WorldWideScience

Sample records for carbonaceous particles scps

  1. Spheroidal Carbonaceous Particles (SCPs) as Chronological Markers in Marine Sediments

    Science.gov (United States)

    Thornalley, D.; Rose, N.; Oppo, D.

    2016-12-01

    Spheroidal carbonaceous particles (SCPs) are a component of fly-ash, the particulate by-product of industrial high-temperature combustion of coal and fuel-oil that is released to the atmosphere with flue-gases. They are morphologically distinct and have no natural sources making them unambiguous markers of contamination from these anthropogenic sources. In naturally accumulating archives, SCPs may be used as a chronological tool as they provide a faithful record of industrial emissions and deposition. While the timing of the first presence of SCP in the 19th century, and the observed sub-surface peak are dependent on factors such as sediment accumulation rates and local industrial history, a rapid increase in SCP inputs in the mid-20thcentury appears to be a global signal corresponding to an acceleration in global electricity demand following the Second World War and the use of fuel-oil in electricity production at an industrial scale for the first time. While this approach has been widely used in lake sediments, it has not been applied to marine sediments, although there is great potential. Improved dating of 19th-20th century marine sediments has particular relevance for developing reconstructions of recent multi-decadal climate and ocean variability, and for studies that aim to place 20thcentury climate change within the context of the last millennium. Here, we present data from three sediment cores from the continental slope south of Iceland to demonstrate the temporal and spatial replicability of the SCP record in the marine environment and compare these data with cores taken from more contaminated areas off the coast of the eastern United States. The improved age model constraints provided by the analysis of SCPs has enabled a more accurate assessment of the timing of recent abrupt climate events recorded in these archives and has thus improved our understanding of likely causal climate mechanisms.

  2. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Science.gov (United States)

    Schütze, Katharina; Wilson, James Charles; Weinbruch, Stephan; Benker, Nathalie; Ebert, Martin; Günther, Gebhard; Weigel, Ralf; Borrmann, Stephan

    2017-10-01

    Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment) from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM) combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM = 3872; SEM = 330) were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air)-1 and varied between 0.65 and 2.3 (mg air)-1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation). Carbon and oxygen are the only detected major elements with an atomic O/C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si/C: 0.010 ± 0.011; S/C: 0.0007 ± 0.0015; Fe/C: 0.0052 ± 0.0074; Cr/C: 0.0012 ± 0.0017; Ni/C: 0.0006 ± 0.0011 (all mean values ± standard deviation).High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between particles collected inside and outside the polar vortex. Based on chemistry and nanostructure

  3. Carbonaceous Particles Production in a Sputtering Discharge

    International Nuclear Information System (INIS)

    Dominique, Claire; Sant, Marco; Arnas, Cecile

    2005-01-01

    Spherical dust particles have been produced in argon glow discharge by sputtering of a graphite cathode. Their size varies from 40 to 200 nm depending on the distance between the two electrodes and the largest ones have a cauliflower shape. Simulations giving the evolution of the energy distribution of sputtered carbon atoms suggest a mechanism of growth by carbon vapour condensation. The chemical composition and structure of particles have been investigated by infrared spectroscopy and appear to be a complex arrangement of the carbon atoms and hetero-atoms

  4. Comparison of Spheroidal Carbonaceous Particle Data with Modelled Atmospheric Black Carbon Concentration and Deposition and Air Mass Sources in Northern Europe, 1850–2010

    Directory of Open Access Journals (Sweden)

    Meri Ruppel

    2013-01-01

    Full Text Available Spheroidal carbonaceous particles (SCP are a well-defined fraction of black carbon (BC, produced only by the incomplete combustion of fossil fuels such as coal and oil. Their past concentrations have been studied using environmental archives, but, additionally, historical trends of BC concentration and deposition can be estimated by modelling. These models are based on BC emission inventories, but actual measurements of BC concentration and deposition play an essential role in their evaluation and validation. We use the chemistry transport model OsloCTM2 to model historical time series of BC concentration and deposition from energy and industrial sources and compare these to sedimentary measurements of SCPs obtained from lake sediments in Northern Europe from 1850 to 2010. To determine the origin of SCPs we generated back trajectories of air masses to the study sites. Generally, trends of SCP deposition and modelled results agree reasonably well, showing rapidly increasing values from 1950, to a peak in 1980, and a decrease towards the present. Empirical SCP data show differences in deposition magnitude between the sites that are not captured by the model but which may be explained by different air mass transport patterns. The results highlight the need for numerous observational records to reliably validate model results.

  5. Sub-micrometer refractory carbonaceous particles in the polar stratosphere

    Directory of Open Access Journals (Sweden)

    K. Schütze

    2017-10-01

    Full Text Available Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM combined with energy-dispersive X-ray microanalysis. A total of 4202 particles (TEM  =  3872; SEM  =  330 were analyzed from these samples, which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. Particles that were volatile in the microscope beams contained ammonium sulfates and hydrogen sulfates and dominated the samples. Some particles with diameters ranging from 20 to 830 nm were refractory in the electron beams. Carbonaceous particles containing additional elements to C and O comprised from 72 to 100 % of the refractory particles. The rest were internal mixtures of these materials with sulfates. The median number mixing ratio of the refractory particles, expressed in units of particles per milligram of air, was 1.1 (mg air−1 and varied between 0.65 and 2.3 (mg air−1. Most of the refractory carbonaceous particles are completely amorphous, a few of the particles are partly ordered with a graphene sheet separation distance of 0.37 ± 0.06 nm (mean value ± standard deviation. Carbon and oxygen are the only detected major elements with an atomic O∕C ratio of 0.11 ± 0.07. Minor elements observed include Si, S, Fe, Cr and Ni with the following atomic ratios relative to C: Si∕C: 0.010 ± 0.011; S∕C: 0.0007 ± 0.0015; Fe∕C: 0.0052 ± 0.0074; Cr∕C: 0.0012 ± 0.0017; Ni∕C: 0.0006 ± 0.0011 (all mean values ± standard deviation.High-resolution element distribution images reveal that the minor elements are distributed within the carbonaceous matrix; i.e., heterogeneous inclusions are not observed. No difference in size, nanostructure and elemental composition was found between

  6. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  7. Springtime warming and reduced snow cover from carbonaceous particles

    Directory of Open Access Journals (Sweden)

    M. G. Flanner

    2009-04-01

    Full Text Available Boreal spring climate is uniquely susceptible to solar warming mechanisms because it has expansive snow cover and receives relatively strong insolation. Carbonaceous particles can influence snow coverage by warming the atmosphere, reducing surface-incident solar energy (dimming, and reducing snow reflectance after deposition (darkening. We apply a range of models and observations to explore impacts of these processes on springtime climate, drawing several conclusions: 1 Nearly all atmospheric particles (those with visible-band single-scatter albedo less than 0.999, including all mixtures of black carbon (BC and organic matter (OM, increase net solar heating of the atmosphere-snow column. 2 Darkening caused by small concentrations of particles within snow exceeds the loss of absorbed energy from concurrent dimming, thus increasing solar heating of snowpack as well (positive net surface forcing. Over global snow, we estimate 6-fold greater surface forcing from darkening than dimming, caused by BC+OM. 3 Equilibrium climate experiments suggest that fossil fuel and biofuel emissions of BC+OM induce 95% as much springtime snow cover loss over Eurasia as anthropogenic carbon dioxide, a consequence of strong snow-albedo feedback and large BC+OM emissions from Asia. 4 Of 22 climate models contributing to the IPCC Fourth Assessment Report, 21 underpredict the rapid warming (0.64°C decade−1 observed over springtime Eurasia since 1979. Darkening from natural and anthropogenic sources of BC and mineral dust exerts 3-fold greater forcing on springtime snow over Eurasia (3.9 W m−2 than North America (1.2 W m−2. Inclusion of this forcing significantly improves simulated continental warming trends, but does not reconcile the low bias in rate of Eurasian spring snow cover decline exhibited by all models, likely because BC deposition trends are negative or near-neutral over much of Eurasia. Improved Eurasian

  8. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianqi [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Shen, Ke [Institute of Nuclear and New Energy Technology of Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2015-11-15

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  9. AFM measurements of adhesive forces between carbonaceous particles and the substrates

    International Nuclear Information System (INIS)

    Zhang, Tianqi; Peng, Wei; Shen, Ke; Yu, Suyuan

    2015-01-01

    Highlights: • Adhesive force of spherical carbonaceous particle MCMBs and HTR-10 graphite matrix debris were measured for the first time. • The measured equivalent works of adhesion were much smaller than the ideal values. • The shape factor and the particle morphology reduce the adhesive force. • The adhesion effect does not change directly with the asperity size. - Abstract: Graphite dust is carbonaceous particles generated during operation of High Temperature Gas-Cooled Reactors (HTR). Graphite dust resuspension is the key behavior associated with HTR source term analyses and environmental safety assessment. The adhesive force is the key factor that determines the resuspension rate. The present study used an atomic force microscope (AFM) to measure the adhesive force between a single carbonaceous particle and the substrate. The measurements were performed on mica, graphite IG110 and Inconel 800H. The prepared “probe cantilevers” were mesocarbon microbeads (MCMB), fuel element debris from HTR-10 and graphite NBG18. The equivalent work of adhesion was derived from the measured adhesive force and calculated based on substrate profile approximation and the JKR theoretical model. The measured work was smaller than the ideal work of adhesion, most likely due to the rough particle morphology and the rough substrate surface. Additionally, a shape factor imposes a constraint on the lateral deformation of the particles. Furthermore, surface roughness could reduce the adhesive force some depending on the particle size. Once the particle was too small to be trapped into a trough, the adhesive force would not be further reduced.

  10. Light absorption by coated nano-sized carbonaceous particles

    Science.gov (United States)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  11. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    International Nuclear Information System (INIS)

    Hallock, K.A.; Mazurek, M.A.; Cass, G.R.

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon

  12. Carbonaceous particle record in lake sediments from the Arctic and other remote areas of the northern hemisphere

    International Nuclear Information System (INIS)

    Rose, N.L.

    1995-01-01

    Lake sediments, including spheroidal carbonaceous particles produced by high temperature combustion of fossil fuels, contain a record of lake, catchment and atmospheric deposition history. The spatial and temporal distributions of these particles can indicate the extent to which a single lake or a region has been contaminated by airborne pollutants (e.g. sulfur, polycyclic aromatic hydrocarbons (PAHs)) derived from fossil fuels. The carbonaceous particle records of two Arctic lakes, Shuonijavr and Stepanovichjarvi, close to local pollution sources on the Kola Peninsula, Russia, are compared with the record of a remote lake on Svalbard and with mid-latitude remote mountain lakes in Europe and Asia. Although, Shuonijavr and Stepanovichjarvi show relatively high levels of contamination, as expected, the presence of carbonaceous particles at all of the remote sites studied suggests there is a hemispherical background of these particles. Other less remote mountain lakes in Europe have been found to contain significant concentrations of particles and these may represent regional deposition patterns. Carbonaceous particle analysis may provide an effective assessment of whether a lake site is receiving local, regional or background levels of deposition

  13. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    Science.gov (United States)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles < 200 nm are depleted in 13C with respect to larger particles by 1 - 2 ‰Ṫhis shows that OC in small particle

  14. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-04-01

    Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and

  15. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-09-01

    Full Text Available Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the

  16. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-09-01

    Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal

  17. Program GICC, final report (March 2005), inventory of carbonaceous aerosol particles from 1860 to 2100 or which carbonaceous aerosol for a significant climatic regional/global impact?

    International Nuclear Information System (INIS)

    Cachier, H.; Guinot, B.; Criqui, P.; Mima, S.; Brignon, J.M.; Penner, J.; Carmichael, G.; Gadi, R.; Denier Van der Gon, H.; Gregoire, J.M.; Liousse, C.; Michel, C.; Guillaume, B.; Junker, C.

    2007-01-01

    The aim of our program is to determine past, present and future emission inventories of carbonaceous particles from 1860 to 2100 for fossil fuel and biofuel sources. Emission inventories for savannah and forest fires have been developed by using burnt area products given by satellite for Asia and Africa. The strong collaboration with the different groups attending this GICC program has allowed to develop the following results. 1- With the improvement of algorithms and new choices for emission factors, emission inventories for black carbon (BC), primary organic carbon (OCp) and total organic carbon (OCtot) have been constructed for the period 1950 to 1997 for fossil fuel and biofuel sources. With these new development, biofuel sources have been seen to be significant, especially in the developing countries. 2- Past inventories have been developed for fossil fuel and biofuel sources from 1860 to 1997 by taking into account the evolution of fuel consumption, fuel use and emission factors. 3- Savannah and forest fire inventories have been constructed based on burnt area products, for Africa (1981-1991, 2000) and Asia (2000-2001). These results show the importance of using real time data instead of statistics. 4-Future emission inventory of black carbon by fossil fuel sources has been constructed for 2100 following the IPCC scenario A2 (catastrophic case) and B1 (perfect world). 5-Characterization of biofuel emissions has been realized by organizing an experiment in a combustion chamber where indian and chinese biofuels (fuelwood, agricultural wastes, dung-cake etc..). were burnt, reproducing the burning methods used in these countries. 6-Finally, the differences between the existing inventories of carbonaceous aerosols has been explained. (A.L.B.)

  18. Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city

    Science.gov (United States)

    Genga, A.; Ielpo, P.; Siciliano, T.; Siciliano, M.

    2017-01-01

    Mass concentrations of PM2.5, mineral dust, organic carbon (OC) and elemental carbon (EC), water-soluble organic carbon (WSOC), sea salts and anthropogenic metals have been studied in a city-port of south Italy (Brindisi). This city is characterized by different emission sources (ship, vehicular traffic, biomass burning and industrial emissions) and it is an important port and industrial site of the Adriatic sea. Based on diagnostic ratios of carbonaceous species we assess the presence of biomass burning emissions (BBE), fossil fuel emissions (FFE) and ship emission (SE). Our proposed conversion factors from OC to OM are higher than those reported in the literature for urban site: the reason of this could be due to the existence of aged combustion aerosols during the sampling campaign (WSOC/OC = 0.6 ± 0.3).

  19. Quantification of the carbonaceous matter origin in submicron marine aerosol particles by dual carbon isotope analysis

    Science.gov (United States)

    Ceburnis, D.; Garbaras, A.; Szidat, S.; Rinaldi, M.; Fahrni, S.; Perron, N.; Wacker, L.; Leinert, S.; Remeikis, V.; Facchini, M. C.; Prevot, A. S. H.; Jennings, S. G.; O'Dowd, C. D.

    2011-01-01

    Dual carbon isotope analysis has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides a conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80% organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of fossil-fuel origin. By contrast, for polluted air advecting out from Europe into the NE Atlantic, the source apportionment is 30% marine biogenic, 40% fossil fuel, and 30% continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  20. Microscopic Characterization of Carbonaceous Aerosol Particle Aging in the Outflow from Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, R. C.; Henn, T. R.; Tivanski, A. V.; Hopkins, R. J.; Desyaterik, Y.; Kilcoyne, A. L. D.; Tyliszczak, T.; Fast, J.; Barnard, J.; Shutthanandan, V.; Cliff, S.S.; Perry, K. D.; Laskin, A.; Gilles, M. K.

    2009-09-16

    This study was part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in Mexico City Metropolitan Area during spring 2006. The physical and chemical transformations of particles aged in the outflow from Mexico City were investigated for the transport event of 22 March 2006. A detailed chemical analysis of individual particles was performed using a combination of complementary microscopy and micro-spectroscopy techniques. The applied techniques included scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure spectroscopy (NEXAFS) and computer controlled scanning electron microscopy with an energy dispersive X-ray analyzer (CCSEM/EDX). As the aerosol plume evolves from the city center, the organic mass per particle increases and the fraction of carbon-carbon double bonds (associated with elemental carbon) decreases. Organic functional groups enhanced with particle age include: carboxylic acids, alkyl groups, and oxygen bonded alkyl groups. At the city center (T0) the most prevalent aerosol type contained inorganic species (composed of sulfur, nitrogen, oxygen, and potassium) coated with organic material. At the T1 and T2 sites, located northeast of T0 (~;;29 km and ~;;65 km, respectively), the fraction of homogenously mixed organic particles increased in both size and number. These observations illustrate the evolution of the physical mixing state and organic bonding in individual particles in a photochemically active environment.

  1. The infrared emission of carbonaceous particles around C-rich IRAS sources

    International Nuclear Information System (INIS)

    Blanco, A.; Borghesi, A.; Fonti, S.; Orofino, V.; Strafella, F.

    1997-01-01

    The IRAS spectra of 23 carbon-rich sources have been fitted by means of an improved theoretical model based on the Leung-Spagna radiative transfer code and using extinction data obtained in their laboratory for different types of amorphous carbon and silicon carbide submicron particles. The agreement between observations and theoretical spectra is rather good. A comparison between the IRAS spectrum of the object 12447 + 0425 (RU Vir) and that recently obtained at UKIRT, for the same object but with higher resolution, seems to open new problems

  2. ACCRETION AND PRESERVATION OF D-RICH ORGANIC PARTICLES IN CARBONACEOUS CHONDRITES: EVIDENCE FOR IMPORTANT TRANSPORT IN THE EARLY SOLAR SYSTEM NEBULA

    International Nuclear Information System (INIS)

    Remusat, L.; Guan, Y.; Wang, Y.; Eiler, J. M.

    2010-01-01

    We have acquired NanoSIMS images of the matrices of CI, CM, and CR carbonaceous chondrites to study, in situ, the organic matter trapped during the formation of their parent bodies. D/H ratio images reveal the occurrence of D-rich hot spots, constituting isolated organic particles. Not all the organic particles are D-rich hot spots, indicating that at least two kinds of organic particles have been accreted in the parent bodies. Ratio profiles through D-rich hot spots indicate that no significant self-diffusion of deuterium occurs between the D-rich organic matter and the depleted hydrous minerals that are surrounding them. This is not the result of a physical shielding by any constituent of the chondrites. Ab initio calculations indicate that it cannot be explained by isotopic equilibrium. Then it appears that the organic matter that is extremely enriched in D does not exchange with the hydrous minerals, or this exchange is so slow that it is not significant over the 4.5 billion year history on the parent body. If we consider that the D-rich hot spots are the result of an exposure to intense irradiation, then it appears that carbonaceous chondrites accreted organic particles that have been brought to different regions of the solar nebula. This is likely the result of important radial and vertical transport in the early solar system.

  3. Estimation of gas-particle partitioning coefficients (Kp) of carcinogenic polycyclic aromatic hydrocarbons in carbonaceous aerosols collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand.

    Science.gov (United States)

    Pongpiachan, Siwatt; Ho, Kin Fai; Cao, Junji

    2013-01-01

    To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days at three different atmospheric layers at the heart of Chiang-Mai, Bangkok and Hat-Yai from December 2006 to February 2007. A DRI Model 2001 Thermal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon (OC) and elemental carbon (EC) contents in PM10. Diurnal and vertical variability was also carefully investigated. In general, OC and EC mass concentration showed the highest values at the monitoring period of 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis at nighttime. Morning peaks of carbonaceous compounds were observed during the sampling period of 06:00-09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime particulate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifetime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approximately ten times higher than those air samples collected at Prince of Songkla University Hat-Yai campus corpse incinerator and fish-can manufacturing factory but only slightly higher than those of rice straw burning in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in PM10, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas-particle

  4. A Combined Study Investigating the Insoluble and Soluble Organic Compounds in Category 3 Carbonaceous Itokawa Particles Recovered by the Hayabusa Mission

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M.; Burton, A.; Clemett, S.; Fries, M.; Kebukawa, Y.

    2015-01-01

    At the 3rd International Announcement of Opportunity (AO), we have been approved for five Category 3 carbonaceous Itokawa particles (RA-QD02-0012, RA-QD02-0078, RB-CV-0029, RB-CV-0080 and RB-QD04-0052) recovered by the first Hayabusa mission of JAXA. In this investigation, we aim to provide a comprehensive study to characterize and account for the presence of carbon-bearing phases as suggested by the initial Scanning Electron Microscopy (SEM) analysis carried out by JAXA at the curation facility, and to describe the mineralogical components of the particles. The insoluble organic content of Itokawa particle has been investigated with the use of micro-Raman spectroscopy by Kitajima and co-workers [1]. The Raman spectra of Itokawa particles show broad G- and D-bands typical of low temperature material which offers an interesting contrast to the high metamorphic grade (LL4-6) of the Itokawa parent body. Amino acid analysis has been conducted by Naraoka et al. [2] to study the soluble organic component of Itokawa particles, but since it was a preliminary study and thus did not have the opportunity to target on Category 3 carbonaceous particles, only terrestrial contaminants were identified. The investigation will be carried out in the following order prioritized according to the progressive damage the analytical techniques can induce: (1) micro-Raman spectrometry, (2) two-step laser mass spectrometry (micro-L2MS), (3) ultra-high performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS), and optimally if we can recover the particles after wet chemistry analysis, we will mount the samples and perform (4) electron beam microscopy (SEM, electron back-scattered diffraction [EBSD]) and (5) carbon X-ray absorption near edge structure spectroscopy (C-XANES). We will begin the analytical procedures upon receiving the samples in September/October. This work will provide us with an understanding of the variety and origins of

  5. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads.

    Science.gov (United States)

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-10-30

    Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Man-Ting; Chen, Hsun-Jung [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40254, Taiwan (China); Young, Li-Hao, E-mail: lhy@mail.cmu.edu.tw [Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Yang, Hsi-Hsien [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Road, Wufeng District, Taichung 41349, Taiwan (China); Tsai, Ying I. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, 60, Sec. 1, Erren Rd., Rende District, Tainan 71710, Taiwan (China); Wang, Lin-Chi [Department of Civil Engineering and Geomatics, Cheng Shiu University, 840, Chengcing Road, Niaosong District, Kaohsiung 83347, Taiwan (China); Lu, Jau-Huai [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40254, Taiwan (China); Chen, Chung-Bang [Fuel Quality and Engine Performance Research, Refining and Manufacturing Research Institute, Chinese Petroleum Corporation, 217, Minsheng S. Road, West District, Chiayi 60051, Taiwan (China)

    2015-10-30

    Highlights: • We study particulate OC and EC under 3 fuels, 2 aftertreatments and 4 engine loads. • Negligible to minor OC and EC changes with low, ultralow sulfur and 10% biodiesels. • Moderate reductions of EC and particularly OC from diesel oxidation catalyst (DOC). • Large reductions of OC and particularly EC from DOC plus diesel particulate filter. • Highest at idle, whereas OC decreases but EC increases from low to high load. - Abstract: Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study.

  7. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads

    International Nuclear Information System (INIS)

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I.; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-01-01

    Highlights: • We study particulate OC and EC under 3 fuels, 2 aftertreatments and 4 engine loads. • Negligible to minor OC and EC changes with low, ultralow sulfur and 10% biodiesels. • Moderate reductions of EC and particularly OC from diesel oxidation catalyst (DOC). • Large reductions of OC and particularly EC from DOC plus diesel particulate filter. • Highest at idle, whereas OC decreases but EC increases from low to high load. - Abstract: Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study

  8. SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale

    Directory of Open Access Journals (Sweden)

    Paccanaro Alberto

    2010-03-01

    Full Text Available Abstract Background An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. Results SCPS (Spectral Clustering of Protein Sequences is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences. Conclusions Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein

  9. SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale.

    Science.gov (United States)

    Nepusz, Tamás; Sasidharan, Rajkumar; Paccanaro, Alberto

    2010-03-09

    An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences) and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences). Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein descriptions using GI numbers from NCBI, it interfaces with

  10. Elemental and isotopic characterization of organic particles in carbonaceous chondrites by NanoSIMS imaging: assessment on the origin, accretion and preservation of organic matter in chondrites

    Science.gov (United States)

    Remusat, L.; Guan, Y.; Eiler, J. M.

    2009-12-01

    Chondrites accreted primitive components, including organic compounds sampled from the proto-solar nebula. However, the molecular and isotopic fingerprints of organic matter extracted from chondrites are also potentially influenced by complex evolution on the parent bodies. We have performed NanoSIMS in situ characterisation of organic matter in the matrices of carbonaceous chondrites Orgueil (CI), Murchison (CM), Tagish Lake (C2), Renazzo (CR) and Allende (CV) with a spatial resolution of ~200 nm; we could also constrains textural relationships between organic constituents and other phases. Those meteorites have undergone a diverse set of parent body processes. I.e., CI, C2 and CM meteorites have undergone aqueous alteration, and the CV’s are thermally metamorphosed. The CR’s are inferred to be the least altered class of chondrites. Despite these differences in parent body modification, the distributions of organic carbon in these meteorites is similar: in all cases it can be found as micron-size, randomly distributed organic particles that are surrounded by the clay minerals that dominate the matrix material, but are not specifically associated with sulfides, sulfates or oxides. In addition, there is a “diffuse” fraction of organic carbon intimately associated with the clay-rich matrix. We hypothesize that the C particles we identify are hosts of insoluble organic matter that co-accreted with other primitive constituents of these materials, whereas the diffuse C fraction is the soluble component (i.e., soluble in laboratory organic and aqueous solvents). Our analytical technique lacks the spatial resolution required to analyze the diffuse organic matter without contamination by associated clays. But we are able to analyze the compositions of the interiors of relatively large C-rich particles (>500 nm) without such contamination. Some fraction of the C-rich particles in all of the examined meteorites but Allende exhibit a very high enrichment in deuterium

  11. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-11-01

    Full Text Available In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E in East Asia, total suspended particles (TSP were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition (δ13C of TC. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during pollen emission episodes (range: −26.2‰ to −23.5‰, avg. −25.2 ± 0.9‰, approaching those of the airborne pollen (−28.0‰ collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C. Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  12. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2011-09-01

    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  13. Explosive Characteristics of Carbonaceous Nanoparticles

    Science.gov (United States)

    Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok

    2013-03-01

    Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)

  14. Program GICC, final report (March 2005), inventory of carbonaceous aerosol particles from 1860 to 2100 or which carbonaceous aerosol for a significant climatic regional/global impact?; Programme GICC, RAPPORT DEFINITIF (Mars 2005), inventaire d'emissions d'aerosol carbone de 1860 a 2100 ou quelles emissions d'aerosol carbone pour un impact climatique regional/global significatif?

    Energy Technology Data Exchange (ETDEWEB)

    Cachier, H.; Guinot, B. [Laboratoire des Sciences du Climat et de l' Environnment, UMR CEA/CNRS 1572 - CEA Saclay, 91 - Gif sur Yvette (France); Criqui, P.; Mima, S. [IEPE, 38 - Grenoble (France); Brignon, J.M. [INERIS, 60 - Verneuil-en-Halatte (France); Penner, J. [Michigan Univ., Ann Arbor, MI (United States); Carmichael, G. [Iowa Univ., Iowa City, IA (United States); Gadi, R. [National Physical Lab., New Delhi (India); Denier Van der Gon, H. [TNO Hollande (Netherlands); Gregoire, J.M. [JRC, Ispra (Italy); Liousse, C.; Michel, C.; Guillaume, B.; Junker, C

    2007-07-01

    The aim of our program is to determine past, present and future emission inventories of carbonaceous particles from 1860 to 2100 for fossil fuel and biofuel sources. Emission inventories for savannah and forest fires have been developed by using burnt area products given by satellite for Asia and Africa. The strong collaboration with the different groups attending this GICC program has allowed to develop the following results. 1- With the improvement of algorithms and new choices for emission factors, emission inventories for black carbon (BC), primary organic carbon (OCp) and total organic carbon (OCtot) have been constructed for the period 1950 to 1997 for fossil fuel and biofuel sources. With these new development, biofuel sources have been seen to be significant, especially in the developing countries. 2- Past inventories have been developed for fossil fuel and biofuel sources from 1860 to 1997 by taking into account the evolution of fuel consumption, fuel use and emission factors. 3- Savannah and forest fire inventories have been constructed based on burnt area products, for Africa (1981-1991, 2000) and Asia (2000-2001). These results show the importance of using real time data instead of statistics. 4-Future emission inventory of black carbon by fossil fuel sources has been constructed for 2100 following the IPCC scenario A2 (catastrophic case) and B1 (perfect world). 5-Characterization of biofuel emissions has been realized by organizing an experiment in a combustion chamber where indian and chinese biofuels (fuelwood, agricultural wastes, dung-cake etc..). were burnt, reproducing the burning methods used in these countries. 6-Finally, the differences between the existing inventories of carbonaceous aerosols has been explained. (A.L.B.)

  15. An electronic specimen collection protocol schema (eSCPS). Document architecture for specimen management and the exchange of specimen collection protocols between biobanking information systems.

    Science.gov (United States)

    Eminaga, O; Semjonow, A; Oezguer, E; Herden, J; Akbarov, I; Tok, A; Engelmann, U; Wille, S

    2014-01-01

    The integrity of collection protocols in biobanking is essential for a high-quality sample preparation process. However, there is not currently a well-defined universal method for integrating collection protocols in the biobanking information system (BIMS). Therefore, an electronic schema of the collection protocol that is based on Extensible Markup Language (XML) is required to maintain the integrity and enable the exchange of collection protocols. The development and implementation of an electronic specimen collection protocol schema (eSCPS) was performed at two institutions (Muenster and Cologne) in three stages. First, we analyzed the infrastructure that was already established at both the biorepository and the hospital information systems of these institutions and determined the requirements for the sufficient preparation of specimens and documentation. Second, we designed an eSCPS according to these requirements. Finally, a prospective study was conducted to implement and evaluate the novel schema in the current BIMS. We designed an eSCPS that provides all of the relevant information about collection protocols. Ten electronic collection protocols were generated using the supplementary Protocol Editor tool, and these protocols were successfully implemented in the existing BIMS. Moreover, an electronic list of collection protocols for the current studies being performed at each institution was included, new collection protocols were added, and the existing protocols were redesigned to be modifiable. The documentation time was significantly reduced after implementing the eSCPS (5 ± 2 min vs. 7 ± 3 min; p = 0.0002). The eSCPS improves the integrity and facilitates the exchange of specimen collection protocols in the existing open-source BIMS.

  16. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1991-01-01

    Smoke aerosol and background aerosol particles were collected from the controlled burning of boreal forest where vegetation species and relative mass distributions are known. Chemical mass balances were constructed for the total mass of carbonaceous aerosol particles emitted during the prescribed burn. In addition, a carbonaceous species inventory was developed for aerosol particles presnt under background, smoldering, and full-fire conditions; the production of organic carbon and elemental carbon particles is noted for these two fire regimes. Distributions of the solvent-soluble organic components of the sampled aerosols were generated to identify molecular properties that can be traced to unburned and pyrolyzed materials present in the boreal forest fuels

  17. Carbonaceous material treatment

    Energy Technology Data Exchange (ETDEWEB)

    Trevor, S R

    1939-05-04

    To separate and collect for use the component parts of carbonaceous materials, they are fed to superimposed connected vertical or substantially vertical chambers, located over a furnace, the flue gases from which pass to space or spaces of a casing surrounding the superimposed chambers. Pipes are provided so that part or whole of the gases may be passed through the chambers. Take-off pipes are connected to expansion chambers, through which the gases pass to condenser coils and separating tanks.

  18. Treating carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, R L; Corbett, E G

    1939-03-21

    A process is given for the production of aliphatic compounds by heat treatment of carbonaceous material. The latter are impregnated with a dilute solution of a catalyst, such as chromium copper or nickel acetate or nitrate, or ammonium or urea acetate and subjected to destructive distillation in a retort in the presence of a reducing gas and steam, at a pressure not greater than fifteen atmospheres.

  19. Distilling carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, C A

    1924-04-15

    In apparatus of the kind set forth for distilling solid carbonaceous materials, a rotary retort in the form of a tubular, hollow cylindrical, or other similar hollow body, of small diameter, having a thin wall is provided to which the heat is applied externally, with means operative within it adapted, not only for cleaning the internal wall of the retort but also for distributing the heat throughout the mass of materials under treatment, substantially as described.

  20. Treating carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-08-26

    To separate the constituents or conversion products, which are liquid or which liquefy when heated, from solid distillable carbonaceous materials such as coals, oil shales, or other bituminous substances, the initial materials are subjected to a destructive hydrogenation under mild conditions so that the formation of benzines is substantially avoided, after which the material is subjected to an extraction treatment with solvents. The constituents of high boiling point range, suitable for the production of lubricating oils and solid paraffins, obtained by the said destructive hydrogenation are separated off before or/and after the said extraction treatment.

  1. Distilling carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Trumble, M J

    1925-06-29

    Carbonaceous materials such as coal, oil shale, peat, or wood are destructively distilled while being subjected to the action of superheated steam and hydrogen, the latter being provided by dissociating a part of the superheated steam. The materials are charged into a retort heated by a burner and superheated steam and hydrogen are passed in by a pipe and nozzles. The distillates enter a dust extractor through openings and escape through openings shielded by cones into an outlet pipe leading to condensers. The dust which settles in the bottom of the apparatus is periodically removed.

  2. Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada.

    Science.gov (United States)

    Barst, Benjamin D; Ahad, Jason M E; Rose, Neil L; Jautzy, Josué J; Drevnick, Paul E; Gammon, Paul R; Sanei, Hamed; Savard, Martine M

    2017-12-01

    We report a historical record of atmospheric deposition in dated sediment cores from Hasse Lake, ideally located near both currently and previously operational coal-fired power plants in Central Alberta, Canada. Accumulation rates of spheroidal carbonaceous particles (SCPs), an unambiguous marker of high-temperature fossil-fuel combustion, in the early part of the sediment record (pre-1955) compared well with historical emissions from one of North America's earliest coal-fired power plants (Rossdale) located ∼43 km to the east in the city of Edmonton. Accumulation rates in the latter part of the record (post-1955) suggested inputs from the Wabamun region's plants situated ∼17-25 km to the west. Increasing accumulation rates of SCPs, polycyclic aromatic hydrocarbons (PAHs) and Hg coincided with the previously documented period of peak pollution in the Wabamun region during the late 1960s to early 1970s, although Hg deposition trends were also similar to those found in western North American lakes not directly affected by point sources. A noticeable reduction in contaminant inputs during the 1970s is attributed in part to technological improvements and stricter emission controls. The over one hundred-year historical record of coal-fired power plant emissions documented in Hasse Lake sediments has provided insight into the impact that both environmental regulations and changes in electricity output have had over time. This information is crucial to assessing the current and future role of coal in the world's energy supply. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Treating carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, T D

    1927-07-29

    Coal, lignite, shale, peat, or like carbonaceous material is heated at 70 to 300/sup 0/C with an alkaline solution of sodium, potassium, or ammonium oleate and aluminum sulfate is added in order to solidify the oleate. The solid material is separated and molded or shaped or disintegrated for use as a pigment or mixed with rubber or similar compounds such as solidified, oxidized or polymerized oils in making building blocks or tiles, tires, footwear, or other resilient material. It may be distilled with water or steam in a retort to make gas, or in porous condition can be burnt. The liquid products may be subjected to fractional distillation or mixed with bitumen, resin or oils or materials such as clay, red oxide, or barytes to give colour or body in the manufacture of waterproof heatproof dressings which may be made quick-drying by the addition of ammonia, or for mixing with or spreading over stones or on roads or concrete.

  4. Improved process for heating finely divided carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1956-08-01

    A process for heating finely divided carbonaceous particles by burning a proportion of the carbon consists of passing the carbonaceous material at a temperature above 800/sup 0/F into an upwardly disposed, slender, combustion zone, suspending the particles in an upwardly-moving gas containing free oxygen so that the suspension has a density from 0.1 to 5.0 lb/cu. ft., passing the suspension upwardly through the combustion zone at a velocity of from 5 to 100 ft./sec., and injecting at least one stream of a second gas containing free oxygen at a point in the combustion zone such that at least 50% of the oxygen in the first gas has been consumed by the time the suspension reaches this point. The total quantity of oxygen is chosen so that the finely divided carbonaceous material is heated to a temperature of not less than 1,050/sup 0/F.

  5. Pulmonary exposure to carbonaceous nanomaterials and sperm quality

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Lauvas, Anna Jacobsen; Christensen, Preben

    2018-01-01

    Background: Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung...... inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model.Methods: Effects on sperm quality after pulmonary inflammation induced by carbonaceous...... nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 mu g/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks...

  6. Carbonaceous materials in the acid residue from the Orgueil carbonaceous chondrite meteorite

    Science.gov (United States)

    Garvie, Laurence A. J.; Buseck, Peter R.

    2006-04-01

    Insoluble organic matter (IOM) dominates the HF/HCl residue of the Orgueil (CI) carbonaceous chondrite meteorite. The IOM is composed primarily of two C-rich particle types. The first has a fluffy texture similar to crumpled tissue paper, and the second type occurs as solid or hollow nanospheres. High-resolution transmission electron microscope (HRTEM) images of the fluffy material show it is poorly ordered, with small, irregularly shaped regions having fringes with 0.34-0.38 nm spacings and locally 0.21 nm cross-fringes. Nanodiamonds occur in the fluffy material. The rounded C-rich particles are common in the residue and their HRTEM images show neither fringes nor nanodiamonds. Both types of carbonaceous materials have a high aromatic component, as revealed by electron energy-loss spectroscopy (EELS), with up to 10 at% substitution by S, N, and O. The average compositions of the fluffy material and nanospheres are C100S1.9N3.7O4.9 and C100S2.4N5.0O3.9, respectively. The structural and chemical heterogeneity of the carbonaceous materials may represent material from multiple sources.

  7. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1926-12-04

    In the distillation of solid carbonaceous materials with by-product recovery by direct heating with a gas such as water gas, producer gas, or combustion gas which is passed in counter-flow to the materials, the volume of the gas used is such as to lower the vapor tension of the volatiles to enable the oil vapor to be liberated at temperatures not exceeding 450 to 500/sup 0/C and so that the gaseous mixture may be cooled to from 80 to 100/sup 0/C without causing the highest boiling oil fraction to condense. Coking coals may be subjected to a preliminary heat treatment with gases containing an oxygen content of from 2 to 8 percent to reduce their coking properties, and oxygen may be added to the heating gases to assist the polymerization of resinous bodies. Lubricating oil may be obtained by treating the primary oil with caustic soda to remove tar acids, refining the residue with sulfuric acid, distilling off 25 percent of the refined oil and passing the remainder through a filter press at -5/sup 0/C to extract the paraffin wax. The residue of wax-free oil is distilled to yield a lubricating oil which at normal temperatures has a static coefficient of friction of from .1 to .185. Other specifications are referred to.

  8. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1926-12-04

    In a process of distilling solid carbonaceous materials with by-product recovery, the time factor and the temperature gradient during the distillation period are so controlled that a temperature difference exceeding 150/sup 0/C is avoided between the temperatures at the center and periphery of any suitable size of material or thickness of fuel bed. The material is heated by direct contact with an inert gas, such as water gas, producer gas, or combustion gases, which is passed in counterflow to the material and whose volume is such as to lower the vapor tension or partial pressure of the volatilizable oils and to withdraw the oils without cracking of the oil vapors. The material may be subjected to a preliminary heat treatment by gases containing 2 to 3 percent of free oxygen to reduce its coking properties, and free oxygen may be added either to the heating gases during the heat treatment, or to the retort and heating gases and vapors to polymerize resinous bodies prior to condensation or during condensation and while the oils are still wholly or partially in the vapor state.

  9. Carbonaceous Survivability on Impact

    Science.gov (United States)

    Bunch, T. E.; Becker, Luann; Morrison, David (Technical Monitor)

    1994-01-01

    In order to gain knowledge about the potential contributions of comets and cosmic dust to the origin of life on Earth, we need to explore the survivability of their potential organic compounds on impact and the formation of secondary products that may have arisen from the chaotic events sustained by the carriers as they fell to Earth. We have performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, kerogens, PAH crystals, and Murchison and Nogoya meteorites) into Al plate targets at velocities - 6 km/s. Estimated peak shock pressures probably did not exceed 120 GPa and peak shock temperatures were probably less than 4000 K for times of nano- to microsecs. Nominal crater dia. are less than one mm. The most significant results of these experiments are the preservation of the higher mass PAHs (e. g., pyrene relative to napthalene) and the formation of additional alkylated PAHs. We have also examined the residues of polystyrene projectiles impacted by a microparticle accelerator into targets at velocities up to 15 km/s. This talk will discuss the results of these experiments and their implications with respect to the survival of carbonaceous deliverables to early Earth. The prospects of survivability of organic molecules on "intact" capture of cosmic dust in space via soft: and hard cosmic dust collectors will also be discussed.

  10. Distilling carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Garrow, J R

    1921-04-16

    To obtain an increased yield of by-products such as oils, ammonia, and gas from coal, oil shale, wood, peat, and the like by low and medium temperature processes, the requisite quantity of hot producer gas from a gas producer, is caused to travel, without ignition, through the material as it passes in a continuous manner through the retort so that the sensible heat of the producer gas is utilized to produce distillation of the carbonaceous material, the gases passing to a condenser, absorption apparatus, and an ammonia absorber respectively. In a two-stage method of treatment of materials such as peat or the like, separate supplies of producer gas are utilized for a preliminary drying operation and for the distillation of the material, the drying receptacle and the retort being joined together to render the process continuous. The gas from the drying receptacle may be mixed with the combined producer and retort gas from the retort, after the hydrocarbon oils have deen removed therefrom.

  11. Distillation of carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Ainscow, J W.H.

    1936-10-03

    To recover hydrocarbon products by distillation of carbonaceous material in a plurality of horizontal zones maintained at different temperatures, a retort has a plurality of superimposed (3) retort chambers, the uppermost being in communication at one end with a hopper and at the other end through coupled junction not shown with one end of the next lower chamber, whose opposite end communicates with lowermost chamber, the other end of which has a sealed discharge passage, tank, and conveyor not shown. Each retort chamber has stirring and conveying means consisting of helical blades (2) attached to radial arms on shaft mounted in water cooled bearings and driven through suitably mounted sprocket wheels and chains not shown. Each retort chamber has a gas dome, with pyrometer tube, and off-take connected to a common main opening into a dust eliminator which in turn connects with a plurality of vertical condensation towers of known construction, maintained at different temperatures by means of steam from a superheater not shown situated in one retort chamber. The retort heating gases pass from the furnace via zig-zag, (three) baffles under and around each retort chamber to a flue not shown.

  12. Distilling carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ironside, T G

    1921-09-01

    In the distillation of carbonaceous material such as shale, coal, lignite, wood or liquid hydrocarbons, the material is mixed with a heated granular substance such as sand which supplies the necessary heat. The shale or the like, which may be preheated, is fed from a hopper by a worm conveyer to a tube leading into a retort, and the heated granular material such as sand is supplied from a jacketed container through a tube. On the lower end of a rotary shaft are radial arms to which are fixed angularly disposed blades which serve to mix the shale and hot sand and deliver the residue to a central discharge pipe closed at the bottom by a conical valve which opens when the weight of the superimposed material is sufficient. The distillates are taken off by an outlet. Steam vapor or gas may be supplied to the retort, preferably through a hollow shaft leading to hollow stirrers perforated to permit of the gas passing into the material. The retort may be externally heated by hot gases in the space surrounding the retort, and the latter may be divided by horizontal floors so that the material is caused to funnel from the periphery to the center of the floor, then through a central opening on to the floor next below, and from the center to the periphery of this floor, and so on.

  13. Radiocarbon: nature's tracer for carbonaceous pollutants

    International Nuclear Information System (INIS)

    Currie, L.A.; Klouda, G.A.; Gerlach, R.W.

    1982-01-01

    Recent developments in radiocarbon dating techniques have made it feasible to determine 14 C/ 12 C ratios in samples containing milligram or even microgram quantities of carbon. As a result, it has become practicable to apply these techniques to the study of trace gases and particles in the atmosphere, as a means of resolving anthropogenic from natural source components. Interpretation of 14 C data is straightforward: biospheric carbon (such as vegetation) is alive with a 14 C/ 12 C ratio of about 1.5 x 10 -12 , whereas fossil carbon is dead. Beyond this dichotomous classification it becomes very interesting to combine the isotopic data with concurrent chemical data, as well as spatial and temporal distributions, in order to infer the strengths of specific sources of carbonaceous pollutants. A brief review will be presented of our program on atmospheric gases and carbonaceous particles. For the latter, we have assayed individual chemical and size fractions, and samples collected in urban, rural, and remote locales. The biogenic carbon fraction - presumably from wood-burning - ranged from 10% to 100% for the urban samples analyzed

  14. Raman characterization of carbonaceous matter in CONCORDIA Antarctic micrometeorites

    Science.gov (United States)

    Dobricǎ, E.; Engrand, C.; Quirico, E.; Montagnac, G.; Duprat, J.

    2011-09-01

    Abstract- We report a multi-wavelength Raman spectroscopy study of carbonaceous matter in 38 Antarctic micrometeorites (AMMs) from the 2006 CONCORDIA collection. The particles were selected as a function of their degree of thermal alteration developed during the deceleration in the atmosphere. These samples range from unmelted (fine-grained—Fg; ultracarbonaceous—UCAMMs) to partially melted AMMs (scorias—Sc) and completely melted particles (cosmic spherules—CS). More than half of the analyzed AMMs contain a substantial amount of polyaromatic carbonaceous matter with a high degree of disorder. The proportion of particles where carbon is not detected increase from the Fg to the Fg-Sc and to the Sc-AMMs, and no carbon is detected in CS. In addition, the spectral characteristics of the G and D bands of the carbonaceous matter in Sc-AMMs plot apart from the trend formed by the data from Fg-AMMs and UCAMMs. These results suggest that oxidation processes occurred during the deceleration of the particles in the atmosphere. In Fg-AMMs and UCAMMs, the spectral characteristics of the G and D bands reveal the high degree of disorder of the carbonaceous matter, precluding a long duration thermal metamorphism on the parent body and suggesting that AMMs have a connection with C1-C2 chondrites. The Raman parameters of the deuterium-rich carbonaceous matter of UCAMMs do not differ from that of Fg-AMMs. Using a 244 nm excitation, we detected the cyanide (-CN) functional group for the first time in a UCAMM, reinforcing the likely cometary origin of this type of micrometeorites.

  15. Carbonaceous electrode materials for supercapacitors.

    Science.gov (United States)

    Hao, Long; Li, Xianglong; Zhi, Linjie

    2013-07-26

    Supercapacitors have been widely studied around the world in recent years, due to their excellent power density and long cycle life. As the most frequently used electrode materials for supercapacitors, carbonaceous materials attract more and more attention. However, their relatively low energy density still holds back the widespread application. Up to now, various strategies have been developed to figure out this problem. This research news summarizes the recent advances in improving the supercapacitor performance of carbonaceous materials, including the incorporation of heteroatoms and the pore size effect (subnanopores' contribution). In addition, a new class of carbonaceous materials, porous organic networks (PONs) has been managed into the supercapacitor field, which promises great potential in not only improving the supercapacitor performances, but also unraveling the related mechanisms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cloud albedo increase from carbonaceous aerosol

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2010-08-01

    Full Text Available Airborne measurements from two consecutive days, analysed with the aid of an aerosol-adiabatic cloud parcel model, are used to study the effect of carbonaceous aerosol particles on the reflectivity of sunlight by water clouds. The measurements, including aerosol chemistry, aerosol microphysics, cloud microphysics, cloud gust velocities and cloud light extinction, were made below, in and above stratocumulus over the northwest Atlantic Ocean. On the first day, the history of the below-cloud fine particle aerosol was marine and the fine particle sulphate and organic carbon mass concentrations measured at cloud base were 2.4 μg m−3 and 0.9 μg m−3 respectively. On the second day, the below-cloud aerosol was continentally influenced and the fine particle sulphate and organic carbon mass concentrations were 2.3 μg m−3 and 2.6 μg m−3 respectively. Over the range 0.06–0.8 μm diameter, the shapes of the below-cloud size distributions were similar on both days and the number concentrations were approximately a factor of two higher on the second day. The cloud droplet number concentrations (CDNC on the second day were approximately three times higher than the CDNC measured on the first day. Using the parcel model to separate the influence of the differences in gust velocities, we estimate from the vertically integrated cloud light scattering measurements a 6% increase in the cloud albedo principally due to the increase in the carbonaceous components on the second day. Assuming no additional absorption by this aerosol, a 6% albedo increase translates to a local daytime radiative cooling of ∼12 W m−2. This result provides observational evidence that the role of anthropogenic carbonaceous components in the cloud albedo effect can be much larger than that of anthropogenic sulphate, as some global simulations have indicated.

  17. Carbonaceous matter in the Pomozhan deposit

    Energy Technology Data Exchange (ETDEWEB)

    Piatek, G

    1979-01-01

    Carbonaceous matter (CM), encountered in the Pomozhan deposit, is coordinate to dolomitic-illitic clay, filling caverns in ore-bearing dolomites. The CM represents a disperse mass with particle sizes up to 2 mm, having a color from dark brown to black. The reflectivity (0.35-0.42%) and classification assignment of the CM to macerals of the vitrinite or dopplerinite group were determined by micropetrographic methods. CM belonging to the type of humic coals, transitional from brown to bituminous coals is an epigenetic formation. Its accumulation in the regions of the Ol'kush ore deposits occurred in the Triassic-Cretaceous or Cenozoic interval. Liassic coal of the Zavertse region or Helvetian coal of Khomentuv and Tarnobzheg could be the source of the CM.

  18. Retorts for distilling carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H E

    1921-09-12

    A retort for distilling carbonaceous material is described in which a mass of such material is retained in a pocket formed between an outer wall and an internal wall which is perforated to permit the free escape of distilled products, the retorts having heating means that directly heat the retort but are so related to the pocket that the material therein is heated indirectly and simultaneously from all sides entirely by heat conducted thereto by the walls.

  19. The Distinct Genetics of Carbonaceous and Non-Carbonaceous Meteorites Inferred from Molybdenum Isotopes

    Science.gov (United States)

    Budde, G.; Burkhardt, C.; Kleine, T.

    2017-07-01

    Mo isotope systematics manifest a fundamental dichotomy in the genetic heritage of carbonaceous and non-carbonaceous meteorites. We discuss its implications in light of the most recent literature data and new isotope data for primitive achondrites.

  20. The Biological Potency Of Carbonaceous Nanoparticles Is Associated With The State Of Oxidation Of Surface Carbon Atoms

    Science.gov (United States)

    Epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with excess morbidity and mortality. An important component of PM consists of inorganic and organic compounds adsorbed onto a carbonaceous particle core. Toxicological studies indica...

  1. Evaluation of early Archean volcaniclastic and volcanic flow rocks as possible sites for carbonaceous fossil microbes.

    Science.gov (United States)

    Walsh, Maud M

    2004-01-01

    Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.

  2. Carbonaceous species in atmospheric aerosols from the Krakow area (Malopolska District: carbonaceous species dry deposition analysis

    Directory of Open Access Journals (Sweden)

    Szramowiat Katarzyna

    2016-01-01

    Full Text Available Organic and elemental carbon content in PM10 was studied at three sites in Malopolska District representing the city centre (Krakow, rural/residential (Bialka and residential/industrial environments (Krakow. The PM10 samples were collected during the winter time study. The highest concentrations of carbonaceous species were observed in Skawina (36.9 μg·m-3 of OC and 9.6 μg·m-3 of EC. The lowest OC and EC concentrations were reported in Krakow (15.2 μg·m-3 and 3.9 μg·m-3, respectively. The highest concentration of carbonaceous species and the highest wind velocities in Skawina influenced the highest values of the dry deposition fluxes. Correlations between OC, EC and chemical constituents and meteorological parameters suggest that a Krakow was influenced by local emission sources and temperature inversion occurrence; b Bialka was under the influence of local emission sources and long-range transport of particles; c Skawina was impacted by local emission sources.

  3. Carbonaceous Components in the Comet Halley Dust

    Science.gov (United States)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  4. Lithium storage into carbonaceous materials obtained from sugarcane bagasse

    International Nuclear Information System (INIS)

    Matsubara, Elaine Y.; Lala, Stella M.; Rosolen, Jose Mauricio

    2010-01-01

    Carbonaceous materials with different structures are prepared by carbonization of sugarcane bagasse. Depending on carbonization conditions, it is possible to obtain soot rich in flakes or in honeycomb-shaped micrometric particles, whose concentration has large influence on lithium storage into electrodes. The soot rich in honeycomb-shaped particles provides the best electrochemical performance, with a reversible specific capacity of 310 mAh g -1 . The results suggest that the sugarcane bagasse can be potentially used in the design of anodic materials for lithium ion batteries. (author)

  5. Slurry burner for mixture of carbonaceous material and water

    Science.gov (United States)

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  6. Hydrocarbon oils from carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J

    1943-01-28

    Carbonaceous material is subjected to gradually increasing temperature in a retort and the gases and vapours are drawn off through four pipes according to their temperature and are passed respectively to a separate bubble tower or a fractionation column. The condensate and overhead from each bubble tower are refluxed in the bubble tower into which the gases and vapours of the next succeeding higher temperature are passed and the condensates and overheads from the bubble tower into which gases and vapours at the highest of the lower temperatures are passed are refluxed in the fractionation column. The waste products of combustion pass to a boiler for generating steam for the fractional plant.

  7. Process of treating carbonaceous substances

    Energy Technology Data Exchange (ETDEWEB)

    1938-12-16

    A process is described of removing halogens or halogen compounds (or both) from the products which form when carbonaceous substances are treated thermally in the presence of halogens or halogen compounds, consisting of passing the reaction products at the same temperature with a substance able to fix halogens or acid halides through an apparatus included between the receiver and the heat exchanger, which contains, in a relatively restricted space, internal elements obliquely disposed in relation to the direction of the flow, stretched in this direction and constituted preferably of helicoidal passages.

  8. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m -1 (OC) and 0.120 to 0.160 mg/m -3 (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m -3 (OC) and 0.006--0.050 mg/m -3 (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC)

  9. Origin and abundance of water in carbonaceous asteroids

    Science.gov (United States)

    Marrocchi, Yves; Bekaert, David V.; Piani, Laurette

    2018-01-01

    The origin and abundance of water accreted by carbonaceous asteroids remains underconstrained, but would provide important information on the dynamic of the protoplanetary disk. Here we report the in situ oxygen isotopic compositions of aqueously formed fayalite grains in the Kaba and Mokoia CV chondrites. CV chondrite bulk, matrix and fayalite O-isotopic compositions define the mass-independent continuous trend (δ17O = 0.84 ± 0.03 × δ18O - 4.25 ± 0.1), which shows that the main process controlling the O-isotopic composition of the CV chondrite parent body is related to isotopic exchange between 16O-rich anhydrous silicates and 17O- and 18O-rich fluid. Similar isotopic behaviors observed in CM, CR and CO chondrites demonstrate the ubiquitous nature of O-isotopic exchange as the main physical process in establishing the O-isotopic features of carbonaceous chondrites, regardless of their alteration degree. Based on these results, we developed a new approach to estimate the abundance of water accreted by carbonaceous chondrites (quantified by the water/rock ratio) with CM (0.3-0.4) ≥ CR (0.1-0.4) ≥ CV (0.1-0.2) > CO (0.01-0.10). The low water/rock ratios and the O-isotopic characteristics of secondary minerals in carbonaceous chondrites indicate they (i) formed in the main asteroid belt and (ii) accreted a locally derived (inner Solar System) water formed near the snowline by condensation from the gas phase. Such results imply low influx of D- and 17O- and 18O-rich water ice grains from the outer part of the Solar System. The latter is likely due to the presence of a Jupiter-induced gap in the protoplanetary disk that limited the inward drift of outer Solar System material at the exception of particles with size lower than 150 μm such as presolar grains. Among carbonaceous chondrites, CV chondrites show O-isotopic features suggesting potential contribution of 17-18O-rich water that may be related to their older accretion relative to other hydrated

  10. Pulmonary exposure to carbonaceous nanomaterials and sperm quality.

    Science.gov (United States)

    Skovmand, Astrid; Jacobsen Lauvås, Anna; Christensen, Preben; Vogel, Ulla; Sørig Hougaard, Karin; Goericke-Pesch, Sandra

    2018-01-31

    Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels

  11. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    Science.gov (United States)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    Nucleobases in Carbonaceous Chondrites Z. Martins (1), O. Botta (2), M. L. Fogel (3), M. A. Sephton (4), D. P. Glavin (2), J. S. Watson (5), J. P. Dworkin (2), A. W. Schwartz (6) and P. Ehrenfreund (1,6). (1) Astrobiology Laboratory, Leiden Institute of Chemistry, Leiden, The Netherlands, (2) NASA Goddard Space Flight Center, Goddard Center for Astrobiology, Greenbelt, MD, USA, (3) GL, Carnegie Institution of Washington, Washington DC, USA, (4) Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London, UK, (5) Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, UK, (6) Radboud University Nijmegen, Nijmegen, The Netherlands. E-mail: z.martins@chem.leidenuniv.nl/Phone:+31715274440 Nucleobases are crucial compounds in terrestrial biochemistry, because they are key components of DNA and RNA. Carbonaceous meteorites have been analyzed for nucleobases by different research groups [1-5]. However, significant quantitative and qualitative differences were observed, leading to the controversial about the origin of these nucleobases. In order to establish the origin of these compounds in carbonaceous chondrites and to assess the plausibility of their exogenous delivery to the early Earth, we have performed formic acid extraction of samples of the Murchison meteorite [6], followed by an extensive purification procedure, analysis and quantification by high-performance liquid chromatography with UV absorption detection and gas chromatography-mass spectrometry. Our results were qualitatively consistent with previous results [3, 4], but showed significant quantitative differences. Compound specific carbon isotope values were obtained, using gas chromatography-combustion- isotope ratio mass spectrometry. A soil sample collected in the proximity of the Murchison meteorite fall site was subjected to the same extraction, purification and analysis procedure

  12. Organic Chemistry of Carbonaceous Meteorites

    Science.gov (United States)

    Cronin, John R.

    2001-01-01

    Chiral and carbon-isotopic analyses of isovaline have been carried out on numerous samples of the Murchison and one sample of the Murray carbonaceous chondrite. The isovaline was found to be heterogeneous with regard to enantiomeric excess (ee) both between samples and within a single Murchison sample. L-Excesses ranging from 0 to 15% were observed. The isovaline delta(sup 13) C was found to be about +18%. No evidence was obtained suggesting terrestrial contamination in the more abundant L-enantiomer. A correlation was observed between isovaline (also alpha - aminoisobutyric acid) concentration and PCP content of five CM chondrites. It is suggested that isovaline, along with other meteoritic a-methyl amino acids with ee, are of presolar origin. The possible formation of ee in extraterrestrial amino acids by exposure to circularly polarized light or by magnetochiral photochemistry is discussed. Key words: Murchison meteorite, Murray meteorite, amino acids, isovaline, chirality, carbon isotopes, PCP.

  13. Distillation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Burney, C D

    1918-08-31

    A method of distilling carbonaceous material at low or moderate temperatures is described in which the main supply of gases for heating the material under treatment is generated in a combustion chamber located externally of the retort chamber from which combustion chamber the gases are withdrawn and passed under control through hollow elements located within the retort chamber in such manner as to insure the production of the desired temperature gradient along the length of the retort, the said elements being so constructed that they serve to bring the heating gases into indirect contact with the material undergoing treatment while also moving the material progressively through the retort in the opposite direction to that in which the heating gases flow.

  14. Improvements in or relating to process for the production of fuel gas from a carbonaceous solid

    Energy Technology Data Exchange (ETDEWEB)

    1952-12-03

    A process was designed for the generation of fuel gas from a solid carbonaceous fuel containing volatilizable constituents, which comprises admixing the solid carbonaceous fuel in particle form with sufficient water to form a fluid suspension, passing the suspension through a heating zone at an elevated temperature such that substantially all of the water is vaporized, thereby forming a dispersion of coal in steam and causing the dispersion to attain a velocity of at least 60 ft. per second to shatter the particles of coal by collision, passing the resulting dispersion into a fluidized bed of solid carbonaceous material in a methanization zone into contact with carbon monoxide and hydrogen at a temperature within the range of from 900/sup 0/ to 1,800/sup 0/F whereby carbon monoxide and hydrogen are converted to methane and volatilizable constituents of the solid carbonaceous material are distilled therefrom, withdrawing carbonaceous material from the methanization zone and passing it into contact with oxygen and steam in dilute phase in a gasification zone maintained at a temperature within the range of 2,000/sup 0/ to about 3,000/sup 0/F, passing the resulting gases comprising carbon monoxide and hydrogen from the gasification zone into the methanization zone as the source of carbon monoxide and hydrogen, and discharging the gaseous products of the methanization zone as the raw-product fuel gas.

  15. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  16. Low-temperature catalytic conversion of carbonaceous materials

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available Laws of the rate of carbon conversion in steam atmosphere at a temperature in modes of the catalytic low-temperature treatment of peat, brown coal, semi-coke from peat and brown coal are obtained by experiments. Increasing of the rate of carbon conversion in temperature range up to 500 °C is achieved by using of catalysts. The possibility of using results is associated with the burners, a working zone of which is porous filling from carbonaceous particles.

  17. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  18. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Science.gov (United States)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2013-01-01

    An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  19. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Directory of Open Access Journals (Sweden)

    J.-J. Cao

    2013-01-01

    Full Text Available An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles from Pudong (China was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment experiment in 2009. Data for organic and elemental carbon (OC and EC, organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs, and stable carbon isotopes OC (δ13COC and EC (δ13CEC were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA; high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰ indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  20. Heavy-ion irradiation induced diamond formation in carbonaceous materials

    International Nuclear Information System (INIS)

    Daulton, T. L.

    1999-01-01

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond

  1. The carbonaceous concrete based on sawdust

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2015-06-01

    Full Text Available Today there are many requirements for strength, ecology and economy of produced concretes. The authors of the paper study attenuation of electromagnetic radiation of carbonaceous powders in the concrete composition. Carbon black was selected as a carbon powder for addition in concrete composition. Carbon black is a nanomaterial with disoriented structure of particles (average size is about 50 nm. The composition of the carbon black contains at least 90 wt.% amorphous carbon, more than 5 wt. % chemisorbed oxygen and about 4 wt.% of impurities. Materials with the addition of carbon black have electrical conductivity due to the high content of carbon. These materials are able to absorb electromagnetic radiation. For cement composition with addition of carbon black (more than 30 wt. % and water transmission coefficient of electromagnetic radiation is about –10 dB, for cement composition with 20 wt. % of carbon black the reflection coefficient is –8 dB in the frequency range 8–12 GHz. The concretes with a saturated aqueous solution of calcium chloride and 10% of carbon black possess minimal reflection coefficient (–14... –8 dB. Electromagnetic radiation shielding of concrete with the addition of sawdust was investigated. The concrete with sawdust (40 wt. % impregnated with an aqueous solution with carbon black has the reflection coefficient less than –8 dB and transmission coefficient –40 dB in the frequency range 8–12 GHz. These concretes can be used for creation of a shielded room with the technical equipment for information processing to prevent data leakage through the compromising emanations and crosstalk.

  2. Preparation and characterization of a new carbonaceous material for electrochemical systems

    Directory of Open Access Journals (Sweden)

    ZI JI LIN

    2010-02-01

    Full Text Available A new carbonaceous material was successfully prepared by the py-rolysis of scrap tire rubber at 600 °C under a nitrogen atmosphere. The physical characteristics of the prepared carbonaceous material were studied by scanning electron microscopy (SEM, X-ray powder diffraction (XRD and X-ray photoelectron spectroscopy (XPS. It was proved that the carbonaceous material had a disordered structure and spherical morphology with an average particle size about 100 nm. The prepared carbonaceous material was also used as electrodes in electrochemical systems to examine its electrochemical performances. It was demonstrated that it delivered a lithium insertion capacity of 658 mA h g-1 during the first cycle with a coulombic efficiency of 68 %. Cyclic voltammograms test results showed that a redox reaction occurred during the cycles. The chemical diffusion coefficient based on the impedance diagram was about 10-10 cm2 s-1. The pyrolytic carbonaceous material derived from scrap tire rubber is therefore considered to be a potential anode material in lithium secondary batteries or capacitors. Furthermore, it is advantageous for environmental protection.

  3. Dome C UltraCarbonaceous Antarctic MicroMeteorites Infrared and Raman fingerprints

    OpenAIRE

    Dartois, E.; Engrand, C.; Duprat, J.; Godard, M.; Charon, E.; Delauche, L.; Sandt, C.; Borondics, F.

    2017-01-01

    UltraCarbonaceous Antarctic MicroMeteorites (UCAMMs) represent a small fraction of interplanetary dust particles reaching the Earth's surface and contain large amounts of an organic component not found elsewhere. They are most probably sampling a contribution from the outer regions of the solar system to the local interplanetary dust particle flux. We characterize UCAMMs composition focusing on the organic matter, and compare the results to the insoluble organic matter (IOM) from primitive me...

  4. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    Science.gov (United States)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  5. A stochastic model simulating the capture of pathogenic micro-organisms by superparamagnetic particles in an isodynamic magnetic field

    International Nuclear Information System (INIS)

    Rotariu, O; Strachan, N J C; Badescu, V

    2004-01-01

    The method of immunomagnetic separation (IMS) has become an established technique to concentrate and separate animal cells, biologically active compounds and pathogenic micro-organisms from clinical, food and environmental matrices. One drawback of this technique is that the analysis is only possible for small sample volumes. We have developed a stochastic model that involves numerical simulations to optimize the process of concentration of pathogenic micro-organisms onto superparamagnetic carrier particles (SCPs) in a gradient magnetic field. Within the range of the system parameters varied in the simulations, optimal conditions favour larger particles with higher magnetite concentrations. The dependence on magnetic field intensity and gradient together with concentration of particles and micro-organisms was found to be less important for larger SCPs but these parameters can influence the values of the collision time for small particles. These results will be useful in aiding the design of apparatus for immunomagnetic separation from large volume samples

  6. Characterization of carbonaceous solids by oxygen chemisorption

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Palmer, A.; Duguay, D.G.; McConnell, D.G.; Henson, D.E.

    1988-06-01

    Oxygen chemisorption of high and low carbon carbonaceous solids was measured in an electro-microbalance at 200 degrees C in air. A linear correlation between the amount of chemisorbed oxygen and H/C ratio as well as aromaticity was established for the high carbon solids. For the low carbon solids a linear correlation was established between the amount of chemisorbed oxygen and the content of organic matter. Experimental observations are discussed in terms of structural aspects of the solids. Oxygen chemisorption is a suitable technique for a rapid characterization of carbonaceous solids including coal. 15 refs., 7 figs., 3 tabs.

  7. Abodes for life in carbonaceous asteroids?

    Science.gov (United States)

    Abramov, Oleg; Mojzsis, Stephen J.

    2011-05-01

    Thermal evolution models for carbonaceous asteroids that use new data for permeability, pore volume, and water circulation as input parameters provide a window into what are arguably the earliest habitable environments in the Solar System. Plausible models of the Murchison meteorite (CM) parent body show that to first-order, conditions suitable for the stability of liquid water, and thus pre- or post-biotic chemistry, could have persisted within these asteroids for tens of Myr. In particular, our modeling results indicate that a 200-km carbonaceous asteroid with a 40% initial ice content takes almost 60 Myr to cool completely, with habitable temperatures being maintained for ˜24 Myr in the center. Yet, there are a number of indications that even with the requisite liquid water, thermal energy sources to drive chemical gradients, and abundant organic "building blocks" deemed necessary criteria for life, carbonaceous asteroids were intrinsically unfavorable sites for biopoesis. These controls include different degrees of exothermal mineral hydration reactions that boost internal warming but effectively remove liquid water from the system, rapid (1-10 mm yr -1) inward migration of internal habitable volumes in most models, and limitations imposed by low permeabilities and small pore sizes in primitive undifferentiated carbonaceous asteroids. Our results do not preclude the existence of habitable conditions on larger, possibly differentiated objects such as Ceres and the Themis family asteroids due to presumed longer, more intense heating and possible long-lived water reservoirs.

  8. Sources of carbonaceous aerosol in the Amazon basin

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2011-03-01

    Full Text Available The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies.

    In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI fine (Dp < 2.5 μm and coarse (2.5 μm < Dp <10 μm aerosol particles were sampled from February to June (wet season and from August to September (dry season 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 μg m−3 during the wet season and 4.2 μg m−3 during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 μg m−3, respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC; the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m2 g−1 at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA, and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas.

    The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation

  9. Comment on "Hydrothermal preparation of analogous matrix minerals of CM carbonaceous chondrites from metal alloy particles" by Y. Peng and Y. Jing [Earth Planet. Sci. Lett. 408 (2014) 252-262

    Science.gov (United States)

    Pignatelli, Isabella; Vacher, Lionel G.; Marrocchi, Yves

    2015-10-01

    Peng and Jing (2014) recently reported the results of hydrothermal experiments designed to produce synthetic tochilinite/cronstedtite assemblages analogous to those found in the matrix of CM chondrites (Tomeoka and Buseck, 1982, 1983a, 1983b, 1985; Mackinnon and Zolensky, 1984; Zolensky and Mackinnon, 1986; Rubin et al., 2007; Bourot-Denise et al., 2010; Hewins et al., 2014; Marrocchi et al., 2014). The assemblage was obtained from an alloyed metal particle mixture of Fe, Mg, Al, Si, Cr and Ni under basic, reducing and S2--rich conditions. The hydrothermal syntheses were conducted in Teflon-lined stainless-steel autoclaves at temperature of 106-160 °C for short-duration runs and at 153 °C for long-duration runs. The phases in the assemblage were characterized by XRD and TEM, but only the analytical results of long-duration runs were reported in the article and in the Appendix as supplementary material. The phases identified were: cronstedtite and tochilinite (both present in all run products), tochilinite-cronstedtite intergrowths, polyhedral serpentine, a chrysotile-like phase, nanotube-like structures, and lizardite-like and brucite-like phases. Based on their experimental results, the authors put forward a hypothesis to explain the formation of matrix minerals in CM chondrites proposing that the precursors may be nanometer- to micrometer-sized particles of metal alloys that were altered at low temperatures by interaction with S-rich water under reducing and dynamic pressurized conditions.

  10. Characterization of combustion-generated carbonaceous nanoparticles by size-dependent ultraviolet laser photoionization.

    Science.gov (United States)

    Commodo, Mario; Sgro, Lee Anne; Minutolo, Patrizia; D'Anna, Andrea

    2013-05-16

    Photoelectric charging of particles is a powerful tool for online characterization of submicrometer aerosol particles. Indeed photoionization based techniques have high sensitivity and chemical selectivity. Moreover, they yield information on electronic properties of the material and are sensitive to the state of the surface. In the present study the photoionization charging efficiency, i.e., the ratio between the generated positive ions and the corresponding neutral ones, for different classes of flame-generated carbonaceous nanoparticles was measured. The fifth harmonics of a Nd:YAG laser, 213 nm (5.82 eV), was used as an ionization source for the combustion generated nanoparticles, whereas a differential mobility analyzer (DMA) coupled to a Faraday cup electrometer was used for particle classification and detection. Carbonaceous nanoparticles in the nucleation mode, i.e., sizes ranging from 1 to 10 nm, show a photoionization charging efficiency clearly dependent on the flame conditions. In particular, we observed that the richer the flame is, i.e., the higher the equivalent ratio is, the higher the photon charging efficiency is. We hypothesized that such an increase in the photoionization propensity of the carbonaceous nanoparticles from richer flame condition is associated to the presence within the particles of larger aromatic moieties. The results clearly show that photoionization is a powerful diagnostic tool for the physical-chemical characterization of combustion aerosol, and it may lead to further insights into the soot formation mechanism.

  11. Carbonaceous aerosol at two rural locations in New York State: Characterization and behavior

    Science.gov (United States)

    Sunder Raman, Ramya; Hopke, Philip K.; Holsen, Thomas M.

    2008-06-01

    Fine particle samples were collected to determine the chemical constituents in PM2.5 at two rural background sites (Potsdam and Stockton, N. Y.) in the northeastern United States from November 2002 to August 2005. Samples were collected every third day for 24 h with a speciation network sampler. The measured carbonaceous species included thermal-optical organic carbon (OC), elemental carbon (EC), pyrolytic carbon (OP), black carbon (BC), and water-soluble, short-chain (WSSC) organic acids. Concentration time series, autocorrelations, and seasonal variations of the carbonaceous species were examined. During this multiyear period, the contributions of the total carbon (OC + EC) to the measured fine particle mass were 31.2% and 31.1% at Potsdam and Stockton, respectively. The average sum of the WSSC acids carbon accounted for approximately 2.5% of the organic carbon at Potsdam and 3.0% at Stockton. At Potsdam, the seasonal differences in the autocorrelation function (ACF) and partial autocorrelation function (PACF) values for carbonaceous species suggest that secondary formation may be an important contributor to the observed concentrations of species likely to be secondary in origin, particularly during the photochemically active time of the year (May to October). This study also investigated the relationships between carbonaceous species to better understand the behavior of carbonaceous aerosol and to assess the contribution of secondary organic carbon (SOC) to the total organic carbon mass (the EC tracer method was used to estimate SOC). At Potsdam the average SOC contribution to total OC varied between 66% and 72%, while at Stockton it varied between 58% and 64%.

  12. Production of gaseous or vaporous fuels from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1951-05-16

    A process for the production of gaseous or vaporous fuels from solid carbonaceous materials consists of subjecting the materials in separate zones to at least three successive thermal treatments at least two of which are carried out at different temperature levels. The materials being maintained in zones in the form of beds of finely divided particles fluidized by the passage of gases or vapors upwardly there-through, and recovering product vapors or gases overhead. The total hot gaseous or vaporous effluent and entrained solids from one of the zones is passed directly without separation to another of the zones situated closely adjacent to and vertically above the first named zone in the same vessel, and the heat required in at least one of the thermal treatment zones is supplied at least in part as the sensible heat of residual solids transferred from a thermal treatment zone operated at a higher temperature.

  13. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.

    Science.gov (United States)

    Platt, S M; El Haddad, I; Pieber, S M; Zardini, A A; Suarez-Bertoa, R; Clairotte, M; Daellenbach, K R; Huang, R-J; Slowik, J G; Hellebust, S; Temime-Roussel, B; Marchand, N; de Gouw, J; Jimenez, J L; Hayes, P L; Robinson, A L; Baltensperger, U; Astorga, C; Prévôt, A S H

    2017-07-13

    Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NO X ). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

  14. Regional variation of carbonaceous aerosols from space and simulations

    Science.gov (United States)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko; Kokhanovsky, Alexander

    2017-04-01

    Satellite remote sensing provides us with a systematic monitoring in a global scale. As such, aerosol observation via satellites is known to be useful and effective. However, before attempting to retrieve aerosol properties from satellite data, the efficient algorithms for aerosol retrieval need to be considered. The characteristics and distributions of atmospheric aerosols are known to be complicated, owing to both natural factors and human activities. It is known that the biomass burning aerosols generated by the large-scale forest fires and burn agriculture have influenced the severity of air pollution. Nevertheless the biomass burning episodes increase due to global warming and climate change and vice versa. It is worth noting that the near ultra violet (NUV) measurements are helpful for the detection of carbonaceous particles, which are the main component of aerosols from biomass burning. In this work, improved retrieval algorithms for biomass burning aerosols are shown by using the measurements observed by GLI and POLDER-2 on Japanese short term mission ADEOS-2 in 2003. The GLI sensor has 380nm channel. For detection of biomass burning episodes, the aerosol optical thickness of carbonaceous aerosols simulated with the numerical model simulations (SPRINTARS) is available as well as fire products from satellite imagery. Moreover the algorithm using shorter wavelength data is available for detection of absorbing aerosols. An algorithm based on the combined use of near-UV and violet data has been introduced in our previous work with ADEOS (Advanced Earth Observing Satellite) -2 /GLI measurements [1]. It is well known that biomass burning plume is a seasonal phenomenon peculiar to a particular region. Hence, the mass concentrations of aerosols are frequently governed with spatial and/or temporal variations of biomass burning plumes. Accordingly the satellite data sets for our present study are adopted from the view points of investigation of regional and seasonal

  15. Antarctic carbonaceous chondrites - New opportunities for research

    Science.gov (United States)

    McSween, Harry Y., Jr.

    An account is given of the types of carbonaceous meteorites available in the Antarctic collections of the U.S. and Japan. In the case of the collection for Victoria Land and Queen Maud Land, all known classes for meteorites except C1 are present; available pairing data, though limited, are indicative of the presence of many different falls. Thus far, attention has been focused on the largest meteorites. Most samples, however, are small.

  16. Baking process of thin plate carbonaceous compact

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio; Shimada, Toyokazu

    1987-06-27

    As a production process of a thin plate carbonaceous compact for separator of phosphoric acid fuel cell, there is a process to knead carbonaceous powder and thermosetting resin solution, to form and harden the kneaded material and then to bake, carbonize and graphitize it. However in this baking and carbonization treatment, many thin plate compacts are set in a compiled manner within a heating furnace and receive a heat treatment from their circumference. Since the above compacts to be heated tend generally to be heated from their peripheries, their baked conditions are not homogeneous easily causing the formation of cracks, etc.. As a process to heat and bake homogeneously by removing the above problematical points, this invention offers a process to set in a heating furnace a laminate consisting of the lamination of thin plate carbonaceous compacts and the heat resistant soaking plates which hold the upper and lower ends of the above lamination, to fill the upper and under peripheries of the laminate above with high heat conductive packing material and its side periphery with low heat conductive packing material respectively and to heat and sinter it. In addition, the invention specifies the high and low heat conductive packing materials respectively. (1 fig, 2 tabs)

  17. The Thermal Properties of CM Carbonaceous Chondrites

    Science.gov (United States)

    Britt, D. T.; Opeil, C.

    2017-12-01

    The physical properties of asteroid exploration targets are fundamental parameters for developing models, planning observations, mission operations, reducing operational risk, and interpreting mission results. Until we have returned samples, meteorites represent our "ground truth" for the geological material we expect to interact with, sample, and interpret on the surfaces of asteroids. The physical properties of the volatile-rich carbonaceous chondrites (CI, C2, CM, and CR groups) are of particular interest because of their high resource potential. We have measured the thermal conductivity, heat capacity and thermal expansion of five CM carbonaceous chondrites (Murchison, Murray, Cold Bokkeveld, NWA 7309, Jbilet Winselwan) at low temperatures (5-300 K) to mimic the conditions in the asteroid belt. The mineralogy of these meteorites are dominated by abundant hydrous phyllosilicates, but also contain anhydrous minerals such as olivine and pyroxene found in chondrules. The thermal expansion measurements for all these CMs indicate a substantial increase in meteorite volume as temperature decreases from 230 - 210 K followed by linear contraction below 210 K. Such transitions were unexpected and are not typical for anhydrous carbonaceous chondrites or ordinary chondrites. Our thermal diffusivity results compare well with previous estimates for similar meteorites, where conductivity was derived from diffusivity measurements and modeled heat capacities; our new values are of a higher precision and cover a wider range of temperatures.

  18. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    Science.gov (United States)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  19. Everyone Wins: A Mars-Impact Origin for Carbonaceous Phobos and Deimos

    Science.gov (United States)

    Fries, M.; Welzenbach, L.; Steele, A.

    2016-01-01

    Discussions of Phobos' and Deimos' origin(s) tend to feature an orthogonally opposed pair of observations: dynamical studies which favor coalescence of the moons from an orbital debris ring arising from a large impact on Mars; and reflectance spectroscopy of the moons that indicate a carbonaceous composition that is not consistent with Martian surface materials. One way to reconcile this discrepancy is to consider the option of a Mars-impact origin for Phobos and Deimos, followed by surficial decoration of carbon-rich materials by interplanetary dust particles (IDP). The moons experience a high IDP flux because of their location in Mars' gravity well. Calculations show that accreted carbon is sufficient to produce a surface with reflectance spectra resembling carbonaceous chondrites.

  20. Pressure hydrogenation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Kroenig, W

    1942-09-28

    A process is described for the continuous pressure hydrogenation of solid, nonfusible carbonaceous material, such as coal, oil shale, or peat, in a pasted condition, characterized in that the charge is heated in a known way under pressure, together with water, nearly to the reaction temperature, then it is led into a pressure vessel, whose volume amounts to 20 to 40% of the usual reaction space without any change at the same temperature, and the charge then goes through the reaction vessel, after which its temperature is raised to the reaction height.

  1. Destructive hydrogenation of carbonaceous material, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-07-30

    A process is described for the destructive hydrogenation of solid distillable carbonaceous material, consisting of mixing the raw material in a paste by means of a mixture practically free from asphalt, from an oil obtained initially from the products coming out of the reaction space as vapor, particularly heavy oil, and oils obtained by pushing just to the state of pitch or coke the distillation of all the products which come out of the reaction space in any state but the vapor and which restrain some of the raw material intact and part of the products.

  2. Relationship between indoor and outdoor carbonaceous particulates in roadside households

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, K.; Miyazaki, T.; Tsuruho, K. [Osaka City Institute of Public Health and Environmental Sciences (Japan); Tamura, K. [The National Institute for Minamata Disease, Kumamoto (Japan); Mizuno, T. [Mie University (Japan). Dept. of Chemistry for Materials; Kuroda, K. [Osaka City University Medical School (Japan). Dept. of Preventive Medicine and Environmental Health

    2000-07-01

    Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 {mu}m, 2-10 {mu}m (coarse) and below 2 {mu}m (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r = 0.86 (n = 30, p < 0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 {mu}m (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors. (author)

  3. DATING RECENT PEAT ACCUMULATION IN EUROPEAN OMBROTROPHIC BOGS

    NARCIS (Netherlands)

    van der Plicht, Johannes; Yeloff, Dan; van der Linden, Marjolein; van Geel, Bas; Brain, Sally; Chambers, Frank M.; Webb, Julia; Toms, Phillip; Hatté, C.; Jull, A.J.T.

    2013-01-01

    This study compares age estimates of recent peat deposits in 10 European ombrotrophic (precipitation-fed) bogs produced using the C-14 bomb peak, Pb-210, Cs-137, spheroidal carbonaceous particles (SCPs), and pollen. At 3 sites, the results of the different dating methods agree well. In 5 cores,

  4. Separation of volatile products from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    White, W W

    1915-10-19

    A process is set forth for the separation of volatile products from solid carbonaceous materials, in which the vapors produced from the carbonaceous material at higher temperatures and withdrawn into the separate vapor chamber are led in succession through the lower temperature vapors as continuously to deposit their condensible ingredients in the chamber by the action of the successive cooler vapors.

  5. Source apportionment of atmospheric carbonaceous particulate matter based on the radiocarbon

    International Nuclear Information System (INIS)

    Guang-hua Wang; You-shi Zeng; Jian Yao; Yuan Qian; Ke Liu; Wei Liu; Yan Li; Yu Huang; University of South China, Hunan

    2013-01-01

    A method was established to quantitatively estimate sources of atmospheric carbonaceous matter, using a combination of radiocarbon technology, linear regression of organic carbon (OC) -K + and elemental carbon (EC) tracer method. Fractional contributions of fossil fuels, biomass burning, biogenic secondary organic carbon (BSOC) and soil dust to the atmospheric size-resolved carbonaceous matters in Shanghai suburb were estimated using this new method. The fossil carbon contributed most of the OC in particles smaller than 0.49 μm, and its fraction decreased with the increase of particle size. Biomass burning contributed 17-28 % to the OC. The BSOC contributed comparable proportions to the OC in particles smaller than 3.0 μm with the biomass burning, but larger in the particles lager than 3.0 μm. The soil dust contributed least fraction to the OC of each size with a proportion of 2-13 %. The biomass burning and fossil sources shared comparable fraction of the EC in all size range. (author)

  6. Reactions on carbonaceous materials with hydrogenating gases

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Simon, W; Kronig, W

    1933-02-08

    A process is given for the production of valuable hydrocarbons by treatment of distillable carbonaceous materials with added hydrogenating gases under pressure in contact with catalysts. The process comprises adding to the initial materials before or during the said treatment organic sulphonic acids together with metals of groups 4 to 8 of the periodic system or compounds thereof, or free organic carboxylic acids which when inorganic salts are simultaneously present do not combine therewith to form complex ansolvo acids, or acid salts of strong acids or acid salts of heavy metals, lithium, magnesium, and aluminum, with the exception of aluminum hydrosilicates, or inorganic oxygen containing acids of sulfur or nitrogen or the anhydrides of said inorganic oxygen-containing acids.

  7. Extracting solid carbonaceous materials with solvents

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-08

    Solvent extraction of solid carbonaceous materials is performed in the presence of powdered catalysts together with alkaline substances. Oxides of nickel or iron or nickel nitrate have been used together with caustic soda or potash solutions or milk of lime. Solvents used include benzenes, middle oils, tars, tetrahydronaphthalene. The extraction is performed at 200 to 500/sup 0/C under pressures of 20 to 200 atm. Finely ground peat was dried and mixed with milk of lime and nickel nitrate and an equal quantity of middle oil. The mixture was heated for 3 h at 380/sup 0/C at 90 atm. 88.5% of the peat was extracted. In a similar treatment brown coal was impregnated with solutions of caustic soda and ferric chloride.

  8. Destructive hydrogenation of carbonaceous materials, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-02-15

    A process is described for the destructive hydrogenation continuously of solid and infusible carbonaceous substances, consisting of heating the charge to the same temperature as the added hydrogen, under a pressure essentially equal to that of the reaction, from the first to at least 300/sup 0/C, but not more than 440/sup 0/C, while passing the heated charge through a zone the contents of which are equal to about 20 per cent to 40 per cent of that of the reaction space, maintaining the charge for a certain time at the temperature without sensible change in the pressure, then reheating the charge to at least the temperature to prime the reaction and finally to introduce the charge into the reaction space.

  9. Distilling peat and other carbonaceous matters

    Energy Technology Data Exchange (ETDEWEB)

    Stones, W B

    1850-03-07

    Improvements in treating peat and other carbonaceous and ligneous matters, so as to obtain products therefrom are disclosed. These improvements consist, first, of a machine for compressing and partially drying peat. The unpressed peat is put into boxes and these into frames which are passed through between the bowls of a machine resembling a pair of squeezers. Secondly, consists in distilling, at a temperature of, say 700/sup 0/F, the compressed peat, with or without the addition of tar or fatty matter in retorts, and condensing the vapors in a series of vessels, arranged after the manner of Wolfe's bottles. The resulting charcoal may be extinguished by passing carbonic acid through it while in an air-tight box or chamber, and it may then be compressed into bricks, and used for locomotives and other purposes.

  10. Photolytic process for gasification of carbonaceous material

    International Nuclear Information System (INIS)

    Zenty, S.

    1979-01-01

    Process and apparatus are disclosed for converting carbon dioxide to carbon monoxide by subjecting the carbon dioxide to radiation in the presence of carbonaceous material such as coal to form carbon monoxide. The preferred form of radiation is solar energy, and the process is preferably carried out in an atmosphere essentially free of oxygen. The invention also includes subjecting carbon monoxide to radiation to form purified carbon and useful heat energy. The two procedures can be combined into a single process for converting solar or other energy into useful thermal energy with the production of useful products. The reactor apparatus is specifically designed to carry out the radiation-induced conversions. Coal can be desulfurized and its caking characteristics altered by solar radiation in the presence of suitable gases. 3 figures

  11. Indigenous Carbonaceous Phases Embedded Within Surface Deposits on Apollo 17 Volcanic Glass Beads

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S. J.; Ross, D. K.; Le, L.; McKay, D. S.; Gibson, E. K.; Gonzalez, C.

    2012-01-01

    The assessment of indigenous organic matter in returned lunar samples was one of the primary scientific goals of the Apollo program. Prior studies of Apollo samples have shown the total amount of organic matter to be in the range of approx 50 to 250 ppm. Low concentrations of lunar organics may be a consequence not only of its paucity but also its heterogeneous distribution. Several processes should have contributed to the lunar organic inventory including exogenous carbonaceous accretion from meteoroids and interplanetary dust particles, and endogenous synthesis driven by early planetary volcanism and cosmic and solar radiation.

  12. First Results of the “Carbonaceous Aerosol in Rome and Environs (CARE” Experiment: Beyond Current Standards for PM10

    Directory of Open Access Journals (Sweden)

    Francesca Costabile

    2017-12-01

    Full Text Available In February 2017 the “Carbonaceous Aerosol in Rome and Environs (CARE” experiment was carried out in downtown Rome to address the following specific questions: what is the color, size, composition, and toxicity of the carbonaceous aerosol in the Mediterranean urban background area of Rome? The motivation of this experiment is the lack of understanding of what aerosol types are responsible for the severe risks to human health posed by particulate matter (PM pollution, and how carbonaceous aerosols influence radiative balance. Physicochemical properties of the carbonaceous aerosol were characterised, and relevant toxicological variables assessed. The aerosol characterisation includes: (i measurements with high time resolution (min to 1–2 h at a fixed location of black carbon (eBC, elemental carbon (EC, organic carbon (OC, particle number size distribution (0.008–10 μ m, major non refractory PM1 components, elemental composition, wavelength-dependent optical properties, and atmospheric turbulence; (ii 24-h measurements of PM10 and PM2.5 mass concentration, water soluble OC and brown carbon (BrC, and levoglucosan; (iii mobile measurements of eBC and size distribution around the study area, with computational fluid dynamics modeling; (iv characterisation of road dust emissions and their EC and OC content. The toxicological assessment includes: (i preliminary evaluation of the potential impact of ultrafine particles on lung epithelia cells (cultured at the air liquid interface and directly exposed to particles; (ii assessment of the oxidative stress induced by carbonaceous aerosols; (iii assessment of particle size dependent number doses deposited in different regions of the human body; (iv PAHs biomonitoring (from the participants into the mobile measurements. The first experimental results of the CARE experiment are presented in this paper. The objective here is to provide baseline levels of carbonaceous aerosols for Rome, and to address

  13. Sources of increase in lowermost stratospheric sulphurous and carbonaceous aerosol background concentrations during 1999–2008 derived from CARIBIC flights

    Directory of Open Access Journals (Sweden)

    Johan Friberg

    2014-03-01

    Full Text Available This study focuses on sulphurous and carbonaceous aerosol, the major constituents of particulate matter in the lowermost stratosphere (LMS, based on in situ measurements from 1999 to 2008. Aerosol particles in the size range of 0.08–2 µm were collected monthly during intercontinental flights with the CARIBIC passenger aircraft, presenting the first long-term study on carbonaceous aerosol in the LMS. Elemental concentrations were derived via subsequent laboratory-based ion beam analysis. The stoichiometry indicates that the sulphurous fraction is sulphate, while an O/C ratio of 0.2 indicates that the carbonaceous aerosol is organic. The concentration of the carbonaceous component corresponded on average to approximately 25% of that of the sulphurous, and could not be explained by forest fires or biomass burning, since the average mass ratio of Fe to K was 16 times higher than typical ratios in effluents from biomass burning. The data reveal increasing concentrations of particulate sulphur and carbon with a doubling of particulate sulphur from 1999 to 2008 in the northern hemisphere LMS. Periods of elevated concentrations of particulate sulphur in the LMS are linked to downward transport of aerosol from higher altitudes, using ozone as a tracer for stratospheric air. Tropical volcanic eruptions penetrating the tropical tropopause are identified as the likely cause of the particulate sulphur and carbon increase in the LMS, where entrainment of lower tropospheric air into volcanic jets and plumes could be the cause of the carbon increase.

  14. A Mudball Model for the Evolution of Carbonaceous Asteroids

    Science.gov (United States)

    Travis, B. J.; Bland, P. A.

    2018-05-01

    We simulation the evolution of carbonaceous chondrite parent bodies from initially unconsolidated aggregations of rock grains and ice crystals. Application of the numerical model MAGHNUM to evolution of CM type planetesimals and Ceres is described.

  15. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur; Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical

  16. Carbonaceous Asteroid Volatile Recovery (CAVoR) system, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbonaceous Asteroid Volatile Recovery (CAVoR) system produces water and hydrogen-rich syngas for propellant production, life support consumables, and...

  17. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  18. The carbonaceous sorbent based on the secondary silica-containing material from oil extraction industry

    Science.gov (United States)

    Starostina, I. V.; Stolyarov, D. V.; Anichina, Ya N.; Porozhnyuk, E. V.

    2018-01-01

    The object of research in this work is the silica-containing waste of oil extraction industry - the waste kieselghur (diatomite) sludge from precoat filtering units, used for the purification of vegetable oils from organic impurities. As a result of the thermal modification of the sludge, which contains up to 70% of organic impurities, a finely-dispersed low-porous carbonaceous mineral sorption material is formed. The modification of the sludge particles surface causes the substantial alteration of its physical, chemical, adsorption and structural properties - the organic matter is charred, the particle size is reduced, and on the surface of diatomite particles a carbon layer is formed, which deposits in macropores and partially occludes them. The amount of mesopores is increased, along with the specific surface of the obtained product. The optimal temperature of sludge modification is 500°C. The synthesized carbonaceous material can be used as an adsorbing agent for the purification of wastewater from heavy metal ions. The sorption capacity of Cu2+ ions amounted to 14.2 mg·g-1 and for Ni2+ ions - 17.0 mg·g-1. The obtained values exceed the sorption capacity values of the initial kieselghur, used as a filtering charge, for the researched metal ions.

  19. Carbonaceous aerosols in Norwegian urban areas

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2009-03-01

    Full Text Available Little is known regarding levels and source strength of carbonaceous aerosols in Scandinavia. In the present study, ambient aerosol (PM10 and PM2.5 concentrations of elemental carbon (EC, organic carbon (OC, water-insoluble organic carbon (WINSOC, and water-soluble organic carbon (WSOC are reported for a curbside site, an urban background site, and a suburban site in Norway in order to investigate their spatial and seasonal variations. Aerosol filter samples were collected using tandem filter sampling to correct for the positive sampling artefact introduced by volatile and semivolatile OC. Analyses were performed using the thermal optical transmission (TOT instrument from Sunset Lab Inc., which corrects for charring during analysis. Finally, we estimated the relative contribution of OC from wood burning based on the samples content of levoglucosan.

    Levels of EC varied by more than one order of magnitude between sites, likely due to the higher impact of vehicular traffic at the curbside and the urban background sites. In winter, the level of particulate organic carbon (OCp at the suburban site was equal to (for PM10 or even higher (for PM2.5 than the levels observed at the curbside and the urban background sites. This finding was attributed to the impact of residential wood burning at the suburban site in winter, which was confirmed by a high mean concentration of levoglucosan (407 ng m−3. This finding indicates that exposure to primary combustion derived OCp could be equally high in residential areas as in a city center. It is demonstrated that OCp from wood burning (OCwood accounted for almost all OCp at the suburban site in winter, allowing a new estimate of the ratio TCp/levoglucosan for both PM10 and PM2.5. Particulate carbonaceous material (PCM

  20. Distinct Purine Distribution in Carbonaceous Chondrites

    Science.gov (United States)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, Henderson J.; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    Carbonaceous chondrite meteorites are known to contain a diverse suite of organic compounds, many of which are essential components of biochemistry. Amino acids, which are the monomers of proteins, have been extensively studied in such meteorites (e.g. Botta and Bada 2002; Pizzarello et aI., 2006). The origin of amino acids in meteorites has been firmly established as extraterrestrial based on their detection typically as racemic mixtures of amino acids, the presence of many non-protein amino acids, and non-terrestrial values for compound-specific deuterium, carbon, and nitrogen isotopic measurements. In contrast to amino acids, nucleobases in meteorites have been far less studied. Nucleobases are substituted one-ring (pyrimidine) or two-ring (purine) nitrogen heterocyclic compounds and serve as the information carriers of nucleic acids and in numerous coenzymes. All of the purines (adenine, guanine, hypoxanthine, and xanthine) and pyrimidines (uracil) previously reported in meteorites are biologically common and could be interpreted as the result of terrestrial contamination (e.g. van del' Velden and Schwartz, 1974.) Unlike other meteoritic organics, there have been no observations of stochastic molecular diversity of purines and pyrimidines in meteorites, which has been a criterion for establishing extraterrestrial origin. Maltins et al. (2008) performed compound-specific stable carbon isotope measurements for uracil and xanthine in the Murchison meteorite. They assigned a non-terrestrial origin for these nucleobases; however, the possibility that interfering indigenous molecules (e.g. carboxylic acids) contributed to the 13C-enriched isotope values for these nucleobases cannot be completely ruled out. Thus, the origin of these meteoritic nucleobases has never been established unequivocally. Here we report on our investigation of extracts of II different carbonaceous chondrites covering various petrographic types (Cl, CM, and CR) and degrees of aqueous alteration

  1. EXPERIMENTS AT THE INTERFACE OF CARBON PARTICLE CHEMISTRY AND TOXCIOLOGY

    Science.gov (United States)

    Air pollution includes a complex mixture of carbonaceous gases and particles emitted from multiple anthropogenic, biogenic, and biomass burning sources, and also includes secondary organic components that form during atmospheric aging of these emissions. Exposure to these mixture...

  2. Ultraviolet spectral reflectance of carbonaceous materials

    Science.gov (United States)

    Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.; Gillis-Davis, Jeffrey J.; Pitman, Karly M.; Roush, Ted L.; Hendrix, Amanda R.; Lucey, Paul G.

    2018-06-01

    A number of planetary spacecraft missions have carried instruments with sensors covering the ultraviolet (UV) wavelength range. However, there exists a general lack of relevant UV reflectance laboratory data to compare against these planetary surface remote sensing observations in order to make confident material identifications. To address this need, we have systematically analyzed reflectance spectra of carbonaceous materials in the 200-500 nm spectral range, and found spectral-compositional-structural relationships that suggest this wavelength region could distinguish between otherwise difficult-to-identify carbon phases. In particular (and by analogy with the infrared spectral region), large changes over short wavelength intervals in the refractive indices associated with the trigonal sp2π-π* transition of carbon can lead to Fresnel peaks and Christiansen-like features in reflectance. Previous studies extending to shorter wavelengths also show that anomalous dispersion caused by the σ-σ* transition associated with both the trigonal sp2 and tetrahedral sp3 sites causes these features below λ = 200 nm. The peak wavelength positions and shapes of π-π* and σ-σ* features contain information on sp3/sp2, structure, crystallinity, and powder grain size. A brief comparison with existing observational data indicates that the carbon fraction of the surface of Mercury is likely amorphous and submicroscopic, as is that on the surface of the martian satellites Phobos and Deimos, and possibly comet 67P/Churyumov-Gerasimenko, while further coordinated observations and laboratory experiments should refine these feature assignments and compositional hypotheses. The new laboratory diffuse reflectance data reported here provide an important new resource for interpreting UV reflectance measurements from planetary surfaces throughout the solar system, and confirm that the UV can be rich in important spectral information.

  3. In situ observation of D-rich carbonaceous globules embedded in NWA 801 CR2 chondrite

    Science.gov (United States)

    Hashiguchi, Minako; Kobayashi, Sachio; Yurimoto, Hisayoshi

    2013-12-01

    Eighty-five D-rich carbonaceous particles were identified in the matrix of the NWA 801 CR2 chondrite using isotope microscopy. The occurrence of 67 D-rich carbonaceous particles was characterized using secondary electron microscopy combined with X-ray elemental mapping. The close association of H and C, and D-enrichment suggests that the D-rich carbonaceous particles correspond to organic matter. The D-rich organic particles were scattered ubiquitously throughout the matrix at a concentration of approximately 660 ppm. The morphology of the D-rich carbonaceous particles is globular up to about 1 μm in diameter and is classified into four types: ring globules, round globules, irregular-shaped globules, and globule aggregates. The ring globules are ring-shaped organic matter containing silicate and/or oxide, with or without a void in the center. This is the first report of silicate and oxide grains surrounded by D-rich organic matter. The globule aggregates are composed of several D-rich organic globules mixed with silicates. Morphology of ring globules is very similar to core-mantle grain produced in the molecular cloud or in the outer solar nebula inferring by astronomy, suggesting that the organic globules have formed by UV photolysis in the ice mantle. Silicates or oxides attached to D-rich organic globules are the first observation among chondrites so far and may be unique nature of CR2 chondrites. The hydrogen isotopic compositions of the ring globules, round globules, irregular-shaped globules, and globule aggregates are δD = 3000-4800, 2900-8100, 2700-11,000, and 2500-11,000‰, respectively. Variations of D/H ratio of these organic globules seemed to be attributed to variations of D/H ratio of the organic radicals or differences of content of the D-rich organic radicals. There are no significant differences in the hydrogen isotopic compositions among the four types of D-rich carbonaceous matter. The D-enrichments suggest that these organic globules have

  4. Isotopically Anomalous Carbonaceous Nanoglobules in Meteorites and Comets

    Science.gov (United States)

    de Gregorio, B. T.; Alexander, C.; Bassim, N. D.; Cody, G. D.; Kilcoyne, D.; Nittler, L.; Stroud, R.; Zega, T. J.

    2009-12-01

    Sub-micron, spherical, organic globules are prevalent in primitive meteorites and interplanetary dust particles. Many of these globules are significantly enriched in 15N and/or D, relative to solar values, which suggest that they or their precursors formed in cold regions of the solar nebula or in interstellar molecular clouds. We have used correlated transmission electron microscopy (TEM), synchrotron-based X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectrometry (SIMS) to determine the elemental and isotopic composition and organic functional group chemistry of individual carbonaceous nanoglobules in a suite of insoluble organic matter (IOM) residues prepared from carbonaceous and ordinary chondrites, and two additional organic globules from the Stardust comet 81P/Wild 2 sample collection. The majority of the meteoritic nanoglobules have a similar chemistry to the bulk IOM, with, on average, a small but significant enrichment in aromatic ketone (-C=O) and carboxyl (-COOH) functional groups. However, some of the meteoritic nanoglobules and one of the Stardust nanoglobules contain highly aromatic organic matter with no significant oxygen functionality. Preliminary measurements indicate that the highest 15N enrichments are associated with the highly aromatic nanoglobules and that aromatic nanoglobules are more prevalent in IOM from more primitive meteorites (e.g. Bells contains more aromatic globules than Murchison). For example, of two adjacent nanoglobules with nearly identical hollow morphologies from Murchison, one contains highly aromatic organic matter and the other contains oxidized IOM-like organic matter. SIMS analysis of these two globules reveals that the highly aromatic globule has the greatest 15N enrichment (δ15N ~ +500‰) of all meteoritic globules in which both XANES and SIMS was performed, whereas the adjacent IOM-like globule has a smaller 15N enrichment (δ15N ~ +300‰) but still greater than bulk IOM (δ15

  5. Wet, Carbonaceous Asteroids: Altering Minerals, Changing Amino Acids

    Science.gov (United States)

    Taylor, G. J.

    2011-04-01

    Many carbonaceous chondrites contain alteration products from water-rock interactions at low temperature and organic compounds. A fascinating fact known for decades is the presence in some of them of an assortment of organic compounds, including amino acids, sometimes called the building blocks of life. Murchison and other CM carbonaceous chondrites contain hundreds of amino acids. Early measurements indicated that the amino acids in carbonaceous chondrites had equal proportions of L- and D-structures, a situation called racemic. This was in sharp contrast to life on Earth, which heavily favors L- forms. However, beginning in 1997, John Cronin and Sandra Pizzarello (Arizona State University) found L- excesses in isovaline and several other amino acids in the Murchison carbonaceous chondrite. In 2009, Daniel Glavin and Jason Dworkin (Astrobiology Analytical Lab, Goddard Space Flight Center) reported the first independent confirmation of L-isovaline excesses in Murchison using a different analytical technique than employed by Cronin and Pizzarello. Inspired by this work, Daniel Glavin, Michael Callahan, Jason Dworkin, and Jamie Elsila (Astrobiology Analytical Lab, Goddard Space Flight Center), have done an extensive study of the abundance and symmetry of amino acids in carbonaceous chondrites that experienced a range of alteration by water in their parent asteroids. The results show that amino acids are more abundant in the less altered meteorites, implying that aqueous processing changes the mix of amino acids. They also confirmed the enrichment in L-structures of some amino acids, especially isovaline, confirming earlier work. The authors suggest that aqueously-altered planetesimals might have seeded the early Earth with nonracemic amino acids, perhaps explaining why life from microorganisms to people use only L- forms to make proteins. The initial imbalance caused by non-biologic processes in wet asteroids might have been amplified by life on Earth. Alternatively

  6. Quenched carbonaceous composite (QCC): a likely candidate for interstellar grains

    International Nuclear Information System (INIS)

    Sakata, A.; Wada, S.; Tanabe, T.; Onaka, T.

    1984-01-01

    The authors have recently reported that a carbonaceous composite synthesized from a hydrocarbon plasma shows an extinction property quite resembling the observed average interstellar extinction curve around the 220 nm hump. This composite is synthesized by quenching the excited gas ejecting from a plasma of methane gas, so it is called 'quenched carbonaceous composite' or 'QCC'. A recent study of QCC in the infrared region has shown that QCC can also account for some of the unidentified bands in the infrared region detected in several celestial objects. These results suggest that most of the pronounced features of the interstellar grains originate from substances whose major constituent is carbon. (author)

  7. Modeling and analytical simulation of a smouldering carbonaceous ...

    African Journals Online (AJOL)

    Modeling and analytical simulation of a smouldering carbonaceous rod. A.A. Mohammed, R.O. Olayiwola, M Eseyin, A.A. Wachin. Abstract. Modeling of pyrolysis and combustion in a smouldering fuel bed requires the solution of flow, heat and mass transfer through porous media. This paper presents an analytical method ...

  8. Preg-robbing of Gold by Carbonaceous Materials Encountered in ...

    African Journals Online (AJOL)

    Processing of gold from refractory ores containing carbonaceous materials (CM) poses challenges due to the ability of the CM to preg-rob dissolved gold. Depending on the type and maturity of CM encountered, preg-robbing of aurocyanide ion can lead to reduction in gold recovery ranging from a few percentages to more ...

  9. Fungal-Transformation of Surrogate Sulphides and Carbonaceous ...

    African Journals Online (AJOL)

    In the recovery of gold from refractory gold ores, pretreatment is required to decompose sulphides and liberate occluded gold before cyanidation, and to deactivate carbonaceous matter and prevent it from adsorbing dissolved gold. Until the past three decades, most commercial pretreatment processes had been by abiotic ...

  10. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    Science.gov (United States)

    Hoover, Richard B.

    2007-01-01

    Evidence for indigenous microfossils in carbonaceous meteorites suggests that the paradigm of the endogenous origin of life on Earth should be reconsidered. It is now widely accepted that comets and carbonaceous meteorites played an important role in the delivery of water, organics and life critical biogenic elements to the early Earth and facilitated the origin and evolution of the Earth's Biosphere. However; the detection of embedded microfossils and mats in carbonaceous meteorites implies that comets and meteorites may have played a direct role in the delivery of intact microorganisms and that the Biosphere may extend far into the Cosmos. Recent space observations have found the nuclei of comets to have very low albedos (approx.0.03) and. these jet-black surfaces become very hot (T approx. 400 K) near perihelion. This paper reviews recent observational data-on comets and suggests that liquid water pools could exist in cavities and fissures between the internal ices and rocks and the exterior carbonaceous crust. The presence of light and liquid water near the surface of the nucleus enhances the possibility that comets could harbor prokaryotic extremophiles (e.g., cyanobacteria) capable of growth over a wide range of temperatures. The hypothesis that comets are the parent bodies of the CI1 and the CM2 carbonaceous meteorites is advanced. Electron microscopy images will be presented showing forms interpreted as indigenous-microfossils embedded' in freshly. fractured interior surfaces of the Orgueil (CI1) and Murchison (CM2) meteorites. These forms are consistent in size and morphologies with known morphotypes of all five orders of Cyanobacteriaceae: Energy Dispersive X-ray Spectroscopy (EDS) elemental data shows that the meteoritic forms have anomalous C/O; C/N; and C/S as compared with modern extremophiles and cyanobacteria. These images and spectral data indicate that the clearly biogenic and embedded remains cannot be interpreted as recent biological

  11. Inorganic and carbonaceous components in indoor/outdoor particulate matter in two residential houses in Oslo, Norway.

    Science.gov (United States)

    Lazaridis, Mihalis; Aleksandropoulou, Victoria; Hanssen, Jan Erik; Dye, Christian; Eleftheriadis, Kostantinos; Katsivela, Eleftheria

    2008-03-01

    A detailed analysis of indoor/outdoor physicochemical aerosol properties has been performed. Aerosol measurements were taken at two dwellings, one in the city center and the other in the suburbs of the Oslo metropolitan area, during summer/fall and winter/spring periods of 2002-2003. In this paper, emphasis is placed on the chemical characteristics (water-soluble ions and carbonaceous components) of fine (PM2.5) and coarse (PM2.5-10) particles and their indoor/outdoor relationship. Results demonstrate that the carbonaceous species were dominant in all fractions of the PM10 particles (cut off size: 0.09-11.31 microm) during all measurement periods, except winter 2003, when increased concentrations of water-soluble inorganic ions were predominant because of sea salt transport. The concentration of organic carbon was higher in the fine and coarse PM10 fractions indoors, whereas elemental carbon was higher indoors only in the coarse fraction. In regards to the carbonaceous species, local traffic and secondary organic aerosol formation were, probably, the main sources outdoors, whereas indoors combustion activities such as preparation of food, burning of candles, and cigarette smoking were the main sources. In contrast, the concentrations of water-soluble inorganic ions were higher outdoors than indoors. The variability of water-soluble inorganic ion concentrations outdoors was related to changes in emissions from local anthropogenic sources, long-range transport of particles, sea salt emissions, and resuspension of roadside and soil dusts. In the indoor environment the infiltration of the outdoor air indoors was the major source of inorganic ions.

  12. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2011-12-01

    Full Text Available In the present study, natural and anthropogenic sources of particulate organic carbon (OCp and elemental carbon (EC have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm collected at four Nordic rural background sites [Birkenes (Norway, Hyytiälä (Finland, Vavihill (Sweden, Lille Valby, (Denmark] during late summer (5 August–2 September 2009. Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC, have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC was totally dominated by natural sources (69–86%, with biogenic secondary organic aerosol (BSOA being the single most important source (48–57%. Interestingly, primary biological aerosol particles (PBAP were the second most important source (20–32%. The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24%, whereas no more than 3–7% was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, which accounted for 4–12% of TCp, whereas <1.5% of EC was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural

  13. Laboratory Studies of the Formation of Carbonaceous Cosmic Dust from PAH Precursors

    Science.gov (United States)

    Salama, Farid; Contreras, C. S.

    2012-05-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of carbonaceous dust. PAHs are important chemical building blocks of interstellar dust. They are detected in interplanetary dust particles and in meteoritic samples and are an important, ubiquitous component of the interstellar medium. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, it is imperative that laboratory experiments be conducted to study the dynamic processes of carbon grain formation from PAH precursors. Studies of interstellar dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include O, N, and S, have recently been performed using the COSmIC facility in our laboratory under conditions that simulate interstellar and circumstellar environments. The species formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with high-sensitivity cavity ringdown spectroscopy coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We report the measurements obtained in these experiments. Studies with hydrocarbon precursors show the feasibility of specific molecules to form PAHs, while studies with carbon ring systems (benzene and derivatives, PAHs) precursors provide information on pathways toward larger carbonaceous molecules. From these unique measurements, we derive information on the size and the structure of interstellar dust grain particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. Acknowledgements: This research is

  14. Quality evaluation of carbonaceous industrial by-products and its effect on properties of autoclave aerated concrete

    Science.gov (United States)

    Fomina, E. V.; Lesovik, V. S.; Fomin, A. E.; Kozhukhova, N. I.; Lebedev, M. S.

    2018-03-01

    Argillite is a carbonaceous industrial by-product that is a potential source in environmentally friendly and source-saving construction industry. In this research, chemical and mineral composition as well as particle size distribution of argillite were studied and used to develop autoclave aerated concrete as partial substitute of quartz sand. Effect of the argillite as a mineral admixture in autoclave aerated concrete was investigated in terms of compressive and tensile strength, density, heat conductivity etc. The obtained results demonstrated an efficiency of argillite as an energy-saving material in autoclave construction composites.

  15. Pulmonary exposure to carbonaceous nanomaterials and sperm quality

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Lauvas, Anna Jacobsen; Christensen, Preben

    2018-01-01

    . Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI...... inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model.Methods: Effects on sperm quality after pulmonary inflammation induced by carbonaceous...... flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA.Results: Neutrophil numbers in the bronchoalveolar fluid showed...

  16. Treating distillable carbonaceous materials with hydrocarbon gases, etc

    Energy Technology Data Exchange (ETDEWEB)

    1935-12-04

    A process is described for the treatment of distillable carbonaceous materials with hydrogen gases in the presence of hydrogen halides to recover valuable hydrocarbon products, characterized by the stable halide forming the treating medium for the hot-test gasesous product of this treatment with hydrogen gases in combination with an alkaline metal or alkaline earth, able to be decomposed by an inorganic acid soluble in water, capable of driving off hydrogen halide from their salts and also with salts of ammonia of the mentioned inorganic acids, the halide being converted into halide of ammonia and halogen, and the ammonia halide or hydrogen halide being returned to the process alone or together with the feed of carbonaceous materials with which it began.

  17. Immobilization of pentachlorophenol in soil using carbonaceous material amendments

    Energy Technology Data Exchange (ETDEWEB)

    Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085 (China)], E-mail: bwen@rcees.ac.cn; Li Ruijuan; Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085 (China); Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085 (China)], E-mail: xiaoquan@rcees.ac.cn; Fang Jing; Xiao Ke [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085 (China); Khan, Shahamat U. [Department of Chemistry and Biochemistry, MSN 3E2, George Mason University, 4400 University Drive, Fairfax, VA 22030-4444 (United States)

    2009-03-15

    In this study, three pentachlorophenol (PCP) laboratory-spiked and one field-contaminated soil were amended with 2.0% char, humic acid (HA) and peat, respectively. The amended soils were aged for either 7 or 250 days. After amendment, CaCl{sub 2} extractability of PCP was significantly decreased. Desorption kinetics indicated that the proposed amendment could lead to a strong binding and slow desorption of PCP in soils. Amendment with char reduced the bioaccumulation factor (BAF) of PCP most significantly for earthworms (Eisenia fetida) in all soils studied. The results of both physicochemical and biological tests suggested that amendment reduced PCP bioavailability quickly and enduringly, implying that carbonaceous material amendment, especially char amendment, was a potentially attractive in situ remediation method for sequestration of PCP in contaminated soil. - Carbonaceous material amendment was a potential in situ remediation method for pentachlorophenol contaminated soil.

  18. Evolution of carbonaceous chondrite parent bodies: Insights into cometary nuclei

    International Nuclear Information System (INIS)

    McSween, H.Y. Jr.

    1989-01-01

    It is thought that cometary samples will comprise the most primitive materials that are able to be sampled. Although parent body alteration of such samples would not necessarily detract from scientists' interest in them, the possibility exists that modification processes may have affected cometary nuclei. Inferences about the kinds of modifications that might be encountered can be drawn from data on the evolution of carbonaceous chondrite parent bodies. Observations suggest that, of all the classes of chondrites, these meteorites are most applicable to the study of comets. If the proportion of possible internal heat sources such as Al-26 in cometary materials are similar to those in chondrites, and if the time scale of comet accretion was fast enough to permit incorporation of live radionuclides, comets might have had early thermal histories somewhat like those of carbonaceous chondrite parent bodies

  19. Origin and nature of carbonaceous material in the galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, F; Wickramasinghe, N C [University Coll. of South Wales and Monmouthshire, Cardiff (UK)

    1977-12-22

    It is stated that astronomers generally believe that the carbonaceous material emerging from stars must be in the form of graphite, the most stable condensed form of carbon, and that such emergence must be confined to situations where the C/O ratio exceeds unity, such as in the atmospheres of carbon stars. It is argued here, however, that whilst this state of affairs remains valid for mass flows from stars of sufficiently low surface temperatures, it is not correct for low density flows from stars with colour temperatures approximately > 4,000 K (or for oscillatory stars with colour temperatures that go above 4,000 K for a portion of their cycle). In the latter case it is shown that carbonaceous material comprised mainly of polysaccharides will be able to condense. Implications for the origin of life on the Earth are discussed.

  20. Uranium band types in carbonaceous sediments with different diagenesis levels

    International Nuclear Information System (INIS)

    Borstel, D. von.

    1984-01-01

    Uraniferous peats, lignites and coals were studied by chemical and geological methods in order to determine the influence of carbonaceous substances with different diagenesis levels on uranium enrichment in sediments. It was found that the main factor of deposit genesis is not the chemical bending of uranium to the organic substance but rather the reduction from mobile U(VI) to immobile U(IV) in the course of diagenesis to epigenesis. (orig./PW) [de

  1. Characterization of baking behaviour of carbonaceous materials by dilatation investigations

    Energy Technology Data Exchange (ETDEWEB)

    Born, M.; Seichter, A.; Starke, S.

    1990-01-01

    An increase in volume can be observed in carbonaceous materials during baking which is assumed to be the reason for strains and crack formation. It occurs most pronouncedly within a temperature range from 100 to 200{degree}C. The causes of such phenomena in products pressed at different temperatures are analyzed by means of a gas pressure model and a relaxation model. The factors influencing dilatation are subject to thermal analysis. 15 refs., 13 figs.

  2. Processes for liquefying carbonaceous feedstocks and related compositions

    Energy Technology Data Exchange (ETDEWEB)

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  3. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  4. Carbonaceous Aerosol Characterization during 2016 KOR-US 2016

    Science.gov (United States)

    Rodriguez, B.; Santos, G. M.; Sanchez, D.; Jeong, D.; Czimczik, C. I.; Kim, S.

    2017-12-01

    Atmospheric carbonaceous aerosols are a major component of fine particulate matter and assume important roles in Earth's climate and human health. Because atmospheric carbonaceous aerosols exist as a continuum ranging from small, light-scattering organic carbon (OC), to highly-condensed, light-absorbing elemental carbon (EC) they have contrasting effects on interaction with incoming and outgoing radiation, cloud formation, and snow/ice albedo. By strengthening our understanding of the relative contribution and sources of OC and EC we will be able to further describe aerosol formation and mixing at the regional level. To understand the relative anthropogenic and biogenic contributions to carbonaceous aerosol, 12 PM10 aerosols samples were collected on quartz fiber filters at the Mt. Taewha Research Forest in South Korea during the KORUS-AQ 2016 campaign over periods of 24-48 hours with a high-volume air sampler. Analysis of bulk C and N concentrations and absorption properties of filter extracts interspersed with HYSPLIT model results indicated that continental outflow across the Yellow Sea in enriched in bulk nitrogen loading and enhanced bulk absorptive properties of the aerosols. Bulk radiocarbon analysis also indicated enriched values in all samples indicating contamination from a nuclear power plant or the combustion of biomedical waste nearby. Here, we aim to investigate further the chemical characterization of VOCs adsorbed unto the aerosol through TD-GC-TOFMS. With this dataset we aim to determine the relative contribution of anthropogenic and biogenic aerosols by utilizing specific chemical tracers for source apportionment.

  5. Indigenous Carbonaceous Matter in the Nakhla Mars Meteorite

    Science.gov (United States)

    Clemett, S. J.; Thomas-Keprta, K. L.; Rahman, Z.; Le, L.; Wentworth, S. J.; Gibson, E. K.; McKay, D. S.

    2016-01-01

    Detailed microanalysis of the Martian meteorite Nakhla has shown there are morphologically distinct carbonaceous features spatially associated with low-T aqueous alteration phases including salts and id-dingsite. A comprehensive suite of analytical instrumentation including optical microscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, focused ion beam (FIB) microscopy, transmission electron microscopy (TEM), two-step laser mass spectrometry (mu-L(sup 2)MS), laser mu-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nanoscale secondary ion mass spectrometry (NanoSIMS) are being used to characterize the carbonaceous matter and host mineralogy. The search for carbonaceous matter on Mars has proved challenging. Viking Landers failed to unambiguously detect simple organics at either of the two landing sites although the Martian surface is estimated to have acquired at least 10(exp15) kg of C as a consequence of meteoritic accretion over the last several Ga. The dearth of organics at the Martian surface has been attributed to various oxidative processes including UV photolysis and peroxide activity. Consequently, investigations of Martian organics need to be focused on the sub-surface regolith where such surface processes are either severely attenuated or absent. Fortuitously since Martian meteorites are derived from buried regolith materials they provide a unique opportunity to study Martian organic geochemistry.

  6. Biomass-derived carbonaceous materials as components in wood briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, S.; Koch, C.; Stadlbauer, E.A.; Scheer, J. [Univ. of Applied Sciences, THM Campus Giessen, Giessen (Germany); Weber, B. [Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM), Coyoacan (Mexico); Strohal, U.; Fey, J. [Strohal Anlagenbau, Staufenberg (Germany)

    2012-11-01

    The present paper describes a briquette composed of a substantial amount of wooden biomass and up to 35% of carbonaceous materials derived from biogenic residues. The cellulosic component may be a mixture of any wooden residue. Suitable substrates for the carbonaceous fraction are vegetation wastes from land management or agriculture. Depending on physical and chemical nature of the substrate, Hydrothermal Carbonisation (HTC) or Low Temperature Conversion (LTC) may be used to produce the carbonaceous part of the briquette. HTC turns wet biomass at temperatures around 200 deg C in an autoclave into lignite whereas LTC treatment at 400 deg C and atmospheric pressure produces black coal. This is manifested by a molar ratio of 0.1 {<=} H/C (LTC) {<=} 0.7; 0.05{<=} O/C (LTC) {<=} 0.4 and 0.7 < H/C (HTC) <1.5 ; 0.2< O/C (HTC) < 0.5. Solid state {sup 13}C-NMR confirms these findings showing a strong absorption band for sp{sup 2}-hybridized carbon atoms at chemical shifts of 100 ppm und 165 ppm for LTC biochar. Depending on the substrate, HTC gives rise to an increase in the specific calorific value (MJ/kg) by a factor of {Psi} {approx} 1.2 - 1.4; LTC by 1.5 - 1.8. In addition ash melting points are significantly increased; in case of wheat straw by about 200 deg C. Compacted products may have a cylindrical or rectangular profile.

  7. Nebula Scale Mixing Between Non-Carbonaceous and Carbonaceous Chondrite Reservoirs: Testing the Grand Tack Model with Almahata Sitta Stones

    Science.gov (United States)

    Yin, Q.-Z.; Sanborn, M. E.; Goodrich, C. A.; Zolensky, M.; Fioretti, A. M.; Shaddad, M.; Kohl, I. E.; Young, E. D.

    2018-01-01

    There is an increasing number of Cr-O-Ti isotope studies that show that solar system materials are divided into two main populations, one carbonaceous chondrite (CC)-like and the other is non-carbonaceous (NCC)-like, with minimal mixing between them attributed to a gap opened in the propoplanetary disk due to Jupiter's formation. The Grand Tack model suggests that there should be a particular time in the disk history when this gap is breached and ensuring a subsequent large-scale mixing between S- and C-type asteroids (inner solar system and outer solar system materials), an idea supported by our recent work on chondrule (Delta)17O-(epsilon)54Cr isotope systematics.

  8. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    Science.gov (United States)

    Jiang, Yijun; Li, Xiutao; Cao, Quan; Mu, Xindong

    2011-02-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that -SO3H, -COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  9. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    International Nuclear Information System (INIS)

    Jiang Yijun; Li Xiutao; Cao Quan; Mu Xindong

    2011-01-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that –SO 3 H, –COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  10. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    Science.gov (United States)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support

  11. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  12. High resolution TEM of chondritic carbonaceous matter: Metamorphic evolution and heterogeneity

    Science.gov (United States)

    Le Guillou, Corentin; Rouzaud, Jean-Noël.; Bonal, Lydie; Quirico, Eric; Derenne, Sylvie; Remusat, Laurent

    2012-03-01

    The insoluble carbonaceous matter from 12 chondrites (CI, CM, CO, CV, EH, and UOC), was characterized by high resolution transmission electron microscopy (HRTEM). Besides ubiquitous nanoglobules, the insoluble organic matter from petrologic type 1 and 2 chondrites and Semarkona (LL 3.0) is composed of a highly disordered polyaromatic component. No structural differences were observed between these IOMs, in agreement with the limited thermal metamorphism they all experienced. In chondrites of petrologic type >3.0, the evolution of the IOM is controlled by the extent of thermal metamorphism. The polyaromatic layers, shorter than 1 nm in petrologic type ≤3.0 chondrites, grow up to sizes between 5 and 10 nm in petrologic type >3.6 chondrites, contributing to the increase of the degree of structural order. In addition, we find rare, but ubiquitous onion-like carbons, which may be the product of nanodiamond graphitization. The insoluble carbonaceous matter of the enstatite chondrite Sahara 97096 (EH 3) is different from the other meteorites studied here. It is more heterogeneous and displays a high abundance of graphitized particles. This may be the result of a mixture between (1) the disordered carbon located in the matrix, and (2) catalytic graphitized phases associated with metal, potentially originating from partial melting events. The structural and nanostructural evolution are similar in all IOMs. This suggests that the structure of the accreted precursors and the parent body conditions of their secondary thermal modifications (temperature, duration, and pressure) were similar. The limited degree of organization of the most metamorphosed IOMs compared with terrestrial rocks submitted to similar temperature suggests that the conditions are not favorable to graphitization processes, due to the chemical nature of the precursor or the lack of confinement pressure.

  13. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites

    Science.gov (United States)

    Budde, Gerrit; Burkhardt, Christoph; Brennecka, Gregory A.; Fischer-Gödde, Mario; Kruijer, Thomas S.; Kleine, Thorsten

    2016-11-01

    Nucleosynthetic isotope anomalies are powerful tracers to determine the provenance of meteorites and their components, and to identify genetic links between these materials. Here we show that chondrules and matrix separated from the Allende CV3 chondrite have complementary nucleosynthetic Mo isotope anomalies. These anomalies result from the enrichment of a presolar carrier enriched in s-process Mo into the matrix, and the corresponding depletion of this carrier in the chondrules. This carrier most likely is a metal and so the uneven distribution of presolar material probably results from metal-silicate fractionation during chondrule formation. The Mo isotope anomalies correlate with those reported for W isotopes on the same samples in an earlier study, suggesting that the isotope variations for both Mo and W are caused by the heterogeneous distribution of the same carrier. The isotopic complementary of chondrules and matrix indicates that both components are genetically linked and formed together from one common reservoir of solar nebula dust. As such, the isotopic data require that most chondrules formed in the solar nebula and are not a product of protoplanetary impacts. Allende chondrules and matrix together with bulk carbonaceous chondrites and some iron meteorites (groups IID, IIIF, and IVB) show uniform excesses in 92Mo, 95Mo, and 97Mo that result from the addition of supernova material to the solar nebula region in which these carbonaceous meteorites formed. Non-carbonaceous meteorites (enstatite and ordinary chondrites as well as most iron meteorites) do not contain this material, demonstrating that two distinct Mo isotope reservoirs co-existed in the early solar nebula that remained spatially separated for several million years. This separation was most likely achieved through the formation of the gas giants, which cleared the disk between the inner and outer solar system regions parental to the non-carbonaceous and carbonaceous meteorites. The Mo isotope

  14. The mercury species and their association with carbonaceous compositions, bromine and iodine in PM2.5 in Shanghai.

    Science.gov (United States)

    Duan, Lian; Xiu, Guangli; Feng, Ling; Cheng, Na; Wang, Chenggang

    2016-03-01

    PM2.5 samples were collected in south Shanghai from November 2013 to October 2014. The species of particulate bounded mercury (PBM), including hydrochloric soluble particle-phase mercury (HPM), element soluble particle-phase mercury (EPM) and residual soluble particle-phase mercury (RPM), were determined in PM2.5. The chemical composition of PM2.5 including organic carbon (OC) and elemental carbon (EC), total bromine and iodine were also analyzed. The results showed that the annual average concentration of PBM was 0.30 ± 0.31 ng m(-3) and 0.34 ± 0.32 ng m(-3) in winter, 0.31 ± 0.19 ng m(-3) in spring, 0.30 ± 0.45 ng m(-3) in fall and 0.28 ± 0.17 ng m(-3) in summer. HPM took the highest fraction 51.2% in PBM, followed by RPM 27.7% and EPM 21.1%. EC positively correlated to particle mercury, especially in winter (r = 0.70), the same for OC in winter (r = 0.72), which indicated that the carbonaceous composition may affect the transformation of Hg in the atmosphere. Mercury species showed different correlations with bromine and iodine in the four seasons. The strongest correlation between bromine, iodine and mercury was found in spring and fall, respectively. Bromine showed the stronger correlation with total mercury and speciated particle mercury than iodine. In addition, the days were classified into haze and non-haze days based on the visibility and relative humidity, while the ratio of HPM in haze days was much higher than that in non-haze days. EC strongly correlated with PBM during haze and non-haze days while OC only positively correlated with PBM in non-haze days, this may indicate that the different carbonaceous part may affect PBM differently. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Scattering of light by nonspherical particles

    International Nuclear Information System (INIS)

    Coulson, K.L.

    1985-12-01

    Methods of computing scattering by non-spherical particles are reviewed for the Mie theory, the Rayleigh-Gans approximation, the geometric optics method, the extended boundary condition method, the anamalous diffraction, the suppression of resonances, the statistical approach, the expansion of vector wave equations in spheroidal coordinates, and the semi-emperical theory of Pollack and Cuzzi. The results of computations for nonspherical particles are compared for prolate and oblate spheroids, homogeneous sphere with holes, rough particles made of stacked cylinders, irregular particles of various shapes, and particles of carbonaceous smokes. Conclusions are presented in the context of nuclear winter

  16. Isolating Weakly and Strongly-Absorbing Classes of Carbonaceous Aerosol: Optical Properties, Abundance and Lifecycle

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tami C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Rood, Mark J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Riemer, Nicole [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2013-09-15

    The goal of this project was to evaluate climate-relevant properties of carbonaceous particles and the transformations of those particles in the atmosphere, with the purpose of developing lumped classes of carbonaceous particles suitable for use in large-scale models. These climate-relevant properties included light absorption and hygroscopicity. Hygroscopicity is a measure of water affinity, which governs particle growth at humid conditions and absorption and scattering under those conditions. It also controls particles’ activation into cloud droplets, which in turn affects cloud albedo and particle removal. This project used laboratory measurements of fresh and aged carbonaceous aerosol, and predictions of properties using a particle-resolved model, to identify sensitivities. The focus in this project was on aerosol from biomass pyrolysis, abbreviated BrC (“brown carbon”). We measured absorption by aerosol from biomass pyrolysis from two sources with very different composition: wood and corn stalk. For both sources, the greatest light absorption occurred at the highest generation temperature, and this maximum absorption was very similar to that of wood-generated aerosol. We suggest that pyrolysis products can be considered surrogates for a wide range of biomass aerosol. We captured aerosol emitted from biomass pyrolysis on filters and exposed it to ultraviolet radiation, to the atmospheric trace gases ozone, ammonia (NH3) and nitrogen oxide; and to aqueous saturated salt solutions of ammonium sulfate, ammonium nitrate, sodium chloride and sodium sulfate. Absorption increased, but by only small amounts for all of these treatments, with one exception: after aging with ammonia, absorption increased by almost a factor of four. Absorption increased more at visible wavelengths. We confirmed that a significant change occurred in the aerosol phase, by measuring absorption by suspended particles after aging with NH3 and finding doubled aerosol

  17. Source apportionment of carbonaceous aerosol in southern Sweden

    Directory of Open Access Journals (Sweden)

    J. Genberg

    2011-11-01

    Full Text Available A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (80%, which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (32% and fossil fuel combustion (28% were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP MSC-W chemical transport model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 2.2 compared to the measurements.

  18. Development of a Massive, Highly Multiplexible, Phonon-Mediated Particle Detector Using Kinetic Inductance Detectors

    Science.gov (United States)

    Chang, Y.-Y.; Cornell, B.; Aralis, T.; Bumble, B.; Golwala, S. R.

    2018-04-01

    We present a status update on the development of a phonon-mediated particle detector using kinetic inductance detector (KID). The design is intended for O(1) kg substrate, using O(102) KIDs on a single readout line, to image the athermal phonon distribution at energy resolution. The design specification is set by the need to improve position reconstruction fidelity while maintaining low energy threshold for future rare-event searches such as for low-mass dark matter. We report on the design, which shows negligible crosstalk and > 95% inductor current uniformity, using the coplanar waveguide feedline, ground shield, and a new class of KIDs with symmetric coplanar stripline (sCPS) inductor. The multiplexing is designed upon the frequency-geometry relation we develop for the sCPS KIDs. We introduce the fabrications of the Nb RF assessment prototypes and the high phonon collection efficiency Al-Nb devices. We achieve ≲ 0.07% frequency displacement on a 80-KID RF assessment prototype, and the result indicates that we may place more than 180 resonances in our 0.4 GHz readout band with minimal frequency misordering. The coupling quality factors are ˜ 105 as designed. Finally, we update our work in progress in fabricating the O(102) KID, bi-material, O(1) kg detectors, and the expected position and energy resolutions.

  19. Water and the thermal evolution of carbonaceous chondrite parent bodies

    International Nuclear Information System (INIS)

    Grimm, R.E.; Mcsween, H.Y. Jr.

    1989-01-01

    Two hypotheses are proposed for the aqueous alteration of carbonaceous chondrites within their parent bodies, in which respectively the alteration occurs (1) throughout the parent body interior, or (2) in a postaccretional surface regolith; both models assume an initially homogeneous mixture of ice and rock that is heated through the decay of Al-26. Water is seen to exert a powerful influence on chondrite evolution through its role of thermal buffer, permitting substitution of a low temperature aqueous alteration for high temperature recrystallization. It is quantitatively demonstrated that liquid water may be introduced by either hydrothermal circulation, vapor diffusion from below, or venting due to fracture. 104 refs

  20. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    Science.gov (United States)

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  1. Photoelectric work function studies of carbonaceous films containing Ni nanocrystals

    International Nuclear Information System (INIS)

    Czerwosz, E.; Dluzewski, P.; Kutner, T.; Stacewicz, T.

    2003-01-01

    In this paper we present the results of photoelectric work function measurements for carbonaceous films containing Ni nanocrystals. The investigated films were obtained by thermal vacuum deposition method. The structure of films was studied by electron diffraction, transmission microscopy and Raman spectroscopy. Film structure depends on Ni contents in the film volume. Work function determined from photoelectric measurements for all investigated films are similar and lie in the range of 2.65-2.93 eV. The decrease of work function value with the cleaning of the film's surface with UV pulsed laser beam was observed

  2. Process of producing carbonaceous materials; reaction with hydrogen gases

    Energy Technology Data Exchange (ETDEWEB)

    1933-01-13

    A process is described for the production of valuable hydrocarbons by treating distillable carbonaceous materials together with hydrogen gases, under pressure and in contact with catalysts, the process consisting in adding to the original materials, first or during treatment, organic sulfonic acids together with metals from the fourth or eighth groups of the periodic system or a combination of these, or organic carbosilicic acids or inorganic acids containing oxides of sulfur or nitrogen or the anhydrides of these inorganic acids or variation of these compounds.

  3. KOH activation of pitch-derived carbonaceous materials - Effect of carbonization degree

    Energy Technology Data Exchange (ETDEWEB)

    Krol, Magdalena [Institute of Open Cast Mining POLTEGOR-Institute, Parkowa, Wroclaw (Poland); Gryglewicz, Grazyna; Machnikowski, Jacek [Division of Polymer and Carbonaceous Materials, Faculty of Chemistry, Wroclaw University of Technology, Gdanska (Poland)

    2011-01-15

    Two series of mesophase pitches and semi-cokes of different carbonization degree were produced by heat treatment of anthracene oil derived pitches P1 and P4 in the temperature range of 460-700 C. These carbonaceous materials were activated with potassium hydroxide at 700 C using 1:3 reagents ratio to assess the effects of the precursor optical texture and carbonization degree on the activation behavior. The results show that the increase in the pitch pretreatment temperature suppresses propensity to the pore generation while enhancing particle breaking. The effect can be illustrated by decreases in the BET surface area S{sub BET} from {proportional_to} 2700 to {proportional_to} 1500 m{sup 2} g{sup -1} and the micropore volume V{sub DR} from {proportional_to} 0.85 to {proportional_to} 0.45 cm{sup 3} g{sup -1}. These parameters are inversely related with the H/C atomic ratio of precursor. In contrast, the anisotropic development of pitch coke, varying from flow type to mosaics, has a slight effect on the activation behaviour. The mechanism of porosity generation, that is proposed, stresses the role of hydrogen occurring at the edges of graphene layers and potassium metal insertion/deinsertion on the porosity development and particle disintegration during KOH activation of pitch-derived carbons. (author)

  4. Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest

    International Nuclear Information System (INIS)

    Zhang, Zhisheng; Tao, Jun; Engling, Guenter; Zhang, Leiming; Kawamura, Kimitaka; Yang, Yihong; Zhang, Renjian; Chan, Chuen-yu; Li, Yide

    2015-01-01

    Fungal spores are ubiquitous in the Earth’s atmosphere, especially in the environment of tropical rainforests with intense biological activities. To assess the impact of fungi on chemical components of atmospheric aerosols at a Chinese tropical rainforest site, size-segregated fungal spore tracers (i.e. arabitol and mannitol) were measured along with major aerosol components, including carbonaceous species and water-soluble inorganic ions. The fungal spore tracers were found to be predominately associated with coarse particles, in which organic carbon (OC) and potassium (K + ) were also present at significant levels. Enhanced amounts of fungal spore tracers were closely linked to rainfall events. Moreover, fungal spore tracers exhibited positive correlations with relative humidity and negative correlations with wind speed, temperature or radiation. The relationships between fungal spore tracers and meteorological factors are consistent with the emission features of actively discharged fungal spores, which are generally associated with sugar alcohols and by-products such as the inorganic ion K + . The excellent correlations between fungal spore tracers and OC or K + in the coarse particles further suggested their common emission sources. Absolute principal factor analysis further identified fungi as the largest contributor to coarse OC and K + (both at ∼66%) in this rainforest. (letter)

  5. Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong

    Science.gov (United States)

    Lee, Berto Paul; Kwok Keung Louie, Peter; Luk, Connie; Keung Chan, Chak

    2017-12-01

    Road traffic has significant impacts on air quality particularly in densely urbanized and populated areas where vehicle emissions are a major local source of ambient particulate matter. Engine type (i.e., fuel use) significantly impacts the chemical characteristics of tailpipe emission, and thus the distribution of engine types in traffic impacts measured ambient concentrations. This study provides an estimation of the contribution of vehicles powered by different fuels (gasoline, diesel, LPG) to carbonaceous submicron aerosol mass (PM1) based on ambient aerosol mass spectrometer (AMS) and elemental carbon (EC) measurements and vehicle count data in an urban inner city environment in Hong Kong with the aim to gauge the importance of different engine types to particulate matter burdens in a typical urban street canyon. On an average per-vehicle basis, gasoline vehicles emitted 75 and 93 % more organics than diesel and LPG vehicles, respectively, while EC emissions from diesel vehicles were 45 % higher than those from gasoline vehicles. LPG vehicles showed no appreciable contributions to EC and thus overall represented a small contributor to traffic-related primary ambient PM1 despite their high abundance (˜ 30 %) in the traffic mix. Total carbonaceous particle mass contributions to ambient PM1 from diesel engines were only marginally higher (˜ 4 %) than those from gasoline engines, which is likely an effect of recently introduced control strategies targeted at commercial vehicles and buses. Overall, gasoline vehicles contributed 1.2 µg m-3 of EC and 1.1 µ m-3 of organics, LPG vehicles 0.6 µg m-3 of organics and diesel vehicles 2.0 µg m-3 of EC and 0.7 µg m-3 of organics to ambient carbonaceous PM1.

  6. Spatial and temporal variability of carbonaceous aerosols: Assessing the impact of biomass burning in the urban environment.

    Science.gov (United States)

    Titos, G; Del Águila, A; Cazorla, A; Lyamani, H; Casquero-Vera, J A; Colombi, C; Cuccia, E; Gianelle, V; Močnik, G; Alastuey, A; Olmo, F J; Alados-Arboledas, L

    2017-02-01

    Biomass burning (BB) is a significant source of atmospheric particles in many parts of the world. Whereas many studies have demonstrated the importance of BB emissions in central and northern Europe, especially in rural areas, its impact in urban air quality of southern European countries has been sparsely investigated. In this study, highly time resolved multi-wavelength absorption coefficients together with levoglucosan (BB tracer) mass concentrations were combined to apportion carbonaceous aerosol sources. The Aethalometer model takes advantage of the different spectral behavior of BB and fossil fuel (FF) combustion aerosols. The model was found to be more sensitive to the assumed value of the aerosol Ångström exponent (AAE) for FF (AAE ff ) than to the AAE for BB (AAE bb ). As result of various sensitivity tests the model was optimized with AAE ff =1.1 and AAE bb =2. The Aethalometer model and levoglucosan tracer estimates were in good agreement. The Aethalometer model was further applied to data from three sites in Granada urban area to evaluate the spatial variation of CM ff and CM bb (carbonaceous matter from FF or BB origin, respectively) concentrations within the city. The results showed that CM bb was lower in the city centre while it has an unexpected profound impact on the CM levels measured in the suburbs (about 40%). Analysis of BB tracers with respect to wind speed suggested that BB was dominated by sources outside the city, to the west in a rural area. Distinguishing whether it corresponds to agricultural waste burning or with biomass burning for domestic heating was not possible. This study also shows that although traffic restrictions measures contribute to reduce carbonaceous concentrations, the extent of the reduction is very local. Other sources such as BB, which can contribute to CM as much as traffic emissions, should be targeted to reduce air pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    International Nuclear Information System (INIS)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m 2 between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m 2 depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  8. Hydrogen ion-driven permeation in carbonaceous films

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1989-01-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C:H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D 3 + ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5x10 14 D/cm 2 s to 5x10 15 D/cm 2 s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C:H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C:H films. (orig.)

  9. Hydrogen ion-driven permeation in carbonaceous films

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.

    1989-04-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C:H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D/sub 3//sup +/ ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5x10/sup 14/ D/cm/sup 2/ s to 5x10/sup 15/ D/cm/sup 2/ s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C:H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C:H films. (orig.).

  10. Hydrogen ion-driven permeation in carbonaceous films

    Science.gov (United States)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1989-04-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C: H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D +3 ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5 × 10 14D/ cm2 s to 5 × 10 15D/ cm2 s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C : H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C : H films.

  11. Template-free synthesis of multifunctional carbonaceous microcone forests

    Science.gov (United States)

    Wang, Qiang; Yang, Lei; Dai, Bing; Bai, Jie; Yang, Zhenhuai; Guo, Shuai; He, Yurong; Han, Jiecai; Zhu, Jiaqi

    2018-01-01

    Forests of vertically aligned carbonaceous microcones are fabricated directly on a nickel mesh by microwave-plasma-assisted chemical vapor deposition. The microstructure is formed through a simple one-step process involving self-assembly. The fabricated composite exhibits superhydrophobicity and superoleophilicity as well as low density, owing to which it floats on water and can be used for the in-situ separation of oil from water at the oil/water interface. Furthermore, the composite exhibits pH responsivity, and its water permeability can be varied simply by altering the pH of the aqueous solution. In addition, the composite is suitable for use as an electrode material for supercapacitors owing to its large geometric surface area, porous structure, and superior electrical properties, which allow for fast ion and electron transportation. Thus, this composite consisting of forests of vertically aligned carbonaceous microcones on a nickel mesh is expected to find use in a wide range of fields and applications, including in environmental cleanup, flow switches, and energy storage devices.

  12. Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries

    Directory of Open Access Journals (Sweden)

    Xingxing Gu

    2016-11-01

    Full Text Available The effects of climate change are just beginning to be felt, and as such, society must work towards strategies of reducing humanity’s impact on the environment. Due to the fact that energy production is one of the primary contributors to greenhouse gas emissions, it is obvious that more environmentally friendly sources of power are required. Technologies such as solar and wind power are constantly being improved through research; however, as these technologies are often sporadic in their power generation, efforts must be made to establish ways to store this sustainable energy when conditions for generation are not ideal. Battery storage is one possible supplement to these renewable energy technologies; however, as current Li-ion technology is reaching its theoretical capacity, new battery technology must be investigated. Lithium–sulphur (Li–S batteries are receiving much attention as a potential replacement for Li-ion batteries due to their superior capacity, and also their abundant and environmentally benign active materials. In the spirit of environmental harm minimization, efforts have been made to use sustainable carbonaceous materials for applications as carbon–sulphur (C–S composite cathodes, carbon interlayers, and carbon-modified separators. This work reports on the various applications of carbonaceous materials applied to Li–S batteries, and provides perspectives for the future development of Li–S batteries with the aim of preparing a high energy density, environmentally friendly, and sustainable sulphur-based cathode with long cycle life.

  13. Conditions of formation for carbonaceous silicites of the continental margins

    Energy Technology Data Exchange (ETDEWEB)

    Bazhenova, O.K.

    1986-06-01

    Carbonaceous silicites occur in virtually all systems in Phanerozoic folded regions. They are of practical interest as concentrators of silver, molybdenum, vanadium, and nickel and as source and occasionally reservoir beds for petroleum. Some small oil pools occur in them in basins in Japan (Niigata and Akita), California, and East Sakhalin. Recently, interest has increased because a major pool was discovered in silicites of the Monterey formation: Point Arguello Hueso in the offshore part of the Santa Maria basin. Here the authors consider carbonaceous silicates in the western part of the Pacific active margin, which include Silurian and Devonian phthanites in the Mongolia-Okhotsk belt, and Triassic and Jurassic phthanites in the Sikhote-Alin area, although these rocks are of fairly local occurrence in the section. The authors have examined silicites in Kamchatka, Sakhalin, and Chukotka: diatomites, tuff-diatomites, and opokas, together with their recrystallized analogs. They occur in the Paleogene, but they are most abundant in the Miocene and Pliocene, as well as in the Jurassic, Cretaceous, and Eocene, particularly in the Miocene of California and Japan. 16 references.

  14. Review of the technology for solar gasification of carbonaceous materials

    International Nuclear Information System (INIS)

    Epstein, M.; Spiewak, I.; Funken, K.H.; Ortner, J.

    1994-01-01

    Research has demonstrated the feasibility of solar assisted gasification of carbonaceous materials to form synthesis gas (syngas). The potential feedstocks range from natural gas, residual oil, biomass, and oil-shale to coal. The expected advantages of such processing are yields of syngas with calorific values above those of the carbonaceous feedstocks, syngas quality suited to production of hydrogen, methanol or bulk Fischer-Tropsch fuels, and the ability to process low-grade and waste materials with essentially no emissions to atmosphere other than small amounts of CO 2 . The review provides some background on solar receiver concepts to reach the high temperatures needed for syngas production, the basic chemistry involved, covers applicable experiments that have been reported with solar inputs and with conventional heating, heat transfer processes, process and energy balances, and cost analysis. Approximately 80 references are cited. The authors present their views on the most promising approaches to solar-assisted gasification, the technology development required, and the ultimate benefits of such development and commercialization

  15. Ethanol and other oxygenateds from low grade carbonaceous resources

    Energy Technology Data Exchange (ETDEWEB)

    Joo, O.S.; Jung, K.D.; Han, S.H. [Korea Institute of Science and Technology, Seoul (Korea, Democratic People`s Republic of)] [and others

    1995-12-31

    Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grade carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.

  16. The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Wehner, H.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover (Germany); Botz, R. [University Kiel, Geological-Paleontological Department, Olshausenstrasse 40-60, D-24118 Kiel (Germany); Berner, Z.; Stueben, D. [Technical University Karlsruhe, Institute for Mineralogy and Geochemistry, Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Al-Sayigh, A. [Sultan Qaboos University, Geological Dept. PO Box 36, Al-Khod (Oman)

    2007-10-01

    incursions make up a greater deal of the sedimentary record than mangrove swamps. Terra rossa paleosols mark the end of accumulation of organic material (OM) and herald supratidal conditions at the passage of Rusayl Formation into the overlying Seeb Formation. In the subtidal-supratidal cycles of lithofacies unit VIII the terra rossa horizons are thining upwards and become gradually substituted for by deep-water middle ramp sediments of lithofacies unit IX. Framboidal pyrite, (ferroan) dolomite with very little siderite are indicative of an early diagenetic alteration stage I under rather moderate temperatures of formation. During a subsequent stage II, an increase in the temperature of alteration was partly induced by burial and a high heat flow from the underlying Semail Ophiolite. Type-III kerogen originating from higher plants and, in addition, some marine biota gave rise to the generation of small amounts of soluble organic matter during this stage of diagenesis. The average reflectance of humic particles marks the beginning of the oil window and the production index reveals the existence of free hydrocarbons. Further uplift of the Eocene strata and oxidation during stage IIII caused veins of satin spar to form from organic sulfur and pyrite in the carbonaceous material. Lowering of the pH value of the pore fluid led to the precipitation of jarosite and a set of hydrated aluminum sulfates dependant upon the cations present in the wall rocks. AMD minerals (= acid mine drainage) are not very widespread in this carbonaceous series intercalated among calcareous rocks owing to the buffering effect of carbonate minerals. These carbonate-hosted carbonaceous rocks are below an economic level as far as the mining of coal is concerned, but deserves particular attention as source rocks for hydrocarbons in the Middle East, provided a higher stage of maturity is reached. (author)

  17. Accretion and Preservation of Organic Matter in Carbonaceous Chondrites as Revealed by NanoSIMS Imaging.

    Science.gov (United States)

    Remusat, L.; Guan, Y.; Eiler, J.

    2008-12-01

    Carbonaceous chondrites are the most primitive known meteorites. Their parent bodies accreted several discrete components of the early solar system: CAIs, other silicates, oxides, sulfides, ice, organics, and noble gases. Radioactive decay of short live radionucleides quickly heated these parent bodies and drove thermal metamorphism and aqueous alteration of their constituents. Despite this post-acretionary modification, at least some components of the organic matter in the carbaceous chondrites retained distinctive isotopic and molecular properties that may relate to their pre-acretionary origins in the protosolar nebula or in the molecular cloud that gave birth to it [1]. These processes that gave rise to early solar-system organic matter and the extent to which it was modified by parent body processes are still a matter of debate [2]. We have acquired NanoSIMS images of matrices of several CI, CM, CR and CV chondrites to document, in- situ, the distribution of organics and their textural and chemical relationships to co-existing inorganic components. Importantly, we performed these analyses on essentially unmodified fragments of matrix material pressed into indium, rather than on extracts, which have been the focus of most previous work on meteoritic organic matter. Specifically, we simultaneously collected H, D, 12C, 18O, 26CN, 28Si and 32S with a spatial resolution of 200 nm. Inorganic constituents of the imaged domains were determined by SEM imaging and EDS analysis. We identify two textural classes of organic constituents: diffuse organic matter and organic particles ~ 1 micron in diameter. The particles are common and do not exhibit any textural association with any inorganic matrix constituent. This distribution is consistent with previous observations by fluorescence optical microscopy [3]. These organic particles are likely primarily composed of insoluble organic matter (IOM) that grew prior to accretion as pure organic particules and was preserved in

  18. Influence of Bulk Carbonaceous Matter on Pluto's Structure and Evolution

    Science.gov (United States)

    McKinnon, W. B.; Stern, S. A.; Weaver, H. A., Jr.; Spencer, J. R.; Moore, J. M.; Young, L. A.; Olkin, C.

    2017-12-01

    The rock/ice mass ratio of the Pluto system is about 2/1 (McKinnon et al., Icarus 287, 2017) [1], though this neglects the potential role of bulk carbonaceous matter ("CHON"), an important cometary component and one likely important in the ancestral Kuiper belt. The wealth of measurements at comet 67P/Churyumov-Gerasimenko (a Jupiter-family comet and thus one formed in the same region of the outer Solar System as Pluto) by Rosetta are particularly instructive. E.g., Davidsson et al. (A&A 592, 2016) [2] propose in their "composition A" that 67P/Ch-G is 25% metal/sulfides, 42% rock/organics, and 32% ice by mass. For their assumed component densities, the overall grain density is 1820 kg/m3. Fulle et al. (MNRAS 462, 2016) [3] posit 5 ± 2 volume % Fe-sulfides of density 4600 kg/m3, 28 ± 5% Mg,Fe-olivines and -pyroxenes of density 3200 kg/m3, 52 ± 12% hydrocarbons of density 1200 kg/m3, and 15 ± 6% ices of 917 kg/m3. This composition yields a primordial grain density (dust + ice) of 1885 ± 240 kg/m3. Both of these cometary density estimates [2,3] are consistent with Pluto-Charon, especially as Pluto's uncompressed (STP) density is close to 1820 kg/m3 and that of the system as a whole is close to 1800 kg/m3 [1]. We consider the potential compositional and structural implications of these proposed 67P/Ch-G compositions when applied to Pluto and Charon. The amount of ice in model A of [2] is a good match to Pluto structural models. Their rock/organics component, however, is taken to be half graphite (2000 kg/m3) by volume. The composition in [3] is more divergent: very ice poor, and on the order of 50% light hydrocarbons by volume. Regardless of the differences between [2] and [3], the possibility of massive internal graphite or carbonaceous layers within Pluto is real. We discuss the possible consequences for Pluto's structure, rock/ice ratio, thermal and chemical evolution, and even interpretation of its gravity field from tectonics. For example, radiogenic heat

  19. A New Method of Absorption-Phase Nanotomography for 3D Observation of Mineral-Organic-Water Textiles and its Application to Pristine Carbonaceous Chondrites

    Science.gov (United States)

    Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.; hide

    2017-01-01

    Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.

  20. Agglomeration processes in carbonaceous dusty plasmas, experiments and numerical simulations

    International Nuclear Information System (INIS)

    Dap, S; Hugon, R; De Poucques, L; Bougdira, J; Lacroix, D; Patisson, F

    2010-01-01

    This paper deals with carbon dust agglomeration in radio frequency acetylene/argon plasma. Two studies, an experimental and a numerical one, were carried out to model dust formation mechanisms. Firstly, in situ transmission spectroscopy of dust clouds in the visible range was performed in order to observe the main features of the agglomeration process of the produced carbonaceous dust. Secondly, numerical simulation tools dedicated to understanding the achieved experiments were developed. A first model was used for the discretization of the continuous population balance equations that characterize the dust agglomeration process. The second model is based on a Monte Carlo ray-tracing code coupled to a Mie theory calculation of dust absorption and scattering parameters. These two simulation tools were used together in order to numerically predict the light transmissivity through a dusty plasma and make comparisons with experiments.

  1. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical frameworks are developed from the rigor of thermodynamic property surfaces of a single component adsorbate-adsorbent system and by incorporating the micropore filling theory approach, where the effect of adsorbed phase volume is considered. The abovementioned thermodynamic properties are quantitatively evaluated from the experimental uptake data for methane adsorption onto activated carbons such as Maxsorb III at temperatures ranging from 120 to 350 K and pressures up to 25 bar. Employing the proposed thermodynamic approaches, this paper shows the thermodynamic maps of the charge and discharge processes of adsorbed natural gas (ANG) storage system for understanding the behaviors of natural gas in ANG vessel. © 2011 Elsevier Ltd. All rights reserved.

  2. Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.

    Science.gov (United States)

    Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki

    2002-10-01

    Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy.

  3. Characterization of carbonaceous aerosol emissions from selected combustion sources

    International Nuclear Information System (INIS)

    Martinez, J.P.G.; Espino, M.P.M.; Pabroa, P.C.B.; Bautista, A.T. VII

    2015-01-01

    Carbonaceous Particulates are carbon-containing solid or liquid matter which form a significant portion of the fine particulate mass (PM2.5) and these have known profound adverse effects on health, climate and visibility. This study aims to characterize carbonaceous aerosol emissions from different combustion sources to establish fingerprints for these for use in the refinement of improvement of the resolution of sources apportionment studies being done by the Philippine Nuclear Research Institute (PNRI), i.e. to resolve vehicular emission sources. Fine air particulate sample were collected in pre-baked Quartz filters using an improvised collection set-up with a Gent sampler. Concentrations of organic and elemental carbon (OC and EC, respectively) in PM2.5 were measured for the different combustion sources—vehicular emissions, tire pyrolysis, and biomass burning, using a thermal-optical method of analysis following the IMPROVE_A protocol. Measured OC ad EC concentrations are shown as percentages with respect to the total carbon (TC) and are illustrated in a 100% stacked chart. Predominance of the EC2 fraction is exhibited in both the diesel fuelled vehicle and tire pyrolysis emissions with EC2/OC2 ratio distinguishing one from the other, EC2/OC2 is 1.63 and 8.41, respectively. Predominance of either OC2 or OC3 fraction is shown in the unleaded gasoline and LPG Fuelled vehicles and in biomass burning with the OC2/OC3 ratio distinguishing one from the others. OC2/OC3 ratios are 1.33 for unleaded gasoline fuelled vehicle, 1.89 for LPG-fuelled vehicle, 0.55 for biomass burning (leaves) and 0.82 biomass burning (wood). The study has shown probable use of the EC2/OC2 and OC2/OC3 ratios to distinguish fingerprints for combustion sources covered in this study. (author)

  4. Characterization, Long-Range Transport and Source Identification of Carbonaceous Aerosols during Spring and Autumn Periods at a High Mountain Site in South China

    Directory of Open Access Journals (Sweden)

    Hong-yan Jia

    2016-09-01

    Full Text Available PM10 (particulate matter samples were collected at Mount Lu, a high elevation mountain site in south China (August and September of 2011; and March, April and May of 2012. Eight carbonaceous fractions of particles were analyzed to characterize the possible carbonaceous emission sources. During the sampling events, daily average concentrations of PM10 at Mount Lu were 97.87 μg/m3 and 73.40 μg/m3 in spring and autumn, respectively. The observed mean organic carbon (OC and element carbon (EC concentrations during spring in PM10 were 10.58 μg/m3 and 2.58 μg/m3, respectively, and those in autumn were 6.89 μg/m3 and 2.40 μg/m3, respectively. Secondary organic carbon concentration was 4.77 μg/m3 and 2.93 μg/m3 on average, accounting for 28.0% and 31.0% of the total OC in spring and autumn, respectively. Relationships between carbonaceous species and results of principal component analysis showed that there were multiple sources contributing to the carbonaceous aerosols at the observation site. Through back trajectory analysis, it was found that air masses in autumn were mainly transported from the south of China, and these have the highest OC but lowest EC concentrations. Air masses in spring transported from northwest China bring 7.77 μg/m3 OC and 2.28 μg/m3 EC to the site, with lower levels coming from other sites. These air mass sources were featured by the effective carbon ratio (ECR.

  5. COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS

    International Nuclear Information System (INIS)

    Nesvorny, David; Levison, Harold F.; Bottke, William F.; Jenniskens, Peter; Vokrouhlicky, David; Gounelle, Matthieu

    2010-01-01

    The zodiacal cloud is a thick circumsolar disk of small debris particles produced by asteroid collisions and comets. Their relative contribution and how particles of different sizes dynamically evolve to produce the observed phenomena of light scattering, thermal emission, and meteoroid impacts are unknown. Until now, zodiacal cloud models have been phenomenological in nature, composed of ad hoc components with properties not understood from basic physical processes. Here, we present a zodiacal cloud model based on the orbital properties and lifetimes of comets and asteroids, and on the dynamical evolution of dust after ejection. The model is quantitatively constrained by Infrared Astronomical Satellite (IRAS) observations of thermal emission, but also qualitatively consistent with other zodiacal cloud observations, with meteor observations, with spacecraft impact experiments, and with properties of recovered micrometeorites (MMs). We find that particles produced by Jupiter-family comets (JFCs) are scattered by Jupiter before they are able to orbitally decouple from the planet and drift down to 1 AU. Therefore, the inclination distribution of JFC particles is broader than that of their source comets and leads to good fits to the broad latitudinal distribution of fluxes observed by IRAS. We find that 85%-95% of the observed mid-infrared emission is produced by particles from JFCs and 100 μm undergo a further collisional cascade with smaller fragments being progressively more affected by Poynting-Robertson (PR) drag. Upon reaching D -1 mean for D = 100-200 μm with ∼12 km s -1 being the most common case), many JFC grains should survive frictional heating and land on Earth's surface. This explains why most MMs collected in antarctic ice have primitive carbonaceous composition. The present mass of the inner zodiacal cloud at 19 g, mainly in D = 100-200 μm particles. The inner zodiacal cloud should have been >10 4 times brighter during the Late Heavy Bombardment

  6. Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres.

    Science.gov (United States)

    Braghiroli, F L; Fierro, V; Izquierdo, M T; Parmentier, J; Pizzi, A; Celzard, A

    2014-01-01

    Aqueous solutions of condensed tannins were submitted to hydrothermal carbonization (HTC) in a stainless steel autoclave, and the kinetics of hydrothermal carbon formation was investigated by changing several parameters: amount of tannin (0.5; 1.0; 1.5; 2.0 g in 16 mL of water), HTC temperature (130, 160, 180 and 200°C) and reaction times (from 1 to 720 h). The morphology and the structure of the tannin-based hydrothermal carbons were studied by TEM, krypton adsorption at -196°C and helium pycnometry. These materials presented agglomerated spherical particles, having surface areas ranging from 0.6 to 10.0 m(2) g(-1). The chemical composition of the hydrothermal carbons was found to be constant and independent of reaction time. HTC kinetics of tannin were determined and shown to correspond to first-order reaction. Temperature-dependent measurements led to an activation energy of 91 kJ mol(-1) for hydrothermal conversion of tannin into carbonaceous microspheres separable by centrifugation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Time-resolved measurements of PM2.5 carbonaceous aerosols at Gosan, Korea.

    Science.gov (United States)

    Batmunkh, T; Kim, Y J; Lee, K Y; Cayetano, M G; Jung, J S; Kim, S Y; Kim, K C; Lee, S J; Kim, J S; Chang, L S; An, J Y

    2011-11-01

    In order to better understand the characteristics of atmospheric carbonaceous aerosol at a background site in Northeast Asia, semicontinuous organic carbon (OC) and elemental carbon (EC), and time-resolved water-soluble organic carbon (WSOC) were measured by a Sunset OC/ EC and a PILS-TOC (particle-into-liquid sampler coupled with an online total organic carbon) analyzer, respectively, at the Gosan supersite on Jeju Island, Korea, in the summer (May 28-June 17) and fall (August 24-September 30) of 2009. Hourly average OC concentration varied in the range of approximately 0.87-28.38 microgC m-3, with a mean of 4.07+/- 2.60 microgC m-3, while the hourly average EC concentration ranged approximately from 0.04 to 8.19 .microgC m-3, with a mean of 1.35 +/- 0.71 microgC m-3, from May 28 to June 17, 2009. During the fall season, OC varied in the approximate range 0.9-9.6 microgC m-3, with a mean of 2.30 +/-0.80 microgC m-3, whereas EC ranged approximately from 0.01 to 5.40 microgC m-3, with a mean of 0.66 +/- 0.38 microgC m-3. Average contributions of EC to TC and WSOC to OC were 26.0% +/- 9.7% and 20.6% +/-7.4%, and 37.6% +/- 23.5% and 57.2% +/- 22.2% during summer and fall seasons, respectively. As expected, clear diurnal variation of WSOC/OC was found in summer, varying from 0.22 during the nighttime up to 0.72 during the daytime, mainly due to the photo-oxidation process. In order to investigate the effect of air mass pathway on the characteristics of carbonaceous aerosol, 5-day back-trajectory analysis was conducted using the HYSPLIT model. The air mass pathways were classified into four types: Continental (CC), Marine (M), East Sea (ES) and Korean Peninsula (KP). The highest OC/EC ratio of 3.63 was observed when air mass originated from the Continental area (CC). The lowest OC/EC ratio of 0.79 was measured when air mass originated from the Marine area (M). A high OC concentration was occasionally observed at Gosan due to local biomass burning activities. The

  8. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  9. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    Science.gov (United States)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  10. Solar-Radiation Heating as a Possible Heat Source for Dehydration of Hydrous Carbonaceous Chondrites

    Science.gov (United States)

    Nakamura, T.; Golabek, G.; Ohtsuka, K.; Matsuoka, M.

    2017-07-01

    We have calculated time-dependent temperature profiles of near surface layers of primitive Near Sun Asteroid (3200) Phaethon and found that solar radiation heating is a possible heat source for dehydration of carbonaceous chondrites.

  11. Agglomeration Determines Effects of Carbonaceous Nanomaterials on Soybean Nodulation, Dinitrogen Fixation Potential, and Growth in Soil

    Science.gov (United States)

    The potential effects of carbonaceous nanomaterials (CNMs) on agricultural plants are of concern. However, little research has been performed using plants cultivated to maturity in soils contaminated with various CNMs at different concentrations. Here, we grew soybean for 39 days...

  12. Mineralized remains of morphotypes of filamentous cyanobacteria in carbonaceous meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2005-09-01

    The quest for conclusive evidence of microfossils in meteorites has been elusive. Abiotic microstructures, mineral grains, and even coating artifacts may mimic unicellular bacteria, archaea and nanobacteria with simple spherical or rod morphologies (i.e., cocci, diplococci, bacilli, etc.). This is not the case for the larger and more complex microorganisms, colonies and microbial consortia and ecosystems. Microfossils of algae, cyanobacteria, and cyanobacterial and microbial mats have been recognized and described from many of the most ancient rocks on Earth. The filamentous cyanobacteria and sulphur-bacteria have very distinctive size ranges, complex and recognizable morphologies and visibly differentiated cellular microstructures. The taphonomic modes of fossilization and the life habits and processes of these microorganisms often result in distinctive chemical biosignatures associated with carbonization, silicification, calcification, phosphatization and metal-binding properties of their cell-walls, trichomes, sheaths and extracellular polymeric substances (EPS). Valid biogenicity is provided by the combination of a suite of known biogenic elements (that differ from the meteorite matrix) found in direct association with recognizable and distinct biological features and microstructures (e.g., uniseriate or multiseriate filaments, trichomes, sheaths and cells of proper size/size range); specialized cells (e.g., basal or apical cells, hormogonia, akinetes, and heterocysts); and evidence of growth characteristics (e.g., spiral filaments, robust or thin sheaths, laminated sheaths, true or false branching of trichomes, tapered or uniform filaments) and evidence of locomotion (e.g. emergent cells and trichomes, coiling hormogonia, and hollow or flattened and twisted sheaths). Since 1997 we have conducted Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) studies of freshly fractured interior surfaces of carbonaceous meteorites, terrestrial

  13. Aqueous processing of organic compounds in carbonaceous asteroids

    Science.gov (United States)

    Trigo-Rodríguez, Josep Maria; Rimola, Albert; Martins, Zita

    2015-04-01

    There is growing evidence pointing towards a prebiotic synthesis of complex organic species in water-rich undifferentiated bodies. For instance, clays have been found to be associated with complex organic compounds (Pearson et al. 2002; Garvie & Buseck 2007; Arteaga et al. 2010), whereas theoretical calculations have studied the interaction between the organic species and surface minerals (Rimola et al., 2013) as well as surface-induced reactions (Rimola at al. 2007). Now, we are using more detailed analytical techniques to study the possible processing of organic molecules associated with the mild aqueous alteration in CR, CM and CI chondrites. To learn more about these processes we are studying carbonaceous chondrites at Ultra High-Resolution Transmission Electron Microscopy (UHR-TEM). We are particularly interested in the relationship between organics and clay minerals in carbonaceous chondrites (CCs) matrixes (Trigo-Rodríguez et al. 2014, 2015).We want to address two goals: i) identifying the chemical steps in which the organic molecules could have increased their complexity (i.e., surface interaction and catalysis); and ii) studying if the organic matter present in CCs experienced significant processing concomitant to the formation of clays and other minerals at the time in which these planetary bodies experienced aqueous alteration. Here, these two points are preliminarily explored combing experimental results with theoretical calculations based on accurate quantum mechanical methods. References Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Jellison GE, Llorca J, Ribó JM (2010) Chiral biases in solids by effect of shear gradients: a speculation on the deterministic origin of biological homochirality. Orig Life Evol Biosph 40:27-40. Garvie LAJ, Buseck PR (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI) and Tagish lake (C2 ungrouped) meteorites. Meteorit Planet Sci 42:2111-2117. Pearson VK, Sephton MA, Kearsley AT, Bland AP, Franchi IA, Gilmour

  14. Proto-Planetary Disk Chemistry Recorded by D-Rich Organic Radicals in Carbonaceous Chondrites

    OpenAIRE

    Remusat, Laurent; Robert, François; Meibom, Anders; Mostefaoui, Smail; Delpoux, Olivier; Binet, Laurent; Gourier, Didier; Derenne, Sylvie

    2009-01-01

    Insoluble organic matter (IOM) in primitive carbonaceous meteorites has preserved its chemical composition and isotopic heterogeneity since the solar system formed ~4.567 billion years ago. We have identified the carrier moieties of isotopically anomalous hydrogen in IOM isolated from the Orgueil carbonaceous chondrite. Data from high spatial resolution, quantitative isotopic NanoSIMS mapping of Orgueil IOM combined with data from electron paramagnetic resonance spectroscopy reveals that orga...

  15. Single-particle characterization of urban aerosol particles collected in three Korean cites using low-Z electron probe X-ray microanalysis.

    Science.gov (United States)

    Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René

    2002-11-15

    A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.

  16. Laboratory study of carbonaceous dust and molecules of astrochemical interest

    International Nuclear Information System (INIS)

    Cataldo, F; Garcia-Hernandez, D A; Manchado, A; Kwok, S

    2016-01-01

    In this paper are reviewed some research works dedicated to the study of carbonaceous dust and molecules of astrochemical interest. First of all it is discussed the carbon arc through which it is possible to produce carbon soot and fullerenes under helium but also many other different products just changing the arcing conditions. For example, when the carbon arc is struck in an hydrocarbon solvent it is possible to produce and trap polyynes in the solvent. Monocyanopolyynes and dicyanopolyynes can be produced as well by selecting the appropriate conditions. Amorphous carbon soot or partially graphitized carbon black can be produced with the carbon arc. Fullerenes were found in space thanks to the reference infrared spectra and the absorption cross sections which were determined in laboratory. Fullerenes are readily reactive with hydrogen yielding fulleranes the hydrogenated fullerenes. Furthermore fullerenes react with PAHs and with iron carbonyl yielding adducts. All these fullerene derivatives were synthesized and their reference spectra recorded in laboratory. It was proposed that petroleum fractions can be used as model substrates in the explanation of the carriers of the AIB (Aromatic Infrared Bands) observed in protoplanetary and planetary nebulae and the UIE (Unidentified Infrared Bands) found in the interstellar medium. (paper)

  17. Carbonaceous species emitted from handheld two-stroke engines

    Science.gov (United States)

    Volckens, John; Olson, David A.; Hays, Michael D.

    Small, handheld two-stroke engines used for lawn and garden work (e.g., string trimmers, leaf blowers, etc.) can emit a variety of potentially toxic carbonaceous air pollutants. Yet, the emissions effluents from these machines go largely uncharacterized, constraining the proper development of human exposure estimates, emissions inventories, and climate and air quality models. This study samples and evaluates chemical pollutant emissions from the dynamometer testing of six small, handheld spark-ignition engines—model years 1998-2002. Four oil-gas blends were tested in each engine in duplicate. Emissions of carbon dioxide, carbon monoxide, and gas-phase hydrocarbons were predominant, and the PM emitted was organic matter primarily. An ANOVA model determined that engine type and control tier contributed significantly to emissions variations across all identified compound classes; whereas fuel blend was an insignificant variable accounting for engines were generally intermediate in magnitude compared with other gasoline-powered engines, numerous compounds traditionally viewed as motor vehicle markers are also present in small engine emissions in similar relative proportions. Given that small, handheld two-stroke engines used for lawn and garden work account for 5-10% of total US emissions of CO, CO 2, NO x, HC, and PM 2.5, source apportionment models and human exposure studies need to consider the effect of these small engines on ambient concentrations in air polluted environments.

  18. Fuel cells for electricity generation from carbonaceous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff-Hey, K; Formanski, V; Roes, J [Gerhard-Mercator- Universitaet - Gesamthochschule Duisburg, Fachbereich Maschinenbau/Fachgebiet Energietechnik, Duisburg (Germany); Heinzel, A [Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany)

    1998-09-01

    Fuel cells, which are electrochemical systems converting chemical energy directly into electrical energy with water and heat as by-products, are of interest as a means of generating electricity which is environmentally friendly, clean and highly efficient. They are classified according to the electrolyte used. The main types of cell in order of operating temperature are described. These are: alkaline fuel cells, the polymer electrolyte membrane fuel cell (PEMFC); the phosphoric acid fuel cell (PAFC); the molten carbonate fuel cell (MCFC); the solid oxide fuel cell (SOFC). Applications depend on the type of cell and may range from power generation on a large scale to mobile application in cars or portable systems. One of the most promising options is the PEM-fuel cell stack where there has been significant improvement in power density in recent years. The production from carbonaceous fuels and purification of the cell fuel, hydrogen, is considered. Of the purification methods available, hydrogen separation by means of palladium alloy membranes seems particular effective in reducing CO concentrations to the low levels required for PEM cells. (UK)

  19. Primordial Molecular Cloud Material in Metal-Rich Carbonaceous Chondrites

    Science.gov (United States)

    Taylor, G. J.

    2016-03-01

    The menagerie of objects that make up our Solar System reflects the composition of the huge molecular cloud in which the Sun formed, a late addition of short-lived isotopes from an exploding supernova or stellar winds from a neighboring massive star, heating and/or alteration by water in growing planetesimals that modified and segregated the primordial components, and mixing throughout the Solar System. Outer Solar System objects, such as comets, have always been cold, hence minimizing the changes experienced by more processed objects. They are thought to preserve information about the molecular cloud. Elishevah Van Kooten (Natural History Museum of Denmark and the University of Copenhagen) and co-authors in Denmark and at the University of Hawai'i, measured the isotopic compositions of magnesium and chromium in metal-rich carbonaceous chondrites. They found that the meteorites preserve an isotopic signature of primordial molecular cloud materials, providing a potentially detailed record of the molecular cloud's composition and of materials that formed in the outer Solar System.

  20. The anthropogenic influence on carbonaceous aerosol in the European background

    Energy Technology Data Exchange (ETDEWEB)

    May, Barbara; Wagenbach, Dietmar; Hammer, Samuel (Institut fuer Umweltphysik, Univ. Heidelberg (Germany)). e-mail: barbara.may@iup.uni-heidelberg.de; Steier, Peter (VERA laboratory, Univ. of Vienna (Austria)); Puxbaum, Hans (Inst. for Chemical Technologies and Analytics, Vienna Univ. of Technology, Vienna (Austria)); Pio, Casimiro (CESAM and Dept. of Environment, Univ. of Aveiro (Portugal))

    2009-07-01

    To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around (26 +- 6)%, a dominant biogenic contribution of on average (73 +- 7)% in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to (1.4 +- 0.2) in summer and up to (2.5 +- 1.0) in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3-1.7.

  1. The anthropogenic influence on carbonaceous aerosol in the European background

    Energy Technology Data Exchange (ETDEWEB)

    May, Barbara; Wagenbach, Dietmar; Hammer, Samuel (Inst. fuer Umweltphysik, Univ. Heidelberg (Germany)). e-mail: barbara.may@iup.uni-heidelberg.de; Steier, Peter (VERA laboratory, Univ. of Vienna (Austria)); Puxbaum, Hans (Inst. for Chemical Technologies and Analytics, Vienna Univ. of Technology (Austria)); Pio, Casimiro (CESAM and Dept. of Environment, Univ. of Aveiro (Portugal))

    2008-07-01

    To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around (26 +- 6)% , a dominant biogenic contribution of on average (73 +- 7)% in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to (1.4 +- 0.2) in summer and up to (2.5 +- 1.0) in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3-1.7

  2. Carbonaceous content of atmospheric aerosols in Lisbon urban atmosphere

    Science.gov (United States)

    Mirante, Fátima; Oliveira, C.; Martins, N.; Pio, C.; Caseiro, A.; Cerqueira, M.; Alves, C.; Oliveira, C.; Oliveira, J.; Camões, F.; Matos, M.; Silva, H.

    2010-05-01

    Lisbon is the capital city of Portugal with about 565,000 residents and a population density of 6,600 inhabitants per square kilometre. The town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants. It is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams. Airborne particulate matter limit values are frequently exceeded, with important consequences on air pollution levels and obvious negative impacts on human health. Atmospheric aerosols are known to have in their structure significant amounts of carbonaceous material. The knowledge of the aerosols carbon content, particularly on their several carbon forms (as TC, EC and OC, meaning respectively Total, Elemental and Organic carbon) is often required to provide information for source attribution. In order to assess the vehicles PM input, two sampling campaigns (summer and winter periods) were carried out in 2008 in Lisbon in two contrasting sites, a roadside and an urban background site. Particulate matter was collected in two fractions on quartz fibre filters using Hi-Vol samplers (coarse fraction, 2.5µmwork was performed under Project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere - PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia" - FCT. Fátima Mirante acknowledges FCT her PhD grant (SFRH/BD/45473/2008).

  3. On the Q-phase of carbonaceous chondrites

    International Nuclear Information System (INIS)

    Vis, R.D.; Heymann, D.

    1999-01-01

    One of the unresolved puzzles of meteoritics is the nature of the carrier of the so-called heavy planetary gases. Apparently, these gases reside mainly in a minor fraction, which has been dubbed Q by Lewis et al. [R.S. Lewis, B. Srinivasan, E. Anders, Science 190 (1975) 1251] in analogy of the naming by Papanastasiou et al. [D.A. Papanastassiou, G.J. Wasserburg, Earth Planet. Sci. Lett. 11 (1971) 37] of a minor glassy phase in lunar rocks highly enriched in trace elements such as Pb and U. Q stands for the archaic term quintessence, the fifth or last and highest substance in ancient and medieval philosophy above fire, air, water and earth. In this contribution, an attempt is made to provide evidence that Q is carbonaceous, with carbon in the form of closed structures such as carbon nanotubes which serve as micro bottles for the heavy noble gases. To this end, Q was characterised with micro-PIXE and NRA, whereas HREM was used to search for nanotubes. Q itself was obtained as residue after chemical destruction of samples of Allende, Leoville and Vigarano

  4. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    Science.gov (United States)

    Cheung, Heidi H. Y.; Tan, Haobo; Xu, Hanbing; Li, Fei; Wu, Cheng; Yu, Jian Z.; Chan, Chak K.

    2016-07-01

    Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA) and an organic carbon/elemental carbon (OC / EC) analyzer. Low volatility (LV) particles, with a volatility shrink factor (VSF) at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11-15 % of the 80-300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4 transported at low altitudes (below 1500 m) for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the sum of EC and non-volatile OC was conducted. It suggests that non-volatile OC, in addition to EC, was one of the components of the non-volatile residuals measured by the VTDMA in this study.

  5. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    Science.gov (United States)

    Mazurek, Monica A.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    During the boreal forest burn studied, the ambient concentrations for the particle carbon smoke aerosol are highest for the full-fire burn conditions and vary significantly throughout the burn. Collection strategies must accordingly define ranges in the smoke aerosol concentrations produced. While the highest elemental C concentrations are observed during full-fire conditions, the great majority of smoke aerosol particles are in the form of organic C particles irrespective of fire temperature. The formation of organic C light-scattering particles was a significant process in the burn studied.

  6. Microgram level radiocarbon (14C) determination on carbonaceous particles in ice

    DEFF Research Database (Denmark)

    Jenk, Theo Manuel; Szidat, S.; Schwikowski, M.

    2007-01-01

    Accelerator mass spectrometry; Organic carbon; Elemental carbon; Radiocarbon dating; Ice cores; Paleo-record Udgivelsesdato: June......Accelerator mass spectrometry; Organic carbon; Elemental carbon; Radiocarbon dating; Ice cores; Paleo-record Udgivelsesdato: June...

  7. The significant role of carboxylated carbonaceous fragments in the electrochemistry of carbon nanotubes.

    Science.gov (United States)

    Ma, Xiao; Jia, Li; Zhang, Lu; Zhu, Liande

    2014-04-01

    Carbon nanotubes (CNTs) have been widely employed as electrode materials in diverse branches of electrochemistry, which are claimed to display dramatically improved electrochemical behaviour compared to the conventional carbon materials. But a series of recent publications have demonstrated that the electrocatalysis of CNTs might be due to the presence of some impurities, such as metallic catalysts, nanographitic particles and amorphous carbon. For this reason, CNTs are usually purified or treated with nitric acid or nitric and sulphuric acid prior to their versatile applications. However, the strong acidic and oxidative conditions are so aggressive that serious erosion of the tube structures has inevitably taken place, which creates defects on the sidewalls and gives rise to numerous molecular byproducts, commonly referred as carboxylated carbonaceous fragments (CCFs). The adsorption of CCFs on CNTs greatly alters the surface conditions of CNTs which may significantly impact on their electrochemical properties. To this end, we wish to disclose whether the electrocatalysis of the nitric acid purified CNTs is affected by the adsorption of the CCFs. Ascorbic acid (AA) and β-nicotinamide adenine dinucleotide (NADH) as selected as the targeting benchmarks that are known to be insensitive to the presence of metallic impurities, which may guarantee the preclusion of the promoting contributions from the metallic catalysts resident in CNTs. We have demonstrated that the electrocatalytic activities of the CNTs are actually dominated by the adsorbed CCFs generated during the acidic pre-treatment. After removal of the CCFs by base rinse, the electrocatalytic properties of CNTs are greatly deteriorated and degraded to the level similar to the conventional graphite powder. We believe this finding is particularly meaningful to uncover the mysterious electrocatalysis of CNTs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes.

    Science.gov (United States)

    Pandit, Soumya; Shanbhag, Sneha; Mauter, Meagan; Oren, Yoram; Herzberg, Moshe

    2017-09-05

    Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.

  9. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    Science.gov (United States)

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  10. Environmental evidence of fossil fuel pollution in Laguna Chica de San Pedro lake sediments (Central Chile)

    Energy Technology Data Exchange (ETDEWEB)

    Chirinos, L. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile)]. E-mail: lchirin@pucp.edu.pe; Rose, N.L. [Environmental Change Research Centre, University College London, 26 Bedford Way, London WG1HOAP (United Kingdom); Urrutia, R. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile); Munoz, P. [Departamento de Biologia Marina, Universidad Catolica del Norte, Larrondo 1281, Coquimbo (Chile); Torrejon, F. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile); Torres, L. [Departamento de Botanica, Universidad de Concepcion, Concepcion (Chile); Cruces, F. [Departamento de Botanica, Universidad de Concepcion, Concepcion (Chile); Araneda, A. [Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepcion, PO Box 160-C, Concepcion (Chile); Zaror, C. [Facultad de Ingenieria Quimica, Universidad de Concepcion, Concepcion (Chile)

    2006-05-15

    This paper describes lake sediment spheroidal carbonaceous particle (SCP) profiles from Laguna Chica San Pedro, located in the Biobio Region, Chile (36{sup o} 51' S, 73{sup o} 05' W). The earliest presence of SCPs was found at 16 cm depth, corresponding to the 1915-1937 period, at the very onset of industrial activities in the study area. No SCPs were found at lower depths. SCP concentrations in Laguna Chica San Pedro lake sediments were directly related to local industrial activities. Moreover, no SCPs were found in Galletue lake (38{sup o} 41' S, 71{sup o} 17.5' W), a pristine high mountain water body used here as a reference site, suggesting that contribution from long distance atmospheric transport could be neglected, unlike published data from remote Northern Hemisphere lakes. These results are the first SCP sediment profiles from Chile, showing a direct relationship with fossil fuel consumption in the region. Cores were dated using the {sup 21}Pb technique. - The lake sediment record of SCPs shows the record of fossil-fuel derived pollution in Central Chile.

  11. Environmental evidence of fossil fuel pollution in Laguna Chica de San Pedro lake sediments (Central Chile)

    International Nuclear Information System (INIS)

    Chirinos, L.; Rose, N.L.; Urrutia, R.; Munoz, P.; Torrejon, F.; Torres, L.; Cruces, F.; Araneda, A.; Zaror, C.

    2006-01-01

    This paper describes lake sediment spheroidal carbonaceous particle (SCP) profiles from Laguna Chica San Pedro, located in the Biobio Region, Chile (36 o 51' S, 73 o 05' W). The earliest presence of SCPs was found at 16 cm depth, corresponding to the 1915-1937 period, at the very onset of industrial activities in the study area. No SCPs were found at lower depths. SCP concentrations in Laguna Chica San Pedro lake sediments were directly related to local industrial activities. Moreover, no SCPs were found in Galletue lake (38 o 41' S, 71 o 17.5' W), a pristine high mountain water body used here as a reference site, suggesting that contribution from long distance atmospheric transport could be neglected, unlike published data from remote Northern Hemisphere lakes. These results are the first SCP sediment profiles from Chile, showing a direct relationship with fossil fuel consumption in the region. Cores were dated using the 21 Pb technique. - The lake sediment record of SCPs shows the record of fossil-fuel derived pollution in Central Chile

  12. Analyses and characterization of fossil carbonaceous materials for silicon production

    Energy Technology Data Exchange (ETDEWEB)

    Myrvaagnes, Viktor

    2008-01-15

    Production of high silicon alloys is carried out in submerged arc furnaces by reduction of silicon bearing oxides (typically quartz) with carbon materials. Carbonaceous materials like coal, coke, charcoal and woodchips are commonly used as reduction materials in the process. Primarily based on historical prices of charcoal compared to fossil reduction materials, the Norwegian Ferroalloy Industry has mostly been using coal and coke (char) as the source of carbon. From a process point of view, the most important role of the carbonaceous material is to react with SiO gas to produce SiC. The ability of the reduction materials to react with SiO gas can be measured and the value is recognized as the reactivity of the carbon source. Reactivity is one of the most important parameters in the smelting process and is commonly acknowledged to strongly affect both productivity and specific energy consumption. The main objectives of this work has been to establish methods to characterize the material properties of fossil carbonaceous reduction materials used in the silicon process and to evaluated how these properties affect the reactivity towards SiO gas. In order to accomplish these objectives, three run of mine (ROM) single seam coals which are particularly well suited for ferroalloy production were selected. Two Carboniferous coals from USA (Blue Gem) and Poland (Staszic) with similar rank, but significantly different composition as well as a Permian coal from Australia (Peak Downs) have been characterized by chemical- and petrographical methods. Blue Gem is a homogeneous coal, low in mineral inclusions and macerals of the inertinite group and determined to have a random vitrinite reflectance of 0.71 %. Staszic has a similar reflectance of vitrinite (0.72 %), but is determined to be a very inhomogeneous coal with both inertinite macerals and minerals embedded in the vitrinite matrix. Peak Downs has a random reflectance of vitrinite of 1.32 % and is hence the coal sample of

  13. On the identification of carbonaceous aerosols via 14C accelerator mass spectrometry, and laser microprobe mass spectrometry

    International Nuclear Information System (INIS)

    Currie, L.A.; Fletcher, R.A.; Klouda, G.A.

    1987-01-01

    Carbon isotopic measurements ( 12 C, 14 C), derived from chemical measurements of total carbon plus AMS measurements of 14 C/ 12 C have become an accepted means for estimating fossil and contemporary carbon source contributions to atmospheric carbon. Because of the limited sensitivity of these techniques, however, such measurements are restricted to 'bulk' samples comprising at least 10-100 μg of carbon. Laser microprobe mass spectrometry (LMMS) offers an important complementary opportunity to investigate the chemical nature of individual particles as small as 0.1 μm in diameter. Although there is little hope to measure 14 C/ 12 C in such small samples, the compositional and structural information available with the laser microprobe is of interest for possible source discrimination. Also, the analysis of individual particles, which may reflect individual sources, yields significant potential increases in spatial, temporal and source resolution, in comparison to bulk sample analysis. Results of our exploratory investigation of known sources of carbonaceous particles, using LMMS, are presented. By applying multivariate techniques to laser mass spectra of soot from the combustion of heptane and wood, we found striking differences in the alkali metals (notably potassium) in the positive ion mass spectra. For ambient particles, 14 C has proved to be a crucial adjunct for the development and validation of the LMMS approach to single particle source assignment via carbon cluster pattern recognition. The combined techniques offer great promise for objective modeling (number and types of carbon sources) and for extension of the dichotomous carbon apportionment (fossil, contemporary) to subclasses such as soot from wood and agricultural burning, and that from coal and petroleum combustion. (orig.)

  14. Petrography of the carbonaceous, diamond-bearing stone "Hypatia" from southwest Egypt: A contribution to the debate on its origin

    Science.gov (United States)

    Belyanin, Georgy A.; Kramers, Jan D.; Andreoli, Marco A. G.; Greco, Francesco; Gucsik, Arnold; Makhubela, Tebogo V.; Przybylowicz, Wojciech J.; Wiedenbeck, Michael

    2018-02-01

    is 0.75 ± 0.09 (both 1SD). These values are similar to those of the most primitive solar system carbonaceous matter. The diamond phase is considered to be a product of shock. The (Fe, Ni) sulphide phase is probably pyrrhotite and a shock origin is likewise proposed for it. Moissanite is frequently associated with the Ni-phosphide phase, and a presolar origin for both is suggested. The lack of recrystallization of the Ni-phosphide phase suggests that the Hypatia stone did not experience long-lasting thermal metamorphism, in accord with the Raman D-G band characteristics. A lack of silicate matter sets the stone apart from interplanetary dust particles and known cometary material. This, along with the dual intermingled matrices internal to it, could indicate a high degree of heterogeneity in the early solar nebula.

  15. Effect of Fuel Injection Strategy on the Carbonaceous Structure Formation and Nanoparticle Emission in a DISI Engine Fuelled with Butanol

    Directory of Open Access Journals (Sweden)

    Simona Silvia Merola

    2017-06-01

    Full Text Available Within the context of ever wider expansion of direct injection in spark ignition engines, this investigation was aimed at improved understanding of the correlation between fuel injection strategy and emission of nanoparticles. Measurements performed on a wall guided engine allowed identifying the mechanisms involved in the formation of carbonaceous structures during combustion and their evolution in the exhaust line. In-cylinder pressure was recorded in combination with cycle-resolved flame imaging, gaseous emissions and particle size distribution. This complete characterization was performed at three injection phasing settings, with butanol and commercial gasoline. Optical accessibility from below the combustion chamber allowed visualization of diffusive flames induced by fuel deposits; these localized phenomena were correlated to observed changes in engine performance and pollutant species. With gasoline fueling, minor modifications were observed with respect to combustion parameters, when varying the start of injection. The alcohol, on the other hand, featured marked sensitivity to the fuel delivery strategy. Even though the start of injection was varied in a relatively narrow crank angle range during the intake stroke, significant differences were recorded, especially in the values of particle emissions. This was correlated to the fuel jet-wall interactions; the analysis of diffusive flames, their location and size confirmed the importance of liquid film formation in direct injection engines, especially at medium and high load.

  16. Microwave assisted synthesis of luminescent carbonaceous nanoparticles from silk fibroin for bioimaging.

    Science.gov (United States)

    Gao, Hongzhi; Teng, Choon Peng; Huang, Donghong; Xu, Wanqing; Zheng, Chaohui; Chen, Yisong; Liu, Minghuan; Yang, Da-Peng; Lin, Ming; Li, Zibiao; Ye, Enyi

    2017-11-01

    Bombyx mori silk as a natural protein based biopolymer with high nitrogen content, is abundant and sustainable because of its mass product all over the world per year. In this study, we developed a facile and fast microwave-assisted synthesis of luminescent carbonaceous nanoparticles using Bombyx mori silk fibroin and silk solution as the precursors. As a result, the obtained carbonaceous nanoparticles exhibit a photoluminescence quantum yield of ~20%, high stability, low cytotoxicity, high biocompatibility. Most importantly, we successfully demonstrated bioimaging using these luminescent carbonaceous nanoparticles with excitation dependent luminescence. In addition, the microwave-assisted hydrothermal method can be extended to convert other biomass into functional nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Tunable atomic force microscopy bias lithography on electron beam induced carbonaceous platforms

    Directory of Open Access Journals (Sweden)

    Narendra Kurra

    2013-09-01

    Full Text Available Tunable local electrochemical and physical modifications on the carbonaceous platforms are achieved using Atomic force microscope (AFM bias lithography. These carbonaceous platforms are produced on Si substrate by the technique called electron beam induced carbonaceous deposition (EBICD. EBICD is composed of functionalized carbon species, confirmed through X-ray photoelectron spectroscopy (XPS analysis. AFM bias lithography in tapping mode with a positive tip bias resulted in the nucleation of attoliter water on the EBICD surface under moderate humidity conditions (45%. While the lithography in the contact mode with a negative tip bias caused the electrochemical modifications such as anodic oxidation and etching of the EBICD under moderate (45% and higher (60% humidity conditions respectively. Finally, reversible charge patterns are created on these EBICD surfaces under low (30% humidity conditions and investigated by means of electrostatic force microscopy (EFM.

  18. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  19. Apparatus for the distillation of coal, shale or other carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P

    1932-02-16

    The design consists of a retort having a series of joined closed superheated sections each having a heavier gas delivery port therefrom leading to an outlet pipe in combination with a condenser, means above and on said sections comprising a series of hoppers in communication with a common feed hopper for carbonaceous materials to be distilled. An air tight cover for said feed hopper and intermediate rotatable valve control are provided. Means are provided for said carbonaceous material between said hoppers and said sections and adjacent means having lighter gas ports to a pipe also in communication with said condenser. A series of exit hoppers are located below such sections and means for feeding preheated gas through the exit hoppers to the material to be distilled are provided. A rotatable valve control means associated with the exit hoppers for discharging spent carbonaceous materials to separate water sealed outlets to a tank located below the apparatus.

  20. Pyrolysis oil from carbonaceous solid wastes in Malaysia

    International Nuclear Information System (INIS)

    Islam, M.N.; Jamil, M.K.; Ani, F.N.; Zailani, R.

    2000-01-01

    The agro-industrial sector of Malaysia produces a huge amount of oil palm and paddy rice. These generate a significant amount of renewable biomass solid wastes in the forms of oil palm shell and rice husk. Apart from this a huge quantity of scrap tyre is generated from the country's faster increasing usage of transportation vehicles like motorcycle, car, bus and lorries. These wastes are producing pollution and disposal problems affecting the environment. Besides energy is not recovered efficiently from these waste resources. From the elemental composition and thermogravimetric analysis (TGA) studies of the wastes, it appeared that the wastes could be used for pyrolysis liquid oil production. Pyrolysis at present is deemed to be a potential method for the conversion of carbonaceous solid wastes into upgraded liquid products which can either be tried for liquid fuel or value-added chemical. A fluidized bed bench scale fast pyrolysis system was employed for this thermochemical conversion process of solid wastes. Silica sand was used as fluidized bed material and nitrogen gas as the fluidising medium. The products obtained were liquid oil, solid char and gas. The liquid oil and solid char were collected separately while the gas was flared. The maximum liquid product yield was found to vary with feedstock material fluidized bed temperature. The maximum liquid product yield was found to be 58, 53 and 40 wt. % of biomass fed at fluidized bed temperature at 500, 525 and 450 0 C respectively for oil palm shell, scrap tyre and rice husk. The solid char yield was 25, 36 and 53 wt. % of biomass fed at the condition of maximum liquid product yield for oil palm shell, scrap tyre and rice husk respectively. The oil products were subjected to FTIR, GC and GC/MS analysis for their group composition and detailed chemical compositions. The pyrolysis oil from scrap tyre was found to contain highest percentage of pure hydrocarbons (25 wt. % of total feed) with esters and oxygenated

  1. Laboratory Experiments on the Low-temperature Formation of Carbonaceous Grains in the ISM

    Science.gov (United States)

    Fulvio, Daniele; Góbi, Sándor; Jäger, Cornelia; Kereszturi, Ákos; Henning, Thomas

    2017-11-01

    The life cycle of cosmic dust grains is far from being understood and the origin and evolution of interstellar medium (ISM) grains is still under debate. In the ISM, the cosmic dust destruction rate is faster than the production rate by stellar sources. However, observations of ISM refractory matter suggest that to maintain a steady amount of cosmic grains, some supplementary production mechanism takes place. In this context, we aimed to study possible reformation mechanisms of cosmic grains taking place at low temperature directly in the ISM. The low-temperature condensation of carbonaceous materials has been investigated in experiments mimicking the ISM conditions. Gas-phase carbonaceous precursors created by laser ablation of graphite were forced to accrete on cold substrates (T ≈ 10 K) representing surviving dust grains. The growing and evolution of the condensing carbonaceous precursors have been monitored by MIR and UV spectroscopy under a number of experimental scenarios. For the first time, the possibility to form ISM carbonaceous grains in situ is demonstrated. The condensation process is governed by carbon chains that first condense into small carbon clusters and finally into more stable carbonaceous materials, of which structural characteristics are comparable to the material formed in gas-phase condensation experiments at very high temperature. We also show that the so-formed fullerene-like carbonaceous material is transformed into a more ordered material under VUV processing. The cold condensation mechanisms discussed here can give fundamental clues to fully understand the balance between the timescale for dust injection, destruction, and reformation in the ISM.

  2. On radiogenic nature of xenon-X in carbonaceous and LL chondrites

    International Nuclear Information System (INIS)

    Gerling, Eh.K.

    1982-01-01

    The nature of Xe-X from the mineral fraction produced during the differential dissolution of carbonaceous and LL chondrites was investigated using literature data on the age of some meteorites and their fractions and quantities of fission 136 Xe contained in them. A graph of lg fission 136 Xe against the age of meteorites was plotted; the decay constant of a hypothetical superheavy nucleus was calculated using the graph and equaled 1x10 - 7 year - 1 . The calculations served as a forcible argument for the radiogenic nature of xenon with 136 and 134 mass in carbonaceous and LL chondrites

  3. The analysis of creep characteristics of the surrounding rock of the carbonaceous rock tunnel based on Singh-Mitchell model

    Science.gov (United States)

    Luo, Junhui; Mi, Decai; Ye, Qiongyao; Deng, Shengqiang; Zeng, Fuquan; Zeng, Yongjun

    2018-01-01

    Carbonaceous rock has the characteristics of easy disintegration, softening, swelling and environmental sensitivity, which belongs to soft surrounding rock, and the deformation during excavation and long-term stability of the surrounding rock of carbonaceous rock tunnel are common problems in the construction of carbonaceous rock tunnel. According to the above, the Monitor and measure the displacement, temperature and osmotic pressure of the surrounding carbonaceous rock of the tunnel of Guangxi Hebai highway. Then it based on the obtaining data to study the creep mechanism of surrounding rock using Singh-Mitchell model and predict the deformation of surrounding rock before the tunnel is operation. The results show that the Singh-Mitchell creep model can effectively analyse and predict the deformation development law of surrounding rock of tunnel without considering temperature and osmotic pressure, it can provide reference for the construction of carbonaceous rock tunnel and the measures to prevent and reinforce it..

  4. Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet

    Science.gov (United States)

    Huang, Jie; Kang, Shichang; Shen, Chengde; Cong, Zhiyuan; Liu, Kexin; Wang, Wei; Liu, Lichao

    2010-06-01

    A total of 30 samples of total suspended particles were collected at an urban site in Lhasa, Tibet from August 2006 to July 2007 for investigating carbonaceous aerosol features. The fractions of contemporary carbon ( fc) in total carbon (TC) of ambient aerosols are presented using radiocarbon ( 14C) measurements. The value of fc represents the biogenic contribution to TC, as the biosphere releases organic compounds with the present 14C/ 12C level ( fc = 1), whereas 14C has become extinct in anthropogenic emissions of fossil carbon ( fc = 0). The fc values in Lhasa ranging from 0.357 to 0.702, are higher than Beijing and Tokyo, but clearly lower than the rural region of Launceston, which indicates a major biogenic influence in Lhasa. Seasonal variations of fc values corresponded well with variations of pollutants concentrations (e.g. NO 2). Higher fc values appeared in winter indicating carbonaceous aerosol is more dominated by wood burning and incineration of agricultural wastes within this season. The lower fc values in summer and autumn may be caused by increased diesel and petroleum emissions related to tourism in Lhasa. δ13C values ranged from - 26.40‰ to - 25.10‰, with relative higher values in spring and summer, reflecting the increment of fossil carbon emissions.

  5. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    H. H. Y. Cheung

    2016-07-01

    Full Text Available Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA and an organic carbon/elemental carbon (OC ∕ EC analyzer. Low volatility (LV particles, with a volatility shrink factor (VSF at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11–15 % of the 80–300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4  <  VSF  <  0.9 and high volatility (HV, VSF  <  0.4 particles. The MV and HV particles contributed 57–71 % of number concentration for the particles between 40 and 300 nm in size. The average EC and OC concentrations measured by the OC ∕ EC analyzer were 3.4 ± 3.0 and 9.0 ± 6.0 µg m−3, respectively. Non-volatile OC evaporating at 475 °C or above, together with EC, contributed 67 % of the total carbon mass. In spite of the daily maximum and minimum, the diurnal variations in the volume fractions of the volatile material, HV, MV and LV residuals were less than 15 % for the 80–300 nm particles. Back trajectory analysis also suggests that over 90 % of the air masses influencing the sampling site were well aged as they were transported at low altitudes (below 1500 m for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the

  6. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  7. Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors.

    Science.gov (United States)

    Ren, Yumei; Xu, Qun; Zhang, Jianmin; Yang, Hongxia; Wang, Bo; Yang, Daoyuan; Hu, Junhua; Liu, Zhimin

    2014-06-25

    Functionalized porous carbon materials with hierarchical structure and developed porosity coming from natural and renewable biomass have been attracting tremendous attention recently. In this work, we present a facile and scalable method to synthesize MnO2 loaded carbonaceous aerogel (MnO2@CA) composites via the hydrothermal carbonaceous (HTC) process. We employ two reaction systems of the mixed metal ion precursors to study the optimal selective adsorption and further reaction of MnO2 precursor on CA. Our experimental results show that the system containing KMnO4 and Na2S2O3·5H2O exhibits better electrochemical properties compared with the reaction system of MnSO4·H2O and (NH4)2S2O8. For the former, the obtained MnO2@CA displays the specific capacitance of 123.5 F·g(-1). The enhanced supercapacitance of MnO2@CA nanocomposites could be ascribed to both electrochemical contributions of the loaded MnO2 nanoparticles and the porous structure of three-dimensional carbonaceous aerogels. This study not only indicates that it is vital for the reaction systems to match with porous carbonaceous materials, but also offers a new fabrication strategy to prepare lightweight and high-performance materials that can be used in energy storage devices.

  8. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Gan, E-mail: zhanggan@gig.ac.c [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Jun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Xu Yue; Guo Lingli [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Tang Jianhui [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Lee, Celine S.L. [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Liu Xiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Yingjun [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2010-11-15

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 {+-} 4.5 {mu}g/m{sup 3}, EC = 2.5 {+-} 1.9 {mu}g/m{sup 3}) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 {+-} 2.6 {mu}g/m{sup 3}, EC = 0.8 {+-} 0.4 {mu}g/m{sup 3}) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 {+-} 4.0 {mu}g/m{sup 3}, EC = 0.5 {+-} 0.4 {mu}g/m{sup 3}) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  9. Composition and sources of carbonaceous aerosols in Northern Europe during winter

    NARCIS (Netherlands)

    Glasius, M.; Hansen, A.M.K.; Claeys, M.; Henzing, J.S.; Jedynska, A.D.; Kasper-Giebl, A.; Kistler, M.; Kristensen, K.; Martinsson, J.; Maenhaut, W.; Nøjgaard, J.K.; Spindler, G.; Stenström, K.E.; Swietlicki, E.; Szidat, S.; Simpson, D.; Yttri, K.E.

    2018-01-01

    Sources of elemental carbon (EC) and organic carbon (OC) in atmospheric aerosols (carbonaceous aerosols) were investigated by collection of weekly aerosol filter samples at six background sites in Northern Europe (Birkenes, Norway; Vavihill, Sweden; Risoe, Denmark; Cabauw and Rotterdam in The

  10. The application of a layer of carbonaceous material to a surface

    International Nuclear Information System (INIS)

    Holland, L.A.

    1981-01-01

    A method of applying a carbonaceous material to a surface is described. It consists of exposing the surface to an ionised gas atmosphere generated in a gas consisting substantially of carbon and hydrogen, and applying to the surface through capacitive means an electrical potential which changes in sign at time intervals of between 5 x 10 -9 seconds and 10 -6 seconds. (author)

  11. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheney, Marcos A. [Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Wu Fan; Li Meng [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg{sup 0}. The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg{sup 0} adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg{sup 0}, and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  12. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  13. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    International Nuclear Information System (INIS)

    Zhang Gan; Li Jun; Li Xiangdong; Xu Yue; Guo Lingli; Tang Jianhui; Lee, Celine S.L.; Liu Xiang; Chen Yingjun

    2010-01-01

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 ± 4.5 μg/m 3 , EC = 2.5 ± 1.9 μg/m 3 ) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 ± 2.6 μg/m 3 , EC = 0.8 ± 0.4 μg/m 3 ) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 ± 4.0 μg/m 3 , EC = 0.5 ± 0.4 μg/m 3 ) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  14. R Raman Spectroscopy and Petrology of Antarctic CR Chondrites: Comparison with Other Carbonaceous Chondrites

    Science.gov (United States)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2015-01-01

    In Renazzo-like carbonaceous (CR) chondrites, abundant original Fe,Ni-metal is preserved in chrondules, but the matrix is characterized by fine-grained magnetite with phyllosilicate. This combination of reduced Fe in chrodrules with oxidized Fe and phyllosilicate in the matrix has been attributed to aqueous alteration of matrix at relatively low temperatures.

  15. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    International Nuclear Information System (INIS)

    Choi, Hyeok; Al-Abed, Souhail R.

    2009-01-01

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K F (L kg -1 ) spanned several orders of magnitude, ranging from log K F of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  16. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2009-06-15

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K{sub F} (L kg{sup -1}) spanned several orders of magnitude, ranging from log K{sub F} of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  17. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Directory of Open Access Journals (Sweden)

    Richard Toro Araya

    2014-01-01

    Full Text Available Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007, concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August and warm (September to February seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41% than in the warm season (44 ± 18%. On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3 and the United States Environmental Protection Agency standard (15 µg/m3 for fine particulate matter.

  18. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  19. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.

    Science.gov (United States)

    Kah, Melanie; Sigmund, Gabriel; Xiao, Feng; Hofmann, Thilo

    2017-11-01

    The sorption of ionic and ionizable organic compounds (IOCs) (e.g., pharmaceuticals and pesticides) on carbonaceous materials plays an important role in governing the fate, transport and bioavailability of IOCs. The paradigms previously established for the sorption of neutral organic compounds do not always apply to IOCs and the importance of accounting for the particular sorption behavior of IOCs is being increasingly recognized. This review presents the current state of knowledge and summarizes the recent advances on the sorption of IOCs to carbonaceous sorbents. A broad range of sorbents were considered to evaluate the possibility to read across between fields of research that are often considered in isolation (e.g., carbon nanotubes, graphene, biochar, and activated carbon). Mechanisms relevant to IOCs sorption on carbonaceous sorbents are discussed and critically evaluated, with special attention being given to emerging sorption mechanisms including low-barrier, charge-assisted hydrogen bonds and cation-π assisted π-π interactions. The key role played by some environmental factors is also discussed, with a particular focus on pH and ionic strength. Overall the review reveals significant advances in our understanding of the interactions between IOCs and carbonaceous sorbents. In addition, knowledge gaps are identified and priorities for future research are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  1. Investigating the Use of a Diffusion Flame to Produce Black Carbon Standards for Thermal- Optical Analysis of Carbonaceous Aerosols

    Science.gov (United States)

    Ortiz Montalvo, D. L.; Kirchstetter, T. W.; Soto-García, L. L.; Mayol-Bracero, O. L.

    2006-12-01

    Combustion generated particles are a concern to both climate and public health due to their ability to scatter and absorb solar radiation and alter cloud properties, and because they are small enough to be inhaled and deposit in the lungs where they may cause respiratory and other health problems. Specific concern is focused on particles that originate from the combustion of diesel fuel. Diesels particles are composed mainly of carbonaceous material, especially in locations where diesel fuel sulfur is low. These particles are black due to the strongly light absorbing nature of the refractory carbon components, appropriately called black carbon (BC). This research project focuses on the uncertainty in the measurement of BC mass concentration, which is typically determined by analysis of particles collected on a filter using a thermal-optical analysis (TOA) method. Many studies have been conducted to examine the accuracy of the commonly used variations of the TOA method, which vary in their sample heating protocol, carrier gas, and optical measurement. These studies show that BC measurements are inaccurate due to the presence of organic carbon (OC) in the aerosols. OC may co-evolve with BC or char to form BC during analysis, both of which make it difficult to distinguish between the OC and BC in the sample. The goal of this study is to develop the capability of producing standard samples of known amounts of BC, either alone or mixed with other aerosol constituents, and then evaluate which TOA methods accurately determine the BC amount. An inverted diffusion flame of methane and air was used to produce particle samples containing only BC as well as samples of BC mixed with humic acid (HA). Our study found that HA is light absorbing and catalyzes the combustion of BC. It is expected that both of these attributes will challenge the ability of TOA methods in distinguishing between OC and BC, such as the simple two step TOA method which relies solely on temperature to

  2. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  3. Lung clearance of inhaled particles after exposure to carbon black generated from a resuspension system

    International Nuclear Information System (INIS)

    Lee, P.S.; Gorski, R.A.; Hering, W.E.; Chan, T.L.

    1987-01-01

    A system to resuspend carbon black particles for providing submicron aerosols for inhalation exposure studies has been developed. The effect of continuous exposure to carbonaceous material (as a surrogate for the carbonaceous particles in diesel exhaust) on the pulmonary clearance of inhaled diesel tracer particles was studied in male Fischer 344 rats. Submicron carbon black particles with a mass median aerodynamic diameter (MMAD) of 0.22 micron and a size distribution similar to that of exhaust particles from a GM 5.7-liter diesel engine were successfully generated and administered to test animals at a nominal concentration of 6 mg/m3 for 20 hr/day, 7 days/week, for periods lasting 1 to 11 weeks. Immediately after the carbon black exposure, test animals were administered 14 C-tagged diesel particles for 45 min in a nose-only chamber. The pulmonary retention of inhaled radioactive tracer particles was determined at preselected time intervals. Based upon the data collected up to 1 year postexposure, prolonged exposure to carbon black particles exhibits a similar inhibitory effect on pulmonary clearance as does prolonged exposure to diesel exhaust with a comparable particulate dose. This observation indicates that the excessive accumulation of carbonaceous material may be the predominant factor affecting lung clearance

  4. Characteristics of individual particles in Beijing before, during and after the 2014 APEC meeting

    Science.gov (United States)

    Xu, Zhongjun; Shan, Wei; Qi, Tao; Gao, Jian

    2018-05-01

    To understand the characteristics of individual aerosol particles as well as the effects of emission control measures on the air quality in Beijing before, during and after the 2014 APEC meeting, aerosol samples collected in Beijing from Oct. 8 to Nov. 24 were investigated by a scanning electron microscopy (SEM) coupled with an energy-dispersive X-ray (EDX). Individual particles were classified into fly ash, ammonium sulfate, carbonaceous particle, tar ball, soot aggregates, Fe/Ti oxide, Ca/Mg carbonate, calcium sulfate and aluminosilicates/quartz. The results showed that PM0.5-1.0 was predominant in aerosol particles while PM2.5-10 was the fewest in aerosol particles. Soot aggregates and carbonaceous particles mainly located in the size range of 0.5-2.5 μm and mineral particles were dominant in the size range of 2.5-10 μm. The tough emission control measures taken by the local government greatly improved the air quality. Reducing vehicles on the roads substantially decreased the amount of soot aggregates, and restricting coal combustion decreased the amount of tar ball during the APEC meeting. The concentrations of carbonaceous and mineral particles abated probably owing to the control on VOCs emission, and water spray and demolition layoff, respectively, during the APEC meeting.

  5. Dust Infall Onto Phobos and Deimos Can Explain Their Carbonaceous Reflectance Signature, Perhaps Overlying a Mars-Impact-Origin Core: A Hypothesis

    Science.gov (United States)

    Fries, M.; Cintala, M.; Steele, A.; Welzenbach, L. C.

    2017-01-01

    Discussions of Phobos' and Deimos' (henceforth P&D) origin(s) include an unresolved conflict: dynamical studies which favor coalescence of the moons from a large impact on Mars [1,2], versus reflectance spectroscopy of the moons showing a carbonaceous composition that is not consistent with martian surface materials [3-5]. One way to reconcile this discrepancy is to consider the combined options of a Mars impact origin for Phobos and Deimos, followed by deposition of carbon-rich materials by interplanetary dust particle (IDP) infall. This is significant because, unlike asteroidal bodies, P&D experience a high IDP flux due to their location in Mars' gravity well. We present some relatively simple, initial calculations which indicate that accreted carbon may be sufficient to produce a surface with sufficient added carbon to account for P&D's reflectance spectra. If this is true, then a major objection to an impact origin for P&D is resolved.

  6. Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July–August 2001: a multi-analytical approach

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2003-01-01

    these two methods for determining BC brings here new insights on the origin of carbonaceous aerosols in a complex mixture of different sources. It brings also to our attention that important deviations in BC levels are observed using three widely used EGA's techniques and most probably none of the EGA tested here are well adapted to fully characterize this aerosol mixture. Spherical, smooth and silico-aluminated fly-ash observed by an Analytical Scanning Electron Microscope (ASEM confirm the influence of coal combustion on the carbonaceous aerosol load throughout the campaign. A rough calculation based on a BC/nss-SO4 mass ratio suggests that biomass burning could be responsible for half of the BC concentration recorded during the MINOS campaign. From the plot of BC as a function of TC, two linear correlations were observed corresponding to 2 times series (before and after 12 August. Such good correlations suggest, from a first look, that both BC and OC have similar origin and atmospheric transport. On the other hand, the plot of BC as a function of TC obtained from the 2-step thermal method applied to DEKATI Low Pressure Cascade Impactor samples does not show a similar correlation and points out a non conservative distribution of this ratio with 2 super micron modes enriched in OC, correlated with sea salt aerosols and probably originating from gas-to-particle conversion.

  7. Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A series of carbonaceous biosorbents was prepared by pyrolyzing pine needles,a model biomass,at various temperatures (100-700℃) under an oxygen-limited condition for 6h. The elemental composi-tions and the specific surface areas (BET-N2) of the biosorbents were analyzed. Sorption properties of 4-nitrotoluene to the biosorbents and their mechanisms were investigated,and then correlated with the structures of the biosorbents. The result shows that with the increase of the pyrolytic temperature,the aromaticity of the carbonaceous biosorbents increases dramatically and the polarity (the (N+O)/C atomic ratio) decreases sharply. Correspondingly,conformations of the organic matter in the biosor-bents transform gradually from a "soft-state" to a "hard-state" and the specific surface areas of the resultant biosorbents extend rapidly. The sorption isotherms fit well with the Freundlich equation. The regression parameters (i.e.,N and lgKf) are linearly related to the aromaticity indices (the H/C atomic ratio). Contributions of adsorption and partition to total sorption of the carbonaceous biosorbents are quantified. The adsorption of the carbonaceous biosorbents increases quickly with the increase of the pyrolytic temperature. The saturated adsorption amounts (Qmax) increase linearly with the increase of the specific surface areas (SA) of the biosorbents. For the carbonaceous biosorbents with hard-state carbon,the calculated normalized-Qmax values by SA are comparable to the theoretical estimation (2.45 μmol/m2). In comparison,for the carbonaceous sorbents with soft-state carbon,the calculated nor-malized-Qmax values by SA are much higher than the theoretical estimation. The partition coefficients (Kom) increase with the decrease of the polarity of the biosorbents,reaching a maximum,and then de-crease sharply with further decreasing the polarity,suggesting that partition mechanism be dominated by the compatibility and accessibility of the sorbent medium with organic

  8. Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    CHEN BaoLiang; ZHOU DanDan; ZHU LiZhong; SHEN XueYou

    2008-01-01

    A series of carbonaceous biosorbents was prepared by pyrolyzing pine needles, a model biomass, at various temperatures (100-700℃) under an oxygen-limited condition for 6 h. The elemental composi-tions and the specific surface areas (BET-N2) of the biosorbents were analyzed. Sorption properties of 4-nitrotoluene to the biosorbents and their mechanisms were investigated, and then correlated with the structures of the biosorbents. The result shows that with the increase of the pyrolytic temperature, the sromaticity of the carbonaceous biosorbents increases dramatically and the polarity (the (N+O)/C atomic ratio) decreases sharply. Correspondingly, conformations of the organic matter in the biosor-bents transform gradually from a "soft-state" to a "hard-state" and the specific surface areas of the resultant biosorbents extend rapidly. The sorption isotherms fit well with the Freundlich equation. The regression parameters (I.e., N and IgKf) are linearly related to the aromaticity indices (the H/C atomic ratio). Contributions of adsorption and partition to total sorption of the carbonaceous biosorbents are quantified. The adsorption of the carbonaceous biosorbents increases quickly with the increase of the pyrolytic temperature. The saturated adsorption amounts (Qmax) increase linearly with the increase of the specific surface areas (SA) of the biosorbents. For the carbonaceous biosorbents with hard-state carbon, the calculated normalized-Qmax values by SA are comparable to the theoretical estimation (2.45 μmol/m2). In comparison, for the carbonaceous sorbents with soft-state carbon, the calculated nor-malized-Qmax values by SA are much higher than the theoretical estimation. The partition coefficients (Kom) increase with the decrease of the polarity of the biosorbents, reaching a maximum, and then de-crease sharply with further decreasing the polarity, suggesting that partition mechanism be dominated by the compatibility and accessibility of the sorbent medium with

  9. Carbonaceous aerosols over China--review of observations, emissions, and climate forcing.

    Science.gov (United States)

    Wang, Linpeng; Zhou, Xuehua; Ma, Yujie; Cao, Zhaoyu; Wu, Ruidong; Wang, Wenxing

    2016-01-01

    Carbonaceous aerosols have been attracting attention due to the influence on visibility, air quality, and regional climate. Statistical analyses based on concentration levels, spatial-temporal variations, correlations, and organic carbon (OC) to element carbon (EC) ratios from published data of OC and EC in particulate matter (PM2.5 and PM10) were carried out in order to give a carbonaceous aerosol profile in China. The results showed maxima for OC of 29.5 ± 18.2 μg C m(-3) and for EC of 8.4 ± 6.3 μg C m(-3) in winter and minima for OC of 12.9 ± 7.7 μg C m(-3) in summer and for EC of 4.6 ± 2.8 μg C m(-3) in spring. In addition, OC and EC both had higher concentrations in urban than those in rural sites. Carbonaceous aerosol levels in China are about three to seven times higher compared to those in the USA and Europe. OC and EC occupied 20 ± 6 and 7 ± 3% of PM2.5 mass and 17 ± 7 and 5 ± 3% of PM10 mass, respectively, implying that carbonaceous aerosols are the main component of PM, especially OC. Secondary organic carbon (SOC) was a significant portion of PM and contributed 41 ± 26% to OC and 8 ± 6% to PM2.5 mass. The OC/EC ratio was 3.63 ± 1.73, which, along with the good correlation between OC and EC and the OC to EC slope of 2.29, signifies that coal combustion and/or vehicular exhaust is the dominated carbonaceous aerosol source in China. These provide a primary observation-based understanding of carbonaceous aerosol pollution in China and have a great significance in improving the emission inventory and climate forcing evaluation.

  10. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    Science.gov (United States)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  11. Understanding the Organo-Carbonate Associations in Carbonaceous Chondrites with the Use of Micro-Raman Analysis

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    Carbonates can potentially provide sites for organic materials to accrue and develop into complex macromolecules. This study examines the organics associated with carbonates in carbonaceous chondrites using micron-Raman imaging.

  12. A European Aerosol Phenomenology -4: Harmonized Concentrations of Carbonaceous Aerosol at 10 Regional Background Sites Across Europe.

    Czech Academy of Sciences Publication Activity Database

    Cavalli, F.; Areskoug, H.; Ceburnis, D.; Čech, J.; Genberg, J.; Harrison, R. M.; Jaffrezo, J.L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, Jaroslav; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K.E.; Aas, W.; Putaud, J.P.

    2016-01-01

    Roč. 144, NOV 2016 (2016), s. 133-145 ISSN 1352-2310 Institutional support: RVO:67985858 Keywords : aerosol * carbonaceous * PM Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.629, year: 2016

  13. Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites

    Science.gov (United States)

    Cloutis, E. A.; Hiroi, T.; Gaffey, M. J.; Alexander, C. M. O.'D.; Mann, P.

    2011-03-01

    Existing reflectance spectra of CI chondrites (18 spectra of 3 CIs) have been augmented with new (18 spectra of 2 CIs) reflectance spectra to ascertain the spectral variability of this meteorite class and provide insights into their spectral properties as a function of grain size, composition, particle packing, and viewing geometry. Particle packing and viewing geometry effects have not previously been examined for CI chondrites. The current analysis is focused on the 0.3-2.5 μm interval, as this region is available for the largest number of CI spectra. Reflectance spectra of powdered CI1 chondrites are uniformly dark (IOM), as no other CI opaque phase appears able to produce concurrent darkening and bluing. Magnetite can also explain the presence of an absorption feature near 1 μm in some CI spectra. The most blue-sloped spectra are generally associated with the larger grain size samples. For incidence and emission angles <60°, increasing phase angle results in darker and redder spectra, particularly below ∼1 μm. At high incidence angles (60°), increasing emission angle results in brighter and redder spectra. More densely packed samples and underdense (fluffed) samples show lower overall reflectance than normally packed and flat-surface powdered samples. Some B-class asteroids exhibit selected spectral properties consistent with CI chondrites, although perfect spectral matches have not been found. Because many CI chondrite spectra exhibit absorption features that can be related to specific mineral phases, the search for CI parent bodies can fruitfully be conducted using such parameters.

  14. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns

    International Nuclear Information System (INIS)

    Kurra, Narendra; Bhadram, Venkata Srinu; Narayana, Chandrabhas; Kulkarni, G U

    2012-01-01

    We describe a transfer-free method for the fabrication of nanocrystalline graphene (nc-graphene) on SiO 2 substrates directly from patterned carbonaceous deposits. The deposits were produced from the residual hydrocarbons present in the vacuum chamber without any external source by using an electron beam induced carbonaceous deposition (EBICD) process. Thermal treatment under vacuum conditions in the presence of Ni catalyst transformed the EBIC deposit into nc-graphene patterns, confirmed using Raman and TEM analysis. The nc-graphene patterns have been employed as an active p-type channel material in a field effect transistor (FET) which showed a hole mobility of ∼90 cm 2 V −1 s −1 . The nc-graphene also proved to be suitable material for IR detection. (paper)

  15. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites.

    Science.gov (United States)

    Cooper, George; Rios, Andro C

    2016-06-14

    Biological polymers such as nucleic acids and proteins are constructed of only one-the d or l-of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System's earliest (∼4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life's carbohydrate-related biopolymers.

  16. Preparing patterned carbonaceous nanostructures directly by overexposure of PMMA using electron-beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Duan Huigao; Zhao Jianguo; Zhang Yongzhe; Xie Erqing [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Han Li [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: duanhg@gmail.com, E-mail: xieeq@lzu.edu.cn

    2009-04-01

    The overexposure process of poly(methyl methacrylate) (PMMA) was studied in detail using electron-beam lithography. It was found that PMMA films could be directly patterned without development due to the electron-beam-induced collapse of PMMA macromolecular chains. By analyzing the evolution of surface morphologies and compositions of the overexposed PMMA films, it was also found that the transformation of PMMA from positive to negative resist was a carbonization process, so patterned carbonaceous nanostructures could be prepared directly by overexposure of PMMA using electron-beam lithography. This simple one-step process for directly obtaining patterned carbonaceous nanostructures has promising potential application as a tool to make masks and templates, nanoelectrodes, and building blocks for MEMS and nanophotonic devices.

  17. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  18. Carbonaceous aerosol characteristics over Delhi in Northern India: Seasonal variability and possible sources

    Science.gov (United States)

    Srivastava, Atul Kumar; Bisht, Ds; Tiwari, S.

    Carbonaceous aerosols have been the focus of extensive studies during the last decade due to its significant impacts on human health, visibility and climate change. As per Asian regions are concerned, aerosols in south-Asia are gaining considerable importance because of their potential impacts on regional climate, yet their possible sources are poorly understood. Semi-continuous measurements of organic carbon (OC) and elemental carbon (EC) and continuous measurements of black carbon (BC) aerosols were conducted simultaneously at Delhi during the period from January 2011 to May 2012. Delhi is the capital city of India and one of the densely populated and industrialized urban megacities in Asia, located at the Ganga basin in the northern part of India. Being highly polluted region, mass concentrations of OC, EC and BC over Delhi were found to vary from about 6-92 mug m (-3) (mean: 23±16 mug m (-3) ), 3-38 mug m (-3) (mean: 11±7 mug m (-3) ) and 1-24 mug m (-3) (mean: 7±5 mug m (-3) ), respectively during the entire measurement period, with about two times higher concentration during winter as compared to summer. A significant correlation between OC and EC (R=0.95, n=232) and relatively lower OC/EC ratio (range: 1.0-3.6; mean: 2.2±0.5) suggest fossil fuel emission as a dominant source of carbonaceous aerosols over the station. The average mass concentration of EC was found about 38% higher than BC during the study period, which is interestingly different as reported at other locations over Ganga basin. We also determined the associated optical properties of carbonaceous species (e.g. absorption coefficient and mass absorption efficiency) over the station. Significant loading of carbonaceous species over such regions emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective.

  19. Fermentation, gasification and pyrolysis of carbonaceous residues towards usage in fuel cells

    International Nuclear Information System (INIS)

    Sequeira, C.A.C.; Brito, P.S.D.; Mota, A.F.; Carvalho, J.L.; Rodrigues, L.F.F.T.T.G.; Santos, D.M.F.; Barrio, D.B.; Justo, D.M.

    2007-01-01

    In this paper, the technologies of fermentation, gasification and pyrolysis of carbonaceous residues for the production of biohydrogen and other gaseous, liquid or solid fuels, are analysed. The energetic, economic and environmental advantages of linking these energy areas with the fuel cell engines are stressed. In addition, the current status of fuel cell technologies, namely their historic trends, basic electrode mechanisms, cell types, market drivers and leading issues, are reviewed

  20. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals)

    OpenAIRE

    A. V. Snachev; E. P. Shchulkin

    2018-01-01

    This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5...

  1. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    International Nuclear Information System (INIS)

    Gaffney, Jeffrey

    2012-01-01

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  2. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  3. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Nagashima, K.; Jones, R.H.

    aluminium rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), and some porphyritic chondrules from carbonaceous chondrites. These grains appear to have recorded the initial oxygen isotopic composition of the inner solar nebula. Three olivine... to the major components of meteorites such as chondrules and calcium-aluminium-rich inclusions (CAIs). CAIs, the first solar system objects in the solar nebula, are formed by condensation of refractory minerals at high temperatures. They are 16O...

  4. Process of treating carbonaceous materials. [400 to 700/sup 0/C, high vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Parker, O J

    1913-11-24

    A process is given of treating carbonaceous materials, characterized by the material being submitted simultaneously to a temperature of 400 to 700/sup 0/C, a pressure between 5.0 mm of mercury under atmospheric and a practically perfect vacuum, and by the volatile material able to condense under the vacuum used being condensed practically under the same pressure for the production of a high proportion of condensable products and a superior fuel.

  5. In Situ Mapping of the Organic Matter in Carbonaceous Chondrites and Mineral Relationships

    Science.gov (United States)

    Clemett, Simon J.; Messenger, S.; Thomas-Keprta, K. L.; Ross, D. K.

    2012-01-01

    Carbonaceous chondrite organic matter represents a fossil record of reactions that occurred in a range of physically, spatially and temporally distinct environments, from the interstellar medium to asteroid parent bodies. While bulk chemical analysis has provided a detailed view of the nature and diversity of this organic matter, almost nothing is known about its spatial distribution and mineralogical relationships. Such information is nevertheless critical to deciphering its formation processes and evolutionary history.

  6. Ore-forming environment and ore-forming system of carbonaceous-siliceous-pelitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; He Zhongbo; Wang Wenquan

    2012-01-01

    It is proposed that there are four types of ore-forming systems about carbonaceous-siliceous-pelitic rock type uranium deposit in China based on systematic study on structural environment and distribution regularity of uraniferous construction of marine carbonaceous-siliceous-pelitic rock in China: continental margin rift valley ore-forming systems, continental margin rifting deep fracture zone ore-forming systems, landmass boundary borderland basin ore-forming systems and epicontinental mobile belt downfaulted aulacogen ore-forming systems. It is propounded definitely that it is controlled by margin rift valley ore-forming systems and continental margin rifting deep fracture zone ore-forming systems for large-scale uranium mineralization of carbonaceous-siliceous-pelitic rock type uranium deposit in China, which is also controlled by uraniferous marine carbonaceous-siliceous-pelitic rock construction made up of silicalite, siliceous phosphorite and carbonaceous-siliceous-pelitic rock, which settled down accompany with submarine backwash and sub marine volcanic eruption in margin rift valley and continental margin rifting mineralizing environment. Continental mar gin rift valley and continental margin rifting thermal sedimentation or exhalation sedimentation is the mechanism of forming large-scale uraniferous marine carbonaceous-siliceous-pelitic rock construction Early Palaeozoic Era in China or large-scale uranium-polymetallic mineralization. (authors)

  7. Plasmon excitation in single wall carbon nanotubes by penetrating charged particles

    International Nuclear Information System (INIS)

    Segui, Silvina; Gervasoni, Juana L; Arista, Néstor R; Mowbray, Duncan J; Mišković, Zoran L

    2012-01-01

    In this work we study the excitation of plasmons due to the incidence of a charged particle passing through a single wall carbon nanotube. We use a quantized hydrodynamic, in which the σ and π electrons characteristic of these carbonaceous structures are depicted as two interacting 2-dimensional fluids, to calculate the average number of plasmons excited. We analyze the contribution of the different plasmon modes in a variety of configurations, and study the energy lost by the incident particle.

  8. Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and Central Himalaya: impact of anthropogenic sources.

    Science.gov (United States)

    Ram, Kirpa; Sarin, M M

    2015-01-15

    In the present-day scenario of growing anthropogenic activities, carbonaceous aerosols contribute significantly (∼20-70%) to the total atmospheric particulate matter mass and, thus, have immense potential to influence the Earth's radiation budget and climate on a regional to global scale. In addition, formation of secondary organic aerosols is being increasingly recognized as an important process in contributing to the air-pollution and poor visibility over urban regions. It is, thus, essential to study atmospheric concentrations of carbonaceous species (EC, OC and WSOC), their mixing state and absorption properties on a regional scale. This paper presents the comprehensive data on emission sources, chemical characteristics and optical properties of carbonaceous aerosols from selected urban sites in the Indo-Gangetic Plain (IGP) and from a high-altitude location in the central Himalaya. The mass concentrations of OC, EC and WSOC exhibit large spatio-temporal variability in the IGP. This is attributed to seasonally varying emissions from post-harvest agricultural-waste burning, their source strength, boundary layer dynamics and secondary aerosol formation. The high concentrations of OC and SO4(2-), and their characteristic high mass scattering efficiency, contribute significantly to the aerosol optical depth and scattering coefficient. This has implications to the assessment of single scattering albedo and aerosol radiative forcing on a regional scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry

    International Nuclear Information System (INIS)

    Zhi, Yue; Liu, Jinxia

    2015-01-01

    Adsorption by carbonaceous sorbents is among the most feasible processes to remove perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) from drinking and ground waters. However, carbon surface chemistry, which has long been recognized essential for dictating performance of such sorbents, has never been considered for PFOS and PFOA adsorption. Thus, the role of surface chemistry was systematically investigated using sorbents with a wide range in precursor material, pore structure, and surface chemistry. Sorbent surface chemistry overwhelmed physical properties in controlling the extent of uptake. The adsorption affinity was positively correlated carbon surface basicity, suggesting that high acid neutralizing or anion exchange capacity was critical for substantial uptake of PFOS and PFOA. Carbon polarity or hydrophobicity had insignificant impact on the extent of adsorption. Synthetic polymer-based Ambersorb and activated carbon fibers were more effective than activated carbon made of natural materials in removing PFOS and PFOA from aqueous solutions. - Highlights: • Adsorption of PFOS and PFOA by ten carbonaceous adsorbents were compared. • Surface chemistry of the adsorbents controlled adsorption affinity. • Carbon surface basicity was positively correlated with the extent of PFOS and PFOA uptake. • Carbon polarity or hydrophobicity was not correlated with adsorption affinity. • Synthetic polymer-based adsorbents were more effective in removing PFOS and PFOA. - Carbon surface basicity is the primary factor that influences adsorption affinity of the carbonaceous sorbents for perfluorooctane sulfonic and carboxylic acids

  10. A dual origin for water in carbonaceous asteroids revealed by CM chondrites

    Science.gov (United States)

    Piani, Laurette; Yurimoto, Hisayoshi; Remusat, Laurent

    2018-04-01

    Carbonaceous asteroids represent the principal source of water in the inner Solar System and might correspond to the main contributors for the delivery of water to Earth. Hydrogen isotopes in water-bearing primitive meteorites, for example carbonaceous chondrites, constitute a unique tool for deciphering the sources of water reservoirs at the time of asteroid formation. However, fine-scale isotopic measurements are required to unravel the effects of parent-body processes on the pre-accretion isotopic distributions. Here, we report in situ micrometre-scale analyses of hydrogen isotopes in six CM-type carbonaceous chondrites, revealing a dominant deuterium-poor water component (δD = -350 ± 40‰) mixed with deuterium-rich organic matter. We suggest that this deuterium-poor water corresponds to a ubiquitous water reservoir in the inner protoplanetary disk. A deuterium-rich water signature has been preserved in the least altered part of the Paris chondrite (δDParis ≥ -69 ± 163‰) in hydrated phases possibly present in the CM rock before alteration. The presence of the deuterium-enriched water signature in Paris might indicate that transfers of ice from the outer to the inner Solar System were significant within the first million years of the history of the Solar System.

  11. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comets as parent bodies of CI1 carbonaceous meteorites and possible habitats of ice-microbes

    Science.gov (United States)

    Wickramasinghe, N. Chandra; Wickramasinghe, Janaki T.; Wallis, Jamie; Hoover, Richard B.; Rozanov, Alexei Y.

    2011-10-01

    Recent studies of comets and cometary dust have confirmed the presence of biologically relevant organic molecules along with clay minerals and water ice. It is also now well established by deuterium/hydrogen ratios that the CI1 carbonaceous meteorites contain indigenous extraterrestrial water. The evidence of extensive aqueous alteration of the minerals in these meteorites led to the hypothesis that water-bearing asteroids or comets represent the parent bodies of the CI1 (and perhaps CM2) carbonaceous meteorites. These meteorites have also been shown to possess a diverse array of complex organics and chiral and morphological biomarkers. Stable isotope studies by numerous independent investigators have conclusively established that the complex organics found in these meteorites are both indigenous and extraterrestrial in nature. Although the origin of these organics is still unknown, some researchers have suggested that they originated by unknown abiotic mechanisms and may have played a role in the delivery of chiral biomolecules and the origin of life on Early Earth. In this paper we review these results and investigate the thermal history of comets. We show that permanent as well as transient domains of liquid water can be maintained on a comet under a plausible set of assumptions. With each perihelion passage of a comet volatiles are preferentially released, and during millions of such passages the comet could shed crustal debris that may survive transit through the Earth's atmosphere as a carbonaceous meteorite. We review the current state of knowledge of comets and carbonaceous meteorites. We also present the results of recent studies on the long-term viability of terrestrial ice-microbiota encased in ancient glacial ice and permafrost. We suggest that the conditions which have been observed to prevail on many comets do not preclude either survivability (or even the active metabolism and growth) of many types of eukaryotic and prokaryotic microbial

  13. Comets as Parent Bodies of CI1 Carbonaceous Meteorites and Possible Habitats of Ice-Microbiota

    Science.gov (United States)

    Wickramasinghe, N. Chandra; Wallis, Daryl H.; Rozanov, Alexei Yu.; Hoover, Richard B.

    2011-01-01

    Recent studies of comets and cometary dust have confirmed the presence of biologically relevant organic molecules along with clay minerals and water ice. It is also now well established by deuterium/hydrogen ratios that the CI1 carbonaceous meteorites contain indigenous extraterrestrial water. The evidence of extensive aqueous alteration of the minerals in these meteorites led to the hypothesis that water-bearing asteroids or comets represent the parent bodies of the CI1 (and perhaps CM2) carbonaceous meteorites. These meteorites have also been shown to possess a diverse array of complex organics and chiral and morphological biomarkers. Stable isotope studies by numerous independent investigators have conclusively established that the complex organics found in these meteorites are both indigenous and extraterrestrial in nature. Although the origin of these organics is still unknown, some researchers have suggested that they originated by unknown abiotic mechanisms and may have played a role in the delivery of chiral biomolecules and the origin of life on Early Earth. In this paper we review these results and investigate the thermal history of comets. We show that permanent as well as transient domains of liquid water can be maintained on a comet under a plausible set of assumptions. With each perihelion passage of a comet volatiles are preferentially released, and during millions of such passages the comet could shed crustal debris that may survive transit through the Earth s atmosphere as a carbonaceous meteorite. We review the current state of knowledge of comets and carbonaceous meteorites. We also present the results of recent studies on the long-term viability of terrestrial ice-microbiota encased in ancient glacial ice and permafrost. We suggest that the conditions which have been observed to prevail on many comets do not preclude either survivability (or even the active metabolism and growth) of many types of eukaryotic and prokaryotic microbial

  14. SNOW COVER OF THE CENTRAL ANTARCTICA (VOSTOK STATION AS AN IDEAL NATURAL TABLET FOR COSMIC DUST COLLECTION: PRELIMINARY RESULTS ON THE IDENTIFICATION OF MICROMETEORITES OF CARBONACEOUS CHONDRITE TYPE

    Directory of Open Access Journals (Sweden)

    E. S. Bulat

    2012-01-01

    Full Text Available During the 2010/11 season nearby the Vostok station the 56th Russian Antarctic Expedition has collected surface snow in a big amount from a 3 m deep pit using 15 220 L vol. containers (about 70 kg snow each. Snow melting and processing by ultra-centrifugation was performed in a clean (class 10 000 and 100 laboratory. Total dust concentrations were not exceeded 37.4 mkg per liter with particle dispersal mode around 2.5 mkm. To analyze the elemental composition of fine dust particles aimed to reveal Antarctic micrometeorites (AMM two electron microscopy devices equipped with different micro-beams were implemented. As a preliminary result, three particles (of 107 analyzed featured by Mg content clearly dominated over Al along with Si and Fe as major elements (a feature of carbonaceous chondrites were observed. By this the Vostok AMM CS11 collection was established. The occurrence of given particles was averaged 2.8% – the factual value obtained for the first time for chondritic type AMM at Vostok which should be considered as the lowest estimate for all other families of AMM. Given the reference profile of total dust content in East Antarctic snow during Holocene (18 mkg/kg the MM deposition in Antarctica was quantified for the first time – 14 tons per day for carbonaceous chondrites for the Vostok AMM CS11 collection and up to 245 tons per day for all MM types for the Concordia AMM DC02 collection. The results obtained allowed to prove that snow cover (ice sheet in total of Central East Antarctica is the best spot (most clean of other natural locations and always below 0 ºC for collecting native MM deposited on the Earth during the last million years and could be useful in deciphering the origin and evolution of solid matter in our Solar System and its effects on Earth-bound biogeochemical and geophysical processes including the life origin. The farther analyses of the Vostok AMMs are in a progress.

  15. Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy

    Science.gov (United States)

    Cesari, D.; Merico, E.; Dinoi, A.; Marinoni, A.; Bonasoni, P.; Contini, D.

    2018-02-01

    Organic (OC) and Elemental Carbon (EC) are important components of atmospheric aerosol particles, playing a key role in climate system and potentially affecting human health. There is a lack of data reported for Southern Italy and this work aims to fill this gap, focusing the attention on the long-term trends of OC and EC concentrations in PM2.5 and PM10, and on atmospheric processes and sources influencing seasonal variability. Measurements were taken at the Environmental-Climate Observatory of Lecce (SE Italy, 40°20‧8″N-18°07‧28″E, 37 m a.s.l.), regional station of the Global Atmosphere Watch program (GAW-WMO). Daily PM10 and PM2.5 samples were collected between July 2013 and July 2016. In addition, starting in December 2014, simultaneous equivalent Black Carbon (eBC) concentrations in PM10 were measured using a Multi Angle Absorption Photometer. A subset of 722 PM samples (361 for each size fraction) was analysed by using a thermo-optical method with a Sunset Laboratory OC/EC analyser, to determine elemental and organic carbon concentrations. The average PM10 and PM2.5 concentrations were 28.8 μg/m3 and 17.5 μg/m3. The average OC and EC concentrations in PM10 were 5.4 μg/m3 and 0.8 μg/m3, in PM2.5 these were 4.7 μg/m3 and 0.6 μg/m3. Carbonaceous content was larger during cold season with respect to warm season as well as secondary organic carbon (SOC) that was evaluated using the OC/EC minimum ratio method. SOC was mainly segregated in PM2.5 and represented 53% - 75% of the total OC. A subset of EC data was compared with eBC measurements, showing a good correlation (R2 = 0.80), however, eBC concentrations were higher than EC concentrations of an average factor of 1.95 (+/- 0.55 standard deviation). This could be explained by the presence of a contribution of Brown Carbon (BrC), for example from biomass burning, in eBC measurements. Weekly patterns showed a slight decrease of carbon content during weekends with respect to weekdays especially

  16. Composition and sources of carbonaceous aerosols in Northern Europe during winter

    Science.gov (United States)

    Glasius, M.; Hansen, A. M. K.; Claeys, M.; Henzing, J. S.; Jedynska, A. D.; Kasper-Giebl, A.; Kistler, M.; Kristensen, K.; Martinsson, J.; Maenhaut, W.; Nøjgaard, J. K.; Spindler, G.; Stenström, K. E.; Swietlicki, E.; Szidat, S.; Simpson, D.; Yttri, K. E.

    2018-01-01

    Sources of elemental carbon (EC) and organic carbon (OC) in atmospheric aerosols (carbonaceous aerosols) were investigated by collection of weekly aerosol filter samples at six background sites in Northern Europe (Birkenes, Norway; Vavihill, Sweden; Risoe, Denmark; Cabauw and Rotterdam in The Netherlands; Melpitz, Germany) during winter 2013. Analysis of 14C and a set of molecular tracers were used to constrain the sources of EC and OC. During the four-week campaign, most sites (in particular those in Germany and The Netherlands) were affected by an episode during the first two weeks with high concentrations of aerosol, as continental air masses were transported westward. The analysis results showed a clear, increasing north to south gradient for most molecular tracers. Total carbon (TC = OC + EC) at Birkenes showed an average concentration of 0.5 ± 0.3 μg C m-3, whereas the average concentration at Melpitz was 6.0 ± 4.3 μg C m-3. One weekly mean TC concentration as high as 11 μg C m-3 was observed at Melpitz. Average levoglucosan concentrations varied by an order of magnitude from 25 ± 13 ng m-3 (Birkenes) to 249 ± 13 ng m-3 (Melpitz), while concentrations of tracers of fungal spores (arabitol and mannitol) and vegetative debris (cellulose) were very low, showing a minor influence of primary biological aerosol particles during the North European winter. The fraction of modern carbon generally varied from 0.57 (Melpitz) to 0.91 (Birkenes), showing an opposite trend compared to the molecular tracers and TC. Total concentrations of 10 biogenic and anthropogenic carboxylic acids, mainly of secondary origin, were 4-53 ng m-3, with the lowest concentrations observed at Birkenes and the highest at Melpitz. However, the highest relative concentrations of carboxylic acids (normalized to TC) were observed at the most northern sites. Levels of organosulphates and nitrooxy organosulphates varied more than two orders of magnitude, from 2 to 414 ng m-3, between

  17. PIXE micro-mapping of minor elements in Hypatia, a diamond bearing carbonaceous stone from the Libyan Desert Glass area, Egypt: Inheritance from a cold molecular cloud?

    Energy Technology Data Exchange (ETDEWEB)

    Andreoli, M.A.G., E-mail: marco.andreoli@wits.ac.za [School of Geosciences, University of the Witwatersrand, P.O. Box 3, Wits 2050 (South Africa); Przybylowicz, W.J. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Kramers, J.; Belyanin, G. [Department of Geology, University of Johannesburg, Auckland Park 2006 (South Africa); Westraadt, J. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Bamford, M. [Evolutionary Studies Institute, University of the Witwatersrand, P.O. Box 3, Wits 2050 (South Africa); Mesjasz-Przybylowicz, J. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Venter, A. [South African Nuclear Energy Corporation, P.O. Box 582, Pretoria 0001 (South Africa)

    2015-11-15

    Matter originating from space, particularly if it represents rare meteorite samples, is ideally suited to be studied by Particle Induced X-ray Emission (PIXE) as this analytical technique covers a broad range of trace elements and is per se non-destructive. We describe and interpret a set of micro-PIXE elemental maps obtained on two minute (weighing about 25 and 150 mg), highly polished fragments taken from Hypatia, a controversial, diamond-bearing carbonaceous pebble from the SW Egyptian desert. PIXE data show that Hypatia is chemically heterogeneous, with significant amounts of primordial S, Cl, P and at least 10 elements with Z > 21 (Ti, V, Cr, Mn, Fe, Ni, Os, Ir) locally attaining concentrations above 500 ppm. Si, Al, Ca, K, O also occur, but are predominantly confined to cracks and likely represent contamination from the desert environment. Unusual in the stone is poor correlation between elements within the chalcophile (S vs. Cu, Zn) and siderophile (i.e.: Fe vs. Ni, Ir, Os) groups, whereas other siderophiles (Mn, Mo and the Platinum group elements (PGEs)) mimic the distribution of lithophile elements such as Cr and V. Worthy of mention is also the presence of a globular domain (Ø ∼ 120 μm) that is C and metals-depleted, yet Cl (P)-enriched (>3 wt.% and 0.15 wt.% respectively). While the host of the Cl remains undetermined, this chemical unit is enclosed within a broader domain that is similarly C-poor, yet Cr–Ir rich (up to 1.2 and 0.3 wt.% respectively). Our data suggest that the pebble consists of shock-compacted, primitive carbonaceous material enriched in cold, pre-solar dust.

  18. The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene

    International Nuclear Information System (INIS)

    Esmaeili, Elaheh; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Rashidi, Ali Morad; Rashidzadeh, Mehdi

    2012-01-01

    Highlights: ► Synthesis of highly active tin-promoted catalysts by polyol method for selective hydrogenation of high concentration of acetylene. ► A positive change in the catalytic activities of tin-promoted catalysts results from distinct geometric and electronic effects. ► Change in the coverage of acetylenic overlayers for different temperature regions corresponds to the change of the number of isolated adsorption sites. ► The isolated adsorption sites are responsible for the enhancement of selectivity to ethylene with increased temperatures, via the management of the carbonaceous species over the catalyst surface. - Abstract: In the present study, Pd/MWNTs are synthesized using polyol process and modified by tin as a promoter for selective hydrogenation of high concentrated acetylene feedstock. Polyol method results in highly dispersed nanoparticles with a depletion of particle size for tin-promoted Pd catalysts as characterized by TEM. Tin promoter plays a considerable role in hydrogenation of pure acetylene stream. This is attributed to formation of Pd 2 Sn structural phase, confirmed by XRD and TPR techniques, composed mainly of intermetallic species. Catalytic behavior of tin-promoted Pd catalysts is affected by geometric and electronic factors which are more pronounced in the case of Sn/Pd = 0.25. A discontinuity in Arrhenius plots for the Sn-promoted catalysts is appeared, which seems to be due to a kinetic factor as a result of change in acetylene coverage on Pd metallic ensembles at low and high temperature ranges. Higher selectivity of the catalysts to ethylene is attributed to the presence of more isolated adsorption sites on the catalyst surface originated from both intermetallic compounds confirmed by XPS and the ones formed via the carbonaceous species upon the acetylene hydrogenation reaction.

  19. PIXE micro-mapping of minor elements in Hypatia, a diamond bearing carbonaceous stone from the Libyan Desert Glass area, Egypt: Inheritance from a cold molecular cloud?

    International Nuclear Information System (INIS)

    Andreoli, M.A.G.; Przybylowicz, W.J.; Kramers, J.; Belyanin, G.; Westraadt, J.; Bamford, M.; Mesjasz-Przybylowicz, J.; Venter, A.

    2015-01-01

    Matter originating from space, particularly if it represents rare meteorite samples, is ideally suited to be studied by Particle Induced X-ray Emission (PIXE) as this analytical technique covers a broad range of trace elements and is per se non-destructive. We describe and interpret a set of micro-PIXE elemental maps obtained on two minute (weighing about 25 and 150 mg), highly polished fragments taken from Hypatia, a controversial, diamond-bearing carbonaceous pebble from the SW Egyptian desert. PIXE data show that Hypatia is chemically heterogeneous, with significant amounts of primordial S, Cl, P and at least 10 elements with Z > 21 (Ti, V, Cr, Mn, Fe, Ni, Os, Ir) locally attaining concentrations above 500 ppm. Si, Al, Ca, K, O also occur, but are predominantly confined to cracks and likely represent contamination from the desert environment. Unusual in the stone is poor correlation between elements within the chalcophile (S vs. Cu, Zn) and siderophile (i.e.: Fe vs. Ni, Ir, Os) groups, whereas other siderophiles (Mn, Mo and the Platinum group elements (PGEs)) mimic the distribution of lithophile elements such as Cr and V. Worthy of mention is also the presence of a globular domain (Ø ∼ 120 μm) that is C and metals-depleted, yet Cl (P)-enriched (>3 wt.% and 0.15 wt.% respectively). While the host of the Cl remains undetermined, this chemical unit is enclosed within a broader domain that is similarly C-poor, yet Cr–Ir rich (up to 1.2 and 0.3 wt.% respectively). Our data suggest that the pebble consists of shock-compacted, primitive carbonaceous material enriched in cold, pre-solar dust.

  20. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    Science.gov (United States)

    Peláez-Cid, A. A.; Tlalpa-Galán, M. A.; Herrera-González, A. M.

    2013-06-01

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C CarTunaT and CarZAPT consist of the materials carbonized at 400 °C lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H3PO4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  1. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    International Nuclear Information System (INIS)

    Peláez-Cid, A A; Tlalpa-Galán, M A; Herrera-González, A M

    2013-01-01

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C; CarTunaT and CarZAPT consist of the materials carbonized at 400 °C; lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H 3 PO 4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  2. The origin of the 3.4 micron feature in Wild 2 cometary particles and in ultracarbonaceous interplanetary dust particles

    OpenAIRE

    Matrajt, Graciela; Flynn, George; Brownlee, Don; Joswiak, Dave; Bajt, Sasa

    2013-01-01

    We analyzed 2 ultra-carbonaceous interplanetary dust particles and 2 cometary Wild 2 particles with infrared spectroscopy. We characterized the carrier of the 3.4 micron band in these samples and compared its profile and the CH2/CH3 ratios to the 3.4 micron band in the diffuse interstellar medium (DISM), in the insoluble organic matter (IOM) from 3 primitive meteorites, in asteroid 24 Themis and in the coma of comet 103P/Hartley 2. We found that the 3.4 micron band in both Wild 2 and IDPs is ...

  3. The Diversity of Carbon in Cometary Refractory Dust Particles

    Science.gov (United States)

    Wooden, D. H.

    2018-01-01

    When comparing the dark icy surfaces of outer solar system small bodies and the composition of carbonaceous chondrites derived from dark asteroids we find a significant discrepancy in the assessed amounts of elemental carbon: up to 80% amorphous carbon is used to model the dark surfaces of Kuiper Belt Objects and Centaurs whereas at most 5% of elemental carbon is found in carbonaceous chondrites. If we presume that regimes of comet nuclei formation are analogous to disk regimes where other outer solar system ice-rich bodies formed then we can turn to comet dust to gain insights into the diversity in the concentration and forms of carbon available in the outer disk. Comet dust offers important insights into the diversity in the amounts and forms of carbon that were incorporated into aggregate dust particles in the colder parts of the protoplanetary disk out of which comet nuclei accreted. Comet nuclei are amongst the most primitive bodies because they have remained cold and unequilibrated. Comet dust particles reveal the presence of forms of elemental carbon and of soluble and insoluble organic matter, and in a great diversity of concentrations from very little, e.g., Stardust samples of comet 81P/Wild 2, to 80% by volume for Ultra Carbonaceous Antarctic Micro Meteorites (UCAMMs). Cometary outbursts and/or jet activity also demonstrate variations in the concentration of carbon in the grains at different grain sizes within a single comet. We review the diversity of carbon-bearing dust grains in cometary samples, flyby measurements and deduced from remote-sensing to enrich the discussion about the diversity of carbonaceous matter available in the outer ice-rich disk at the time of comet nuclei formation.

  4. Nature and origin of the resistant carbonaceous polymorphs involved the fossilization of biogenic soil-aggregates

    Science.gov (United States)

    Courty, M.-A.

    2012-04-01

    The rare occurrence of organic-rich surface horizons in soil archives is widely accepted to resulting from their rapid degradation. We intend here to further elucidate how pedogenic signatures that initially formed at the soil surface could resist over long timescales to burial processes. We focus on the structural evolution of the biogenic soil aggregates that is controlled by the complex interaction of bioturbation, root colonization, microbial decomposition, chemical weathering and physical processes. The nature and origin of carbonaceous components that could possibly contribute to the long term preservation of biogenic soil-aggregates is particularly examined. The study is based on the comparison of pedogenic aggregated microfacies from present-day situations and the ones encountered in soil archives from contrasting edaphic conditions: Arctic Holocene soils from Spitsbergen, hyper-arid soils from the Moche valley (Peru), Holocene semi-arid Mediterranean soils from Northern Syria, late Pleistocene paleosols from lake Mungo (South Wales Australia) and late Pleistocene paleosols from the Ardeche valley (France). The assemblage and composition of biogenic soil-aggregated horizons has been characterized under the binocular microscope and in thin sections. The basic components have been separated by water sieving. A typology of carbonaceous polymorphs and associated composite materials has been established under the binocular. They have been characterized by SEM-EDS, Raman spectrometry, X-ray diffraction and TEM. The comparative study shows that all the biogenic soil-aggregates from the soil archives contain a high amount of similar exotic components that contrast from the parent materials by their fresh aspect and their hydrophobic properties. This exotic assemblage comprises various types of aliphatic carbonaceous polymorphs (filaments, agglutinates, spherules) and aromatic ones (vitrous char, graphite), carbon cenospheres, fine grained sandstones and rock clasts

  5. Extraterrestrial Amino Acids Identified in Metal-Rich CH and CB Carbonaceous Chondrites from Antarctica

    Science.gov (United States)

    Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondritesbut are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment(PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675(CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratiomass spectrometry. The (delta D, delta C-13, delta N-15) ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (1316 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.22 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of beta-, gamma-, and delta-amino acids compared to the corresponding alpha-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.

  6. Microfossils, biomolecules and biominerals in carbonaceous meteorites: implications to the origin of life

    Science.gov (United States)

    Hoover, Richard B.

    2012-11-01

    Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) investigations have shown that a wide variety of carbonaceous meteorites contain the remains of large filaments embedded within freshly fractured interior surfaces of the meteorite rock matrix. The filaments occur singly or in dense assemblages and mats and are often encased within carbon-rich, electron transparent sheaths. Electron Dispersive X-ray Spectroscopy (EDS) spot analysis and 2D X-Ray maps indicate the filaments rarely have detectable nitrogen levels and exhibit elemental compositions consistent with that interpretation that of the meteorite rock matrix. Many of the meteorite filaments are exceptionally well-preserved and show evidence of cells, cell-wall constrictions and specialized cells and processes for reproduction, nitrogen fixation, attachment and motility. Morphological and morphometric analyses permit many of the filaments to be associated with morphotypes of known genera and species of known filamentous trichomic prokaryotes (cyanobacteria and sulfur bacteria). The presence in carbonaceous meteorites of diagenetic breakdown products of chlorophyll (pristane and phytane) along with indigenous and extraterrestrial chiral protein amino acids, nucleobases and other life-critical biomolecules provides strong support to the hypothesis that these filaments represent the remains of cyanobacteria and other microorganisms that grew on the meteorite parent body. The absence of other life-critical biomolecules in the meteorites and the lack of detectable levels of nitrogen indicate the filaments died long ago and can not possibly represent modern microbial contaminants that entered the stones after they arrived on Earth. This paper presents new evidence for microfossils, biomolecules and biominerals in carbonaceous meteorites and considers the implications to some of the major hypotheses for the Origin of Life.

  7. Nitrile versus isonitrile adsorption at interstellar grain surfaces. II. Carbonaceous aromatic surfaces

    Science.gov (United States)

    Bertin, M.; Doronin, M.; Michaut, X.; Philippe, L.; Markovits, A.; Fillion, J.-H.; Pauzat, F.; Ellinger, Y.; Guillemin, J.-C.

    2017-12-01

    Context. Almost 20% of the 200 different species detected in the interstellar and circumstellar media present a carbon atom linked to nitrogen by a triple bond. Of these 37 molecules, 30 are nitrile R-CN compounds, the remaining 7 belonging to the isonitrile R-NC family. How these species behave in their interactions with the grain surfaces is still an open question. Aims: In a previous work, we have investigated whether the difference between nitrile and isonitrile functional groups may induce differences in the adsorption energies of the related isomers at the surfaces of interstellar grains of various nature and morphologies. This study is a follow up of this work, where we focus on the adsorption on carbonaceous aromatic surfaces. Methods: The question is addressed by means of a concerted experimental and theoretical approach of the adsorption energies of CH3CN and CH3NC on the surface of graphite (with and without surface defects). The experimental determination of the molecule and surface interaction energies is carried out using temperature-programmed desorption in an ultra-high vacuum between 70 and 160 K. Theoretically, the question is addressed using first-principle periodic density functional theory to represent the organised solid support. Results: The adsorption energy of each compound is found to be very sensitive to the structural defects of the aromatic carbonaceous surface: these defects, expected to be present in a large numbers and great diversity on a realistic surface, significantly increase the average adsorption energies to more than 50% as compared to adsorption on perfect graphene planes. The most stable isomer (CH3CN) interacts more efficiently with the carbonaceous solid support than the higher energy isomer (CH3NC), however.

  8. Microwave-assisted and carbonaceous catalytic pyrolysis of crude glycerol from biodiesel waste for energy production

    International Nuclear Information System (INIS)

    Ng, Jo-Han; Leong, Swee Kim; Lam, Su Shiung; Ani, Farid Nasir; Chong, Cheng Tung

    2017-01-01

    Highlights: • Crude glycerol is pyrolysed catalytically via microwave irradiation to produce bioenergy. • Carbonaceous catalyst elevates pyrolysis temperature and promotes selectivity towards H_2 production. • Synthesis gas consisting of mainly H_2 and CH_4 was predominantly produced at long residence time and high temperature. • Production of bio-oil consisting of oxygenated compounds peaks at intermediate carrier gas flow rate. • Energy profit analysis shows positive energy gained with increasing residence time and decreasing reaction temperature. - Abstract: Biodiesel proliferation as a sustainable fuel has led to a glut of crude glycerol as co-product. This scenario made a previously lucrative co-product in the food and pharmaceutical sectors into a bioresource waste. The present study investigates the utilisation of a microwave-assisted pyrolysis technique to convert crude glycerol from biodiesel waste into usable bioenergy source. Operating conditions ranged from a temperature of 300–800 °C at carrier gas flow rates of 100–2000 mL/min, with the effects of carbonaceous catalyst on the selectivity of reaction pathway being investigated. Within the aforementioned conditions, the proportion of products phases is mainly dependent on the residence time inside the quartz reactor, followed by the reaction temperature. This is due to the combined factors of the reaction sequence and provision of activation energy to change product phases. The third factor of carbonaceous catalyst shows a predisposition towards hydrogen gas selectivity, leading to a lower overall gaseous product mass when factoring in products from all phases. An analysis of the energy content revealed that overall energy profit increases with decreasing temperature and increasing residence time. This concurs with solid energy content increasing in the same conditions, while it increases for liquid and gaseous products with decreasing temperature and flow rate, respectively. The

  9. Carbon isotope analysis of carbonaceous compounds in Puget Sound and Lake Washington

    International Nuclear Information System (INIS)

    Swanson, J.R.

    1980-01-01

    A new method has been developed and tested for determining chronological profiles of organic pollutants. This method, Carbon Isotope Analysis (CIA), involves measurements of 12 C, 13 C and 14 C in carbonaceous compounds found in layers of sediment. Lipids, total aliphatic hydrocarbons (TAHs) and polycyclic aromatic hydrocarbons (PAHs) are separated from kg quantities of sediment. Large Soxhlet extractors are used to remove the extractable organics, using ultra-pure benzene-methanol solution and having an extraction efficiency of about 86% for compounds with boiling points higher than n-tetradecane (n-C 14 ). The basic steps in compound separation include freeze-drying, extraction, fractionation, column chromatography and evaporation. Isolating the TAH and PAH fractions is accomplished by eluting samples from Sephadex and alumina/silica-gel columns. The amount of each fraction recovered is determined by converting the hydrocarbons to carbon dioxide and measuring this gas manometrically. Variations in 12 C and 13 C abundances for carbonaceous compounds are primarily due to thermodynamic, photosynthetic and metabolic fractionation processes. Thus, the source of a particular organic compound can often be determined by measuring its 13 C/ 12 C ratio. Combining the information from both the 13 C analysis and 14 C analysis makes source identification more certain. In addition, this investigation reviews carbon isotopic data and carbon cycling and analyzes organic pollution in two limited ecosystems (Puget Sound and Lake Washington). Specifically, distinct carbonaceous species are analyzed for pollution in sediments of Lake Washington, Elliott Bay, Commencement Bay, central Puget Sound and northern Puget Sound near the Cherry Point oil refineries

  10. Source apportionment of carbonaceous particulate matter during haze days in Shanghai based on the radiocarbon

    International Nuclear Information System (INIS)

    Nannan Wei; Jialiang Feng; Detao Xiao

    2017-01-01

    To estimate the sources of carbonaceous particulate matter, "1"4C and biomass-burning marker (levoglucosan) were measured in the form of organic carbon (OC) and elemental carbon (EC) in PM_2_._5 that was collected in five different functional districts of Shanghai during winter 2013. Spatial variations of the contemporary proportion among different districts were evident. The results of levoglucosan in Xujiahui (XH) and Chongming (CM) agreed well with those of "1"4C. The results indicate that environmental protection policies should vary for functional districts within the same city to account for their different sources of emissions. (author)

  11. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, D.S. [Indian Institute of Tropical Meteorology, New Delhi (India); Dumka, U.C., E-mail: dumka@aries.res.in [Aryabhatta Research Institute of Observational Sciences, Nainital (India); Kaskaoutis, D.G. [School of Natural Sciences, Shiv Nadar University, Tehsil Dadri (India); Pipal, A.S. [Department of Chemistry, Savitribai Phule Pune University, Pune (India); Srivastava, A.K. [Indian Institute of Tropical Meteorology, New Delhi (India); Soni, V.K.; Attri, S.D.; Sateesh, M. [India Meteorology Department, Lodhi Road, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology, New Delhi (India)

    2015-07-15

    Particulate matter (PM{sub 2.5}) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM{sub 2.5} samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}). Furthermore, continuous (online) measurements of PM{sub 2.5} (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM{sub 2.5} (online) range from 18.2 to 500.6 μg m{sup −3} (annual mean of 124.6 ± 87.9 μg m{sup −3}) exhibiting higher night-time (129.4 μg m{sup −3}) than daytime (103.8 μg m{sup −3}) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO{sub 3}{sup −}and SO{sub 4}{sup 2−}, which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R{sup 2} = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day{sup −1}) due to agricultural burning effects

  12. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    International Nuclear Information System (INIS)

    Bisht, D.S.; Dumka, U.C.; Kaskaoutis, D.G.; Pipal, A.S.; Srivastava, A.K.; Soni, V.K.; Attri, S.D.; Sateesh, M.; Tiwari, S.

    2015-01-01

    Particulate matter (PM 2.5 ) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO 4 2− and NO 3 − ) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM 2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO 4 2− and NO 3 − ). Furthermore, continuous (online) measurements of PM 2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM 2.5 (online) range from 18.2 to 500.6 μg m −3 (annual mean of 124.6 ± 87.9 μg m −3 ) exhibiting higher night-time (129.4 μg m −3 ) than daytime (103.8 μg m −3 ) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO 3 − and SO 4 2− , which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R 2 = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day −1 ) due to agricultural burning effects during the 2012 post-monsoon season. - Highlights: • Very high PM 2.5 (> 200 µg m −3 ) levels

  13. Quenched carbonaceous composite - Fluorescence spectrum compared to the extended red emission observed in reflection nebulae

    Science.gov (United States)

    Sakata, Akira; Wada, Setsuko; Narisawa, Takatoshi; Asano, Yoichi; Iijima, Yutaka; Onaka, Takashi; Tokunaga, Alan T.

    1992-01-01

    The photoluminescence (fluorescence) of a film of the laboratory-synthesized quenched carbonaceous composite (filmy QCC) is shown to have a single broad emission feature with a peak wavelength that varies from 670 to 725 nm, and coincides with that of the extended red emission observed in reflection nebulae. The rapid decay of the filmy QCC red fluorescence in air and of the stable blue fluorescence of the filmy QCC dissolved in liquid Freon suggests that the red fluorescence originates from the interaction of active chemical species and aromatic components in the filmy QCC. A material similar in nature to that of the filmy QCC may be a major component of interstellar dust.

  14. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites

    OpenAIRE

    Cooper, George; Rios, Andro C.

    2016-01-01

    The majority of biological sugars and their derivatives contain higher abundances of the “d” mirror-image forms relative to the “l” forms. For example, nucleic acids are composed of only d sugars. Carbonaceous meteorites can potentially assist in understanding the long-sought origin of such phenomena; They preserve a record of the earliest (∼4.5 Gy) chemical processes in the Solar System. To date, there have been no systematic studies of d/l (i.e., enantiomer) ratios of meteoritic sugar deriv...

  15. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    Science.gov (United States)

    Bermúdez, José M.; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael

    2013-01-01

    Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar) and capacities (>2 mmol·g−1 at 273 K). Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes. PMID:28788352

  16. Amino Acid Chemistry as a Link Between Small Solar System Bodies and Carbonaceous Chondrites

    Science.gov (United States)

    Glavin, Daniel P.; Ehrenfreund, Pascale; Botta, Oliver; Cooper, George; Bada, Jeffrey L.

    2000-01-01

    Establishing chemical links between meteorites and small solar system bodies, such as comets and asteroids, provides a tool for investigating the processes that occurred during the formation of the solar system. Carbonaceous meteorites are of particular interest, since they may have seeded the early Earth with a variety of prebiotic organic compounds including amino acids, purines and pyrimidines, which are thought to be necessary for the origin of life. Here we report the results of high-performance liquid chromatography (HPLC) based amino acid analyses of the acid-hydrolyzed hot water extracts from pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna and the CM meteorites Murchison and Murray. We found that the CI meteorites Orgueil and Ivuna contained high abundances of beta-alanine and glycine, while only traces of other amino acids like alanine, alpha-amino-n-butryic acid (ABA) and alpha-aminoisobutyric acid (AIB) were detected in these meteorites. Carbon isotopic measurements of beta-alanine and glycine in Orgueil by gas chromatography combustion-isotope ratio mass spectrometry clearly indicate an extraterrestrial origin of these amino acids. The amino acid composition of Orgueil and Ivuna was strikingly different from the CM chondrites Murchison and Murray. The most notable difference was the high relative abundance of B-alanine in Orgueil and Ivuna compared to Murchison and Murray. Furthermore, AIB, which is one of the most abundant amino acids found in Murchison and Murray, was present in only trace amounts in Orgueil and Ivuna. Our amino acid data strongly suggest that the CI meteorites Orgueil and Ivuna came from a different type of parent body than the CM meteorites Murchison and Murray, possibly from an extinct comet. It is generally thought that carbonaceous meteorites are fragments of larger asteroidal bodies delivered via near Earth objects (NEO). Orbital and dynamic studies suggest that both fragments of main belt asteroids

  17. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    Directory of Open Access Journals (Sweden)

    Ana Arenillas

    2013-10-01

    Full Text Available Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar and capacities (>2 mmol·g−1 at 273 K. Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes.

  18. CO₂ Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues.

    Science.gov (United States)

    Bermúdez, José M; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael

    2013-10-18

    Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO₂ adsorption properties, with interestingly high gas selectivities for CO₂ (α > 200 at a gas composition of 15% CO₂/85% N₂, 273K, 1 bar) and capacities (>2 mmol·g -1 at 273 K). Both CO₂ isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO₂ which may be correlated with both: N content in the leather residues and ultrasmall pore sizes.

  19. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals

    Directory of Open Access Journals (Sweden)

    A. V. Snachev

    2018-03-01

    Full Text Available This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5 g/t that allows suggesting the setting up of new gold deposit.

  20. Studying properties of carbonaceous reducers and process of forming primary titanium slags

    Directory of Open Access Journals (Sweden)

    T. K. Balgabekov

    2014-10-01

    Full Text Available When smelting a rich titanium slag the most suitable are low-ash reducers, and the studies revealed the suitability for this purpose of special coke and coal. An important property of a reducer is its specific resistance. Therefore there were carried out studies for measuring electric resistance of briquettes consisting of ilmenite concentrate and different carbonaceous reducers. It is recommended to jointly smelt the briquetted and powdered burden (the amount of the powdered burden varies form 20 tо 50 %, this leads to the increase of technical-economic indicators of the process.

  1. Production of activated charcoal beads or green moldnings useful in stationary or fluidized bed uses rotary stirrer(s) for mixing carbonaceous powder with binder

    DEFF Research Database (Denmark)

    2000-01-01

    In the production of activated charcoal beads or green moldings by mixing carbonaceous powder with a binder, mixing is carried out in a stirred vessel with rotary stirrer(s).......In the production of activated charcoal beads or green moldings by mixing carbonaceous powder with a binder, mixing is carried out in a stirred vessel with rotary stirrer(s)....

  2. High-temperature LDV seed particle development

    Science.gov (United States)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  3. Implementing a new EPR lineshape parameter for organic radicals in carbonaceous matter.

    Science.gov (United States)

    Bourbin, Mathilde; Du, Yann Le; Binet, Laurent; Gourier, Didier

    2013-07-17

    Electron Paramagnetic Resonance (EPR) is a non-destructive, non-invasive technique useful for the characterization of organic moieties in primitive carbonaceous matter related to the origin of life. The classical EPR parameters are the peak-to-peak amplitude, the linewidth and the g factor; however, such parameters turn out not to suffice to fully determine a single EPR line. In this paper, we give the definition and practical implementation of a new EPR parameter based on the signal shape that we call the R10 factor. This parameter was originally defined in the case of a single symmetric EPR line and used as a new datation method for organic matter in the field of exobiology. Combined to classical EPR parameters, the proposed shape parameter provides a full description of an EPR spectrum and opens the way to novel applications like datation. Such a parameter is a powerful tool for future EPR studies, not only of carbonaceous matter, but also of any substance which spectrum exhibits a single symmetric line. The paper is a literate program-written using Noweb within the Org-mode as provided by the Emacs editor- and it also describes the full data analysis pipeline that computes the R10 on a real EPR spectrum.

  4. Atmospheric pressure MALDI for the noninvasive characterization of carbonaceous ink from Renaissance documents.

    Science.gov (United States)

    Grasso, Giuseppe; Calcagno, Marzia; Rapisarda, Alessandro; D'Agata, Roberta; Spoto, Giuseppe

    2017-06-01

    The analytical methods that are usually applied to determine the compositions of inks from ancient manuscripts usually focus on inorganic components, as in the case of iron gall ink. In this work, we describe the use of atmospheric pressure/matrix-assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of the organic carbonaceous components of inks used in handwritten parts of ancient books for the first time. Large polycyclic aromatic hydrocarbons (L-PAH) were identified in situ in the ink of XVII century handwritten documents. We prove that it is possible to apply MALDI-MS as a suitable microdestructive diagnostic tool for analyzing samples in air at atmospheric pressure, thus simplifying investigations of the organic components of artistic and archaeological objects. The interpretation of the experimental MS results was supported by independent Raman spectroscopic investigations. Graphical abstract Atmospheric pressure/MALDI mass spectrometry detects in situ polycyclic aromatic hydrocarbons in the carbonaceous ink of XVII century manuscripts.

  5. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Rios, Andro C.

    2016-06-01

    Biological polymers such as nucleic acids and proteins are constructed of only one—the d or l—of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System’s earliest (˜4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life’s carbohydrate-related biopolymers.

  6. [Study on pollution characteristics of carbonaceous aerosols in Xi'an City during the spring festival].

    Science.gov (United States)

    Zhou, Bian-Hong; Zhang, Cheng-Zhong; Wang, Ge-Hui

    2013-02-01

    The samples of PM2.5 with 8 times periods were collected using Automated Cartridge Collection Unit (ACCU) of Rupprecht& Patashnick (R&P)Corporation, and monitored by R&P1400a instrument of TEOM series online during 2011 Spring Festival in Xi'an city. The organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WIOC) contents of 3 h integrated PM2.5 were analyzed to evaluate the influence of firework display on the carbonaceous components in urban air. The mass concentration of PM2.5 was found increased significantly from 00:00 A. M. to 02:59 A. M. at the Chinese Lunar New Year's Eve than the non-firework periods, reaching 1514.8 microg.m-3 at 01:00 A. M. The mass concentrations of OC, EC, WSOC, and WIOC during the same time period were 123.3 microg.m-3, 18.6 microg.m-3, 66.7 microg.m-3, and 56.6 microg.m-3, about 1.7, 1.2, 1.4, and 2.2 times higher than the average in normal days, respectively. Correlation analysis among WSOC, OC, and EC contents in PM25 showed that firework emission was an obvious source of carbonaceous aerosol in the Spring Festival vacation. However, it only contributes to 9. 4% for aerosol in fireworks emission.

  7. PROTO-PLANETARY DISK CHEMISTRY RECORDED BY D-RICH ORGANIC RADICALS IN CARBONACEOUS CHONDRITES

    International Nuclear Information System (INIS)

    Remusat, Laurent; Robert, Francois; Meibom, Anders; Mostefaoui, Smail; Delpoux, Olivier; Binet, Laurent; Gourier, Didier; Derenne, Sylvie

    2009-01-01

    Insoluble organic matter (IOM) in primitive carbonaceous meteorites has preserved its chemical composition and isotopic heterogeneity since the solar system formed ∼4.567 billion years ago. We have identified the carrier moieties of isotopically anomalous hydrogen in IOM isolated from the Orgueil carbonaceous chondrite. Data from high spatial resolution, quantitative isotopic NanoSIMS mapping of Orgueil IOM combined with data from electron paramagnetic resonance spectroscopy reveals that organic radicals hold all the deuterium excess (relative to the bulk IOM) in distinct, micrometer-sized, D-rich hotspots. Taken together with previous work, the results indicate that an isotopic exchange reaction took place between pre-existing organic compounds characterized by low D/H ratios and D-rich gaseous molecules, such as H 2 D + or HD 2 + . This exchange reaction most likely took place in the diffuse outer regions of the proto-planetary disk around the young Sun, offering a model that reconciles meteoritic and cometary isotopic compositions of organic molecules.

  8. The molecular structure of the insoluble organic matter isolated from Murchison carbonaceous chondrite.

    Science.gov (United States)

    Robert, F.; Derenne, S.

    2009-04-01

    During these last 10 years, our group has characterized the various molecular moieties of the insoluble organic matter (IOM) isolated from carbonaceous meteorites with the aim of reconstructing its overall molecular structure. Indeed, a precise knowledge of the structure of an organic macromolecule contains irreplaceable information that traces its mechanisms of synthesis and its conditions of formation. Such a modelled structure will be presented. Carbonaceous chondrites contain up to 3 wt % of carbon that is under the form of soluble and insoluble fractions. The IOM, which constitutes more than 75 wt% of the bulk organic matter, was isolated from the bulk rock through successive acid dissolutions. The chemical structure of the isolated IOM has been studied by both (1) destructive and (2) non destructive methods. Methods include thermal and chemical degradations followed by GC/MS, spectroscopic techniques (nuclear magnetic resonance, Fourier transform infra red spectroscopy; X-ray absorption near-edge spectroscopy, electron paramagnetic resonance) along with high resolution transmission electron microscopy. Although each technique alone cannot provide definite information on the chemical structure of such a complex material, the combination of the results can be used to reconstruct the molecular structure of the IOM. The proposed structure accounts for all these measured parameters. The details of this structure reveal information of the conditions of its formation in space and allow to discuss the mechanisms of organo-synthesis in the cosmochemical context of the formation of the solar system.

  9. Proto-Planetary Disk Chemistry Recorded by D-Rich Organic Radicals in Carbonaceous Chondrites

    Science.gov (United States)

    Remusat, Laurent; Robert, François; Meibom, Anders; Mostefaoui, Smail; Delpoux, Olivier; Binet, Laurent; Gourier, Didier; Derenne, Sylvie

    2009-06-01

    Insoluble organic matter (IOM) in primitive carbonaceous meteorites has preserved its chemical composition and isotopic heterogeneity since the solar system formed ~4.567 billion years ago. We have identified the carrier moieties of isotopically anomalous hydrogen in IOM isolated from the Orgueil carbonaceous chondrite. Data from high spatial resolution, quantitative isotopic NanoSIMS mapping of Orgueil IOM combined with data from electron paramagnetic resonance spectroscopy reveals that organic radicals hold all the deuterium excess (relative to the bulk IOM) in distinct, micrometer-sized, D-rich hotspots. Taken together with previous work, the results indicate that an isotopic exchange reaction took place between pre-existing organic compounds characterized by low D/H ratios and D-rich gaseous molecules, such as H2D+ or HD2 +. This exchange reaction most likely took place in the diffuse outer regions of the proto-planetary disk around the young Sun, offering a model that reconciles meteoritic and cometary isotopic compositions of organic molecules.

  10. The chemical structure of the insoluble organic matter from carbonaceous meteorites

    Science.gov (United States)

    Derenne, S.; Robert, F.

    2008-09-01

    Carbonaceous chondrites are the most primitive objects of the solar system. They contain substantial amounts of carbon (up to 3%), mostly occurring in macromolecular insoluble organic matter (IOM). This IOM is generally considered as a record of interstellar synthesis and may contain precursors of prebiotic molecules possibly deposited on earth by meteoritic bombardments. For these reasons, chondritic IOM has been raising interest for long and it is therefore of special interest to decipher its chemical structure. It is now well established that the chemical structure of this macromolecular material is based on aromatic moieties linked by short aliphatic chains and comprising substantial amounts of heteroatoms. However, its precise chemical structure could only be recently specified. The aim of this presentation is to propose a molecular model for the chemical structure of IOM isolated from non-metamorphosed carbonaceous chondrites. This model is derived from a large set of data obtained through a combination of techniques including various spectrocopies, high resolution transmission electron microscopy (HRTEM) and chemical and thermal degradations. Cosmochemical implications of such a structure will also be discussed.

  11. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    Science.gov (United States)

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.

  12. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-02

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.

  13. Rare particles

    International Nuclear Information System (INIS)

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of 14 C from 223 Ra. 35 references

  14. The toxicity of particles from combustion processes

    International Nuclear Information System (INIS)

    Henderson, R.F.; Mauderly, J.L.

    1991-01-01

    The pulmonary toxicity of inhaled particles will depend on their size, solubility and inherent toxicity. Many combustion-derived particles, such as soot and fly ash, are of a respirable size and, being poorly soluble, are retained for prolonged periods in the lung. The acute toxicity of fly ash from coal combustion was compared to that of a known toxic particle, alpha-quartz, by exposures of rats to 35 mg/m 3 of each type of particle for 7 hr/day, 5 days/wk for 4 wk. The acute pulmonary toxicity was measured by analysis of bronchoalveolar lavage fluid. One year after the exposures, fibrosis with granulomas was observed in the quartz-exposed rats, while little or no fibrosis developed in the fly-ash-exposed rats. The toxicity of soot from diesel exhaust was determined by chronic (30 mo) exposures of rats, 7 hr/day, 5 days/wk to exhaust containing 0.35, 3.5 or 7.0 mg/m 3 soot. The two higher exposures caused persistent pulmonary inflammation, fibrosis and neoplasmas. Rats exposed to the lowest concentration demonstrated no toxic responses and there was no life shortening caused by any exposure. Ongoing comparative studies indicate that pure carbon black particles cause responses similar to those caused by diesel exhaust, indicating that much of the toxicity induced by the diesel soot results from the presence of the large lung burdens of carbonaceous particles

  15. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    Science.gov (United States)

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  16. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    Science.gov (United States)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  17. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    International Nuclear Information System (INIS)

    Lacey, Forrest; Henze, Daven

    2015-01-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  18. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    Science.gov (United States)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  19. Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau.

    Science.gov (United States)

    Hu, Zhaofu; Kang, Shichang; Li, Chaoliu; Yan, Fangping; Chen, Pengfei; Gao, Shaopeng; Wang, Zhiyong; Zhang, Yulan; Sillanpää, Mika

    2017-06-01

    Carbonaceous aerosols over the Tibetan Plateau originate primarily from biomass burning and vehicle emissions (BB and VEs, respectively). The light absorption characteristics of these carbonaceous aerosols are closely correlated with the burning conditions and represent key factors that influence climate forcing. In this study, the light absorption characteristics of elemental carbon (EC) and water-soluble organic carbon (WSOC) in PM 2.5 (fine particulate matter smaller than 2.5 μm) generated from BB and VEs were investigated over the Tibetan Plateau (TP). The results showed that the organic carbon (OC)/EC ratios from BB- and VE-sourced PM 2.5 were 17.62 ± 10.19 and 1.19 ± 0.36, respectively. These values were higher than the ratios in other regions, which was primarily because of the diminished amount of oxygen over the TP. The mass absorption cross section of EC (MAC EC ) at 632 nm for the BB-sourced PM 2.5 (6.10 ± 1.21 m 2 .g -1 ) was lower than that of the VE-sourced PM 2.5 (8.10 ± 0.98 m 2 .g -1 ), indicating that the EC content of the BB-sourced PM 2.5 was overestimated because of the high OC/EC ratio. The respective absorption per mass (α/ρ) values at 365 nm for the VE- and BB-sourced PM 2.5 were 0.71 ± 0.17 m 2 .g -1 and 0.91 ± 0.18 m 2 .g -1 . The α/ρ value of the VEs was loaded between that of gasoline and diesel emissions, indicating that the VE-sourced PM 2.5 originated from both types of emissions. Because OC and WSOC accounts for most of the carbonaceous aerosols at remote area of the TP, the radiative forcing contributed by the WSOC should be high, and requires further investigation.

  20. Fe and O EELS Studies of Ion Irradiated Murchison CM2 Carbonaceous Chondrite Matrix

    Science.gov (United States)

    Keller, L. P.; Christofferson, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Introduction: The physical and chemical response of hydrated carbonaceous chondrite materials to space weathering processes is poorly understood. Improving this understanding is a key part of establishing how regoliths on primitive carbonaceous asteroids respond to space weathering processes, knowledge that supports future sample return missions (Hayabusa 2 and OSIRISREx) that are targeting objects of this type. We previously reported on He+ irradiation of Murchison matrix and showed that the irradiation resulted in amorphization of the matrix phyllosilicates, loss of OH, and surface vesiculation. Here, we report electron energy-loss spectroscopy (EELS) measurements of the irradiated material with emphasis on the Fe and O speciation. Sample and Methods: A polished thin section of the Murchison CM2 carbonaceous chondrite was irradiated with 4 kilovolts He(+) (normal incidence) to a total dose of 1 x 10(exp 18) He(+) per square centimeter. We extracted thin sections from both irradiated and unirradiated regions in matrix using focused ion beam (FIB) techniques with electron beam deposition for the protective carbon strap to minimize surface damage artifacts from the FIB milling. The FIB sections were analyzed using a JEOL 2500SE scanning and transmission electron microscope (STEM) equipped with a Gatan Tridiem imaging filter. EELS spectra were collected from 50 nanometer diameter regions with an energy resolution of 0.7 electronvolts FWHM at the zero loss. EELS spectra were collected at low electron doses to minimize possible artifacts from electron-beam irradiation damage. Results and Discussion: Fe L (sub 2,3) EELS spectra from matrix phyllosilicates in CM chondrites show mixed Fe(2+)/Fe(3+) oxidation states with Fe(3+)/Sigma Fe approximately 0.5. Fe L(sub 2,3) spectra from the irradiated/ amorphized matrix phyllosilicates show higher Fe(2+)/Fe(3+) ratios compared to spectra obtained from pristine material at depths beyond the implantation/amorphization layer. We

  1. The carbonaceous matter in the uraniferous dequartzified and albitized leucogranite of Saraya (Senegal): an example of superimposed hydrothermal alterations

    International Nuclear Information System (INIS)

    Mouthier, B.

    1988-01-01

    Two superimposed early hydrothermal alterations have been recognized in the Proterozoic Saraya leucogranite. Successively are described a major dequartzification leading to an episyenite infilled with carbonaceous matter and sulfate during an interruption of the system, succeeded by a mobilization of U and other elements during an albitization. A dolomite filling up followed by a silicopotassic feed-back alteration, close down the system [fr

  2. Modelling decreased food chain accumulation of HOCs due to strong sorption to carbonaceous materials and metabolic transformation

    NARCIS (Netherlands)

    Moermond, C.T.A.; Traas, T.P.; Roessink, I.; Veltman, K.; Hendriks, A.J.; Koelmans, A.A.

    2007-01-01

    The predictive power of bioaccumulation models may be limited when they do not account for strong sorption of organic contaminants to carbonaceous materials (CM) such as black carbon, and when they do not include metabolic transformation. We tested a food web accumulation model, including sorption

  3. Fabricating eco-friendly nanocomposites of SiC with morphologically-different nano-carbonaceous phases 

    DEFF Research Database (Denmark)

    Candelario, Victor M.; Moreno, Rodrigo; Guiberteau, Fernando

    2018-01-01

    A route based on aqueous colloidal processing followed by liquid-phase assisted spark-plasma-sintering (SPS) is described for fabricating eco-friendly nanocomposites of SiC with nano-carbonaceous phases (nanotubes, nanoplatelets, or nanoparticles). To this end, the conditions optimizing the aqueo...

  4. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the Megapoli summer and winter campaigns

    NARCIS (Netherlands)

    Fountoukis, C.; Megaritis, A.G.; Skyllakou, K.; Charalampidis, P.E.; Denier van der Gon, H.A.C.; Crippa, M.; Prevot, A.S.H.; Fachinger, F.; Wiedensohler, A.; Pilinis, C.; Pandis, S.N.

    2016-01-01

    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 x 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol dur-ing a summer (July 2009) and a winter (January/February 2010) period as part of

  5. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes

    OpenAIRE

    Tyler, Christina R.; Zychowski, Katherine E.; Sanchez, Bethany N.; Rivero, Valeria; Lucas, Selita; Herbert, Guy; Liu, June; Irshad, Hammad; McDonald, Jacob D.; Bleske, Barry E.; Campen, Matthew J.

    2016-01-01

    Background Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE?/?) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, ge...

  6. Particle detection

    International Nuclear Information System (INIS)

    Charpak, G.

    2000-01-01

    In this article G.Charpak presents the principles on which particle detection is based. Particle accelerators are becoming more and more powerful and require new detectors able to track the right particle in a huge flux of particles. The gigantic size of detectors in high energy physics is often due to the necessity of getting a long enough trajectory in a magnetic field in order to deduce from the curvature an accurate account of impulses in the reaction. (A.C.)

  7. Strange particles

    International Nuclear Information System (INIS)

    Chinowsky, W.

    1989-01-01

    Work done in the mid 1950s at Brookhaven National Laboratory on strange particles is described. Experiments were done on the Cosmotron. The author describes his own and others' work on neutral kaons, lambda and theta particles and points out the theoretical gap between predictions and experimental findings. By the end of the decade, the theory of strange particles was better understood. (UK)

  8. Organic free radicals and micropores in solid graphitic carbonaceous matter at the Oklo natural fission reactors, Gabon

    International Nuclear Information System (INIS)

    Rigali, M.J.; Nagy, B.

    1997-01-01

    The presence, concentration, and distribution of organic free radicals as well as their association with specific surface areas and microporosities help characterize the evolution and behavior of the Oklo carbonaceous matter. Such information is necessary in order to evaluate uranium mineralization, liquid bitumen solidification, and radio nuclide containment at Oklo. In the Oklo ore deposits and natural fission reactors carbonaceous matter is often referred to as solid graphitic bitumen. The carbonaceous parts of the natural reactors may contain as much as 65.9% organic C by weight in heterogeneous distribution within the clay-rich matrix. The solid carbonaceous matter immobilized small uraninite crystals and some fission products enclosed in this uraninite and thereby facilitated radio nuclide containment in the reactors. Hence, the Oklo natural fission reactors are currently the subjects of detailed studies because they may be useful analogues to support performance assessment of radio nuclide containment at anthropogenic radioactive waste repository sites. Seven carbonaceous matter rich samples from the 1968 ± 50 Ma old natural fission reactors and the associated Oklo uranium ore deposit were studied by electron spin resonance (ESR) spectroscopy and by measurements of specific surface areas (BET method). Humic acid, fulvic acid, and fully crystalline graphite standards were also examined by ESR spectroscopy for comparison with the Oklo solid graphitic bitumens. With one exception, the ancient Oklo bitumens have higher organic free radical concentrations than the modem humic and fulvic acid samples. The presence of carbon free radicals in the graphite standard could not be determined due to the conductivity of this material. 72 refs., 7 figs., 1 tab

  9. Electron spin resonance and its application to heat treated carbonaceous materials

    International Nuclear Information System (INIS)

    Emmerich, Francisco Guilherme

    1993-01-01

    This work presents the basic characteristics of the electron spin resonance technique, also called paramagnetic resonance, being discussed its application to heat treated carbonaceous materials. In the low heat treatment temperature (HTT) range (below 700 deg C) the organic free radical are the predominant unpaired spin center, which play a key role in the process of carbonization and meso phase formation. At higher temperatures, it is possible to make correlations between the low H T T range and the high HTT range (above 130 deg C), where the predominant unpaired spin center are the free charge carriers (free electrons) of the graphite like crystallites of the material, which are formed by the carbonization process. (author)

  10. Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol

    DEFF Research Database (Denmark)

    Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2016-01-01

    conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis....... Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls......We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic...

  11. Influence of hydrothermal carbonization and treatment by microwave on morphology of carbonaceous materials obtained from lignin

    International Nuclear Information System (INIS)

    Oliveira, I.B.; Barin, G.B.; Barreto, L.S.; Santos, M.C.G.

    2014-01-01

    The conversion of biomass into carbon materials with special morphologies via hydrothermal carbonization presents itself as a potential route for the use of renewable precursors in obtaining carbonaceous structures. In the present study the influence of the hydrothermal carbonization (250 ° C / 4 h) followed by microwave treatment (1-2-4 hours at 25 and 40 mL) in morphology and structure of lignin. The samples were analyzed by X-ray diffraction and scanning electron microscopy. The plaque morphology of lignin was preserved during the hydrothermal process. However, when treated by microwave can be observed partial dissolution of lignin leading to the formation of microspheres on the surface. XRD presence of an amorphous halo 2θ = 23 ° attributed to the (002) network of the amorphous carbon was observed. (author)

  12. Ordered mixed-layer structures in the Mighei carbonaceous chondrite matrix

    Science.gov (United States)

    Mackinnon, I. D. R.

    1982-01-01

    High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence SBBSBB. Electron diffraction and imaging techniques show that the basal periodicity is approximately 17 A. Discrete crystals of SBB-type material are typically curved, of small size (less than 1 micron) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of pre-existing material is not yet apparent.

  13. Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants

    Science.gov (United States)

    Apetrei, Constantin; Apetrei, Irina Mirela; De Saja, Jose Antonio; Rodriguez-Mendez, Maria Luz

    2011-01-01

    This work describes the sensing properties of carbon paste electrodes (CPEs) prepared from three different types of carbonaceous materials: graphite, carbon microspheres and carbon nanotubes. The electrochemical responses towards antioxidants including vanillic acid, catechol, gallic acid, l-ascorbic acid and l-glutathione have been analyzed and compared. It has been demonstrated that the electrodes based on carbon microspheres show the best performances in terms of kinetics and stability, whereas G-CPEs presented the smallest detection limit for all the antioxidants analyzed. An array of electrodes has been constructed using the three types of electrodes. As demonstrated by means of Principal Component Analysis, the system is able to discriminate among antioxidants as a function of their chemical structure and reactivity. PMID:22319354

  14. Mineralogy, petrology and geochemistry of carbonaceous chondritic clasts in the LEW 85300 polymict eucrite

    Science.gov (United States)

    Zolensky, M. E.; Hewins, R. H.; Mittlefehldt, D. W.; Lindstrom, M. M.; Xiao, X.; Lipschutz, M. E.

    1992-01-01

    We have performed a detailed petrologic and mineralogic study of two chondritic clasts from the polymict eucrite Lewis Cliff (LEW) 85300, and performed chemical analyses by INAA and RNAA on one of these. Petrologically, the clasts are identified and are composed of dispersed aggregates, chondrules, and chondrule fragments supported by matrix. The aggregates and chondrules are composed of olivine, orthopyroxene, plus some diopside. The matrix consists of fine-grained olivine, and lesser orthopyroxene and augite. Fine-grained saponite is common in the matrix. The bulk major composition of the clast studied by INAA and RNAA shows unusual abundance patterns for lithophile, siderophile and chalcophile elements but is basically chondritic. The INAA/RNAA data preclude assignment of the LEW 85300,15 clast to any commonly accepted group of carbonaceous chondrite.

  15. Nitrogen-Doped Carbonaceous Materials for Removal of Phenol from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Magdalena Hofman

    2012-01-01

    Full Text Available Carbonaceous material (brown coal modified by pyrolysis, activation, and enrichment in nitrogen, with two different factor reagents, have been used as adsorbent of phenol from liquid phase. Changes in the phenol content in the test solutions were monitored after subsequent intervals of adsorption with selected adsorbents prepared from organic materials. Significant effect of nitrogen present in the adsorbent material on its adsorption capacity was noted. Sorption capacity of these selected materials was found to depend on the time of use, their surface area, and pore distribution. A conformation to the most well-known adsorption isotherm models, Langmuir, and Freundlich ones, confirms the formation of mono- and heterolayer solute (phenol coverage on the surface of the adsorbent applied herein. The materials proposed as adsorbents of the aqueous solution contaminants were proved effective, which means that the waste materials considered are promising activated carbon precursors for liquid phase adsorbents for the environmental protection.

  16. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    International Nuclear Information System (INIS)

    Von Lensa, W.; Rizzato, C.; Baginski, K.; Banford, A.W.; Bradbury, D.; Goodwin, J.; Grambow, B.; Grave, M.J.; Jones, A.N.; Laurent, G.; Pina, G.; Vulpius, D.

    2014-01-01

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  17. Possible superlattice formation in high-temperature treated carbonaceous MgB2 at elevated pressure

    International Nuclear Information System (INIS)

    Tschauner, Oliver; Errandonea, Daniel; Serghiou, George

    2006-01-01

    We report indications of a phase transition in carbonaceous MgB 2 above 9 GPa at 300 K after stress relaxation by laser heating. The transition was detected using Raman spectroscopy and X-ray diffraction. The observed changes are consistent with a second-order structural transition involving a doubling of the unit cell along c and a reduction of the boron site symmetry. Moreover, the Raman spectra suggest a reduction in electron-phonon coupling in the slightly modified MgB 2 structure consistent with the previously proposed topological transition in MgB 2 . However, further attributes including deviatoric stress, lattice defects, and compositional variation may play an important role in the observed phenomena

  18. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M. M. E.; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last......)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25......-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals...

  19. Radar-Enabled Recovery of the Sutters Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia

    Science.gov (United States)

    Jenniskens, Petrus M.; Fries, Marc D.; Yin, Qing-Zhu; Zolensky, Michael E.; Krot, Alexander N.; Sandford, Scott A.; Sears, Derek; Beauford, Robert; Ebel, Denton S.; Friedrich, Jon M.; hide

    2012-01-01

    Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 +/- 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

  20. Comparison of Ablation Predictions for Carbonaceous Materials Using CEA and JANAF-Based Species Thermodynamics

    Science.gov (United States)

    Milos, Frank S.

    2011-01-01

    In most previous work at NASA Ames Research Center, ablation predictions for carbonaceous materials were obtained using a species thermodynamics database developed by Aerotherm Corporation. This database is derived mostly from the JANAF thermochemical tables. However, the CEA thermodynamics database, also used by NASA, is considered more up to date. In this work, the FIAT code was modified to use CEA-based curve fits for species thermodynamics, then analyses using both the JANAF and CEA thermodynamics were performed for carbon and carbon phenolic materials over a range of test conditions. The ablation predictions are comparable at lower heat fluxes where the dominant mechanism is carbon oxidation. However, the predictions begin to diverge in the sublimation regime, with the CEA model predicting lower recession. The disagreement is more significant for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate.

  1. Molecular and isotope constraints on the formation of the insoluble organic matter of carbonaceous meteorites

    Science.gov (United States)

    Derenne, Sylvie; Robert, François

    2017-04-01

    The origin of the insoluble organic matter (IOM) of the carbonaceous meteorites remains an unsolved issue despite major achievements in the knowledge of its chemical structure. The latter led us to propose a model for its molecular structure. Based on the relationship between the aromatic moieties of the macromolecular structure and their aliphatic linkages, it was recently suggested that, its synthesis has taken place in the gas phase of the disk surrounding the Sun in its early T-Tauri phase and that organic radicals have played a central role in this organo-synthesis. To test experimentally this pathway, we submitted short hydrocarbons (methane, pentane, octane) to a microwave plasma discharge so as to produce in situ CHx radicals. The black organic residue deposited contained both soluble and insoluble OM. The comparison at the molecular level between the thus synthesized IOM and that of meteorite led to strong similarities thus supporting the proposed pathway for its organo-synthesis. Moreover, in the meteorite IOM, systematic deuterium enrichment relative to the protosolar value is observed at the bulk sample scale and micrometer-sized grains exhibit dramatic enrichments in deuterium interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the solar disk. In the aforementioned synthesized IOM, NanoSIMS analyses revealed large variations at a sub-micrometric spatial resolution. They likely reflect the differences in the D/H ratios of the CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the T-Tauri solar disk may have triggered the formation of organic compounds. This laboratory synthesis thus shed a new light on the formation conditions and pathways of the IOM of carbonaceous chondrites.

  2. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    Science.gov (United States)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko

    2016-01-01

    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  3. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  4. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  5. Particle therapy

    International Nuclear Information System (INIS)

    Raju, M.R.

    1993-01-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics

  6. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  7. Particle cosmology

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.

  8. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  9. Magnetic particles

    Science.gov (United States)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  10. A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions

    Directory of Open Access Journals (Sweden)

    N. Ma

    2012-03-01

    Full Text Available In this paper, the mixing state of light absorbing carbonaceous (LAC was investigated with a two-parameter aerosol optical model and in situ aerosol measurements at a regional site in the North China Plain (NCP. A closure study between the hemispheric backscattering fraction (HBF measured by an integrating nephelometer and that calculated with a modified Mie model was conducted. A new method was proposed to retrieve the ratio of the externally mixed LAC mass to the total mass of LAC (rext-LAC based on the assumption that the ambient aerosol particles were externally mixed and consisted of a pure LAC material and a core-shell morphology in which the core is LAC and the shell is a less absorbing material. A Monte Carlo simulation was applied to estimate the overall influences of input parameters of the algorithm to the retrieved rext-LAC. The diurnal variation of rext-LAC was analyzed and the PartMC-MOSAIC model was used to simulate the variation of the aerosol mixing state. Results show that, for internally mixed particles, the assumption of core-shell mixture is more appropriate than that of homogenous mixture which has been widely used in aerosol optical calculations. A significant diurnal pattern of the retrieved rext-LAC was found, with high values during the daytime and low values at night. The consistency between the retrieved rext-LAC and the model results indicates that the diurnal variation of LAC mixing state is mainly caused by the diurnal evolution of the mixing layer.

  11. Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived layered CNX catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chitosan-derived, porous and layered nitrogen-enriched carbonaceous CNx catalyst (PLCNx) has been synthesized from marine waste and its use demonstrated in a...

  12. Spectral reflectance "deconstruction" of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids

    Science.gov (United States)

    Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu

    2018-05-01

    Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope

  13. Characterization of Chiral Carbonaceous Nanotubes Prepared from Four Coiled Tubular 4,4'-biphenylene-silica Nanoribbons

    Directory of Open Access Journals (Sweden)

    Shuwei Lin

    2014-04-01

    Full Text Available Four dipeptides derived from phenylalanine were synthesized, which can self-assemble into twisted nanoribbon in deionized water. The handedness of the organic self-assemblies was controlled by the chirality of the phenylalanine at the terminals. Coiled 4,4'-biphenylene bridged polybissilsesquioxane tubular nanoribbons were prepared using the organic self-assemblies as the templates. The circular dichroism spectra indicated that the biphenylene rings preferred to twist in one-handedness within the walls of the samples. After carbonization and removal of silica, single-handed coiled carbonaceous tubular nanoribbons were obtained. The Raman spectra indicated that the carbon was amorphous. The diffuse reflectance circular dichroism spectra indicated the tubular carbonaceous nanoribbons exhibited optical activity.

  14. Thermal alteration in carbonaceous chondrites and implications for sublimation in rock comets

    Science.gov (United States)

    Springmann, Alessondra; Lauretta, Dante S.; Steckloff, Jordan K.

    2015-11-01

    Rock comets are small solar system bodies in Sun-skirting orbits (perihelion q CO2, etc.). B-class asteroid (3200) Phaethon, considered to be the parent body of the Geminid meteor shower, is the only rock comet currently known to periodically eject dust and form a coma. Thermal fracturing or thermal decomposition of surface materials may be driving Phaethon’s cometary activity (Li & Jewitt, 2013). Phaethon-like asteroids have dynamically unstable orbits, and their perihelia can change rapidly over their ~10 Myr lifetimes (de León et al., 2010), raising the possibility that other asteroids may have been rock comets in the past. Here, we propose using spectroscopic observations of mercury (Hg) as a tracer of an asteroid’s thermal metamorphic history, and therefore as a constraint on its minimum achieved perihelion distance.B-class asteroids such as Phaethon have an initial composition similar to aqueously altered primitive meteorites such as CI- or CM-type meteorites (Clark et al., 2010). Laboratory heating experiments of ~mm sized samples of carbonaceous chondrite meteorites from 300K to 1200K at a rate of 15K/minute show mobilization and volatilization of various labile elements at temperatures that could be reached by Mercury-crossing asteroids. Samples became rapidly depleted in labile elements and, in particular, lost ~75% of their Hg content when heated from ~500-700 K, which corresponds to heliocentric distances of ~0.15-0.3 au, consistent with our thermal models. Mercury has strong emission lines in the UV (~ 185 nm) and thus its presence (or absence) relative to carbonaceous chondrite abundances would indicate if these bodies had perihelia in their dynamical histories inside of 0.15 AU, and therefore may have previously been Phaethon-like rock comets. Future space telescopes or balloon-borne observing platforms equipped with a UV spectrometer could potentially detect the presence or absence of strong ultraviolet mercury lines on rock comets or rock

  15. Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite

    Science.gov (United States)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.

    2014-01-01

    Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above

  16. Carbonaceous PM(2.5) and secondary organic aerosol across the Veneto region (NE Italy).

    Science.gov (United States)

    Khan, Md Badiuzzaman; Masiol, Mauro; Formenton, Gianni; Di Gilio, Alessia; de Gennaro, Gianluigi; Agostinelli, Claudio; Pavoni, Bruno

    2016-01-15

    Organic and elemental carbon (OC-EC) were measured in 360 PM2.5 samples collected from April 2012 to February 2013 at six provinces in the Veneto region, to determine the factors affecting the carbonaceous aerosol variations. The 60 daily samples have been collected simultaneously in all sites during 10 consecutive days for 6 months (April, June, August, October, December and February). OC ranged from 0.98 to 22.34 μg/m(3), while the mean value was 5.5 μg/m(3), contributing 79% of total carbon. EC concentrations fluctuated from 0.19 to 11.90 μg/m(3) with an annual mean value of 1.31 μg/m(3) (19% of the total carbon). The monthly OC concentration gradually increased from April to December. The EC did not vary in accordance with OC. However the highest values for both parameters were recorded in the cold period. The mean OC/EC ratio is 4.54, which is higher than the values observed in most of the other European cities. The secondary organic carbon (SOC) contributed for 69% of the total OC and this was confirmed by both the approaches OC/EC minimum ratio and regression. The results show that OC, EC and SOC exhibited higher concentration during winter months in all measurement sites, suggesting that the stable atmosphere and lower mixing play important role for the accumulation of air pollutant and hasten the condensation or adsorption of volatile organic compounds over the Veneto region. Significant meteorological factors controlling OC and EC were investigated by fitting linear models and using a robust procedure based on weighted likelihood, suggesting that low wind speed and temperature favour accumulation of emissions from local sources. Conditional probability function and conditional bivariate probability function plots indicate that both biomass burning and vehicular traffic are probably the main local sources for carbonaceous particulate matter emissions in two selected cities. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Particle accelerator

    International Nuclear Information System (INIS)

    Ress, R.I.

    1976-01-01

    Charged particles are entrained in a predetermined direction, independent of their polarity, in a circular orbit by a magnetic field rotating at high speed about an axis in a closed cylindrical or toroidal vessel. The field may be generated by a cylindrical laser structure, whose beam is polygonally reflected from the walls of an excited cavity centered on the axis, or by high-frequency energization of a set of electromagnets perpendicular to the axis. In the latter case, a separate magnetostatic axial field limits the orbital radius of the particles. These rotating and stationary magnetic fields may be generated centrally or by individual magnets peripherally spaced along its circular orbit. Chemical or nuclear reactions can be induced by collisions between the orbiting particles and an injected reactant, or by diverting high-speed particles from one doughnut into the path of counterrotating particles in an adjoining doughnut

  18. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  19. Effects of day-of-week trends and vehicle types on PM{sub 2.5}-bounded carbonaceous compositions

    Energy Technology Data Exchange (ETDEWEB)

    Pongpiachan, Siwatt, E-mail: pongpiajun@gmail.com [NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), 118 Moo 3, Sereethai Road, Klong-Chan, Bangkapi, Bangkok 10240 (Thailand); SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi' an 710075 (China); Kositanont, Charnwit [Department of Microbiology, Faculty of Sciences, Chulalongkorn University, Bangkok 10330 (Thailand); Palakun, Jittree [Faculty of Education, Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU), No.1 Moo 20, Phaholyothin Road, Klong luang, Pathumthani 13180 (Thailand); Liu, Suixin; Ho, Kin Fai; Cao, Junji [SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi' an 710075 (China)

    2015-11-01

    Carbonaceous compositions of PM{sub 2.5} were measured in the heart of Bangkok from 17th November 2010 to 19th January 2012, and a data set of 94 samples was constructed. Effects of day-of-week trends and vehicle types on PM{sub 2.5}-bound TC, OC, and EC were carefully investigated. In this study, OC was the most important contributor to the total PM{sub 2.5} mass concentration. The average PM{sub 2.5}-bound OC content measured at CHAOS (18.8 ± 9.18 μg m{sup −3}) was approximately 11 times higher than at Chaumont, Switzerland (1.7 μg m{sup −3}), but approximately five times lower than at Xi'an, China (93.0 μg m{sup −3}). The application of diagnostic binary ratios of OC/EC and estimations of secondary organic carbon (SOC) coupled with autocorrelation plots (Box and Jenkins) highlight the enhanced impacts of traffic emissions, especially from diesel vehicles, on PM{sub 2.5}-bound carbonaceous compositions on weekdays relative to weekends. Hierarchical cluster analysis (HCA) coupled with principal component analysis (PCA) underline the importance of diesel emissions as the primary contributors of carbonaceous aerosols, particularly during weekdays. - Highlights: • Traffic emissions play an important role in governing OC and EC during weekdays. • Time series analysis shows the existence of day-of-week trends of OC and EC. • Diesel vehicles are the main contributors of carbonaceous compositions.

  20. Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis

    Science.gov (United States)

    Stetka, Steven S.; Nazario, Francisco N.

    1982-01-01

    In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

  1. COMBINED THEORETICAL AND EXPERIMENTAL INVESTIGATION OF MECHANISMS AND KINETICS OF VAPOR-PHASE MERCURY UPTAKE BY CARBONACEOUS SURFACES; ANNUAL

    International Nuclear Information System (INIS)

    Radisav D. Vidic; Eric V. Borguet; Karl J. Johnson

    2000-01-01

    The overall goal of this research program is to gain fundamental understanding of the important chemistry and physics involved in mercury adsorption on carbonaceous surfaces. This knowledge will then be used to optimize adsorption processes and operating conditions to maximize the uptake of mercury within the required contact time. An additional long-term benefit of this research is the basic understanding of the Hg adsorption process, which may facilitate the design of new adsorbents for more efficient and cost-effective removal of Hg from a variety of effluent streams. Molecular modeling of the adsorption of Hg on carbonaceous surfaces will greatly increase the insight into the physics of the adsorption process and combined with in situ rate measurements of mercury adsorption and desorption (conventional and pulsed laser) on graphite using linear and nonlinear optical probes with real time optical resolution have the potential to provide fundamental insight into the process of mercury uptake by carbonaceous surfaces. Besides accurate assessment of key parameters influencing adsorption equilibrium, fundamental understanding of the kinetics of mercury adsorption, desorption, and diffusion will be developed in this study. These key physical and chemical processes postulated through molecular modeling efforts and verified by in situ measurements will be utilized to select (or develop) promising sorbents for mercury control, which will be tested under dynamic conditions using simulated flue gas

  2. Structure and isotopic ratios of aliphatic side chains in the insoluble organic matter of the Murchison carbonaceous chondrite

    Science.gov (United States)

    Huang, Yongsong; Alexandre, Marcelo R.; Wang, Yi

    2007-07-01

    We report in this paper the first molecular and isotopic characterization of individual aliphatic side chains from the insoluble organic matter (IOM) in the Murchison carbonaceous chondrite using a novel combined approach of RuO 4 oxidation and solid phase microextraction (SPME). The aliphatic side chains in the IOM of Murchison were first released by oxidizing aromatic structures using RuO 4. Because the IOM of carbonaceous chondrites contains predominantly short (C 1 to C 9) aliphatic substitutions, the resulting low molecular weight monocarboxylic acids (MCAs) are highly volatile and water-soluble. The conventional aqueous extraction and derivatization procedures following RuO 4 oxidation are unable to recover MCAs for subsequent analyses. We overcame this problem by employing SPME to directly capture the MCAs from the aqueous solution. We selected a SPME fiber with greater affinity for longer chain monoacids to compensate for the exponential decline of monoacid concentrations with increasing carbon numbers in meteorite IOM, allowing more accurate identification and quantification for the less abundant monoacids. We also determined the carbon and hydrogen isotopic ratios of individual MCAs derived from Murchinson IOM. Our results reveal significant similarity in both molecular structures and hydrogen isotopic ratios between the IOM aliphatic side chains and water-soluble MCAs in Murchison, suggesting that these compounds had common precursors. Our combined new approach of RuO 4 oxidation-SPME provides a new way to probe the molecular and isotopic characteristics of aliphatic side chains in carbonaceous chondrites.

  3. Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events

    International Nuclear Information System (INIS)

    Luo, Xiaolin; Zheng, Yi; Wu, Bin; Lin, Zhongrong; Han, Feng; Zhang, Wei; Wang, Xuejun

    2013-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported from contaminated soils by surface runoff pose significant risk for aquatic ecosystems. Based on a rainfall-runoff simulation experiment, this study investigated the impact of carbonaceous materials (CMs) in soil, identified by organic petrology analysis, on the transport of soil-bound PAHs under rainfall conditions. The hypothesis that composition of soil organic matter significantly impacts the enrichment and transport of PAHs was proved. CMs in soil, varying significantly in content, mobility and adsorption capacity, act differently on the transport of PAHs. Anthropogenic CMs like black carbon (BC) largely control the transport, as PAHs may be preferentially attached to them. Eventually, this study led to a rethink of the traditional enrichment theory. An important implication is that CMs in soil have to be explicitly considered to appropriately model the nonpoint source pollution of PAHs (possibly other hydrophobic chemicals as well) and assess its environmental risk. -- Highlights: •Composition of SOM significantly impacts the enrichment and transport of PAHs. •Anthropogenic carbonaceous materials in soil largely control the transport of PAHs. •The classic enrichment theory is invalid if anthropogenic CMs are abundant in the soil. •Organic petrology analysis introduced to study the fate and transport of PAHs. -- Anthropogenic carbonaceous materials in soil, especially black carbon, largely control the transport of soil-bound PAHs during rainfall-runoff events

  4. Organochemical characteristics of carbonaceous materials as indicators of heat recorded on an ancient plate-subduction fault

    Science.gov (United States)

    Kaneki, S.; Hirono, T.; Mukoyoshi, H.; Sampei, Y.; Ikehara, M.

    2016-07-01

    Coseismic shear stress and slip distance affect subduction-related earthquake processes. They need to be understood to evaluate the earthquake's mechanism and the tsunami generation potential near trenches. The amount of frictional heat generated depends on the shear stress and slip distance, which are therefore able to be derived from the temperature recorded in the fault. Here we developed a new temperature proxy for carbonaceous materials by performing spectroscopic, thermogravimetric, and organic elemental analyses in conjunction with heating experiments. We found marked anomalies in the infrared and Raman spectra and atomic compositions of carbonaceous materials retrieved from the slip zone of an ancient megasplay fault in the Cretaceous Shimanto accretionary complex, Japan: the infrared spectra show extinction of aliphatic C-H bonding and very weak aromatic C=C bonding, and the Raman spectra show a slightly elevated ratio of disordered band intensity to graphitic band intensity and relatively low H/C and O/C ratios. These correlate well with the spectral and elemental features of host-rock carbonaceous materials after heating to 600°C. Thus, we conclude that the slip zone experienced a temperature of 600°C during a past earthquake event, indicating coseismic slip of 2-9 m, which could have generated a large tsunami if the ruptures propagated to the seafloor.

  5. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia); Liong, Syarifuddin [Department of Chemistry, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  6. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between the different techniques may result from

  7. Evaluation of the growth of carbonaceous deposit in steady state Tore Supra using infrared thermography

    International Nuclear Information System (INIS)

    Mitteau, R.; Guilhem, D.; Reichle, R.; Vallet, J.C.; Roche, H.; Buravand, Y.; Chantant, M.; Tsitrone, E.; Brosset, C.; Grosman, A.; Chappuis, P.

    2006-01-01

    Fusion devices with carbon as the main armour material are experiencing a growth in carbonaceous deposits at the surface of the plasma facing components. Tore Supra presents such deposits, and has specific features which influence their growth: long pulse operation and cooled walls. Deposits have a low thermal transfer to the cooled structure so that they appear as hot areas with the infrared imaging system looking at the elements surface temperature during plasma discharges. A 'degree of (carbon) deposit' on the toroidal pumped limiter is estimated by establishing the ratio between the apparent power on the limiter derived from the infrared measure and the actual one, deduced from a power balance analysis between the injected and the radiated power. This criterion is used to monitor the evolution of the deposit average thermal resistance. Successive shots have a similar 'degree of deposit', showing that the evaluation makes sense. Two years of data have been compiled (2003 and 2004), representing 3000 discharges (13 h of plasma, including 30 discharges longer than one minute). A three-fold increase in the 'degree of deposit' over six months is evidenced, following a limiter clean-up early in 2003. A comparison with calorimetric data produces a similar result, albeit less pronounced. Large steps in the degree of deposit are sometimes observed, usually correlated with identified events such as disruption, vessel opening, conditioning or plasma parameters change. It indicates that the deposit thermal resistance can change rapidly, although a systematic correlation with the above mentioned events could not be established

  8. The Effect of Aqueous Alteration in Antarctic Carbonaceous Chondrites from Comparative ICP-MS Bulk Chemistry

    Science.gov (United States)

    Alonso-Azcarate, J.; Trigo-Rodriguez, J. M.; Moyano-Cambero, C. E.; Zolensky, M.

    2014-01-01

    Terrestrial ages of Antarctic carbonaceous chondrites (CC) indicate that these meteorites have been preserved in or on ice for, at least, tens of thousands of years. Due to the porous structure of these chondrites formed by the aggregation of silicate-rich chondrules, refractory inclusions, metal grains, and fine-grained matrix materials, the effect of pervasive terrestrial water is relevant. Our community defends that pristine CC matrices are representing samples of scarcely processed protoplanetary disk materials as they contain stellar grains, but they might also trace parent body processes. It is important to study the effects of terrestrial aqueous alteration in promoting bulk chemistry changes, and creating distinctive alteration minerals. Particularly because it is thought that aqueous alteration has particularly played a key role in some CC groups in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive. With the goal to learn more about terrestrial alteration in Antarctica we are obtaining reflectance spectra of CCs, but also performing ICP-MS bulk chemistry of the different CC groups. A direct comparison with the mean bulk elemental composition of recovered falls might inform us on the effects of terrestrial alteration in finds. With such a goal, in the current work we have analyzed some members representative of CO and CM chondrite groups.

  9. Comparative evaluation for the sorption capacity of four carbonaceous sorbents to phenol

    Directory of Open Access Journals (Sweden)

    Ding Feng Jin

    2016-10-01

    Full Text Available Sorption kinetics and isotherms of phenol by four carbonaceous sorbents (activated carbon (AC, mesoporous carbon (MPC, bamboo biochar (BBC and oak wood biochar (OBC were compared in this study. MPC has the fastest sorption rate and initial sorption potential, which were indicated by sorption rate constants and initial sorption rate “h” in a pseudo-second-order kinetic model. The ordered and straight pore structure of MPC facilitated the accessibility of phenol. The AC showed the greatest sorption capacity towards phenol with maximum sorption of 123 mg/g as calculated by the Langmuir model. High surface area, complexity of pore structure, and the strong binding force of the π–π electron-donor-acceptor interaction between phenol molecules and AC were the main mechanisms. The BBC and OBC had much slower sorption and lower sorption capacity (33.04 and 29.86 mg/g, respectively, compared to MPC (73.00 mg/g and AC, indicating an ineffective potential for phenol removal from water.

  10. Adsorption of hydrophobic organic compounds onto a hydrophobic carbonaceous geosorbent in the presence of surfactants.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2008-06-01

    The adsorption of hydrophobic organic compounds (HOCs; atrazine and diuron) onto lampblack was studied in the presence of nonionic, cationic, and anionic surfactants (Triton(R) X-100), benzalkonium chloride [BC], and linear alkylbenzene sulfonate [LAS]) to determine the effect of the surfactant on HOC adsorption onto a hydrophobic carbonaceous geosorbent. Linear alkylbenzene sulfonate showed an adsorption capacity higher than that of BC but similar to that of Triton X-100, implying the charge property of a surfactant is not a useful indicator for predicting the surfactant's adsorption onto a hydrophobic medium. The results also indicated that the octanol-water partition coefficient (K(OW)) of a surfactant is not a good predictor of that surfactant's sorption onto a hydrophobic medium. Under subsaturation adsorption conditions (i.e., before sorption saturation is reached), surfactant adsorption reduced HOC adsorption to a significant extent, with the reduction in HOC adsorption increasing monotonically with the amount of surfactant adsorbed. Among the three surfactants, Triton X-100 was the most effective in reducing HOC adsorption, whereas BC and LAS showed similar effectiveness in this regard. Under the same amount of the surfactant sorbed, the reduction in atrazine adsorption was consistently greater than that for diuron because of atrazine's lower hydrophobicity. No significant difference was observed in the amount of the HOC adsorbed under different adsorption sequences. Our results showed that the presence of surfactant can significantly decrease HOC adsorption onto hydrophobic environmental media and, thus, is important in predicting HOC fate and transport in the environment.

  11. Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu's blue slope?

    Science.gov (United States)

    Lantz, C.; Binzel, R. P.; DeMeo, F. E.

    2018-03-01

    We compare primitive near-Earth asteroid spectral properties to the irradiated carbonaceous chondrite samples of Lantz et al. (2017) in order to assess how space weathering processes might influence taxonomic classification. Using the same eigenvectors from the asteroid taxonomy by DeMeo et al. (2009), we calculate the principal components for fresh and irradiated meteorites and find that change in spectral slope (blueing or reddening) causes a corresponding shift in the two first principal components along the same line that the C- and X-complexes track. Using a sample of B-, C-, X-, and D-type NEOs with visible and near-infrared spectral data, we further investigated the correlation between prinicipal components and the spectral curvature for the primitive asteroids. We find that space weathering effects are not just slope and albedo, but also include spectral curvature. We show how, through space weathering, surfaces having an original "C-type" reflectance can thus turn into a redder P-type or a bluer B-type, and that space weathering can also decrease (and disguise) the D-type population. Finally we take a look at the case of OSIRIS-REx target (101955) Bennu and propose an explanation for the blue and possibly red spectra that were previously observed on different locations of its surface: parts of Bennu's surface could have become blue due to space weathering, while fresher areas are redder. No clear prediction can be made on Hayabusa-2 target (162173) Ryugu.

  12. AMMONIA IN THE EARLY SOLAR SYSTEM: AN ACCOUNT FROM CARBONACEOUS METEORITES

    International Nuclear Information System (INIS)

    Pizzarello, S.; Williams, L. B.

    2012-01-01

    This study presents a survey of abundance distribution and isotopic composition of the ammonia found incorporated in the kerogen-like insoluble material of selected carbonaceous chondrite meteorites; the ammonia was released upon hydrothermal treatment at 300°C and 100 MPa. With the exception of Allende, a metamorphosed and highly altered stone, all the insoluble organic materials (IOM) of the meteorites analyzed released significant amounts of ammonia, which varied from over 4 μg mg –1 for the Orgueil IOM to 0.5 μg mg –1 for that of Tagish Lake; the IOM of the pristine Antarctica find GRA95229 remains the most rich in freeable ammonia with 10 μg mg –1 . While the amounts of IOM bound ammonia do not appear to vary between meteorites with a recognizable trend, a possible consequence of long terrestrial exposure of some of the stones, we found that the δ 15 N composition of the ammonia-carrying materials is clearly distinctive of meteorite types and may reflect a preservation of the original 15 N distribution of pre- and proto-solar materials.

  13. Ammonia in the Early Solar System: An Account from Carbonaceous Meteorites

    Science.gov (United States)

    Pizzarello, S.; Williams, L. B.

    2012-04-01

    This study presents a survey of abundance distribution and isotopic composition of the ammonia found incorporated in the kerogen-like insoluble material of selected carbonaceous chondrite meteorites; the ammonia was released upon hydrothermal treatment at 300°C and 100 MPa. With the exception of Allende, a metamorphosed and highly altered stone, all the insoluble organic materials (IOM) of the meteorites analyzed released significant amounts of ammonia, which varied from over 4 μg mg-1 for the Orgueil IOM to 0.5 μg mg-1 for that of Tagish Lake; the IOM of the pristine Antarctica find GRA95229 remains the most rich in freeable ammonia with 10 μg mg-1. While the amounts of IOM bound ammonia do not appear to vary between meteorites with a recognizable trend, a possible consequence of long terrestrial exposure of some of the stones, we found that the δ15N composition of the ammonia-carrying materials is clearly distinctive of meteorite types and may reflect a preservation of the original 15N distribution of pre- and proto-solar materials.

  14. AMMONIA IN THE EARLY SOLAR SYSTEM: AN ACCOUNT FROM CARBONACEOUS METEORITES

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, S. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604 (United States); Williams, L. B., E-mail: pizzar@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States)

    2012-04-20

    This study presents a survey of abundance distribution and isotopic composition of the ammonia found incorporated in the kerogen-like insoluble material of selected carbonaceous chondrite meteorites; the ammonia was released upon hydrothermal treatment at 300 Degree-Sign C and 100 MPa. With the exception of Allende, a metamorphosed and highly altered stone, all the insoluble organic materials (IOM) of the meteorites analyzed released significant amounts of ammonia, which varied from over 4 {mu}g mg{sup -1} for the Orgueil IOM to 0.5 {mu}g mg{sup -1} for that of Tagish Lake; the IOM of the pristine Antarctica find GRA95229 remains the most rich in freeable ammonia with 10 {mu}g mg{sup -1}. While the amounts of IOM bound ammonia do not appear to vary between meteorites with a recognizable trend, a possible consequence of long terrestrial exposure of some of the stones, we found that the {delta}{sup 15}N composition of the ammonia-carrying materials is clearly distinctive of meteorite types and may reflect a preservation of the original {sup 15}N distribution of pre- and proto-solar materials.

  15. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups

    Science.gov (United States)

    Cody, George D.; Alexander, Conel M. O.'D.

    2005-02-01

    Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group's IOM. The fraction of aromatic carbon increases as CR2 meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp 3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected.

  16. Synchrotron Radiation XRD Analysis of Indialite in Y-82094 Ungrouped Carbonaceous Chondrite

    Science.gov (United States)

    Mikouchi, T.; Hagiya, K.; Sawa, N.; Kimura, M.; Ohsumi, K.; Komatsu, M.; Zolensky, M.

    2016-01-01

    Y-82094 is an ungrouped type 3.2 carbonaceous chondrite, with abundant chondrules making 78 vol.% of the rock. Among these chondrules, an unusual porphyritic Al-rich magnesian chondrule is reported that consists of a cordierite-like phase, Al-rich orthopyroxene, cristobalite, and spinel surrounded by an anorthitic mesostasis. The reported chemical formula of the cordierite-like phase is Na(0.19)Mg(1.95)Fe(0.02)Al(3.66)Si(5.19)O18, which is close to stoichiometric cordierite (Mg2Al3[AlSi5O18]). Although cordierite can be present in Al-rich chondrules, it has a high temperature polymorph (indialite) and it is therefore necessary to determine whether it is cordierite or indialite in order to better constrain its formation conditions. In this abstract we report on our synchrotron radiation X-ray diffraction (SR-XRD) study of the cordierite-like phase in Y-82094.

  17. The Effect of Carbonaceous Reductant Selection on Chromite Pre-reduction

    Science.gov (United States)

    Kleynhans, E. L. J.; Beukes, J. P.; Van Zyl, P. G.; Bunt, J. R.; Nkosi, N. S. B.; Venter, M.

    2017-04-01

    Ferrochrome (FeCr) production is an energy-intensive process. Currently, the pelletized chromite pre-reduction process, also referred to as solid-state reduction of chromite, is most likely the FeCr production process with the lowest specific electricity consumption, i.e., MWh/t FeCr produced. In this study, the effects of carbonaceous reductant selection on chromite pre-reduction and cured pellet strength were investigated. Multiple linear regression analysis was employed to evaluate the effect of reductant characteristics on the aforementioned two parameters. This yielded mathematical solutions that can be used by FeCr producers to select reductants more optimally in future. Additionally, the results indicated that hydrogen (H)- (24 pct) and volatile content (45.8 pct) were the most significant contributors for predicting variance in pre-reduction and compressive strength, respectively. The role of H within this context is postulated to be linked to the ability of a reductant to release H that can induce reduction. Therefore, contrary to the current operational selection criteria, the authors believe that thermally untreated reductants ( e.g., anthracite, as opposed to coke or char), with volatile contents close to the currently applied specification (to ensure pellet strength), would be optimal, since it would maximize H content that would enhance pre-reduction.

  18. Pair distribution functions of carbonaceous solids, determined using energy filtered diffraction

    International Nuclear Information System (INIS)

    Petersen, T.C.; McCulloch, D.G.

    2002-01-01

    Full text: The structures of various carbonaceous solids were investigated using energy filtered diffraction patterns collected in two dimensions using a Gatan Imaging Filter (GIF). In order to reduce multiple scattering and eliminate inelastic scattering effects, the diffraction patterns were filtered using an energy -selecting slit around the zero-loss peak. Software has been developed for the extraction of radially averaged pair distributions functions from the diffraction data. This entails finding the position of the un-scattered beam, radially averaging the two dimensional intensity distributions, calibrating the resulting one dimensional intensity profiles and finally normalising the data to obtain structure factors. Techniques for improving and assessing data quality, pertaining to the methodology used here, have also been explored. Structure factors and radial distribution functions generated using this analysis will be discussed and, for the commercial V25 glassy carbon samples, compared to previous, work of one of the authors'. In order to answer questions regarding multiple scattering effects and structural homogeneity of the samples, neutron scattering was performed on the Medium Resolution Powder Diffractometer (MRPD), at the Australian Nuclear Science and Technology's (ANSTO) facility. A critical comparison of the neutron scattering and electron diffraction generated structure factors will be presented. Copyright (2002) Australian Society for Electron Microscopy Inc

  19. Carbonaceous Materials Obtained from Sewage Sludge for NO2 Removal under Wet Conditions at Room Temperature

    International Nuclear Information System (INIS)

    Pietrzak, R.

    2010-01-01

    The effect of the processes of carbonisation and activation on adsorbents obtained from sewage sludge and their sorption properties towards NO 2 were studied. Carbonaceous adsorbents were obtained by carbonisation of sewage sludge at 600 o C for four different times 30, 60, 90 and 120 min followed by activation of the carbonisates by CO 2 at 800 o C for 60 min. Adsorption of NO 2 was carried out in wet air. It has been shown that by appropriate thermal and chemical treatment of sludge, mesoporous adsorbents capable of NO 2 removal can be obtained. The sorption abilities of the carbonised and activated samples to adsorb NO 2 have been shown to increase with increased time of carbonisation and reach maximum for the carbonisation maintained for 90 min. Further increase in this time causes a decrease in the adsorption abilities of the samples. The sorption properties of the carbonisates have been proved to be determined by the chemical character of the surface, while those of the activated samples - by the porous structure. (author)

  20. Optimizing Carbonaceous Nanostructure Composition as a Substrate to Grow Co Electrocatalysts

    Directory of Open Access Journals (Sweden)

    M Pourreza

    2018-02-01

    Full Text Available Global warming and other adverse environmental effects of fossil fuels have forced humans to consider clean and renewable energy resources. In this context, hydrogen production from water splitting reaction is a key approach. In order to reduce required overpotential for water oxidation reaction, it is necessary to use low cost and earth abundant electrocatalysts like Co, Cu, Fe, Mn, Ni and Zn nanostructures. Herein, cobalt nanostructures on steel-mesh substrate were applied. Electrochemical method was used for growth of Co nanoflakes because of its simplicity and scalability for commercial approach. On the other hand, using carbonaceous support layers including nanomaterials such as graphene and carbon nanotubes, can reduce overpotential and increase efficiency of the electrocatalyst.  According to the results, 40 wt% of graphene oxide and 60 wt% of carbon nanotubes in prepared carbon paste led to better growth for cobalt oxide nanoflakes. For the mentioned layer, cobalt was detected in metallic crystalline phase and the overpotential and electrical resistance measured 305 mV and 20 Ω, respectively.

  1. Removal of mercury from water by carbonaceous sorbents derived from walnut shell

    International Nuclear Information System (INIS)

    Zabihi, M.; Ahmadpour, A.; Asl, A. Haghighi

    2009-01-01

    The adsorption ability of a powdered activated carbon (PAC) derived from walnut shell was investigated in an attempt to produce more economic and effective sorbent for the control of Hg(II) ion from industrial liquid streams. Carbonaceous sorbents derived from Iranian walnut shell (WS) were prepared by chemical activation method using ZnCl 2 as an activating reagent. To the best of our knowledge, this adsorbent was not used before for removing mercury from water. Adsorption of Hg(II) from aqueous solutions was carried out under different experimental conditions by varying treatment time, metal ion concentration, adsorbent amount, pH and solution temperature. It was determined that Hg(II) adsorption follows both Langmuir and Freundlich isotherms as well as pseudo-second-order kinetics. It was also shown that Hg(II) uptake decreases with increasing pH of the solution. The proper choice of preparation conditions resulted in a microporous activated carbon with 0.45 g/cm 3 density, 737 mg/g iodine number and 780 m 2 /g BET surface area. The monolayer sorption capacity of this optimum adsorbent was obtained as 151.5 mg/g.

  2. Evaluation of the growth of carbonaceous deposit in steady state Tore Supra using infrared thermography

    Science.gov (United States)

    Mitteau, R.; Guilhem, D.; Reichle, R.; Vallet, J. C.; Roche, H.; Buravand, Y.; Chantant, M.; Tsitrone, E.; Brosset, C.; Grosman, A.; Chappuis, P.

    2006-03-01

    Fusion devices with carbon as the main armour material are experiencing a growth in carbonaceous deposits at the surface of the plasma facing components. Tore Supra presents such deposits, and has specific features which influence their growth: long pulse operation and cooled walls. Deposits have a low thermal transfer to the cooled structure so that they appear as hot areas with the infrared imaging system looking at the elements surface temperature during plasma discharges. A 'degree of (carbon) deposit' on the toroidal pumped limiter is estimated by establishing the ratio between the apparent power on the limiter derived from the infrared measure and the actual one, deduced from a power balance analysis between the injected and the radiated power. This criterion is used to monitor the evolution of the deposit average thermal resistance. Successive shots have a similar 'degree of deposit', showing that the evaluation makes sense. Two years of data have been compiled (2003 and 2004), representing 3000 discharges (13 h of plasma, including 30 discharges longer than one minute). A three-fold increase in the 'degree of deposit' over six months is evidenced, following a limiter clean-up early in 2003. A comparison with calorimetric data produces a similar result, albeit less pronounced. Large steps in the degree of deposit are sometimes observed, usually correlated with identified events such as disruption, vessel opening, conditioning or plasma parameters change. It indicates that the deposit thermal resistance can change rapidly, although a systematic correlation with the above mentioned events could not be established.

  3. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    Science.gov (United States)

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-12-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g-1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg-1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g-1) and magnetism (Ms = 12.9 Am2 kg-1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls.

  4. Matrix mineralogy of the Lance CO3 carbonaceous chondrite: A transmission electron microscope study

    International Nuclear Information System (INIS)

    Keller, L.P.; Buseck, P.R.

    1990-01-01

    The Lance CO3 carbonaceous chondrite (CC) is less altered than the CI and CM chondrites and so provides a view of the mineralogy and textures resulting from the earliest stages of aqueous alteration of CCs. Matrix olivine in Lance has been partly altered to fine-grained, Fe-bearing serpentine and poorly crystalline Fe 3+ oxide, a process that required both hydration and oxidation. Serpentine occurs as discrete packets separated from the olivine surfaces by the Fe 3+ oxide. The Fe released during the dissolution of olivine was partly incorporated into the serpentine; the remainder was oxidized to form Fe 3+ oxide. Matrix metal was also altered to produce Fe oxides, leaving the residual metal enriched in Ni. Olivine grains in Lance matrix contain channels along their [100] and [001] directions. The formation and convergence of such channels resulted in a grain-size reduction of the olivine. The alteration was pervasive but incomplete, suggesting a limited availability of fluid. A brief study of two other CO chondrites, Kainsaz and Warrenton, shows that these meteorites do not contain phyllosilicates in their matrices, although both contain Fe 3+ oxide between olivine grains. Prior to its alteration, Lance probably resembled Kainsaz, an unaltered CO3 chondrite. The alteration assemblage in Lance is only slightly different from that in Mokoia and essentially the same as that in C3 xenoliths from Murchison. Alteration products in Lance show greater similarities to CI than to CM chondrites

  5. Preparation of carbonaceous electrodes and evaluation of their performance by electrochemical techniques

    International Nuclear Information System (INIS)

    Sharma, H.S.; Manolkar, R.B.; Kamat, J.V.; Marathe, S.G.; Biswas, A.R.; Kulkarni, P.G.

    1994-01-01

    Carbonaceous electrodes, from glassy carbon (GC), graphite rod or graphite powder, have been prepared for coulometric and voltammetric investigation. Beaker type graphite electrode of larger surface area was used as working electrode for the analysis of uranium and plutonium in solution by coulometry. Results have shown usefulness of the electrode for both uranium and plutonium analysis. Thus the graphite electrode can be used in place of mercury for uranium analysis and in place of platinum gauze for plutonium analysis. GC electrode ( from French and Indian material ), graphite or carbon paste electrode of smaller surface area prepared here have also been found to give satisfactory performance as could be observed from cyclic voltammetric (cv) patterns for standard K 9 Fe(CN) 6 /K 4 Fe(CN) 6 redox system. Especially the GC electrode, (French) polished to 1μ finish with diamond paste gave very low values (1μ amp.) of background current in 1M KCl and the difference in cathodic and anodic peak potentials (δE values) was close to 60 mV from one electron transfer. Therefore the electrode can be used for various types of electrochemical studies relating to redox potentials, reaction mechanism, kinetic parameters etc. of different electrode processes. (author). 20 refs., 3 tabs., 10 figs., 8 photographs

  6. Biomineralization-Inspired Synthesis of Cerium-Doped Carbonaceous Nanoparticles for Highly Hydroxyl Radical Scavenging Activity

    Science.gov (United States)

    Zou, Shenqiang; Zhu, Xiaofang; Zhang, Lirong; Guo, Fan; Zhang, Miaomiao; Tan, Youwen; Gong, Aihua; Fang, Zhengzou; Ju, Huixiang; Wu, Chaoyang; Du, Fengyi

    2018-03-01

    Cerium oxide nanoparticles recently have received extensive attention in biomedical applications due to their excellent anti-oxidation performance. In this study, a simple, mild, and green approach was developed to synthesize cerium-doped carbonaceous nanoparticles (Ce-doped CNPs) using bio-mineralization of bull serum albumin (BSA) as precursor. The resultant Ce-doped CNPs exhibited uniform and ultrasmall morphology with an average size of 14.7 nm. XPS and FTIR results revealed the presence of hydrophilic group on the surface of Ce-doped CNPs, which resulted in excellent dispersity in water. The CCK-8 assay demonstrated that Ce-doped CNPs possessed favorable biocompatibility and negligible cytotoxicity. Using H2O2-induced reactive oxygen species (ROS) as model, Ce-doped CNPs showed highly hydroxyl radical scavenging capability. Furthermore, flow cytometry and live-dead staining results indicated that Ce-doped CNPs protected cells from H2O2-induced damage in a dose-dependent effect, which provided a direct evidence for anti-oxidative performance. These findings suggest that Ce-doped CNPs as novel ROS scavengers may provide a potential therapeutic prospect in treating diseases associated with oxidative stress.

  7. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen

    1992-01-01

    We shall discuss the principles of the main techniques applied to particle detection (including front-end electronics), the construction and performance of some of the devices presently in operation and a few ideas on future developments.

  8. Single-particle characterization of 'Asian Dust' certified reference materials using low-Z particle electron probe X-ray microanalysis

    International Nuclear Information System (INIS)

    Hwang, Hee Jin; Ro, Chul-Un

    2006-01-01

    In order to clearly elucidate whether Asian Dust particles experience chemical modification during long-range transport, it is necessary to characterize soil particles where Asian Dust particles originate. If chemical compositions of source soil particles are well characterized, then chemical compositions of Asian Dust particles collected outside source regions can be compared with those of source soil particles in order to find out the occurrence of chemical modification. Asian Dust particles are chemically and morphologically heterogeneous, and thus the average composition and the average aerodynamic diameter (obtainable by bulk analysis) are not much relevant if the chemical modifications of the particles must be followed. The major elemental composition and abundance of the particle types that are potential subjects of chemical modification can only be obtained using single-particle analysis. A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize two certified reference materials (CRMs) for Asian Dust particles, which were collected from a loess plateau area and a desert of China. The CRMs were defined by bulk analyses to provide certified concentrations for 13 chemical elements. Using the low-Z particle EPMA technique, the concentrations of major chemical species such as aluminosilicates, SiO 2 , CaCO 3 , and carbonaceous species were obtained. Elemental concentrations obtained by the low-Z particle EPMA are close to the certified values, with considering that the single particle and bulk analyses employ very different approaches. There are still some discrepancies between those concentration values, resulting from analyses of particles with different sizes, different sample amounts analyzed, and uncertainties involved in the single particle analysis

  9. Auroral particles

    International Nuclear Information System (INIS)

    Evans, D.S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries

  10. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material

    International Nuclear Information System (INIS)

    Gutierrez S, E. E.

    2011-01-01

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na + and Fe 3+ solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous material

  11. Identification and quantification of particle growth channels during new particle formation

    Directory of Open Access Journals (Sweden)

    M. R. Pennington

    2013-10-01

    Full Text Available Atmospheric new particle formation (NPF is a key source of ambient ultrafine particles that may contribute substantially to the global production of cloud condensation nuclei (CCN. While NPF is driven by atmospheric nucleation, its impact on CCN concentration depends strongly on atmospheric growth mechanisms since the growth rate must exceed the loss rate due to scavenging in order for the particles to reach the CCN size range. In this work, chemical composition measurements of 20 nm diameter particles during NPF in Hyytiälä, Finland, in March–April 2011 permit identification and quantitative assessment of important growth channels. In this work we show the following: (A sulfuric acid, a key species associated with atmospheric nucleation, accounts for less than half of particle mass growth during this time period; (B the sulfate content of a growing particle during NPF is quantitatively explained by condensation of gas-phase sulfuric acid molecules (i.e., sulfuric acid uptake is collision-limited; (C sulfuric acid condensation substantially impacts the chemical composition of preexisting nanoparticles before new particles have grown to a size sufficient to be measured; (D ammonium and sulfate concentrations are highly correlated, indicating that ammonia uptake is driven by sulfuric acid uptake; (E sulfate neutralization by ammonium does not reach the predicted thermodynamic end point, suggesting that a barrier exists for ammonia uptake; (F carbonaceous matter accounts for more than half of the particle mass growth, and its oxygen-to-carbon ratio (~ 0.5 is characteristic of freshly formed secondary organic aerosol; and (G differences in the overall growth rate from one formation event to another are caused by variations in the growth rates of all major chemical species, not just one individual species.

  12. Elementary particles and particle interactions

    International Nuclear Information System (INIS)

    Bethge, K.; Schroeder, U.E.

    1986-01-01

    This book is a textbook for an introductory course of elementary particle physics. After a general introduction the symmetry principles governing the interactions of elementary particles are discussed. Then the phenomenology of the electroweak and strong interactions are described together with a short introduction to the Weinberg-Salam theory respectively to quantum chromodynamics. Finally a short outlook is given to grand unification with special regards to SU(5) and cosmology in the framework of the current understanding of the fundamental principles of nature. In the appendix is a table of particle properties and physical constants. (HSI) [de

  13. Study of the carbonaceous fraction of the atmospheric aerosol in Chamonix and St Jean de Maurienne: seasonal evolutions, source and chemical characteristics; Etude de la fraction carbonee de l'aerosol atmospherique a Chamonix et St Jean de Maurienne: evolutions saisonnieres, sources et caracteristiques chimiques

    Energy Technology Data Exchange (ETDEWEB)

    Aymoz, G

    2005-03-15

    The atmospheric aerosols play an important role in the earth climatic system. They are also at the origin of air pollution problems in urban areas. However, their influence on the global climactic change, as well as their chemical properties in urban zone, is still very poorly known. One of the main reasons to that is the lack of information on one of the major components of aerosol, the carbonaceous matter. This work focuses on a better knowledge of this particulate carbonaceous matter. This study presents measurements of carbonaceous matter (OC and EC) in aerosol (PM10) performed within the framework of the program POVA, between February 2001 and June 2003 in Chamonix and St Jean de Maurienne (French Alps). This series represents one of the first of this type for basic sites of alpine valleys, characterized by emissions located in the bottom of the valleys and strong temperature inversions in winter, limiting the dispersion of pollutants. The POVA program, centred on the study of air pollution in these valleys, was proposed following the closing of the 'Tunnel du Mont Blanc', in 1999. One of the main objectives was to evaluate the sources of pollution by particles, in particular the share due to the international heavy duty traffic. We could establish that, on the two sites and while the international heavy duty traffic was not restored in the Chamonix Valley, this source represented approximately a third of the observed mass of particles, and was at the origin of a weaker fraction of the carbonaceous matter mass. The extremely primary character of the carbonaceous matter is a remarkable specificity of our sites. The source of carbonaceous matter represented by light vehicles emissions could not be studied. Then, it appears that combustion of biomass (probably from fireplaces) plays an important role, increased in the case of low temperatures, on the levels of pollution by particles. Lastly, the potential impact of the semi-volatile matter condensation at the low

  14. Study of the carbonaceous fraction of the atmospheric aerosol in Chamonix and St Jean de Maurienne: seasonal evolutions, source and chemical characteristics; Etude de la fraction carbonee de l'aerosol atmospherique a Chamonix et St Jean de Maurienne: evolutions saisonnieres, sources et caracteristiques chimiques

    Energy Technology Data Exchange (ETDEWEB)

    Aymoz, G.

    2005-03-15

    The atmospheric aerosols play an important role in the earth climatic system. They are also at the origin of air pollution problems in urban areas. However, their influence on the global climactic change, as well as their chemical properties in urban zone, is still very poorly known. One of the main reasons to that is the lack of information on one of the major components of aerosol, the carbonaceous matter. This work focuses on a better knowledge of this particulate carbonaceous matter. This study presents measurements of carbonaceous matter (OC and EC) in aerosol (PM10) performed within the framework of the program POVA, between February 2001 and June 2003 in Chamonix and St Jean de Maurienne (French Alps). This series represents one of the first of this type for basic sites of alpine valleys, characterized by emissions located in the bottom of the valleys and strong temperature inversions in winter, limiting the dispersion of pollutants. The POVA program, centred on the study of air pollution in these valleys, was proposed following the closing of the 'Tunnel du Mont Blanc', in 1999. One of the main objectives was to evaluate the sources of pollution by particles, in particular the share due to the international heavy duty traffic. We could establish that, on the two sites and while the international heavy duty traffic was not restored in the Chamonix Valley, this source represented approximately a third of the observed mass of particles, and was at the origin of a weaker fraction of the carbonaceous matter mass. The extremely primary character of the carbonaceous matter is a remarkable specificity of our sites. The source of carbonaceous matter represented by light vehicles emissions could not be studied. Then, it appears that combustion of biomass (probably from fireplaces) plays an important role, increased in the case of low temperatures, on the levels of pollution by particles. Lastly, the potential impact of the semi-volatile matter condensation

  15. Tar balls are processed, weakly absorbing, primary aerosol particles formed downwind of boreal forest fires

    Science.gov (United States)

    Sedlacek, A. J., III; Buseck, P. R.; Adachi, K.; Kleinman, L. I.; Onasch, T. B.; Springston, S. R.

    2017-12-01

    Biomass burning is a major source of light-absorbing black and brown carbonaceous aerosols Brown carbon is a poorly characterized mixture that includes tar balls (TBs), a type of carbonaceous particle unique to biomass burning. Here we describe the first atmospheric observations of the formation and evolution of TBs Aerosol particles were collected on TEM grids during individual aircraft transects at varying downwind distances from the Colockum Tarp wildland fire. The TEM images show primary particles transforming from viscous, impact-deformed particles to spherical TBs. The number fraction of TBs in the wildfire smoke plume increased from less than 5% in samples collected close to the emission source to greater than 40% after 3 hours of aging, with little change in downwind TB diameters. The TB mass fraction increased from 2% near the fire to 23±9% downwind. Single-scatter albedo determined from scattering and absorption measurements increased slightly with downwind distance. Mie calculations show this observation is consistent with weak light absorbance by TBs (m=1.56 - 0.02i) but not consistent with order-of-magnitude stronger absorption observed in different settings. The field-derived TB mass fractions reported here indicate that this particle type should be accounted for in biomass-burn emission inventories.

  16. Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940

    Directory of Open Access Journals (Sweden)

    T. M. Jenk

    2006-01-01

    Full Text Available Long-term concentration records of carbonaceous particles (CP are of increasing interest in climate research due to their not yet completely understood effects on climate. Nevertheless, only poor data on their concentrations and sources before the 20th century are available. We present a first long-term record of organic carbon (OC and elemental carbon (EC concentrations – the two main fractions of CP – along with the corresponding fraction of modern carbon (fM derived from radiocarbon (14C analysis in ice. This allows a distinction and quantification of natural (biogenic and anthropogenic (fossil sources in the past. CP were extracted from an ice archive, with resulting carbon quantities in the microgram range. Analysis of 14C by accelerator mass spectrometry (AMS was therefore highly demanding. We analysed 33 samples of 0.4 to 1 kg ice from a 150.5 m long ice core retrieved at Fiescherhorn glacier in December 2002 (46°33'3.2" N, 08°04'0.4" E; 3900 m a.s.l.. Samples were taken from bedrock up to the firn/ice transition, covering the time period 1650–1940 and thus the transition from the pre-industrial to the industrial era. Before ~1850, OC was approaching a purely biogenic origin with a mean concentration of 24 μg kg−1 and a standard deviation of 7 μg kg−1. In 1940, OC concentration was about a factor of 3 higher than this biogenic background, almost half of it originating from anthropogenic sources, i.e. from combustion of fossil fuels. The biogenic EC concentration was nearly constant over the examined time period with 6 μg kg−1 and a standard deviation of 1 μg kg−1. In 1940, the additional anthropogenic input of atmospheric EC was about 50 μg kg−1.

  17. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  18. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows the

  19. Investigation of Carbonaceous Aerosol Optical Properties to Understand Impacts on Air Quality and Composition

    Science.gov (United States)

    Olson, Michael R.

    The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. Multiple methods were developed and applied to quantify the mass absorption cross-section (MAC) at multiple wavelengths of source and ambient samples. The MAC of BC was determined to be approximately 7.5 m2g-1 at 520nm. However, the MAC was highly variable with OC fraction and wavelength. The BrC MAC was similar for all sources, with the highest absorption in the UV at 370nm; the MAC quickly decreases at larger wavelengths. In the UV, the light absorption by BrC could exceed BC contribution by over 100 times, but only when the OC fraction is large (>90%) as compared to the total carbon. BrC was investigated by measuring the light absorption of solvent extracted fractions in water, dichloromethane, and methanol. Source emissions exhibited greater light absorption in methanol extractions as compared to water and DCM extracts. The BrC MAC was 2.4 to 3.7 m2g-1 at 370nm in

  20. GlidArc-assisted production of synthesis gas from various carbonaceous feedstocks

    International Nuclear Information System (INIS)

    Czernichowski, A.; Czernichowski, P.; Czernichowski, M.

    2003-01-01

    Pure Hydrogen or its mixture with Carbon Monoxide (called Synthesis Gas) will be massively extracted from various fossil or renewable feedstocks. Such matters contain contaminants (principally Sulphur) that make conventional catalytic reforming technologies very difficult to run without a prior deep cleaning of the feeds in order to avoid the reformer's catalyst poisoning. We propose a non-catalytic process in which almost any carbonaceous feed is converted into the Synthesis Gas in a presence of high-voltage discharges (called GlidArc) that assist the exothermic Partial Oxidation POX). The unique oxidant is air. This contribution presents some of our tests with natural gas, cyclohexane, heptane, toluene, various gasolines, and various diesel oils (including logistic ones). In two separate contributions to this Conference we present our more expanded studies on the GlidArc-assisted POX reforming of commercial propane and rapeseed oil (canola). Our reactors (1- or 2-Liter scale) work at atmospheric pressure and need less than 0.5 kW electric power (rather about 0.1 kW) to produce up to 9 m 3 (n)/h of Nitrogen-diluted SynGas containing up to 27% of H 2 and up to 23% of CO. Such assisting power represents roughly less than 5% (rather around 2%) with respect to the Lower Heating Value of produced Synthesis Gas (up to 11 kW). Recycling such relatively small portion of the power is an acceptable compromise. All tested feeds are totally reformed. No soot is observed at a sufficient O/C ratio. (author)

  1. Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China

    Science.gov (United States)

    Duan, Jingchun; Tan, Jihua; Cheng, Dingxi; Bi, Xinhui; Deng, Wenjing; Sheng, Guoying; Fu, Jiamo; Wong, M. H.

    PM 2.5 samples were collected at five sites in Guangzhou and Hong Kong, Pearl River Delta Region (PRDR), China in both summer and winter during 2004-2005. Elemental carbon (EC) and organic carbon (OC) in these samples were measured. The OC and EC concentrations ranked in the order of urban Guangzhou > urban Hong Kong > background Hong Kong. Total carbonaceous aerosol (TCA) contributed less to PM 2.5 in urban Guangzhou (32-35%) than that in urban Hong Kong (43-57%). The reason may be that, as an major industrial city in South China, Guangzhou would receive large amount of inorganic aerosol from all kinds of industries, however, as a trade center and seaport, urban Hong Kong would mainly receive organic aerosol and EC from container vessels and heavy-duty diesel trucks. At Hong Kong background site Hok Tsui, relatively lower contribution of TCA to PM 2.5 may result from contributions of marine inorganic aerosol and inland China pollutant. Strong correlation ( R2=0.76-0.83) between OC and EC indicates minor fluctuation of emission and the secondary organic aerosol (SOA) formation in urban Guangzhou. Weak correlation between OC and EC in Hong Kong can be related to the impact of the long-range transported aerosol from inland China. Averagely, secondary OC (SOC) concentrations were 3.8-5.9 and 10.2-12.8 μg m -3, respectively, accounting for 21-32% and 36-42% of OC in summer and winter in Guangzhou. The average values of 4.2-6.8% for SOA/ PM 2.5 indicate that SOA was minor component in PM 2.5 in Guangzhou.

  2. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  3. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen, China.

    Science.gov (United States)

    Huang, Huang; Zhu, Haihui; Gan, Wenhui; Chen, Xue; Yang, Xin

    2017-12-01

    A 12-month sampling program was conducted throughout a drinking water distribution system in Shenzhen and the data from 251 samples provide a comprehensive picture of the spatial and seasonal variability of 17 species disinfection by-products (DBPs) in a city with subtropical monsoon climate. The carbonaceous disinfection by-product (C-DBPs) included four trihalomethanes (THMs), three trihaloacetaldehydes (THAs) and two haloketones (HKs). Their median concentrations over the entire period were 19.9 μg/L, 3.4 μg/L and 1.4 μg/L, respectively. The nitrogenous DBPs (N-DBPs) monitored were four haloacetonitriles (HANs) and four haloacetamides (HAcAms). Their median levels were 2.0 μg/L and 1.5 μg/L, respectively. Low levels of brominated DBP species (bromine substitution factors ≤ 0.5) were observed. The BSF of each DBP class followed the trend: THMs ≈ DHAcAms > DHANs > THAs. All the DBP concentrations showed clear seasonal variations with the highest average concentrations in spring. Correlation analyses showed that the THMs and CH levels in Shenzhen drinking water could be used as statistical indicators of the levels of unregulated N-DBPs (0.4 water in China, and provide an important reference data set for DBP occurrence in cities with a subtropical monsoon climate around the world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES

    Directory of Open Access Journals (Sweden)

    R. A. Zaveri

    2012-08-01

    Full Text Available Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE Atmospheric Radiation Measurement (ARM program's Carbonaceous Aerosol and Radiative Effects Study (CARES carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a the scientific background and motivation for the study, (b the operational and logistical information pertinent to the execution of the study, (c an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d a roadmap

  5. Isotopic diversity in nebular dust: The distribution of Ti isotopic anomalies in carbonaceous chondrites

    International Nuclear Information System (INIS)

    Niemeyer, S.

    1988-01-01

    Average Ti isotopic patterns are derived for each class of carbonaceous chondrite from a chemically characterized suite of whole-rock samples. There is a well-resolved excess of 50 Ti in a subset of CI meteorites. Mean values of the 50 Ti excess for the four classes span a range of only 2 ε-units, with an apparent positive correlation with Al content. Previous evidence for anomalies in chondrules is augmented here by demonstrating that: (1) the more pristine Ca-Al-rich inclusions (CAIs) in Efremovka show the same isotopic pattern as the typical Allende CAI; and, (2) CM and CV matrix carry 50 Ti excesses of about 2 ε-units. The distribution of Ti isotopic anomalies among matrix, chondrules, and CAIs suggests a model in which all three constituents formed from precursor-assemblages in which some chemical memories were still intact; the isotopic differences reflect fractionations among the carrier phases of the different isotopic components. Chondrules formed by a mostly closed-system melting of their precursors, and thus provide a recording of the extent of nebular heterogeneity on the mg-size scale. The larger anomalies in CAIs, compared to matrix and most (but not all) chondrules, are attributed primarily to an open- rather than closed-system processing of the CAI precursors. Precursors of both FUN and normal CAIs experienced an episode of intense processing, perhaps partial melting, that created the FUN characteristics, but for normal CAIs the FUN effects were erased by subsequent isotopic equilibration and exchange

  6. The interstellar carbonaceous aromatic matter as a trap for molecular hydrogen

    Science.gov (United States)

    Pauzat, F.; Lattelais, M.; Ellinger, Y.; Minot, C.

    2011-04-01

    We report a theoretical study of the physisorption of molecular hydrogen, H2, on a major component of the interstellar dust, namely, the polyaromatic carbonaceous grains. Going beyond the model of the polycyclic aromatic hydrocarbon freeflyers and its theoretical treatment within the super molecule approach, we consider the graphene surface in a Density Functional Theory periodic approach using plane-wave expansions. The physisorption energy of isolated H2 on that flat and rigid support is determined to be attractive by ˜0.75 kcal mol-1 and practically independent of the orientation with respect to the infinite surface. Since this energy is also not affected by the position (over a ring centre, a carbon atom or the middle of a carbon-carbon bond), we can conclude that H2 is able to move freely like a ball rolling on the graphene support. We also investigate the conditions for multiple physisorption. It leads to a monolayer of H2 molecules where the corresponding interaction energy per H2 amounts to a potential depth of ˜1 kcal mol-1, close to the available experimental estimates ranging from 1.1 to 1.2 kcal mol-1. We show that the most energetically favourable coverage, which corresponds to an arrangement of the H2 molecules, the closest possible to the dimer configuration, leads to a surface density of ˜0.8 × 1015 molecule cm-2. Finally, assuming that 15-20 per cent of the interstellar carbon is locked in aromatic systems, one obtains ˜10-5 of the interstellar hydrogen trapped as H2 on such types of surfaces.

  7. Detection of serpentine in exogenic carbonaceous chondrite material on Vesta from Dawn FC data

    Science.gov (United States)

    Nathues, Andreas; Hoffmann, Martin; Cloutis, Edward A.; Schäfer, Michael; Reddy, Vishnu; Christensen, Ulrich; Sierks, Holger; Thangjam, Guneshwar Singh; Le Corre, Lucille; Mengel, Kurt; Vincent, Jean-Baptist; Russell, Christopher T.; Prettyman, Tom; Schmedemann, Nico; Kneissl, Thomas; Raymond, Carol; Gutierrez-Marques, Pablo; Hall, Ian; Büttner, Irene

    2014-09-01

    The Dawn mission’s Framing Camera (FC) observed Asteroid (4) Vesta in 2011 and 2012 using seven color filters and one clear filter from different orbits. In the present paper we analyze recalibrated HAMO color cubes (spatial resolution ∼60 m/pixel) with a focus on dark material (DM). We present a definition of highly concentrated DM based on spectral parameters, subsequently map the DM across the Vestan surface, geologically classify DM, study its spectral properties on global and local scales, and finally, compare the FC in-flight color data with laboratory spectra. We have discovered an absorption band centered at 0.72 μm in localities of DM that show the lowest albedo values by using FC data as well as spectral information from Dawn’s imaging spectrometer VIR. Such localities are contained within impact-exposed outcrops on inner crater walls and ejecta material. Comparisons between spectral FC in-flight data, and laboratory spectra of meteorites and mineral mixtures in the wavelength range 0.4-1.0 μm, revealed that the absorption band can be attributed to the mineral serpentine, which is typically present in CM chondrites. Dark material in its purest form is rare on Vesta’s surface and is distributed globally in a non-uniform manner. Our findings confirm the hypothesis of an exogenic origin of the DM by the infall of carbonaceous chondritic material, likely of CM type. It further confirms the hypothesis that most of the DM was deposited by the Veneneia impact.

  8. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X. -Y.; Zelenyuk, A.; Zhang, Q.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program’s Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and “aged” urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and d) a roadmap of

  9. Carbonaceous Chondrite Meteorites: the Chronicle of a Potential Evolutionary Path between Stars and Life.

    Science.gov (United States)

    Pizzarello, Sandra; Shock, Everett

    2017-09-01

    The biogenic elements, H, C, N, O, P and S, have a long cosmic history, whose evolution can still be observed in diverse locales of the known universe, from interstellar clouds of gas and dust, to pre-stellar cores, nebulas, protoplanetary discs, planets and planetesimals. The best analytical window into this cosmochemical evolution as it neared Earth has been provided so far by the small bodies of the Solar System, some of which were not significantly altered by the high gravitational pressures and temperatures that accompanied the formation of larger planets and may carry a pristine record of early nebular chemistry. Asteroids have delivered such records, as their fragments reach the Earth frequently and become available for laboratory analyses. The Carbonaceous Chondrite meteorites (CC) are a group of such fragments with the further distinction of containing abundant organic materials with structures as diverse as kerogen-like macromolecules and simpler compounds with identical counterparts in Earth's biosphere. All have revealed a lineage to cosmochemical synthetic regimes. Several CC show that asteroids underwent aqueous alteration of their minerals or rock metamorphism but may yet yield clues to the reactivity of organic compounds during parent-body processes, on asteroids as well as larger ocean worlds and planets. Whether the exogenous delivery by meteorites held an advantage in Earth's molecular evolution remains an open question as many others regarding the origins of life are. Nonetheless, the natural samples of meteorites allow exploring the physical and chemical processes that might have led to a selected chemical pool amenable to the onset of life. Graphical Abstract ᅟ.

  10. Organic composition of carbonaceous aerosols in an aged prescribed fire plume

    Directory of Open Access Journals (Sweden)

    B. Yan

    2008-11-01

    Full Text Available Aged smoke from a prescribed fire (dominated by conifers impacted Atlanta, GA on 28 February 2007 and dramatically increased hourly ambient concentrations of PM2.5 and organic carbon (OC up to 140 and 72 μg m−3, respectively. It was estimated that over 1 million residents were exposed to the smoky air lasting from the late afternoon to midnight. To better understand the processes impacting the aging of fire plumes, a detailed chemical speciation of carbonaceous aerosols was conducted by gas chromatography/mass spectrometry (GC/MS analysis. Ambient concentrations of many organic species (levoglucosan, resin acids, retene, n-alkanes and n-alkanoic acids associated with wood burning emission were significantly elevated on the event day. Levoglucosan increased by a factor of 10, while hopanes, steranes, cholesterol and major polycyclic aromatic hydrocarbons (PAHs did not show obvious increases. Strong odd over even carbon number predominance was found for n-alkanes versus even over odd predominance for n-alkanoic acids. Alteration of resin acids during transport from burning sites to monitors is suggested by the observations. Our study also suggests that large quantities of biogenic volatile organic compounds (VOCs and semivolatile organic compounds (SVOCs were released both as products of combustion and unburned vegetation heated by the fire. Higher leaf temperature can stimulate biogenic VOC and SVOC emissions, which enhanced formation of secondary organic aerosols (SOA in the atmosphere. This is supported by elevated ambient concentrations of secondary organic tracers (dicarboxylic acids, 2-methyltetrols, pinonic acid and pinic acid. An approximate source profile was built for the aged fire plume to help better understand evolution of wood smoke emission and for use in source impact assessment.

  11. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  12. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  13. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  14. Elementary particles

    International Nuclear Information System (INIS)

    Prasad, R.

    1984-01-01

    Two previous monographs report on investigations into the extent to which a unified field theory can satisfactorily describe physical reality. The first, Unified field Theory, showed that the paths within a non-Riemannian space are governed by eigenvalue equations. The second, Fundamental Constants, show that the field tensors satisfy sets of differential equations with solutions which represent the evolution of the fields along the paths of the space. The results from the first two monographs are used in this one to make progress on the theory of elementary particles. The five chapters are as follows - Quantum mechanics, gravitation and electromagnetism are aspects of the Unified theory; the fields inside the particle; the quadratic and linear theories; the calculation of the eigenvalues and elementary particles as stable configurations of interacting fields. It is shown that it is possible to construct an internal structure theory for elementary particles. The theory lies within the framework of Einstein's programme-to identify physical reality with a specified geometrical structure. (U.K.)

  15. Pinpointing particles

    International Nuclear Information System (INIS)

    Miller, David J.

    1987-01-01

    The Conference on Position-Sensitive Detectors held at London's University College from 7-11 September highlighted the importance and the growing applications of these precision devices in many branches of science, underlining once again the high spinoff potential for techniques developed inside particle physics

  16. Particle tracking

    International Nuclear Information System (INIS)

    Mais, H.; Ripken, G.; Wrulich, A.; Schmidt, F.

    1986-02-01

    After a brief description of typical applications of particle tracking in storage rings and after a short discussion of some limitations and problems related with tracking we summarize some concepts and methods developed in the qualitative theory of dynamical systems. We show how these concepts can be applied to the proton ring HERA. (orig.)

  17. Pinpointing particles

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David J.

    1987-10-15

    The Conference on Position-Sensitive Detectors held at London's University College from 7-11 September highlighted the importance and the growing applications of these precision devices in many branches of science, underlining once again the high spinoff potential for techniques developed inside particle physics.

  18. Particle Physics

    CERN Multimedia

    2005-01-01

    While biomedicine and geoscience use grids to bring together many different sub-disciplines, particle physicists use grid computing to increase computing power and storage resources, and to access and analyze vast amounts of data collected from detectors at the world's most powerful accelerators (1 page)

  19. Characteristics and major sources of carbonaceous aerosols in PM{sub 2.5} from Sanya, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingzhi [Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Ho, Steven Sai Hang [Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Division of Atmospheric Sciences, Desert Research Institute, Reno, NV (United States); Cao, Junji, E-mail: cao@loess.llqg.ac.cn [Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Institute of Global Environmental Change, Xi' an Jiaotong University, Xi' an (China); Huang, Rujin [Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Zhou, Jiamao [Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Zhao, Youzhi [College of Science and Technology, Qiongzhou University, Sanya (China); Xu, Hongmei [Department of Environmntal Science and Engineering, Xi' an Jiaotong University, Xi' an (China); Liu, Suixin; Wang, Gehui [Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); and others

    2015-10-15

    PM{sub 2.5} samples were collected in Sanya, China in summer and winter in 2012/2013. Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (n-C{sub 14}-n-C{sub 40}) and polycyclic aromatic hydrocarbons (PAHs) were quantified. The concentrations of these carbonaceous matters were generally higher in winter than summer. The estimated secondary organic carbon (OC{sub sec}) accounted for 38% and 54% of the total organic carbon (TOC) in winter and summer, respectively. The higher value of OC{sub sec} in addition to the presences of photochemically-produced PAHs in summer supports that photochemical conversions of organics are much active at the higher air temperatures and with stronger intense solar radiation. Carbon preference index (CPI) and percent contribution of wax n-alkanes suggest that anthropogenic sources were more dominant than derivation from terrestrial plants in Sanya. Diagnostic ratios of atmospheric PAHs further indicate that there was a wide mix of pollution sources in winter while fossil fuel combustion was the most dominant in summer. Positive Matrix Factorization (PMF) analysis with 18 PAHs in the winter samples found that motor vehicle emissions and biomass burning were the two main pollution sources, contributing 37.5% and 24.6% of the total quantified PAHs, respectively. - Highlights: • The first comprehensive study to investigate carbonaceous PM{sub 2.5} in Sanya, China • Higher carbonaceous levels in winter while more SOC formation in summer • Anthropogenic emission is the dominant sources of n-alkanes • Vehicle emission and biomass burning contributed ≥60% of the total PAHs in winter • The result supports better air quality in Sanya than most megacities in China.

  20. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    Science.gov (United States)

    Niu, Hewen; Kang, Shichang; Wang, Hailong; Zhang, Rudong; Lu, Xixi; Qian, Yun; Paudyal, Rukumesh; Wang, Shijin; Shi, Xiaofei; Yan, Xingguo

    2018-05-01

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m-3, respectively. Although the annual mean OC / EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC / EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g-1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol-climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  1. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  2. Uranium, yttrium, and rare earth elements accumulation during the Cretaceous anoxic events in carbonaceous rocks in the Pacific Ocean

    Science.gov (United States)

    Savelyeva, Olga; Philosofova, Tatyana; Bergal-Kuvikas, Olga; Savelyeva, Svetlana

    2017-04-01

    We have studied the carbonate-siliceous section of paleooceanic Albian-Cenomanian deposits on the Kamchatsky Mys peninsula (Eastern Kamchatka, Russia) [1].The section is represented by a rhythmic alternation of planktonic limestones and jaspers, accumulated in the open ocean environment. The rhythmicity can be attributed to climate variations that reflect a fluctuation of astronomical parameters (Milankovitch cycles) [2, 3].The section contains two beds enriched in organic carbon, corresponding to the two oceanic anoxic events - MCE and OAE2 [3]. The maximum content of organic matter in those beds reaches 68%. Our geochemical studies revealed an enrichment of the carbonaceous rocks in some major and trace elements including PGE, in comparison with the surrounding limestone and jasper [4].The accumulation of the ore elements in carbonaceous beds is caused by euxinic conditions during sedimentation.The content of uranium, yttrium, and rare earth elements in carbonaceous rocks is up to 60, 142 and 312 ppm respectively. Phosphate grains (bone detritus) with microinclusions of yttrium and uranium minerals were revealed in the carbonaceous rocks using the scanning electron microscope. These data prove the hypothesis of the sorbtion of U and Y by phosphate detritus from seawater. Microprobe analysis also showed an increased content of Cu, Zn, V in some pyrite framboids, which indicates that these elements are fixed in rocks by Fe-sulphide phase or organic matter under euxinic conditions. Our research may bring us closer to understanding the mechanism of syngenetic accumulation of metals in the black shales. This work was supported by the RFBR (No. 16-05-00546). [1] Palechek, T.N., Savelyev, D.P., Savelyeva, O.L. (2010) Stratigraphy and Geological Correlation 18, (1) 63-82. [2] Savelyeva, O.L. (2010). Vestnik Kraunts. Nauki o zemle 1 (15), 45-55 (in Russian). [3] Savelyev, D.P., Savelyeva, O.L., Palechek, T.N., Pokrovsky, B.G. (2012) Geophysical Research Abstracts, 14, EGU

  3. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy

    Science.gov (United States)

    Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M. C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; Pérez, N.; Pey, J.; Cusack, M.; Vázquez, R.; Plana, F.; Dall'Osto, M.; de la Rosa, J.; Sánchez de la Campa, A.; Fernández-Camacho, R.; Rodríguez, S.; Pio, C.; Alados-Arboledas, L.; Titos, G.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández Patier, R.

    2013-07-01

    We interpret here the variability of levels of carbonaceous aerosols based on a 12 yr database from 78 monitoring stations across Spain specially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m-3 of non-mineral carbon (nmC), mostly made of organic carbon (OC) with very little elemental carbon (EC), around 0.1 μg m-3; OC / EC = 12-15), to the highly polluted major cities (8-10 μg m-3 of nmC; 3-4 μg m-3 of EC; 4-5 μg m-3 of OC; OC / EC = 1-2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning and of biogenic emissions. Correlations between yearly averaged OC / EC and EC concentrations adjust very well to a potential equation (OC = 3.37 EC0.326, R2 = 0.8). A similar equation is obtained when including average concentrations obtained at other European sites (OC = 3.60EC0.491, R2 = 0.7). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance from road, traffic volume and density, mixing-layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend for

  4. The use of halogen carriers and buffers in the spectrographic determination of boron in carbonaceous materials and their combustion products

    International Nuclear Information System (INIS)

    Rucandio, M.I.; Martin, M.; Roca, M.

    1992-01-01

    For the determination of boron in carbonaceous materials (high purity graphite, coals and their processed products, such as ashes and slags from thermoelectric power plants) by atomic emission spectroscopy with direct current arc excitation and photographic recording, the behaviour of the analyte in the presence of halide compounds or spectrochemical buffers has been studied. Among the halides, cupric fluoride at a low concentration (2%) becomes very suitable for the graphite analysis, and at a higher concentration (25%) for coals being necessary in this case to carry out a dilution of samples with graphite. Strontium carbonate as a spectrochemical buffer allows to analyse satisfactorily coals and their combustion products. (author)

  5. The use of halogen carriers and buffers in the spectrographic determination of boron in carbonaceous materials and their combustion products

    International Nuclear Information System (INIS)

    Rucandio, M. I.; Martin, M.; Roca, M.

    1992-01-01

    For the determination of boron in carbonaceous materials (high purity graphite, coals and their processed products, such as ashes and slags from thermoelectric power plants) by atomic emission spectroscopy with direct current are excitation and photographic recording, the behaviour of the analyte in the presence of halide compounds or spectrochemical buffers has been studied. Among the halides, cupric fluoride at a low concentration (2%) becomes very suitable for the graphite analysis, and at a higher concentration (25 %) for coals, being necessary in this case to carry out a dilution of samples with graphite. Strontium carbonate as a spectrochemical buffer allows to analyse satisfactorily coals and their combustion products. (Author) 13 refs

  6. Process and apparatus for pyrolytic decomposition and coking of mixtures of finely divided solid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A

    1933-09-18

    A process is described for pyrolytic decomposition and coking of mixtures of finely divided solid and semi-solid carbonaceous material and hydrocarbon oils, whereby the mixture is first heated to a high temperature; the heated products are introduced into a coking zone, where vapors are separated from nonvaporous residue afterwards to be cracked and condensed, characterized in that the mixture is heated to a high temperature under substantially noncoking conditions and that nonvaporous residue obtained in the coking zone is coked as a relatively thin layer on an externally intensely heated surface, preferably of heat-conducting, fireproof material, such as carborundum, fused-aluminum oxide, or clay.

  7. Organic matter in primitive meteorites: a study of the hydrogen isotopic distribution in CM-type carbonaceous chondrites

    Science.gov (United States)

    Piani, L.; Yurimoto, H.; Remusat, L.; Gonzales, A.; Marty, B.

    2017-12-01

    Chondrite meteorites are fragments of rocks coming from small bodies of the asteroid belt and constitute witnesses of the volatile-rich reservoirs present in the inner protoplanetary disk. Among these meteorites, carbonaceous chondrites contain the largest quantity of water and organic matter and are one of the most probable candidates for the delivery of water and molecular origin of life to Earth. Organic matter in carbonaceous chondrites is intimately mixed with hydrated minerals challenging its in situ characterization and the determination of its H-isotope composition (Le Guillou et al., GCA 131, 2014). Organic matter occurs as soluble components (in water or organic solvents) and an insoluble macromolecule. The insoluble organic matter (IOM) is efficiently isolated after acid leaching of the chondrite minerals. IOM has thus been investigated by a large set of analytical techniques allowing its structural organization, chemical composition and isotopic composition to be determined at several scales (e.g. Derenne and Robert, MAPS 45, 2010). In the soluble counterpart (SOM), targeted studies have shown large ranges of D/H ratios in the different classes of soluble organic compounds (i.e. carboxylic acids, ketones and aldehydes, amino-acids etc.) (Remusat, Planetary Mineralogy 15, 2015 and references therein). This D/H distribution indicates a complex and probably multiple-stage synthesis of this organic compounds occurring at different stages of the disk evolution. Nevertheless, inventories of the known C-bearing species in carbonaceous chondrites (carbonates, SOM and IOM) show that about 40-50 % of the carbon is hidden within the matrix (Alexander et al., MAPS 50, 2015). In this study, we perform in situ hydrogen isotope analyses at the micrometer scale by secondary ion mass spectrometry to investigate the distribution of organic matter in primitive chondrites without the use of any chemical treatment. Correlated analyses of the D/H and C/H ratios allow us to

  8. Catalytic production of Jatropha biodiesel and hydrogen with magnetic carbonaceous acid and base synthesized from Jatropha hulls

    International Nuclear Information System (INIS)

    Zhang, Fan; Tian, Xiao-Fei; Fang, Zhen; Shah, Mazloom; Wang, Yi-Tong; Jiang, Wen; Yao, Min

    2017-01-01

    Graphical abstract: Jatropha seeds were extracted oil for biodiesel production and the hulls were carbonized to load active sites as magnetic carbonaceous solid acid and base catalysts. Crude Jatropha oil was esterified to decrease its acid value to 1.3 from 17.2 mg KOH/g by the solid acid, and subsequently transesterified to biodiesel (96.7% yield) catalyzed by the solid base. After 3 cycles and magnetically separated, the deactivated base was catalyzed the hydrothermal gasification of biodiesel by-product (crude glycerol) with gasification rate of 81% and 82% H_2 purity. - Highlights: • High acid value (AV) crude oil was extracted from Jatropha seeds with waste hulls produced. • Carbonizing the hulls and loading active sites produced magnetic carbonaceous acid and base. • The acid reduced AV of crude oil to 1.3 from 17.2 mg KOH/g and separated for 3 cycles. • The base achieved 97.5% biodiesel yield and magnetically separated for recycles. • After 3 cycles, the deactivated base catalyzed the hydrothermal gasification of glycerol. - Abstract: Magnetic carbonaceous solid acid (C-SO_3H@Fe/JHC) and base (Na_2SiO_3@Ni/JRC) catalysts were synthesized by loading active groups on the carbonaceous supporters derived from Jatropha-hull hydrolysate and hydrolysis residue. Characterization of their morphology, magnetic saturation, functional groups and total acid/base contents were performed by various techniques. Additional acidic functional groups that formed with Jatropha-hull hydrolysate contributed to the high acidity of C-SO_3H@Fe/JHC catalyst for the pretreatment (esterification) of crude Jatropha oil with high acid values (AV). The AV of esterified Jatropha oil dropped down from 17.2 to 1.3 mg KOH/g, achieving a high biodiesel yield of 96.7% after subsequent transesterification reaction with Na_2SiO_3@Ni/JRC base that was cycled at least 3 times with little loss of catalysis activity. Both solid acid and base catalysts were easily recovered by magnetic force

  9. Source Apportionment of the Summer Time Carbonaceous Aerosol at Nordic Rural Background Sites

    Science.gov (United States)

    In the present study, natural and anthropogenic sources of particulate organic carbon (OCp) and elemental carbon (EC) have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter Nordic rural backgro...

  10. Long-term (2001-2012) trends of carbonaceous aerosols from a remote island in the western North Pacific: an outflow region of Asian pollutants

    Science.gov (United States)

    Boreddy, Suresh K. R.; Mozammel Haque, M.; Kawamura, Kimitaka

    2018-01-01

    The present study reports on long-term trends of carbonaceous aerosols in total suspended particulate (TSP) samples collected at Chichijima in the western North Pacific during 2001-2012. Seasonal variations of elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC) concentrations showed maxima in winter to spring and minima in summer. These seasonal differences in the concentrations of carbonaceous aerosols were associated with the outflows of polluted air masses from East Asia, which are clearly distinguishable from pristine air masses from the central Pacific. The higher concentrations of carbonaceous aerosols during winter to spring are associated with long-range atmospheric transport of East Asian continental polluted air masses, whereas lower concentrations may be due to pristine air masses from the central Pacific in summer. The annual trends of OC / EC (+0.46 % yr-1), WSOC (+0.18 % yr-1) and WSOC / OC (+0.08 % yr-1) showed significant (p Asia.

  11. Radiocarbon-based impact assessment of open biomass burning on regional carbonaceous aerosols in North China

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zheng [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Yingjun, E-mail: yjchen@yic.ac.cn [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Tian, Chongguo, E-mail: cgtian@yic.ac.cn [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Fang, Yin [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Wang, Xiaoping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Huang, Guopei; Zhang, Fan [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Li, Jun; Zhang, Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2015-06-15

    Samples of total suspended particulates (TSPs) and fine particulate matter (PM{sub 2.5}) were collected from 29th May to 1st July, 2013 at a regional background site in Bohai Rim, North China. Mass concentrations of particulate matter and carbonaceous species showed a total of 50% and 97% of the measured TSP and PM{sub 2.5} levels exceeded the first grade national standard of China, respectively. Daily concentrations of organic carbon (OC) and elemental carbon (EC) were detected 7.3 and 2.5 μg m{sup −3} in TSP and 5.2 and 2.0 μg m{sup −3} in PM{sub 2.5}, which accounted 5.8% and 2.0% of TSP while 5.6% and 2.2% for PM{sub 2.5}, respectively. The concentrations of OC, EC, TSP and PM{sub 2.5} were observed higher in the day time than those in the night time. The observations were associated with the emission variations from anthropogenic activities. Two merged samples representing from south and north source areas were selected for radiocarbon analysis. The radiocarbon measurements showed 74% of water-insoluble OC (WINSOC) and 59% of EC in PM{sub 2.5} derived from biomass burning and biogenic sources when the air masses were from south region, and 63% and 48% for the air masses from north, respectively. Combined with backward trajectories and daily burned area, open burning of agricultural wastes was found to be predominating, which was confirmed by the potential source contribution function (PSCF). - Highlights: • PM{sub 2.5} and TSP samples collected at Yellow River Delta were analyzed for OC and EC. • OC, EC, TSP and PM{sub 2.5} concentrations were higher in daytime than in nighttime. • Radiocarbon ({sup 14}C) tracer, backward trajectories, and fire counts were used for the analysis. • Agricultural waste open burning was a main contributor to summer PM{sub 2.5}, OC and EC.

  12. Ultraviolet reflectance spectroscopy measurements of carbonaceous meteorites and planetary analog materials

    Science.gov (United States)

    Hibbitts, Charles A.; Stockstill-Cahill, Karen; Takir, Driss

    2017-10-01

    The compositions of airless solar system objects tell us about the origin and evolutionary processes that are responsible for the current state of our solar system and that shape our environment. Spectral reflectance measurements in the ultraviolet are being used more frequently for providing compositional information of airless solid surfaces. Most minerals absorb in the UV making studying surface composition both informative but also challenging [e.g. 1]. The UV region is sensitive to atomic and molecular electronic absorptions such as the ligand-metal charge transfer band that is present in oxides and silicates and the conduction band at vacuum UV wavelengths. At the JHU-APL, bidirectional UV reflectance measurements are obtained under vacuum using a McPherson monochrometer with a PMT detector to achieve measurements over the range from ~ 140 nm to ~ 570 nm. Sample temperature can also be controlled from ~ 100K to ~ 600K, which enables the exploring the interaction of water ice and other volatiles with refractory samples. We have measured the UV spectra of many carbonaceous chondrites, including Mokoia, Vigarano, Warrenton, Orgueil, SaU290, and Essebi. In addition to being dark, some also possess on OMCT band. We have also obtained IR measurement of these meteorites to explore possible correlations between their UV and IR spectral signatures. In addition, we have also measured the UV spectra of low water content lunar analog glasses and have found a correlation between the spectral nature of the OMCT band and the abundance of iron [3]. Also, the spectral signature of mineralic and adsorbed water in the UV has been investigated. While water-ice has a known strong absorption feature near 180 nm (e.g. 4], adsorbed molecular and disassociatively adsorbed OH appear to not be optically active in this spectral region [5]. References: [1] Wagner et al. (1987) Icarus, 69, 14-28.1987; [2] Cloutis et al. (2008) Icarus, 197, 321-347; [3] Greenspon et al. (2012), 43rd LPSC

  13. Investigating the Early Carbon Cycle Using Carbonaceous Inclusions and Dissolved Carbon in Detrital Zircon

    Science.gov (United States)

    Bell, E. A.; Boehnke, P.; Harrison, M.; Mao, W. L.

    2015-12-01

    Because the terrestrial rock record extends only to ~4 Ga and older materials thus far identified are limited to detrital zircons, information about volatile abundances and cycles on early Earth is limited. Carbon, for instance, plays an important role not only in the modern biosphere but also in deep recycling of materials between the crust and mantle. We are investigating the record of carbon abundance and origin in Hadean zircons from Jack Hills (W. Australia) using two main approaches. First, carbon may partition into the zircon structure at trace levels during crystallization from a magma, and better understanding of this partitioning behavior will allow for zircon's use as a monitor of magmatic carbon contents. We have measured carbon abundances in zircon from a variety of igneous rocks (gabbro; I-, A-, and S-type granitoids) via SIMS and found that although abundances are typically low (average raw 12C/30Si ~ 1x10-6), S-type granite zircons can reach a factor of 1000 over this background. Around 10% of Hadean zircons investigated show similar enrichments, consistent with other evidence for the derivation of many Jack Hills zircons from S-type granitoids and with the establishment of modern-level carbon abundances in the crust by ca. 4.2 Ga. Diamond and graphite inclusions reported in the Jack Hills zircons by previous studies proved to be contamination by polishing debris, leaving the true abundance of these materials in the population uncertain. On a second front, we have identified and investigated primary carbonaceous inclusions in these zircons. From a population of over 10,000 Jack Hills zircons, we identified one concordant 4.10±0.01 Ga zircon that contains primary graphite inclusions (so interpreted due to their enclosure in a crack-free zircon host as shown by transmission X-ray microscopy and their crystal habit). Their δ13CPDB of -24±5‰ is consistent with a biogenic origin and, in the absence of a likely inorganic mechanism to produce such a

  14. Regional radiative impacts of mixed dust and carbonaceous aerosols over West Africa

    Science.gov (United States)

    Malavelle, Florent; Pont, Véronique; Solmon, Fabien; Mallet, Marc; Léon, Jean-François; Liousse, Catherine; Johnson, Ben

    2010-05-01

    Africa is a major source of aerosols at global scale. Two types of aerosols dominate the regional background: biomass burning aerosols as results of combustion of the vegetation and mineral dust aerosols related to erosion of arid soils by wind. These important burdens of aerosols are known to have each one a strong impact on the regional radiative budget. Whereas recent modelling efforts show significant impacts at climatic timescale on West African Monsoon due to the radiative effects of dust aerosols (see Solmon et al 2008 in GRL and references therein), biomass burning radiative effects in this region stand still poorly documented. What about West Africa, during the dry season (december-february) when both biomass burning and dust aerosols are encountered in the atmospheric background ? In that frame, we use ICTP Regional Climate Model versions 3 in order to estimate the radiative forcing due to the external mixing of mineral dust and carbonaceous aerosols from biomass burning, BioFuel and Fossil Fuel combustion during the dry season. Emissions of biomass burning aerosols are taken from new inventories based on SPOT vegetation burnt area products. Optical properties of carboneaceous aerosols are updated thanks to chemical sampling at Djougou during AMMA SOP-0. This presentation focuses on the model efficiency to correctly reproduce the main features concerning aerosols observed during AMMA-SOP0/DABEX field campaigns. It refers to (i) a strong stratification of dust and smoke layers, and (ii) a marked seasonal cycle of aerosol mixture optical properties. Those features are key parameters for modelling the direct and semi direct effects of aerosols over West Africa. Results of simulations indicate that the particular low value of single scattering albedo (SSA) for biomass burning aerosols (~0.81 at 550nm) involves important diabatic heating in the atmosphere. Values of aerosol heating rates are estimated and compared with aircraft measurement from DABEX

  15. Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite

    Science.gov (United States)

    Zega, Thomas J.; Alexander, Conel M. O.'D.; Busemann, Henner; Nittler, Larry R.; Hoppe, Peter; Stroud, Rhonda M.; Young, Andrea F.

    2010-10-01

    We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small (⩽20 μm) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the H and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e.g., serpentine

  16. Crystallography of refractory metal nuggets in carbonaceous chondrites: A transmission Kikuchi diffraction approach

    Science.gov (United States)

    Daly, Luke; Bland, Phil A.; Dyl, Kathryn A.; Forman, Lucy V.; Saxey, David W.; Reddy, Steven M.; Fougerouse, Denis; Rickard, William D. A.; Trimby, Patrick W.; Moody, Steve; Yang, Limei; Liu, Hongwei; Ringer, Simon P.; Saunders, Martin; Piazolo, Sandra

    2017-11-01

    Transmission Kikuchi diffraction (TKD) is a relatively new technique that is currently being developed for geological sample analysis. This technique utilises the transmission capabilities of a scanning electron microscope (SEM) to rapidly and accurately map the crystallographic and geochemical features of an electron transparent sample. TKD uses a similar methodology to traditional electron backscatter diffraction (EBSD), but is capable of achieving a much higher spatial resolution (5-10 nm) (Trimby, 2012; Trimby et al., 2014). Here we apply TKD to refractory metal nuggets (RMNs) which are micrometre to sub-micrometre metal alloys composed of highly siderophile elements (HSEs) found in primitive carbonaceous chondrite meteorites. TKD allows us to analyse RMNs in situ, enabling the characterisation of nanometre-scale variations in chemistry and crystallography, whilst preserving their spatial and crystallographic context. This provides a complete representation of each RMN, permitting detailed interpretation of their formation history. We present TKD analysis of five transmission electron microscopy (TEM) lamellae containing RMNs coupled with EBSD and TEM analyses. These analyses revealed textures and relationships not previously observed in RMNs. These textures indicate some RMNs experienced annealing, forming twins. Some RMNs also acted as nucleation centres, and formed immiscible metal-silicate fluids. In fact, each RMN analysed in this study had different crystallographic textures. These RMNs also had heterogeneous compositions, even between RMNs contained within the same inclusion, host phase and even separated by only a few nanometres. Some RMNs are also affected by secondary processes at low temperature causing exsolution of molybdenite. However, most RMNs had crystallographic textures indicating that the RMN formed prior to their host inclusion. TKD analyses reveal most RMNs have been affected by processing in the protoplanetary disk. Despite this

  17. Sources of PM2.5 carbonaceous aerosol in Riyadh, Saudi Arabia

    Science.gov (United States)

    Bian, Qijing; Alharbi, Badr; Shareef, Mohammed M.; Husain, Tahir; Pasha, Mohammad J.; Atwood, Samuel A.; Kreidenweis, Sonia M.

    2018-03-01

    Knowledge of the sources of carbonaceous aerosol affecting air quality in Riyadh, Saudi Arabia, is limited but needed for the development of pollution control strategies. We conducted sampling of PM2.5 from April to September 2012 at various sites in the city and used a thermo-optical semi-continuous method to quantify the organic carbon (OC) and elemental carbon (EC) concentrations. The average OC and EC concentrations were 4.7 ± 4.4 and 2.1 ± 2.5 µg m-3, respectively, during this period. Both OC and EC concentrations had strong diurnal variations, with peaks at 06:00-08:00 LT and 20:00-22:00 LT, attributed to the combined effect of increased vehicle emissions during rush hour and the shallow boundary layer in the early morning and at night. This finding suggested a significant influence of local vehicular emissions on OC and EC. The OC / EC ratio in primary emissions was estimated to be 1.01, close to documented values for diesel emissions. Estimated primary organic carbon (POC) and secondary organic carbon (SOC) concentrations were comparable, with average concentrations of 2.0 ± 2.4 and 2.8 ± 3.4 µg m-3, respectively.We also collected 24 h samples of PM10 onto quartz microfiber filters and analyzed these for an array of metals by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Total OC was correlated with Ca (R2 of 0.63), suggesting that OC precursors and Ca may have similar sources, and the possibility that they underwent similar atmospheric processing. In addition to a ubiquitous dust source, Ca is emitted during desalting processes in the numerous refineries in the region and from cement kilns, suggesting these sources may also contribute to observed OC concentrations in Riyadh. Concentration weighted trajectory (CWT) analysis showed that high OC and EC concentrations were associated with air masses arriving from the Persian Gulf and the region around Baghdad, locations with high densities of oil fields and refineries as well as a

  18. Contribution of Biomass Burning to Carbonaceous Aerosols in Mexico City during may 2013

    Science.gov (United States)

    Tzompa Sosa, Z. A.; Sullivan, A.; Kreidenweis, S. M.

    2014-12-01

    The Mexico City Metropolitan Area (MCMA) is one of the largest megacities in the world with a population of 20 million people. Emissions transported from outside the basin, such as wildfires and agricultural burning, represent a potentially large contribution to air quality degradation. This study analyzed PM10 filter samples from six different stations located across the MCMA from May, 2013, which represented the month with the most reported fire counts in the region between 2002-2013. Two meteorological regimes were established considering the number of satellite derived fire counts, changes in predominant wind direction, ambient concentrations of CO, PM10 and PM2.5, and precipitation patterns inside MCMA. The filter samples were analyzed for biomass burning tracers including levoglucosan (LEV), water-soluble potassium (WSK+); and water-soluble organic carbon (WSOC). Results of these analyses show that LEV concentrations correlated positively with ambient concentrations of PM2.5 and PM10 (R2=0.61 and R2=0.46, respectively). Strong correlations were also found between WSOC and LEV (R2=0.94) and between WSK+ and LEV (R2=0.75). An average LEV/WSOC ratio of 0.0147 was estimated for Regime 1 and 0.0062 for Regime 2. Our LEV concentrations and LEV/WSOC ratios are consistent with results found during the MILAGRO campaign (March, 2006). To the best of our knowledge, only total potassium concentrations have been measured in aerosol samples from MCMA. Therefore, this is the first study in MCMA to measure ambient concentrations of WSK+. Analysis of gravimetric mass concentrations showed that PM2.5 accounted for 60% of the PM10 mass concentration with an estimated PM10/PM2.5 ratio of 1.68. Estimates from our laboratory filter sample characterization indicated that we measured 37% of the total PM10 mass concentration. The missing mass is most likely crustal material (soil or dust) and carbonaceous aerosols that were not segregated into WSOC fraction. Assuming that LEV is

  19. Enhanced methane emission during carbonaceous sediment-basalt interactions as a mechanism for mass extinction

    Science.gov (United States)

    Kubo, A. I.; Day, J. M.; Ryabov, V. V.; Taylor, L. A.

    2016-12-01

    Precise dating techniques have established the contemporaneous eruption of the Siberian Traps at the beginning of the Permian faunal mass extinction at 248 ± 2 Ma. Within a relatively limited time-period ( 1 Ma), the Siberian Traps expelled approximately ninety percent of its total volume ( 1.5 Mkm3), each episode of volcanism adding substantial amounts of CO2, CH4, and SO2 to the atmosphere. The Permian-Triassic Boundary shows average organic carbon isotope excursions of -6.4 ± 4.4‰ (253 Ma), from a long-term average δ13Corg of -25‰. Retallack and Jahren [2008; Journal of Geology] suggested that eruption into C-rich sediments and resulting methane degassing would satisfy necessary conditions to cause such large, variable perturbations in the carbon isotope record. To test this hypothesis, we measured C isotope variations in upper crustal sediments and metalliferous basalts from the Khungtukun and Dzhatul Intrusions, of the Siberian Traps. We find that δ13C values for Siberian coal and sandstones are restricted at -23 to -25‰, with similar values measured in the metalliferous basalts. Anticipated thermogenic methane from disassociation of these sources would be considerably lighter and consistent with low δ13C isotopic values. We further test this mechanism by employing a zero dimensional energy balance model to examine three key parameters: eruption duration, amounts of CO2 and CH4 emission, and the frequency of eruptions. Greater methane emissions than previously estimated due to carbonaceous sediment-basalt interactions have a sustained temperature effect due to high global warming potential (GWP), between 28 and 36 over 100 years compared to the CO2 reference value. Our model predicts that a quick succession of massive effusive eruptions would cause a sustained and substantial temperature effect consistent with estimated equatorial levels of 40°C during the Permian-Triassic Boundary. This mechanism could explain the deficit between the amount of

  20. Active particles

    CERN Document Server

    Degond, Pierre; Tadmor, Eitan

    2017-01-01

    This volume collects ten surveys on the modeling, simulation, and applications of active particles using methods ranging from mathematical kinetic theory to nonequilibrium statistical mechanics. The contributing authors are leading experts working in this challenging field, and each of their chapters provides a review of the most recent results in their areas and looks ahead to future research directions. The approaches to studying active matter are presented here from many different perspectives, such as individual-based models, evolutionary games, Brownian motion, and continuum theories, as well as various combinations of these. Applications covered include biological network formation and network theory; opinion formation and social systems; control theory of sparse systems; theory and applications of mean field games; population learning; dynamics of flocking systems; vehicular traffic flow; and stochastic particles and mean field approximation. Mathematicians and other members of the scientific commu...

  1. Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II

    Energy Technology Data Exchange (ETDEWEB)

    Athalathil, S.; Stüber, F.; Bengoa, C.; Font, J. [Departament d’Enginyeria Quimica, ETSEQ, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalunya (Spain); Fortuny, A. [Departament d’Enginyeria Quimica, EPSEVG, Universitat Politecnica de Catalunya, Av. Victor Balaguer s/n, 08800 Vilanova i la Geltru, Catalunya (Spain); Fabregat, A., E-mail: azael.fabregat@urv.cat [Departament d’Enginyeria Quimica, ETSEQ, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalunya (Spain)

    2014-02-01

    Graphical abstract: - Highlights: • Carbonaceous materials were prepared from exhausted sludge materials. • High surface area and good physicochemical properties were achieved. • Utilization of waste sludge materials and mixed anaerobic cultures were used in a continuous anaerobic UPBR system (upflow packed bed biological reactor). • Effective treatment of dye contaminated wastewater in a cheapest and environmental friendly method was demonstrated. - Abstract: This work presents the preliminary study of new carbonaceous materials (CMs) obtained from exhausted sludge, their use in the heterogeneous anaerobic process of biodecolorization of azo dyes and the comparison of their performance with one commercial active carbon. The preparation of carbonaceous materials was conducted through chemical activation and carbonization. Chemical activation was carried out through impregnation of sludge-exhausted materials with ZnCl{sub 2} and the activation by means of carbonization at different temperatures (400, 600 and 800 °C). Their physicochemical and surface characteristics were also investigated. Sludge based carbonaceous (SBC) materials SBC400, SBC600 and SBC800 present values of 13.0, 111.3 and 202.0 m{sup 2}/g of surface area. Biodecolorization levels of 76% were achieved for SBC600 and 86% for SBC800 at space time (τ) of 1.0 min, similar to that obtained with commercial activated carbons in the continuous anaerobic up-flow packed bed reactor (UPBR). The experimental data fit well to the first order kinetic model and equilibrium data are well represented by the Langmuir isotherm model. Carbonaceous materials show high level of biodecolorization even at very short space times. Results indicate that carbonaceous materials prepared from sludge-exhausted materials have outstanding textural properties and significant degradation capacity for treating textile effluents.

  2. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  3. The Role of Fe,Ni Metal and Fe,Ni Sulfide Nanoparticles in Catalytic Organic Synthesis in the Early Solar System: Evidence From Carbonaceous Chondrites.

    Science.gov (United States)

    Brearley, A. J.

    2008-12-01

    Numerous studies have shown that carbonaceous chondrites contain a wide variety of both soluble and insoluble organic compounds. These compounds formed in a variety of different astrophysical environments including the interstellar medium, the solar nebula and on asteroidal parent bodies. The solid or insoluble organic material (IOM) in carbonaceous chondrites is likely the complex end product of synthesis and processing in all of these environments. Although the bulk chemistry and structure of IOM in carbonaceous chondrites is well understood, important questions remain as to the exact spatial occurrence and distribution of organic material within carbonaceous chondrites. Such information may provide important insights into the possible mechanisms of formation of organic material at the grain scale. We have examined the matrices of three CM carbonaceous chondrites, Y791198, Murchison and ALH81002 using a range of different TEM techniques. Mineralogically, the matrices of these meteorites consist of phyllosilicates and/or amorphous materials associated with sulfides, oxides and carbides. Using energy filtered TEM several distinct occurrences of organic material have been identified, notably associations with nanoparticles of sulfide and carbide. Sulfides have grain sizes that are commonly <100 nm with thin layers of poorly graphitized C (<1 nm) on their surfaces. This carbonaceous layer often contains nitrogen suggesting that it is organic in character. In addition, nanoparticles of Fe,Ni carbides that occur either singly or in clusters are often embedded in carbonaceous material that is also N-bearing. These carbides have experienced partial oxidation to magnetite around their rims. The ubiquitous spatial association between sulfide and carbide nanoparticles and carbonaceous material indicates a genetic relation between these phases. This association can be most readily explained by Fischer-Tropsch-type (FTT) catalysis reactions involving catalytic hydrogenation

  4. Ore-controlling mechanism of carbonaceous-siliceous-pelitic rock type uranium deposits with down-faulted red basins in the southeast continental margin of Yangtze plate

    International Nuclear Information System (INIS)

    Zhang Zilong; Qi Fucheng; He Zhongbo; Li Zhixing; Wang Wenquan; Yu Jinshui

    2012-01-01

    One of the important ore-concentrated areas of carbonaceous-siliceous-pelitic rock type uranium deposits is the Southeast continental margin of Yangtze plate. Sedimentary-exogenously transformed type and sedimentary- hydrothermal superimposed transformed type uranium deposits are always distributed at or near the edge of down-faulted red ba sins. In this paper, the distributions of the deposits are analyzed with the relation to down-faulted red basins. The connective effect and ore-controlling mechanism are proposed of carbonaceous-siliceous-pelitic rock type uranium deposits with marginal fractures of red basins. (authors)

  5. Solar radiation synthesis of functional carbonaceous materials using Al2O3/TiO2-Cu-HA doped catalyst

    Science.gov (United States)

    Stanciu, Elena Manuela; Pascu, Alexandru; Roată, Ionut Claudiu; Croitoru, Cătălin; Tierean, Mircea; Rosca, Julia Mirza; Hulka, Iosif

    2018-04-01

    Single carbon nanotubes were synthesized through a physical vapor deposition method, using concentrated solar radiation as means of vaporization and promoting the formation of carbonaceous plasma plume. A novel catalyst, containing multiple hybrid ceramic/metal phases has been obtained through flame spraying. In conjunction with this catalyst, good quality nanomaterials, such as long single-walled nanotubes and nanoparticles have been obtained and characterized by both morphological (SEM, TEM) as well as structural means on analysis (XRD, FTIR). A mild oxidation of the carbonaceous phase has been reported, which could prove useful in applications in conjunction with metals or hydrophilic polymers as potential matrices for nanocomposites obtaining.

  6. Development of a preparation system for the radiocarbon analysis of organic carbon in carbonaceous aerosols in China

    International Nuclear Information System (INIS)

    Zhang, Y.L.; Liu, D.; Shen, C.D.; Ding, P.; Zhang, G.

    2010-01-01

    Carbonaceous aerosols comprising a large fraction of elemental carbon (EC) and organic carbon (OC) are considered to affect both global climate and human health. Radiocarbon measurements have been proved to be a useful isotopic tracer for distinguishing contemporary and fossil emissions. An optimized system of a two-step thermal preparation system for radiocarbon ( 14 C) measurement of OC/TC is firstly established in China. In this system, OC/TC are converted into carbon dioxide under a pure oxygen flow at 340 o C/650 o C and then reduced to graphite for AMS target using the method of zinc reduction. Afterwards, radiocarbon measurements of the targets performed by the NEC Compact AMS System at the Institute of Heavy Ion Physics, Peking University. The measured results for estimated reference martial including HOx I, HOx II and IAEA-C6 are consistent with internationally accepted values. The radiocarbon-based source appointment of carbonaceous aerosols in China would be much more convenient and faster with the preparation system developed in this work.

  7. Electro-desalination of sulfate contaminated carbonaceous sandstone – risk for salt induced decay during the process

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.

    2016-01-01

    Sodium-sulphate is known to cause severe stone damage. This paper is focused on removal of this salt from carbonaceous sandstone by electro-desalination (ED). The research questions are related to possible stone damage during ED and subsequently suction cycles are made in distilled water before......, during and after ED. During suction in water the salts are concentrated in the upper part of the sandstone. After 2 days of treatment the average water soluble SO42- concentration was half the initial and for this sample corners were damaged as was the case for the reference stone. After 4 days of ED...... in the poultice with carbonate. The acid would be highly damaging to the carbonaceous sandstone as the binder-CaCO3 is soluble in acid. From pH measurements of the poultice it seems as if the acid is buffered well, as pH is still slightly alkaline after ED, but this is a measurement of the average pH and thus...

  8. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  9. Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging.

    Science.gov (United States)

    Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile

    2017-07-01

    Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mechanism of NH{sub 3} desorption during the reaction of H{sub 2} with nitrogen containing carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Juan F. Espinal; Thanh N. Truong; Fanor Mondragon [University of Antioquia, Medellin (Colombia). Institute of Chemistry

    2005-07-01

    The continued increase in demand for natural gas has stimulated the interest in coal conversion to methane as synthetic natural gas by hydropyrolysis of coal (pyrolysis in a H{sub 2} atmosphere). Because the produced raw gas contains considerable amounts of gaseous N-containing products that have to be removed before delivering to final users, the information on distribution of coal-N is important for designing purification processes. It has been reported in the literature that NH{sub 3} is the main nitrogen containing gas that is released during the hydropyrolysis process. Other gases such as HCN and N{sub 2} are also released but in a much smaller amount. To the best of our knowledge, the mechanism for NH{sub 3} desorption during hydrogen reaction with carbonaceous materials has not been studied. We carried out a molecular modeling study using Density Functional Theory in order to get an insight of the mechanism and thermodynamics for NH{sub 3} evolution using pyridinic nitrogen as a model of N-containing carbonaceous material. We propose a mechanism that involves consecutive hydrogenation steps that lead to C-N bond breakage and NH{sub 3} desorption to the gas phase. It was found that the first hydrogenation reaction is highly exothermic. However, further hydrogenations are endothermic. Several pathways for NH{sub 3} evolution were proposed and most of them show high exothermicity. 17 refs., 2 figs.

  11. Molecular and elemental analyses of the carbonaceous matter in the gold and uranium bearing Vaal Reef carbon seams, Witwatersrand sequence

    International Nuclear Information System (INIS)

    Zumberge, J.E.; Sigleo, A.C.; Nagy, B.

    1978-01-01

    The thin Vaal Reef carbon seams consist of a complex, solid, and solvent insoluble, polymer-like substance, containing mainly hydrocarbons and some organic sulphur and oxygen compounds. These carbon seams are not pure carbon, e.g. graphite, and do not contain only hydrocarbons. According to modern terminology the Vaal Reef carbonaceous matter is most appropriately referred to as kerogen rather than carbon or thucholite. This kerogen is not the result of the polymerization of gaseous or liquid hydrocarbons, but rather of the polymerization of biochemicals from decayed, primitive Precambrian micro-organisms. These microbiota formed mats in which uranium minerals and gold became incorporated before burial under younger sediments. Organic geochemistry was first developed as a means to elucidate the nature and composition of petroleum and coal. Later it was successfully used in lunar sample, planetary surface, and meteorite studies as well as in investigations of kerogens in terrestrial sediments of various ages. Considering economic geology, organic geochemistry holds promise for elucidating the origin and helping in the exploration of carbonaceous ore deposits. The purpose of this report is to review some of the major current organic geochemical methods and to illustrate these by the analysis of the Vaal Reef kerogen. The samples were analysed by a directly connected high vacuum pyrolysis system-gas chromatograph-organic mass spectrometer. Additional analyses were performed by a combined scanning electron microscope-electron microprobe, by the techniques of electron paramagnetic resonance spectroscopy, and by neutron activation analysis

  12. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  13. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    OpenAIRE

    C. A. Stroud; M. D. Moran; P. A. Makar; S. Gong; W. Gong; J. Zhang; J. G. Slowik; J. P. D. Abbatt; G. Lu; J. R. Brook; C. Mihele; Q. Li; D. Sills; K. B. Strawbridge; M. L. McGuire

    2012-01-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two...

  14. Comet Dust: The Diversity of "Primitive" Particles and Implications

    Science.gov (United States)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  15. Lung injury after cigarette smoking is particle related

    Directory of Open Access Journals (Sweden)

    Rahul G Sangani

    2011-03-01

    Full Text Available Rahul G Sangani, Andrew J GhioEnvironmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USAAbstract: The specific component responsible and the mechanistic pathway for increased human morbidity and mortality after cigarette smoking are yet to be delineated. We propose that 1 injury and disease following cigarette smoking are associated with exposure to and retention of particles produced during smoking and 2 the biological effects of particles associated with cigarette smoking share a single mechanism of injury with all particles. Smoking one cigarette exposes the human respiratory tract to between 15,000 and 40,000 µg particulate matter; this is a carbonaceous product of an incomplete combustion. There are numerous human exposures to other particles, and these vary widely in composition, absolute magnitude, and size of the particle. Individuals exposed to all these particles share a common clinical presentation with a loss of pulmonary function, increased bronchial hyperresponsiveness, pathologic changes of emphysema and fibrosis, and comorbidities, including cardiovascular disease, cerebrovascular disease, peripheral vascular disease, and cancers. Mechanistically, all particle exposures produce an oxidative stress, which is associated with a series of reactions, including an activation of kinase cascades and transcription factors, release of inflammatory mediators, and apoptosis. If disease associated with cigarette smoking is recognized to be particle related, then certain aspects of the clinical presentation can be predicted; this would include worsening of pulmonary function and progression of pathological changes and comorbidity (eg, emphysema and carcinogenesis after smoking cessation since the particle is retained in the lung and the exposure continues.Keywords: particulate matter, smoking, oxidants, oxidative stress, air pollution

  16. New particles

    Energy Technology Data Exchange (ETDEWEB)

    Khare, A.

    1980-07-01

    Current state of art in the discovery of new elementary particles is reviewed. At present, quarks and mesons are accepted as the basic constituents of matter. The charmonium model (canti-c system), and the 'open charm' are discussed. Explanations are offered for the recent discovery of the heavy lepton tau. Quark states such as the beauty and taste are also dealt with at length. The properties of the tanti-t bound system are speculated. It is concluded that the understanding of canti-c and banti-b families is facilitated by the assumption of the quarkonium model. Implications at the astrophysical level are indicated.

  17. Particle Mechanics

    CERN Document Server

    Collinson, Chris

    1995-01-01

    * Assumes no prior knowledge* Adopts a modelling approach* Numerous tutorial problems, worked examples and exercises included* Elementary topics augmented by planetary motion and rotating framesThis text provides an invaluable introduction to mechanicsm confining attention to the motion of a particle. It begins with a full discussion of the foundations of the subject within the context of mathematical modelling before covering more advanced topics including the theory of planetary orbits and the use of rotating frames of reference. Truly introductory , the style adoped is perfect for those u

  18. A Case for Nebula Scale Mixing Between Non-Carbonaceous and Carbonaceous Chondrite Reservoirs: Testing the Grand Tack Model with Chromium Isotopic Composition of Almahata Sitta Stone 91A

    Science.gov (United States)

    Sanborn, M. E.; Yin, Q.-Z.; Goodrich, C. A.; Zolensky, M.; Fioretti, A. M.

    2017-01-01

    There is an increasing number of Cr-O-Ti isotope studies that show solar system materials are divided into two main populations, one carbonaceous chondrite (CC)-like and the other is non-carbonaceous (NC)-like, with minimal mixing attributed to a gap opened in the protoplanetary disk due to Jupiter's formation. The Grand Tack model suggests there should be large-scale mixing between S- and C-type asteroids, an idea supported by our recent work on chondrule (Delta)17O-e54Cr isotope systematics. The Almahata Sitta (AhS) meteorite provides a unique opportunity to test the Grand Tack model. The meteorite fell to Earth in October 2008 and has been linked to the asteroid 2008 TC3 which was discovered just prior to the fall of the AhS stones. The AhS meteorite is composed of up to 700 individual pieces with approx.140 of those pieces having some geochemical and/or petrologic studies. Almahata Sitta is an anomalous polymict ureilite with other meteorite components, including enstatite, ordinary, and carbonaceous chondrites with an approximate abundance of 70% ureilites and 30% chondrites. This observation has lead to the suggestion that TC3 2008 was a loosely aggregated rubble pile-like asteroid with the non-ureilite sample clasts within the rubble-pile. Due to the loosely-aggregated nature of AhS, the object disintegrated during atmospheric entry resulting in the weakly held clasts falling predominantly as individual stones in the AhS collection area. However, recent work has identified one sample of AhS, sample 91A, which may represent two different lithologies coexisting within a single stone. The predominate lithology type in 91A appears to be that of a C2 chondrite based on mineralogy but also contains olivine, pyroxene, and albite that have ureilite-like compositions. Previous Cr isotope investigations into AhS stones are sparse and what data is available show nearly uniform isotopic composition similar to that of typical ureilites with negative e54Cr values.

  19. Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microscope

    Science.gov (United States)

    Bradley, J. P.; Germani, M. S.; Brownlee, D. E.

    1989-01-01

    An AEM apparatus equipped with digital beam control has obtained quantitative point-count analyses of thin sections taken from eight anhydrous chondritic interplanetary dust particles (IDPs); between 200 and 500 X-ray analyses were collected from each thin section and analyzed for Mg, Al, Si, S, Ca, Cr, Mn, Fe, and Ni. Two types of anhydrous chondritic aggregates were observed in the eight IDPs: one highly porous, the other less so. The eight anhydrous IDPs are characterizable as mixtures of fine- and coarse-grained aggregates, large mineral grains, glass, and carbonaceous materials. Their elemental concentrations follow those of solar abundances, suggesting that they are unperturbed by aqueous alteration.

  20. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010

    Directory of Open Access Journals (Sweden)

    Z. Lu

    2011-09-01

    Full Text Available China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2 and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC emissions from these two countries for the period 1996–2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %–17 % due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs of SO2, BC, and OC emissions are estimated to be −16 %–17 %, −43 %–93 %, and −43 %–80 % for China, and −15 %–16 %, −41 %–87 %, and −44 %–92

  1. Sources of PM2.5 carbonaceous aerosol in Riyadh, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Q. Bian

    2018-03-01

    Full Text Available Knowledge of the sources of carbonaceous aerosol affecting air quality in Riyadh, Saudi Arabia, is limited but needed for the development of pollution control strategies. We conducted sampling of PM2.5 from April to September 2012 at various sites in the city and used a thermo-optical semi-continuous method to quantify the organic carbon (OC and elemental carbon (EC concentrations. The average OC and EC concentrations were 4.7 ± 4.4 and 2.1 ± 2.5 µg m−3, respectively, during this period. Both OC and EC concentrations had strong diurnal variations, with peaks at 06:00–08:00 LT and 20:00–22:00 LT, attributed to the combined effect of increased vehicle emissions during rush hour and the shallow boundary layer in the early morning and at night. This finding suggested a significant influence of local vehicular emissions on OC and EC. The OC ∕ EC ratio in primary emissions was estimated to be 1.01, close to documented values for diesel emissions. Estimated primary organic carbon (POC and secondary organic carbon (SOC concentrations were comparable, with average concentrations of 2.0 ± 2.4 and 2.8 ± 3.4 µg m−3, respectively.We also collected 24 h samples of PM10 onto quartz microfiber filters and analyzed these for an array of metals by inductively coupled plasma atomic emission spectroscopy (ICP-AES. Total OC was correlated with Ca (R2 of 0.63, suggesting that OC precursors and Ca may have similar sources, and the possibility that they underwent similar atmospheric processing. In addition to a ubiquitous dust source, Ca is emitted during desalting processes in the numerous refineries in the region and from cement kilns, suggesting these sources may also contribute to observed OC concentrations in Riyadh. Concentration weighted trajectory (CWT analysis showed that high OC and EC concentrations were associated with air masses arriving from the Persian Gulf and the region around Baghdad, locations with

  2. Rhenium-osmium systematics of calcium-aluminium-rich inclusions in carbonaceous chondrites

    Science.gov (United States)

    Becker, H.; Morgan, J.W.; Walker, R.J.; MacPherson, G.J.; Grossman, J.N.

    2001-01-01

    pose several difficulties. The narrow range of 187Os/188Os in group I, III, V, and VI bulk CAIs, and the agreement with 187Os/188Os of whole rock carbonaceous chondrites suggest that on a bulk inclusion scale, secondary alteration only modestly fractionated Re/Os in these CAIs. The average of 187Os/188Os for group I, III, V, and VI CAIs is indistinguishable from average CI chondrites, indicating a modern solar system value for 187Os/188Os of 0.12650, corresponding to a 187Re/188Os of 0.3964. Copyright ?? 2001 Elsevier Science Ltd.

  3. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010

    Science.gov (United States)

    Lu, Z.; Zhang, Q.; Streets, D. G.

    2011-09-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996-2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission factors are incorporated in the calculation. Year-specific monthly temporal distributions for major sectors and gridded emissions at a resolution of 0.1°×0.1° distributed by multiple year-by-year spatial proxies are also developed. In China, the interaction between economic development and environmental protection causes large temporal variations in the emission trends. From 1996 to 2000, emissions of all three species showed a decreasing trend (by 9 %-17 %) due to a slowdown in economic growth, a decline in coal use in non-power sectors, and the implementation of air pollution control measures. With the economic boom after 2000, emissions from China changed dramatically. BC and OC emissions increased by 46 % and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide application of flue-gas desulfurization (FGD) equipment in power plants. Driven by the remarkable energy consumption growth and relatively lax emission controls, emissions from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and OC emissions are estimated to be -16 %-17 %, -43 %-93 %, and -43 %-80 % for China, and -15 %-16 %, -41 %-87 %, and -44 %-92 % for India, respectively. Sulfur content, fuel use, and sulfur retention of hard coal and

  4. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    H. Niu

    2018-05-01

    Full Text Available Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016 of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ basin are analyzed. The average elemental carbon (EC and organic carbon (OC concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l.  of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 % to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  5. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    Science.gov (United States)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  6. Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacieri region of the southeastern Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Hewen; Kang, Shichang; Wang, Hailong; Zhang, Rudong; Lu, Xixi; Qian, Yun; Paudyal, Rukumesh; Wang, Shijin; Shi, Xiaofei; Yan, Xingguo

    2018-05-07

    Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 m a. s. l. ) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.

  7. 3-D assessment of peak-metamorphic conditions by Raman spectroscopy of carbonaceous material: an example from the margin of the Lepontine dome (Swiss Central Alps)

    DEFF Research Database (Denmark)

    Wiederkehr, Michael; Bousquet, Romain; Ziemann, Martin

    2011-01-01

    This study monitors regional changes in the crystallinity of carbonaceous matter (CM) by applying Micro-Raman spectroscopy to a total of 214 metasediment samples (largely so-called Bu¨ndnerschiefer) dominantly metamorphosed under blueschist- to amphibolite-facies conditions. They were collected w...

  8. Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands : insights from a year-long radiocarbon study

    NARCIS (Netherlands)

    Dusek, Ulrike; Hitzenberger, Regina; Kasper-Giebl, Anne; Kistler, Magdalena; Meijer, Harro A. J.; Szidat, Sonke; Wacker, Lukas; Holzinger, Rupert; Rockmann, Thomas

    2017-01-01

    We measured the radioactive carbon isotope C-14 (radiocarbon) in various fractions of the carbonaceous aerosol sampled between February 2011 and March 2012 at the Cesar Observatory in the Netherlands. Based on the radiocarbon content in total carbon (TC), organic carbon (OC), water-insoluble organic

  9. Selective reduction of nitric oxide over Cu/ZSM-5: The role of oxygen in suppressing catalyst deactivation by carbonaceous deposits

    Energy Technology Data Exchange (ETDEWEB)

    d' Itri, Julie L; Sachtler, Wolfgang M.H. [V.N. Ipatieff Laboratory, Center for Catalysis and Surface Science, Departments of Chemical Engineering and Chemistry, Northwestern University, Evanston, IL (United States)

    1993-06-15

    The role of oxygen in the selective reduction of nitrogen monoxide by either propane or propene over 'excessively' ion-exchanged Cu/ZSM-5 has been studied. In a wide temperature region and in the absence of additives such as steam, propane is a more effective reductant than propene; with propane and in the presence of oxygen reduction of nitric oxide to nitrogen approaches 100% above 600 K. The difference in effectiveness is due to the different degree of catalyst deactivation by carbonaceous deposits: more carbonaceous material is deposited from propene than from propane. Temperature-programmed oxidation shows that above 600 K the rate of oxidation of carbonaceous deposits by oxygen is significant. The amount of such carbonaceous deposits is, therefore, lower when catalytic tests above 600 K are done in the presence of oxygen. At very high temperatures, the in situ volatilization of the deposits by reaction with oxygen keeps the catalyst surface clean in the steady state of nitric oxide reduction.

  10. Factors influencing the outdoor concentration of carbonaceous aerosols at urban schools in Brisbane, Australia: Implications for children's exposure

    International Nuclear Information System (INIS)

    Crilley, L.R.; Ayoko, G.A.; Mazaheri, M.; Morawska, L.

    2016-01-01

    This comprehensive study aimed to determine the sources and driving factors of organic carbon (OC) and elemental carbon (EC) concentrations in ambient PM 2.5 in urban schools. Sampling was conducted outdoors at 25 schools in the Brisbane Metropolitan Area, Australia. Concentrations of primary and secondary OC were quantified using the EC tracer method, with secondary OC accounting for an average of 60%. Principal component analysis distinguished the contributing sources above the background and identified groups of schools with differing levels of primary and secondary carbonaceous aerosols. Overall, the results showed that vehicle emissions, local weather conditions and secondary organic aerosols (SOA) were the key factors influencing concentrations of carbonaceous component of PM 2.5 at these schools. These results provide insights into children's exposure to vehicle emissions and SOA at such urban schools. - Highlights: • We aimed to find the contributing sources to children's exposure at school. • Measured outdoor organic carbon and elemental carbon at 25 urban schools. • Schools varied in exposure to primary and secondary sources. • Secondary organic carbon the largest component of carbonaceous aerosols. • Vehicle emission levels at schools are primarily dependent on local traffic counts. - Key factors influencing concentrations of carbonaceous component of PM 2.5 at urban schools were found to be vehicle emissions, secondary organic aerosols and local weather conditions.

  11. Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived layered CNX catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid

    Science.gov (United States)

    Chitosan derived porous layered nitrogen-enriched carbonaceous CNx catalyst (PLCNx) has been synthesized from marine waste and its use demonstrated in a metal-free heterogeneous selective oxidation of 5-hydroxymethyl-furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using aeria...

  12. Fermilab | Particle Physics Division

    Science.gov (United States)

    Diversity Education Safety Sustainability and Environment Contact Science Science Particle Physics Neutrinos Scientific Computing Research & Development Key Discoveries Benefits of Particle Physics Particle Superconducting Test Accelerator LHC and Future Accelerators Accelerators for Science and Society Particle Physics

  13. Particle Morphology From Wood-Burning Cook Stoves Emissions

    Science.gov (United States)

    Peralta, O.; Carabali, G.; Castro, T.; Torres, R.; Ruiz, L. G.; Molina, L. T.; Saavedra, I.

    2013-12-01

    Emissions from three wood-burning cook stoves were sampled to collect particles. Transmission electron microscope (TEM) copper grids were placed on the last two stages of an 8-stage MOUDI cascade impactor (d50= 0.32, and 0.18 μm). Samples were obtained on two heating stages of cooking, the first is a quick heating process to boil 1 liter of water, and the second is to keep the water at 90 C. Absorption coefficient, scattering coefficients, and particles concentration (0.01 - 2.5 μm aerodynamic diameter) were measured simultaneously using an absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm), and a condensation particle counter connected to a chamber to dilute the wood stoves emissions. Transmission electron micrographic images of soot particles were acquired at different magnifications using a High Resolution Transmission Electron Microscope (HRTEM) JEOL HRTEM 4000EX operating at 200 kV, equipped with a GATAN digital micrograph system for image acquisition. The morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The presence of high numbers of carbon ceno-spheres can be attributed to pyrolysis, thermal degradation, and others processes prior to combustion. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50= 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, S and K.

  14. Comet Dust: The Diversity of Primitive Particles and Implications

    Science.gov (United States)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  15. Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon-levoglucosan marker method

    Science.gov (United States)

    Salma, Imre; Németh, Zoltán; Weidinger, Tamás; Maenhaut, Willy; Claeys, Magda; Molnár, Mihály; Major, István; Ajtai, Tibor; Utry, Noémi; Bozóki, Zoltán

    2017-11-01

    An intensive aerosol measurement and sample collection campaign was conducted in central Budapest in a mild winter for 2 weeks. The online instruments included an FDMS-TEOM, RT-OC/EC analyser, DMPS, gas pollutant analysers and meteorological sensors. The aerosol samples were collected on quartz fibre filters by a low-volume sampler using the tandem filter method. Elemental carbon (EC), organic carbon (OC), levoglucosan, mannosan, galactosan, arabitol and mannitol were determined, and radiocarbon analysis was performed on the aerosol samples. Median atmospheric concentrations of EC, OC and PM2.5 mass were 0.97, 4.9 and 25 µg m-3, respectively. The EC and organic matter (1.6 × OC) accounted for 4.8 and 37 %, respectively, of the PM2.5 mass. Fossil fuel (FF) combustion represented 36 % of the total carbon (TC = EC + OC) in the PM2.5 size fraction. Biomass burning (BB) was a major source (40 %) for the OC in the PM2.5 size fraction, and a substantial source (11 %) for the PM10 mass. We propose and apply here a novel, straightforward, coupled radiocarbon-levoglucosan marker method for source apportionment of the major carbonaceous chemical species. The contributions of EC and OC from FF combustion (ECFF and OCFF) to the TC were 11.0 and 25 %, respectively, EC and OC from BB (ECBB and OCBB) were responsible for 5.8 and 34 %, respectively, of the TC, while the OC from biogenic sources (OCBIO) made up 24 % of the TC. The overall relative uncertainty of the OCBIO and OCBB contributions was assessed to be up to 30 %, while the relative uncertainty for the other apportioned species is expected to be below 20 %. Evaluation of the apportioned atmospheric concentrations revealed some of their important properties and relationships among them. ECFF and OCFF were associated with different FF combustion sources. Most ECFF was emitted by vehicular road traffic, while the contribution of non-vehicular sources such as domestic and industrial heating or cooking using gas, oil or coal

  16. Early solar system. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source.

    Science.gov (United States)

    Sarafian, Adam R; Nielsen, Sune G; Marschall, Horst R; McCubbin, Francis M; Monteleone, Brian D

    2014-10-31

    Determining the origin of water and the timing of its accretion within the inner solar system is important for understanding the dynamics of planet formation. The timing of water accretion to the inner solar system also has implications for how and when life emerged on Earth. We report in situ measurements of the hydrogen isotopic composition of the mineral apatite in eucrite meteorites, whose parent body is the main-belt asteroid 4 Vesta. These measurements sample one of the oldest hydrogen reservoirs in the solar system and show that Vesta contains the same hydrogen isotopic composition as that of carbonaceous chondrites. Taking into account the old ages of eucrite meteorites and their similarity to Earth's isotopic ratios of hydrogen, carbon, and nitrogen, we demonstrate that these volatiles could have been added early to Earth, rather than gained during a late accretion event. Copyright © 2014, American Association for the Advancement of Science.

  17. Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis

    Directory of Open Access Journals (Sweden)

    M. Ramonet

    2011-08-01

    Full Text Available Dual carbon isotope analysis of marine aerosol samples has been performed for the first time demonstrating a potential in organic matter apportionment between three principal sources: marine, terrestrial (non-fossil and fossil fuel due to unique isotopic signatures. The results presented here, utilising combinations of dual carbon isotope analysis, provides conclusive evidence of a dominant biogenic organic fraction to organic aerosol over biologically active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80 % organic aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of terrestrial origin. By contrast, for polluted air advected out from Europe into the NE Atlantic, the source apportionment is 30 % marine biogenic, 40 % fossil fuel, and 30 % continental non-fossil fuel. The dominant marine organic aerosol source in the atmosphere has significant implications for climate change feedback processes.

  18. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    Science.gov (United States)

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events.

    Science.gov (United States)

    Luo, Xiaolin; Zheng, Yi; Wu, Bin; Lin, Zhongrong; Han, Feng; Zhang, Wei; Wang, Xuejun

    2013-11-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported from contaminated soils by surface runoff pose significant risk for aquatic ecosystems. Based on a rainfall-runoff simulation experiment, this study investigated the impact of carbonaceous materials (CMs) in soil, identified by organic petrology analysis, on the transport of soil-bound PAHs under rainfall conditions. The hypothesis that composition of soil organic matter significantly impacts the enrichment and transport of PAHs was proved. CMs in soil, varying significantly in content, mobility and adsorption capacity, act differently on the transport of PAHs. Anthropogenic CMs like black carbon (BC) largely control the transport, as PAHs may be preferentially attached to them. Eventually, this study led to a rethink of the traditional enrichment theory. An important implicati