote sensing, including with NASA's Gravity Recovery and Climate Experiment (GRACE), can detect and quantify key aquifer parameters and characteristics. We explore this through a case study in the Guarani Aquifer System (GAS) of South America, validating our remote sensing-based findings against the best available regional estimates. The use of remote sensing to advance the understanding of large aquifers is beneficial to sustainable groundwater management, especially in a trans-boundary system, where consistent information exchange can occur within hydrologic boundaries instead of political boundaries.

  10. Digital data sets that describe aquifer characteristics of the Rush Springs aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant hydraulic conductivity values for the Rush Springs aquifer in western Oklahoma. This area encompasses all or...

  11. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of a digitized polygon of a constant recharge value for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid isolated terrace...

  12. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant hydraulic conductivity values for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid...

  13. Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of constant hydraulic conductivity values for the High Plains aquifer in Oklahoma. This area encompasses the panhandle...

  14. Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of constant recharge values for the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone...

  15. Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the High Plains aquifer in western Oklahoma. This area encompasses the panhandle counties of...

  16. Digital data sets that describe aquifer characteristics of the High Plains aquifer in western Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital polygons of constant recharge rates for the High Plains aquifer in Oklahoma. This area encompasses the panhandle counties of...

  17. Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of a constant hydraulic conductivity value for the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age...

  18. Digital data sets that describe aquifer characteristics of the Antlers aquifer in southeastern Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the Antlers aquifer in southeastern Oklahoma. The Early Cretaceous-age Antlers Sandstone is an...

  19. Digital data sets that describe aquifer characteristics of the Central Oklahoma aquifer in central Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of a constant hydraulic conductivity value for the Central Oklahoma aquifer in central Oklahoma. This area encompasses...

  20. Digital data sets that describe aquifer characteristics of the Central Oklahoma aquifer in central Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized water-level elevation contours for the Central Oklahoma aquifer in central Oklahoma. This area encompasses all or part of...

  1. Digital data sets that describe aquifer characteristics of the Central Oklahoma aquifer in central Oklahoma

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digitized polygons of a constant recharge value for the Central Oklahoma aquifer in central Oklahoma. This area encompasses all or part of...

  2. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    Science.gov (United States)

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-01

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  3. Hydrogeochemical Analysis of an Overexploited Aquifer In Bangladesh Toward Managed Aquifer Recharge Project Implementation

    Science.gov (United States)

    Rahman, M. A.; Wiegand, B. A.; Pervin, M.; Sauter, M.

    2012-12-01

    In most parts of the upper Dupitila aquifer (Dhaka City, Bangladesh) the average groundwater depletion reaches 2-3 m/year due to increasing water demands of the growing population. To counteract overexploitation of the aquifer, a more sustainable water management is required. The analysis of the local water resources system suggests that Managed Aquifer Recharge (MAR) would help to restore groundwater resources to strengthen water supply of Dhaka City, e.g., by using collected urban monsoon runoff and excess surface water from rivers. To assess possible effects of surface water or rainwater injection on groundwater quality, a comprehensive hydrogeochemical survey of the Dupitila aquifer is required. This paper presents hydrogeochemical data to document the current status of groundwater quality and to evaluate potential groundwater pollution by mobilization of hazardous chemicals as a result of changes in the hydrochemical equilibria. We performed a comprehensive review of available secondary data sources and will present new results from hydrochemical and Sr isotope investigations of water samples that were conducted within this study. Currently, groundwater quality in the upper Dupitila aquifer is characterized by variations in the electrical conductivity in the range of 200 to 1100 μS/cm, which may indicate some anthropogenic contamination by leakage from waste disposal including the sewage network and from surface water infiltration into the groundwater aquifer. Dissolved oxygen concentrations range from 1.0 to 4.9 mg/L (average 2.5 mg/L) in the upper Dupitila aquifer, while the lower Dupilita aquifer shows dissolved oxygen concentrations in the range 0 to 0.7 mg/L. Concentrations of major ions show some variation primarily due to a sedimentologically/mineralogically heterogeneous aquifer composition (sand, gravel, clay horizons), but may also be affected by anthropogenic processes. The groundwater composition is predominated by Ca-Mg-HCO3 and saturation values

  4. Planning an aquifer storage and recovery scheme in the Sherwood Sandstone aquifer

    OpenAIRE

    Pindoria-Nandha, Mital

    2016-01-01

    Aquifer Storage and Recovery (ASR) involves the injection of water into an aquifer for subsequent recovery from the same well. Whilst ASR provides a competitive alternative to reservoir storage, a lack of precedence of successful schemes and uncertainties with respect to regulatory requirements, and abstracted water quality and quantity have limited its implementation in the UK. The ambition of this research is to improve understanding of these impediments with particular refer...

  5. Simplified models of transport and reactions in conditions of CO2 storage in saline aquifers

    Science.gov (United States)

    Suchodolska, Katarzyna; Labus, Krzysztof

    2016-04-01

    Simple hydrogeochemical models may serve as tools of preliminary assessment of CO2 injection and sequestraton impact on the aquifer and cap-rocks. In order to create models of reaction and transport in conditions of CO2 injection and storage, the TOUGHREACT simulator, and the Geochemist's Workbench software were applied. The chemical composition of waters for kinetic transport models based on the water - rock equilibrium calculations. Analyses of reaction and transport of substances during CO2 injection and storage period were carried out in three scenarios: one-dimensional radial model, and two-dimensional model of CO2 injection and sequestration, and one-dimensional model of aquifer - cap-rock interface. Modeling was performed in two stages. The first one simulated the immediate changes in the aquifer and insulating rocks impacted by CO2 injection (100 days in case of reaction model and 30 years in transport and reaction model), the second - enabled assessment of long-term effects of sequestration (20000 years). Reactions' quality and progress were monitored and their effects on formation porosity and sequestration capacity in form of mineral, residual and free phase of CO2 were calculated. Calibration of numerical models (including precipitation of secondary minerals, and correction of kinetics parameters) describing the initial stage of injection, was based on the experimental results. Modeling allowed to evaluate the pore space saturation with gas, changes in the composition and pH of pore waters, relationships between porosity and permeability changes and crystallization or dissolution minerals. We assessed the temporal and spatial extent of crystallization processes, and the amount of carbonates trapping. CO2 in mineral form. The calculated sequestration capacity of analyzed formations reached n·100 kg/m3 for the: dissolved phase - CO(aq), gas phase - CO2(g) and mineral phase, but as much as 101 kg/m3 for the supercritical phase - SCCO2. Processes of gas

  6. Transport of nonlinearly biodegradable contaminants in aquifers

    NARCIS (Netherlands)

    Keijzer, H.

    2001-01-01

    This thesis deals with the transport behavior of nonlinearly biodegradable contaminants in aquifers. Such transport occurs during in situ bioremediation which is based on the injection of an electron acceptor or electron donor. The main interests in this thesis are the mutual influences of underlyin

  7. Biogeochemical aspects of aquifer thermal energy storage.

    NARCIS (Netherlands)

    Brons, H.J.

    1992-01-01

    During the process of aquifer thermal energy storage the in situ temperature of the groundwater- sediment system may fluctuate significantly. As a result the groundwater characteristics can be considerably affected by a variety of chemical, biogeochemical and microbiological reactions. The inter

  8. Hydrochemistry and energy storage in aquifers

    NARCIS (Netherlands)

    Andersson, O.; Appelo, C.A.J.; Brons, H.J.; Dufour, F.C.; Griffioen, J.; Jenne, E.A.; Lyklema, J.W.; Mourik, G.J. van; Snijders, A.L.; Willemsen, A.; Zehnder, A.J.B.

    1990-01-01

    This volume of the series Proceedings and Information of the TNO Committee on Hydrological Research (CHO-TNO) contains the contributions as presented on the 48th technical meeting of the CHO-TNO, "Hydrochemistry and energy storage in aquifers". During this symposium recent results have been presente

  9. Redox patterns and trace-element behavior in the East Midlands Triassic Sandstone Aquifer, U.K.

    Science.gov (United States)

    Smedley, Pauline L; Edmunds, W Mike

    2002-01-01

    Redox conditions exercise important controls on water chemistry in the red-bed Sherwood Sandstone Aquifer of the English East Midlands. A distinct redox boundary exists some 3 to 5 km downgradient of the onset of confined conditions, defined by a 300 mV drop in Eh and complete reaction of dissolved oxygen. The aerobic aquifer contains polluted water with high nitrate concentrations and organic carbon significantly above background concentrations (> 0.2 mg/L). Concentrations of Fe, Mn, and Mo are highest in reducing ground water. As, Sb, Se, and U show a residence-time-dependent increase in aerobic ground water, but are much lower under reducing conditions. Iron oxides are believed to play a key role in determining the spatial patterns in many of these trace elements as a result of Eh- and pH-controlled sorption/desorption reactions, as well as some reductive dissolution in the confined aquifer. Fresh ground water persists in the confined aquifer to approximately 30 km downgradient of the redox boundary. However, SO4 concentrations increase progressively along the flowline as a result of the dissolution of gypsum or anhydrite. Concentrations of available organic carbon are low in ground water (1 mg/L or less) and are also likely to be limited in the sediments; conditions are insufficiently reducing for significant sulphate reduction to have taken place. Only in the extreme down-gradient (eastern) part of the aquifer do conditions become sufficiently reducing with some evidence of sulphate reduction. In this part of the aquifer, ground water is more saline (TDS values up to 10 g/L) and is believed to be composed substantially of older formation water. This has distinctive concentrations of several redox-influenced trace elements, with relatively high Fe, Mn, As, and Sb, occasional high Cr, and low Mo relative to the confined fresh ground water upgradient.

  10. Behavior and Fate of PFOA and PFOS in Sandy Aquifer ...

    Science.gov (United States)

    Microcosms were constructed with sediment from beneath a landfill that received waste containing PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate). The microcosms were amended with PFOA and PFOS, and sampled after 91, 210, 343, 463, 574, and 740 days of incubation. After 740 days, selected microcosms were extracted to determine the mass of PFOA and PFOS remaining. There was no evidence for degradation of PFOA or PFOS. Over time, the aqueous concentrations of PFOA and PFOS increased in the microcosms, indicating that PFOA and PFOS that had originally sorbed to the sediment was desorbing. At the beginning of the experiment, the adsorption coefficient, Kd, averaged 0.27 L/kg for PFOA and 1.2 L/kg for PFOS. After 740 days of incubation, sorption of PFOA was not detectable and the Kd of PFOS was undetectable in two microcosms and was 0.08 L/kg in a third microcosm. During incubation, the pH of the pore water in the microcosms increased from pH 7.2 to pH ranging from 8.1 to 8.8 and the zeta potential of the sediment decreased with increasing pH. These observations suggest sorption of PFOA and PFOS was controlled by electrostatic sorption on ferric oxide minerals, and not by sorption to organic carbon. These observations suggest sorption of PFOA and PFOS was controlled by electrostatic sorption on ferric oxide minerals, and not by sorption to organic carbon.

  11. Potential for saltwater intrusion into the Upper Floridan aquifer, Hernando and Manatee counties, Florida

    Science.gov (United States)

    Mahon, G.L.

    1989-01-01

    Pumpage from the Upper Floridan aquifer has caused a lowering of the potentiometric surface and has increased potential for saltwater intrusion into the aquifer in coastal areas of west-central Florida. Groundwater withdrawals are likely to increase because of expected population growth, especially in coastal areas. To increase the understanding of the potential and mechanics of saltwater intrusion, two sites were selected for study. Data were collected at each site from a centrally located deep well, and digital models were developed to simulate groundwater flow and solute transport. The northern site is in Hernando County near the town of Aripeka. The test well in the area was drilled about 1 mile from the coast to a depth of 820 ft. Freshwater was present in the carbonate rock aquifer to a depth of about 500 ft and saltwater occurred from 560 ft to the base of the aquifer at about 750 ft. Between the freshwater and saltwater is the zone of transition, also referred to as the freshwater-saltwater interface. The southern site is in Manatee County near the town of Rubonia. Drilling of the test well was completed at 1,260 ft, just below the base of the Upper Floridan aquifer. The transition zone in this well occurs between 875 and 975 ft within a highly permeable zone. Digital simulations show flow patterns similar to the cyclic flow of seawater and interface theory. Simulations have shown that saltwater contamination of coastal wells would not be noticed as quickly as water-level declines resulting from inland pumpage. (USGS)

  12. Regional Variation of CH4 and N2 Production Processes in the Deep Aquifers of an Accretionary Prism

    Science.gov (United States)

    Matsushita, Makoto; Ishikawa, Shugo; Nagai, Kazushige; Hirata, Yuichiro; Ozawa, Kunio; Mitsunobu, Satoshi; Kimura, Hiroyuki

    2016-01-01

    Accretionary prisms are mainly composed of ancient marine sediment scraped from the subducting oceanic plate at a convergent plate boundary. Large amounts of anaerobic groundwater and natural gas, mainly methane (CH4) and nitrogen gas (N2), are present in the deep aquifers associated with an accretionary prism; however, the origins of these gases are poorly understood. We herein revealed regional variations in CH4 and N2 production processes in deep aquifers in the accretionary prism in Southwest Japan, known as the Shimanto Belt. Stable carbon isotopic and microbiological analyses suggested that CH4 is produced through the non-biological thermal decomposition of organic matter in the deep aquifers in the coastal area near the convergent plate boundary, whereas a syntrophic consortium of hydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogens contributes to the significant production of CH4 observed in deep aquifers in midland and mountainous areas associated with the accretionary prism. Our results also demonstrated that N2 production through the anaerobic oxidation of organic matter by denitrifying bacteria is particularly prevalent in deep aquifers in mountainous areas in which groundwater is affected by rainfall. PMID:27592518

  13. Digital map of aquifer boundary for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set consists of aquifer boundaries for the High Plains aquifer in the central United States. The High Plains aquifer extends from south of 32...

  14. Digital Map Of Base of Aquifer for High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital base of aquifer elevation contours for the High Plains aquifer in the central United States. The High Plains aquifer extends from...

  15. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  16. Land-use change and managed aquifer recharge effects on the hydrogeochemistry of two contrasting atoll island aquifers, Roi-Namur Island, Republic of the Marshall Islands

    Science.gov (United States)

    Hejazian, Mehrdad; Gurdak, Jason; Swarzenski, Peter; Odigie, Kingsley; Storlazzi, Curt

    2017-01-01

    Freshwater resources on low-lying atoll islands are highly vulnerable to climate change and sea-level rise. In addition to rainwater catchment, groundwater in the freshwater lens is a critically important water resource on many atoll islands, especially during drought. Although many atolls have high annual rainfall rates, dense natural vegetation and high evapotranspiration rates can limit recharge to the freshwater lens. Here we evaluate the effects of land-use/land-cover change and managed aquifer recharge on the hydrogeochemistry and supply of groundwater on Roi-Namur Island, Republic of the Marshall Islands. Roi-Namur is an artificially conjoined island that has similar hydrogeology on the Roi and Namur lobes, but has contrasting land-use/land-cover and managed aquifer recharge only on Roi. Vegetation removal and managed aquifer recharge operations have resulted in an estimated 8.6 x 105 m3 of potable groundwater in the freshwater lens on Roi, compared to only 1.6 x 104 m3 on Namur. We use groundwater samples from a suite of 33 vertically nested monitoring wells, statistical testing, and geochemical modeling using PHREEQC to show that the differences in land-use/land-cover and managed aquifer recharge on Roi and Namur have a statistically significant effect on several groundwater-quality parameters and the controlling geochemical processes. Results also indicate a seven-fold reduction in the dissolution of carbonate rock in the freshwater lens and overlying vadose zone of Roi compared to Namur. Mixing of seawater and the freshwater lens is a more dominant hydrogeochemical process on Roi because of the greater recharge and flushing of the aquifer with freshwater as compared to Namur. In contrast, equilibrium processes and dissolution-precipitation non-equilibrium reactions are more dominant on Namur because of the longer residence times relative to the rate of geochemical reactions. Findings from Roi-Namur Island support selective land-use/land-cover change and

  17. The Biogeochemistry beneath the Whillans Ice Stream, West Antarctica: Evidence for a Chemoautotrophically Driven Ecosystem

    Science.gov (United States)

    Purcell, A.; Mikucki, J.; Achberger, A.; Christner, B. C.; Michaud, A. B.; Mitchell, A. C.; Priscu, J. C.; Skidmore, M. L.; Vick-Majors, T.

    2015-12-01

    Antarctic sub ice environments represent some of the most understudied microbial ecosystems on Earth. The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project recently sampled sediments and water from Subglacial Lake Whillans (SLW) and its hydrologically connected grounding zone where this lake system empties beneath the Ross Ice Shelf. Here we highlight findings on the diversity and metabolic capabilities of the microbial community detected in these samples. We utilized a hot water drill with a novel filtration and UV treatment system to insure that our entry and sampling did not contaminate our samples or the pristine subglacial ecosystem. Geochemical and microbiological data suggests the water column hosts an active microbial community sustained by the production of fixed carbon from chemosynthesis with energy derived from reduced nitrogen, sulfur, and iron compounds. These energy sources appear to be influenced by bedrock weathering at the sediment surface. For example, dominant 16S rRNA gene phylotypes in the water column suggest ammonia oxidation as a potential source of chemoautotrophic energy. While in the SLW surficial sediments, diversity analysis of functional genes involved in both sulfur oxidation and sulfate reduction (aprA, dsrA, and rdsrA), aprA gene abundance, and 16S rRNA gene analysis indicate that sulfur-oxidizing microbes are dominant. These preliminary results represents the first data on microbial community structure and function from an Antarctic subglacial lake and its grounding zone.

  18. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf

    Science.gov (United States)

    Garabato, Alberto C. Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C.; Heywood, Karen J.; Jenkins, Adrian; Firing, Yvonne L.; Kimura, Satoshi

    2017-01-01

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth’s albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  19. Interaction of Rahaliya-Ekhedhur groundwater with the aquifer rock, West Razzaza Lake, Central Iraq

    Science.gov (United States)

    Al-Dabbas, Moutaz A.

    2016-09-01

    The groundwater of Dammam aquifer in Rahaliya-Ekhedhur area, West Razzaza, Iraq, was studied to identify the main hydrogeochemical processes and the groundwater-rock interaction. The results indicated that Na+ and SO4 2- are the dominant ions in the groundwater. The average contribution of cations in the aquifer is Na+ + K+ (24.7 %), Ca2+ (13.9 %), and Mg2+ (11.4 %), while anions contribution is SO4 2- (23.0 %), Cl- (20.7 %), and HCO3 - (6.3 %). The groundwater characterized by neutral to slightly alkaline hard water, excessively mineralized, and slightly brackish water type. Rock-water interaction processes are identified to include dissolution of carbonates, sulfates, halite, and clay minerals, leaching, and cation exchanges, with little impact of evaporation.

  20. The origin of barium in the Cambrian–Vendian aquifer system, North Estonia

    Directory of Open Access Journals (Sweden)

    Mokrik, Robert

    2009-09-01

    Full Text Available Identification of the barium occurrence and its origin is made on the basis of the groundwater chemistry study. High Ba content has been detected in the Cambrian–Vendian aquifer system in the coastal vicinity of the Gulf of Finland in Estonia and St Petersburg. The dissolution of Ba from witherite as the primary source was derived from the analysis of the aqueous solution equilibrium with Ba-related minerals. It is reflected in the chemical composition of groundwater and influenced by the galenite–calcite–fluorite polymetallic mineralization in Vendian sandstones. The dissolution and re-deposition of carbonates and baryte are confirmed by mineral saturation states for an aqueous solution and distribution of other species in the groundwater of the Cambrian–Vendian aquifer system in North Estonia.

  1. Reductive dissolution of Mn oxides in river-recharged aquifers: a laboratory column study

    Science.gov (United States)

    Petrunic, B. M.; MacQuarrie, K. T. B.; Al, T. A.

    2005-01-01

    River-recharged aquifers are developed for drinking water supplies in many parts of the world. Often, however, dissolved organic carbon (DOC) present in the infiltrating river water causes biogeochemical reactions to occur in the adjacent aquifer that create elevated Mn and Fe. Mn concentrations in groundwater from some of the production wells installed in the aquifer at Fredericton, New Brunswick exceed the Canadian Drinking Water Guideline of 9.1×10 -4 mmol/l by up to 5.5×10 -2 mmol/l. It has previously been hypothesized that the influx of DOC from the Saint John River is causing bacterially mediated reductive dissolution of Mn oxides in the aquifer system, leading to elevated aqueous Mn concentrations. Previous work was limited to the collection of water samples from production wells and several observation wells installed in the glacial outwash aquifer. The objective of this study was to investigate the biogeochemical controls on Mn concentrations using sand-filled columns. One column was inoculated with bacteria while a second column was treated with ethanol in order to decrease the microbial population initially present in the system. Both columns received the same influent solution that contained acetate as a source of DOC. The results of the experiments suggested that the two main controls on Mn concentrations in the columns were microbially mediated reductive dissolution of Mn oxides and cation exchange. The conceptual model that was developed based on the experimental data was supported by the results obtained using a one-dimensional reactive-transport model. The reductive dissolution of Mn oxides in the aquifer sands could be adequately simulated using dual-Monod kinetics. Similar trends are observed in the experimental data and field data collected from Production Well 5, located in the Fredericton Aquifer. From the experiments, it is evident that cation-exchange reactions may be an important geochemical control on Mn concentrations during the initial

  2. Electrical conductivity anomaly beneath Mare Serenitatis detected by Lunokhod 2 and Apollo 16 magnetometers

    Science.gov (United States)

    Vanian, L. L.; Vnuchkova, T. A.; Egorov, I. V.; Basilevskii, A. T.; Eroshenko, E. G.; Fainberg, E. B.; Dyal, P.; Daily, W. D.

    1979-01-01

    Magnetic fluctuations measured by the Lunokhod 2 magnetometer in the Bay Le Monnier are distinctly anisotropic when compared to simultaneous Apollo 16 magnetometer data measured 1100 km away in the Descartes highlands. This anisotropy can be explained by an anomalous electrical conductivity of the upper mantle beneath Mare Serenitatis. A model is presented of anomalously lower electrical conductivity beneath Serenitatis and the simultaneous magnetic data from the Lunokhod 2 site at the mare edge and the Apollo 16 site are compared to the numerically calculated model solutions. This comparison indicates that the anisotropic fluctuations can be modeled by a nonconducting layer in the lunar lithosphere which is 150 km thick beneath the highlands and 300 km thick beneath Mare Serenitatis. A decreased electrical conductivity in the upper mantle beneath the mare may be due to a lower temperature resulting from heat carried out the magma source regions to the surface during mare flooding.

  3. Comparative Study of Effects of CO 2 Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna M.; Lowry, Gregory V.; Gregory, Kelvin B.

    2016-10-01

    Injected CO2 from geologic carbon storage is expected to impact the microbial communities of proposed storage sites, such as depleted oil reservoirs and deep saline aquifers, as well as overlying freshwater aquifers at risk of receiving leaking CO2. Microbial community change in these subsurface sites may affect injectivity of CO2, permanence of stored CO2, and shallow subsurface water quality. The effect of CO2 concentration on the microbial communities in fluid collected from a depleted oil reservoir and a freshwater aquifer was examined at subsurface pressures and temperatures. The community was exposed to 0%, 1%, 10%, and 100% pCO2 for 56 days. Bacterial community structure was analyzed through 16S rRNA gene clone libraries, and total bacterial abundance was estimated through quantitative polymerase chain reaction. Changes in the microbial community observed in the depleted oil reservoir samples and freshwater samples were compared to previous results from CO2-exposed deep saline aquifer fluids. Overall, results suggest that CO2 exposure to microbial communities will result in pH-dependent population change, and the CO2-selected microbial communities will vary among sites. This is the first study to compare the response of multiple subsurface microbial communities at conditions expected during geologic carbon storage, increasing the understanding of environmental drivers for microbial community changes in CO2-exposed environments.

  4. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Zabala, M.E., E-mail: mzabala@faa.unicen.edu.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires (Argentina); Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina); Manzano, M., E-mail: marisol.manzano@upct.es [Escuela de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas, Universidad Politécnica de Cartagena, P° de Alfonso XIII 52, E-30203 Cartagena (Spain); Vives, L., E-mail: lvives@faa.unicen.edu.ar [Instituto de Hidrología de Llanuras “Dr. Eduardo J. Usunoff”, Av. República Italia 780, 7300 Azul, Provincia Buenos Aires (Argentina)

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the “Dr. Eduardo J. Usunoff” Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO{sub 3}-Ca type, in the middle basin it is HCO{sub 3}-Na, and in the lower basin it is ClSO{sub 4}–NaCa and Cl–Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO{sub 2}, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth. - Highlights: • The

  5. Sources and Movement of Saline Groundwater in a Coastal Aquifer, Southern California, USA

    Science.gov (United States)

    Anders, R.; Stolp, B. J.; Danskin, W. R.

    2014-12-01

    Development of local groundwater resources in coastal areas is limited by the presence of saline groundwater. For a study in the San Diego area, a geochemical approach was used to investigate the sources and movement of saline groundwater in the coastal aquifer. Chemical and isotopic data were collected from multiple-depth monitoring-well sites near the San Diego coastline at discrete intervals to depths of more than 650 meters. The groundwater samples were analyzed for major and minor ions, the stable isotopes of hydrogen, oxygen, and strontium, and radioactive isotopes of tritium and carbon-14. Each chemical and isotopic tracer preserves some aspect of the hydrologic history of the groundwater ranging from the chemical characteristics (major and minor ions), to the source of water (stable isotopes of oxygen and hydrogen), to the types of rock encountered in the groundwater flow system (strontium isotopes), to time-since-recharge (tritium and carbon-14). By using sodium-to-calcium mass ratios, in combination with the isotopic data, the occurrence of saline groundwater as a result of seawater intrusion was distinguishable from groundwater in a previously-saline aquifer that has been "flushed" by fresher continental recharge. The systematic analysis of these tracers indicate that the sources and movement of saline groundwater in the coastal San Diego area are dominated by: 1) regional flow of higher-elevation precipitation that recharged many thousands of years ago along deep flowpaths; 2) recharge of local precipitation in relatively shallower portions of the flow system; and 3) intrusion of seawater that primarily entered the aquifer during pre-modern times. Use of multiple chemical and isotopic tracers provides unique insight regarding the processes affecting groundwater quality, enabling local water agencies to assess the groundwater resources in the coastal aquifer and begin to reduce the area's reliance on imported water.

  6. O2 reduction and denitrification rates in shallow aquifers

    Science.gov (United States)

    Tesoriero, Anthony J.; Puckett, Larry J.

    2011-12-01

    O2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero- and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O2 reduction rates varied widely within and between sites, with zero-order rates ranging from 100 μmol N L-1 yr-1; >0.36 yr-1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from 80 yr. The availability of electron donors is indicated as the primary factor affecting O2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation.

  7. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K

    2011-05-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L-1-135 mg L-1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d-1-1780 mg d-1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency. © 2011.

  8. Characterization of groundwater flow and transport in the General Separations Area, Savannah River Plant: Effect of groundwater withdrawals on the Tuscaloosa-Congaree aquifer head reversal in H Area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, C.P.; Duffield, G.M.; Shaw, S.T. [GeoTrans, Inc., Herndon, VA (United States)

    1988-01-01

    The Savannah River Plant (SRP) has maintained a number of sites used for land disposal of various waste materials. The General Separations Area at SRP, located between the Upper Three Runs and Four Mile Creeks, has served as an active area for waste storage for about thirty years. The Tuscaloosa aquifer, which lies beneath the General Separations Area, is a water source for SRP and the surrounding area. The isolation of the Tuscaloosa aquifer has been maintained by an upward hydraulic gradient from the Tuscaloosa aquifer to the overlying Congaree aquifer. This upward gradient is referred to as a hydraulic head reversal in the General Separations Area, i.e., hydraulic heads in the upper Tuscaloosa are higher than hydraulic heads in the Congaree. This head reversal has declined in recent years due to increased groundwater pumping in the upper and lower Tuscaloosa formations. The objective of this investigation is to assess the effects of pumping within the General Separations Area on the Congaree/upper Tuscaloosa head reversal. Methods of maintaining future Tuscaloosa aquifer isolation through the optimization of groundwater withdrawal location and rate were studied. Steady-state and transient groundwater flow models were used to characterize past and potential future groundwater conditions. Future groundwater conditions were simulated for a variety of pumping scenarios.

  9. Simulation of Variable-Density Ground-Water Flow and Saltwater Intrusion beneath Manhasset Neck, Nassau County, New York, 1905-2005

    Science.gov (United States)

    Monti, Jack; Misut, Paul E.; Busciolano, Ronald

    2009-01-01

    The coastal-aquifer system of Manhasset Neck, Nassau County, New York, has been stressed by pumping, which has led to saltwater intrusion and the abandonment of one public-supply well in 1944. Measurements of chloride concentrations and water levels in 2004 from the deep, confined aquifers indicate active saltwater intrusion in response to public-supply pumping. A numerical model capable of simulating three-dimensional variable-density ground-water flow and solute transport in heterogeneous, anisotropic aquifers was developed using the U.S. Geological Survey finite-element, variable-density, solute-transport simulator SUTRA, to investigate the extent of saltwater intrusion beneath Manhasset Neck. The model is composed of eight layers representing the hydrogeologic system beneath Manhasset Neck. Four modifications to the area?s previously described hydrogeologic framework were made in the model (1) the bedrock-surface altitude at well N12191 was corrected from a previously reported value, (2) part of the extent of the Raritan confining unit was shifted, (3) part of the extent of the North Shore confining unit was shifted, and (4) a clay layer in the upper glacial aquifer was added in the central and southern parts of the Manhasset Neck peninsula. Ground-water flow and the location of the freshwater-saltwater interface were simulated for three conditions (time periods) (1) a steady-state (predevelopment) simulation of no pumping prior to about 1905, (2) a 40-year transient simulation based on 1939 pumpage representing the 1905-1944 period of gradual saltwater intrusion, and (3) a 60-year transient simulation based on 1995 pumpage representing the 1945-2005 period of stabilized withdrawals. The 1939 pumpage rate (12.1 million gallons per day (Mgal/d)) applied to the 1905-1944 transient simulation caused modeled average water-level declines of 2 and 4 feet (ft) in the shallow and deep aquifer systems from predevelopment conditions, respectively, a net decrease of 5

  10. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    Science.gov (United States)

    Musgrove, M; Opsahl, S P; Mahler, B J; Herrington, C; Sample, T L; Banta, J R

    2016-10-15

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3(-)) loading to surface and groundwater. We investigate variability and sources of NO3(-) in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008-12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3(-) stable isotopes (δ(15)N and δ(18)O). These data were augmented by historical data collected from 1937 to 2007. NO3(-) concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3(-) concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3(-) concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3(-). These results highlight the vulnerability of karst aquifers to NO3(-) contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008-10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3(-) than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously unrecognized

  11. Time-Dependent Flexural Deformation Beneath the Emperor Seamounts

    Science.gov (United States)

    Wessel, P.; Watts, A. B.; Kim, S. S.

    2014-12-01

    The Hawaii-Emperor seamount chain stretches over 6000 km from the Big Island of Hawaii to the subduction cusp off Kamchatka and represents a near-continuous record of hotspot volcanism since the Late Cretaceous. The load of these seamounts and islands has caused the underlying lithosphere to deform, developing a flexural flanking moat that is now largely filled with volcanoclastic sediments. Because the age differences between the seafloor and the seamounts vary by an order of magnitude or more along the chain, the Hawaii-Emperor chain and surrounding area is considered a natural laboratory for lithospheric flexure and has been studied extensively in order to infer the rheology of the oceanic lithosphere. While most investigations have focused on the Hawaiian Islands and proximal seamounts (where data sets are more complete, including seismic reflection and refraction, swath bathymetry and even mapping and dating of drowned reef terraces), far fewer studies have examined the flexural deformation beneath the remote Emperor chain. Preliminary analysis of satellite altimetry data shows the flexural moats to be associated with very large negative gravity anomalies relative to the magnitudes of the positive anomalies over the loads, suggesting considerable viscous or viscoelastic relaxation since the loads were emplaced 50-80 Myr ago. In our study, we will attempt to model the Emperor seamount chain load as a superposition of individual elliptical Gaussian seamounts with separate loading histories. We use Optimal Robust Separation (ORS) techniques to extract the seamount load from the regional background bathymetry and partition the residual load into a set of individual volcanoes. The crustal age grid and available seamount dates are used to construct a temporal loading model and evaluate the flexural response of the lithosphere beneath the Emperor seamounts. We explore a variety of rheological models and loading scenarios that are compatible with the inferred load

  12. Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica

    Science.gov (United States)

    Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry

    2015-04-01

    Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL

  13. Selecting Aquifer Wells for Planned Gyroscopic Logging

    Energy Technology Data Exchange (ETDEWEB)

    Rohe, Michael James; Studley, Gregory Wayne

    2002-04-01

    Understanding the configuration of the eastern Snake River Plain aquifer's water table is made difficult, in part, due to borehole deviation in aquifer wells. A borehole has deviation if it is not vertical or straight. Deviation impairs the analysis of water table elevation measurements because it results in measurements that are greater than the true distance from the top of the well to the water table. Conceptual models of the water table configuration are important to environmental management decision-making at the INEEL; these models are based on measurements of depth to the water table taken from aquifer wells at or near the INEEL. When accurate data on the amount of deviation in any given borehole is acquired, then measurements of depth-to-water can be adjusted to reflect the true depth so more accurate conceptual models can be developed. Collection of additional borehole deviation data with gyroscopic logging is planned for selected wells to further our confidence in the quality of water level measurements. Selection of wells for the planned logging is based on qualitative and quantitative screening criteria. An existing data set from magnetic deviation logs was useful in establishing these criteria however, are considered less accurate than gyroscopic deviation logs under certain conditions. Population distributions for 128 aquifer wells with magnetic deviation data were used to establish three quantitative screening thresholds. Qualitative criteria consisted of administrative controls, accessibility issues, and drilling methods. Qualitative criteria eliminated all but 116 of the 337 aquifer wells, in the vicinity of the INEEL, that were initially examined in this screening effort. Of these, 72 have associated magnetic deviation data; 44 do not. Twenty-five (25) of the 72 wells with magnetic deviation data have deviation greater than one of the three quantitative screening thresholds. These 25 are recommended for the planned gyroscopic borehole deviation

  14. Aquifer Chemistry and Transport Processes in the Zone of Contribution to a Public-Supply Well in Woodbury, Connecticut, 2002-06

    Science.gov (United States)

    Brown, Craig J.; Starn, J. Jeffrey; Stollenwerk, Kenneth G.; Mondazzi, Remo A.; Trombley, Thomas J.

    2009-01-01

    A glacial aquifer system in Woodbury, Connecticut, was studied to identify factors that affect the groundwater quality in the zone of contribution to a community public-supply well. Water samples were collected during 2002-06 from the public-supply well and from 35 monitoring wells in glacial stratified deposits, glacial till, and fractured bedrock. The glacial aquifer is vulnerable to contamination from a variety of sources due to the short groundwater residence times and the urban land use in the contributing recharge area to the public-supply well. The distribution and concentrations of pH, major and trace elements, stable isotope ratios, recharge temperatures, dissolved organic carbon (DOC), and volatile organic compounds (VOCs), and the oxidation-reduction (redox) conditions, were used to identify recharge source areas, aquifer source material, anthropogenic sources, chemical processes, and groundwater-flow paths from recharge areas to the public-supply well, PSW-1. The major chemical sources to groundwater and the tracers or conditions used to identify them and their processes throughout the aquifer system include (1) bedrock and glacial stratified deposits and till, characterized by high pH and concentrations of sulfate (SO42-), bicarbonate, uranium (U), radon-222, and arsenic (As) relative to those of other wells, reducing redox conditions, enriched delta sulfur-34 (d34S) and delta carbon-13 (d13C) values, depleted delta oxygen-18 (d18O) and delta deuterium (dD) values, calcite near saturation, low recharge temperatures, and groundwater ages of more than about 9 years; (2) natural organic matter, either in sediments or in an upgradient riparian zone, characterized by high concentrations of DOC or manganese (Mn), low concentrations of dissolved oxygen (DO) and nitrate (NO3-), enriched d34S values, and depleted d18O and dD values; (3) road salt (halite), characterized by high concentrations of sodium (Na), chloride (Cl-), and calcium (Ca), and indicative

  15. The High Plains Aquifer, USA: Groundwater development and sustainability

    Science.gov (United States)

    Dennehy, K.F.; Litke, D.W.; McMahon, P.B.

    2002-01-01

    The High Plains Aquifer, located in the United States, is one of the largest freshwater aquifers in the world and is threatened by continued decline in water levels and deteriorating water quality. Understanding the physical and cultural features of this area is essential to assessing the factors that affect this groundwater resource. About 27% of the irrigated land in the United States overlies this aquifer, which yields about 30% of the nation's groundwater used for irrigation of crops including wheat, corn, sorghum, cotton and alfalfa. In addition, the aquifer provides drinking water to 82% of the 2.3 million people who live within the aquifer boundary. The High Plains Aquifer has been significantly impacted by human activities. Groundwater withdrawals from the aquifer exceed recharge in many areas, resulting in substantial declines in groundwater level. Residents once believed that the aquifer was an unlimited resource of high-quality water, but they now face the prospect that much of the water may be gone in the near future. Also, agricultural chemicals are affecting the groundwater quality. Increasing concentrations of nitrate and salinity can first impair the use of the water for public supply and then affect its suitability for irrigation. A variety of technical and institutional measures are currently being planned and implemented across the aquifer area in an attempt to sustain this groundwater resource for future generations. However, because groundwater withdrawals remain high and water quality impairments are becoming more commonplace, the sustainability of the High Plains Aquifer is uncertain.

  16. Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica

    Science.gov (United States)

    Kimura, Satoshi; Jenkins, Adrian; Dutrieux, Pierre; Forryan, Alexander; Naveira Garabato, Alberto C.; Firing, Yvonne

    2016-12-01

    Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ˜0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.

  17. Crawling beneath the free surface: Water snail locomotion

    CERN Document Server

    Lee, Sungyon; Hosoi, A E; Lauga, Eric

    2008-01-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be non-zero for moderate values of Capillar...

  18. Investigation of upper crustal structure beneath eastern Java

    Science.gov (United States)

    Martha, Agustya Adi; Widiyantoro, Sri; Cummnins, Phil; Saygin, Erdinc; Masturyono

    2016-05-01

    The complexity of geology structure in eastern Java causes this region has many potential resources as much as the disasters. Therefore, the East Java province represents an interesting area to be explored, especially regarding its upper crustal structure. To investigate this structure, we employ the Ambient Noise Tomography (ANT) method. We have used seismic waveform data from 25 Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 26 portable seismographs installed for 2 to 8 weeks. Inter-station cross-correlation produces more than 800 Rayleigh wave components, which depict the structure beneath eastern Java. Based on the checkerboard resolution test, we found that the optimal grid size is 0.25ox0.25o. Our inversion results for the periods of 1 to 10 s indicate a good agreement with geological and Bouguer anomaly maps. Rembang high depression, most of the southern mountains zone, the northern part of Rembang zone and the central part of the Madura Island, the area of high gravity anomaly and areas dominated with igneous rocks are associated with high velocity zones. On the other hand, Kendeng zone and most of the basin in the Rembang zone are associated with low velocity zones.

  19. PN velocity beneath Western New Mexico and Eastern Arizona

    Science.gov (United States)

    Jaksha, L. H.

    1985-01-01

    The experiment involved observing Pn arrivals on an areal array of 7 seismic stations located in the transition zone and along the Jemez lineament. Explosions in coal and copper mines in New Mexico and Arizona were used as energy sources as well as military detonations at White Sands Missile Range, New Mexico, Yuma, Arizona, and the Nevada Test Site. Very preliminary results suggest a Pn velocity of 7.94 km/s (with a fairly large uncertainty) beneath the study area. The Pn delay times, which can be converted to estimates of crustal thickness given knowledge of the velocity structure of the crust increase both to the north and east of Springerville, Arizona. As a constraint on the velocity of Pn, researchers analyzed the reversed refraction line GNOME-HARDHAT which passes through Springerville oriented NW to SE. This analysis resulted in a Pn velocity of 7.9-8.0 km/s for the transition zone. These preliminary results suggest that a normal Pn velocity might persist even though the crust thins (from north to south) by 15 km along the length of the Arizona-New Mexico border. If the upper mantle is currently hot anywhere in western New Mexico or eastern Arizona then the dimensions of the heat source (or sources) might be small compared to the intra-station distances of the seismic arrays used to estimate the velocity of Pn.

  20. Crawling beneath the free surface: Water snail locomotion

    Science.gov (United States)

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-08-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

  1. Opportunities to enhance management of karstic aquifers

    Science.gov (United States)

    Parizek, Richard R.

    2007-01-01

    Methods exist to obtain “new sources of water.” Examples include: (1) capturing and enhancing stormwater recharge and retention within diffuse-flow portions of karst and other aquifers; (2) recycling and reuse of waste water; (3) reducing evapotranspiration and rejected recharge; and (4) ameliorating atmospheric acid deposition through use of alkaline groundwater. These little used management methods have immense potential to sustain future water demands. Full utilization of “new” and traditional water resources requires an understanding of the hydrogeologic framework of karstic aquifers. Reliable conceptual, numerical flow and transport models are needed to help evaluate, select, and design viable water management options. Three such simulation examples are provided together with a discussion of Penn State’s Wastewater reuse project where recharge approaches 3.785 × 109l/year

  2. Carbonate-Sulfate Volcanism on Venus?

    Science.gov (United States)

    Kargel, J.S.; Kirk, R.L.; Fegley, B.; Treiman, A.H.

    1994-01-01

    contains large amounts of calcite, anhydrite, and other salts. Chemical analyses indicate, according to some models, that Venusian rocks may contain 4-19% calcite and anhydrite. Mixtures of crustal salts could melt at temperatures a few tens to a few hundred Kelvins higher than Venus' surface temperature; hence, melting may be induced by modest endogenetic or impact heating. Salts may have many of the same geologic roles on Venus as water and ice have on Mars. A molten salt (carbonatite) "aquifer" may exist beneath a few hundred meters to several kilometers of solidified salt-rich "permafrost." Many geologic features can be explained by carbonatite magmatism: (1) impact melting of crustal salts can explain crater outflows, (2) small, sustained eruptions from molten salt aquifers can explain sapping valleys, (3) large, sustained eruptions may explain canali and their flood plans, and (4) catastrophic outbursts may have formed outflow channels and chaotic terrain. Landforms created by carbonate-rich lavas would be thermally stable on Venus' surface, though some minerals may weather to other solid substances. ?? 1994 Academic Press. All rights reserved.

  3. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.

  4. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    U A Lathashri; A Mahesha

    2016-08-01

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and specific yield estimated from the existing database range from 10 to 810 m^2/day and 0.08% to 10.92% respectively. After successful calibration with Nash–Sutcliffe efficiency greater than 0.80, the values of horizontal hydraulic conductivity and specific yield of the unconfined aquifer were set in the range 1.85–61.90 m/day and 0.006–0.24 respectively. After validating the model, it is applied for forecasting the aquifer’s response to anticipated future scenarios of groundwater draft, recharge rate and sea level rise. The findings of the study illustrate that saltwater intrusion is intensified in the area adjoining the tidal rivers, rather than that due to the sea alone. Of all the scenarios simulated, the immense negative impact on groundwater quality emerges due to overdraft conditions and reduced recharge with the areal extent of seawater intrusion exceeding about 67% (TDS>1 kg/m^3). The study also arrivesat the conclusion that, regional sea level rise of 1 mm/year has no impact on the groundwater dynamics of the aquifer.

  5. Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico

    Science.gov (United States)

    Carrera-Hernández, J. J.; Carreón-Freyre, D.; Cerca-Martínez, M.; Levresse, G.

    2016-03-01

    The city of Querétaro, located near the political boundary of the Mexican states of Querétaro and Guanajuato, relies on groundwater as it sole water supply. Groundwater extraction in the city increased from 21 × 106 m3/yr in 1970 to 104 × 106 m3/yr in 2010, with an associated drawdown of 100 m in some parts of the aquifer. A three-dimensional numerical groundwater-flow model has been developed that represents the historical evolution of the aquifer's potentiometric levels and is used to simulate the effect of two scenarios: (1) a 40 % reduction in the extraction rate from public water supply wells in early 2011 (thus reducing the extraction to 62 × 106 m3/yr), and (2) a further reduction in 2021 to 1 × 106 m3/yr. The modeling results project a temporary recovery of the potentiometric levels after the 40 % reduction of early 2011, but a return to 2010 levels by 2020. If scenario 2 is implemented in 2021, the aquifer will take nearly 30 years to recover to the simulated levels of 1995. The model also shows that the wells located in the city of Querétaro started to extract water from part of the aquifer beneath the State of Guanajuato in the late 1970s, thus showing that the administrative boundaries used in Mexico to study and develop water resources are inappropriate, and consideration should be given to physical boundaries instead. A regional approach to studying aquifers is needed in order to adequately understand groundwater flow dynamics.

  6. Analysis of saltwater upconing beneath a pumping well

    Science.gov (United States)

    Reilly, T.E.; Goodman, A.S.

    1987-01-01

    Aquifer systems that contain freshwater and saltwater are usually stratified, with the more dense saltwater underlying the freshwater. A groundwater well discharging from the freshwater zone causes the saltwater to move upwards towards the well. This phenomenon is known as saltwater upconing. Two methods of analysis, the sharp-interface method and the fluid-density-dependent solute-transport method, are used to simulate saltwater upconing. Numerical experiments including comparisons of the two methods indicate: (1) for low to moderate pumpages the 50% isochlor and sharp interface correlate well; (2) the well can discharge significant concentrations of saltwater, even though a stable cone (according to the sharp-interface method) exists below the well screen; (3) an almost linear relationship exists between the well discharge rate and the concentration of the discharge at low pumping rates that maintain a stable cone; and (4) upconing is sensitive to transverse dispersivity, whereas it is insensitive to longitudinal dispersivity. A simulation of upconing at Test Site No. 4, Truro, Cape Cod, Massachusetts, indicates that the appropriate field value of transverse dispersivity is very small. This supports the validity of the sharp-interface assumption for analyzing the behavior of systems with thin saltwater-freshwater transition zones. ?? 1987.

  7. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater

    Science.gov (United States)

    Hancock, Peter J.; Boulton, Andrew J.; Humphreys, William F.

    2005-03-01

    Ecological constraints in subsurface environments relate directly to groundwater flow, hydraulic conductivity, interstitial biogeochemistry, pore size, and hydrological linkages to adjacent aquifers and surface ecosystems. Groundwater ecology has evolved from a science describing the unique subterranean biota to its current form emphasising multidisciplinary studies that integrate hydrogeology and ecology. This multidisciplinary approach seeks to elucidate the function of groundwater ecosystems and their roles in maintaining subterranean and surface water quality. In aquifer-surface water ecotones, geochemical gradients and microbial biofilms mediate transformations of water chemistry. Subsurface fauna (stygofauna) graze biofilms, alter interstitial pore size through their movement, and physically transport material through the groundwater environment. Further, changes in their populations provide signals of declining water quality. Better integrating groundwater ecology, biogeochemistry, and hydrogeology will significantly advance our understanding of subterranean ecosystems, especially in terms of bioremediation of contaminated groundwaters, maintenance or improvement of surface water quality in groundwater-dependent ecosystems, and improved protection of groundwater habitats during the extraction of natural resources. Overall, this will lead to a better understanding of the implications of groundwater hydrology and aquifer geology to distributions of subsurface fauna and microbiota, ecological processes such as carbon cycling, and sustainable groundwater management. Les contraintes écologiques dans les environnements de subsurface sont en relation directe avec les écoulements des eaux souterraines, la conductivité hydraulique, la biogéochimie des milieux interstitiels, la taille des pores, et les liens hydrologiques avec les aquifères et les écosystèmes adjacents. L'écologie des eaux souterraines a évolué d'une science décrivant uniquement les

  8. Unconfined Aquifer Flow Theory - from Dupuit to present

    CERN Document Server

    Mishra, Phoolendra K

    2013-01-01

    Analytic and semi-analytic solution are often used by researchers and practicioners to estimate aquifer parameters from unconfined aquifer pumping tests. The non-linearities associated with unconfined (i.e., water table) aquifer tests makes their analysis more complex than confined tests. Although analytical solutions for unconfined flow began in the mid-1800s with Dupuit, Thiem was possibly the first to use them to estimate aquifer parameters from pumping tests in the early 1900s. In the 1950s, Boulton developed the first transient well test solution specialized to unconfined flow. By the 1970s Neuman had developed solutions considering both primary transient storage mechanisms (confined storage and delayed yield) without non-physical fitting parameters. In the last decade, research into developing unconfined aquifer test solutions has mostly focused on explicitly coupling the aquifer with the linearized vadose zone. Despite the many advanced solution methods available, there still exists a need for realism ...

  9. Hydrogeology and water quality of the stratified-drift aquifer in the Pony Hollow Creek Valley, Tompkins County, New York

    Science.gov (United States)

    Bugliosi, Edward F.; Miller, Todd S.; Reynolds, Richard J.

    2014-01-01

    away from groundwater mounds that have formed beneath upland tributaries that lose water where they flow on alluvial fans on the margins of the valley. In some places, groundwater that would normally flow toward streams is intercepted by pumping wells. Surface-water samples were collected in 2001 at four sites including Carter, Pony Hollow (two sites), and Chafee Creeks, and from six wells throughout the aquifer. Calcium dominates the cation composition and bicarbonate dominates the anion composition in groundwater and surface-water samples and none of the common inorganic constituents collected exceeded any Federal or State water-quality standards. Groundwater samples were collected from six wells all completed in the unconfined sand and gravel aquifer. Concentrations of calcium and magnesium dominated the ionic composition of the groundwater in all wells sampled. Nitrate, orthophosphate, and trace metals were detected in all groundwater samples, but none were more than U.S. Environmental Protection Agency or New York State Department of Health regulatory limits.

  10. Drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonephritis: a review

    Directory of Open Access Journals (Sweden)

    Miguel Hage Amaro

    2015-02-01

    Full Text Available The aim of this paper is to do a review of Drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonephritis. Drusenlike beneath retinal deposits in type II mesangiocapillary glomerulonephritis appear to develop at an early age, often second decade of life different of drusen from age-related macular degeneration (AMD.Long term follow-up of the cases in this disease shows in the most of them, no progression of the of drusen-like beneath retinal deposits in type II mesangiocapillary glomerulonefritis, the most of subjects retain good visual acuity and no specific treatment is indicated.

  11. Vertical Gradients in Water Chemistry and Age in the Southern High Plains Aquifer, Texas, 2002

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Lehman, T.M.

    2004-01-01

    The southern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of New Mexico and Texas. Despite the aquifer's importance to the overall economy of the southern High Plains, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the southern High Plains aquifer at two locations (Castro and Hale Counties, Texas) were analyzed for field parameters, major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, and dissolved gases to evaluate vertical gradients in water chemistry and age in the aquifer. Tritium measurements indicate that recent (post-1953) recharge was present near the water table and that deeper water was recharged before 1953. Concentrations of dissolved oxygen were largest (2.6 to 5.6 milligrams per liter) at the water table and decreased with depth below the water table. The smallest concentrations were less than 0.5 milligram per liter. The largest major-ion concentrations generally were detected at the water table because of the effects of overlying agricultural activities, as indicated by postbomb tritium concentrations and elevated nitrate and pesticide concentrations at the water table. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions and mixing with water from the underlying aquifer in rocks of Cretaceous age. The concentration increases primarily were accounted for by dissolved sodium, bicarbonate, chloride, and sulfate. Nitrite plus nitrate concentrations at the water table were 2.0 to 6.1 milligrams per liter as nitrogen, and concentrations substantially decreased with depth in the aquifer to a

  12. Numerical Study on Saltwater Instrusion in a Heterogeneous Stratified Aquifer

    OpenAIRE

    2000-01-01

    In a costal aquifer, saltwater intrusion is frequently observed due to an excess exploitation. There are many researches focused on the saltwater intrusion. However, there are few researches, which take into consideration the mixing processes in a stratified heterogeneous aquifer. In the present study, a laboratory experiment and numerical simulation are made in order to understand the phenomena in a stratified heterogeneous aquifer. The result of the numerical analysis agrees well with the m...

  13. Recharge and Aquifer Response: Manukan Island’s Aquifer, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Sarva Mangala Praveena

    2010-01-01

    Full Text Available Manukan Island is a small island located in North-West of Sabah, Malaysia was used as a case study area for numerical modeling of an aquifer response to recharge and pumping rates. The results in this study pre