WorldWideScience

Sample records for carbonaceous nanoparticulate materials

  1. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials

    Directory of Open Access Journals (Sweden)

    Kristine M Garza

    2008-03-01

    Full Text Available Kristine M Garza1, Karla F Soto2, Lawrence E Murr31Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA; 2Lockheed Martin Aeronautics Company, Forth Worth, TX, USA; 3Department of Metallurgical and Materials Engineering, The University of Texas at El Paso, El Paso, TX, USAAbstract: We have investigated the cytotoxicity and reactive oxygen species (ROS generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots – along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20–80 nm diameter forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations of polycyclic aromatic hydrocarbon (PAH isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549 treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production.Keywords: cytotoxicity assessment, ROS assays, FESEM and TEM analysis, nanoparticulate aggregates

  2. Terminology of carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, G.N.; Nagornyi, V.G.; Ostrovskii, V.S.

    1986-07-01

    The need is discussed to standardize definition of carbonaceous material. Terms related to carbonaceous materials and their products are selected and analyzed. Diagramatic representation is given of relationships between carbonaceous materials. Carbon has two forms of structure, cubic and hexagonal, characterized by sp/sup 3/-hybrid groups of atoms forming spatial system of tetrahedral bonds. Hexagonal form of carbon is represented by natural materials such as graphite, shungite, anthracite and a number of artificial materials obtained during thermal treatment of organic substances at temperatures above carbonization temperature. 4 references.

  3. Cytotoxic Responses and Potential Respiratory Health Effects of Carbon and Carbonaceous Nanoparticulates in the Paso del Norte Airshed Environment

    Directory of Open Access Journals (Sweden)

    K. M. Garza

    2008-03-01

    Full Text Available We have utilized a range of manufactured or commercial nanoparticulate materials, including surrogate carbon nano-PM along with combustion-generated carbonaceous (soot nano-PM characteristic of environmental nano-PM (both indoor and outdoor to investigate and compare their cytotoxic response in vitro with an immortalized human epithelial (lung model cell line (A549. These have included nano-Ag, Al2O3, TiO2, Fe2O3, ZrO2, Si3N4, chrysotile asbestos, BC, 2 types of MWCNT-aggregate PM (MWCNT-R and MWCNT-N, and high-volume glass fiber collected soots: candle, wood, diesel (truck, tire, and 3-types of natural gas kitchen burner-generated soots: yellow (fuel-rich flame, low-flow blue flame, and normal flow blue flame soot PM. These carbonaceous nano-PM species can be found in either the indoor and outdoor environments or microenvironments. Two-day and two-week in-vitro cultures of A549 showed cell death (or decreased cell viability for all nanoparticulate materials, but especially significant for all but the TiO2 and candle, wood, and diesel PM. The natural gas kitchen burner combustion PM cell death response was characteristic of BC and MWCNT PM. There was no correlation with total PAH content of the soot PM. Cytokine release (IL-6, IL-8 was detected for the Ag, Fe2 O3, asbestos, BC and the MWCNT PM. Reactive oxygen species (ROS production was also detected for Ag, Fe2 O3, ZrO2, asbestos, BC, and the MWCNT aggregate PM, as well as the natural gas kitchen burner combustion PM. TEM, FESEM, and optical microscopy examination of these nanomaterials illustrate the wide range in PM morphologies and crystallinities as well as cell morphologies. Taken together, these results illustrate proinflammatory and related respiratory health issues in relation to environmental nanoparticulates.

  4. Radiation swelling of carbonaceous materials

    International Nuclear Information System (INIS)

    Radiation swelling occurs in practically all studied materials at a certain temperature range and irradiation dose. It consists of an increase of the volume and a corresponding decrease of the density and is accompanied by weakening. Swelling is usually divided into three stages (periods). Incubation involves little or no swelling. The transitional period occurs when the volume increases as a power function of the dose with an exponent n > 1. The dependence on the dose is linear in the steady period. The dependence of the swelling rate on temperature is bell-shaped. Anisotropic secondary swelling is observed in carbonaceous construction materials at T > 750-850 K and a flux ∼1022 neutrons/cm2. Three swelling stages are found. These are incubation, transitional, and steady. The transitional stage shifts to smaller neutron fluxes as the temperature increases. The swelling rate in the third stage is constant and has a maximum at 950-1300 K. The value of the maximum is determined by the structure of the graphite and increases with increasing density

  5. Functionally Graded Dual-Nanoparticulate-Reinforced Aluminum Matrix Composite Materials

    International Nuclear Information System (INIS)

    Functionally graded carbon nanotubes (CNT) and nano Silicon carbide (nSiC) reinforced aluminum (Al) matrix composite materials were fully densified by a simple ball milling and hot-pressing processes. The nSiC was used as a physical mixing agent to increase dispersity of the CNT in the Al particles. It was observed that the CNT was better dispersed in the Al particles with a nSiC mixing agent compared to without it used. SEM micrograph showed that the interface of the each layers had very tightly adhesion without any serious pores and micro-cracks. This functionally graded dual-nanoparticulate-reinforced Al matrix composite by powder metallurgical approach could also be applied to comples matrix materials.

  6. Photolytic process for gasification of carbonaceous material

    International Nuclear Information System (INIS)

    Process and apparatus are disclosed for converting carbon dioxide to carbon monoxide by subjecting the carbon dioxide to radiation in the presence of carbonaceous material such as coal to form carbon monoxide. The preferred form of radiation is solar energy, and the process is preferably carried out in an atmosphere essentially free of oxygen. The invention also includes subjecting carbon monoxide to radiation to form purified carbon and useful heat energy. The two procedures can be combined into a single process for converting solar or other energy into useful thermal energy with the production of useful products. The reactor apparatus is specifically designed to carry out the radiation-induced conversions. Coal can be desulfurized and its caking characteristics altered by solar radiation in the presence of suitable gases. 3 figures

  7. Battery characteristics with various carbonaceous materials

    Science.gov (United States)

    Kuribayashi, Isao; Yokoyama, Mika; Yamashita, Masataka

    Various carbonaceous particles having a core-shell structure, produced from graphite and pseudo-graphite coated with pitchblended phenol resin and green mesophase-pitch coated with phenol resin and ground graphite powder, were investigated as active materials for negative electrodes. The particles with natural graphite cores, as well as those with pseudo-graphite cores, were stable both in 1 M LiClO 4sbnd PC:EC (50:50) electrolyte and in 1.5 M LiBF 4sbnd PC:EC:BL (25:25:50) electrolyte, and showed excellent electrical capacities. Those produced from green mesophase-pitch cores were of markedly deformed configuration and showed large capacity gains with only small additions of graphite powder to the phenol coating material. Negative electrodes, in which the particles containing natural graphites cores were blended with petroleum coke in various ratios, showed that it may be possible to produce cells with specific discharge voltage curves, by varying the ratio of this blend.

  8. Detection of carbonaceous material in Naga Bhasma

    Directory of Open Access Journals (Sweden)

    S K Singh

    2012-01-01

    Full Text Available Traditional medicines have maintained their popularity in all regions of the developing world and are being adopted increasingly by people worldwide. Indian traditional system of medicine Ayurveda make use of unique metallic-herbal preparations (called Bhasma which involves different processing steps including repeated steps of calcination of metal in the presence of natural precursor (herbal juices, decoctions, and powders, etc. It has been recently established that Bhasma contains nano/sub-micron size particles and different nutrient elements. However, the role and the end product of the raw materials, especially the herbal parts, used during the synthesis of the drug (Bhasma is one of the important but unanswered problems in such medicinal preparations. Present work on Naga Bhasma is an attempt to understand the role of natural precursors in detail. Our results on infrared, Raman and X-ray photoelectron spectroscopy along with thermal measurements identify the presence of carbonaceous material (hydrogenated amorphous carbon in the drug along with other compounds. In addition, this work also suggests the science and mechanism behind such complex preparations which could help in standardization of such medicines.

  9. Analytical Electron Microscopy for Characterization of Fluid or Semi-Solid Multiphase Systems Containing Nanoparticulate Material

    Directory of Open Access Journals (Sweden)

    Nadejda B. Matsko

    2013-02-01

    Full Text Available The analysis of nanomaterials in pharmaceutical or cosmetic preparations is an important aspect both in formulation development and quality control of marketed products. Despite the increased popularity of nanoparticulate compounds especially in dermal preparations such as emulsions, methods and protocols of analysis for the characterization of such systems are scarce. This work combines an original sample preparation procedure along with different methods of analytical electron microscopy for the comprehensive analysis of fluid or semi-solid dermal preparations containing nanoparticulate material. Energy-filtered transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and high resolution imaging were performed on model emulsions and a marketed product to reveal different structural aspects of both the emulsion bulk phase and incorporated nanosized material. An innovative analytical approach for the determination of the physical stability of the emulsion under investigation is presented. Advantages and limitations of the employed analytical imaging techniques are highlighted.

  10. Conditioning of carbonaceous material prior to physical beneficiation

    Science.gov (United States)

    Warzinski, Robert P.; Ruether, John A.

    1987-01-01

    A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

  11. Analyses and Characterization of Fossil Carbonaceous Materials for Silicon Production

    OpenAIRE

    Myrvågnes, Viktor

    2008-01-01

    Production of high silicon alloys is carried out in submerged arc furnaces by reduction of silicon bearing oxides (typically quartz) with carbon materials. Carbonaceous materials like coal, coke, charcoal and woodchips are commonly used as reduction materials in the process. Primarily based on historical prices of charcoal compared to fossil reduction materials, the Norwegian Ferroalloy Industry has mostly been using coal and coke (char) as the source of carbon. From a process point of view, ...

  12. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    Science.gov (United States)

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al4C3) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al4C3. Along with the CNT and the nano-SiC, Al4C3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials.

  13. Study of the supermolecular structure of carbonaceous materials

    International Nuclear Information System (INIS)

    A method is proposed for calculating the form of structural pores and distortions of ordered crystalline regions in carbonaceous materials using X-ray parameters. The region of supermolecular structural order (SMO) of carbonaceous materials on thermal treatment and on neutron irradiation has been investigated. It has been established that the graphitization process is preceded by a qualitative change on the SMO of the initial materials. It has been shown that as the result of the neutron irradiation of graphite, with a rise in the temperature of irradiation the distortions in the crystalline regions grow, leading to irreversible processes of breakdown of the latter, to a redistribution and reorientation of the structural porosity, and to a change in the shape of the pores. 16 refs

  14. Immobilization of pentachlorophenol in soil using carbonaceous material amendments

    Energy Technology Data Exchange (ETDEWEB)

    Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085 (China)], E-mail: bwen@rcees.ac.cn; Li Ruijuan; Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085 (China); Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085 (China)], E-mail: xiaoquan@rcees.ac.cn; Fang Jing; Xiao Ke [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Haidian District, Beijing 100085 (China); Khan, Shahamat U. [Department of Chemistry and Biochemistry, MSN 3E2, George Mason University, 4400 University Drive, Fairfax, VA 22030-4444 (United States)

    2009-03-15

    In this study, three pentachlorophenol (PCP) laboratory-spiked and one field-contaminated soil were amended with 2.0% char, humic acid (HA) and peat, respectively. The amended soils were aged for either 7 or 250 days. After amendment, CaCl{sub 2} extractability of PCP was significantly decreased. Desorption kinetics indicated that the proposed amendment could lead to a strong binding and slow desorption of PCP in soils. Amendment with char reduced the bioaccumulation factor (BAF) of PCP most significantly for earthworms (Eisenia fetida) in all soils studied. The results of both physicochemical and biological tests suggested that amendment reduced PCP bioavailability quickly and enduringly, implying that carbonaceous material amendment, especially char amendment, was a potentially attractive in situ remediation method for sequestration of PCP in contaminated soil. - Carbonaceous material amendment was a potential in situ remediation method for pentachlorophenol contaminated soil.

  15. Immobilization of pentachlorophenol in soil using carbonaceous material amendments

    International Nuclear Information System (INIS)

    In this study, three pentachlorophenol (PCP) laboratory-spiked and one field-contaminated soil were amended with 2.0% char, humic acid (HA) and peat, respectively. The amended soils were aged for either 7 or 250 days. After amendment, CaCl2 extractability of PCP was significantly decreased. Desorption kinetics indicated that the proposed amendment could lead to a strong binding and slow desorption of PCP in soils. Amendment with char reduced the bioaccumulation factor (BAF) of PCP most significantly for earthworms (Eisenia fetida) in all soils studied. The results of both physicochemical and biological tests suggested that amendment reduced PCP bioavailability quickly and enduringly, implying that carbonaceous material amendment, especially char amendment, was a potentially attractive in situ remediation method for sequestration of PCP in contaminated soil. - Carbonaceous material amendment was a potential in situ remediation method for pentachlorophenol contaminated soil

  16. Active coke: Carbonaceous materials as catalysts for alkane dehydrogenation

    OpenAIRE

    McGregor, J.; Huang, Z; Parrott, E.; Zeitler, J.; Nguyen, K.; Rawson, J.; Carley, A; Hansen, T.; Tessonnier, J.; Su, D.; Teschner, D; Vass, E.; Knop-Gericke, A.; Schlögl, R.; Gladden, L.

    2010-01-01

    The catalytic dehydrogenation (DH) and oxidative dehydrogenation (ODH) of light alkanes are of significant industrial importance. In this work both carbonaceous materials deposited on VOx/Al2O3 catalysts during reaction and unsupported carbon nanofibres (CNFs) are shown to be active for the dehydrogenation of butane in the absence of gas-phase oxygen. Their activity in these reactions is shown to be dependent upon their structure, with different reaction temperatures yielding structurally dif...

  17. Biomass-derived carbonaceous materials as components in wood briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, S.; Koch, C.; Stadlbauer, E.A.; Scheer, J. [Univ. of Applied Sciences, THM Campus Giessen, Giessen (Germany); Weber, B. [Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM), Coyoacan (Mexico); Strohal, U.; Fey, J. [Strohal Anlagenbau, Staufenberg (Germany)

    2012-11-01

    The present paper describes a briquette composed of a substantial amount of wooden biomass and up to 35% of carbonaceous materials derived from biogenic residues. The cellulosic component may be a mixture of any wooden residue. Suitable substrates for the carbonaceous fraction are vegetation wastes from land management or agriculture. Depending on physical and chemical nature of the substrate, Hydrothermal Carbonisation (HTC) or Low Temperature Conversion (LTC) may be used to produce the carbonaceous part of the briquette. HTC turns wet biomass at temperatures around 200 deg C in an autoclave into lignite whereas LTC treatment at 400 deg C and atmospheric pressure produces black coal. This is manifested by a molar ratio of 0.1 {<=} H/C (LTC) {<=} 0.7; 0.05{<=} O/C (LTC) {<=} 0.4 and 0.7 < H/C (HTC) <1.5 ; 0.2< O/C (HTC) < 0.5. Solid state {sup 13}C-NMR confirms these findings showing a strong absorption band for sp{sup 2}-hybridized carbon atoms at chemical shifts of 100 ppm und 165 ppm for LTC biochar. Depending on the substrate, HTC gives rise to an increase in the specific calorific value (MJ/kg) by a factor of {Psi} {approx} 1.2 - 1.4; LTC by 1.5 - 1.8. In addition ash melting points are significantly increased; in case of wheat straw by about 200 deg C. Compacted products may have a cylindrical or rectangular profile.

  18. Lithium storage into carbonaceous materials obtained from sugarcane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Elaine Y.; Lala, Stella M.; Rosolen, Jose Mauricio, E-mail: rosolen@ffclrp.usp.b [University of Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Dept. of Chemistry

    2010-07-01

    Carbonaceous materials with different structures are prepared by carbonization of sugarcane bagasse. Depending on carbonization conditions, it is possible to obtain soot rich in flakes or in honeycomb-shaped micrometric particles, whose concentration has large influence on lithium storage into electrodes. The soot rich in honeycomb-shaped particles provides the best electrochemical performance, with a reversible specific capacity of 310 mAh g{sup -1}. The results suggest that the sugarcane bagasse can be potentially used in the design of anodic materials for lithium ion batteries. (author)

  19. Lithium storage into carbonaceous materials obtained from sugarcane bagasse

    International Nuclear Information System (INIS)

    Carbonaceous materials with different structures are prepared by carbonization of sugarcane bagasse. Depending on carbonization conditions, it is possible to obtain soot rich in flakes or in honeycomb-shaped micrometric particles, whose concentration has large influence on lithium storage into electrodes. The soot rich in honeycomb-shaped particles provides the best electrochemical performance, with a reversible specific capacity of 310 mAh g-1. The results suggest that the sugarcane bagasse can be potentially used in the design of anodic materials for lithium ion batteries. (author)

  20. Delivery of Dark Material to Vesta via Carbonaceous Chondritic Impacts

    CERN Document Server

    Reddy, Vishnu; O'Brien, David P; Nathues, Andreas; Cloutis, Edward A; Durda, Daniel D; Bottke, William F; Bhatt, Megha U; Nesvorny, David; Buczkowski, Debra; Scully, Jennifer E C; Palmer, Elizabeth M; Sierks, Holger; Mann, Paul J; Becker, Kris J; Beck, Andrew W; Mittlefehldt, David; Li, Jian-Yang; Gaskell, Robert; Russell, Christopher T; Gaffey, Michael J; McSween, Harry Y; McCord, Thomas B; Combe, Jean-Philippe; Blewett, David

    2012-01-01

    NASA's Dawn spacecraft observations of asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 {\\mu}m filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as dark spots (likely secondary impacts) nearby impact craters. This DM could be a relic of ancient volcanic activity or exogenic in origin. We report that the majority of the spectra of DM are similar to carbonaceous chondrite meteorites mixed with materials indigenous to Vesta. Using high-resolution seven color images we compared DM color properties (albedo, band depth) with laboratory measurements of possible analog materials. Band depth and albedo of DM are identical to those of carbonaceous chondrite xenolith-rich howar...

  1. Screening of carbonaceous nanoporous materials for capture of nerve agents.

    Science.gov (United States)

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Neimark, Alexander V

    2013-01-01

    A strategy for combined experimental and computational screening of candidate carbonaceous materials for capturing highly volatile nerve agents at ambient temperature using physisorption. Based on theoretical calculations of Henry constants and zero-coverage adsorption enthalpies for sarin and DMMP (its common stimulant) adsorbed in model slit-shaped carbon pores at 298 K, we found the following. Slit-shaped carbon pores with pore width ~0.5 nm are optimal for agent adsorption due to strong confinement of adsorbed molecules. Agent adsorption enthalpy at zero coverage computed for optimal pore width is very high and reaches ~83 kJ mol(-1). Widening of pore width above ~1 nm results in a significant decrease of the Henry constant and zero-coverage adsorption enthalpy (~44 kJ mol(-1)). Polydispersity of studied candidate carbonaceous materials strongly affects adsorption capacity for DMMP under the operating conditions. The optimal carbonaceous adsorbent, pitch-based P7 activated carbon fiber, adsorbed ~100 μg g(-1) DMMP at 0.03 μg m(-3). Commercial Norit activated carbon adsorbed only ~20 μg g(-1) DMMP at 0.03 μg m(-3). Surprisingly, a small shift of the pore size distribution towards wider micropores has a great impact on agent adsorption. Because the adsorption enthalpies computed at zero coverage weakly dependent on pore size, the heat released during agent adsorption is similar for all studied candidate adsorbents (i.e.~55-60 kJ mol(-1)). PMID:23165364

  2. Origins of interstellar and solar system: Carbonaceous materials

    Science.gov (United States)

    Feigelson, Eric D.

    1994-10-01

    Carbon is a crucial atom in cosmochemistry. It is well-established that carbon is synthesized in stellar interiors after the main sequence, is ejected by red giants as small carbonaceous grains during their 'carbon star' phase, resides in the interstellar medium, and was later incorporated into the solar system. The mechanisms of carbon grain formation and later chemical processing are complex because, with only small thermodynamic differences, carbon can take on a bewildering variety of forms: diamond; oxides; carbides; graphite; aliphatic hydrocarbons; polycyclic aromatic hydrocarbons (PAH's); fullerenes; amorphous carbon; and other compounds. These are evidence for many of the forms of carbon found in astronomical observations. We seek to understand the possible astrophysical sites and conditions of the origins of different forms of carbon by combining state-of-the-art capabilities of carbon chemistry with astrophysical modeling. The work is a collaboration between Prof. Frenklach, a leading carbon materials scientist with both laboratory and computer modeling expertise and Prof. Feigelson, an astrophysicist with interests in star formation. The largest effort under this grant was devoted to developing this concept into a comprehensive quantitative model. In addition to explaining the astronomical properties of red giants producing carbonaceous grains, our model also can incorporate recent meteoritic findings. Finally, our induced nucleation grain formation model provides a natural explanation for the widespread presence of PAH emission bands in the Galactic interstellar medium. A brief synopsis of other activities sponsored under this grant and a list of publications from this grant is included.

  3. Nanoparticulate materials and regulatory policy in Europe: An analysis of stakeholder perspectives

    International Nuclear Information System (INIS)

    The novel properties of nanoparticulate materials (NPM) and the rapid development of NPM based products have raised many unanswered questions and concerns by different stakeholders over its consequences for the environment and human health. These concerns have led to an increasing discussion in both the US and Europe about possible regulatory policies for NPM. In this article a comparative study of stakeholders' perceptions on regulatory policy issues with NPM in Europe is presented. It was found that industry wants to regulate this area if the scientific evidence demonstrates that NPM are harmful, but also that the regulatory bodies do not find it necessary at this point of time to regulate until scientific evidence demonstrates that NPM are harmful. This research therefore shows that there will most likely not be any regulatory interventions until there is an established and convincing scientific knowledge base demonstrating that NPM can be hazardous. It is furthermore discussed in this article the different roles and responsibilities of the stakeholders in financing the research required to establish the necessary level of fundamental scientific evidence. It was also found that the activity of the regulatory bodies on this issue differ between the European countries

  4. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical frameworks are developed from the rigor of thermodynamic property surfaces of a single component adsorbate-adsorbent system and by incorporating the micropore filling theory approach, where the effect of adsorbed phase volume is considered. The abovementioned thermodynamic properties are quantitatively evaluated from the experimental uptake data for methane adsorption onto activated carbons such as Maxsorb III at temperatures ranging from 120 to 350 K and pressures up to 25 bar. Employing the proposed thermodynamic approaches, this paper shows the thermodynamic maps of the charge and discharge processes of adsorbed natural gas (ANG) storage system for understanding the behaviors of natural gas in ANG vessel. © 2011 Elsevier Ltd. All rights reserved.

  5. High and rapid alkali cation storage in ultramicroporous carbonaceous materials

    Science.gov (United States)

    Yun, Young Soo; Lee, Seulbee; Kim, Na Rae; Kang, Minjee; Leal, Cecilia; Park, Kyu-Young; Kang, Kisuk; Jin, Hyoung-Joon

    2016-05-01

    To achieve better supercapacitor performance, efforts have focused on increasing the specific surface area of electrode materials to obtain higher energy and power density. The control of pores in these materials is one of the most effective ways to increase the surface area. However, when the size of pores decreases to a sub-nanometer regime, it becomes difficult to apply the conventional parallel-plate capacitor model because the charge separation distance (d-value) of the electrical double layer has a similar length scale. In this study, ultramicroporous carbonaceous materials (UCMs) containing sub-nanometer-scale pores are fabricated using a simple in situ carbonization/activation of cellulose-based compounds containing potassium. The results show that alkali cations act as charge carriers in the ultramicropores (<0.7 nm), and these materials can deliver high capacitances of ∼300 F g-1 at 0.5 A g-1 and 130 F g-1, even at a high current rate of 65 A g-1 in an aqueous medium. In addition, the UCM-based symmetric supercapacitors are stable over 10,000 cycles and have a high energy and power densities of 8.4 Wh kg-1 and 15,000 W kg-1, respectively. This study provides a better understanding of the effects of ultramicropores in alkali cation storage.

  6. Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment.

    Science.gov (United States)

    Hirata, Mizuho; Kawasaki, Naohito; Nakamura, Takeo; Matsumoto, Kazuoki; Kabayama, Mineaki; Tamura, Takamichi; Tanada, Seiki

    2002-10-01

    Organic wastes have been burned for reclamation. However, they have to be recycled and reused for industrial sustainable development. Carbonaceous materials were produced from coffee grounds by microwave treatment. There are many phenolic hydroxyl and carboxyl groups on the surface of carbonaceous materials. The base consumption of the carbonaceous materials was larger than that of the commercially activated carbon. The carbonaceous materials produced from coffee grounds were applied to the adsorbates for the removal of basic dyes (methylene blue and gentian violet) in wastewater. This result indicated that the adsorption of dyes depended upon the surface polar groups on the carbonaceous materials. Moreover, the Freundlich constants of isotherms for the adsorption of methylene blue and gentian violet onto the carbonaceous materials produced from coffee grounds were greater than those for adsorption onto activated carbon or ceramic activated carbon. The interaction was greatest between the surface or porosity of the carbonaceous materials and methylene blue and gentian violet. The microwave treatment would be useful for the carbonization of organic wastes to save energy. PMID:12702420

  7. Pressure gradient passivation of carbonaceous material normally susceptible to spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.

    2002-01-29

    This invention is a process for the passivation or deactivation with respect to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.

  8. Pressure Gradient Passivation of Carbonaceous Material Normally Susceptible to Spontaneous Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, Thomas L.; Sands, William D.; Schroeder, Karl; Summers, Cathy A.; Utz, Bruce R.

    1999-07-15

    This invention is a process for the passivation or deactivation with respect to oxygen of a carbonaceous material by the exposure of the carbonaceous material to an oxygenated gas in which the oxygenated gas pressure is increased from a first pressure to a second pressure and then the pressure is changed to a third pressure. Preferably a cyclic process which comprises exposing the carbonaceous material to the gas at low pressure and increasing the pressure to a second higher pressure and then returning the pressure to a lower pressure is used. The cycle is repeated at least twice wherein the higher pressure may be increased after a selected number of cycles.

  9. Analyses and characterization of fossil carbonaceous materials for silicon production

    Energy Technology Data Exchange (ETDEWEB)

    Myrvaagnes, Viktor

    2008-01-15

    Production of high silicon alloys is carried out in submerged arc furnaces by reduction of silicon bearing oxides (typically quartz) with carbon materials. Carbonaceous materials like coal, coke, charcoal and woodchips are commonly used as reduction materials in the process. Primarily based on historical prices of charcoal compared to fossil reduction materials, the Norwegian Ferroalloy Industry has mostly been using coal and coke (char) as the source of carbon. From a process point of view, the most important role of the carbonaceous material is to react with SiO gas to produce SiC. The ability of the reduction materials to react with SiO gas can be measured and the value is recognized as the reactivity of the carbon source. Reactivity is one of the most important parameters in the smelting process and is commonly acknowledged to strongly affect both productivity and specific energy consumption. The main objectives of this work has been to establish methods to characterize the material properties of fossil carbonaceous reduction materials used in the silicon process and to evaluated how these properties affect the reactivity towards SiO gas. In order to accomplish these objectives, three run of mine (ROM) single seam coals which are particularly well suited for ferroalloy production were selected. Two Carboniferous coals from USA (Blue Gem) and Poland (Staszic) with similar rank, but significantly different composition as well as a Permian coal from Australia (Peak Downs) have been characterized by chemical- and petrographical methods. Blue Gem is a homogeneous coal, low in mineral inclusions and macerals of the inertinite group and determined to have a random vitrinite reflectance of 0.71 %. Staszic has a similar reflectance of vitrinite (0.72 %), but is determined to be a very inhomogeneous coal with both inertinite macerals and minerals embedded in the vitrinite matrix. Peak Downs has a random reflectance of vitrinite of 1.32 % and is hence the coal sample of

  10. Analytical Electron Microscopy for Characterization of Fluid or Semi-Solid Multiphase Systems Containing Nanoparticulate Material

    OpenAIRE

    Nadejda B. Matsko; Claudia Valenta; Victoria Klang

    2013-01-01

    The analysis of nanomaterials in pharmaceutical or cosmetic preparations is an important aspect both in formulation development and quality control of marketed products. Despite the increased popularity of nanoparticulate compounds especially in dermal preparations such as emulsions, methods and protocols of analysis for the characterization of such systems are scarce. This work combines an original sample preparation procedure along with different methods of analytical electron microscopy fo...

  11. Composition of carbonaceous material that can be obtained by carbonisation of a clay-supported biopolymer

    OpenAIRE

    Ruiz-Hitzky, Eduardo; Moreira Martins Fernandes, Francisco Miguel

    2011-01-01

    [EN] The invention relates to a composition of carbonaceous material, characterised in that it comprises carbonaceous material supported on clay, said clay preferably being of the laminar type, such as montmorillonite, saponite, beidellite, stevensite, illite and combinations thereof, or a fibrous clay, such as sepiolite, palygorskite and combinations thereof. Said composition can be obtained by means of the carbonisation treatment of at least one biopolymer, such as chitosan, alginate, pecti...

  12. Fullerenes in asphaltenes and other carbonaceous materials: natural constituents or laser artifacts.

    Science.gov (United States)

    Santos, Vanessa G; Fasciotti, Maíra; Pudenzi, Marcos A; Klitzke, Clécio F; Nascimento, Heliara L; Pereira, Rosana C L; Bastos, Wagner L; Eberlin, Marcos N

    2016-04-25

    The presence of fullerenes as natural constituents of carbonaceous materials or their formation as laser artifacts during laser desorption ionization (LDI) mass spectrometry (MS) analysis is reinvestigated and reviewed. The results using asphaltene samples with varying composition as well as standard polycyclic aromatic hydrocarbons (PAH) and fullerene samples as models have demonstrated that indeed Cn ring fullerenes are not natural constituents but they are formed as common and often as predominant artifacts upon laser radiation, and a series of incorrect assignments based on LDI-MS data of several carbonaceous materials seems unfortunately to have been made. When the present results are evaluated also in the light of the vast literature on LDI-MS of carbonaceous materials, the formation of fullerene artifacts seems particularly common for LDI-MS analysis of asphaltenes and other carbonaceous samples with considerably high levels of PAH and varies according to the type of laser used, and the intensity of the laser beam. PMID:26805430

  13. Preparation and characterization of a new carbonaceous material for electrochemical systems

    Directory of Open Access Journals (Sweden)

    ZI JI LIN

    2010-02-01

    Full Text Available A new carbonaceous material was successfully prepared by the py-rolysis of scrap tire rubber at 600 °C under a nitrogen atmosphere. The physical characteristics of the prepared carbonaceous material were studied by scanning electron microscopy (SEM, X-ray powder diffraction (XRD and X-ray photoelectron spectroscopy (XPS. It was proved that the carbonaceous material had a disordered structure and spherical morphology with an average particle size about 100 nm. The prepared carbonaceous material was also used as electrodes in electrochemical systems to examine its electrochemical performances. It was demonstrated that it delivered a lithium insertion capacity of 658 mA h g-1 during the first cycle with a coulombic efficiency of 68 %. Cyclic voltammograms test results showed that a redox reaction occurred during the cycles. The chemical diffusion coefficient based on the impedance diagram was about 10-10 cm2 s-1. The pyrolytic carbonaceous material derived from scrap tire rubber is therefore considered to be a potential anode material in lithium secondary batteries or capacitors. Furthermore, it is advantageous for environmental protection.

  14. Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries.

    Science.gov (United States)

    Fan, Ling; Lu, Bingan

    2016-05-01

    Carbonaceous materials as anodes usually exhibit low capacity for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Oxygen-doped carbonaceous materials have the potential of high capacity and super rate performance. However, up to now, the reported oxygen-doped carbonaceous materials usually exhibit inferior electrochemical performance. To overcome this problem, a high reactive oxygen-doped 3D interdigital porous carbonaceous material is designed and synthesized through epitaxial growth method and used as anodes for LIBs and SIBs. It delivers high reversible capacity, super rate performance, and long cycling stability (473 mA h g(-1) after 500 cycles for LIBs and 223 mA h g(-1) after 1200 cycles for SIBs, respectively, at the current density of 1000 mA g(-1) ), with a capacity decay of 0.0214% per cycle for LIBs and 0.0155% per cycle for SIBs. The results demonstrate that constructing 3D interdigital porous structure with reactive oxygen functional groups can significantly enhance the electrochemical performance of oxygen-doped carbonaceous material. PMID:27061155

  15. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  16. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    Science.gov (United States)

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. PMID:23856402

  17. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  18. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging.

    Science.gov (United States)

    Mulder, Willem J M; Strijkers, Gustav J; van Tilborg, Geralda A F; Cormode, David P; Fayad, Zahi A; Nicolay, Klaas

    2009-07-21

    Modern medicine has greatly benefited from recent dramatic improvements in imaging techniques. The observation of physiological events through interactions manipulated at the molecular level offers unique insight into the function (and dysfunction) of the living organism. The tremendous advances in the development of nanoparticulate molecular imaging agents over the past decade have made it possible to noninvasively image the specificity, pharmacokinetic profiles, biodistribution, and therapeutic efficacy of many novel compounds. Several types of nanoparticles have demonstrated utility for biomedical purposes, including inorganic nanocrystals, such as iron oxide, gold, and quantum dots. Moreover, natural nanoparticles, such as viruses, lipoproteins, or apoferritin, as well as hybrid nanostructures composed of inorganic and natural nanoparticles, have been applied broadly. However, among the most investigated nanoparticle platforms for biomedical purposes are lipidic aggregates, such as liposomal nanoparticles, micelles, and microemulsions. Their relative ease of preparation and functionalization, as well as the ready synthetic ability to combine multiple amphiphilic moieties, are the most important reasons for their popularity. Lipid-based nanoparticle platforms allow the inclusion of a variety of imaging agents, ranging from fluorescent molecules to chelated metals and nanocrystals. In recent years, we have created a variety of multifunctional lipid-based nanoparticles for molecular imaging; many are capable of being used with more than one imaging technique (that is, with multimodal imaging ability). These nanoparticles differ in size, morphology, and specificity for biological markers. In this Account, we discuss the development and characterization of five different particles: liposomes, micelles, nanocrystal micelles, lipid-coated silica, and nanocrystal high-density lipoprotein (HDL). We also demonstrate their application for multimodal molecular imaging

  19. Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants

    OpenAIRE

    Constantin Apetrei; Maria Luz Rodriguez-Mendez; Jose Antonio De Saja; Irina Mirela Apetrei

    2011-01-01

    This work describes the sensing properties of carbon paste electrodes (CPEs) prepared from three different types of carbonaceous materials: graphite, carbon microspheres and carbon nanotubes. The electrochemical responses towards antioxidants including vanillic acid, catechol, gallic acid, L-ascorbic acid and L-glutathione have been analyzed and compared. It has been demonstrated that the electrodes based on carbon microspheres show the best performances in terms of kinetics and stability, wh...

  20. Key parameters when developing carbonaceous materials for catalytic wet peroxide oxidation

    OpenAIRE

    Ribeiro, Rui; Silva, Adrián; Pastrana-Martínez, Luisa; Figueiredo, José; Faria, Joaquim; Gomes, Helder

    2014-01-01

    Catalytic wet peroxide oxidation (CWPO) is an advanced oxidation process, operated using simple equipment and mild operating conditians, in which highly oxidizing hydraxyl radicaIs (HO') are generated fram the catalytic decompasition af hydrogen peroxide (H,O,) [L 2). Sinee the report of Lüeking el ai. in 1998 [3], the develapment af suitab-Ie -carbonaceous materials (without any added metal phase) for CWPO has been intensively explored [4). lhe influenee of struetUfal and surr...

  1. Raman Spectroscopy of Carbonaceous Materials geothermometry: a reliable method to investigate thermal history of foreland basins.

    OpenAIRE

    Lahfid, Abdeltif; Lacroix, Brice; Hoareau, Guilhem; Delchini, Sylvain; Bourrat, Xavier

    2014-01-01

    To investigate the thermal evolu-tion of foreland basins, many classical methods includ-ing clay mineralogy, vitrinite reflectance, fluid inclu-sions and illite cristalinity are used. These methods are probably not perfectly reliable taken individually, but provides a robust estimate when they give a coherent results. Raman Spectroscopy of Carbonaceous Materials (RSCM) could be an alternative method to constrain paleotempeartures of rocks. This method has been calibrated firstly in the range ...

  2. Delivery of Dark Material to Vesta via Carbonaceous Chondritic Impacts

    OpenAIRE

    Reddy, Vishnu; Corre, Lucille Le; O'Brien, David P.; Nathues, Andreas; Cloutis, Edward A.; Durda, Daniel D.; Bottke, William F.; Bhatt, Megha U.; Nesvorny, David; Buczkowski, Debra; Scully, Jennifer E. C.; Palmer, Elizabeth M.; Sierks, Holger; Mann, Paul J.; Becker, Kris J.

    2012-01-01

    NASA's Dawn spacecraft observations of asteroid (4) Vesta reveal a surface with the highest albedo and color variation of any asteroid we have observed so far. Terrains rich in low albedo dark material (DM) have been identified using Dawn Framing Camera (FC) 0.75 {\\mu}m filter images in several geologic settings: associated with impact craters (in the ejecta blanket material and/or on the crater walls and rims); as flow-like deposits or rays commonly associated with topographic highs; and as ...

  3. Low extraction recovery of fullerene from carbonaceous geological materials spiked with C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Jehlicka, J.; Frank, O.; Hamplova, V.; Pokorna, Z.; Juha, L.; Bohacek, Z.; Weishauptova, Z. [Charles University, Prague (Czech Republic). Inst. for Geochemical Mineral & Mineral Resources

    2005-08-01

    Soxhlet extraction, sonication, and ultracritical extraction were tested with respect to their capacity to extract fullerenes from natural carbonaceous materials. Toluene solutions with various contents of synthetic C{sub 60} were added to powdered graphite, shungite, bituminous coal, and quartz, with final C{sub 60} concentration 0.1-100 ppm. The C{sub 60}-doped materials were leached in three kinds of extraction apparatus. High-performance liquid chromatography (HPLC) was used to analyse the fullerene content in the obtained toluene extracts. Surprisingly low yields of the C{sub 60} extraction (most of them well below 5%) were determined for all the carbonaceous matrices and all the extraction techniques employed in the fullerene isolation. This finding has serious consequences for better understanding of the reported fullerene occurrence in the geological environment, because a greatly limited extraction yield can be responsible for some negative results of fullerene analyses in various geological samples. Both fullerene stability in solvents and fullerene interaction with the surfaces of geological carbonaceous matrices are discussed to explain the obtained results.

  4. EPR and magnetism of the nanostructured natural carbonaceous material shungite

    Science.gov (United States)

    Augustyniak-Jabłokow, Maria Aldona; Yablokov, Yurii V.; Andrzejewski, Bartłomiej; Kempiński, Wojciech; Łoś, Szymon; Tadyszak, Krzysztof; Yablokov, Mikhail Y.; Zhikharev, Valentin A.

    2010-04-01

    The X-band EPR and magnetic susceptibility in the temperature range 4.2-300 K study of the shungite-I, natural nanostructured material from the deposit of Shunga are reported. Obtained results allow us to assign the EPR signal to conduction electrons, estimate their number, N P, and evaluate the Pauli paramagnetism contribution to shungite susceptibility. A small occupation (~5%) of the localized nonbonding π states in the zigzag edges of the open-ended graphene-like layers and/or on σ ( sp 2+ x ) orbitals in the curved parts of the shungite globules has been also revealed. The observed temperature dependence of the EPR linewidth can be explained by the earlier considered interaction of conduction π electrons with local phonon modes associated with the vibration of peripheral carbon atoms of the open zigzag-type edges and with peripheral carbon atoms cross-linking different nanostructures. The relaxation time T 2 and diffusion time T D are found to have comparable values (2.84 × 10-8 and 1.73 × 10-8 s at 5.2 K, respectively), and similar dependence on temperature. The magnetic measurements have revealed the suppression of orbital diamagnetism due to small amount of large enough fragments of the graphene layers.

  5. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  6. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material

    International Nuclear Information System (INIS)

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na+ and Fe3+ solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous material, and

  7. Nitrogen-Doped Carbonaceous Materials for Removal of Phenol from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Magdalena Hofman

    2012-01-01

    Full Text Available Carbonaceous material (brown coal modified by pyrolysis, activation, and enrichment in nitrogen, with two different factor reagents, have been used as adsorbent of phenol from liquid phase. Changes in the phenol content in the test solutions were monitored after subsequent intervals of adsorption with selected adsorbents prepared from organic materials. Significant effect of nitrogen present in the adsorbent material on its adsorption capacity was noted. Sorption capacity of these selected materials was found to depend on the time of use, their surface area, and pore distribution. A conformation to the most well-known adsorption isotherm models, Langmuir, and Freundlich ones, confirms the formation of mono- and heterolayer solute (phenol coverage on the surface of the adsorbent applied herein. The materials proposed as adsorbents of the aqueous solution contaminants were proved effective, which means that the waste materials considered are promising activated carbon precursors for liquid phase adsorbents for the environmental protection.

  8. Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge

    International Nuclear Information System (INIS)

    Indigo carmine removal from aqueous solution has been evaluated using Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge treated with HCl (CM). The adsorbents were characterized by scanning electron microscopy, BET surface area and X-ray diffraction. Sorption kinetics and isotherms were determined and the adsorption behaviors analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results obtained with the Fe-zeolitic material, while kinetic first order and Langmuir-Freundlich models were applied to the results from the carbonaceous materials. This indicates mechanisms of chemisorption and physic sorption, respectively, on the heterogeneous materials. The results indicate that the carbonaceous material from the pyrolysis of sewage sludge (sorption capacity 92.83 mg/g) is a better adsorbent of indigo carmine than the zeolitic material (sorption capacity 32.83 mg/g).

  9. Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Segura, E. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan s/n., C.P. 50000 Toluca (Mexico); Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico); Solache-Rios, M., E-mail: marcos.solache@inin.gob.mx [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico); Colin-Cruz, A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Paseo Colon y Tollocan s/n., C.P. 50000 Toluca (Mexico)

    2009-10-30

    Indigo carmine removal from aqueous solution has been evaluated using Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge treated with HCl (CM). The adsorbents were characterized by scanning electron microscopy, BET surface area and X-ray diffraction. Sorption kinetics and isotherms were determined and the adsorption behaviors analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results obtained with the Fe-zeolitic material, while kinetic first order and Langmuir-Freundlich models were applied to the results from the carbonaceous materials. This indicates mechanisms of chemisorption and physic sorption, respectively, on the heterogeneous materials. The results indicate that the carbonaceous material from the pyrolysis of sewage sludge (sorption capacity 92.83 mg/g) is a better adsorbent of indigo carmine than the zeolitic material (sorption capacity 32.83 mg/g).

  10. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    Directory of Open Access Journals (Sweden)

    Ana Arenillas

    2013-10-01

    Full Text Available Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar and capacities (>2 mmol·g−1 at 273 K. Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes.

  11. Origin and formation of carbonaceous material veins in the 2008 Wenchuan earthquake fault zone

    Science.gov (United States)

    Liu, Jiang; Li, Haibing; Zhang, Jinjiang; Zhang, Bo

    2016-02-01

    This paper establishes a reference data set of carbonaceous materials (CMs) from the active fault zone of the Longmen Shan fault belt that ruptured in the 2008 Mw7.9 Wenchuan earthquake and presents an application of these data for studies of both other exhumed carbonaceous-rich fault zones and deep-drilling cores. The CMs distributed in the active fault zone are found as narrow veins and located along the slip surfaces. Microstructural observation shows that the carbonaceous material veins (CMVs) are located along slip surfaces in the fault gouge zones. Some CMVs have a cataclastic fabric, and their branches intrude into voids around the slip surfaces. Raman spectra of the CMVs show a wide (full width at half maximum >200 cm-1) D-peak at ~1345 cm-1 (defect peak), which is much lower than the O-peak at ~1595 cm-1 (ordered peak), indicating a metamorphic temperature of zeolite facies or lower than 250 °C. In addition, the stable carbon isotopic compositions (δ13C values) of the CMVs, ranging from -23.4 to -26.4‰, are very similar to that of the kerogen collected from the Late Triassic Xujiahe Formation in Sichuan Basin. Given the data at which it may be formed, the Xujiahe Formation is the most likely origin of CMs for the CMVs, and it seems that some CMVs in the fault zone were crushed and intruded into the voids during coseismic events, possibly driven by an enhanced pore fluid pressure. Since graphitization is suggested as an indicator of transient frictional heating in this area, our study providing a reference data set of CMs would help future CM-rich fault-zone research to retrieve seismic signatures presumably occurring in the Longmen Shan fault zone belt.

  12. Characterization of the carbonaceous materials obtained from different agro-industrial wastes.

    Science.gov (United States)

    Ensuncho-Muñoz, A E; Carriazo, J G

    2015-01-01

    This paper reports the preparation and characterization of carbonaceous materials obtained from three types of vegetable wastes provided by agricultural industries. Soft carbonization (280°C) and H3PO4-activation procedures were used to convert the agricultural wastes to carbon powders with high adsorbent capacities. This process is excellent for eliminating and exploiting the huge masses (many tons) of vegetable residues remaining after each harvest every year in several Colombian agro-industries. The powders were characterized by X-ray diffraction (XRD), IR spectroscopy, scanning electron microscopy (SEM), and N2-adsorption isotherms. XRD and IR verified the formation of carbons, and SEM showed small particles (20-500 µm) with characteristic morphology for each type of residue used and abundant cavities of different sizes. The N2-adsorption analyses showed that the carbons had high adsorption capacities with important surface area values and large pore volumes. The use of the activated carbonaceous materials as adsorbent of azo dyes (allura red and sunset yellow) from aqueous solutions was evaluated. The results showed a good adsorption capacity indicating the potentiality of these materials as pollutant adsorbents in food industry wastewaters. These results indicate that these powders can be used as potential adsorbents for different gaseous or liquid pollutants. PMID:25189634

  13. Spectral parameters for Dawn FC color data: Carbonaceous chondrites and aqueous alteration products as potential cerean analog materials

    Science.gov (United States)

    Schäfer, Tanja; Nathues, Andreas; Mengel, Kurt; Izawa, Matthew R. M.; Cloutis, Edward A.; Schäfer, Michael; Hoffmann, Martin

    2016-02-01

    We identified a set of spectral parameters based on Dawn Framing Camera (FC) bandpasses, covering the wavelength range 0.4-1.0 μm, for mineralogical mapping of potential chondritic material and aqueous alteration products on dwarf planet Ceres. Our parameters are inferred from laboratory spectra of well-described and clearly classified carbonaceous chondrites representative for a dark component. We additionally investigated the FC signatures of candidate bright materials including carbonates, sulfates and hydroxide (brucite), which can possibly be exposed on the cerean surface by impact craters or plume activity. Several materials mineralogically related to carbonaceous chondrites, including pure ferromagnesian phyllosilicates, and serpentinites were also investigated. We tested the potential of the derived FC parameters for distinguishing between different carbonaceous chondritic materials, and between other plausible cerean surface materials. We found that the major carbonaceous chondrite groups (CM, CO, CV, CK, and CR) are distinguishable using the FC filter ratios 0.56/0.44 μm and 0.83/0.97 μm. The absorption bands of Fe-bearing phyllosilicates at 0.7 and 0.9 μm in terrestrial samples and CM carbonaceous chondrites can be detected by a combination of FC band parameters using the filters at 0.65, 0.75, 0.83, 0.92 and 0.97 μm. This set of parameters serves as a basis to identify and distinguish different lithologies on the cerean surface by FC multispectral data.

  14. A new star(ch is born: Starbons as biomass-derived mesoporous carbonaceous materials

    Directory of Open Access Journals (Sweden)

    P.S. Shuttleworth

    2012-06-01

    Full Text Available Porous carbon materials are present in a wide rangeof technologically important applications, includingseparation science, heterogeneous catalyst supports,water purification filters, stationary phase materials,as well as the developing future areas of energygeneration and storage applications. Hard templateroutes to ordered mesoporous carbons are wellestablished, but whilst offering different mesoscopictextural phases, the surface of the material is difficultto chemically post-modify and processing is energy,resource and step intensive. The production of carbonmaterials from biomass (i.e. sugars orpolysaccharides is a relatively new but rapidlyexpanding research area. In this manuscript, wedescribe the preparation, properties and applicationsof a novel family of polysaccharide-derivedmesoporous carbonaceous materials derived fromrenewable resources (namely polysaccharidesdenoted as Starbons®.

  15. Sorption / desorption hysteresis of non-polar organic compounds in carbonaceous materials

    Science.gov (United States)

    Wang, G.; Kleineidam, S.; Grathwohl, P.

    2003-04-01

    Natural and thermally-altered carbonaceous materials (coals, charcoal, cokes) are nowadays found in many soil and sediment samples due to anthropogenic impact (e.g. industrial activities, traffic) to the natural environment. The sorption -- desorption characteristics of hydrophobic organic compounds on that type of geosorbents play an important role in contaminant fate and transport and are yet not precisely known. Contaminant transport and bioavailibility models often assume complete sorption reversibility. In this study, a series of desorption steps using the ASE (accelerated solvent extractor) with water at different temperatures were carried out to determine the desorption enthalpy and to study hysteresis phenomena. The initial natural loading of PAHs onto the geosorbents was determined by solvent extraction (acetone and toluene). The background loading is in the order of 0.8 mg kg-1 -- 102 mg kg-1 for the natural coals and in the order of 0.16 mg kg-1 -- 10 mg kg-1 for the thermally altered coals. The results are compared to kinetic and equilibrium data from laboratory experiments on sorptive uptake of the phenanthrene onto the same carbonaceous samples.

  16. Kocite /sup R/ materials for electrocatalysts novel approach to carbonaceous supports

    International Nuclear Information System (INIS)

    Kocite materials are composite structures of a thin film semiconducting pyropolymer chemically bonded to the surface of a high-surface-area alumina support. For use in H3PO4 fuel cells, the alumina substrate is leached from the composite structure leaving a high-surface-area carbonaceous support, which is then impregnated with catalytically active materials. With process modification, alterations of the pore structure or pyropolymer structure of these supports can be achieved, producing different types of Kocite electrocatalysts. In this paper, the preparation, characterization and testing of such Kocite electrocatalysts will be reviewed, including results on support corrosion, catalytic metal agglomeration during electrocatalyst aging and the performance in model H3PO4 fuel cells

  17. Comparison of Ablation Predictions for Carbonaceous Materials Using CEA and JANAF-Based Species Thermodynamics

    Science.gov (United States)

    Milos, Frank S.

    2011-01-01

    In most previous work at NASA Ames Research Center, ablation predictions for carbonaceous materials were obtained using a species thermodynamics database developed by Aerotherm Corporation. This database is derived mostly from the JANAF thermochemical tables. However, the CEA thermodynamics database, also used by NASA, is considered more up to date. In this work, the FIAT code was modified to use CEA-based curve fits for species thermodynamics, then analyses using both the JANAF and CEA thermodynamics were performed for carbon and carbon phenolic materials over a range of test conditions. The ablation predictions are comparable at lower heat fluxes where the dominant mechanism is carbon oxidation. However, the predictions begin to diverge in the sublimation regime, with the CEA model predicting lower recession. The disagreement is more significant for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate.

  18. Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants

    Directory of Open Access Journals (Sweden)

    Constantin Apetrei

    2011-01-01

    Full Text Available This work describes the sensing properties of carbon paste electrodes (CPEs prepared from three different types of carbonaceous materials: graphite, carbon microspheres and carbon nanotubes. The electrochemical responses towards antioxidants including vanillic acid, catechol, gallic acid, L-ascorbic acid and L-glutathione have been analyzed and compared. It has been demonstrated that the electrodes based on carbon microspheres show the best performances in terms of kinetics and stability, whereas G-CPEs presented the smallest detection limit for all the antioxidants analyzed. An array of electrodes has been constructed using the three types of electrodes. As demonstrated by means of Principal Component Analysis, the system is able to discriminate among antioxidants as a function of their chemical structure and reactivity.

  19. Reaction between Steel-Making Slag and Carbonaceous Materials While Mixing with High Density Polyethylene

    Science.gov (United States)

    Hong, Lan; Sahajwalla, Veena

    2016-01-01

    Since the beginning of the extensive applications in numerous high temperature processes such as iron- and steel-making, coke-making etc. partly in the place of coke, the investigation into the reaction mechanism of waste plastics has become increasingly necessary. In this paper a fundamental study on the behavior of a typical component of waste plastics, high density polyethylene (HDPE), in a mixture with coke at a 1:1 ratio in mass base was conducted during the reaction with iron oxide in steel-making slag at 1823 K and was compared with coke and graphite. The reaction mechanism of carbonaceous materials was analyzed based on the contents of CO and CO2 in the off-gas monitored by an infrared (IR) gas analyzer. It is clear from the results that the reaction of HDPE and coke mixture with steel-making slag approached equilibrium of the Boudouard reaction more quickly and closely than coke or graphite.

  20. Blackening of fault gouge by comminution and pyrolysis of carbonaceous materials during earthquake slip

    Science.gov (United States)

    Kaneki, Shunya; Hirono, Tetsuro

    2016-05-01

    Black fault gouges sometimes develop, mainly in sedimentary rocks, but the cause of the color transformation is not well understood. Here we demonstrated the blackening of synthetic mixtures of montmorillonite and bituminous coal and of montmorillonite and magnetite in milling, heating, and friction experiments. Mixed samples with a higher volume fraction of coal or magnetite before the experiments showed lower L* values (lightness index; lower values indicate darker blacks), because coal and magnetite are intrinsically black. The milling and heating experiments showed that the L* values of mixed samples of montmorillonite and coal drastically decreased with longer milling times and higher temperatures. The L* values of mixed samples of montmorillonite and magnetite also decreased with longer milling times, but no notable change was observed in the samples after the heating experiments. Because comminution by milling induces granulation of the constituent materials, blackening of the experimental samples was primarily caused by dispersal through the sample of fine black particles such as coal and magnetite, but it could be strengthened by adsorption onto host particles of organic gases produced by pyrolysis of carbonaceous material at high temperature. The friction experiment with mixed samples of montmorillonite and coal produced the remarkably low L* values. Friction induces both comminution and heating of samples, so the blackening could be greater than after either milling or heating alone. Therefore, relatively black fault gouges, compared with the surrounding host rocks, might have experienced comminution and heating, probably related to earthquake slip. Thus, black coloration could be one of the important information on fieldwork.

  1. Sorption of polycyclic aromatic hydrocarbons (PAHs) to carbonaceous materials in a river floodplain soil

    International Nuclear Information System (INIS)

    We report on sorption isotherm of phenanthrene (Phe) for river floodplain soil associated with carbonaceous materials, with particular attention being devoted to the natural loading of Phe. Our sorption experiments with original soil samples, size, and density sub-fractions showed that the light fraction had the highest sorption capacity comparable to low rank coals. In addition, the light fraction contributed most for the sorption of Phe in total soil samples. Koc values for all fractions were in the same range, thus indicating that coal and coal-derived particles in all samples are responsible for the enhanced sorption for Phe. Sorption was strongly nonlinear and the combined partitioning and pore-filling model gave a better fit than the Freundlich sorption model. In addition, the spiked PAHs did not show the same behavior as the naturally aged ones, therefore the accessibility of indigenous background organic contaminants was reduced when coal and coal-derived particles are associated with the soils. - Sorption of PAHs in the soil is dominated by coal and coal-derived particles with a pore-filling mechanism

  2. An effective approach for modifying carbonaceous materials with niobium single sites to improve their catalytic properties.

    Science.gov (United States)

    Bozzi, A S; Lavall, R L; Souza, T E; Pereira, M C; de Souza, P P; De Abreu, H A; De Oliveira, A; Ortega, P F R; Paniago, R; Oliveira, L C A

    2015-12-14

    In this paper we show a very simple route for the incorporation of catalytically active niobium species on the surface of carbon materials, such as graphene oxide, carbon nanotubes and activated carbon. Some existing methods of incorporating a transition metal on a support have involved co-precipitation or wet impregnation, to obtain the corresponding oxides. These methods, however, cause reduction in the specific area of the support and can also form large metal oxide particles with loss of metal exposure. Therefore, here we present a novel way to add catalytically active species on the surfaces of different types of carbon through the formation of interaction complexes between the metal precursor and the functional groups of the carbon matrix. Because of the excellent catalytic properties exhibited by the niobium species we choose the NH4[NbO(C2O4)2(H2O)2]·2H2O salt as the model precursor. The characterization by XPS reveals the presence of the niobium species indicated by the displacement of the peaks between 206-212 eV related to the oxalate species according to the spectrum from pure niobium oxalate. Images obtained by TEM and SEM show the typical morphologies of carbonaceous materials without the niobium oxide formation signal, which indicates the presence of niobium complexes as isolated sites on the carbon surfaces. This new class of materials exhibited excellent properties as catalysts for pollutant oxidation. The presence of Nb promotes the catalytic activation of H2O2 generating hydroxyl radicals in situ, which allows their use in the organic compound oxidation processes. Tests for DBT oxidation indicate that Nb significantly improves the removal of such pollutants in biphasic reactions with removal around 90% under the tested conditions. Theoretical calculations showed that the most favorable adsorption model is an ionic complex presenting a ΔG = -108.7 kcal mol(-1) for the whole adsorption process. PMID:26514577

  3. Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events

    International Nuclear Information System (INIS)

    Polycyclic Aromatic Hydrocarbons (PAHs) transported from contaminated soils by surface runoff pose significant risk for aquatic ecosystems. Based on a rainfall-runoff simulation experiment, this study investigated the impact of carbonaceous materials (CMs) in soil, identified by organic petrology analysis, on the transport of soil-bound PAHs under rainfall conditions. The hypothesis that composition of soil organic matter significantly impacts the enrichment and transport of PAHs was proved. CMs in soil, varying significantly in content, mobility and adsorption capacity, act differently on the transport of PAHs. Anthropogenic CMs like black carbon (BC) largely control the transport, as PAHs may be preferentially attached to them. Eventually, this study led to a rethink of the traditional enrichment theory. An important implication is that CMs in soil have to be explicitly considered to appropriately model the nonpoint source pollution of PAHs (possibly other hydrophobic chemicals as well) and assess its environmental risk. -- Highlights: •Composition of SOM significantly impacts the enrichment and transport of PAHs. •Anthropogenic carbonaceous materials in soil largely control the transport of PAHs. •The classic enrichment theory is invalid if anthropogenic CMs are abundant in the soil. •Organic petrology analysis introduced to study the fate and transport of PAHs. -- Anthropogenic carbonaceous materials in soil, especially black carbon, largely control the transport of soil-bound PAHs during rainfall-runoff events

  4. Sorption interactions of biochars and pyrogenic carbonaceous materials with anionic contaminants

    Science.gov (United States)

    Fristak, Vladimir; Moreno-Jimenez, Eduardo; Micháleková-Richveisová, Barbora; Schmidt, Hans-Peter; Bucheli, Thomas; Soja, Gerhard

    2016-04-01

    Biochar as a highly porous and carbon-rich material with a large surface area is a new player in the system of environmental remediation techniques. A wide range of valuable sorption properties of this carbonaceous pyrolysis product provides new options to solve contaminant problems in soil and water and thus may reduce the number of contaminated sites. The sorption capacity of agricultural wastes and wood processing-derived biochars has been found to be excellent due to high surface area, pore volume, and surface functional groups. However, sorption interactions and separation of xenobiotics from waste water, soil solutions or polluted surface water is very often affected by the concentration of contaminant, contact time, effects of competitive substances and mainly by the chemical form of the respective contaminant. The negative surface charge of biochar-based sorption materials supports significant sorption in particular for cationic forms of pollutants. On the other hand many environmentally critical substances occur in anionic forms (e.g. As, P, Mo, Tc). Therefore their retention and immobilization by biochar is frequently considered as problematic or limited. Besides, details about the mechanism of biochar interactions with anionic compounds and the options for surface modification are largely unexplored. This contribution presents a comparative study about production and characterization of unmodified, chemically pre-treated and post-treated biochars with respect to sorption processes of model anionic compounds (PO43-, AsO43-). The obtained results confirmed the crucial role of altering biochar properties (pH) and of surface modification for improving biochar sorption efficiency for anionic contaminants.

  5. Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal

    Institute of Scientific and Technical Information of China (English)

    Carolyn Palma; Lucia Lloret; Antonio Puen; Maira Tobar; Elsa Contreras

    2016-01-01

    Adsorption processes have received special attention for contaminants removal thanks to their capability to gen-erate effluents with high quality as well as their simple design. In the current work, the agro-waste residue avo-cado peel is proposed to be used as alternative to conventional activated carbons whose use is sometimes restricted to high costs, upgraded by their exhausting after long term operations. The carbonization procedure was optimized and analyzed through factorial design and response surface methodology by evaluating temper-ature (400–900 °C) and time (30–90 min) effects:optimal conditions were found at 900 °C and 65 min, gener-ating an adsorbent with 87.52 m2·g−1 of BET surface area, a mesopore volume of 74%and a zero point charge at 8.6. The feasibility of the carbonaceous material was proved for the removal of a variety of dyes by investigating substrate (10–50 mg·L−1) and solid (0.5–20 g·L−1) concentration effects and statistical significance:complete removal of Naphthol Blue Black and Reactive Black 5 was reached under optimal conditions (10 mg·L−1 and 20 g·L−1 of dye and solid, respectively), while Basic Blue 41 was eliminated by using 13.4 g·L−1 of the adsorbent. Overal , dyes removal by adsorption on carbonized avocado peel is presented as a promising technology due to the low cost and easy availability of the precursor, as well as the straightforward generation, the satisfactory char-acteristics and the proved adsorption capacity of the adsorbent.

  6. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    the determination of the sorption/desorption enthalpies which gives insight into the sorbent-sorbate interactions. In order to attain sorption/desorption equilibrium, all the samples were pulverized to shorten the laboratory experimental time. The sorbate losses were carefully monitored and considered in the isotherm calculation. Additionally, release of native phenanthrene was also investigated at different temperatures and compared with the freshly spiked samples to investigate the aging effect. The batch results show that for all individual temperature steps sorption and desorption isotherms coincide. Furthermore, the solubility-normalized sorption/desorption isotherms at different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked equilibrium sorption isotherms. The absolute values of sorption/desorption isosteric heats ({delta}H) determined are in a range of 19 - 35 kJ mol{sup -1}, which is higher than the heat of aqueous solution of subcooled phenanthrene but much less than the heat of condensation of solid phenanthrene from water. No significant difference of the enthalpies between sorption and desorption was observed. Furthermore, the desorption enthalpy of the native phenanthrene was not significantly higher than expected from the sorption experiments with spiked samples. Sorption and desorption kinetics were monitored in on-line column experiments with stepwise increases of temperature. An intraparticle diffusion model was used to simulate the desorption profile in order to get the apparent diffusion coefficients of phenanthrene from the carbonaceous materials. Desorption activation energies were calculated by Arrhenius relationship based on the high-resolution measurement of concentration increases at each temperature step. The activation energies determined range from 58 - 71 kJ mol{sup -1}. No significant trend of increasing

  7. The use of halogen carriers and buffers in the spectrographic determination of boron in carbonaceous materials and their combustion products

    International Nuclear Information System (INIS)

    For the determination of boron in carbonaceous materials (high purity graphite, coals and their processed products, such as ashes and slags from thermoelectric power plants) by atomic emission spectroscopy with direct current are excitation and photographic recording, the behaviour of the analyte in the presence of halide compounds or spectrochemical buffers has been studied. Among the halides, cupric fluoride at a low concentration (2%) becomes very suitable for the graphite analysis, and at a higher concentration (25 %) for coals, being necessary in this case to carry out a dilution of samples with graphite. Strontium carbonate as a spectrochemical buffer allows to analyse satisfactorily coals and their combustion products. (Author) 13 refs

  8. The use of halogen carriers and buffers in the spectrographic determination of boron in carbonaceous materials and their combustion products

    International Nuclear Information System (INIS)

    For the determination of boron in carbonaceous materials (high purity graphite, coals and their processed products, such as ashes and slags from thermoelectric power plants) by atomic emission spectroscopy with direct current arc excitation and photographic recording, the behaviour of the analyte in the presence of halide compounds or spectrochemical buffers has been studied. Among the halides, cupric fluoride at a low concentration (2%) becomes very suitable for the graphite analysis, and at a higher concentration (25%) for coals being necessary in this case to carry out a dilution of samples with graphite. Strontium carbonate as a spectrochemical buffer allows to analyse satisfactorily coals and their combustion products. (author)

  9. Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Carbonaceous materials were prepared from exhausted sludge materials. • High surface area and good physicochemical properties were achieved. • Utilization of waste sludge materials and mixed anaerobic cultures were used in a continuous anaerobic UPBR system (upflow packed bed biological reactor). • Effective treatment of dye contaminated wastewater in a cheapest and environmental friendly method was demonstrated. - Abstract: This work presents the preliminary study of new carbonaceous materials (CMs) obtained from exhausted sludge, their use in the heterogeneous anaerobic process of biodecolorization of azo dyes and the comparison of their performance with one commercial active carbon. The preparation of carbonaceous materials was conducted through chemical activation and carbonization. Chemical activation was carried out through impregnation of sludge-exhausted materials with ZnCl2 and the activation by means of carbonization at different temperatures (400, 600 and 800 °C). Their physicochemical and surface characteristics were also investigated. Sludge based carbonaceous (SBC) materials SBC400, SBC600 and SBC800 present values of 13.0, 111.3 and 202.0 m2/g of surface area. Biodecolorization levels of 76% were achieved for SBC600 and 86% for SBC800 at space time (τ) of 1.0 min, similar to that obtained with commercial activated carbons in the continuous anaerobic up-flow packed bed reactor (UPBR). The experimental data fit well to the first order kinetic model and equilibrium data are well represented by the Langmuir isotherm model. Carbonaceous materials show high level of biodecolorization even at very short space times. Results indicate that carbonaceous materials prepared from sludge-exhausted materials have outstanding textural properties and significant degradation capacity for treating textile effluents

  10. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff

    Science.gov (United States)

    Mossman, David; Eigendorf, Guenter; Tokaryk, Dennis; Gauthier-Lafaye, François; Guckert, Kristal D.; Melezhik, Victor; Farrow, Catharine E. G.

    2003-03-01

    Fullerenes have been reported from diverse geologic environments since their discovery in shungite from Karelian Russia. Our investigation is prompted by the presence of onionskin-like structures in some carbonaceous substances associated with the fossil nuclear fission reactors of Oklo, Gabon. The same series of extractions and the same instrumental techniques, laser desorption ionization and high-resolution mass spectroscopy (electron-impact mass spectroscopy), were employed to test for fullerenes in samples from three different localities: two sites containing putative fullerenes (Sudbury Basin and Russian Karelia) and one new location (Oklo, Gabon). We confirm the presence of fullerenes (C60 and C70) in the Black Tuff of the Onaping Formation impact breccia in the Sudbury Basin, but we find no evidence of fullerenes in shungite samples from various locations in Russian Karelia. Analysis of carbonaceous substances associated with the natural nuclear fission reactors of Oklo yields no definitive signals for fullerenes. If fullerenes were produced during sustained nuclear fission at Oklo, then they are present below the detection limit (˜100 fmol), or they have destabilized since formation. Contrary to some expectations, geologic occurrences of fullerenes are not commonplace.

  11. Biological potential of extraterrestrial materials - 1. Nutrients in carbonaceous meteorites, and effects on biological growth

    Science.gov (United States)

    Mautner, Michael N.

    1997-06-01

    Soil nutrient analysis of the Murchison C2 carbonaceous chondrite shows biologically available S, P, Ca, Mg, Na, K and Fe and cation exchange capacity (CEC) at levels comparable with terrestrial agricultural soils. Weathering, and aqueous, hydrothermal (121°C, 15 min) and high-temperature (550°C, 3 h) processing increase the extractable nutrients. Extractable phosphorus (by 0.3 M NH 4F + 0.1 M HCl) content, which may be growth-limiting, is 6.3 μg g -1 in the unprocessed meteorite, but increases to 81 μg g -1 by hydrothermal processing and weathering, and to 130 μg g -1 by high temperature processing. The cation exchange capacity (CEC), attributed mainly to the organic fraction, corresponds responds to 345 meq per 100 g of the polymer, suggesting one ionizable COOH or OH group per 3-4 aromatic rings. The Allende C3(V) meteorite has low extractable Ca, Mg and K, in parallel to its low organic content and CEC, but high extractable P levels (160 μg g -1). Biological effects are observed on growth of the soil microorganisms Flavobacterium oryzihabitans and Nocardia asteroides in meteorite extracts, and the population levels suggest that P is the limiting nutrient. Effects on plant growth are examined on Solanum tuberosum (potato), where extracts of the Murchison meteorite lead to enhanced growth and pigmentation. The biologically available organic and inorganic nutrients in carbonaceous chondrites can provide concentrated solutions for prebiotic and early life processes, and serve as soils and fertilizers for future space-based biological expansion.

  12. Effects of carbonaceous materials on microbial bioavailability of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in sediments.

    Science.gov (United States)

    Zhu, Baotong; Wu, Shan; Xia, Xinghui; Lu, Xiaoxia; Zhang, Xiaotian; Xia, Na; Liu, Ting

    2016-07-15

    In this study, we investigated the influence of various types of carbonaceous materials (CMs) on the bioavailability of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) to polybrominated diphenyl ether (PBDE)-degrading microorganisms in CM-amended sediments. The microbial debromination ratio of BDE-47 was reduced by 92.8%-98.2% in the 5.0% CM-amended sediment compared with in sediment without CM amendment after 100 d of anaerobic incubation. The concentrations of lower brominated products also decreased when the content of CMs increased from 0.2% to 5.0%. The inhibitory effects of CMs on BDE-47 debromination were CM content- and characteristic-specific. The reciprocals of BDE-47 debromination ratios and lower brominated product concentrations showed positive linear correlations with CM contents in sediments (punderstanding of the environmental behaviors and risks of PBDEs. PMID:27037476

  13. Removal of Cr(III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble.

    Science.gov (United States)

    Elabbas, Saliha; Mandi, Laila; Berrekhis, Fatima; Pons, Marie Noelle; Leclerc, Jean Pierre; Ouazzani, Naaila

    2016-01-15

    In the present paper, eggshell and powdered marble, two carbonaceous materials, were used to remove Cr(III) ions from a real chrome tanning wastewater. The effects of initial effluent pH, adsorbent dose, contact time and temperature were studied. The maximum uptake of chromium ions was obtained at pH 5.0 with the dose 20 g L(-1) and 12 g L(-1) for eggshell and powdered marble respectively. Adsorption equilibrium was reached after 14 h contact time for eggshell and only after 30 min for powdered marble. Under these conditions, almost 99% Cr(III) was removed from chrome tanning wastewater having an initial concentration of chromium of 3.21 g L(-1). Kinetic data were satisfactorily described by a pseudo-second order chemical sorption model. The equilibrium rate constant was notably greater for powdered marble than for eggshell with 1.142·10(-3) (g mg(-1) min(-1)) and 0.041·10(-3) (g mg(-1) min(-1)) respectively. The adsorption isotherm were well described by a Langmuir model and showed that the interaction of chromium with the two adsorbents surface is a localized monolayer adsorption with a smaller energy constant for the powdered marble than for eggshell (0.020 (L mg(-1)) and 0.083 (L mg(-1)) respectively). The powdered marble was able to adsorb faster a large amount of Cr (III) in comparison to eggshell. The use of a standardized lettuce seed bioassay allowed evaluating a better effectiveness of the Cr adsorption on the powdered marble, removing up to 40% of the treated effluent toxicity than by eggshell 25%. The powdered marble could be considered as an effective, low cost carbonaceous material to be used for chromium removal from tanning wastewater. PMID:26598282

  14. Removal of blue indigo and cadmium present in aqueous solutions using a modified zeolitic material and an activated carbonaceous material; Remocion de azul indigo y cadmio presentes en soluciones acuosas empleando un material zeolitico modificado y un material carbonoso activado

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez S, E. E.

    2011-07-01

    In the last years the use of water has been increased substantially, it has been also altered its quality as a result of human activities such as mining, industrial activities and others. Water pollution caused by dyes and heavy metals has adverse effects on the environment, since both pollutants are very persisten even after conventional treatments. Denim blue and cadmium are not biodegradable. There is a growing interest in finding new, efficient and low cost alternative materials to remove such pollutants from the aqueous medium. The purpose of this work was to evaluate a modified zeolitic tuff and an activated carbonaceous material obtained from the pyrolysis of sewage sludge for the removal of denim blue and cadmium. The zeolitic material was modified with Na{sup +} and Fe{sup 3+} solutions to improve its sorption properties for the removal of cadmium and denim blue, respectively. Carbonaceous material was treated with 10% HCl solution to remove ashes. Both materials were characterized by scanning electron microscopy and elemental analysis (EDS), specific surface areas (Bet), thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Simultaneously, the denim blue dye was characterized by infrared spectroscopy and its pKa value was determined, these data allowed the determination of its chemical properties and its acid-base behavior in solution. In the content of this work the term indigo blue was changed by denim blue, as it corresponds to the commercial name of the dye. To assess the sorption capacity of sorbents, the sorption kinetics and sorption isotherms in batch system were determined; the results were fitted to mathematical models such as the pseudo-first order, pseudo second order and second order to describe the sorption kinetics and the Langmuir, Freundlich and Langmuir-Freundlich isotherms to describe sorption processes. The results show that the most efficient material to remove denim blue from aqueous solutions is the carbonaceous

  15. Carbon monoxide detection of chemisorbed oxygen in coal and other carbonaceous materials

    Science.gov (United States)

    Hinckley, C.C.; Wiltowski, T.; Wiltowska, T.; Ellison, D.W.; Shiley, R.H.; Wu, L.

    1990-01-01

    The oxidation of carbon monoxide by mildly oxidized and devolatilized coal samples was studied thermogravimetrically. The oxidation was attributed to oxygen chemisorbed on inorganic components of the coals. The reaction of CO with pyrite producing carbonyl sulphide, OCS, accompanied the oxidation. A mechanism for CO oxidation is proposed in which active oxygen chemisorbed on the inorganic components of the coal directly oxidized CO to CO2, and facilitates the chemisorption of CO on the coal as carbonate. A factor, ?? = ( 11 14) [1 - ( Wn Wc)], was derived where Wn is the sample weight loss not attributed to OCS formation, and Wc is the estimated weight of evolved CO2. This quantity is proportional to the fraction of CO2 produced by the direct oxidation of CO, and was used to compare the coal samples studied. Samples of an Illinois No. 5 coal yielded average ?? values of 0.7 and those of an Illinois No. 6 coal yielded values of 0.6, indicating that in these cases, the majority of CO2 produced came from the direct oxidation of CO. The results obtained for the coal samples are compared with a selection of carbonaceous samples for which the proposed mechanism does not apply. ?? 1990.

  16. Planetary Bioresources and Astroecology. 1. Planetary Microcosm Bioassays of Martian and Carbonaceous Chondrite Materials: Nutrients, Electrolyte Solutions, and Algal and Plant Responses

    Science.gov (United States)

    Mautner, Michael N.

    2002-07-01

    The biological fertilities of planetary materials can be assessed using microcosms based on meteorites. This study applies microcosm tests to martian meteorites and analogues and to carbonaceous chondrites. The biological fertilities of these materials are rated based on the soluble electrolyte nutrients, the growth of mesophile and cold-tolerant algae, and plant tissue cultures. The results show that the meteorites, in particular the Murchison CM2 carbonaceous chondrite and DaG 476 martian shergottite, contain high levels of water-extractable Ca, Mg, and SO 4-S. The martian meteorites DaG 476 and EETA 79001 also contain higher levels of extractable essential nutrients NO 3-N (0.013-0.017 g kg -1) and PO 4-P (0.019-0.046 g kg -1) than the terrestrial analogues. The yields of most of the water-extractable electrolytes vary only by factors of 2-3 under a wide range of planetary conditions. However, the long-term extractable phosphate increases significantly under a CO 2 atmosphere. The biological yields of algae and plant tissue cultures correlate with extractable NO 3-N and PO 4-P, identifying these as the limiting nutrients. Mesophilic algae and Asparagus officinalis cultures are identified as useful bioassay agents. A fertility rating system based on microcosm tests is proposed. The results rate the fertilities in the order martian basalts > terrestrial basalt, agricultural soil > carbonaceous chondrites, lava ash > cumulate igneous rock. The results demonstrate the application of planetary microcosms in experimental astroecology to rate planetary materials as targets for astrobiology exploration and as potential space bioresources. For example, the extractable materials in Murchison suggest that concentrated internal solutions in carbonaceous asteroids (3.8 mol L -1 electrolytes and 10 g L -1 organics) can support and disperse microorganisms introduced by natural or directed panspermia in early solar systems. The results also suggest that carbonaceous asteroids

  17. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    Science.gov (United States)

    Peláez-Cid, A. A.; Tlalpa-Galán, M. A.; Herrera-González, A. M.

    2013-06-01

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C CarTunaT and CarZAPT consist of the materials carbonized at 400 °C lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H3PO4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  18. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    International Nuclear Information System (INIS)

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C; CarTunaT and CarZAPT consist of the materials carbonized at 400 °C; lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H3PO4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  19. A new star(ch) is born: Starbons as biomass-derived mesoporous carbonaceous materials

    OpenAIRE

    Shuttleworth, P. S.; Clark, J H; V. Budarin; Luque, R.

    2012-01-01

    Porous carbon materials are present in a wide rangeof technologically important applications, includingseparation science, heterogeneous catalyst supports,water purification filters, stationary phase materials,as well as the developing future areas of energygeneration and storage applications. Hard templateroutes to ordered mesoporous carbons are wellestablished, but whilst offering different mesoscopictextural phases, the surface of the material is difficultto chemically post-modify and proc...

  20. Local structure and paramagnetic properties of the nanostructured carbonaceous material shungite

    OpenAIRE

    Krasnovyd, Serhii Volodymyrovich; Konchits, Andriy Andriyovich; Shanina, Bela Dmytrivna; Valakh, Mykhaylo Yakovych; Yanchuk, Igor Bogdanovich; Yukhymchuk, Volodymyr Olexsandrovych; Yefanov, Andriy Volodymyrovich; Skoryk, Mykola Andriyovich

    2015-01-01

    Using a scanning electron microscopy, elemental analysis, electron paramagnetic resonance, and Raman scattering methods, two types of the shungite materials (Sh-II from Zazhogino deposit and shungite from a commercial filter (ShF)), with different carbon content and porosity, are studied in this work. It was established by scanning electron microscopy data that the structure of the shungite samples is formed by a micron-size agglomeration of carbon and silicon dioxide clusters. It is found fr...

  1. Role of carbonaceous materials in polymer matrix composites for friction applications

    Science.gov (United States)

    Lapping, Preston

    The purpose of this research was to study the friction performance characteristics of a Copper, Antimony, and sulfide free environmentally automotive friction material using different allotropes of graphite as a replacement. Model brake friction materials were created and tested on a full scale brake dynamometer using the Society of Automotive Engineers J2430 test and Brake Effectiveness Evaluation Procedure. The dynamometer testing revealed the graphite replacement to have higher average effectiveness values when compared to the baseline friction material currently in production. The model samples generally had higher wear rates but some were comparable to the baseline and would be acceptable in real world applications. Some of the model samples displayed stable characteristics under varying load and linear braking velocity conditions, ultimately passing the criteria required. The model samples (RD18670A/B/C/D/E/F/G) displayed average effectiveness values of 0.425, 0.435, 0.4125, 0.425, 0.475, failed test, and 0.35 respectively, which is on average a substantial gain over the baseline effectiveness value average of 0.3125. Sample RD18670F proved to be the most promising replacement for the baseline 1999 Ford Crown Victoria friction lining. This is due to a higher average effectiveness value of 0.5, during both the high speed and low speed testing, than the baseline friction lining material of 0.325. Also, RD18670F displayed comparable wear rates to the baseline test, with 0.384mm lost inboard and 0.650 lost outboard, representing a difference of only 0.074mm and 0.2mm respectively from the baseline.

  2. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    DEFF Research Database (Denmark)

    Van Kooten, Elishevah M M E; Wielandt, Daniel; Schiller, Martin;

    2016-01-01

    The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay......)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25...

  3. Local structure and paramagnetic properties of the nanostructured carbonaceous material shungite

    Science.gov (United States)

    Krasnovyd, Serhii Volodymyrovich; Konchits, Andriy Andriyovich; Shanina, Bela Dmytrivna; Valakh, Mykhaylo Yakovych; Yanchuk, Igor Bogdanovich; Yukhymchuk, Volodymyr Olexsandrovych; Yefanov, Andriy Volodymyrovich; Skoryk, Mykola Andriyovich

    2015-02-01

    Using a scanning electron microscopy, elemental analysis, electron paramagnetic resonance, and Raman scattering methods, two types of the shungite materials (Sh-II from Zazhogino deposit and shungite from a commercial filter (ShF)), with different carbon content and porosity, are studied in this work. It was established by scanning electron microscopy data that the structure of the shungite samples is formed by a micron-size agglomeration of carbon and silicon dioxide clusters. It is found from the Raman data that carbon fraction is formed from sp2-hybridized clusters, size of which increases from 9 up to 12 nm after annealing of the samples. High conductivity of shungite is found to belong to the carbon nanoclusters of different sizes. Big clusters give the conduction electron spin resonance signal with a Dysonian line shape with variable g-factor and line width.

  4. Provenance analysis using Raman spectroscopy of carbonaceous material: A case study in the Southern Alps of New Zealand

    Science.gov (United States)

    Nibourel, Lukas; Herman, Frédéric; Cox, Simon; Beyssac, Olivier; Lavé, Jérôme

    2016-04-01

    Detrital provenance analyses in orogenic settings, in which sediments are collected at the outlet of a catchment, have become an important tool to estimate how erosion varies in space and time. Here we present how Raman Spectroscopy on Carbonaceous Material (RSCM) can be used for provenance analysis. RSCM provides an estimate of the peak temperature (RSCM-T) experienced during metamorphism. We show that we can infer modern erosion patterns in a catchment by combining new measurements on detrital sands with previously acquired bedrock data. We focus on the Whataroa catchment in the Southern Alps of New Zealand and exploit the metamorphic gradient that runs parallel to the main drainage direction. To account for potential sampling biases, we also quantify abrasion properties using flume experiments and measure the total organic carbon content in the bedrock that produced the collected sands. Finally, we integrate these parameters into a mass-conservative model. Our results first demonstrate that RSCM-T can be a powerful tool for detrital studies. The relative ease of data acquisition allows for a robust statistical provenance analysis with a high spatial resolution. Second, we find that spatial variations in tracer concentration and erosion intensity have a first-order control on the RSCM-T distributions, even though our flume experiments reveal that weak lithologies produce substantially more fine particles than do more durable lithologies. This result implies that sand specimens are good proxies for mapping spatial variations in erosion when the bedrock concentration of the target mineral is quantified. The modeling suggests highest present-day erosion rates (in Whataroa catchment) are not situated at the range front, as might be expected from the long-term metamorphic rock exhumation pattern, but about 10 km into the mountain belt. This closely matches the pattern of maximum rain fall and highest short-term (contemporary) inter-seismic uplift.

  5. Paramagnetic resonance of Shungite - a natural nano-structured carbonaceous material

    Science.gov (United States)

    Yablokov, M. Yu.; Augustyniak-Jabł, M. A.

    Shungites Sh-III and Sh-IV (?50% and 20% of carbon) have been studied by X-band EPR method in the range 4.2-293 K. The week signal of Dyson shape (a /b = 2.25-2.40) observed from a bulk sample of Sh-III has been observed to transform into an intensive Lorentzian line (?B = 1.99 mT, g = 2.0020) after sample grinding. The number of EPR responsible spins (2 × 1019 g-1) and the depth of penetration ? (?60 µm) have been estimated. The shape of the signals (Dysonian or Lorentzian) is independent of T . ?B and the g values decrease below 80 K to 1.15 mT and 2.0012. The signal intensity is independent of T down to 150 K. Isolated complexes of C60(C70)-n with K+(Na+) have been found in Sh-IV. Analysis of the EPR spectra has been made taking into consideration the properties of the conductive materials such as metals and graphite.

  6. Organic Analysis in Miller Range 090657 and Buckley Island 10933 CR2 Chondrites: Part 1 In-Situ Observation of Carbonaceous Material

    Science.gov (United States)

    Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Burton, A. S.; Messenger, S.; Clemett, S. J.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble unstructured kerogen-like component as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding on spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Furthermore, they can provide broader perspective on how extraterrestrial organic ma-terials potentially contributed to the synthesis of life's essential compounds such as amino acids, sugar acids, activated phosphates and nucleobases.

  7. Nanoparticulate-catalyzed oxygen transfer processes

    Science.gov (United States)

    Hunt, Andrew T.; Breitkopf, Richard C.

    2009-12-01

    Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

  8. Thermodynamic Property Surfaces for Adsorption of R507A, R134a, and n -Butane on Pitch-Based Carbonaceous Porous Materials

    KAUST Repository

    Chakraborty, Anutosh

    2010-10-01

    The thermodynamic property surfaces of R507A, R134a, and n-butane on pitch-based carbonaceous porous material (Maxsorb III) are developed from rigorous classical thermodynamics and experimentally measured adsorption isotherm data. These property fields enable us to compute the entropy, enthalpy, internal energy, and heat of adsorption as a function of pressure, temperature, and the amount of adsorbate. The entropy and enthalpy maps are necessary for the analysis of adsorption cooling cycle and gas storage. We have shown here that it is possible to plot an adsorption cooling cycle on the temperature-entropy (T-s) and enthalpy-uptake (h-x) maps. Copyright © Taylor and Francis Group, LLC 2010.

  9. Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems.

    Science.gov (United States)

    Narang, Ajit S; Chang, Rong-Kun; Hussain, Munir A

    2013-11-01

    Pharmaceutical nanomaterials (NMs) encompass a wide variety of materials including drug nanoparticles (NPs), which can be amorphous or crystalline; or nanoparticulate drug delivery systems, such as micelles, microemulsions, liposomes, drug-polymer conjugates, and antibody-drug conjugates. These NMs are either transient or persistent-depending on whether the integrity of their structure and size is maintained until reaching the site of drug action. Examples of several approved drug products are included as pharmaceutical nanoparticulate systems along with a commentary on the current development issues and paradigms for various categories of NPs. This commentary discusses the preparation of nanoparticulate systems for commercial development, and the biopharmaceutical and pharmacokinetic advantages of these systems. A criterion of criticality is defined that incorporates the structure, in addition to size requirement of pharmaceutical NPs to identify systems that may require special development and regulatory considerations. PMID:24037829

  10. Gas/solid carbon branching ratios in surface-mediated reactions and the incorporation of carbonaceous material into planetesimals

    Science.gov (United States)

    Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia

    2016-07-01

    We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume "filamentous" structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions.

  11. Gas/solid carbon branching ratios in surface-mediated reactions and the incorporation of carbonaceous material into planetesimals

    Science.gov (United States)

    Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia

    2016-06-01

    We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume "filamentous" structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions.

  12. Comparative study of adsorptive role of carbonaceous materials in removal of UV-active impurities of paclitaxel extracts

    Directory of Open Access Journals (Sweden)

    Jaber Nasiri

    2015-12-01

    Full Text Available Graphite oxide (GO and reduced graphene oxide (rGO nanosheets were synthesized with a low-cost manufacturing method. The morphology and structures of the synthesized samples were studied using X-ray diffraction (XRD, atomic force microscopy (AFM, Fourier-transform infrared (FTIR and Raman spectroscopy. The efficiencies of GO and rGO as novel candidate adsorbents in the pre-purification of paclitaxel were compared and contrasted with those of commercial graphite (Gt, graphene (G and multi-wall carbon nanotube (MWCNT. According to UV–vis and HPLC analyses, rGO was evaluated as the best absorbent for the removal of impurities in pre-purification of paclitaxel from plant cell cultures. In contrast, the GO had the poorest proficiency for paclitaxel pre-purification in comparison with the other carbonaceous adsorbents. This is attributed to the existence of many localized defects in the π-structure of GO that is related to weakness of π–π stacking interactions between crude extract impurities and GO.

  13. Comparative study of adsorptive role of carbonaceous materials in removal of UV-active impurities of paclitaxel extracts

    Institute of Scientific and Technical Information of China (English)

    Jaber Nasiri; Elaheh Motamedi; Mohammad Reza Naghavi

    2015-01-01

    Graphite oxide (GO) and reduced graphene oxide (rGO) nanosheets were synthesized with a low-cost manufacturing method. The morphology and structures of the synthesized samples were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared (FTIR) and Raman spectroscopy. The efficiencies of GO and rGO as novel candidate adsorbents in the pre-purification of paclitaxel were compared and contrasted with those of commercial graphite (Gt), graphene (G) and multi-wall carbon nanotube (MWCNT). According to UV–vis and HPLC analyses, rGO was evaluated as the best absorbent for the removal of impurities in pre-purification of paclitaxel from plant cell cultures. In contrast, the GO had the poorest proficiency for paclitaxel pre-purification in comparison with the other carbonaceous adsorbents. This is attributed to the existence of many localized defects in the π-structure of GO that is related to weakness ofπ–πstacking interactions between crude extract impurities and GO.

  14. Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors.

    Science.gov (United States)

    Yu, Yang; Wei, Huangzhao; Yu, Li; Wang, Wei; Zhao, Ying; Gu, Bin; Sun, Chenglin

    2016-01-01

    In this study, four sewage-sludge-derived carbonaceous materials (SWs) were evaluated for their catalytic wet hydrogen peroxide oxidation (CWPO) performance of m-cresol in batch reactor and continuous reactor, respectively. The SWs were produced by carbonization (SW); carbonization with the addition of CaO (CaO-SW); HNO3 pretreatment (HNO3-SW) and steam activation (Activated-SW). The properties of SW catalysts were assessed by thermogravimetric analysis, Brunauer-Emmett-Teller, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence, Scanning electron microscopy, energy dispersive X-ray analysis and zeta potential. The results showed that SW treated by HNO3 (HNO3-SW) had a high conversion of m-cresol in batch reactor and continuous reactor, respectively. Under the conditions of batch reaction (Cm-cresol = 100 mg L(-1), CH2O2 = 15.7 mmol L(-1), initial pH=7.0, 0.5 g L(-1) catalyst, 80°C, 180 min adsorption and 210 min oxidation), the conversion of m-cresol reached 100% and total organic carbon removal was 67.1%. It had a high catalytic activity and stability on the treatment of m-cresol in CWPO for more than 1100 h. Furthermore, a possible reaction mechanism for the oxidation of m-cresol to 2-methyl-p-benzoquinone by CWPO was proposed. PMID:26109374

  15. Associations between sulfides, carbonaceous material, gold and other trace elements in polyframboids: Implications for the source of orogenic gold deposits, Otago Schist, New Zealand

    Science.gov (United States)

    Hu, Si-Yu; Evans, Katy; Fisher, Louise; Rempel, Kirsten; Craw, Dave; Evans, Noreen J.; Cumberland, Susan; Robert, Aileen; Grice, Kliti

    2016-05-01

    Intimately intergrown micron-scale framboidal pyrite, carbonaceous material (CM), chalcopyrite, sphalerite and cobaltite form polyframboids in prehnite-pumpellyite facies rocks of the Otago Schist, New Zealand. This study quantifies the metal contents of these polyframboids using synchrotron X-ray fluorescence (SXRF) and laser ablation inductively coupled plasma spectrometry (LA-ICP-MS). Trace elements Au, Zn, As, Mo, Co, Ni, Cu, Ag and Pb are significantly enriched in the polyframboids. The distribution of Zn most closely follows that of CM, and was probably absorbed into the structure of the polyframboids during biogenic processes. The concentrations of Au and Ag are positively corrected with the Zn concentration in the polyframboids (R2 of Au-Zn and Ag-Zn are 0.81 and 0.89, respectively.). The concentration of other trace elements, such as As, Co and Cu, which occur adjacent to Zn on elemental maps, show a weak relationship with Zn and may have been incorporated into the polyframboids during later processes. These polyframboids are a probable source for gold and other elements in the orogenic gold mineralization system of the Otago Schist. Metamorphic transformation of the polyframboids may have released the metallic elements into the mineralizing fluid during prograde metamorphism of the schist belt.

  16. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  17. X-ray phase computed tomography for nanoparticulated imaging probes and therapeutics: preliminary feasibility study

    Science.gov (United States)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2011-03-01

    With the scientific progress in cancer biology, pharmacology and biomedical engineering, the nano-biotechnology based imaging probes and therapeutical agents (namely probes/agents) - a form of theranostics - are among the strategic solutions bearing the hope for the cure of cancer. The key feature distinguishing the nanoparticulated probes/agents from their conventional counterparts is their targeting capability. A large surface-to-volume ratio in nanoparticulated probes/agents enables the accommodation of multiple targeting, imaging and therapeutic components to cope with the intra- and inter-tumor heterogeneity. Most nanoparticulated probes/agents are synthesized with low atomic number materials and thus their x-ray attenuation are very similar to biological tissues. However, their microscopic structures are very different, which may result in significant differences in their refractive properties. Recently, the investigation in the x-ray grating-based differential phase contrast (DPC) CT has demonstrated its advantages in differentiating low-atomic materials over the conventional attenuation-based CT. We believe that a synergy of x-ray grating-based DPC CT and nanoparticulated imaging probes and therapeutic agents may play a significant role in extensive preclinical and clinical applications, or even become a modality for molecular imaging. Hence, we propose to image the refractive property of nanoparticulated imaging probes and therapeutical agents using x-ray grating-based DPC CT. In this work, we conduct a preliminary feasibility study with a focus to characterize the contrast-to-noise ratio (CNR) and contrast-detail behavior of the x-ray grating-based DPC CT. The obtained data may be instructive to the architecture design and performance optimization of the x-ray grating-based DPC CT for imaging biomarker-targeted imaging probes and therapeutic agents, and even informative to the translation of preclinical research in theranostics into clinical applications.

  18. Explosive Characteristics of Carbonaceous Nanoparticles

    Science.gov (United States)

    Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok

    2013-03-01

    Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)

  19. Development of Low Cost Carbonaceous Materials for Anodes in Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Barsukov, Igor V.

    2002-12-10

    Final report on the US DOE CARAT program describes innovative R & D conducted by Superior Graphite Co., Chicago, IL, USA in cooperation with researchers from the Illinois Institute of Technology, and defines the proper type of carbon and a cost effective method for its production, as well as establishes a US based manufacturer for the application of anodes of the Lithium-Ion, Lithium polymer batteries of the Hybrid Electric and Pure Electric Vehicles. The three materials each representing a separate class of graphitic carbon, have been developed and released for field trials. They include natural purified flake graphite, purified vein graphite and a graphitized synthetic carbon. Screening of the available on the market materials, which will help fully utilize the graphite, has been carried out.

  20. A rapid method for the determination of uranium in ores and carbonaceous materials by x-ray-fluorescence spectrometry

    International Nuclear Information System (INIS)

    The determination of uranium by a non-fusion method in a wide range of uranium-bearing materials, e.g., ores, coals, and resins, is described. Matrix effects are corrected for by dilution and fine grinding of the sample with coarse river sand and application of a technique for background correction. The linear calibration range is up to 1000 p.p.m. of U3O8. It was found that the suitable dilution of resins with river sand and fine grinding makes it possible for up to 6 per cent U3O8 to be determined. Ten samples can be analysed in two-and-a half hours. The precision and accuracy is 5 and 2 per cent at U3O8 concentrations of 500 and 2000 p.p.m. respectively. The laboratory method, a listing of the computer programme required for the calibration and calculation of the U3O8 concentrations, and instructions for the calculation of the error in the determination are given in the appendices

  1. Nano-particles;Les nanoparticules

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, G. [Institut Paoli-Calmettes, Service de medecine nucleaire, 13 - Marseille (France); Chaumet-Riffaud, P. [CHU de Bicetre, Service de medecine nucleaire, 94 - Le Kremlin Bicetre (France)

    2010-06-15

    Nano-particles (N.P.) are structures comprising from some hundred to some thousand atoms. Owing to their size (1 to 100 nanometers), the physical and chemical properties of these nano-objects differ from those of classical materials. They cover a wide development area, which includes medical research: they can be classified into two major groups, organic N.P. (liposomes, polymers N.P., carbon nano tubes, fullerenes) and inorganic N.P. (quantum dots, magnetic N.P., Raman probes). N.P. can be conceived to act as a drug delivery system (therapeutic), imaging probe (diagnostic) or both (theranostic). We report recent data from scientific literature and describe main N.P. within medical area, their state of development, and the limited knowledge of their toxicity in human being. (author)

  2. The use of halogen carriers and buffers in the spectrographic determination of boron in carbonaceous materials and their combustion products; Empleo de agentes halogenantes y reguladores en la determinacion espectrografica de Boro en carbones y productos derivados

    Energy Technology Data Exchange (ETDEWEB)

    Rucandio, M. I.; Martin, M.; Roca, M.

    1992-07-01

    For the determination of boron in carbonaceous materials (high purity graphite, coals and their processed products, such as ashes and slags from thermoelectric power plants) by atomic emission spectroscopy with direct current are excitation and photographic recording, the behaviour of the analyte in the presence of halide compounds or spectrochemical buffers has been studied. Among the halides, cupric fluoride at a low concentration (2%) becomes very suitable for the graphite analysis, and at a higher concentration (25 %) for coals, being necessary in this case to carry out a dilution of samples with graphite. Strontium carbonate as a spectrochemical buffer allows to analyse satisfactorily coals and their combustion products. (Author) 13 refs.

  3. Nanostructured self-assembly materials from neat and aqueous solutions of C18 lipid pro-drug analogues of Capecitabine—a chemotherapy agent. Focus on nanoparticulate cubosomes™ of the oleyl analogue

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Mulet, Xavier; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J.

    2014-09-24

    A series of prodrug analogues based on the established chemotherapy agent, 5-fluorouracil, have been prepared and characterized. C18 alkyl and alkenyl chains with increasing degree of unsaturation were attached to the N4 position of the 5-fluorocytosine (5-FC) base via a carbamate bond. Physicochemical characterization of the prodrug analogues was carried out using a combination of differential scanning calorimetry, cross-polarized optical microscopy, X-ray diffraction and small-angle X-ray scattering. The presence of a monounsaturated oleyl chain was found to promote lyotropic liquid crystalline phase formation in excess water with a fluid lamellar phase observed at room temperature and one or more bicontinuous cubic phases at 37 °C. The bulk phase was successfully dispersed into liposomes or cubosomes at room and physiological temperature respectively. In vitro toxicity of the nanoparticulate 5-FCOle dispersions was evaluated against several normal and cancer cell types over a 48 h period and exhibited an IC50 of -100 μM against all cell types. The in vivo efficacy of 5-FCOle cubosomes was assessed against the highly aggressive mouse 4T1 breast cancer model and compared to Capecitabine (a water-soluble commercially available 5-FU prodrug) delivered at the same dosages. After 21 days of treatment, the 0.5 mmol 5-FCOle treatment group exhibited a significantly smaller average tumour volume than all other treatment groups including Capecitabine at similar dosage. These results exemplify the potential of self-assembled amphiphile prodrugs for delivery of bioactives in vivo.

  4. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    Science.gov (United States)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    . Our stable carbon isotope measurements clearly demonstrate that the nucleobases in the Murchison meteorite are indigenous to the meteorite, and clearly differ from the values determined for the terrestrial nucleobases measured in the soil collected at the impact site. These results support the hypothesis that nucleobases were exogenously delivered to the early Earth, and may have been important for the prebiotic chemistry on our young planet. With regard to the detection of traces of life on other planets such as Mars it is essential to characterize organic materials that have been exogenously delivered to the early planets. The analysis of the composition and isotopic fractionation of extraterrestrial material using complementary techniques can provide crucial insights into the formation of our Solar System, extraterrestrial delivery processes and subsequent addition and incorporation into the carbonaceous material available on the young planets. Ultimately, these parameters form an essential reference point for interpreting biosignatures that may be left in the ancient rock record on a planetary body. References: [1] Hayatsu R. et al. 1975. Geochimica et Cosmochimica Acta 39: 471- 488. [2] Folsome C. E. et al. 1971. Nature 232: 108-109. [3] Stoks P. G. & Schwartz A. W. 1979. Nature 282: 709-710. [4] Stoks P.G. & Schwartz A. W. 1981. Geochimica et Cosmochimica Acta 45: 563-569. [5] Shimoyama A. et al. 1990. Geochemical Journal 24: 343-348. [6] Martins Z. et al. 2004. Meteoritics & Planetary Science 39: A5145. 2

  5. 3-D assessment of peak-metamorphic conditions by Raman spectroscopy of carbonaceous material: an example from the margin of the Lepontine dome (Swiss Central Alps)

    DEFF Research Database (Denmark)

    Wiederkehr, Michael; Bousquet, Romain; Ziemann, Martin; Berger, Alfons; Schmid, Stefan

    2011-01-01

    This study monitors regional changes in the crystallinity of carbonaceous matter (CM) by applying Micro-Raman spectroscopy to a total of 214 metasediment samples (largely so-called Bu¨ndnerschiefer) dominantly metamorphosed under blueschist- to amphibolite-facies conditions. They were collected...... refolded nappe contacts, both along and across strike within the northeastern margin of the Lepontine dome and adjacent areas. Further to the northeast, the isotemperature contours reflect temperatures reached during the Late Eocene subduction-related blueschist-facies event and/or during subsequent near...

  6. MODIFICATION OF CARBONACEOUS ADSORBENTS WITH MANGANESE COMPOUNDS

    OpenAIRE

    Irina Ginsari; Larisa Postolachi; Vasile Rusu; Oleg Petuhov; Tatiana Goreacioc; Tudor Lupascu; Raisa Nastas

    2015-01-01

    Four series of samples containing manganese supported carbonaceous adsorbents were prepared. Obtained results reveal the importance of surface chemistry of carbonaceous adsorbents on the manganese loading.

  7. Characterisation of carbonaceous particulate matter in Edinburgh

    OpenAIRE

    Hammonds, Mark David

    2012-01-01

    Airborne particulate matter (PM) has important harmful effects on human health, as well as a number of other important atmospheric effects. Although progress has been made in understanding the sources and effects of PM, there remains considerable uncertainty on a number of issues, including the nature of a lot of the carbonaceous material, which comprises 30{50% on average of PM mass. This project aims to compare different methods of PM measurement, and contribute understanding...

  8. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana.

    Science.gov (United States)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A; Morgan, Jennifer L L; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D; Shock, Everett; Hartnett, Hilairy E

    2013-03-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3-67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. PMID:23262070

  9. The Magnetization of Carbonaceous Meteorites

    Science.gov (United States)

    Herndon, James Herndon

    1974-01-01

    Alternating field demagnetization experiments have been conducted on representative samples of the carbonaceous meteorites (carbonaceous chondrites and ureilites). The results indicate that many, if not all, of these meteorites possess an intense and stable magnetic moment of extraterrestrial origin. Thermomagnetic analyses have been conducted on samples of all known carbonaceous meteorites. In addition to yielding quantitative magnetite estimates, these studies indicate the presence of a thermally unstable component, troilite, which reacts with gaseous oxygen to form magnetite. It is proposed that the magnetite found in some carbonaceous chondrites resulted from the oxidation of troilite during the early history of the solar system. The formation of pyrrhotite is expected as a natural consequence of magnetite formation via this reaction. Consideration is given to the implications of magnetite formation on paleointensity studies.

  10. Photothermal analysis of individual nanoparticulate samples using micromechanical resonators

    DEFF Research Database (Denmark)

    Larsen, Tom; Schmid, Silvan; Villanueva Torrijo, Luis Guillermo; Boisen, Anja

    2013-01-01

    photothermal spectroscopy, a novel method that enables the analysis of individual nanoparticulate samples. Absorption of light by an individual sample placed on a microstring resonator results in local heating of the string, which is reflected in its resonance frequency. The working principle of the...

  11. Electrochemistry, a technique to prepare redox nano-structured composite materials (polymer/nano-particles) - Characterizations - Applications; L'electrochimie, un outil pour elaborer des materiaux composites redox nanostructures (polymere/nanoparticules) - Caracterisations - Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chardon-Noblat, S. [Grenoble-1 Univ. Joseph Fourier, Lab. d' Electrochimie Organique et de Photochimie Redox, UMR 5630, Institut de Chimie Moleculaire de Grenoble, FR CNRS 2607, 38 - Grenoble (France)

    2006-07-01

    In this work is presented at first the preparation by an electrochemical way of bi functional nano-structured composite materials. It is shown that with the pulsed electrolysis techniques, it is possible to obtain metallic particles whose size and organization are controlled at the nano-scopic scale in redox matrices. Then, are presented the physico-chemical characterizations of these nano-objects (coupled in situ or ex situ at the electrochemistry). The first results relative to the catalytic activation of CO{sub 2} with these materials used as composite cathodes are indicated. (O.M.)

  12. Cardiac oxidative damage in mice following exposure to nanoparticulate titanium dioxide.

    Science.gov (United States)

    Sheng, Lei; Wang, Xiaochun; Sang, Xuezi; Ze, Yuguan; Zhao, Xiaoyang; Liu, Dong; Gui, Suxin; Sun, Qingqing; Cheng, Jie; Cheng, Zhe; Hu, Renping; Wang, Ling; Hong, Fashui

    2013-11-01

    Nanoparticulate titanium dioxide (nano-TiO2 ) is a widely used powerful nanoparticulate material with high stability, anticorrosion, and photocatalytic property. However, it is possible that during nano-TiO2 exposure, there may be negative effects on cardiovascular system in intoxicated mice. The present study was therefore undertaken to determine nano-TiO2 -induced oxidative stress and to determine whether nano-TiO2 intoxication alters the antioxidant system in the mouse heart exposed to 2.5, 5, and 10 mg/kg body weight nano-TiO2 for 90 consecutive days. The findings showed that long-term exposure to nano-TiO2 resulted in obvious titanium accumulation in heart, in turn led to sparse cardiac muscle fibers, inflammatory response, cell necrosis, and cardiac biochemical dysfunction. Nano-TiO2 exposure promoted remarkably reactive oxygen species production such as superoxide radicals, hydrogen peroxide, and increased malondialdehyde, carbonyl and 8-OHdG levels as degradation products of lipid, protein, and DNA peroxidation in heart. Furthermore, nano-TiO2 exposure attenuated the activities of antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, glutathione-S-transferase, and levels of antioxidants including ascorbic acid, glutathione, and thiol in heart. Therefore, TiO2 NPs exposure may impair cardiovascular system in mice, and attention should be aroused on the application of nano-TiO2 and their potential long-term exposure effects especially on human beings. PMID:23553934

  13. Switchable Ionic Liquids: An Environmentally-friendly Medium to Synthesize Nanoparticulate Green Rust

    Energy Technology Data Exchange (ETDEWEB)

    Lao, David; Kukkadapu, Ravi K.; Kovarik, Libor; Arey, Bruce W.; Heldebrant, David J.; Nune, Satish K.

    2016-06-27

    Under anoxic conditions, a novel nanoparticulate green rust with carbonate (nano GR) was synthesized by addition of methanol to degassed switchable ionic liquid (SWIL) solution comprised of 1-hexanol, diazabicycloundec-7-ene (DBU), CO2 and Fe(C2H3O2)2 (Fe(OAc)2). Variable temperature Mössbauer spectroscopy studies indicated the product to be predominantly GR while TEM-SAED method confirmed it be nanoparticulate in nature. Experiments with and without methanol in the SWIL medium suggest that methanol may be responsible for Fe(II) oxidation to Fe(III) necessary for GR formation. Studies with Ar instead of CO2 trigger gas indicated that CO2 is essential for GR formation. Conditions to generate CO32- anion was most likely provided by basic environment of the medium. The nano GR suspension was very reactive and instantaneously oxidized completely to a reddish-brown precipitate upon exposure to ambient atmosphere. The nature of the oxidized sample is not certain. The oxidized product, however, appears to be a mix of ferric green rust- [GR(CO32-]*; major] and ferrihydrite-like minerals. To our knowledge, this is first report of use of environmentally-friendly SWIL reagents to synthesize very reactive nano GR materials.

  14. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    Science.gov (United States)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  15. Fluid Inclusions in Carbonaceous Chondrites

    Science.gov (United States)

    Saylor, J.; Zolensky, M. E.; Bodnar, R. J.; Le L.; Schwandt, C.

    2001-01-01

    Fluid inclusions are present in carbonaceous chondrites. Of the chondrites studied (CI1, CM1 and 2, CV3) fluid inclusions were found only in CM2s and CI1s, and by extrapolation are most likely to be found there in the future. Additional information is contained in the original extended abstract.

  16. Keto-acids in Carbonaceous Meteorites

    Science.gov (United States)

    Cooper, G.; Chang, P. M.; Dugas, A.; Byrd, A.; Chang, P. M.; Washington, N.

    2005-01-01

    The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry and are generally used as references for organic compounds in extraterrestrial material. Among the classes of organic compounds found in these meteorites are amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds, important in contemporary biochemistry, are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in early life and/or the origin of life. Absent among (today's) critically important biological compounds reported in carbonaceous meteorites are keto acids, i.e., pyruvic acid, acetoacetic acid, and higher homologs. These compounds are key intermediates in such critical processes as glycolysis and the citric acid cycle. In this study several individual meteoritic keto acids were identified by gas chromatography-mass spectrometry (GC-MS) (see figure below). All compounds were identified as their trimethylsilyl (TMS), isopropyl ester (ISP), and tert-butyldimethylsilyl (tBDMS) derivatives. In general, the compounds follow the abiotic synthesis pattern of other known meteorite classes of organic compounds [1,2]: a general decrease in abundance with increasing carbon number within a class of compounds and many, if not all, possible isomers present at a given carbon number. The majority of the shown compounds was positively identified by comparison of their mass spectra to commercially available standards or synthesized standards.

  17. Microporous-mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them

    Science.gov (United States)

    Härmas, M.; Thomberg, T.; Kurig, H.; Romann, T.; Jänes, A.; Lust, E.

    2016-09-01

    Various electrochemical methods have been applied to establish the electrochemical characteristics of the electrical double layer capacitor (EDLC) consisting of the 1 M triethylmethylammonium tetrafluoroborate solution in acetonitrile and activated carbon based electrodes. Activated microporous carbon materials used for the preparation of electrodes have been synthesized from the hydrothermal carbonization product (HTC) prepared via hydrothermal carbonization process of D-(+)-glucose solution in H2O, followed by activation with ZnCl2, KOH or their mixture. Highest porosity and Brunauer-Emmett-Teller specific surface area (SBET = 2150 m2 g-1), micropore surface area (Smicro = 2140 m2 g-1) and total pore volume (Vtot = 1.01 cm3 g-1) have been achieved for HTC activated using KOH with a mass ratio of 1:4 at 700 °C. The correlations between SBET, Smicro, Vtot and electrochemical characteristics have been studied to investigate the reasons for strong dependence of electrochemical characteristics on the synthesis conditions of carbon materials studied. Wide region of ideal polarizability (ΔV ≤ 3.0 V), very short characteristic relaxation time (0.66 s), and high specific series capacitance (134 F g-1) have been calculated for the mentioned activated carbon material, demonstrating that this system can be used for completing the EDLC with high energy- and power densities.

  18. Polymer-assisted nanoparticulate contrast-enhancing materials

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The application of nanotechnology in medicine research has significant potential in modern biomedical research,disease diagnosis and therapy.Organic fluorophore-based detection techniques have been widely used as imaging and signal transduction tools for the detection of trace levels of analytes.The photosensitivity of the fluorophores,however,limits their application in such complex environments as living bio-systems where degradation or photobleaching occurs.Inorganic nanoparticles have unique and stable optical,electrical,magnetic and catalytic properties because of their various shapes,sizes and compositions.The potential of the nanoparticles as novel imaging agents has been studied as a possible solution to this problem.Surface modification of inorganic nanoparticles could enhance their biostability in physiological conditions and ability of targeting bioactive molecules.

  19. Nano-particulate dispersion and reinforcement of nanostructured composite materials

    Science.gov (United States)

    Yong, Virginia Hiu-Hung

    2005-12-01

    This research investigated the feasibility of reinforcing polymer composites using 30 nm SiC nanoparticles in a vinyl ester resin. The SiC nanoparticles were examined using transmission electron microscopy and thermogravimetric analysis. Gamma-methacryloxy propyl trimethoxy silane (MPS) was chosen as the coupling agent. Both mixing procedures with (1) the nanoparticles pretreated with a dilute MPS solution in an acid 5% (v/v) water-ethanol mixture and (2) the MPS sonicated as an integral blend with the filled vinyl ester, were attempted. Fourier transform infrared spectroscopy was used to study the silanol condensation between MPS and the SiC nanoparticles. The results show that ultrasonic mixing did not fully disperse the particles. Hence the composite strength did not improve although the modulus increased. The use of MPS improved the dispersion quality and hence the composite strength. The rheological behavior of SiC nanoparticle-filled vinyl ester resin systems was evaluated in terms of the Bingham, power law, Herschel-Bulkley, and Casson models. Even when the particle loading was less then 4% by weight, the viscosity of the nanoparticle suspension was found to increase much more than that of a microparticle suspension. This phenomenon may be the result of association between nanoparticles and polymer molecules, effectively making the nanoparticles larger. The resulting reduction in the mobility of polymer molecules also led to delayed curing. The maximum particle loading corresponding to infinite viscosity was determined as 0.1 volume fraction using the (1 - eta r-1/2) - φ dependence. The experimental optimum fractional weight per cent of the dispersants (wt. % dispersant/wt. % SiC) was found to be around 40% for 30 nm SiC nanoparticles, which is in close agreement with the theoretically calculated monolayer coverage dosage of 67%.

  20. Relationship between carbonaceous rocks and uranium mineralization

    International Nuclear Information System (INIS)

    The relationship between carboniferous materials in the rocks and the formation of hydrothermal uranium mineralization has been discussed with the example of super-large hydrothermal uranium deposits (such as Canada's Athabasca, Australia's East Alligator River, Germany's Schlema-Alberoda and Roenneberg, Gabon's Franceville). According to the thermodynamic data, it has been emphasized that the interaction between carbon and water causes the formation of gaseous reductants (such as CO2, CO, H2 and CH4) under the condition of higher temperature and lower pressure. It has been indicated that CH4 should be the main gaseous reductants under the temperature (150-200 degree C) and pressure (50-100 MPa) which are suitable to the uranium metallogenesis. This conclusion accords with the practical situation observed in the deposits mentioned above, at the same time disaffirms the traditional points of view that the carbonaceous rocks can be the uranium sources during the formation of hydrothermal uranium deposits. (authors)

  1. Role of oil derived carbonaceous phase in the performance of sewage sludge-based materials as media for desulfurizaton of digester gas

    Science.gov (United States)

    Kante, Karifala; Qiu, Jieshan; Zhao, Zongbin; Chang, Yu; Bandosz, Teresa J.

    2008-02-01

    Desulfurization adsorbents for purification of digester gas were prepared by pyrolysis of sewage sludge impregnated with spent mineral oil. To evaluate the changes in the structural and chemical properties the pyrolysis time and temperature varied. The materials were characterized using adsorption of nitrogen, FTIR, XRD, ICP, SEM and thermal analysis. Their catalytic activity was tested in the removal of hydrogen sulfide from simulated mixture of digester gas. The results indicated the importance of new carbon phase from the oil precursor. It provided mesoporosity, which increased the dispersion of catalytic phase and space for storage of surface reaction products. The results indicated that the adsorbents obtained at 950 °C are much more active in the process of hydrogen sulfide oxidation than those obtained at 650 °C. Moreover, longer heat treatment is also beneficial for the development of surface catalytic properties. Extensive pyrolysis stabilizes carbon phase via increasing its degree of aromatization and provides activation agents for this phase coming from decomposition and rearrangement of inorganic phase.

  2. Granular model, percolation-resistivity, ESR and elastic modulus of carbonaceous materials application to the babassu endocarp heat treated up to 22000C

    International Nuclear Information System (INIS)

    A microscopic model (granular model) is presented to study heat treated carbons. A granular structure is defined in the carbon matrix, composed of turbostratic graphite-like microcrystallites, cross-linkings and micropores. A general expression is developed to calculate the volume fraction X of the conducting phase of the granular structure as a function of structural parameters obtained from X-ray diffraction small angle X-ray scattering. The granular model and the percolation theory are used to explain the electrical resistivity behaviour with the heat treatment temperature (HTT), where X is the fundamental parameter. An electron spin resonance (ESR) study of the low and high HTT ranges is presented, including the transition range (700-13000C). The elucitation of the spin center nature in this range and the liking with the two adjacent ranges has been pursued. An expression to calculate the elastic modulus (Young's modulus), based on the microscopic granular model with the fundamental participation of the cross-linkings, is derived to account for the behavior of the modulus with the HTT. The granular model with the expression of X, the percolation-resistivity theory, the ESR study, and the expression of the elastic modulus are applied to the babassu endocarp carbon heat treated up to 22000C. This material can be classified as a tipical non-graphitic carbon, being useful to search the validity of the model and the proposed expressions. It is observed that the theoretical expressions describe with reasonable accuracy the respective experimental behaviours. The measurements of physical and chemical parameters of the babassu endocarp treated up to 22000C area also included. (author)

  3. Carbonaceous matters in epigenetic uranium deposits associated with zones of layer oxidation

    International Nuclear Information System (INIS)

    The paper presents investigations on the carbonaceous substances encountered in uranium deposits of a certain type. A set of methods (IR spectroscopy, ultimate analysis and others) was used to examine the various types of carbonaceous compounds, their composition, structure and geochemistry, and their role in the formation of uranium concentrations. All the carbonaceous substances are divided into two main groups according to their spacial distribution: those syngenetic to the ore-containing sediments; and epigenetic materials introduced into them as a result of the development of an ascending carbon-bitumen process. A considerable similarity was found between the compositions and properties of forms that are known to have no genetic relation to each other, while carbonaceous formations related by a common origin and belonging to the same group are represented by several modifications with different internal structures and compositons. All the carbonaceous compounds of the syngenetic group occur in a random relationships to the uranium mineralization. Nevertheless, the presence of syngenetic carbonaceous substances assists the formation of rich concentrations of uranium. The appearance of epigenetic carbonaceous substances (bitumens) is generally more closely spacially related to zones of development of uranium mineralization. The maximum concentrations of uranium are typical for hard insoluble bitumens. Among the soluble bitumens, the carbonaceous substances - bitumen S - bound in epigenetic materials, are most enriched in uranium (up to px10-3%). The role of the bitumens differs in the formation of displaced and primary uranium ores. In the first case, the significance of the bitumens, seems to lie in the reduction of the redox potential of the infiltrated uranium-bearing waters. In the second case, it is possible that a co-migration of uranium and certain types of carbonaceous substance (bitumen S, hard bitumen) took place in reducing (by iron) solutions

  4. Gas sensors based on nano-particulate oxide films

    International Nuclear Information System (INIS)

    Full text: Tungsten oxide with a small particle size and narrow size distribution, as confirmed by XRD and TEM studies, has been synthesized using a microwave plasma process. Stable dispersions with a small aggregate size were obtained by in-situ or ultrasonic dispersion techniques. Continuous, thin nanoparticulate films were deposited on glass substrates with interdigital Au electrodes. A gas testing chamber with integrated heating and four-point resistance measurement setup was designed for measuring the electric resistance of the sensor as a function of temperature and gas composition. Initial tests show a fast and reproducible response to different levels of O2 in N2. (author)

  5. A study of carbonaceous char oxidation in air by semi-quantitative FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A.; Krzton, A.; Finqueneisel, G.; Heintz, O.; Weber, J.-V.; Zimny, T. [IUT Saint-Avold (France). Departement Chimie

    1998-05-01

    The paper describes the methodology of semi-quantitative characterization of coal-derived carbonaceous material oxidized under mild thermal conditions. Infrared spectroscopic analysis was applied to the determination of chemical changes induced by oxidation. A curve fitting model has thus been developed to evidence the evolution of specific chemical groups during treatment. The possibility to follow mechanisms and kinetics of carbonaceous char oxidation through data obtained by this model has been demonstrated. 28 refs., 7 figs., 2 tabs.

  6. Nanoparticulate mineral matter from basalt dust wastes.

    Science.gov (United States)

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. PMID:26551199

  7. Organic Compounds in Carbonaceous Meteorites

    Science.gov (United States)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  8. Micro- and nanoparticulates for DNA vaccine delivery.

    Science.gov (United States)

    Farris, Eric; Brown, Deborah M; Ramer-Tait, Amanda E; Pannier, Angela K

    2016-05-01

    DNA vaccination has emerged as a promising alternative to traditional protein-based vaccines for the induction of protective immune responses. DNA vaccines offer several advantages over traditional vaccines, including increased stability, rapid and inexpensive production, and flexibility to produce vaccines for a wide variety of infectious diseases. However, the immunogenicity of DNA vaccines delivered as naked plasmid DNA is often weak due to degradation of the DNA by nucleases and inefficient delivery to immune cells. Therefore, biomaterial-based delivery systems based on micro- and nanoparticles that encapsulate plasmid DNA represent the most promising strategy for DNA vaccine delivery. Microparticulate delivery systems allow for passive targeting to antigen presenting cells through size exclusion and can allow for sustained presentation of DNA to cells through degradation and release of encapsulated vaccines. In contrast, nanoparticle encapsulation leads to increased internalization, overall greater transfection efficiency, and the ability to increase uptake across mucosal surfaces. Moreover, selection of the appropriate biomaterial can lead to increased immune stimulation and activation through triggering innate immune response receptors and target DNA to professional antigen presenting cells. Finally, the selection of materials with the appropriate properties to achieve efficient delivery through administration routes conducive to high patient compliance and capable of generating systemic and local (i.e. mucosal) immunity can lead to more effective humoral and cellular protective immune responses. In this review, we discuss the development of novel biomaterial-based delivery systems to enhance the delivery of DNA vaccines through various routes of administration and their implications for generating immune responses. PMID:27048557

  9. Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation.

    Science.gov (United States)

    Ren, Xiaoyan; Tu, Victor; Bischoff, David; Weisgerber, Daniel W; Lewis, Michael S; Yamaguchi, Dean T; Miller, Timothy A; Harley, Brendan A C; Lee, Justine C

    2016-05-01

    Current strategies for skeletal regeneration often require co-delivery of scaffold technologies, growth factors, and cellular material. However, isolation and expansion of stem cells can be time consuming, costly, and requires an additional procedure for harvest. Further, the introduction of supraphysiologic doses of growth factors may result in untoward clinical side effects, warranting pursuit of alternative methods for stimulating osteogenesis. In this work, we describe a nanoparticulate mineralized collagen glycosaminoglycan scaffold that induces healing of critical-sized rabbit cranial defects without addition of expanded stem cells or exogenous growth factors. We demonstrate that the mechanism of osteogenic induction corresponds to an increase in canonical BMP receptor signalling secondary to autogenous production of BMP-2 and -9 early and BMP-4 later during differentiation. Thus, nanoparticulate mineralized collagen glycosaminoglycan scaffolds may provide a novel growth factor-free and ex vivo progenitor cell culture-free implantable method for bone regeneration. PMID:26950166

  10. Effects of SiC volume fraction and aluminum particulate size on interfacial reactions in SiC nanoparticulate reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Research highlights: → Particulate size of matrix affects significantly the interfacial reaction. → The SiC volume fraction affects significantly the interfacial reaction. → MgO can enhance the interfacial wettability and provide a diffusion barrier. - Abstract: The SiC nanoparticulate reinforced Al-3.0 wt.% Mg composites were fabricated by combining pressureless infiltration with ball-milling and cold-pressing technology at 700 deg. C for 2 h. The effects of SiC nanoparticulate volume fractions (6%, 10% and 14%) and Al particulate sizes (38 μm and 74 μm) on interfacial reactions were investigated by SEM, TEM and X-ray diffraction. The results show that the MgO at the interface between SiC nanoparticulate and molten Al can provide a barrier for the diffusion of Si, C and Al. Using Al particulate (74 μm) as raw material, the Al4C3 phase was not found in the composites containing 6 vol.% and 10 vol.% SiC, but presented in the composites containing 14 vol.% SiC. When SiC content up to 14 vol.%, the products of MgO around SiC nanoparticulate are not enough to provide effective protection from the reaction between SiC and molten Al, therefore the diffusion of Si, C and Al can take place to produce Al4C3 and Si phases. Using 38 μm Al particulate as raw material, the fine Al particulate possesses the high reaction activity and can easily be embedded into the gap among the big Mg particulate segregated at the interface, resulting in the appearance of exposure surface of SiCp to the Al and the forming of diffusion channels for the atomics C, Si and Al. So, the formations of Al4C3 and Si phases were occurred.

  11. Organic Chemistry of Carbonaceous Meteorites

    Science.gov (United States)

    Cronin, John R.

    2001-01-01

    Chiral and carbon-isotopic analyses of isovaline have been carried out on numerous samples of the Murchison and one sample of the Murray carbonaceous chondrite. The isovaline was found to be heterogeneous with regard to enantiomeric excess (ee) both between samples and within a single Murchison sample. L-Excesses ranging from 0 to 15% were observed. The isovaline delta(sup 13) C was found to be about +18%. No evidence was obtained suggesting terrestrial contamination in the more abundant L-enantiomer. A correlation was observed between isovaline (also alpha - aminoisobutyric acid) concentration and PCP content of five CM chondrites. It is suggested that isovaline, along with other meteoritic a-methyl amino acids with ee, are of presolar origin. The possible formation of ee in extraterrestrial amino acids by exposure to circularly polarized light or by magnetochiral photochemistry is discussed. Key words: Murchison meteorite, Murray meteorite, amino acids, isovaline, chirality, carbon isotopes, PCP.

  12. Carbonaceous chondrite clasts in the Kapoeta howardite

    Science.gov (United States)

    Brearley, Adrian J.; Papike, J. J.

    1993-01-01

    A petrographic and mineralogical study of a number of carbonaceous chondrite clasts in the Kapoeta howardite has been carried out. Most of the clasts have mineralogical and chemical properties which link them to the CM carbonaceous chondrites. Some clasts contain chondrules which often have well-developed fine-grained rims, but many have been extensively brecciated. PCP-rich objects are common and pentlandite and pyrrhotite also occur. Calcite has also been found. The remainder of the clasts are extremely fine-grained and appear to be closely related to CI carbonaceous chondrites. In these clasts magnetite framboids are common and finegrained sulfides and magnetite occur disseminated throughout the matrix.

  13. Nanoparticulate carrier system: a novel treatment approach for hyperlipidemia.

    Science.gov (United States)

    Sharma, Kritika; Kumar, Kulyash; Mishra, Neeraj

    2016-01-01

    Hyperlipidemia is a prevailing risk factor that leads to development and progression of atherosclerosis and consequently cardiovascular diseases. Several antihyperlipidemic drugs are having various disadvantages such as low water solubility and poor bioavailabilty due to presystemic gastrointestinal clearance. Thus, there is a considerable need for the development of efficient delivery methods and carriers. This review focuses on the importance and role of various nanoparticulate systems as carrier for antihyperlipidemic drugs in the treatment of hyperlipidemia. Some nanoparticle technology-based products are approved by FDA for effective treatment of hyperlipidemia, namely Tricor® by Abbott Laboratories (Chicago, IL, USA) and Triglide® by Skye Pharma (London, UK). Efforts to address each of these issues are going on, and should remain the focus on the future studies and look forward to many more clinical products in the future. PMID:24904976

  14. A TEM analysis of nanoparticulates in a Polar ice core

    International Nuclear Information System (INIS)

    This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar with some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates

  15. Concepts and practices used to develop functional PLGA-based nanoparticulate systems

    Directory of Open Access Journals (Sweden)

    Sah H

    2013-02-01

    Full Text Available Hongkee Sah,1,2 Laura A Thoma,2 Hari R Desu,2 Edel Sah,3 George C Wood21College of Pharmacy, Ewha Womans University, Sedaemun-gu, Seoul, South Korea; 2College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA; 3College of Science, University of Notre Dame, Notre Dame, IN, USAAbstract: The functionality of bare polylactide-co-glycolide (PLGA nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in-vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol, polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner.Keywords: nanoparticulate dosage forms, nanoparticles

  16. Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation.

    Science.gov (United States)

    Chikramane, Prashant S; Kalita, Dhrubajyoti; Suresh, Akkihebbal K; Kane, Shantaram G; Bellare, Jayesh R

    2012-11-13

    Extreme dilutions, especially homeopathic remedies of 30c, 200c, and higher potencies, are prepared by a process of serial dilution of 1:100 per step. As a result, dilution factors of 10(60), 10(400), or even greater are achieved. Therefore, both the presence of any active ingredient and the therapeutic efficacy of these medicines have been contentious because the existence of even traces of the starting raw materials in them is inconceivable. However, physicochemical studies of these solutions have unequivocally established the presence of the starting raw materials in nanoparticulate form even in these extreme (super-Avogadro, >10(23)) dilutions. In this article, we propose and validate a hypothesis to explain how nanoparticles are retained even at such enormous dilution levels. We show that once the bulk concentration is below a threshold level of a few nanograms/milliliter (ng/mL), at the end of each dilution step, all of the nanoparticles levitate to the surface and are accommodated as a monolayer at the top. This dominant population at the air-liquid interface is preserved and carried to the subsequent step, thereby forming an asymptotic concentration. Thus, all dilutions are only apparent and not real in terms of the concentrations of the starting raw materials. PMID:23083226

  17. Photovoltaic Properties of Nano-particulate and Nanorod Array ZnO Electrodes for Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    The nanorod array ZnO electrode showed stable photovoltaic properties compared with nano-particulate electrode despite the small adsorption of dye-molecules. The well-crystallized surface of nanorod should reduce significantly the formation of Zn2+-dye aggregates. The nanorod array electrode is also favorable for electrolyte diffusion since the diffusion channel is highly spacious and hardly blocked by Zn2+-dye aggregates within the electrode, while the complicated nano-pore channels in nano-particulate electrode can be easily blocked. Graetzel-type dye-sensitized solar cell (DSSC) has been considered as a new candidate for the next solar cell device in the near future. Its distinct colorful and transparent features as well as the possibility of low-price production allow much extended applications of DSSC compared to conventional silicon solar cells. Nanocrystalline semiconducting electrode in DSSC, usually made of anatase TiO2, is the one of essential component of this device, which serves as a supporting transparent film for dye-molecules and then receives the photoelectrons injected from dye-molecules and furnishes them adequate diffusion path to the back-contact. Among various kinds of semiconducting materials with photovoltaic properties, anatase TiO2 has been known as the best due to good matching of conduction band (CB) edge with LUMO level of ruthenium dye-molecule

  18. Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes

    International Nuclear Information System (INIS)

    Copper based hybrid composites containing nano-sized silicon carbide and carbon nanotubes reinforcements with minimal porosity were fabricated via mechanical milling followed by hot pressing technique. Microstructures of the powders and consolidated materials were studied using scanning electron microscope, X-ray diffraction, Raman spectroscopy, and scanning transmission electron microscope. Microstructural characterization of the materials revealed that the addition of nanosized silicon carbide reinforcement lowered the grain growth rate and enhanced the homogenization during mechanical milling. Microhardness measurements and compression test showed considerable improvements in mechanical properties of the composites due to the addition of nanoparticulates and the grain refinement. The strength of the composite materials was discussed using theoretical models of the Hall-Petch, Orowan, and thermal mismatch mechanisms to determine the contribution of each mechanism in total strength

  19. Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Akbarpour, M.R., E-mail: mreza.akbarpour@gmail.com [Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Salahi, E.; Alikhani Hesari, F. [Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of); Kim, H.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, 790-784 Pohang (Korea, Republic of)

    2013-06-10

    Copper based hybrid composites containing nano-sized silicon carbide and carbon nanotubes reinforcements with minimal porosity were fabricated via mechanical milling followed by hot pressing technique. Microstructures of the powders and consolidated materials were studied using scanning electron microscope, X-ray diffraction, Raman spectroscopy, and scanning transmission electron microscope. Microstructural characterization of the materials revealed that the addition of nanosized silicon carbide reinforcement lowered the grain growth rate and enhanced the homogenization during mechanical milling. Microhardness measurements and compression test showed considerable improvements in mechanical properties of the composites due to the addition of nanoparticulates and the grain refinement. The strength of the composite materials was discussed using theoretical models of the Hall-Petch, Orowan, and thermal mismatch mechanisms to determine the contribution of each mechanism in total strength.

  20. Indigenous Carbonaceous Matter in the Nakhla Mars Meteorite

    Science.gov (United States)

    Clemett, S. J.; Thomas-Keprta, K. L.; Rahman, Z.; Le, L.; Wentworth, S. J.; Gibson, E. K.; McKay, D. S.

    2016-01-01

    Detailed microanalysis of the Martian meteorite Nakhla has shown there are morphologically distinct carbonaceous features spatially associated with low-T aqueous alteration phases including salts and id-dingsite. A comprehensive suite of analytical instrumentation including optical microscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, focused ion beam (FIB) microscopy, transmission electron microscopy (TEM), two-step laser mass spectrometry (mu-L(sup 2)MS), laser mu-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nanoscale secondary ion mass spectrometry (NanoSIMS) are being used to characterize the carbonaceous matter and host mineralogy. The search for carbonaceous matter on Mars has proved challenging. Viking Landers failed to unambiguously detect simple organics at either of the two landing sites although the Martian surface is estimated to have acquired at least 10(exp15) kg of C as a consequence of meteoritic accretion over the last several Ga. The dearth of organics at the Martian surface has been attributed to various oxidative processes including UV photolysis and peroxide activity. Consequently, investigations of Martian organics need to be focused on the sub-surface regolith where such surface processes are either severely attenuated or absent. Fortuitously since Martian meteorites are derived from buried regolith materials they provide a unique opportunity to study Martian organic geochemistry.

  1. Carbonaceous aerosols in Norwegian urban areas

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2009-03-01

    Full Text Available Little is known regarding levels and source strength of carbonaceous aerosols in Scandinavia. In the present study, ambient aerosol (PM10 and PM2.5 concentrations of elemental carbon (EC, organic carbon (OC, water-insoluble organic carbon (WINSOC, and water-soluble organic carbon (WSOC are reported for a curbside site, an urban background site, and a suburban site in Norway in order to investigate their spatial and seasonal variations. Aerosol filter samples were collected using tandem filter sampling to correct for the positive sampling artefact introduced by volatile and semivolatile OC. Analyses were performed using the thermal optical transmission (TOT instrument from Sunset Lab Inc., which corrects for charring during analysis. Finally, we estimated the relative contribution of OC from wood burning based on the samples content of levoglucosan.

    Levels of EC varied by more than one order of magnitude between sites, likely due to the higher impact of vehicular traffic at the curbside and the urban background sites. In winter, the level of particulate organic carbon (OCp at the suburban site was equal to (for PM10 or even higher (for PM2.5 than the levels observed at the curbside and the urban background sites. This finding was attributed to the impact of residential wood burning at the suburban site in winter, which was confirmed by a high mean concentration of levoglucosan (407 ng m−3. This finding indicates that exposure to primary combustion derived OCp could be equally high in residential areas as in a city center. It is demonstrated that OCp from wood burning (OCwood accounted for almost all OCp at the suburban site in winter, allowing a new estimate of the ratio TCp/levoglucosan for both PM10 and PM2.5. Particulate carbonaceous material (PCM

  2. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting.

    Science.gov (United States)

    Xu, You; Kraft, Markus; Xu, Rong

    2016-05-31

    Water splitting driven by sunlight or renewable resource-derived electricity has attracted great attention for sustainable production of hydrogen from water. Current research interest in this field is focused on the development of earth-abundant photo- or electrocatalytic materials with high activity and long-term stability for hydrogen and/or oxygen evolution reactions. Due to their unique properties and characteristics, carbon and related carbon-based materials show great potential to replace some of the existing precious metal catalysts in water splitting technology. This tutorial review summarizes the recent significant progress in the fabrication and application of metal-free carbonaceous materials as photo- or electrocatalysts for water splitting. Synthetic strategies and applications of various carbonaceous materials, including graphitic carbon nitride (g-C3N4), graphene, carbon nanotubes (CNTs) as well as other forms of carbon-containing materials, for electrochemical or photochemical water splitting are presented, accompanied by a discussion of the key scientific issues and prospects for the future development of metal-free photo- and electrocatalysts. PMID:27094875

  3. Comparison between aesthetic and thermal performances of copper oxide and titanium dioxide nano-particulate coatings

    International Nuclear Information System (INIS)

    Nano-particulate coatings with high reflectance against solar irradiation can control undesirable thermal heating by sunlight absorption. It can reduce the energy consumption for air conditioning of houses and cars. For the objects covered by these coatings and subjected to human sight, e.g. roofing surfaces, high dazzle of reflected visible light can offend the human eyes and spoil the fine view of covered objects. The authors introduced a new optimization method in designing pigmented coatings which considers both thermal and aesthetic effects in previous studies. The optimization is possible by controlling the material, size and concentration of pigment particles. The proposed coatings maximize the reflectance of near infrared (NIR) region to care the thermal effects and minimize the visible (VIS) reflected energy to keep the dark tone because of aesthetic appeal. Two different types of copper oxide pigment particles namely cupric oxide (CuO) and cuprous oxide (Cu2O) were considered in this study. The optimum characteristics and performances are obtained and compared with titanium dioxide (TiO2) particle as a typical cool pigment. The results show that cupric oxide has much better performance for our objective.

  4. Origin of Thorium/Uranium Variations in Carbonaceous Chondrites

    OpenAIRE

    Goreva, J. S.; Burnett, D. S.

    2000-01-01

    Thorium-, U-, and Pb-isotopic analyses of a wide variety of planetary materials show that Th/U ratio (by weight) varies from 3.5 to 4.2. It is generally believed that chondritic meteorites contain refractory lithophile elements in a relative proportions close to solar, i.e., CI chondrites [1]. Surprisingly, a number of analyses of different types of carbonaceous chondrites show a large (at least a factor of 3) scatter in Th/U measurements [2]. The widest spread in Th/U is observed in the most...

  5. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors.

    Science.gov (United States)

    Wu, Xi-Lin; Wen, Tao; Guo, Hong-Li; Yang, Shubin; Wang, Xiangke; Xu, An-Wu

    2013-04-23

    As a newly developed material, carbon gels have been receiving considerable attention due to their multifunctional properties. Herein, we present a facile, green, and template-free route toward sponge-like carbonaceous hydrogels and aerogels by using crude biomass, watermelon as the carbon source. The obtained three-dimensional (3D) flexible carbonaceous gels are made of both carbonaceous nanofibers and nanospheres. The porous carbonaceous gels (CGs) are highly chemically active and show excellent mechanical flexibility which enable them to be a good scaffold for the synthesis of 3D composite materials. We synthesized the carbonaceous gel-based composite materials by incorporating Fe3O4 nanoparticles into the networks of the carbonaceous gels. The Fe3O4/CGs composites further transform into magnetite carbon aerogels (MCAs) by calcination. The MCAs keep the porous structure of the original CGs, which allows the sustained and stable transport of both electrolyte ions and electrons to the electrode surface, leading to excellent electrochemical performance. The MCAs exhibit an excellent capacitance of 333.1 F·g(-1) at a current density of 1 A·g(-1) within a potential window of -1.0 to 0 V in 6 M KOH solution. Meanwhile, the MCAs also show outstanding cycling stability with 96% of the capacitance retention after 1000 cycles of charge/discharge. These findings open up the use of low-cost elastic carbon gels for the synthesis of other 3D composite materials and show the possibility for the application in energy storage. PMID:23548083

  6. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption

    KAUST Repository

    Zhao, Yunfeng

    2015-01-01

    Selective adsorption of CO2 has important implications for many energy and environment-related processes, which require the separation of CO2 from other gases (e.g. N2 and CH4) with high uptakes and selectivity. The development of high-performance adsorbents is one of the most promising solutions to the success of these processes. The present review is focused on the state-of-the-art of carbon-based (carbonaceous) adsorbents, covering microporous inorganic carbons and microporous organic polymers, with emphasis on the correlation between their textural and compositional properties and their CO2 adsorption/separation performance. Special attention is given to the most recently developed materials that were not covered in previous reviews. We summarize various effective strategies (N-doping, surface functionalization, extra-framework ions, molecular design, and pore size engineering) for enhancing the CO2 adsorption capacity and selectivity of carbonaceous adsorbents. Our discussion focuses on CO2/N2 separation and CO2/CH4 separation, while including an introduction to the methods and criteria used for evaluating the performance of the adsorbents. Critical issues and challenges regarding the development of high-performance adsorbents as well as some overlooked facts and misconceptions are also discussed, with the aim of providing important insights into the design of novel carbonaceous porous materials for various selective adsorption based applications. This journal is © The Royal Society of Chemistry.

  7. Process for the production of hydrogen and electricity from carbonaceous fuels and process heat

    International Nuclear Information System (INIS)

    This patent application concerns the simultaneous production of hydrogen and electricity from carbonaceous fuels and process heat. An acid formed from a non-metallic oxide or a mixture of a halogen and water are used as the oxygen carrier for the combustion of the carbonaceous fuel at a high pressure. The combustion gases are pressure relieved in a turbine to generate electricity. The chemical components required for forming the initial material (acid or mixture of water and halogen) are separated from the waste gas. These processes have distinct advantages compared with previously introduced processes for producing hydrogen and electricity. (orig.)

  8. Magnetite in CI carbonaceous meteorites - Origin by aqueous activity on a planetesimal surface

    Science.gov (United States)

    Kerridge, J. F.; Mackay, A. L.; Boynton, W. V.

    1979-01-01

    The composition and morphology of magnetite in CI carbonaceous meteorites appear incompatible with a nebular origin. Mineralization on the meteorite parent body is a more plausible mode of formation. The iodine-xenon age of this material therefore dates an episode of secondary mineralization on a planetesimal rather than the epoch of condensation in the primitive solar nebula.

  9. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Cofer, W.R. III; Levine, J.S. (National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center)

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  10. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m-1 (OC) and 0.120 to 0.160 mg/m-3 (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m-3 (OC) and 0.006--0.050 mg/m-3 (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC)

  11. On the Interaction between a Nanoparticulate System and the Human Body in Body Area Nanonetworks

    Directory of Open Access Journals (Sweden)

    Valeria Loscrí

    2015-08-01

    Full Text Available In this work, we investigate the interaction of a nanoparticulate system for nanomedicine applications with the biological environment, i.e., the human body. Following the molecular communication paradigm, we assess how our nanoparticulate system model is suitable for coexistence in a biological environment. Specifically, we assume the presence of the human immune system that can affect the optimal behavior of nanoparticles, aiming to locally deliver drug inside the human body. When a flow of nanoparticles is injected into the blood, the interference due to the immune system can provide a strong decrease of the nanoparticle concentration, by means of “humoral immunity”, the phagocytosis process, etc. As a consequence, the correct drug delivery will occur with a lower probability. Since the mechanism behind the biological immune system is very complicated, in this paper, we start from a simplistic nanoparticulate model, where the nanoparticles and the cells of the immune system are subject to the diffusion laws. Finally, we derive the end-to-end physical model of our nanoparticulate nanomedicine system with the presence of the human immune system cells. The error analysis is then investigated in terms of how these errors can affect the performance of the system, i.e., nanoparticle survival probability.

  12. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats

    DEFF Research Database (Denmark)

    Hadrup, Niels; Löschner, Katrin; Bergström, Anders;

    2012-01-01

    Subacute toxicity of 14 nm nanoparticulate silver (Ag-NP) stabilised with polyvinylpyrrolidone and ionic silver in the form of silver acetate (Ag-acetate) was investigated in four-week-old Wistar rats. Animals received orally by gavage the following: vehicle control (10 $, 6 #); Ag-NP at doses: 2...

  13. Nanoparticules d'or: De l'imagerie par resonance magnetique a la radiosensibilisation

    Science.gov (United States)

    Hebert, Etienne M.

    Cette thèse approfondit l'étude de nanoparticules d'or de 5 nm de diamètre recouvertes de diamideéthanethioldiethylènetriaminepentacétate de gadolinium (DTDTPA:Gd), un agent de contraste pour l'imagerie par résonance magnétique (IRM). En guise de ciblage passif, la taille des nanoparticules a été contrôlée afin d'utiliser le réseau de néovaisseaux poreux et perméable des tumeurs. De plus les tumeurs ont un drainage lymphatique déficient qui permet aux nanoparticules de demeurer plus longtemps dans le milieu interstitiel de la tumeur. Les expériences ont été effectuées sur des souris Balb/c femelles portant des tumeurs MC7-L1. La concentration de nanoparticules a pu être mesurée à l'IRM in vivo. La concentration maximale se retrouvait à la fin de l'infusion de 10 min. La concentration s'élevait à 0.3 mM dans la tumeur et de 0.12 mM dans le muscle environnant. Les nanoparticules étaient éliminées avec une demi-vie de 22 min pour les tumeurs et de 20 min pour le muscle environnant. Les nanoparticules ont été fonctionnalisées avec le peptide Tat afin de leur conférer des propriétés de ciblage actif La rétention de ces nanoparticules a ainsi été augmentée de 1600 %, passant d'une demi-vie d'élimination de 22 min à 350 min. La survie des souris a été mesurée à l'aide de courbes Kaplan-Meier et d'un modèle mathématique évalue l'efficacité de traitements. Le modèle nous permet, à l'aide de la vitesse de croissance des tumeurs et de l'efficacité des traitements, de calculer la courbe de survie des spécimens. Un effet antagoniste a été observé au lieu de l'effet synergétique attendu entre une infusion de Au@DTDTPA:Gd et l'irradiation aux rayons X. L'absence d'effet synergétique a été attribuée à l'épaisseur du recouvrement de DTDTPA:Gd qui fait écran aux électrons produits par l'or. De plus, le moyen d'ancrage du recouvrement utilise des thiols qui peuvent s'avérer être des capteurs de radicaux. De plus

  14. Aerosol-Assisted Self-Assembly of Reticulated N-Doped Carbonaceous Submicron Spheres for Effective Removal of Hexavalent Chromium.

    Science.gov (United States)

    He, Jiawei; Long, Yuan; Wang, Yiyan; Wei, Chaoliang; Zhan, Jingjing

    2016-07-01

    This Research Article described a facile one-step method to prepare reticulated N-doped carbonaceous submicron spheres. Through a simple aerosol-assisted technology, glucosamine sulfate used as a carbon source was aerosolized and carbonized to functionalized carbonaceous submicron spheres. The electrostatic attraction between protonated amino groups and sulfate in the aerosol droplets induced a self-assembly and led to the formation of reticular structure, avoiding the use of templates. Compared to bare carbonaceous materials produced from glucose, reticulated N-doped carbonaceous spheres exhibit higher efficiency in the removal of Cr(VI), where the doping of element nitrogen led to electrostatic attraction between protonated nitrogen and chromium ions, and reticulated structure created relatively higher surface area and pore volume, facilitating materials to contact with Cr(VI) ions. XPS characterization proved these novel N-doped carbonaceous materials could effectively transform Cr(VI) to less toxic Cr(III) because of the surface reducing groups. For the practical application, several factors including the initial pH, materials dosage and recycle numbers on the removal performance were studied. PMID:27299376

  15. Carbonaceous aerosols in an urban tunnel

    Science.gov (United States)

    Ancelet, Travis; Davy, Perry K.; Trompetter, William J.; Markwitz, Andreas; Weatherburn, David C.

    2011-08-01

    Particulate matter in the Mount Victoria Tunnel, an urban road tunnel 623 m in length with an average traffic volume of 2070-2300 vehicles per hour located in Wellington, New Zealand, was studied to gain an understanding of carbonaceous species emitted from motor vehicles. The average PM 2.5 concentration during peak hours in the tunnel was found to be 67.6 ± 19.4 μg m -3. Analysis of carbonaceous species present (OC, EC, TC) was performed by both the NIOSH and IMPROVE thermal/optical protocols and carbonaceous species were found to make up 63-73% of the total PM in the tunnel. Comparison of TC concentrations obtained from each protocol revealed that no significant difference was present between the two protocols. Black carbon (BC), also used as a measure of EC, was determined using light reflection and BC values did not differ significantly from EC concentrations determined using the NIOSH and IMPROVE protocols. TC was also determined using EA/IRMS and it was found that TC concentrations from EA/IRMS directly correlated with TC results obtained using the NIOSH protocol. Stable isotope analysis of the PM 2.5 yielded δ 13C values from -24.7 to -28.3‰, typical of motor vehicles. Analysis of particle-phase PAHs by thermal desorption GC/MS revealed an average total PAH concentration of 70.0 ± 4.1 ng m -3 and PAHs were found to contribute 0.10% of total PM 2.5 in the tunnel. PAH emissions in the tunnel were found to be enriched in low molecular weight PAHs, indicative of emissions from diesel-fueled vehicles. Analysis of individual particle composition and morphology revealed that most particles were carbonaceous species that formed large, amorphous agglomerates made up of smaller spherules.

  16. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles

    Science.gov (United States)

    Qin, F.; Brosseau, C.

    2012-03-01

    Carbon (C) is a crucial material for many branches of modern technology. A growing number of demanding applications in electronics and telecommunications rely on the unique properties of C allotropes. The need for microwave absorbers and radar-absorbing materials is ever growing in military applications (reduction of radar signature of aircraft, ships, tanks, and targets) as well as in civilian applications (reduction of electromagnetic interference among components and circuits, reduction of the back-radiation of microstrip radiators). Whatever the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues. A composite absorber that uses carbonaceous particles in combination with a polymer matrix offers a large flexibility for design and properties control, as the composite can be tuned and optimized via changes in both the carbonaceous inclusions (C black, C nanotube, C fiber, graphene) and the embedding matrix (rubber, thermoplastic). This paper offers a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix. The absorption properties of such composites can be tailored through changes in geometry, composition, morphology, and volume fraction of the filler particles. Polymer composites filled with carbonaceous particles provide a versatile system to probe physical properties at the nanoscale of fundamental interest and of relevance to a wide range of potential applications that span radar absorption, electromagnetic protection from natural phenomena (lightning), shielding for particle accelerators in nuclear physics, nuclear electromagnetic pulse protection, electromagnetic compatibility for electronic devices, high-intensity radiated field protection, anechoic chambers, and human exposure mitigation. Carbonaceous particles are also relevant to future applications that require environmentally benign and

  17. Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L.).

    Science.gov (United States)

    Subbaiah, Layam Venkata; Prasad, Tollamadugu Naga Venkata Krishna Vara; Krishna, Thimmavajjula Giridhara; Sudhakar, Palagiri; Reddy, Balam Ravindra; Pradeep, Thalappil

    2016-05-18

    In the present investigation, nanoscale zinc oxide particulates (ZnO-nanoparticulates) were prepared using a modified oxalate decomposition method. Prepared ZnO-nanoparticulates (mean size = 25 nm) were characterized using techniques such as transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and zeta potential analyzer. Different concentrations (50, 100, 200, 400, 600, 800, 1000, 1500, and 2000 ppm) of ZnO-nanoparticulates were examined to reveal their effects on maize crop on overall growth and translocation of zinc along with bulk ZnSO4 and control. Highest germination percentage (80%) and seedling vigor index (1923.20) were observed at 1500 ppm of ZnO-nanoparticulates. The yield was 42% more compared to control and 15% higher compared to 2000 ppm of ZnSO4. Higher accumulation of zinc (35.96 ppm) in grains was recorded with application of 100 ppm followed by 400 ppm (31.05 ppm) of ZnO-nanoparticulates. These results indicate that ZnO-nanoparticulates have significant effects on growth, yield, and zinc content of maize grains, which is an important feature in terms of human health. PMID:27089102

  18. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.

  19. Microfossils in CI and CO Carbonaceous Meteorites

    Science.gov (United States)

    Hoover, Richard B.; Rozanov, Alexei Y.; Jerman, Gregory; Costen, James

    2003-01-01

    Secondary and backscatter electron images and x-ray spectral data of selected CI (Alais, Orgueil, and Tagish Lake) and CO3 (Rainbow and Dar a1 Gani 749) carbonaceous meteorites have recently been obtained using Field Emission and Environmental Scanning Electron Microscopes These studies indicate the presence of a large assemblage of biomarkers and complex lithified and carbonized remains of bodies that we interpret as indigenous microfossils. We discuss the meteorites, provide images of many of the biogenic forms found embedded in the freshly fractured meteorite surfaces.

  20. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation

    OpenAIRE

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K.; Mitra, Ashim K.

    2010-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine–valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a c...

  1. Dynamic partitioning of nanoparticulate metal species between gel layers and aqueous media

    OpenAIRE

    Veeken, van der, HJM Henk

    2010-01-01

    This thesis deals with several aspects of the use of Diffusive Gradient in Thin film (DGT) and Diffusive Equilibriation in Thin film (DET) in dynamic metal speciation analysis. It has a clear focus on the properties of the diffusive gel layer, and their possible impact on metal speciation measurements in samples containing nanoparticulate and colloidal complexing agents. The introductory chapter already announced the paramount feature of the DGT technique, which is the well-defined control ov...

  2. In vitro evaluation of chitosan-EDTA conjugate polyplexes as a nanoparticulate gene delivery system

    OpenAIRE

    Loretz, Brigitta; Bernkop-Schnürch, Andreas

    2006-01-01

    It was the purpose of this study to evaluate the potential of different molecular-weight chitosan-EDTA conjugates as a carrier matrix for nanoparticulate gene delivery systems. Covalent binding of EDTA to more than one chitosan chain provides a cross-linked polymer that is anticipated to produce stabilized particles. pDNA/chitosan-EDTA particles, generated via coazervation, were characterized in size and zeta potential by electrophoretic light scattering and electron microscopy. Stability was...

  3. Capping efficiency of various carbonaceous and mineral materials for in situ remediation of polychlorinated dibenzo-p-dioxin and dibenzofuran contaminated marine sediments: sediment-to-water fluxes and bioaccumulation in boxcosm tests.

    Science.gov (United States)

    Josefsson, Sarah; Schaanning, Morten; Samuelsson, Göran S; Gunnarsson, Jonas S; Olofsson, Ida; Eek, Espen; Wiberg, Karin

    2012-03-20

    The efficiency of thin-layer capping in reducing sediment-to-water fluxes and bioaccumulation of polychlorinated dibenzo-p-dioxins and dibenzofurans, hexachlorobenzene, and octachlorostyrene was investigated in a boxcosm experiment. The influence of cap thickness (0.5-5 cm) and different cap materials was tested using a three-factor experimental design. The cap materials consisted of a passive material (coarse or fine limestone or a marine clay) and an active material (activated carbon (AC) or kraft lignin) to sequester the contaminants. The cap thickness and the type of active material were significant factors, whereas no statistically significant effects of the type of passive material were observed. Sediment-to-water fluxes and bioaccumulation by the two test species, the surface-dwelling Nassarius nitidus and the deep-burrowing Nereis spp., decreased with increased cap thickness and with addition of active material. Activated carbon was more efficient than lignin, and a ~90% reduction of fluxes and bioaccumulation was achieved with 3 cm caps with 3.3% AC. Small increases in fluxes with increased survival of Nereis spp. indicated that bioturbation by Nereis spp. affected the fluxes. PMID:22339559

  4. Aqueous accelerated solvent extraction of native polycyclic aromatic hydrocarbons (PAHs) from carbonaceous river floodplain soils

    International Nuclear Information System (INIS)

    In this study, three river floodplain soils with different compositions of carbonaceous materials and a reference coal sample were extracted with water using the accelerated solvent extraction (ASE) method. The desorption enthalpy values for 2-ring PAHs were highest in the coal sample, with values in the soil samples decreasing with decrease in coal content. The values for the higher condensed PAHs showed that the highest desorption enthalpies were from the samples with the largest amount of coal-derived particles. Elevated desorption enthalpies indicated a strong bonding between PAHs and geosorbents. Moreover, with the application of ASE this study was able to conclude that the PAHs in the samples were preferentially adsorbed to carbonaceous materials with high surface areas. - Native PAHs in river floodplain soils were preferentially bound to coal and coal-derived particles with a strong sorption affinity.

  5. Aqueous accelerated solvent extraction of native polycyclic aromatic hydrocarbons (PAHs) from carbonaceous river floodplain soils.

    Science.gov (United States)

    Yang, Yi; Hofmann, Thilo

    2009-10-01

    In this study, three river floodplain soils with different compositions of carbonaceous materials and a reference coal sample were extracted with water using the accelerated solvent extraction (ASE) method. The desorption enthalpy values for 2-ring PAHs were highest in the coal sample, with values in the soil samples decreasing with decrease in coal content. The values for the higher condensed PAHs showed that the highest desorption enthalpies were from the samples with the largest amount of coal-derived particles. Elevated desorption enthalpies indicated a strong bonding between PAHs and geosorbents. Moreover, with the application of ASE this study was able to conclude that the PAHs in the samples were preferentially adsorbed to carbonaceous materials with high surface areas. PMID:19524343

  6. Everyone Wins: A Mars-Impact Origin for Carbonaceous Phobos and Deimos

    Science.gov (United States)

    Fries, M.; Welzenbach, L.; Steele, A.

    2016-01-01

    Discussions of Phobos' and Deimos' origin(s) tend to feature an orthogonally opposed pair of observations: dynamical studies which favor coalescence of the moons from an orbital debris ring arising from a large impact on Mars; and reflectance spectroscopy of the moons that indicate a carbonaceous composition that is not consistent with Martian surface materials. One way to reconcile this discrepancy is to consider the option of a Mars-impact origin for Phobos and Deimos, followed by surficial decoration of carbon-rich materials by interplanetary dust particles (IDP). The moons experience a high IDP flux because of their location in Mars' gravity well. Calculations show that accreted carbon is sufficient to produce a surface with reflectance spectra resembling carbonaceous chondrites.

  7. Chemical analysis of organic molecules in carbonaceous meteorites

    NARCIS (Netherlands)

    Torrao Pinto Martins, Zita Carla

    2007-01-01

    Meteorites are extraterrestrial objects that survive the passage through the Earth’s atmosphere and impact the Earth's surface. They can be divided into several classes, the carbonaceous chondrites being one of them. Carbonaceous chondrites are the oldest and best preserved meteorites and contain a

  8. Characterization of carbonaceous particles from lake sediments

    International Nuclear Information System (INIS)

    Spheroidal carbonaceous particles produced by high temperature combustion of coal and oil were found in high concentrations in lake sediments from areas of high acid deposition. The sediment record of these particles showing the onset of industrialisation correlates well with the record of acidification as indicated by diatom analysis. To find sources of the atmospheric deposition affecting a lake and its catchment, characterisation of the carbonaceous particles is necessary. A reference data set of particle chemistries from coal and oil power stations was produced using EDS generated data of 17 elements. Using multivariate statistical techniques, the most important elements for the coal/oil separation were identified and incorporated into a linear discriminant function which allocated fuel type with > 97% accuracy. Application of this technique to surface sediments in Scotland shows the influence of oil burning from outside the region. When applied to a full sediment core, the history of coal and oil combustion affecting the lake is seen and correlates well with known coal and oil consumption figures. Consequently this method could be used to add extra dating levels to sediment cores. The technique has been extended to include peat particles and could potentially be used on those from brown coal, lignite and oil shale combustion

  9. Effect of adsorbed extracellular polymeric substances (EPS) on colloidal mobility of nanoparticulate iron oxides

    Science.gov (United States)

    Pradip Narvekar, Sneha; Totsche, Kai Uwe

    2013-04-01

    Solubility and transport of nutrients and pollutants is affected by the presence of colloidal nanoparticles (CNP) which may act as mobile geosorbents. In soils and aquifers, pure and organically modified Fe- and Mn-oxy-hydroxides are of particular importance due to their ubiquitous presence and also due to their progressive use for environmental cleanup. Stability and aggregation behavior control the mobility of CNP and depend on pH, ionic strength, and the presence of monovalent or divalent anions. In natural environments, however, iron oxides are usually covered by organic matter. Such coverage will completely change the colloidal surface properties and impose additional control on the colloidal mobility. Important sources for natural organic coatings are extracellular polymeric substances (EPS), i.e., complex mixtures of biopolymers consisting of polysaccharides and proteins and variable amounts of lipids and nucleic acids. The objective of our study was to quantify the effect of EPS coatings on the colloidal stability, mobility and reactivity of hematite by column experiments. Columns (10 cm × 5 cm) were filled with glass beads (0.25 mm ø) as porous medium and operated in sterile closed flow conditions. Nanoparticulate hematite was coated to different degrees by extracellular polymeric substances (EPS) extracted from, liquid cultures of Bacillus subtillis. The pH was kept constant at 7. The hematite particles exhibited increasing colloidal stability with increasing amounts of EPS. Critical colloidal concentration (CCC) of the particles increased from 95 mM NaCl for uncoated particles to 250 mM NaCl for coated particles. EPS coated hematite did not react with the porous medium and stayed mobile while the uncoated hematite was immobile due to adsorption to the glass beads. Also colloidally unstable hematite particles did not show any mobility. Thus the organic coatings enhanced the colloidal stability, which consecutively increased the mobility of the particles

  10. Carbonaceous emissions reflected in deposits on building stones: Case study in Prague Castle

    Czech Academy of Sciences Publication Activity Database

    Sýkorová, Ivana; Havelcová, Martina; Zeman, Antonín; Trejtnarová, Hana; Matysová, Petra; Šulc, Alexandr

    Pittsburgh : University of Pittsburgh, 2010, s. 1-4. ISBN 1-890977-27-6. [Annual International Pittsburgh Coal Conference /27./. Istanbul (TR), 11.10.2010-14.10.2010] R&D Projects: GA AV ČR IAA300460804 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z20710524 Keywords : historical building materials * air pollution * Carbonaceous matter Subject RIV: DD - Geochemistry

  11. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    International Nuclear Information System (INIS)

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N2 adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m2 g−1) and pore volume (0.016 cm3 g−1), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m2 g−1 and 0.701 cm3 g−1, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH2) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH2 bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds

  12. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Science.gov (United States)

    Spracklen, D. V.; Carslaw, K. S.; Pöschl, U.; Rap, A.; Forster, P. M.

    2011-09-01

    Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN) so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = -77 %) unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52-64 %) of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel) carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of -0.34 W m-2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of -0.23 W m-2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  13. Low temperature processing of hybrid nanoparticulate Indium Tin Oxide (ITO) polymer layers and application in large scale lighting devices

    International Nuclear Information System (INIS)

    We report on transparent conductive indium tin oxide (In2O3:Sn; ITO) nanoparticle films processed at a low temperature of 130 deg. C for the application in lighting devices using spin coating and doctor blading techniques. Major emphasis is put on the beneficial application of the particular transparent electrode material for the fabrication of patterned large area electroluminescence lamps. In order to improve film properties like adhesion and conductivity, hybrid nanoparticle-polymer blends out of ITO particles and organic film-forming agent polyvinylpyrrolidone (PVP) and the organofunctional coupling agent 3-methacryloxypropyltrimethoxysilane (MPTS) have been developed. The layers were cured by UV-irradiation, which was also used for lateral structuring of the transparent, conductive electrode. Additional low-temperature heat treatment (T = 130 deg. C) in air and forming gas improved the electronic properties. While pure ITO nanoparticulate layers processed at 130 deg. C exhibited conductance of up to 3.1 Ω-1 cm-1, the nanocomposite coatings showed a conductance of up to 9.8 Ω-1 cm-1. Corresponding layers with a sheet resistance of 750 Ω/□ were applied in electroluminescent lamps.

  14. Cloud albedo increase from carbonaceous aerosol

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2010-08-01

    Full Text Available Airborne measurements from two consecutive days, analysed with the aid of an aerosol-adiabatic cloud parcel model, are used to study the effect of carbonaceous aerosol particles on the reflectivity of sunlight by water clouds. The measurements, including aerosol chemistry, aerosol microphysics, cloud microphysics, cloud gust velocities and cloud light extinction, were made below, in and above stratocumulus over the northwest Atlantic Ocean. On the first day, the history of the below-cloud fine particle aerosol was marine and the fine particle sulphate and organic carbon mass concentrations measured at cloud base were 2.4 μg m−3 and 0.9 μg m−3 respectively. On the second day, the below-cloud aerosol was continentally influenced and the fine particle sulphate and organic carbon mass concentrations were 2.3 μg m−3 and 2.6 μg m−3 respectively. Over the range 0.06–0.8 μm diameter, the shapes of the below-cloud size distributions were similar on both days and the number concentrations were approximately a factor of two higher on the second day. The cloud droplet number concentrations (CDNC on the second day were approximately three times higher than the CDNC measured on the first day. Using the parcel model to separate the influence of the differences in gust velocities, we estimate from the vertically integrated cloud light scattering measurements a 6% increase in the cloud albedo principally due to the increase in the carbonaceous components on the second day. Assuming no additional absorption by this aerosol, a 6% albedo increase translates to a local daytime radiative cooling of ∼12 W m−2. This result provides observational evidence that the role of anthropogenic carbonaceous components in the cloud albedo effect can be much larger than that of anthropogenic sulphate, as some global simulations have indicated.

  15. Microfossils of Cyanobacteria in Carbonaceous Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2007-01-01

    During the past decade, Environmental and Field Emission Scanning Electron Microscopes have been used at the NASA/Marshall Space Flight Center to investigate freshly fractured interior surfaces of a large number of different types of meteorites. Large, complex, microfossils with clearly recognizable biological affinities have been found embedded in several carbonaceous meteorites. Similar forms were notably absent in all stony and nickel-iron meteorites investigated. The forms encountered are consistent in size and morphology with morphotypes of known genera of Cyanobacteria and microorganisms that are typically encountered in associated benthic prokaryotic mats. Even though many coccoidal and isodiametric filamentous cyanobacteria have a strong morphological convergence with some other spherical and filamentous bacteria and algae, many genera of heteropolar cyanobacteria have distinctive apical and basal regions and cellular differentiation that makes it possible to unambiguously recognize the forms based entirely upon cellular dimensions, filament size and distinctive morphological characteristics. For almost two centuries, these morphological characteristics have historically provided the basis for the systematics and taxonomy of cyanobacteria. This paper presents ESEM and FESEM images of embedded filaments and thick mats found in-situ in the Murchison CM2 and Orgueil cn carbonaceous meteorites. Comparative images are also provided for known genera and species of cyanobacteria and other microbial extremophiles. Energy Dispersive X-ray Spectroscopy (EDS) studies indicate that the meteorite filaments typically exhibit dramatic chemical differentiation with distinctive difference between the possible microfossil and the meteorite matrix in the immediate proximity. Chemical differentiation is also observed within these microstructures with many of the permineralized filaments enveloped within electron transparent carbonaceous sheaths. Elemental distributions of

  16. Sustainable approach toward synthesis of green functional carbonaceous 3-D micro/nanostructures from biomass

    Science.gov (United States)

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2013-08-01

    This study proposes a novel technique to synthesize functional carbonaceous three-dimensional (3-D) micro/nanocompounds from agricultural by-products using femtosecond laser irradiation. Biowastes of rice husk and wheat straw are value-engineered to carbonaceous structures in a single-step process under ambient conditions. Our results demonstrate that by controlling the laser fluence, structures with a variety of different morphologies from nanostructures to microstructures can be achieved. Also, the results indicate that altering the laser processing parameters influences the chemical composition of the synthesized structures. This sustainable approach presents an important step towards synthesizing 3-D micro/nanofibrous compounds from biowaste materials. These structures, as-synthesized or as nanocomposite fillers, can have practical uses in electronic, sensing, biological, and environmental applications.

  17. Adsorption and Desorption of Carbon Dioxide and Water Mixtures on Synthetic Hydrophobic Carbonaceous Adsorbents

    Science.gov (United States)

    Finn, John E.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    Several synthetic carbonaceous adsorbents produced through pyrolysis of polymeric materials are available commercially. Some appear to have advantages over activated carbon for certain adsorption applications. In particular, they can have tailored hydrophobicities that are significantly greater than that of activated carbon, while moderately high surfaces areas are retained. These sorbents are being investigated for possible use in removing trace contaminants and excess carbon dioxide from air in closed habitats, plant growth chambers, and other applications involving purification of humid gas streams. We have analyzed the characteristics of a few of these adsorbents through adsorption and desorption experiments and standard characterization techniques. This paper presents pure and multicomponent adsorption data collected for carbon dioxide and water on two synthetic carbonaceous adsorbents having different hydrophobicities and capillary condensation characteristics. The observations are interpreted through consideration of the pore structure and surface chemistry of the solids and interactions between adsorbed carbon dioxide, water, and the solvent gas.

  18. Electrical conductivity of carbonaceous chondrites and electric heating of meteorite parent bodies

    Science.gov (United States)

    Duba, AL

    1987-01-01

    Electromagnetic heating of rock-forming materials most probably was an important process in the early history of the solar system. Electrical conductivity experiments of representative materials such as carbonaceous chondrites are necessary to obtain data for use in electromagnetic heating models. With the assumption that carbon was present at grain boundaries in the material that comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance using the T-Tauri model of Sonett and Herbert (1977). The results are discussed.

  19. Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry

    International Nuclear Information System (INIS)

    Adsorption by carbonaceous sorbents is among the most feasible processes to remove perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) from drinking and ground waters. However, carbon surface chemistry, which has long been recognized essential for dictating performance of such sorbents, has never been considered for PFOS and PFOA adsorption. Thus, the role of surface chemistry was systematically investigated using sorbents with a wide range in precursor material, pore structure, and surface chemistry. Sorbent surface chemistry overwhelmed physical properties in controlling the extent of uptake. The adsorption affinity was positively correlated carbon surface basicity, suggesting that high acid neutralizing or anion exchange capacity was critical for substantial uptake of PFOS and PFOA. Carbon polarity or hydrophobicity had insignificant impact on the extent of adsorption. Synthetic polymer-based Ambersorb and activated carbon fibers were more effective than activated carbon made of natural materials in removing PFOS and PFOA from aqueous solutions. - Highlights: • Adsorption of PFOS and PFOA by ten carbonaceous adsorbents were compared. • Surface chemistry of the adsorbents controlled adsorption affinity. • Carbon surface basicity was positively correlated with the extent of PFOS and PFOA uptake. • Carbon polarity or hydrophobicity was not correlated with adsorption affinity. • Synthetic polymer-based adsorbents were more effective in removing PFOS and PFOA. - Carbon surface basicity is the primary factor that influences adsorption affinity of the carbonaceous sorbents for perfluorooctane sulfonic and carboxylic acids

  20. Combustion Synthesis of Nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1, 0.2) Carbon Composites

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M; Chen, Jiajun; Conry, Thomas E.; Wang, Ruigang; Wilcox, James; Aumentado, Albert

    2009-12-14

    A combustion synthesis technique was used to prepare nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1,0.2)/carbon composites. Powders consisted of carbon-coated particles about 30 nm in diameter, which were partly agglomerated into larger secondary particles. The utilization of the active materials in lithium cells depended most strongly upon the post-treatment and the Mg content, and was not influenced by the amount of carbon. Best results were achieved with a hydrothermally treated LiMg0.2Mn0.8PO4/C composite, which exhibited close to 50percent utilization of the theoretical capacity at a C/2 discharge rate.

  1. Generation of oil from coal and carbonaceous shale

    Energy Technology Data Exchange (ETDEWEB)

    Kirkland, D.W.; Tsui, T.F.; Stockton, M.L.

    1987-05-01

    Coal and carbonaceous shale contain the remains of higher terrestrial (vascular) plants, remains commonly referred to as Type III kerogen. Given sufficient thermal exposure, such organic matter is commonly considered to generate only natural gas. Coaly sequences, however, are not always strictly gas producers. Many coaly sequences, particularly those of Tertiary age, have generated important volumes of oil. Those oils are usually paraffinic and waxy, or naphthenic; have a pristane-to-phytane ratio of 2-12; contain definitive biomarkers such as tricyclic diterpenoids; and are low in sulfur (much less than 1%). These oils are clearly distinct from those derived predominantly from marine algal remains. The principal source sequences of oils derived from coaly material occur in Tertiary deltas. Such source sequences contain abundant coaly material with favorable generative quality. Evaluation of generative quality is based either on geochemical analysis (e.g., atomic H/C > 0.9) or on petrographic analysis: source potential being proportional to the abundance and hydrogen richness of organic constituents (macerals). In approximate ranking, oil-generating potential of the hydrogen-rich macerals is exudatinite > alginite > resinite > liptodetrinite > cutinite > sporinite > vitrinite-B (fluorescing vitrinite). Examples of basins containing both a major Tertiary deltaic sequence (hundreds of cubic miles) and major volumes of oil (billions of barrels) derived predominantly from higher terrestrial plate remains are: the Ardjuna and Kutei basins, Indonesia; and the Gippsland basin, Australia.

  2. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  3. A new CH carbonaceous chondrite from Acfer, Algeria

    OpenAIRE

    Moggi-Cecchi, V.; SALVADORI A; Pratesi, G; Franchi, Ian; Greenwood, Richard

    2006-01-01

    A single stone weighing 1456 g was found in November 2002 in the Acfer area, Algeria. Oxygen isotope, chondrules-matrix ratio as well as other petrographic features point to a classification as CH carbonaceous chondrite.

  4. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  5. Carbonaceous deposits in direct utilization hydrocarbon SOFC anode

    Science.gov (United States)

    He, Hongpeng; Vohs, John M.; Gorte, Raymond J.

    Carbonaceous deposits formed in Cu-based SOFC anode compartment by exposing porous YSZ anodes to n-butane at elevated temperatures were studied using a combination of V- I curves, impedance spectroscopy, SEM, and TPO measurements. While short-term exposure of a porous YSZ matrix to n-butane at 973 K resulted in the deposition of electronically conducting carbonaceous film and therefore to enhance the fuel cell performance, the power density decays quickly in n-butane at temperature 1073 K or higher for long-term operation. SEM results indicate that the carbonaceous deposits arising from gas phase reaction have different morphology, and a dense layer composed of poly-aromatic rings has been formed on the porous anode surface. The dense layer could block the penetration of fuels to the anode and ions transfer to the three-phase boundaries where electrochemical reactions occur, resulting in the drop of the power density. TPO measurements revealed that the amount of carbonaceous deposits increased and the type of deposits changed with exposure time to n-butane. The stability of deposits increased with extending the exposure time according to the increased oxidation temperature. Steam can remove the carbonaceous deposits from the porous YSZ anode, but the reaction temperature was severely elevated compared to that of oxygen. The carbonaceous deposits can also be removed at 973 K by steam but the deposition of carbon will be controlled by the speed of removal and formation from the gas phase reaction.

  6. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    International Nuclear Information System (INIS)

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: → Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. → This phototoxicity was well-correlated to photocatalytic ROS generation. → Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. → Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. → Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  7. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H., E-mail: mah77@uga.edu [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States); Kabengi, N.J.; Bertsch, P.M.; Unrine, J.M. [Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546 (United States); Glenn, T.C.; Williams, P.L. [Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602 (United States)

    2011-06-15

    The present study evaluated phototoxicity of nanoparticulate ZnO and bulk-ZnO under natural sunlight (NSL) versus ambient artificial laboratory light (AALL) illumination to a free-living nematode Caenorhabditis elegans. Phototoxicity of nano-ZnO and bulk-ZnO was largely dependent on illumination method as 2-h exposure under NSL caused significantly greater mortality in C. elegans than under AALL. This phototoxicity was closely related to photocatalytic reactive oxygen species (ROS) generation by the ZnO particles as indicated by concomitant methylene blue photodegradation. Both materials caused mortality in C. elegans under AALL during 24-h exposure although neither degraded methylene blue, suggesting mechanisms of toxicity other than photocatalytic ROS generation were involved. Particle dissolution of ZnO did not appear to play an important role in the toxicity observed in this study. Nano-ZnO showed greater phototoxicity than bulk-ZnO despite their similar size of aggregates, suggesting primary particle size is more important than aggregate size in determining phototoxicity. - Highlights: > Phototoxicity of nano- or bulk-ZnO was enhanced by natural sunlight illumination. > This phototoxicity was well-correlated to photocatalytic ROS generation. > Toxicity of ZnO particles not related to photocatalytic ROS generation was also observed. > Nano-ZnO showed greater phototoxicity than bulk-ZnO due to its greater total surface area per unit mass. > Primary particle size appeared to be more important than aggregate size in determining phototoxicity. - Phototoxicity of nanoparticulate and bulk ZnO was greatly enhanced by natural sunlight illumination compared to artificial laboratory light illumination.

  8. Characterization of carbonaceous aerosols in urban air

    Science.gov (United States)

    Husain, Liaquat; Dutkiewicz, Vincent A.; Khan, A. J.; Ghauri, Badar M.

    Concentrations of black carbon, [BC], were determined with an Aethalometer every 5 min at Lahore, a city of about 10 million in Pakistan, from 22 November 2005 to 31 January 2006. [BC] were very high, ranging from about 5 to 110μgm-3, with a mean of 21.7μgm-3. A distinct diurnal variation was observed: concentrations were lowest from about 10 a.m. to 4 p.m. local time (LT), and highest around 5-9 p.m. No clear relationship was observed between surface wind directions and [BC], although some of the highest concentrations were observed when the airflow was from southwest to northwest. The daily variations in concentrations were strongly affected by the diurnal variations in the mixing height; BC concentrations were low during the day when the mixing heights were high, ˜1000m, and very high at night when the mixing heights were low thermal-optical method. The [BC] were highly correlated with EC (r2=0.71), but on average 25% higher than [EC]. The [EC] and [OC] concentrations were moderately correlated (r2=0.65). The [OC]/[EC] ratios varied from 2.8 to 12, with a mean of 5.6. Although a large component of the carbonaceous aerosols in Lahore originated from fossil fuel combustion, a significant fraction was derived from biomass burning.

  9. Home-made carbonaceous adsorbents for the iodine filter

    International Nuclear Information System (INIS)

    Assuming, that at the moment, an activated charcoal is the most widely used adsorbent in off-gas cleaning systems for elemental iodine removal, it was analyzed how to improve the adsorption properties of this filter material for removing the organic iodine compounds, especially in the presence of high relative humidity. Three different indigenous activated charcoals were selected for studies: two kinds of charcoal, designated as type A and N, as well as the charcoals used for flue gas desulfurization, as the third type S. These charcoals were impregnated with tin iodide (SnI2), potassium iodide (KI) and triethylenediamine (TEDA). Considering the results of the laboratory tests of the efficiency methyl iodide retention by the impregnated charcoals, it was concluded, that the carbonaceous adsorbent containing 1+1.5% KI showed efficient retention of the methyl iodide (CH3I), compared with, for example, foreign activated charcoals, as, NORIT-CGI 1% KI (West Germany) and GA-1 0.5% KI (Czechoslovakia). (author)

  10. Nanoparticulate transport of oximes over an in vitro blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Sylvia Wagner

    Full Text Available BACKGROUND: Due to the use of organophosphates (OP as pesticides and the availability of OP-type nerve agents, an effective medical treatment for OP poisonings is still a challenging problem. The acute toxicity of an OP poisoning is mainly due to the inhibition of acetylcholinesterase (AChE in the peripheral and central nervous systems (CNS. This results in an increase in the synaptic concentration of the neurotransmitter acetylcholine, overstimulation of cholinergic receptors and disorder of numerous body functions up to death. The standard treatment of OP poisoning includes a combination of a muscarinic antagonist and an AChE reactivator (oxime. However, these oximes can not cross the blood-brain barrier (BBB sufficiently. Therefore, new strategies are needed to transport oximes over the BBB. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we combined different oximes (obidoxime dichloride and two different HI 6 salts, HI 6 dichloride monohydrate and HI 6 dimethanesulfonate with human serum albumin nanoparticles and could show an oxime transport over an in vitro BBB model. In general, the nanoparticulate transported oximes achieved a better reactivation of OP-inhibited AChE than free oximes. CONCLUSIONS/SIGNIFICANCE: With these nanoparticles, for the first time, a tool exists that could enable a transport of oximes over the BBB. This is very important for survival after severe OP intoxication. Therefore, these nanoparticulate formulations are promising formulations for the treatment of the peripheral and the CNS after OP poisoning.

  11. Powder X-Ray Diffraction of the Grain Components of Carbonaceous Chondrite Meteorites.

    Science.gov (United States)

    Furton, D. G.; Hurt, Kendra; Bos, Abram

    Carbonaceous chondrite meteorites are thought to bring to Earth samples of primordial interstellar material. Detailed chemical analysis of meteorites representative of this class (i.e., Allende, Murchison, and Orgueil) establish the primordial character of the material they include and, among other things, reveal that nanometer-sized diamond grains are present in the carbonaceous component of these meteorites at about the 1,000 ppm level (Lewis et al. 1987, Nature, 326, 160). The high abundance of nanodiamonds in these meteoritic samples contributes to the hypothesis that nanodiamonds are present in the interstellar medium at relatively high abundance, but direct observational support of this hypothesis is not so conclusive. (It may also be, according to Dai et al. (2002, Nature, 418, 157), that the nanodiamond grains were formed in situ). On the other hand, there is a growing body of observational evidence that indicates nanometer-sized silicon grains are present in the interstellar medium at relatively high abundance (e.g., Smith & Witt 2001, ApJ, 565, 304). But, silicon nanoparticles have yet to be discovered in a sample of carbonaceous chondrite meteorite. It is relevant in this context that the chemical process that has been used to extract nanodiamond grains from meteoritic samples involves dissolving in strong acid the silicate component of the meteorite. The process is ultimately destructive to any silicon grains that may be present and possibly even alters the nanodiamonds it is used to extract (Mutschke et al. 1995, ApJL, 454, L160). There does not appear to be a similar chemical process that could be used to extract silicon nanoparticles from meteoritic samples. We are in the process of establishing to what extent powder X-ray diffraction can be use as a non-destructive analytical tool to examine nanometer-sized grain components of carbonaceous chondrite meteorites. We present powder X-ray diffraction patterns obtained from samples of the Murchison and

  12. Investigation of nanocrystalline structure in selected carbonaceous materials

    Institute of Scientific and Technical Information of China (English)

    Manoj B

    2014-01-01

    The structural parameters of nine Indian coals were determined by X-ray diffraction (XRD) and Raman spectroscopy. The study revealed that the coals contain crystalline carbon of turbostratic structure with amorphous carbon. The stacking height (Lc) and interlayer spacing (d002) of the crystallite structure of the coals ranged from 1.986 to 2.373 nm and from 0.334 to 0.340 nm, respectively. The degree of graphitization was calculated to range from 42%to 99%, thereby confirming the ordering of the carbon layers with the increase in coal rank. An exponential correlation was observed among the aromaticity (fa), the lateral size (La), and the rank (I20/I26), suggesting that the coal crys-tallites are nanocrystalline in nature. A very strong correlation was observed between the structural parameters (fa, d002, Lc, the H/C ratio, and I20/I26), the volatile matter content, and the elemental carbon content, indicating the structures of coals are controlled by the degree of contact metamorphism. The Raman spectra exhibited two prominent bands:the graphitic band (G) and the first-order characteristic defect band (D). The deconvolution resulted in five peaks:G, D1, D2, D3, and D4. The intense D1 band, which appeared at~1350 cm-1, corresponds to a lat-tice vibration mode with A1g symmetry. The D2 mode, which appeared at~1610 cm-1, arises from the structural disorder as a shoulder on the G band.

  13. Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.; Buffle, J.

    2012-01-01

    The dynamics of metal complexation by small humic substances (fulvic acid and aquatic humic acid, collectively denoted as "fulvic-like substance", FS) are explored within the framework of concepts recently developed for soft nanoparticulate complexants. From a comprehensive collection of published e

  14. Ordered mixed-layer structures in the Mighei carbonaceous chondrite matrix

    Science.gov (United States)

    Mackinnon, I. D. R.

    1982-01-01

    High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence SBBSBB. Electron diffraction and imaging techniques show that the basal periodicity is approximately 17 A. Discrete crystals of SBB-type material are typically curved, of small size (less than 1 micron) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of pre-existing material is not yet apparent.

  15. Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ren-Jian; CAO Jun-ji; LEE Shun-cheng; SHEN Zhen-xing; HO Kin-Fai

    2007-01-01

    An intensive observation of organic carbon (OC) and element carbon (EC) in PM10 and gaseous materials (SO2, CO, and O3,) was conducted continuously to assess the characteristics of wintertime carbonaceous aerosols in an urban area of Beijing, China. Results showed that the averaged total carbon (TC) and PM10 concentrations in observation period are 30.2±120.4 and 172.6±198.3 μ/m3, respectively. Average OC concentration in nighttime (24.9±19.6 μ/m3) was 40% higher than that in daytime (17.7±10.9 μ/m3). Average EC concentrations in daytime (8.8±15.2 μ/m3) was close to that in nighttime (8.9±15.1 μ/m3). The OC/EC ratios in nighttime ranging from 2.4 to 2.7 are higher than that in daytime ranging from 1.9 to 2.0. The concentrations of OC, EC, PM10 were low with strong winds and high with weak winds. The OC and EC were well correlated with PM10, CO and SO2, which implies they have similar sources. OC and EC were not well correlated with O3. By considering variation of OC/EC ratios in daytime and night time, correlations between OC and O3, and meteorological condition, we speculated that OC and EC in Beijing PM10 were emitted as the primary particulate form. Emission of motor vehicle with low OC/EC ratio and coal combustion sources with high OC/EC ratio are probably the dominant sources for carbonaceous aerosols in Beijing in winter. A simple method was used to estimate the relative contribution of sources to carbonaceous aerosols in Beijing PM10. Motor vehicle source accounts for 80% and 68%, while coal combustion accounts for 20% and 32% in daytime and nighttime, respectively in Beijing. Averagely, the motor vehicle and coal combustion accounted for 74% and 26%, respectively, for carbonaceous aerosols during the observation period. It points to the motor vehicle is dominant emission for carbonaceous aerosols in Beijing PM10 in winter period, which should be paid attention to control high level of PM10 in Beijing effectively.

  16. Physical and Chemical Characterization of Carbonaceous Aerosols in Korea

    Science.gov (United States)

    Choung, S.; Jin, J. S.; Hwang, G. S.; Jang, K. S.; Han, W. S.; OH, J.; Kwon, Y.

    2014-12-01

    Atmospheric aerosols have been recently paid attention more in environmental research due to their negative effects on air quality, public health, and climate change. The aerosols contain approximately >20-50% carbonaceous components such as organic carbon (OC) and black carbon (BC) (or elemental carbon [EC]) derived from organic compounds, biomass burning, and incomplete combustion of fossil fuels. The physical, chemical, and biological properties of atmospheric aerosols are strongly dependent on the carbonaceous components. In particular, the BC could significantly affect the regional air quality in the northeastern Asia, because China is one of the foremost BC emission country in the world. Previous studies have mainly focused on the quantification and source identification for carbonaceous aerosols. However, understanding of physical and chemical properties for the carbonaceous aerosols related to environmental contamination and toxicity was still incomplete due to analytical difficulties. This study is addressed to evaluate the contribution of carbonaceous aerosols to air pollution through the surface, mass spectroscopic, and electron microscopic analyses, and determination of chemical composition and structure using the air particulate matter (PM2.5 and >PM2.5) samples.

  17. 3D highly oriented nanoparticulate and microparticulate array of metal oxide materials

    International Nuclear Information System (INIS)

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiation source facility

  18. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    Science.gov (United States)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  19. Carbonaceous solids as a model for adsorption by dispersion forces

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, E.M.; Hutchinson, B.J.; Healy, M.H.

    1988-08-03

    Heats of adsorption of many liquids of widely varying structure are reported on several carbonaceous solids: graphite, anthracite coal, Ambersorb XE-348, and two graphitized carbon blacks, Carbopack B and F. Heats of adsorption on the two graphitized carbon black samples correlate closely with the polarizabilities of the adsorbate and the number of main group atoms in the molecules as might be expected for dispersion force interactions; there is no relationship to the basicities of the adsorbates. Except for the two graphitized carbon black samples, Carbopack B and F, correlation between the various type of carbonaceous solids is poor. 39 references, 6 figures, 3 tables.

  20. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs

    Science.gov (United States)

    Choi, Jinhyang; Ko, Eunjung; Chung, Hye-Kyung; Lee, Jae Hee; Ju, Eun Jin; Lim, Hyun Kyung; Park, Intae; Kim, Kab-Sig; Lee, Joo-Hwan; Son, Woo-Chan; Lee, Jung Shin; Jung, Joohee; Jeong, Seong-Yun; Song, Si Yeol; Choi, Eun Kyung

    2015-01-01

    Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX), under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™) technology enabled successful nanoscale particulation of DTX (Nufs-DTX). Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR) effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in edema, paralysis, and paw-withdrawal latency on a hot plate analysis that are regarded as indicators of fluid retention, peripheral neuropathy, and thermal threshold, respectively, for toxicological tests. In summary, compared with Taxotere™, Nufs-DTX, which was generated by our new platform technology using lipid, supercritical fluid, and carbon dioxide (CO2), maintained its biochemical properties as a cytotoxic agent and had better tumor targeting ability, better in vivo therapeutic effect, and less toxicity, thereby overcoming the current hurdles of traditional drugs. PMID:26457052

  1. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering

    International Nuclear Information System (INIS)

    Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper. (topical review)

  2. Crystallography of Magnetite Plaquettes and their Significance as Asymmetric Catalysts for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2015-01-01

    We have previously observed the magnetite plaquettes in carbonaceous chondrites using scanning electron microscope (SEM) imaging, examined the crystal orientation of the polished surfaces of magnetite plaquettes in CI Orgueil using electron backscattered diffraction (EBSD) analysis, and concluded that these magnetite plaquettes are likely naturally asymmetric materials. In this study, we expanded our EBSD observation to other magnetite plaquettes in Orgueil, and further examined the internal structure of these remarkable crystals with the use of X-ray computed microtomography.

  3. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  4. Estimation of Ba, Ag, Sn, Ti, Cu, Zn, Y and Zr in carbonaceous rocks using energy dispersive X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Carbonaceous rocks include carbon phyllites, carbonaceous shale, coal, variants of coaly sandstone, carbonaceous sandstone and graphite schist. Estimation of trace elements in these rocks by X-ray Fluorescence (XRF) method is generally done using coal ash samples. However, one advantage of analyzing whole coal is that volatile elements which are normally lost in ashing, can also be determined. XRF analysis is a rapid, nondestructive comparative method for which a number of matching geostandards/certified reference materials (CRM) is required. Estimation of Ag, Sn, Cu, Ba, Ti, Y and Zr in bromo heavies separated from whole coal samples has been attempted using EDXRFS by formulating procedures with pressed pellets of CRMs comprising of soil (SO-1, SO-2, SO-3, SO-4), shale (SCO-1, SGR-1, SDC-1, GXR-2, GXR-4, GXR-6) and schist rock (ASK-2)

  5. Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa and Enceladus

    Science.gov (United States)

    Hoover, Richard B.

    2011-10-01

    Environmental (ESEM) and Field Emission Scanning Electron Microscopy (FESEM) investigations of the internal surfaces of the CI1 Carbonaceous Meteorites have yielded images of large complex filaments. The filaments have been observed to be embedded in freshly fractured internal surfaces of the stones. They exhibit recognizable features (e.g., the size and size ranges of the internal cells and their location and arrangement within sheaths) that are diagnostic of known genera and species of filamentous trichomic cyanobacteria and other trichomic prokaryotes (such as filamentous sulfur bacteria). ESEM and FESEM studies of living and fossil cyanobacteria show features similar to the filaments found in the meteorites -- uniseriate and multiseriate, branched or unbranched, isodiametric or tapered, polarized or unpolarized filaments with trichomes encased within thin or thick external sheaths. Some of the filaments found in the CI1 meteorites also exhibit specialized cells and structures used by cyanobacteria for reproduction (baeocytes, akinetes and hormogonia), nitrogen fixation (basal, intercalary or apical heterocysts), attachment (pili or fimbriae) or indicative of oscillatoria type locomotion (escaped or coiling hormogonia and flattened and coiled empty sheaths). Energy dispersive X-ray Spectroscopy (EDS) studies indicate that the Orgueil meteorite filaments are typically carbon-rich sheaths infilled with magnesium sulfate and other minerals characteristic of the CI1 carbonaceous meteorites. However, the size, structure, detailed morphological characteristics and chemical compositions of the meteorite filaments are not consistent with known species of abiotic minerals. The nitrogen content of the meteorite filaments are almost always below the detection limit of the EDS detector. EDS analysis of living and dead biological materials (e.g., filamentous cyanobacteria; bacteria, mummy and mammoth hair and tissues, and fossils of cyanobacteria, trilobites and insects in

  6. Changes in the vertical temperature structure associated with carbonaceous aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Penner, J E; Chuang, C C; Santer, B D; Taylor, K

    2002-02-08

    Carbonaceous aerosols from anthropogenic activities act to both scatter and absorb solar radiation. It has been postulated that absorption by aerosols might significantly alter both the vertical temperature structure of the atmosphere and cloud fraction [Hansen et al. 1997, Ackerman et al, 2000]. Since both effects may alter the assessment of climate change associated with human activities, it is very important to understand both the magnitude and the mechanism by which carbonaceous aerosols affect climate. In this paper, we used a coupled climate and chemistry transport model to estimate the effects of carbonaceous aerosols on the vertical temperature structure and their effects on cloud fraction. A series Of control simulations were also carried out to compare the results of the model in which carbonaceous aerosols interact with climate with those in which they do not. We will present the temperature difference between simulations that include the effect of black carbon on the radiation field and those that do not, both at the surface and in the free troposphere. We will also discuss the change of temperature lapse rate and changes of cloud fraction associated with black carbon.

  7. [Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe].

    Science.gov (United States)

    Bao, Liang-man; Liu, Jiang-feng; Lei, Qian-tao; Li, Xiao-lin; Zhang, Gui-lin; Li, Yan

    2016-01-15

    Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM₁₀ single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO₂and mineral particles, which increased the sulfur content of particles. PMID:27078933

  8. Checking Contamination during Storage of Carbonaceous Chondrites for Micro FTIR Measurements

    Science.gov (United States)

    Zolensky, Michael E.

    2008-01-01

    We examined organic contamination by Fourier transform infrared micro spectroscopic (micro FTIR) measurements of carbonaceous chondrite samples. Carbonaceous chondrites, Tagish Lake (C2), Murchison (CM2) and Moss (CO3), and some mineral powder samples pressed on aluminum plates were measured by micro FTIR before and after storage in several containers with silicone rubber mat. During storage, samples did not touch directly anything except the holding aluminum plates. The carbonaceous chondrites containing hydrous minerals (Tagish Lake and Murchison) pressed on aluminum plates and measured by transmission-reflection micro FTIR measurements were found to be contaminated during storage after only one day, as revealed by an increase of approximately 2965 /cm and approximately 1260 /cm peaks. The Moss meteorite which contains no hydrous minerals, did not show an increase of these peaks, indicating no organic contamination. This difference is probably related to the differing mineralogy and physical properties (including porosity and permeability) of these chondrites. Hydrous minerals such as antigorite, muscovite, montmorillonite and silica gel showed organic contamination by the same infrared measurements, while anhydrous materials such as SiO2 and KBr showed no contamination. These results indicate importance of surface OH groups for the organic contamination. Organic contamination was found on silica gel samples pressed on aluminum plates when they were stored within containers including silicone rubber, silicone grease or adhesive tape. Long path gas cell FTIR measurements for silicone rubber indicated methylsiloxane oligomers were released from the silicone rubber. In-situ heating infrared measurements on the contaminated antigorite and Tagish Lake showed decrease of the 1262 /cm (Si-CH3) and 2963 /cm (CH3) peaks from room temperature to 200-300 C indicating desorption of volatile contaminants. These results indicate that careful preparation and storage are

  9. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Cofer, W.R. III; Levine, J.S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  10. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems.

    Science.gov (United States)

    Yan, Jing-Jun; Liao, Jia-Zhi; Lin, Ju-Sheng; He, Xing-Xing

    2015-01-01

    Patients with hepatocellular carcinoma (HCC) usually present at advanced stages and do not benefit from surgical resection, so drug therapy should deserve a prominent place in unresectable HCC treatment. But chemotherapy agents, such as doxorubicin, cisplatin, and paclitaxel, frequently encounter important problems such as low specificity and non-selective biodistribution. Recently, the development of nanotechnology led to significant breakthroughs to overcome these problems. Decorating the surfaces of nanoparticulate-based drug carriers with homing devices has demonstrated its potential in concentrating chemotherapy agents specifically to HCC cells. In this paper, we reviewed the current status of active targeting strategies for nanoparticulate systems based on various receptors such as asialoglycoprotein receptor, transferrin receptor, epidermal growth factor receptor, folate receptor, integrin, and CD44, which are abundantly expressed on the surfaces of hepatocytes or liver cancer cells. Furthermore, we pointed out their merits and defects and provided theoretical references for further research. PMID:25424700

  11. Nanoparticules polymériques pour le diagnostic et la thérapie de la maladie d'Alzheimer

    OpenAIRE

    Brambilla, Davide

    2012-01-01

    La preuve de concept d‟une approche theranostique pour la Maladie de Alzheimer basée sur les nanotechnologies a été explorée. Des nouvelles nanoparticules polymeriques fluorescentes on été conçus, et leur internalisation et aptitude à traverser un nouveau modèle in vitro de barrière hémato-encéphalique humaine on été étudiées en détails. Une petite librairie de nanoparticules polymerique a été préparés, et leur capacité de capturer le peptide β-Amyloïde1-42, considéré comme une des principale...

  12. Mechanisms of Charge Storage in Nanoparticulate TiO2 and Li4Ti5O12 Anodes: New Insights from Scan rate-dependent Cyclic Voltammetry

    International Nuclear Information System (INIS)

    We have studied Li intercalation into two nanoparticulate anode materials for lithium ion batteries, namely Nb-doped TiO2 (Nb-TiO2) and Li4Ti5O12 (LTO), by means of scan rate-dependent cyclic voltammetry. The average particle size is 7 nm for Nb-TiO2 and 6 nm for LTO, respectively. For both materials, we observe a transition in the scan rate dependence of the charge flow, namely from Li intercalation capacity control at low scan rates to diffusion/phase transformation control at higher scan rates. The peak current densities exhibit an approximate power law dependence on the scan rate with exponents between 0.54 and 0.64, even for low scan rates at which the charge flow is close to the Li intercalation capacity. Furthermore, we have tested a method proposed in the literature for differentiating between Faradaic and pseudocapacitive charge storage from scan rate-dependent cyclic voltammograms. The obtained results are not physically meaningful, in particular the obtained negative pseudocapacitive and Faradaic currents. We have analysed the origin of these results, and we show that iso-potential plots of the scan rate-dependent current are not suitable for differentiating between Faradaic and pseudocapacitive processes

  13. Fabrication of an inkjet-printed seed pattern with silver nanoparticulate ink on a textured silicon solar cell wafer

    International Nuclear Information System (INIS)

    In this study, the possibility of using inkjet printing in the fabrication of a conductive seed pattern on a textured silicon solar wafer is investigated. Firstly, solar cell wafers were coated with a hydrophobic solution. It was found that the surface texture of a solar cell wafer causes a slight increase in the contact angle of silver nanoparticulate ink by 7.5° due to a weak Cassie–Baxter wetting state. After selective laser ablation of the hydrophobic coating and the SiNx layer in preparation for the surface energy-patterned finger electrode regions, silver nanoparticulate ink was deposited with a piezo drop-on-demand inkjet print head. Because the threshold laser fluence for the ablation of the hydrophobic coating is lower than that for the SiNx layer, the effective width of a surface energy-patterned finger electrode region with the Gaussian laser beam profile was found to be wider than the actual width of the SiNx-ablated region. Although this initially results in a widened deposition of silver nanoparticulate ink, the subsequent drying of silver nanoparticulate ink is found to cause a reduction of line width of around 6% to 14%. Therefore, the final line width of the seed pattern is the outcome of two opposing phenomena. The physical and electrical characteristics of the seed pattern are as narrow as 58.5 ± 1.2 µm, as thick as 1.81 µm on average and as conductive as 2.72 µΩ cm

  14. Pyrolysis oil from carbonaceous solid wastes in Malaysia

    International Nuclear Information System (INIS)

    The agro-industrial sector of Malaysia produces a huge amount of oil palm and paddy rice. These generate a significant amount of renewable biomass solid wastes in the forms of oil palm shell and rice husk. Apart from this a huge quantity of scrap tyre is generated from the country's faster increasing usage of transportation vehicles like motorcycle, car, bus and lorries. These wastes are producing pollution and disposal problems affecting the environment. Besides energy is not recovered efficiently from these waste resources. From the elemental composition and thermogravimetric analysis (TGA) studies of the wastes, it appeared that the wastes could be used for pyrolysis liquid oil production. Pyrolysis at present is deemed to be a potential method for the conversion of carbonaceous solid wastes into upgraded liquid products which can either be tried for liquid fuel or value-added chemical. A fluidized bed bench scale fast pyrolysis system was employed for this thermochemical conversion process of solid wastes. Silica sand was used as fluidized bed material and nitrogen gas as the fluidising medium. The products obtained were liquid oil, solid char and gas. The liquid oil and solid char were collected separately while the gas was flared. The maximum liquid product yield was found to vary with feedstock material fluidized bed temperature. The maximum liquid product yield was found to be 58, 53 and 40 wt. % of biomass fed at fluidized bed temperature at 500, 525 and 4500C respectively for oil palm shell, scrap tyre and rice husk. The solid char yield was 25, 36 and 53 wt. % of biomass fed at the condition of maximum liquid product yield for oil palm shell, scrap tyre and rice husk respectively. The oil products were subjected to FTIR, GC and GC/MS analysis for their group composition and detailed chemical compositions. The pyrolysis oil from scrap tyre was found to contain highest percentage of pure hydrocarbons (25 wt. % of total feed) with esters and oxygenated

  15. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Uskoković, Vuk, E-mail: vuk21@yahoo.com [Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA (United States); Hoover, Charles [Department of Cell and Tissue Biology, University of California, San Francisco, CA (United States); Vukomanović, Marija [Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade (Serbia); Advanced Materials Department, Jožef Stefan Institute, Ljubljana (Slovenia); Uskoković, Dragan P. [Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade (Serbia); Desai, Tejal A. [Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA (United States)

    2013-08-01

    Development of a material for simultaneous sustained and localized delivery of antibiotics and induction of spontaneous regeneration of hard tissues affected by osteomyelitis stands for an important clinical need. In this work, a comparative analysis of the bacterial and osteoblastic cell response to two different nanoparticulate carriers of clindamycin, an antibiotic commonly prescribed in the treatment of bone infection, one composed of calcium phosphate and the other comprising poly-(D,L-lactide-co-glycolide)-coated calcium phosphate, was carried out. Three different non-cytotoxic phases of calcium phosphate, exhibiting dissolution and drug release profiles in the range of one week to two months to one year, respectively, were included in the analysis: monetite, amorphous calcium phosphate and hydroxyapatite. Spherical morphologies and narrow size distribution of both types of nanopowders were confirmed in transmission and scanning electron microscopic analyses. The antibiotic-containing powders exhibited sustained drug release contingent upon the degradation rate of the carrier. Assessment of the antibacterial performance of the antibiotic-encapsulated powders against Staphylococcus aureus, the most common pathogen isolated from infected bone, yielded satisfactory results both in broths and on blood agar plates for all the analyzed powders. In contrast, no cytotoxic behavior was detected upon the incubation of the antibiotic powders with the osteoblastic MC3T3-E1 cell line for up to three weeks. The cells were shown to engage in a close contact with the antibiotic-containing particles, irrespective of their internal or surface phase composition, polymeric or mineral. At the same time, both types of particles upregulated the expression of osteogenic markers osteocalcin, osteopontin, Runx2 and protocollagen type I, suggesting their ability to promote osteogenesis and enhance remineralization of the infected site in addition to eliminating the bacterial source of

  16. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis

    International Nuclear Information System (INIS)

    Development of a material for simultaneous sustained and localized delivery of antibiotics and induction of spontaneous regeneration of hard tissues affected by osteomyelitis stands for an important clinical need. In this work, a comparative analysis of the bacterial and osteoblastic cell response to two different nanoparticulate carriers of clindamycin, an antibiotic commonly prescribed in the treatment of bone infection, one composed of calcium phosphate and the other comprising poly-(D,L-lactide-co-glycolide)-coated calcium phosphate, was carried out. Three different non-cytotoxic phases of calcium phosphate, exhibiting dissolution and drug release profiles in the range of one week to two months to one year, respectively, were included in the analysis: monetite, amorphous calcium phosphate and hydroxyapatite. Spherical morphologies and narrow size distribution of both types of nanopowders were confirmed in transmission and scanning electron microscopic analyses. The antibiotic-containing powders exhibited sustained drug release contingent upon the degradation rate of the carrier. Assessment of the antibacterial performance of the antibiotic-encapsulated powders against Staphylococcus aureus, the most common pathogen isolated from infected bone, yielded satisfactory results both in broths and on blood agar plates for all the analyzed powders. In contrast, no cytotoxic behavior was detected upon the incubation of the antibiotic powders with the osteoblastic MC3T3-E1 cell line for up to three weeks. The cells were shown to engage in a close contact with the antibiotic-containing particles, irrespective of their internal or surface phase composition, polymeric or mineral. At the same time, both types of particles upregulated the expression of osteogenic markers osteocalcin, osteopontin, Runx2 and protocollagen type I, suggesting their ability to promote osteogenesis and enhance remineralization of the infected site in addition to eliminating the bacterial source of

  17. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs

    Directory of Open Access Journals (Sweden)

    Choi J

    2015-09-01

    Full Text Available Jinhyang Choi,1,2 Eunjung Ko,1 Hye-Kyung Chung,3 Jae Hee Lee,1 Eun Jin Ju,1 Hyun Kyung Lim,4 Intae Park,1 Kab-Sig Kim,5 Joo-Hwan Lee,5 Woo-Chan Son,6 Jung Shin Lee,1,7 Joohee Jung,1,4 Seong-Yun Jeong,1,2 Si Yeol Song,1,8 Eun Kyung Choi1,3,8 1Institute for Innovative Cancer Research, 2Asan Institute for Life Sciences, 3Center for Development and Commercialization of Anti-cancer Therapeutics, 4College of Pharmacy, Duksung Women’s University, 5Bio-Synectics, 6Department of Pathology, 7Department of Internal Medicine, 8Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Abstract: Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX, under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™ technology enabled successful nanoscale particulation of DTX (Nufs-DTX. Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in

  18. Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites

    Science.gov (United States)

    Amelin, Yuri; Krot, Alexander N.

    2005-01-01

    CB (Bencubbin-type) carbonaceous chondrites differ in many ways from more familiar CV and CO carbonaceous chondrites and from ordinary chondrites. CB chondrites are very rich in Fe-Ni metal (50-70 vol%) and contain magnesian silicates mainly as angular to sub-rounded clasts (or chondrules) with barred olivine (BO) or cryptocrystalline (CC) textures. Both metal and silicates appear to have formed by condensation. The sizes of silicate clasts vary greatly between the two subgroups of CB chondrites: large (up to one cm) in CB(sub a) chondrites, and typically to much much less than 1 mm in CB(sub b) chondrites. The compositional and mineralogical differences between these subgroups and between the CB(sub s) and other types of chondrites suggest different environment and possibly different timing of chondrule formation. In order to constrain the timing of chondrule forming processes in CB(sub s) and understand genetic relationship between their subgroups, we have determined Pb-isotopic ages of silicate material from the CB(sub a) chondrite Gujba and CB(sub b) chondrite Hammadah al Hamra 237 (HH237 hereafter).

  19. A hypothesis on the origin of C-type asteroids and carbonaceous chondrites

    CERN Document Server

    Busarev, V V

    2012-01-01

    A hypothesis based on observational and theoretical results on the origin of C-type asteroids and carbonaceous chondrites is proposed. Asteroids of C-type and close BGF-types could form from hydrated silicate-organic matter accumulated in the cores of water-differentiated (due to 26Al and other short-lived isotopes decay) bodies existed in the growth zones of Jupiter. Gravitational scattering of such bodies by Jupiter at its final stage of formation to the main asteroid belt might have led to fragmentation and re-accretion of their primitive materials on the surfaces of many asteroids and/or asteroid parent bodies. The hypothesis makes clear a row of long-standing puzzling facts, the main of which are as follows. The low-albedo and carbonaceous-chondritic surface properties of (1) Ceres contradict to its probable differentiated structure and icy crust (e. g., Thomas et al., 2005, Nature 437: 224-226; Castillo-Rogez et al., 2010, Icarus 205, 443-459), but it could be explained by the process of primitive matte...

  20. Carbonaceous thin film coating with Fe-N4 site for enhancement of dioxovanadium ion reduction

    Science.gov (United States)

    Maruyama, Jun; Hasegawa, Takahiro; Iwasaki, Satoshi; Fukuhara, Tomoko; Orikasa, Yuki; Uchimoto, Yoshiharu

    2016-08-01

    It has been found that carbonaceous materials containing a transition metal coordinated by 4 nitrogens in the square-planar configuration (metal-N4 site) on the surface possessed a catalytic activity for various electrochemical reactions related to energy conversion and storage; i.e., oxygen reduction, hydrogen evolution, and quite recently, the electrode reactions in vanadium redox flow batteries (VRFB). The catalyst for the VRFB positive electrode discharge reaction, i.e., the dioxovanadium ion reduction, was formed by coating the surface of cup-stack carbon nanotubes with a carbonaceous thin film with the Fe-N4 site generated by the sublimation, deposition, and pyrolysis of iron phthalocyanine. In this study, the influence of the physical properties of the catalyst on the electrochemical reactions was investigated to optimize the coating. With an increase in the coating, the specific surface area increased, whereas the pore size decreased. The surface Fe concentration was increased in spite of the Fe aggregation inside the carbon matrix. The catalytic activity enhancement was achieved due to the increase in the specific surface area and the surface Fe concentration, but was lowered due to the decrease in the pore size, which was disadvantageous for the penetration of the electrolyte and the mass transfer.

  1. Petrologic Locations of Nanodiamonds in Carbonaceous Chondrite Meteorites

    Science.gov (United States)

    Garvie, Laurence

    Nanodiamonds (NDs), with dimensions near two nanometers, are widespread accessory minerals in primitive meteorites. They have been studied extensively in concentrates made from acid-insoluble residues, but surprisingly little is known about their petrologic settings in the meteorites because they have not been studied in situ. Information about such settings is fundamental for determining how they formed and were incorporated into the meteorites. The primary goal of the planned research is to determine and compare the petrologic settings of NDs within matrix of different types of carbonaceous chondrites, with the long-term aim of providing new insights regarding the origin of NDs. This research will also provide new data on the structure and major and trace element compositions of individual NDs and regions within them. Transmission electron microscopes (TEMs) provide uniquely powerful information regarding chemical, bonding, and structural data on the scale needed to solve this problem, assuming the NDs can be located within the host matrix. We have developed methods of observing NDs in situ within the fine-grained matrix of primitive meteorites and will use various TEMs to accomplish that goal for several meteorites. High- resolution imaging and electron energy-loss spectroscopy (EELS) will permit determination of both structural and chemical information about the NDs and their adjacent minerals. By the middle of the proposed grant period, two state-of-the-art, aberration-corrected TEMs will have been installed at ASU and will be used to locate heavy elements such as Xe, Te, and Pd within the NDs. These TEMs permit the imaging of individual atoms of heavy elements with annular dark-field (ADF) imaging, and these atoms can be identified using EELS. The result of these new types of measurements will provide information about whether such elements, which have been used to determine whether NDs formed in supernovae, occur within the interiors or on the surfaces of

  2. Initial in vitro screening approach to investigate the potential health and environmental hazards of Envirox™ – a nanoparticulate cerium oxide diesel fuel additive

    Directory of Open Access Journals (Sweden)

    Whittingham Andrew

    2007-12-01

    Full Text Available Abstract Nanotechnology is the new industrial revolution of the 21st Century as the various processes lead to radical improvements in medicine, manufacturing, energy production, land remediation, information technology and many other everyday products and applications. With this revolution however, there are undoubted concerns for health, safety and the environment which arise from the unique nature of materials and processes at the nanometre scale. The in vitro assays used in the screening strategy are all validated, internationally accepted protocols and provide a useful indication of potential toxicity of a chemical as a result of effects on various toxicological endpoints such as local site of contact (dermal irritation, general cytotoxicity and mutagenicity. The initial in vitro screening strategy described in this paper to investigate the potential health implications, if any, which may arise following exposure to one specific application of nanoparticulate cerium oxide used as a diesel fuel borne catalyst, reflects a precautionary approach and the results will inform judgement on how best to proceed to ensure safe use.

  3. Nanoparticulate platinum films on gold using dendrimer-based wet chemical method

    Indian Academy of Sciences (India)

    S Raghu; Sheela Berchmans; K L N Phani; V Yegnaraman

    2005-11-01

    There is a growing interest in devising wet chemical alternatives for physical deposition methods for applications involving thin films, e.g., catalysis. Deposition of platinum on thin gold films is often a problem leading to incomplete coverage and improper adhesion to solid surfaces. Gold substrates often need pre-activation for achieving complete coverage. We demonstrate here that dendrimers with proper functionalities and size work as well-defined nucleating agents and adhesion promoters. This feature is demonstrated using an amine-terminated dendrimer of generation 4.0. This approach allows one to obtain adherent nanoparticulate films of platinum on gold. Unlike other nucleating agents and adhesion promoting compounds, dendrimers have a well-defined ordered structure in terms of their space filling ability. The stability of the films obtained with adsorbed dendrimers is emonstrated using the electrocatalytic reactions of fuels like methanol. The films formed without dendrimers cannot sustain the electro-oxidation currents due to the instability of the films while the films formed with dendrimers can sustain currents for longer duration and for several cycles. The dendrimer-derived Pt films exhibit higher catalytic activity compared to other methods.

  4. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    International Nuclear Information System (INIS)

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO

  5. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    Energy Technology Data Exchange (ETDEWEB)

    Vunnam, Swathi, E-mail: swathi.vunnam@mines.sdsmt.edu [Nanoscience and Nanoengineering Department, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States); Ankireddy, Krishnamraju; Kellar, Jon; Cross, William [Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States)

    2013-03-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO.

  6. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    Science.gov (United States)

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-01-01

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting. PMID:24845560

  7. Influence of Particle Size Distribution on Micromechanical Properties of thin Nanoparticulate Coatings

    Science.gov (United States)

    Barth, Nina; Schilde, Carsten; Kwade, Arno

    In this study the production of thin nanoparticulate coatings on solid stainless-steel substrates using dip-coating was investigated. Defined particle sizes and particle size distributions of Al2O3-nanoparticles were adjusted by stirred media milling using various operating parameters. Using nanoindentation the influence of particle size and width of the particle size distribution on the mechanical properties was investigated. In particular the establishment of nanoindentation routines for particulate thin films in contrast to hard coatings is discussed. Nanoindentation appears to be an efficient method for analysing mechanical properties of said thin coatings. It will be shown, that the influence of the substrate can be neglected for small indent depth while the coating's surface roughness influences the employed routine of the nanoindentation. The effect of the median particle size and the width of the particle size distribution on the coating structure and the micromechanical coating properties will be discussed. As a result, the maximum indentation force decreases with decreasing particle size but rises again once the nanoparticles reach very small sizes. A change in the width of the particle size distribution influences the micromechanical properties and coating structure as well.

  8. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body

    OpenAIRE

    Carporzen, Laurent; Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Shuster, David L.; Ebel, Denton; Gattacceca, Jérôme

    2011-01-01

    The textures of chondritic meteorites demonstrate that they are not the products of planetary melting processes. This has long been interpreted as evidence that chondrite parent bodies never experienced large-scale melting. As a result, the paleomagnetism of the CV carbonaceous chondrite Allende, most of which was acquired after accretion of the parent body, has been a long-standing mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted beca...

  9. Uranium band types in carbonaceous sediments with different diagenesis levels

    International Nuclear Information System (INIS)

    Uraniferous peats, lignites and coals were studied by chemical and geological methods in order to determine the influence of carbonaceous substances with different diagenesis levels on uranium enrichment in sediments. It was found that the main factor of deposit genesis is not the chemical bending of uranium to the organic substance but rather the reduction from mobile U(VI) to immobile U(IV) in the course of diagenesis to epigenesis. (orig./PW)

  10. Removal of carbonaceous contaminants from silica aerogel

    Science.gov (United States)

    Huang, Hui-Ping; Gilmour, I.; Pillinger, C. T.; Zolensky, M. E.

    1993-01-01

    Capture of micrometeorite material from low Earth orbit or dust grains around active comets for return to terrestrial laboratories, capable of practicing the most up to date techniques of chemical isotopic and mineralogical analysis, will greatly enhance our knowledge of primitive material in the solar system. The next generation of space launched cosmic dust collectors will undoubtedly include extremely low density target materials such as silica aerogel as the decelerating and arresting medium. This material has been found to be clean from the point of view of inorganic elements and is thus acceptable for the purpose of harvesting grains to be studied by, for example PIXE, INAA, or SXRF. However, the process used in making aerogel leaves substantial carbon and hydrogen containing residues which would negate their suitability for collection and subsequent investigation of the very important CHON particles. Attempts to precondition aerogel by solvent extraction or heating at 500 C and 750 C in air for 24 hours or under a vacuum of 2(7)(exp -7) torr at 260 C were largely ineffective except that pyrolysis did reduce volatile species. In this investigation we have examined the use of supercritical fluids for the purpose of extracting organic residues. The logic of the new approach is that beyond the supercritical point a substance has the solvating properties of a liquid but the viscosity characteristics of a gas. For example carbon dioxide becomes supercritical at a pressure of 73 atmospheres and a temperature of 31 C; in consequence it can transform to a very powerful and ultraclean solvent. It can dissolve organic matter from low molecular weight up to molecules containing 90 carbon atoms. On release of pressure the fluid reverts to a gas which can easily be pumped away and removed from the substrate being extracted.

  11. Kirishites—high-carbonaceous hairlike fibers associated with volkhovites

    Science.gov (United States)

    Skublov, G. T.; Marin, Yu. B.; Skublov, S. G.; Vasil'Ev, E. V.; Gembitskaya, I. M.; Nechaeva, E. S.; Tarasenko, Yu. N.

    2009-12-01

    Kirishites are highly carbonaceous hairlike fibers 30-100 μm in thickness and 3-30 mm long, which jut out as bunches on the surface of cinder and shungite fragments associated with volkhovites (Holocene tectitelike glasses corresponding to the rocks of kimberlite-lamproite-carbonatite series in composition). Kirishite fibers are zonal. Their inner (axial) zone is composed of high-nitrogen proteinlike compounds, whereas the outer zone is essentially carbonaceous, with a high content of organoelemental complexes (Si, Fe) and numerous micrometer-sized anomalies of major, volatile, trace, and ore elements. Longitudinal zoning is established in aposhungite kirishites: the consecutive change of maximum concentrations—K, Na, Cl, C, Mn → C, S, V, Ni, Cu, Zn → S, N, Ba, Te, Pb, Bi, Nd—is traced from the roots of fibers to their ends. It is suggested that as volkhovites were forming, fragments of cinder and shungite underwent partial melting. The highly carbonaceous compounds released due decompression and explosion were squeezed out from fragments and solidified as fibers during fall of fragments on the Earth’s surface.

  12. Experimental simulation of organic matter alteration in carbonaceous chondrites under an in situ micro FTIR spectroscopy

    Science.gov (United States)

    Kebukawa, Y.; Nakashima, S.; Saiki, K.; Zolensky, M. E.

    2007-12-01

    Carbonaceous chondrites contain organic matter up to a few weight percents, most of which consists of kerogen- like macromolecular material. Chondritic organic matter preserves signatures of various evolutional steps from presolar materials, through aqueous alteration and thermal metamorphism in the parent asteroid up to delivery to the Earth. The organic-mineral interactions during these processes are little known. We report here on the experimental simulation of organic matter alteration on carbonaceous chondrite parent body under micro FTIR spectroscopy with a heating stage. Leonardite humic acid (IHSS standard humic acid) and synthetic saponite or natural antigorite were used as the macromolecular organic matter and the matrix mineral. These powdered samples were dispersed by MilliQ water then dropped on a CaF2 plate and dried. They were heated in the heating stage from room temperature to 600 °C with a heating rate of 10 °C/min in air, Ar gas, and H2+CO2 gas mixture (mixing ratio 1:1). H2+CO2 gas mixture enables controls of not only oxygen fugacity but also water vapor fugacity, and aqueous processing on chondrite parent bodies can be partly simulated. IR spectra were collected at every 20 °C under the micro FTIR spectroscopy. Aliphatic C-H increased from room temperature to approximately 250 °C then decreased. Aromatic C-H increased from room temperature to around 400-450 °C then decreased. These aliphatic C-H decrease and aromatic C-H increase are faster in air than in Ar or H2+CO2. These CH changes of leonardite humic acid are slower with the presence of saponite. These results indicate that organic matter transformation might be prevented by the clay mineral (saponite). Some carbonaceous chondrite samples mixed with the organic material (leonardite humic acid) will also be investigated by the same way. These results will elucidate interactions of chondritic macromolecular organic matter with matrix minerals during parent body processes.

  13. In situ observation of D-rich carbonaceous globules embedded in NWA 801 CR2 chondrite

    Science.gov (United States)

    Hashiguchi, Minako; Kobayashi, Sachio; Yurimoto, Hisayoshi

    2013-12-01

    Eighty-five D-rich carbonaceous particles were identified in the matrix of the NWA 801 CR2 chondrite using isotope microscopy. The occurrence of 67 D-rich carbonaceous particles was characterized using secondary electron microscopy combined with X-ray elemental mapping. The close association of H and C, and D-enrichment suggests that the D-rich carbonaceous particles correspond to organic matter. The D-rich organic particles were scattered ubiquitously throughout the matrix at a concentration of approximately 660 ppm. The morphology of the D-rich carbonaceous particles is globular up to about 1 μm in diameter and is classified into four types: ring globules, round globules, irregular-shaped globules, and globule aggregates. The ring globules are ring-shaped organic matter containing silicate and/or oxide, with or without a void in the center. This is the first report of silicate and oxide grains surrounded by D-rich organic matter. The globule aggregates are composed of several D-rich organic globules mixed with silicates. Morphology of ring globules is very similar to core-mantle grain produced in the molecular cloud or in the outer solar nebula inferring by astronomy, suggesting that the organic globules have formed by UV photolysis in the ice mantle. Silicates or oxides attached to D-rich organic globules are the first observation among chondrites so far and may be unique nature of CR2 chondrites. The hydrogen isotopic compositions of the ring globules, round globules, irregular-shaped globules, and globule aggregates are δD = 3000-4800, 2900-8100, 2700-11,000, and 2500-11,000‰, respectively. Variations of D/H ratio of these organic globules seemed to be attributed to variations of D/H ratio of the organic radicals or differences of content of the D-rich organic radicals. There are no significant differences in the hydrogen isotopic compositions among the four types of D-rich carbonaceous matter. The D-enrichments suggest that these organic globules have

  14. Airborne contamination of forest soils by carbonaceous particles from industrial coal processing

    OpenAIRE

    Schmidt, M. W. I.; Knicker, Heike; Hatcher, Patrick G.; Kögel-Knabner, I.

    2000-01-01

    In the German Ruhr-area industrial coal processing emitted large amounts of carbonaceous particles for a century until 1970. Our objectives were to detect the presence of airborne carbonaceous particles and assess their impact on the chemical structure of soil organic matter in two forest soils (Podzols) with potential sources of carbonaceous particles approximately 10 to 30 km away. Contamination was not visible macroscopicaily. Organic matter was characterized in bulk soils and in particle-...

  15. Aqueous Alteration Mineralogy in CM Carbonaceous Chondrites

    Science.gov (United States)

    Chokai, J.; Zolensky, M.; Le, L.; Nakamura, K.; Mikouchi, T.; Monkawa, A.; Koizumi, E.; Miyamoto, M.

    2004-01-01

    Iron-nickel sulfides are found in most or all solar system environments, and are probably the only minerals found in all extraterrestrial materials on hand. Despite the ubiquity, they have not received the attention they deserve. The most common Fe-Ni sulfides in chondrites are troilite (FeS), pyrrhotite (Fe1- XS) and pentlandite (Fe,Ni)9S8. Troilite is believed to have resulted from sulfidation of metal (Fe-Ni) grains in an H2Scontaining environment. Pyrrhotite is produced when friable troilite grains, which are exfoliated from the metal nucleus, are submitted to continued sulfidation [1]. Some asteroids are known to have experienced aqueous alteration, forming products including new generations of sulfides (pyrrhotite and pentlandite). Pentlandite in particular is known to form during such alteration [1]. However, experimental work by Lauretta has indicated that pentlandite may also have been formed during the initial sulfidation process [2], due to the faster diffusion rate of nickel into the forming sulfide, as compared to iron. Finally, there is considerable evidence [1,3&4] for a family of phases intermediate between pyrrhotite and pentlandite, following the trend of the high temperature monosulfide solid solution [5], something not encountered in terrestrial rocks.

  16. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  17. The identification of group II inclusions in carbonaceous chondrites by electron probe microanalysis of perovskite

    Science.gov (United States)

    Kornacki, A. S.; Wood, J. A.

    1985-01-01

    The technique developed by Kornacki (1984) for identifying group II Ca/Al-rich inclusions in carbonaceous chondrites by electron-microprobe analysis of the ZrO2 or Y2O3 content of their perovskite component is demonstrated using material from 20 Allende inclusions. The results are presented in tables and graphs and compared with findings obtained by other procedures. Group II inclusions are found to have perovskites generally containing less than 0.10 wt pct ZrO2 and/or Y2O3 (average of several grains), while those of groups I, III, V, and VI have more than 0.25 wt pct ZrO2. Analysis of data on eight Allende Ca/Al-rich inclusions shows that 75 percent of the fine-grained inclusions belong to group II. The implications of these findings for fractionation processes in the primitive solar nebula are indicated.

  18. Radar-Enabled Recovery of the Sutters Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia

    Science.gov (United States)

    Jenniskens, Petrus M.; Fries, Marc D.; Yin, Qing-Zhu; Zolensky, Michael E.; Krot, Alexander N.; Sandford, Scott A.; Sears, Derek; Beauford, Robert; Ebel, Denton S.; Friedrich, Jon M.; Nagashima, Kazuhide; Wimpenny, Josh; Yamakawa, Akane; Nishiizumi, Kunihiko; Hamajima, Yasunori; Caffee, Marc W.; Welten, Kees C.; Laubenstein, Matthias; Davis, Andrew M.; Simon, Steven B.; Heck, Phillipp R.; Young, Edward D.; Kohl, Issaku E.; Thiemens, Mark H.; Nunn, Morgan H.; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Cahill, Thomas A.; Lawton, Jonathan A.; Barnes, David; Steele, Andrew; Rochette, Pierre; Verosub, Kenneth L.; Gattacceca, Jerome

    2012-01-01

    Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 +/- 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.

  19. Radar-enabled recovery of the Sutter's Mill meteorite, a carbonaceous chondrite regolith breccia.

    Science.gov (United States)

    Jenniskens, Peter; Fries, Marc D; Yin, Qing-Zhu; Zolensky, Michael; Krot, Alexander N; Sandford, Scott A; Sears, Derek; Beauford, Robert; Ebel, Denton S; Friedrich, Jon M; Nagashima, Kazuhide; Wimpenny, Josh; Yamakawa, Akane; Nishiizumi, Kunihiko; Hamajima, Yasunori; Caffee, Marc W; Welten, Kees C; Laubenstein, Matthias; Davis, Andrew M; Simon, Steven B; Heck, Philipp R; Young, Edward D; Kohl, Issaku E; Thiemens, Mark H; Nunn, Morgan H; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Cahill, Thomas A; Lawton, Jonathan A; Barnes, David; Steele, Andrew; Rochette, Pierre; Verosub, Kenneth L; Gattacceca, Jérôme; Cooper, George; Glavin, Daniel P; Burton, Aaron S; Dworkin, Jason P; Elsila, Jamie E; Pizzarello, Sandra; Ogliore, Ryan; Schmitt-Kopplin, Phillipe; Harir, Mourad; Hertkorn, Norbert; Verchovsky, Alexander; Grady, Monica; Nagao, Keisuke; Okazaki, Ryuji; Takechi, Hiroyuki; Hiroi, Takahiro; Smith, Ken; Silber, Elizabeth A; Brown, Peter G; Albers, Jim; Klotz, Doug; Hankey, Mike; Matson, Robert; Fries, Jeffrey A; Walker, Richard J; Puchtel, Igor; Lee, Cin-Ty A; Erdman, Monica E; Eppich, Gary R; Roeske, Sarah; Gabelica, Zelimir; Lerche, Michael; Nuevo, Michel; Girten, Beverly; Worden, Simon P

    2012-12-21

    Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 ± 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted. PMID:23258889

  20. A nanoparticulate liquid binding phase based DGT device for aquatic arsenic measurement.

    Science.gov (United States)

    Liu, Shengwen; Qin, Nannan; Song, Jieyao; Zhang, Ya; Cai, Weiping; Zhang, Haimin; Wang, Guozhong; Zhao, Huijun

    2016-11-01

    A nanomaterials-based DGT device constructed with commercial dialysis membrane as diffusive layer and nanoparticulate Fe3O4 aqueous suspension as binding phase is developed and validated for in situ aquatic arsenic measurement. The Fe3O4NPs binding phase is capable of quantitatively accumulated both As(III) and As(V) species. As(III) and As(V) species coexist in the vast majority of environmental water samples. The large difference in diffusion coefficients of As(III) (DAs(III)=3.05×10(-7)cm(2)s(-1)) and As(V) (DAs(V)=1.63×10(-7)cm(2)s(-1)) makes the accurate DGT determination of total arsenic concentration of samples containing both species difficult. An effective diffusion coefficient (DAs¯=DAs(III)[1/(1+x)]+DAs(V)[x/(1+x)],where,x=As(V)/As(III)) approach is therefore proposed and validated for accurate DGT determination of total arsenic when As(III) and As(V) coexist. The experimental results demonstrate that for samples having As(V)/As(III) ratios between 0.1 and 0.9, the DGT determined total arsenic concentrations using DAs¯are within ±93-99% of that determined by ICP-MS. The general principle demonstrated in this work opens up a new avenue of utilizing functional nanomaterials as DGT binding phase, paving a way for developing new generation nanomaterials-based DGT devices that can be readily produced in massive numbers at low costs, facilitating the widespread use of DGT for large-scale environmental assessment and other applications. PMID:27591608

  1. Nanoparticulate-induced toxicity and related mechanism in vitro and in vivo

    International Nuclear Information System (INIS)

    In urban areas, the quantity of exhaust particles from vehicle emissions is tremendous and has been regarded as the main contributor to particulate matter (PM) pollution. Recently, the nano-sized PM on public health has begun to raise the attention. The increased toxicity of nanoparticulate can be largely explained by their small size, high airborne concentration, extensive surface area and high content of organic carbon and transition metals. We have attempted to address the toxicity of nano sized-particlulate matter by comparing various particulates including micro-SiO2 (mSiO2), nano-SiO2 (nSiO2), micro-TiO2 (mTiO2), and nano-TiO2 (nTiO2) in RAW264.7 cells and in vivo. The cell viability of all particulates decreased dose dependently. 24-h incubation with nSiO2 demonstrated apoptosis in RAW264.7 using Annexin-V binding immunofluorescent microscopy, but not in any other particulates. In vivo, cytotoxicity of nanosized was higher than micro-sized particulates. As higher the concentration of particulates, the more pulmonary injury and neutrophilic infiltration were observed in nano-sized than micro-sized particulates, respectively. Particularly, 5.0 mg/kg of mTiO2 never shows any increase of neutrophile even with high cellularity of total cells and macrophages. From these results, we suggested that particulate-induced respiratory toxicity be influenced by component, size, and dose of particulates including the characteristic nature of the target cells in vitro and in vivo.

  2. Dual-functional bio-derived nanoparticulates for apoptotic antitumor therapy.

    Science.gov (United States)

    Ding, Yang; Wang, Yazhe; Opoku-Damoah, Yaw; Wang, Cheng; Shen, Lingjia; Yin, Lifang; Zhou, Jianping

    2015-12-01

    The application of bio-derived nanoparticulates has gained a remarkable degree of interest as a promising sustained-release, site-targeted and completely biodegradable delivery system for chemotherapeutics. We hereby introduce a dual-functionalized biomimetic nanovector, cell-penetrating peptide (CPP)-anchored recombinant high density lipoproteins (cp-rHDL), which affords high payload and improved targeting of gambogic acid (GA), a therapeutic agent for apoptotic antitumor therapy. GA-loaded cp-rHDL nanoparticles (cp-rHDL/GA) consisted of hydrophobic core modulating GA, apolipoprotein A-I (apo A-I) for attractive integrating and tumor-homing, and lipophilic anchored R6H4 (RRRRRRHHHH, a pH-responsive CPP) offering a pH-controlled penetrating potential. Upon stepwise incubation with apo A-I and R6H4, cp-rHDL/GA presented several merits, including desirable physicochemical properties, superior biostability, and favorable buffering capacity resulting in proton sponge effect. Synergistic intracellular mechanism for scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, and pH-responsive R6H4 associated endocytotic pathway with rapid endo-lysosomal escape was also observed. This tailored cp-rHDL/GA displayed remarkable cytotoxicity and apoptotic effect via triggering p53 pathway, and provided approximately 5-fold increase in IC50 compared to free GA. Moreover, this rational biomimetic therapeutic strategy attained superior tumor accumulation and significant inhibition of tumor growth in HepG2 xenograft tumor animal models without measurable adverse effect. Results of this study demonstrated that bio-derived cp-rHDL/GA presents pH-responsive penetrating potential and efficient cellular internalization. This dual-functionalization model will open an avenue for exploration of multi-functional bio-derived drug delivery, thereby rendering potential broad applications in apoptotic anticancer therapy. PMID:26344366

  3. Photoelectrochemical properties of WO3 nanoparticulate thin films prepared by carboxylic acid-assisted electrodeposition

    International Nuclear Information System (INIS)

    Optimisation of particle sizes of WO3 films is important for photoelectrochemical applications. However, most of the developed size-controlled synthesis techniques involve complicated instruments or vacuum systems. The present work presents an alternative method using carboxylic acid-assisted electrodeposition where WO3 thin films were deposited from peroxotungstic acid (PTA) solution containing different carboxylic acids (formic, oxalic, citric). The effects of carboxylic acids on the electrodeposition and the resultant morphological, mineralogical, optical, and photoelectrochemical properties of the WO3 films were investigated. The analysis showed that the films consisted of equiaxed nanoparticulate monoclinic WO3. The deposition thicknesses and the average grain (individual particle and agglomerate) sizes of the films were dependent on the amount of hydronium ions and the molecular weight and associated sizes of the conjugate bases released upon the dissociation of carboxylic acids in the PTA solutions, which result in hydrogen bond formation and molecular dispersion. The photocurrent densities of the films deposited with carboxylic acids were greater than that of the film deposited from pure PTA. These differences were attributed to improvements in (1) grain size, which controls photogenerated electron-hole transport, and (2) effective grain boundary area, which controls the numbers of active reaction sites and electron-hole recombination sites. - Highlights: • Carboxylic acid-assisted electrodeposition of WO3 films from peroxotungstic acid. • The types of carboxylic acids control the deposition rates and microstructure. • WO3 grain sizes and effective grain boundary areas determine the photocurrents. • Maximal photocurrent measured in the smallest-aggregate films (∼ 83 nm)

  4. Correlated alteration effects in CM carbonaceous chondrites

    Science.gov (United States)

    Browning, Lauren B.; McSween, Harry Y., Jr.; Zolensky, Michael E.

    1996-07-01

    alteration predicted by our model parameters. Multiple correlations between diverse alteration parameters strongly suggest that (a) different CM chondrites experienced similar kinds of processes and conditions, and (b) CM materials experienced in situ alteration on the CM parent body or bodies.

  5. Synthetic carbonaceous fuel and feedstock using nuclear power, air and water

    International Nuclear Information System (INIS)

    Nuclear power can provide not only the stationary thermal and electrical power backbone in the U.S. but can also be of great assistance in supplying synthetic carbonaceous fuels and feedstocks (SCFF). All forms of carbonaceous materials can serve as sources of raw material for SCFF: however here is considered the ultimate renewable resource of carbon which is CO2 from the atmosphere or the oceans. A number of methods for the recovery of CO2 have been examined. An absorption-stripping system utilizing dilute carbonate solvent appears most economical for atmospheric recovery while distillation appears of interest for sea-water recovery. An alternative isothermal process utilizing chlor-alkali cells is also described. Electrolytic hydrogen is thermocatalytically combined with the CO2 to form methanol which can then be dehydrated to gasoline. Production cost is dominated by the energy for hydrogen and the plant capital investment. Base loaded nuclear power plants supplying peaking load and generating SCFF in an off-peak mode is proposed for reducing costs. Under 1974/5 conditions, incremental power costs would have been a minimum. Under 1985 escalated conditions, incremental costs indicate 6 mills/kWh(e) for power which yields 33.9 c/gallon methanol or 77.1 c/gallon of equivalent gasoline which takes credit for oxygen would break even with $23/bbl of oil. The capital investment for producing the equivalent of one million barrels/day of gasoline in 142 nuclear reactors of 100 MW(e) capacity, operating in an off-peak mode, amounts to slightly more than the investment in new oil exploration and production facilities and considerably less than the projected outflow of capital to foreign OPEC countries. (author)

  6. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Directory of Open Access Journals (Sweden)

    J.-J. Cao

    2013-01-01

    Full Text Available An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles from Pudong (China was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment experiment in 2009. Data for organic and elemental carbon (OC and EC, organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs, and stable carbon isotopes OC (δ13COC and EC (δ13CEC were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA; high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰ indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  7. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Directory of Open Access Journals (Sweden)

    J.-J. Cao

    2012-07-01

    Full Text Available An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC, organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs, and stable C isotopes OC (δ13COC and EC (δ13CEC were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA; high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰ indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  8. Source apportionment of carbonaceous aerosol in southern Sweden

    Directory of Open Access Journals (Sweden)

    J. Genberg

    2011-05-01

    Full Text Available A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (82 %, which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (38 % and fossil fuel combustion (33 % were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 8.2 compared to the measurements.

  9. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Science.gov (United States)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2013-01-01

    An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  10. Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets

    Science.gov (United States)

    Cronin, John R.; Pizzarello, Sandra; Cruikshank, Dale P.

    1988-01-01

    A detailed review is given of the organic compounds found in carbonaceous chondrite meteorites, especially the Murchison meteorite, and detected spectroscopically in other solar-system objects. The chemical processes by which the organic compounds could have formed in the early solar system and the conditions required for these processes are discussed, taking into account the possible alteration of the compounds during the lifetime of the meteoroid. Also considered are the implications for prebiotic evolution and the origin of life. Diagrams, graphs, and tables of numerical data are provided.

  11. New phyllosilicate types in a carbonaceous chondrite matrix

    Science.gov (United States)

    Mackinnon, I. D. R.; Buseck, P. R.

    1979-01-01

    Observations of new types of layer silicates in the crystalline regions of the matrix of a carbonaceous chondrite are reported. Ion-thinned sections of the Murchison meteorite were observed by high-resolution transmission electron microscopy. Images obtained of patterns of fringe spacings of 4.9 and 7.3 A are interpreted as resulting from ordered and disordered sequences of brucite-like and serpentine-like layers, respectively. The temperature and pressure conditions of phyllosilicate formation in the Murchison matrix are discussed in light of the suggested crysotile serpentine and brucite layers and evidence of Fe and Al in the layered intergrowths.

  12. Comets, carbonaceous meteorites, and the origin of the biosphere

    Directory of Open Access Journals (Sweden)

    r. b. Hoover

    2006-01-01

    Full Text Available The Biosphere is considered to represent the Earth's crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. This paper considers the significance of comets and carbonaceous meteorites to the origin and evolution of the Biosphere and presents new Field Emission Scanning Electron Microscope (FESEM images of indigenous microfossils in the Orgueil and Murchison meteorites. The discovery of microbial extremophiles in deep crustal rocks, hydrothermal vents and ancient ice has established that the biosphere is far more extensive than previously recognized. Chemical and molecular biomarkers and microfossils in Archaean rocks indicate that life appeared very early on the primitive Earth and the origin of the biosphere is closely linked with the emergence of life. The role of comets, carbonaceous meteorites, interstellar dust and asteroids in the delivery of water, organics and prebiotic chemicals to Earth during the Hadean (4.5–3.8 Ga period of heavy bombardment has become more widely recognized. Spacecraft observations of the chemical compositions and characteristics of the nuclei of several comets (Halley, Borrelly, Wild 2, and Tempel 1 have established that comets contain complex organic chemicals; that water is the predominant volatile; and that high temperatures (~400 K can be reached on the black (albedo~0.03 nuclei when near perihelion. The microscopic dust particles in the Tempel 1 ejecta are similar in size to the particulates of the Orgueil meteorite and evidence is mounting that comets may represent the parent bodies of the CI meteorites. Impact craters and pinnacles on comet Wild 2 suggest a thick crust. Episodic outbursts and jets of Halley, Borrelly, Wild 2 and Tempel 1 near perihelion indicate that localized regimes of liquid water may periodically exist beneath the thick crust of many comets. This increases the possibility that microbial life might survive in comets and therefore the

  13. Application of Scanning-Imaging X-Ray Microscopy to Fluid Inclusion Candidates in Carbonates of Carbonaceous Chondrites

    Science.gov (United States)

    Tsuchiyama, Akira; Nakano, Tsukasa; Miyake, Akira; Akihisa, Takeuchi; Uesugi, Kentaro; Suzuki, Yoshio; Kitayama, Akira; Matsuno, Junya; Zolensky, Michael E.

    2016-01-01

    In order to search for such fluid inclusions in carbonaceous chondrites, a nondestructive technique using x-ray micro-absorption tomography combined with FIB sampling was developed and applied to a carbonaceous chondrite. They found fluid inclusion candidates in calcite grains, which were formed by aqueous alteration. However, they could not determine whether they are really aqueous fluids or merely voids. Phase and absorption contrast images can be simultaneously obtained in 3D by using scanning-imaging x-ray microscopy (SIXM). In refractive index, n=1-sigma+i(beta), in the real part, 1-sigma is the refractive index with decrement, sigma, which is nearly proportional to the density, and the imaginary part, beta, is the extinction coefficient, which is related to the liner attenuation coefficient, mu. Many phases, including water and organic materials as well as minerals, can be identified by SIXM, and this technique has potential availability for Hayabusa-2 sample analysis too. In this study, we examined quantitative performance of d and m values and the spatial resolution in SIXM by using standard materials, and applied this technique to carbonaceous chondrite samples. We used POM ([CH2O]n), silicon, quartz, forsterite, corundum, magnetite and nickel as standard materials for examining the sigma and mu values. A fluid inclusion in terrestrial quartz and bi-valve shell (Atrina vexillum), which are composed of calcite and organic layers with different thickness, were also used for examining the spatial resolution. The Ivuna (CI) and Sutter's Mill (CM) meteorites were used as carbonaceous chondrite samples. Rod- or cube-shaped samples 20-30 micron in size were extracted by using FIB from cross-sectional surfaces of the standard materials or polished thin sections of the chondrites, which was previously observed with SEM. Then, the sample was attached to a thin W-needle and imaged by SIXM system at beamline BL47XU, SPring-8, Japan. The slice thickness was 109.3 nm

  14. ‘Indicator’ carbonaceous phyllite/graphitic schist in the Archean Kundarkocha gold deposit, Singhbhum orogenic belt, eastern India: Implications for gold mineralization vis-a-vis organic matter

    Indian Academy of Sciences (India)

    P R Sahoo; A S Venkatesh

    2014-10-01

    Carbonaceous rocks in the form of graphitic schist and carbonaceous phyllite are the major host rocks of the gold mineralization in Kundarkocha gold deposit of the Precambrian Singhbhum orogenic belt in eastern India. The detection of organic carbon, essentially in the carbonaceous phyllite and graphitized schist within the Precambrian terrain, is noted from this deposit. A very close relationship exists between gold mineralization and ubiquitous carbonaceous rocks containing organic carbon that seems to play a vital role in the deposition of gold in a Precambrian terrain in India and important metallogenetic implications for such type of deposits elsewhere. However, the role played by organic matter in a Precambrian gold deposit is debatable and the mechanism of precipitation of gold and other metals by organic carbon has been reported elsewhere. Fourier transform infrared spectroscopy (FTIR) results and total organic carbon (TOC) values suggest that at least part of the organic material acted as a possible source for the reduction that played a significant role in the precipitation of gold. Lithological, electron probe analysis (EPMA), fluid inclusions associated with gold mineralization, Total Carbon (TC), TOC and FTIR results suggest that the gold mineralization is spatially and genetically associated with graphitic schist, carbonaceous phyllite/shale that are constituted of immature organic carbon or kerogen. Nano-scale gold inclusions along with free milling gold are associated with sulfide mineral phases present within the carbonaceous host rocks as well as in mineralized quartz-carbonate veins. Deposition of gold could have been facilitated due to the organic redox reactions and the graphitic schist and carbonaceous phyllite zone may be considered as the indicator zone.

  15. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    Science.gov (United States)

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. PMID:24763438

  16. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    International Nuclear Information System (INIS)

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10−2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. (papers)

  17. High quality aluminium doped zinc oxide target synthesis from nanoparticulate powder and characterisation of sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, P.J.M., E-mail: P.J.M.Isherwood@lboro.ac.uk [Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Neves, N. [Innovnano, S. A., Rua Coimbra Inovação Parque, IParque Lote 13, 3040-570 Antanhol, Coimbra (Portugal); Bowers, J.W. [Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Newbatt, P. [Innovnano, S. A., Rua Coimbra Inovação Parque, IParque Lote 13, 3040-570 Antanhol, Coimbra (Portugal); Walls, J.M. [Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)

    2014-09-01

    Nanoparticulate aluminium-doped zinc oxide powder was synthesised through detonation and subsequent rapid quenching of metallic precursors. This technique allows for precise compositional control and rapid nanoparticle production. The resulting powder was used to form sputter targets, which were used to deposit thin films by radio frequency sputtering. These films show excellent sheet resistance and transmission values for a wide range of deposition temperatures. Crystal structure analysis shows that crystals in the target have a random orientation, whereas the crystals in the films grow perpendicular to the substrate surface and propagate preferentially along the (002) axis. Higher temperature deposition reduces crystal quality with a corresponding decrease in refractive index and an increase in sheet resistance. Films deposited between room temperature and 300 °C were found to have sheet resistances equivalent to or better than indium tin oxide films for a given average transmission value. - Highlights: • Nanoparticulate AZO powder was used to produce sputter targets. • The powder synthesis technique allows for precise compositional control. • Sputtered films show excellent optical, electronic and structural properties. • High temperature films show reduced electrical and structural quality. • For a given transmission, films show equivalent sheet resistances to ITO.

  18. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    Science.gov (United States)

    Vunnam, S.; Ankireddy, K.; Kellar, J.; Cross, W.

    2014-05-01

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10-2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate.

  19. Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst

    International Nuclear Information System (INIS)

    Graphical abstract: Lignin derived catalyst has hydrophilic and hydrophobic groups, such as hydroxyl group and polycyclic aromatic carbon. Therefore, methanol and oleic acid are easily absorbed on the surface of solid acid catalysts, which is benefit to the contact between reactants and active sites. The active sites of SO3H groups play the role of Bronsted acid as proton donor in the reaction. Highlights: ► Lignin-derived carbonaceous catalyst was firstly synthesized for biodiesel synthesis. ► Active sites are linked to amorphous structure by the form of C-O-SO3H. ► Acidified soybean soapstock (ASS) was used as oil material for biodiesel synthesis. ► A maximum biodiesel yield of 97.2% was achieved in esterification of ASS. ► The catalytic efficiency of solid acid was similar to that of 1.5 wt.% of H2SO4. -- Abstract: Biodiesel was produced from acidified soybean soapstocks by using lignin-derived carbonaceous catalyst (LCC). LCC was a solid acidic catalyst prepared by direct sulfonation of residual lignin from Xanthoceras sorbifolia Bunge hulls. The textural properties of the catalyst were characterized by 13C MAS NMR, X-ray diffraction, FT-IR, elemental analysis and BET surface area measurement. When 7 wt.% of LCC was used in the esterification, the maximum free fatty acids (FFAs) conversion (above 97%) could be achieved at a molar ratio of methanol/oil of 1:9 and a reaction temperature of 70 °C for 5 h. A comparison of catalytic activity between sulfuric acid and LCC revealed that LCC performed 3.5 times higher activity than sulfuric acid with the equivalent active group (-SO3H). Additionally, LCC could be reused at least three times with high FFAs conversion (>80%).

  20. Ethanol and other oxygenateds from low grade carbonaceous resources

    Energy Technology Data Exchange (ETDEWEB)

    Joo, O.S.; Jung, K.D.; Han, S.H. [Korea Institute of Science and Technology, Seoul (Korea, Democratic People`s Republic of)] [and others

    1995-12-31

    Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grade carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.

  1. Enantiomeric and Isotopic Analysis of Sugar Derivatives in Carbonaceous Meteorites

    Science.gov (United States)

    Cooper, George; Asiyo, Cynthia; Turk, Kendra; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Several classes of organic compounds are found in carbonaceous meteorites including amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in the origin of life. Likewise, sugar derivatives are critical to all known lifeforms. Recent analyses of the Murchison and Murray carbonaceous meteorites revealed a diverse suite of such derivatives, i.e., sugar alcohols, and sugar acids. This presentation will focus primarily on the analysis of individual sugar acids - their enantiomeric and isotopic composition. Analysis of these compounds may reveal the nature of past (or present) meteoritic sugars themselves. For example, if parent sugars decomposed (by well-known mechanisms) to give the present acids, were their enantiomeric ratios preserved? Combined with other evidence, the enantiomeric composition of such compounds as glyceric acid and (especially) rare acids may help to answer such questions. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) as a group revealed that they were indigenous to the meteorite. Preliminary C-13 analysis of glyceric acid shows that it is also extraterrestrial.

  2. A new extraction process of carbonaceous refractory gold concentrate

    Institute of Scientific and Technical Information of China (English)

    MENG Yu-qun

    2005-01-01

    A new hydrometallurgical process for a carbonaceous refractory gold concentrate at ambient temperature and pressure was presented, including grinding-leaching, intensified alkaline leaching(IAL), thiosulfate leaching and cementation by zinc powder. The experimental results show that the grinding-leaching and intensified alkaline leaching process result in the selective oxidation of arsenopyrite and pyrite. The oxidation ratio of As is 96.6%, and 46.7 % for S. The total consumption of NaOH in alkaline leaching is only 28 % of that theoretically calculated under the conditions of full oxidization for the same amount of arsenopyrite and pyrite transforming into arsenates and sulfates, and 83. 6 % of gold is synchro-dissoluted by thiosulfate self-generated during pretreatment. Since the carbonaceous matter in concentrate possesses a strong capability of preg robbing, the cyanidation process is not suitable for the extraction of gold after pretreatment. However, the gold leaching rate by thiosulfate leaching for 24 h is increased to 91.7% from 0 - 3.2% by ultra-fine grinding without the pretreatment. The recovery of gold by zinc cementation gets to 99.6 %. Due to the thiosulfate self-generated during alkaline leaching, the reagent addition in thiosulfate leaching afterwards is lower than the normal one.

  3. Carbonaceous aerosols from different tropical biomass burning sources

    Science.gov (United States)

    Cachier, Hélène; Brémond, Marie-Pierre; Buat-Ménard, Patrick

    1989-08-01

    FOLLOWING a repetitive pattern, biomass burning affects the intertropical belt on a continental scale during the dry season1. The importance of these anthropogenic activities with regard to carbonaceous-component emissions into the global atmosphere is now well recognized2-4. It has been suggested that large injections of black carbon aerosols from the Tropics are of potential importance for the radiative and chemical balance of the troposphere5-10. Studies on carbonaceous aerosols have indicated that, on an annual basis, the intensity of the emissions from tropical biomass burning could compare with that of emissions from fossil-fuel burning in industrial countries7,8. Also, results from combustion chamber experiments have determined the important range of the emission factor for both the organic and the black carbon components of the aerosol1-16. Following on from our earlier studies on total atmospheric particulate carbon (Ct) and isotopic composition (δ13C) (ref. 2), we now present new data on the black carbon content (Cb) of atmospheric particles sampled during the biomass-burning season in the wooden savannah of the Ivory Coast. The Cb/Ct ratio is generally lower than expected and highly variable. This variability indicates that there are drastic changes in source apportionment, which from our isotope studies may be ascribed to the variety of vegetation fuel and also to the mode of combustion. Therefore the Cb/Ct ratio can potentially discriminate biomass-burning emissions from different tropical ecosystems.

  4. Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula

    Science.gov (United States)

    Huss, Gary R.; Meshik, Alex P.; Smith, Julie B.; Hohenberg, C. M.

    2003-12-01

    We have determined abundances of presolar diamond, silicon carbide, graphite, and Xe-P1 (Q-Xe) in eight carbonaceous chondrites by measuring the abundances of noble gas tracers in acid residues. The meteorites studied were Murchison (CM2), Murray (CM2), Renazzo (CR2), ALHA77307 (CO3.0), Colony (CO3.0), Mokoia (CV3 ox), Axtell (CV3 ox), and Acfer 214 (CH). These data and data obtained previously by Huss and Lewis (1995) provide the first reasonably comprehensive database of presolar-grain abundances in carbonaceous chondrites. Evidence is presented for a currently unrecognized Ne-E(H) carrier in CI and CM2 chondrites. After accounting for parent-body metamorphism, abundances and characteristics of presolar components still show large variations across the classes of carbonaceous chondrites. These variations correlate with the bulk compositions of the host meteorites and imply that the same thermal processing that was responsible for generating the compositional differences between the various chondrite groups also modified the initial presolar-grain assemblages. The CI chondrites and CM2 matrix have the least fractionated bulk compositions relative to the sun and the highest abundances of most types of presolar material, particularly the most fragile types, and thus are probably most representative of the material inherited from the sun's parent molecular cloud. The other classes can be understood as the products of various degrees of heating of bulk molecular cloud material in the solar nebula, removing the volatile elements and destroying the most fragile presolar components, followed by chondrule formation, metal-silicate fractionation in some cases, further nebula processing in some cases, accretion, and parent body processing. If the bulk compositions and the characteristics of the presolar-grain assemblages in various chondrite classes reflect the same processes, as seems likely, then differential condensation from a nebula of solar composition is ruled out as

  5. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    OpenAIRE

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-01-01

    Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties.

  6. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties

    Science.gov (United States)

    Shi, Hengchong; Shi, Dean; Yin, Ligang; Yang, Zhihua; Luan, Shifang; Gao, Jiefeng; Zha, Junwei; Yin, Jinghua; Li, Robert K. Y.

    2014-10-01

    In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.g., carbon nanotube) or two-dimensional nanoparticles (e.g., graphene oxide). The CNP-PU foam exhibited excellent elasticity and high mechanical durability even when it was subjected to 500 cyclic compression. The CNP-PU foam had excellent absorption of organic solvents up to 121 times the weight of the initial PU foam. In addition, the electrical conductivity of PU foams was considerably increased with the anchoring of CNP onto the matrix. In addition, compression experiments confirmed that the electrical conductivity of CNP-PU foams changed with their compression ratios, thus exhibiting excellent pressure sensitivity. The as-prepared materials have significant potential as oil absorbents, elastic conductors, flexible electrodes, pressure sensors, etc.In this work, we report a facile, low cost and time-saving method for the fabrication of compressible, electrically conductive, oil absorptive, cost-effective and flexible polyurethane (PU) foam through ultrasonication induced carbonaceous nanoparticles (CNP) onto flexible PU foam (CNP-PU foam). SEM images showed that the CNP could be firmly anchored onto the PU foam, and made the PU foam surface much rougher. Zero-dimensional carbonaceous nanoparticles were easier to anchor onto the PU foam surface than one-dimensional nanoparticles (e.g., carbon nanotube) or two-dimensional nanoparticles (e.g., graphene oxide). The CNP-PU foam exhibited excellent elasticity and high mechanical

  7. The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Wehner, H.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover (Germany); Botz, R. [University Kiel, Geological-Paleontological Department, Olshausenstrasse 40-60, D-24118 Kiel (Germany); Berner, Z.; Stueben, D. [Technical University Karlsruhe, Institute for Mineralogy and Geochemistry, Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Al-Sayigh, A. [Sultan Qaboos University, Geological Dept. PO Box 36, Al-Khod (Oman)

    2007-10-01

    incursions make up a greater deal of the sedimentary record than mangrove swamps. Terra rossa paleosols mark the end of accumulation of organic material (OM) and herald supratidal conditions at the passage of Rusayl Formation into the overlying Seeb Formation. In the subtidal-supratidal cycles of lithofacies unit VIII the terra rossa horizons are thining upwards and become gradually substituted for by deep-water middle ramp sediments of lithofacies unit IX. Framboidal pyrite, (ferroan) dolomite with very little siderite are indicative of an early diagenetic alteration stage I under rather moderate temperatures of formation. During a subsequent stage II, an increase in the temperature of alteration was partly induced by burial and a high heat flow from the underlying Semail Ophiolite. Type-III kerogen originating from higher plants and, in addition, some marine biota gave rise to the generation of small amounts of soluble organic matter during this stage of diagenesis. The average reflectance of humic particles marks the beginning of the oil window and the production index reveals the existence of free hydrocarbons. Further uplift of the Eocene strata and oxidation during stage IIII caused veins of satin spar to form from organic sulfur and pyrite in the carbonaceous material. Lowering of the pH value of the pore fluid led to the precipitation of jarosite and a set of hydrated aluminum sulfates dependant upon the cations present in the wall rocks. AMD minerals (= acid mine drainage) are not very widespread in this carbonaceous series intercalated among calcareous rocks owing to the buffering effect of carbonate minerals. These carbonate-hosted carbonaceous rocks are below an economic level as far as the mining of coal is concerned, but deserves particular attention as source rocks for hydrocarbons in the Middle East, provided a higher stage of maturity is reached. (author)

  8. Sources of carbonaceous aerosol in the Amazon basin

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2011-03-01

    Full Text Available The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies.

    In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI fine (Dp < 2.5 μm and coarse (2.5 μm < Dp <10 μm aerosol particles were sampled from February to June (wet season and from August to September (dry season 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 μg m−3 during the wet season and 4.2 μg m−3 during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 μg m−3, respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC; the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m2 g−1 at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA, and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas.

    The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation

  9. Metamorphosed CM and CI Carbonaceous Chondrites Could Be from the Breakup of the Same Earth-crossing Asteroid

    Science.gov (United States)

    Zolensky, Michael; Abell, Paul; Tonui, Eric

    2005-01-01

    Far from being the relatively unprocessed materials they were once believed to be, we now know that a significant number of carbonaceous chondrites were thermally metamorphosed on their parent asteroid(s). Numerous studies indicate that 7 "CM" and 2 "CI" chondrites have been naturally heated, variously, at from 400 to over 700 C on their parent asteroid(s). Petrographic textures reveal that this thermal metamorphism occurred after the dominant aqueous alteration phase, although some meteorites show evidence of a heating event between two aqueous alteration episodes, i.e. pro- and retrograde aqueous alteration. Aside from the issues of the identification of the transient heat source, timing of metamorphism, and the relation of these materials (if any) to conventional CM and CI chondrites, there is also a mystery related to their recovery. All of these meteorites have been recovered from the Antarctic; none are falls or finds from anyplace else. Indeed, the majority have been collected by the Japanese NIPR field parties in the Yamato Mountains. In fact, one estimate is that these meteorites account for approx. 64 wt% of the CM carbonaceous chondrites at the NIPR. The reasons for this are unclear and might be due in part to simple sampling bias. However we suggest that this recovery difference is related to the particular age of the Yamato Mountains meteorite recovery surfaces, and differences in meteoroid fluxes between the Yamato meteorites and recent falls and substantially older Antarctic meteorites. Additional information is included in the original extended abstract.

  10. The Effect of Aqueous Alteration in Antarctic Carbonaceous Chondrites from Comparative ICP-MS Bulk Chemistry

    Science.gov (United States)

    Alonso-Azcarate, J.; Trigo-Rodriguez, J. M.; Moyano-Cambero, C. E.; Zolensky, M.

    2014-01-01

    Terrestrial ages of Antarctic carbonaceous chondrites (CC) indicate that these meteorites have been preserved in or on ice for, at least, tens of thousands of years. Due to the porous structure of these chondrites formed by the aggregation of silicate-rich chondrules, refractory inclusions, metal grains, and fine-grained matrix materials, the effect of pervasive terrestrial water is relevant. Our community defends that pristine CC matrices are representing samples of scarcely processed protoplanetary disk materials as they contain stellar grains, but they might also trace parent body processes. It is important to study the effects of terrestrial aqueous alteration in promoting bulk chemistry changes, and creating distinctive alteration minerals. Particularly because it is thought that aqueous alteration has particularly played a key role in some CC groups in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive. With the goal to learn more about terrestrial alteration in Antarctica we are obtaining reflectance spectra of CCs, but also performing ICP-MS bulk chemistry of the different CC groups. A direct comparison with the mean bulk elemental composition of recovered falls might inform us on the effects of terrestrial alteration in finds. With such a goal, in the current work we have analyzed some members representative of CO and CM chondrite groups.

  11. Ethanol adsorption onto carbonaceous and composite adsorbents for adsorptive cooling system

    International Nuclear Information System (INIS)

    The aim of the present paper is the experimental characterization of adsorbent materials suitable for practical applications in adsorption refrigeration systems, employing ethanol as refrigerant. Different commercial activated carbons as well as a properly synthesized porous composite, composed of LiBr inside a silica gel host matrix, have been tested. A complete thermo-physical characterization, comprising nitrogen physi-sorption, specific heat and thermo-gravimetric equilibrium curves of ethanol adsorption over the sorbents, has been carried out. The equilibrium data have been fitted by means of the Dubinin – Astakhov equation. On the basis of the experimental data, a thermodynamic evaluation of the achievable performance of each adsorbent pair has been estimated by calculating the maximum COP (Coefficient of Performance) under typical working boundary conditions for refrigeration and air conditioning applications. The innovative composite material shows the highest thermodynamic performances of 0.64–0.72 for both tested working conditions. Nevertheless, the best carbonaceous material reaches COP value comparable with the synthesized composite. The results have demonstrated the potential of the chosen adsorbents for utilization in adsorption cooling systems. - Highlights: • We studied ethanol adsorption for adsorption cooling systems. • Commercial activated carbons and composite sorbent, LiBr/SiO2, are tested by complete thermo-physical characterization. • A thermodynamic evaluation has been carried out on each working pairs to estimate the performance of a refrigeration cycle

  12. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    Science.gov (United States)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  13. On the carbonaceous carriers of IR plateau and continuum emission

    CERN Document Server

    Papoular, Renaud

    2013-01-01

    This study explores the molecular origins of plateaus and continuum underlying IR and FIR bands emitted by compact nebulae, especially proto-planetary nebulae. Computational organic chemistry codes are used to deliver the vibrational integrated band intensities of various large, typical carbonaceous structures. These spectra are composed of a rather continuous distribution of weak modes from which emerge the fingerprints. The 6 to 18-mu region is interspersed with a great many weak lines, to which the plateaus are assigned. Similarly, the far IR spectrum is ascribed to the phonon (skeletal) spectrum which is readily identified beyond 18 mu. The absorptivities and absorption cross-sections per interstellar H atom deduced from these spectra are comparable with those of laboratory dust analogs and astronomical measurements, respectively. Moreover, the 5-35 mu spectra of two typical Proto-Planetary Nebula were reasonably well simulated with combinations of molecules containing functional groups which carry the 21...

  14. Petrogenesis of opaque assemblages in the Ningqiang carbonaceous chondrite

    Institute of Scientific and Technical Information of China (English)

    HSU; WeiBiao

    2007-01-01

    Numerous round to oblate opaque assemblages (OAs) are found in chondrules and matrix of the Ningqiang carbonaceous chondrite. They are mainly composed of Ni-rich metal,magnetite,Fe,Ni-sulfides,with minor amounts of phosphate,phosphoran-olivine,pyroxene and trace amounts of nano-sized platinum-group metal alloys. The mineralogy of Ningqiang OAs is very similar to that of OAs previously reported in Ca,Al-rich inclusions of CV chondrites. Being a rare mineral phase in nature,phosphoran-olivine is thought to form by nonequilibrium reactions between P-bearing molten metal and olivine crystals during rapid cooling. Its occurrence in Ningqiang OAs indicates that the precursor of OAs was locally produced during chondrule formation,rather than directly condensed from the solar nebula as previously thought. The petrographic and mineralogical characteristics of Ningqiang OAs reveal that OAs formed by low temperature alterations of pre-existing homogeneous alloys within chondrules on a planetary body.

  15. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaoliang; Yan, Zhengguang, E-mail: yanzg2004@gmail.com; Han, Xiaodong, E-mail: xdhan@bjut.edu.cn

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: In situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.

  16. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    International Nuclear Information System (INIS)

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: In situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor

  17. Dynamics of nanoparticules detected at 1 AU by S/WAVES onboard STEREO spacecraft

    Science.gov (United States)

    Belheouane, Soraya; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Mann, Ingrid

    In order to interpret in detail the S/WAVES data on the interplanetary nanodust discovered by STEREO at 1 AU [Meyer-Vernet et al., 2009], we study the dynamics of nanoparticles in the inner interplanetary medium as well as the distribution of their velocities and directions of arrival, with a model based on [Czechowski and Mann, 2012]. We deduce the charges released by their impacts on the STEREO spacecraft at 1 AU and their dependence on the position of the spacecraft on their orbits. The model studies nanoparticles of size equal or smaller than about 70 nm, assumed to be created via collisional fragmentation of dust grains of larger size moving on keplerian orbits, and sublimation of dust, meteoroids and comets. The nanoparticles are released near the Sun with initial velocities close to keplerian, and mainly subjected to the Lorentz force calculated with a simple solar wind model. A part of the nanoparticles is accelerated to high speeds of the order of 300 km/s, thereby providing impact charges between 10(-14) and 10(-11) Cb [Belheouane, 2014] which enable them to be detected by S/WAVES, whereas another part is trapped within about 0.2 AU from the Sun. We discuss how the fluxes and direction of arrival at 1 AU are expected to change in function of the solar cycle. These results enable us to interpret in detail the STEREO/WAVES observations [Zaslavsky et al., 2012]; [Pantellini et al., 2013]; [Le Chat et al., 2013]. Belheouane, S. (2014). Nanoparticules dans le vent solaire, observations spatiales et theorie. PhD thesis, Pierre and Marie Curie University UPMC. Czechowski, A. and Mann, I. (2012). Nanodust Dynamics in Interplanetary Space, chapter Nanodust Dynamics in Interplanetary Space. Springer Berlin Heidelberg. Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S., and Kasper, J. (2013). Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low

  18. Effect of Er{sup 3+} doping on the thermal stability of TiO{sub 2} nanoparticulate xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Borlaf, Mario; Colomer, Maria T.; Moreno, Rodrigo [Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de Ceramica y Vidrio (Spain); Ortiz, Angel L., E-mail: alortiz@materiales.unex.es [Universidad de Extremadura, Departamento de Ingenieria Mecanica, Energetica y de los Materiales (Spain)

    2013-06-15

    The effect of Er{sup 3+} doping on the thermal stability of TiO{sub 2} nanoparticulate xerogels prepared by a colloidal sol-gel route was investigated. It was found that the as-synthesized xerogels crystallize as anatase phase with crystallite sizes in the low nanoscale range (<7 nm) and high-specific surface areas (>100 {+-} 5 m{sup 2}/g). Nevertheless, it was also found that the Er{sup 3+} cations are deposited on the surface of TiO{sub 2} nanocrystallites thus resulting in xerogels with smaller and more uniform nanoaggregates. Most importantly, detailed analyses using X-ray thermo-diffractometry together with selective analyses by transmission electron microscopy, selected area electron diffractometry, and X-ray energy-dispersive spectrometry showed that the thermal stability of these TiO{sub 2} nanoparticulate xerogels increases with increasing Er{sup 3+} doping. Specifically, the nanocrystallite growth is slowed down, the onset temperature of the anatase-to-rutile phase transformation is delayed, and the anatase phase is retained up to greater temperatures as the Er{sup 3+} content increases, which are all phenomena attributable to the formation at low temperatures (i.e. {approx}200 Degree-Sign C) of solid solutions with Er{sup 3+} solutes within the TiO{sub 2} host. Moreover, these solid solutions also have lower thermal expansion coefficient than the undoped crystal structure. Finally, Er{sup 3+} doping increasingly promotes the precipitation at high temperatures of Er{sub 2}Ti{sub 2}O{sub 7} from the rutile TiO{sub 2} solid solution, with the precipitation temperature decreasing with increasing Er{sup 3+} doping content.

  19. Pyrolysis of carbonaceous particles and properties of Carbonaceous-g-Poly (acrylic acid-co-acrylamide superabsorbent polymer for agricultural applications

    Directory of Open Access Journals (Sweden)

    Ghazali S.

    2016-01-01

    Full Text Available Utilisation of fertilizer and water are very important in determining the production of agriculture nowadays. The excessive use of fertilizer in plantation somehow could leads to environmental pollution. The present study reported a synthesis of controlled release water retention (CRWR fertilizer coating with superabsorbent polymer (SAPs. Superabsorbent polymer (SAPs are polymers that have ability to absorb and retain large amounts of water relative to their own mass. The presence of coating layer of SAPs on fertilizer granules was believed could reduce excessive used of fertilizer by controlling their dissolution rates and also reduce the environmental pollution. In this study, the effect on the addition of carbonaceous filler in SAPs on the water absorbency was also be compared with control SAPs (without carbonaceous particles. In this study, the carbonaceous filler were obtained from pyrolysis process of empty fruit bunch (EFB biomass. The synthesized of SAPs and carbonaceous-SAPs were carried out via solution polymerization technique by using monomer of poly(acrylic acid (AA, acrylamide (AM, cross linker, methylene bisacrylamide (MBA and initiator, ammonium peroxodisulfate (APS that partially neutralized with sodium hydroxide (NaOH. The CRWR fertilizer was later be prepared by coated the fertilizer granule with SAPs and carbonaceous-SAPs. The water absorbency, morphology and the bonding formation of both CRWR fertilizer were investigated by using tea-beg method, Scanning Electron Microscopy (SEM and Fourier Transform Infrared Spectrophotometer (FTIR, respectively. Moreover, the water retention studies was conducted in order to investigate the efficiency of CRWR coated with SAP and carbonaceous-SAP in retaining the water content in different soil (organic and top soil. Based on the results, the CRWR fertilizer that was coated with carbonaceous-SAP had higher water absorbency value than the CRWR fertilizer without carbonaceous-SAP. Meanwhile

  20. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P. [Brookhaven National Lab., Upton, NY (United States); Cofer, W.R. III; Levine, J.S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Winstead, E.L. [Science Applications International Corporation, Hampton, VA (United States)

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  1. Aqueous processing of organic compounds in carbonaceous asteroids

    Science.gov (United States)

    Trigo-Rodríguez, Josep Maria; Rimola, Albert; Martins, Zita

    2015-04-01

    There is growing evidence pointing towards a prebiotic synthesis of complex organic species in water-rich undifferentiated bodies. For instance, clays have been found to be associated with complex organic compounds (Pearson et al. 2002; Garvie & Buseck 2007; Arteaga et al. 2010), whereas theoretical calculations have studied the interaction between the organic species and surface minerals (Rimola et al., 2013) as well as surface-induced reactions (Rimola at al. 2007). Now, we are using more detailed analytical techniques to study the possible processing of organic molecules associated with the mild aqueous alteration in CR, CM and CI chondrites. To learn more about these processes we are studying carbonaceous chondrites at Ultra High-Resolution Transmission Electron Microscopy (UHR-TEM). We are particularly interested in the relationship between organics and clay minerals in carbonaceous chondrites (CCs) matrixes (Trigo-Rodríguez et al. 2014, 2015).We want to address two goals: i) identifying the chemical steps in which the organic molecules could have increased their complexity (i.e., surface interaction and catalysis); and ii) studying if the organic matter present in CCs experienced significant processing concomitant to the formation of clays and other minerals at the time in which these planetary bodies experienced aqueous alteration. Here, these two points are preliminarily explored combing experimental results with theoretical calculations based on accurate quantum mechanical methods. References Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Jellison GE, Llorca J, Ribó JM (2010) Chiral biases in solids by effect of shear gradients: a speculation on the deterministic origin of biological homochirality. Orig Life Evol Biosph 40:27-40. Garvie LAJ, Buseck PR (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI) and Tagish lake (C2 ungrouped) meteorites. Meteorit Planet Sci 42:2111-2117. Pearson VK, Sephton MA, Kearsley AT, Bland AP, Franchi IA, Gilmour

  2. Proto-Planetary Disk Chemistry Recorded by D-Rich Organic Radicals in Carbonaceous Chondrites

    OpenAIRE

    Remusat, Laurent; Robert, François; Meibom, Anders; Mostefaoui, Smail; Delpoux, Olivier; Binet, Laurent; Gourier, Didier; Derenne, Sylvie

    2009-01-01

    Insoluble organic matter (IOM) in primitive carbonaceous meteorites has preserved its chemical composition and isotopic heterogeneity since the solar system formed ~4.567 billion years ago. We have identified the carrier moieties of isotopically anomalous hydrogen in IOM isolated from the Orgueil carbonaceous chondrite. Data from high spatial resolution, quantitative isotopic NanoSIMS mapping of Orgueil IOM combined with data from electron paramagnetic resonance spectroscopy reveals that orga...

  3. Nucléation et croissance de nanoparticules métalliques dans une matrice organique poreuse : application à la catalyse

    OpenAIRE

    Desforges, Alexandre

    2004-01-01

    Les nanoparticules supportées sur un support solide permettent de catalyser un grand nombre de réactions. Dans ce travail, nous nous sommes intéressé à la préparation du matériau, puis à son utilisation dans une réaction de catalyse. Le support utilisé est un polymère poreux insoluble de structure microcellulaire appelé polyHIPE, obtenu par la polymérisation d'une émulsion inverse concentrée. La partie réactive est apportée par la génération in situ de nanoparticules de palladium. Nous avons ...

  4. Recycling of typical supercapacitor materials.

    Science.gov (United States)

    Vermisoglou, Eleni C; Giannouri, Maria; Todorova, Nadia; Giannakopoulou, Tatiana; Lekakou, Constantina; Trapalis, Christos

    2016-04-01

    A simple, facile and low-cost method for recycling of supercapacitor materials is proposed. This process aims to recover some fundamental components of a used supercapacitor, namely the electrolyte salt tetraethyl ammonium tetrafluoroborate (TEABF4) dissolved in an aprotic organic solvent such as acetonitrile (ACN), the carbonaceous material (activated charcoal, carbon nanotubes) purified, the current collector (aluminium foil) and the separator (paper) for further utilization. The method includes mechanical shredding of the supercapacitor in order to reduce its size, and separation of aluminium foil and paper from the carbonaceous resources containing TEABF4by sieving. The extraction of TEABF4from the carbonaceous material was based on its solubility in water and subsequent separation through filtering and distillation. A cyclic voltammetry curve of the recycled carbonaceous material revealed supercapacitor behaviour allowing a potential reutilization. Furthermore, as BF4 (-)stemming from TEABF4can be slowly hydrolysed in an aqueous environment, thus releasing F(-)anions, which are hazardous, we went on to their gradual trapping with calcium acetate and conversion to non-hazardous CaF2. PMID:26862148

  5. Carbon Nanotubes and Other Nanostructures as Support Material for Nanoparticulate Noble-Metal Catalysts in Fuel Cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Veltzé, Sune; Skou, Eivind Morten

    platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1-5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible for...

  6. Carbon nanotubes and other nanostructures as support material for nanoparticulate noble-metal catalysts in fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune; Larsen, Mikkel Juul; Elina, Yli-Rantala;

    platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1–5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible for...

  7. Nanoparticulate Dye-Semiconductor Hybrid Materials Formed by Electrochemical Self-Assembly as Electrodes in Photoelectrochemical Cells

    Czech Academy of Sciences Publication Activity Database

    Nonomura, K.; Loewenstein, T.; Michaelis, E.; Kunze, P.; Schiek, M.; Reemts, J.; Iwaya, M. Y.; Wark, M.; Rathouský, Jiří; Al-Shamery, K.; Kittel, A.; Parisi, J.; Wöhrle, D.; Yoshida, T.; Schlettwein, D.

    2009-01-01

    Roč. 64, 7-8 (2009), s. 518-530. ISSN 0932-0784 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrodeposition * photosensitization * film growth * adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.850, year: 2009

  8. Multifunctional polymer composites containing inorganic nanoparticles and novel low-cost carbonaceous fillers

    Science.gov (United States)

    Wu, Hongchao

    Advanced polymer nanocomposites/composites containing inorganic nanoparticles and novel carbonaceous fillers were processed and evaluated for the multifunctional purposes. To prepare the high performance conformal coating materials for microelectronic industries, epoxy resin was incorporated with zirconium tungstate (ZrW 2O8) nanoparticles synthesized from hydrothermal reaction to alleviate the significant thermal expansion behavior. Three types of ZrW 2O8 at different loading levels were selected to study their effect of physical (morphology, particle size, surface area, etc.) and thermal (thermal expansivity) properties on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of epoxy resin. Epoxy resin incorporated by Type-1 ZrW2O8 exhibited the overall excellent performance. Hexagonal boron nitride (h-BN) nanoplatelets were non-covalently encapsulated by a versatile and mussel-adhesive protein polydopamine through the strong pi-pi* interaction. The high-temperature thermoset bisphenol E cyanate ester (BECy) reinforced with homogenously dispersed h-BN at different volume fractions and functionalities were processed to investigate their effect on thermo-mechanical, dynamic-mechanical, dielectric properties and thermal conductivity. Different theoretical and empirical models were also successfully applied for the prediction of CTE, thermal conductivity and dielectric constant of h-BN/BECy nanocomposites. On the basis of the improvement in dimensional stability, the enhancement in storage modulus in both glassy and rubbery regions, associated with the increment in thermal conductivity without deterioration of thermal stability, glassy transition temperature and dielectric properties, pristine h-BN/BECy nanocomposites exhibited the prospective application in microelectronic packaging industry. Polydopamine functionalized h-BN significantly increased the dielectric constant of cyanate ester at lower frequency region. Asphaltene, a

  9. A mechanistic examination of redox cycling activity in carbonaceous particulate matter

    Science.gov (United States)

    McWhinney, Robert David

    Mechanistic aspects of carbonaceous aerosol toxicity were examined with respect to the ability of particles to catalyse reactive oxygen species-generating redox cycling reactions. To investigate the role of secondary organic material, we examined two systems. In the first, two-stroke engine exhaust particles were found to increase their ability to catalyse redox cycling in the presence of a reducing agent, dithiothreitol (DTT), when the exhaust was exposed to ozone. This occurred through deposition of redox-active secondary organic aerosol (SOA) onto the particle that was ten times more redox active per microgram than the primary engine particle. In the second system, naphthalene SOA formed highly redox active particles. Activity was strongly correlated to the amount of the 1,4- and 1,2-naphthoquinone measured in the particle phase. However, these species and the newly quantified naphthalene oxidation product 5-hydroxy-1,4-naphthoquinone accounted for only 30% of the observed DTT decay from the particles. Gas-particle partitioning coefficients suggest 1,4- and 1,2- naphthoquinone are not strong contributors to ambient particle redox activity at 25 °C. However, a large number of redox active species are unidentified. Some of these may be highly oxidised products of sufficiently low vapour pressure to be atmospherically relevant. DTT activity of diesel particles was found to be high per unit mass. The activity was found to be associated with the insoluble fraction as filtration of the particles nearly eliminated DTT decay. Neither methanol nor dichloromethane extracts of diesel particles exhibited redox activity, indicating that the redox active species are associated with the black carbon portion of the particles. Examination of particle concentration techniques found that use of water condensation to grow and concentrate particles introduced a large organic artefact to the particles. Experiments with concentrated inorganic particles suggest that the source of this

  10. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body

    Science.gov (United States)

    Carporzen, Laurent; Weiss, Benjamin P.; Elkins-Tanton, Linda T.; Shuster, David L.; Ebel, Denton; Gattacceca, Jérôme

    2011-01-01

    The textures of chondritic meteorites demonstrate that they are not the products of planetary melting processes. This has long been interpreted as evidence that chondrite parent bodies never experienced large-scale melting. As a result, the paleomagnetism of the CV carbonaceous chondrite Allende, most of which was acquired after accretion of the parent body, has been a long-standing mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Resolution of this conundrum requires a determination of the age and timescale over which Allende acquired its magnetization. Here, we report that Allende’s magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a >  ∼ 20 μT field up to approximately 9—10 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos, suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core.

  11. Measurement of carbonaceous aerosol with different sampling configurations and frequencies

    Directory of Open Access Journals (Sweden)

    Y. Cheng

    2015-03-01

    Full Text Available Carbonaceous aerosol in Beijing, China was measured with different sampling configurations (denuded vs. un-denuded and frequencies (24 vs. 48 h averaged. Our results suggest that the negative sampling artifact of a bare quartz filter could be remarkably enhanced due to the uptake of water vapor by the filter medium, indicating that the positive sampling artifact tends to be underestimated under high humidity conditions. It was also observed that the analytical artifact (i.e., the underestimation of elemental carbon by the operationally defined value of the thermal-optical method was more apparent for the low frequency samples such that their elemental carbon (EC concentrations were about 15% lower than the reference values measured by the high-frequency, denuded filters. Moreover, EC results of the low frequency samples were found to exhibit a stronger dependence on the charring correction method. In addition, optical attenuation (ATN of EC was retrieved from the carbon analyzer, and the low frequency samples were shown to be more significantly biased by the shadowing effect.

  12. Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites

    Science.gov (United States)

    Barber, D. J.

    1981-06-01

    TEM, HRTEM, HVEM, and SEM methods, coupled with energy dispersive X-ray analysis, are used in studying the microstructure and the phases making up the matrix of the carbonaceous chondrites Murchison, Cold Bokkeveld, Nawapali, and Cochabamba. A wide variety of phyllosilicate morphologies is found to occur in each. It is noted that very small crystals and clasts of olivine, pyroxene and other unhydrated minerals are mixed intimately with the phyllosilicates. Intergrowths of carbonates and sulfides within the phyllosilicates also occur, as does a ubiquitous spongy material which though difficult to characterize contains elementary phyllosilicate units and embryo crystals. The identifiable large crystalline phyllosilicates are mainly Fe-rich serpentine-group minerals and intermediate more Mg-rich chrysotilelike group members, with characteristic basal layer spacings of approximately 7.0-7.4 A. It is found that the Fe/Si and Mg/Si ratios vary on a sub-micron scale and that the morphologies of the larger phyllosilicate crystals correlate broadly with these variations. Small crystals of sodium chloride and potassium chloride are identified, occluded with a predominantly organic mass.

  13. Preparation of carbonaceous electrodes and evaluation of their performance by electrochemical techniques

    International Nuclear Information System (INIS)

    Carbonaceous electrodes, from glassy carbon (GC), graphite rod or graphite powder, have been prepared for coulometric and voltammetric investigation. Beaker type graphite electrode of larger surface area was used as working electrode for the analysis of uranium and plutonium in solution by coulometry. Results have shown usefulness of the electrode for both uranium and plutonium analysis. Thus the graphite electrode can be used in place of mercury for uranium analysis and in place of platinum gauze for plutonium analysis. GC electrode ( from French and Indian material ), graphite or carbon paste electrode of smaller surface area prepared here have also been found to give satisfactory performance as could be observed from cyclic voltammetric (cv) patterns for standard K9Fe(CN)6/K4Fe(CN)6 redox system. Especially the GC electrode, (French) polished to 1μ finish with diamond paste gave very low values (1μ amp.) of background current in 1M KCl and the difference in cathodic and anodic peak potentials (δE values) was close to 60 mV from one electron transfer. Therefore the electrode can be used for various types of electrochemical studies relating to redox potentials, reaction mechanism, kinetic parameters etc. of different electrode processes. (author). 20 refs., 3 tabs., 10 figs., 8 photographs

  14. Petrologic study of the Belgica 7904 carbonaceous chondrite - Hydrous alteration, oxygen isotopes, and relationship to CM and CI chondrites

    Science.gov (United States)

    Ikeda, Y.; Prinz, M.

    1993-01-01

    The genetic relationships between the petrology, hydration reactions, and isotopic oxygen composition in the Belgica 7904 (B7904) carbonaceous chondrite, and the relationship between B7904 and the CM and CI chondrites were investigated by characterizing seven components separated from B7904. The seven specimens included two partially altered chondrules, two phylosilicate clasts, two olivine fragments, and one matrix sample. The results of the analyses and thermodynamic calculations suggest that CI chondrites may have been produced in a two-stage alteration process from materials similar to that of the B7904 matrix, by reactions with liquid water in their parent body. The common CM chondrites may have undergone aqueous alteration in the parent body, in addition to hydration in the nebula, resulting in two-stage alterations; the parent body may have been different from that of B7904.

  15. Impact of carbonaceous aerosol emissions on regional climate change

    Science.gov (United States)

    Roeckner, E.; Stier, P.; Feichter, J.; Kloster, S.; Esch, M.; Fischer-Bruns, I.

    2006-11-01

    The past and future evolution of atmospheric composition and climate has been simulated with a version of the Max Planck Institute Earth System Model (MPI-ESM). The system consists of the atmosphere, including a detailed representation of tropospheric aerosols, the land surface, and the ocean, including a model of the marine biogeochemistry which interacts with the atmosphere via the dust and sulfur cycles. In addition to the prescribed concentrations of carbon dioxide, ozone and other greenhouse gases, the model is driven by natural forcings (solar irradiance and volcanic aerosol), and by emissions of mineral dust, sea salt, sulfur, black carbon (BC) and particulate organic matter (POM). Transient climate simulations were performed for the twentieth century and extended into the twenty-first century, according to SRES scenario A1B, with two different assumptions on future emissions of carbonaceous aerosols (BC, POM). In the first experiment, BC and POM emissions decrease over Europe and China but increase at lower latitudes (central and South America, Africa, Middle East, India, Southeast Asia). In the second experiment, the BC and POM emissions are frozen at their levels of year 2000. According to these experiments the impact of projected changes in carbonaceaous aerosols on the global mean temperature is negligible, but significant changes are found at low latitudes. This includes a cooling of the surface, enhanced precipitation and runoff, and a wetter surface. These regional changes in surface climate are caused primarily by the atmospheric absorption of sunlight by increasing BC levels and, subsequently, by thermally driven circulations which favour the transport of moisture from the adjacent oceans. The vertical redistribution of solar energy is particularly large during the dry season in central Africa when the anomalous atmospheric heating of up to 60 W m-2 and a corresponding decrease in surface solar radiation leads to a marked surface cooling, reduced

  16. Dating recent lake sediments using spheroidal carbonaceous particle (SCP)

    Institute of Scientific and Technical Information of China (English)

    WU Yanhong; WANG Sumin; XIA Weilan; LIU Jian

    2005-01-01

    Dating lake sediment using sedimentary event is the supplement and calibration to traditional dating by radionuclide such as 210Pb and 137Cs. Based on the change of spheroidal carbonaceous particle (SCP) concentration, the age sequence of lake sediments can be deduced. It is one of the dating methods using sedimentary event. SCP is formed from combustion of fossil fuel at high temperature up to 1750℃ and at a rate of heating of approaching 104 ℃/s. It can be dispersed to several hundred kilometers away from its source and deposited with precipitation or dryly deposited, and kept in sediments. Compared with Cs or Pb, there is no evidence for SCP that it decays in lake sediments and is un-removable once stored except by physical disturbance because it is mainly composed of element carbon. Handy method to extract, identify and calculate has been developed. Although fossil fuel has been used early in China, combustion at high temperature started later since emergence of electricity generation. The productivity of SCP is positively related with the generated thermal power, which is reflected as the SCP concentration in lake sediments increases with the increase of generated thermal power. Therefore, reliable sediment markers from the start of the SCP record and the remarkable variation can be used for dating purpose. In China, electricity industry started from the 1950s, and rapid increase of generated power took place since 1978. Based on these time markers, SCP time sequences of lake sediment cores LH and LL-4 from Longgan Lake, the middle reach of the Yangtze River, have been established, which is comparable with the results from 137Cs and 210Pb, and has eliminated the errors of dating using 137Cs and 210Pb.

  17. Springtime warming and reduced snow cover from carbonaceous particles

    Directory of Open Access Journals (Sweden)

    M. G. Flanner

    2008-11-01

    Full Text Available Boreal spring climate is uniquely susceptible to solar warming mechanisms because it has expansive snow cover and receives relatively strong insolation. Carbonaceous particles can influence snow coverage by warming the atmosphere, reducing surface-incident solar energy (dimming, and reducing snow reflectance after deposition (darkening. We apply a range of models and observations to explore impacts of these processes on springtime climate, drawing several conclusions: 1 Nearly all atmospheric particles (those with visible-band single-scatter albedo less than 0.999, including all mixtures of black carbon (BC and organic matter (OM, increase net solar heating of the atmosphere-snow column. 2 Darkening caused by small concentrations of particles within snow exceeds the loss of absorbed energy from concurrent dimming, thus increasing solar heating of snowpack as well (positive net surface forcing. Over global snow, we estimate 6-fold greater surface forcing from darkening than dimming, caused by BC+OM. 3 Equilibrium climate experiments suggest that fossil fuel and biofuel emissions of BC+OM induce 95% as much springtime snow cover loss over Eurasia as anthropogenic carbon dioxide, a consequence of strong snow-albedo feedback and large BC+OM emissions from Asia. 4 Of 22 climate models contributing to the IPCC Fourth Assessment Report, 21 underpredict the rapid warming (0.64°C decade−1 observed over springtime Eurasia since 1979. Darkening from natural and anthropogenic sources of BC and mineral dust exerts 3-fold greater forcing on springtime snow over Eurasia (3.9 W m−2 than North America (1.2 W m−2. Inclusion of this forcing significantly improves simulated continental warming trends, but does not reconcile the low bias in rate of Eurasian spring snow cover decline exhibited by all models.

  18. Spatial and seasonal variability of carbonaceous aerosol across Italy

    Science.gov (United States)

    Sandrini, Silvia; Fuzzi, Sandro; Piazzalunga, Andrea; Prati, Paolo; Bonasoni, Paolo; Cavalli, Fabrizia; Bove, Maria Chiara; Calvello, Mariarosaria; Cappelletti, David; Colombi, Cristina; Contini, Daniele; de Gennaro, Gianluigi; Di Gilio, Alessia; Fermo, Paola; Ferrero, Luca; Gianelle, Vorne; Giugliano, Michele; Ielpo, Pierina; Lonati, Giovanni; Marinoni, Angela; Massabò, Dario; Molteni, Ugo; Moroni, Beatrice; Pavese, Giulia; Perrino, Cinzia; Perrone, Maria Grazia; Perrone, Maria Rita; Putaud, Jean-Philippe; Sargolini, Tiziana; Vecchi, Roberta; Gilardoni, Stefania

    2014-12-01

    This paper analyses elemental (EC), organic (OC) and total carbon (TC) concentration in PM2.5 and PM10 samples collected over the last few years within several national and European projects at 37 remote, rural, urban, and traffic sites across the Italian peninsula. The purpose of the study is to obtain a picture of the spatial and seasonal variability of these aerosol species in Italy, and an insight into sources, processes and effects of meteorological conditions. OC and EC showed winter maxima and summer minima at urban and rural locations and an opposite behaviour at remote high altitude sites, where they increase during the warm period due to the rising of the Planetary Boundary Layer (PBL). The seasonal averages of OC are higher during winter compared to summer at the rural sites in the Po Valley (from 1.4 to 3.5 times), opposite to what usually occurs at rural locations, where OC increases during the warm period. This denotes the marked influence of urban areas on the surrounding rural environment in this densely populated region. The different types of sites exhibit marked differences in the average concentrations of carbonaceous aerosol and OC/EC ratio. This ratio is less sensitive to atmospheric processing than OC and EC concentrations, and hence more representative of different source types. Remote locations are characterised by the lowest levels of OC and especially EC, with OC/EC ratios ranging from 13 to 20, while the maximum OC and EC concentrations are observed at road-traffic influenced urban sites, where the OC/EC ratio ranges between 1 and 3. The highest urban impacts of OC and EC relative to remote and rural background sites occur in the Po Valley, especially in the city of Milan, which has the highest concentrations of PM and TC and low values of the OC/EC ratio.

  19. A nanosystem for water-insoluble drugs prepared by a new technology, nanoparticulation using a solid lipid and supercritical fluid.

    Science.gov (United States)

    Park, Joo Won; Yun, Jeong Min; Lee, Eun Seong; Youn, Yu Seok; Kim, Kab Sig; Oh, Young Taik; Oh, Kyung Teak

    2013-11-01

    While the number and diversity of lead compounds has increased with the development of science technologies, ca. 90 % of new chemical entities under development have shown low aqueous solubility, classified as class II or IV of the biopharmaceutics classification system (BCS). The low aqueous solubility hinders their clinical translations due to low bioavailability and dissolution-limited absorption of orally-administered drugs. Several technologies have been employed to improve the solubility of poorly water-soluble drugs. In this paper, a new method of nanoparticulation using fat and a supercritical fluid (NUFS) for the formulation of hydrophobic drugs was applied to solve the low solubility problem. A typical BCS class II drug, itraconazole, was selected and formulated with hydroxypropyl methylcellulose, emulsification, and anticoagulating agents for NUFS. The non-spherical itraconazole nanoparticles prepared by NUFS were ~300-500 nm in size with a ~15-fold improved dissolution rate compared to non-nanoparticles of itraconazole (i.e., raw itraconazole). In addition, a high drug content of ~46 % by weight and a drug loading efficiency greater than 85 % were achieved. Therefore, the new technology for nano-platforms could be a promising solution for solubilization of poorly water-soluble drugs, resulting in improved bioavailability. PMID:23780798

  20. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    Science.gov (United States)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-04-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  1. Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution.

    Science.gov (United States)

    Zhang, Chen; Lai, Cui; Zeng, Guangming; Huang, Danlian; Yang, Chunping; Wang, Yang; Zhou, Yaoyu; Cheng, Min

    2016-05-15

    This paper investigated the key factors and mechanisms of sulfamethazine (SMT) sorption on a novel carbonaceous nanocomposite, and the effects of harsh aging on SMT sorption in the presence and absence of soil and before as well as after aging. The carbonaceous nanocomposites were synthesized by dip-coating straw biomass in carboxyl functionalized multi-walled carbon nanotubes solution and then pyrolyzed at 300 °C and 600 °C in the absence of air. The sorption performance of high temperature carbonaceous nanocomposite on SMT was excellent, as measured sorption distribution coefficient in the order of 10(3)-10(5.5) L kg(-1). Carbonaceous nanocomposites were aged either alone or mixed with soil via exposure to nutrients and soil extract (biological aging) or 80 °C for 100 d (chemical aging). No obvious effects of harsh aging on SMT sorption were observed in the presence of soil and/or biological and chemical aging. The primary mechanisms for SMT sorption included partition caused by Van der Waals forces and adsorption caused by hydrogen bonding and π-π electron-donor-acceptor interaction. Comprehensively considering the cost, renewability, and the application to real water samples, the carbonaceous nanocomposites have potential in removal of SMT and possibly other persistent organic pollutants from wastewater. PMID:26986499

  2. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency

    International Nuclear Information System (INIS)

    Carbonaceous particles are types of important fillers or dispersed phases of electro-responsive electrorheological (ER) suspensions. But carbonaceous particles, in particular with nano-order size, are easy to aggregate in oils. This characteristic limits the application of ER suspensions based on carbonaceous particles. In order to improve dispersion stability and ER efficiency, in this paper, we develop silicone-grafted carbonaceous nanotubes (CTs) by grafting oxidized carbonaceous nanotubes with epoxy-terminated silicone. The samples are characterized by Fourier transform infrared spectra, x-ray photoelectron spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The wettability and dispersion stability of nanotubes in silicone oil are investigated by wetting curves and sedimentation tests. The ER properties of CTs when dispersed in silicone oil are measured by a rheometer under electric fields. It demonstrates that grafting with silicone can distinctly improve the wettability of CTs in silicone oil and decrease the re-aggregation of CTs. As a result, the suspension of silicone-grafted CTs in silicone oil shows high dispersion stability. Compared to the suspension of bare CTs, the suspension of silicone-grafted CTs exhibits lower zero-field viscosity but higher field-induced viscosity; thus it possesses higher ER efficiency. This enhanced ER efficiency is related to the improved wettability of silicone-grafted CTs in silicone oil. (paper)

  3. Facile preparation of magnetic carbonaceous nanoparticles for Pb2+ ions removal.

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Salim, Giyanto Wijaya; Lee, Cheng-Kang

    2010-11-15

    Magnetic carbonaceous nanoparticles were prepared by a facile two-step solution phase thermal synthesis. Magnetic nanoparticles (MNPs) with size less than 100 nm were first generated from FeCl(3) in a solvothermal reaction. The size could be significantly reduced to approximately 30 nm when 1,6-hexanediamine was employed in the reaction solution to functionalize the surface of MNPs with amine. Both the plain and amine-functionalized MNPs (MH) were effectively encapsulated in the carbonaceous shell by hydrothermal treatment in 0.5 M glucose solution. The saturation magnetization of MH decreased significantly from 70 to 25 emu/g after carbonaceous shell was formed. The as-prepared magnetic carbonaceous nanoparticles (MH@C) carries a negative surface charge (-30 mV) at neutral pH and has a point of zero charge (PZC) at pH 2. The carbonaceous shell not only can protect the magnetic nanoparticles (MNP) from the corrosive environment but also possesses a high adsorption capacity towards Pb(II). The adsorption isotherm at room temperature can be well-fitted by Langmuir model with a maximum adsorption capacity of 123 mg/g. PMID:20800347

  4. 2002 materials report

    International Nuclear Information System (INIS)

    This report is the very first devoted to the researches carried out in all centres of the French atomic energy commission (CEA) in the domain of materials. Each material, technology or process is presented with some explanations. The report is divided in three chapters dealing with: 1 - the nano-materials and the engineering of surfaces: surface functionalization (new coatings for cutting tools, new CVD process for the deposition of carbon nano-tubes, nano-structured metallic films, polymerization by gaseous phase deposition, electro-chromium systems, functional coatings by sol-gel process, sol-gel processing of optical fibers, modeling of the plasma projection process); nano-particulates and emerging materials (synthesis of SiCN nano-particulates by laser pyrolysis, hot-forming of Si/C/N/O nano-metric powders by isostatic compression, synthesis of aligned carbon nano-tubes by pyrolysis of mixed aerosols, elaboration and characterization of new oxide-type materials in supercritical CO2 phase, fluorescent semiconductor nano-crystals for labelling, fibrillary proteins and their behaviour at interfaces); 2 - materials engineering and numerical materials (simulation of the welding process by YAG laser pulses, welded joints reliability, control of precipitation microstructures by the addition of nucleating agents, optimization of pressing cycles for the forming of industrial parts by matrix compaction, mechanical and thermal pre-dimensioning of thermo-structural composites, modeling of the behaviour of thermo-structural composites, joints follow up system for innovative welding control process); joining technologies (feasibility study for the fabrication by diffusion welding of the first wall panels of ITER reactor, welding of spent fuel containers for long lasting storage, electron beam welding of aluminium 6061 and hot cracking risk, hybrid welding technology, heat source model for TIG welding, cladding of the amplifying plates of the Megajoule laser facility

  5. Temporal and spatial evolution pattern of carbonaceous-siliceous-argillaceous rock type uranium deposits in China

    International Nuclear Information System (INIS)

    Carbonaceous-siliceous-argillaceous uranium deposits in China are controlled spatially by the continental margin rift valley systems, borderland basin systems and epicontinental active downfaulted aulacogen systems. And large-scale uranium mineralization is controlled by uraniferous marine carbonaceous-siliceous-argillaceous rock, which was settled down with submarine backwash and submarine volcanic eruption in margin rift valley and continental margin rifting mineralizing environment. Its positional distribution is restricted by the driving force of hydrothermal fluid superposition and transformation and is affected by the fault in the boundary of red basin related to uranium deposit. The spatial location of uranium ore body is controlled by subsidiary fracture, interstratal fracture zone and combined fault belt, which are derived by discordogenic fault linked to uraniferous construction of marine carbonaceous-siliceous-argillaceous rock. The age of uranium mineralization is accordant with tectonic-magmatic action which drove the hydrothermal fluid to superpose and transform the uraniferous formation. (authors)

  6. Genesis and organic geochemical characteristics of the carbonaceous rock stratabound gold deposits, South China

    Institute of Scientific and Technical Information of China (English)

    胡凯; 翟建平; 刘英俊; 王鹤年; 张景荣; 贾蓉芬

    2000-01-01

    The organic matter of three different chronological major carbonaceous rock gold-bearing formations of South China (Middle Proterozoic Shangqiaoshan group of northeastern Jiangxi, Lower Cambrian Shuikou group of northern Guangxi and Devonian Shetianqiao group of eastern Hunan) and related carbonaceous stratabound gold deposits such as Jinshan, Longshui and Shixia deposits, respectively, has been characterized by organic geochemical techniques. These organic geochemical results show that the average total organic carbon (TOC) content of the three chronological carbonaceous rock gold-bearing formations of South China ranges from 0.15% to 1.56%. The thermal maturity of the organic matter of host rocks in the three gold-bearing formations is high. The micro-component of the organic matter of the host rocks consists primarily of solid bitumen and graphite. The organic carbon and gold of the host rocks appear to syndeposit in situ during the formation of the gold-bearing formations. The organic carbon played

  7. Tunable atomic force microscopy bias lithography on electron beam induced carbonaceous platforms

    Directory of Open Access Journals (Sweden)

    Narendra Kurra

    2013-09-01

    Full Text Available Tunable local electrochemical and physical modifications on the carbonaceous platforms are achieved using Atomic force microscope (AFM bias lithography. These carbonaceous platforms are produced on Si substrate by the technique called electron beam induced carbonaceous deposition (EBICD. EBICD is composed of functionalized carbon species, confirmed through X-ray photoelectron spectroscopy (XPS analysis. AFM bias lithography in tapping mode with a positive tip bias resulted in the nucleation of attoliter water on the EBICD surface under moderate humidity conditions (45%. While the lithography in the contact mode with a negative tip bias caused the electrochemical modifications such as anodic oxidation and etching of the EBICD under moderate (45% and higher (60% humidity conditions respectively. Finally, reversible charge patterns are created on these EBICD surfaces under low (30% humidity conditions and investigated by means of electrostatic force microscopy (EFM.

  8. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Micro-Raman Spectroscopy

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.

  9. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Microraman Spectroscopy

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using µ-Raman spectroscopy.

  10. Springtime warming and reduced snow cover from carbonaceous particles

    Directory of Open Access Journals (Sweden)

    M. G. Flanner

    2009-04-01

    Full Text Available Boreal spring climate is uniquely susceptible to solar warming mechanisms because it has expansive snow cover and receives relatively strong insolation. Carbonaceous particles can influence snow coverage by warming the atmosphere, reducing surface-incident solar energy (dimming, and reducing snow reflectance after deposition (darkening. We apply a range of models and observations to explore impacts of these processes on springtime climate, drawing several conclusions: 1 Nearly all atmospheric particles (those with visible-band single-scatter albedo less than 0.999, including all mixtures of black carbon (BC and organic matter (OM, increase net solar heating of the atmosphere-snow column. 2 Darkening caused by small concentrations of particles within snow exceeds the loss of absorbed energy from concurrent dimming, thus increasing solar heating of snowpack as well (positive net surface forcing. Over global snow, we estimate 6-fold greater surface forcing from darkening than dimming, caused by BC+OM. 3 Equilibrium climate experiments suggest that fossil fuel and biofuel emissions of BC+OM induce 95% as much springtime snow cover loss over Eurasia as anthropogenic carbon dioxide, a consequence of strong snow-albedo feedback and large BC+OM emissions from Asia. 4 Of 22 climate models contributing to the IPCC Fourth Assessment Report, 21 underpredict the rapid warming (0.64°C decade−1 observed over springtime Eurasia since 1979. Darkening from natural and anthropogenic sources of BC and mineral dust exerts 3-fold greater forcing on springtime snow over Eurasia (3.9 W m−2 than North America (1.2 W m−2. Inclusion of this forcing significantly improves simulated continental warming trends, but does not reconcile the low bias in rate of Eurasian spring snow cover decline exhibited by all models, likely because BC deposition trends are negative or near-neutral over much of Eurasia. Improved Eurasian

  11. Microfossils and biomolecules in carbonaceous meteorites: possibility of life in water-bearing asteroids and comets

    Science.gov (United States)

    Hoover, Richard B.

    2014-09-01

    It is well established that carbonaceous meteorites contain water, carbon, biogenic elements and a host of organic chemicals and biomolecules. Several independent lines of evidence indicate that the parent bodies of the CI1 and CM2 carbonaceous meteorites are most probably the C-type asteroids or cometary nuclei. Several of the protein amino acids detected in the meteorites exhibit chirality and have an excess of the L-enantiomer -- such as in the amino acids present in the proteins of all known life forms on Earth. Isotopic studies have established that the amino acids and nucleobases in the CI1 and CM2 carbonaceous meteorites are both indigenous and extraterrestrial. Optical and Scanning Electron Microscopy studies carried out by researchers during the past half century have revealed the presence of complex biogenic microstructures embedded in the rock-matrix of many of carbonaceous meteorites similar to extinct life-forms known as acritarchs and hystrichospheres. Carbonaceous meteorites also contain a wide variety of large filaments that exhibit the complex morphologies and correct size ranges of known genera and species of photosynthetic microorganisms such as cyanobacteria and diatoms. However, EDAX investigations have shown that these carbon-rich filaments typically have nitrogen content below the level of detection (hair and teeth of Pleistocene Mammoths. Hence, the absence of detectable nitrogen in the filaments provides direct evidence that they do not represent recent biological contaminants that invaded these meteorite stones after they were observed to fall to Earth. The spectral and fluorescence properties of pigments found in several species of terrestrial cyanobacteria which are similar to some microfossils found in carbonaceous meteorites may provide valuable clues to help search for evidence for biomolecules and life on the icy moons of Jupiter and Saturn, asteroids and comets.

  12. Characterization of trace metals in airborne carbonaceous aerosols by single-particle EDX – Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Pietrodangelo A.

    2013-04-01

    Full Text Available The presence of fine and ultrafine metal particles has been evidenced in size segregated airborne carbonaceous aerosols collected at one industrial and two background (urban and rural sites during an extended field campaign in Central Italy. Analysis of the backscattered electrons (BSE by SEM – EDX demonstrated an effective potential in evidencing main structural features of the metal content in identified carbon aerosols. Many observed ultrafine metal particles appear embedded in the skeleton of carbonaceous individual particles and aggregates in the coarse fraction, while the same is not evident in the case of mixed carbon-sulphates aerosol that has been detected in the submicron size. These carbon-sulphates formations include indeed nano-sized metal particles that appear physically combined but not embedded. Also, larger metal particles (ranging around 1 μm physical size were observed close to carbon materials, but not included in their structure. Main compositional differences of metal particles with size segregation could be evidenced by energy – dispersive X ray spectrometry (EDX. Larger particles are mainly rich in Fe, frequently in presence of Mn, Cu, Cr and Zn in variable proportions; either oxidized or elemental metals were detected. On the other hand, ultrafine particles associated with carbon–sulphates aerosol are enriched in Pb and Zn, although the presence of other trace elements not detectable by SEM – EDX technique cannot be excluded. Moreover, Ce-enriched ultrafine particles were clearly determined in cenospheres. Conversely, inclusion of fine and ultrafine metal particles was rarely or not observed in soot aggregates.

  13. TEMPO-mediated oxidized winter melon-based carbonaceous aerogel as an ultralight 3D support for enhanced photodegradation of organic pollutants.

    Science.gov (United States)

    Miao, Miao; Wang, Gangling; Cao, Shaomei; Feng, Xin; Fang, Jianhui; Shi, Liyi

    2015-10-14

    Natural biomass based carbonaceous aerogels are becoming promising lightweight, biodegradable matrices to supersede traditional support materials in realizing future sustainable photochemistry and environmental protection. Herein, flower-like BiOBr loaded onto an ultralight TEMPO-mediated oxidized carbonaceous aerogel (BOB@OWMCA) support was successfully prepared using the edible winter melon as source material via a simple solvothermal method. The three-dimensional sponge-like OWMCA with surface functionalization displayed an ultralow density (17.7 mg cm(-3)) and large special surface area (30.6 m(2) g(-1)). The BiOBr was homogeneously anchored on the surface of the hierarchical porous OWMCA and the material exhibited synergetic properties of the BiOBr photocatalyst and OWMCA support to strengthen its photodegradation capacity. The results indicated that the as-prepared BOB@OWMCA composite demonstrated an outstanding adsorption and photodegradation capacity for organic pollutants (rhodamine B) under visible light irradiation. Of importance here, the BOB@OWMCA composite showed a prominent advantage for easy collection and separation from the aqueous system, making it a promising candidate as a robust visible light responsive photocatalyst for a range of applications. PMID:26344492

  14. Fungal-transformation of surrogate sulphides and carbonaceous matter in refractory gold ores

    International Nuclear Information System (INIS)

    Refractory gold ores contain metal sulphides that encapsulate gold and prevent its dissolution by cyanide, and carbonaceous matter (CM) that adsorbs (or pregrob) gold cyanide complex during cyanidation. Pretreatment is therefore a necessary step to decompose the sulphides and liberate gold before cyanidation, and to deactivate CM and prevent it from adsorbing dissolved gold. To contribute to the pool of knowledge on the development of microbial-treatment techniques for refractory gold ores, this paper presents an overview of on-going research aimed at assessing the capability of the fungus, Phanerochaete chrysosporium, to degrade sulphides and CM. Pure pyrite and arsenopyrite, with initial sulphide sulphur content of 52% and 20% respectively, were used as surrogate for metal sulphides, whereas lignite, bituminous and anthracite coals were used to model the behavior of CM in refractory gold ores. The extent of biotransformation was primarily monitored by measuring sulphide sulphur in the residual sulphidic materials, and by determining the preg-robbing effect of the treated CM. Within 21 days of treatment, there was 18% and 39% oxidation of sulphide sulphur in pyrite and arsenopyrite respectively. During the same period, preg-robbing effect of CM reduced by 70-95% in the order of lignite < bituminous < anthracite. Partial characterization of the treated anthracite using XRD confirmed reduction in the graphitic structure of carbon, whereas in the case of pyrite, there was a decline in the major sulphide peak after microbial pretreatment. The results indicate that the fungus biotransforms mainly by increasing the amorphous nature of the substrates through destruction of the ordered structure, followed by introduction of oxygen groups. The findings suggest a novel and technically viable alternative method for oxidative pretreatment of refractory gold ores. (au)

  15. Hydrothermal venting on carbonaceous chondritic elevations on 1 Ceres and 4 Vesta

    Science.gov (United States)

    Hoffmann, Martin; Nathues, Andreas; Platz, Thomas; Thangjam, Guneshwar

    2016-04-01

    Framing Camera images of the Dawn spacecraft [1] led to the discovery of recent geologic activity on Ceres, including deposition of salts, formation of near surface haze [2], and impact associated spectral diversity. More detailed analyses revealed widespread flow features, partly composed of granular material, but also indicating sites of fluidized areas of the surface and sub-surface. The unexpected discovery of deposits of carbonaceous chondritic material on Vesta associated with indications of considerable amounts of volatiles at large impact structures hint at similar processes [3, 4]. Near large crater walls on both proto-/dwarf-planets, montes and domes appear to be associated with uplift and even release of water-driven material including salts and clays [5, 6]. We report morphologic and color band spectroscopic characteristics of selected key features on 1 Ceres and 4 Vesta which demonstrate this context. A first analysis indicates compositional differences of the proportion of the content of salts and phyllosilicates, e. g. on the different elevations of the primary and secondary spots in Occator and some flow features. The distribution and diversity of these color features is further characterized by a comparison with more widespread properties on the whole surface. During this investigation, not only the link between salt deposits and different types of materials at the centers of activity could be described, but we also offer an intriguing new interpretation of one of the most prominent surface features of Vesta: Lucaria Tholus. Several analogies with similar features and properties of Mars [7] further support the view of a related origin. References: [1] Sierks, H. et al., Space Sci. Rev., 163, 263-327, 2011. [2] Nathues, A. et al., Nature 528, 237-240, 2015. [3] Reddy, V. et al. Icarus, 221, 544-559, 2012. [4] Scully, J. E. C. et al., EPSC Abstracts 8, 2013-242-2, 2013. [5] Platz, T. et al. LPSC 2016 [6] Ruesch, O. et al. LPSC 2016 [7] Platz, T. et

  16. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Highlights: • Thin TiO2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO2 nano-particles are synthesized using hydrothermal route. • Thick TiO2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO2 passivation layer is introduced between the mesoporous TiO2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO2 layer in between the mesoporous TiO2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  17. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol

    International Nuclear Information System (INIS)

    The removal of biocide 4-chloro-3-methyl phenol (CMP) was investigated by heterogeneous Fenton-like system using nanoparticulate zero-valent iron (nZVI) as catalyst. The properties of nZVI before and after reaction were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of pH value, initial concentration of CMP, nZVI dose and hydrogen peroxide (H2O2) concentration were determined. The experimental results showed that lower pH value and CMP concentration brought faster degradation rate. With the initial pH value of 6.1 and initial CMP concentration of 0.7 mM, the optimal dosage of reagents were 0.5 g nZVI/L and 3.0 mM H2O2. At pH 6.1, the degradation of CMP followed two-stage first-order kinetic that composed of an induction period (first-stage) and a followed rapid degradation stage (second-stage). According to the effects of scavengers n-butanol and KI, hydroxyl radicals (·OH), especially the surface-bounded ·OH, had a dominant role in the oxidation of CMP. The degradation intermediates, carboxylic acids and chloride ion produced during the reaction process were monitored by high performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS) and ion chromatography (IC). On the basis of these findings, the possible mechanistic steps of CMP degradation were proposed.

  18. A stable nanoparticulate DDA/MMG formulation acts synergistically with CpG ODN 1826 to enhance the CD4(+) T-cell response

    DEFF Research Database (Denmark)

    Karlsen, Kasper; Korsholm, Karen Smith; Mortensen, Rasmus;

    2014-01-01

    AIM: To combine the dimethyldioctadecyl ammonium/monomycoloyl glycerol (DDA/MMG) liposomal vaccine adjuvant with the Toll-like receptor (TLR) ligands poly(I:C) (TLR3), flagellin (TLR5) or CpG oligodeoxynucleotide 1826 (TLR9) and investigate their physicochemical properties as well as their CD4(+) T...... best combination for obtaining increased CD4(+) T-cell responses. However, coformulating CpG and DDA/MMG liposomes led to instability and the formulation was therefore optimized systematically using a design of experiment. CONCLUSION: The nanoparticulate DDA/MMG/CpG adjuvant can be stabilized and...

  19. NANOMEDECINE EN ONCOLOGIE : Etude des Interactions Entre les Nanoparticules Activables par des Sources d'Energie Electromagnétique Externes et les Cellules Cancéreuses pour Elargir la Fenêtre Thérapeutique

    OpenAIRE

    Virginie, Simon,

    2009-01-01

    La compréhension des interactions entre les nanomatériaux et les entités biologiques est fondamentale pour développer des nanoproduits en oncologie. NBTXR3 (nanoparticule inerte d'oxyde d'hafnium) et protoporphyrine IX (Pp IX) nanotransporteur (nanoparticule de silice encapsulant le Pp IX, le monomère du Photofrin®) sont des nanoproduits, issus des plateformes Nanobiotix, développés pour élargir la fenêtre thérapeutique des traitements du cancer en utilisant des sources d'activation externe d...

  20. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  1. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  2. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sunny, S; Vogel, N; Howell, C; Vu, TL; Aizenberg, J

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.

  3. R Raman Spectroscopy and Petrology of Antarctic CR Chondrites: Comparison with Other Carbonaceous Chondrites

    Science.gov (United States)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2015-01-01

    In Renazzo-like carbonaceous (CR) chondrites, abundant original Fe,Ni-metal is preserved in chrondules, but the matrix is characterized by fine-grained magnetite with phyllosilicate. This combination of reduced Fe in chrodrules with oxidized Fe and phyllosilicate in the matrix has been attributed to aqueous alteration of matrix at relatively low temperatures.

  4. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Gasoline and Ethanol Fuel Blends

    Science.gov (United States)

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the t...

  5. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    International Nuclear Information System (INIS)

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, KF (L kg-1) spanned several orders of magnitude, ranging from log KF of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  6. Hydrothermal preparation of analogous matrix minerals of CM carbonaceous chondrites from metal alloy particles

    Science.gov (United States)

    Peng, Yiya; Jing, Yunhai

    2014-12-01

    A mineral assemblage that is analogous to the matrix minerals of CM carbonaceous chondrites was produced from an alloyed metal particle mixture of Fe, Mg, Al, Si, and Ni in reducing, basic and S2-containing hydrothermal environments. The elemental ratios of the alloyed metal particle mixture were adopted from reported matrix composition of the carbonaceous chondrite Murchison. The characteristic minerals of the synthetic mineral assemblage are cronstedtite, tochilinite and tochilinite-cronstedtite-intergrowth, other minerals include polyhedral serpentine, chrysotile-like phase, nanotube-like hollow structures, lizardite-like phase, brucite-like phase, etc. (not every mineral appears in a single sample, however, cronstedtite and tochilinite are two invariant minerals in the synthetic mineral assemblage). The dominant individual minerals in the synthetic mineral assemblage have remarkable similarity to the corresponding minerals of the matrix of CM carbonaceous chondrites in composition, morphology, structure, and crystallinity. Our experimental work indicates that matrix minerals of CM carbonaceous chondrites formed billions of years ago may be reproduced under laboratory conditions.

  7. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    International Nuclear Information System (INIS)

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 ± 4.5 μg/m3, EC = 2.5 ± 1.9 μg/m3) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 ± 2.6 μg/m3, EC = 0.8 ± 0.4 μg/m3) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 ± 4.0 μg/m3, EC = 0.5 ± 0.4 μg/m3) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  8. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Gan, E-mail: zhanggan@gig.ac.c [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Jun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Xu Yue; Guo Lingli [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Tang Jianhui [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Lee, Celine S.L. [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Liu Xiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Yingjun [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2010-11-15

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 {+-} 4.5 {mu}g/m{sup 3}, EC = 2.5 {+-} 1.9 {mu}g/m{sup 3}) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 {+-} 2.6 {mu}g/m{sup 3}, EC = 0.8 {+-} 0.4 {mu}g/m{sup 3}) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 {+-} 4.0 {mu}g/m{sup 3}, EC = 0.5 {+-} 0.4 {mu}g/m{sup 3}) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  9. Isotropic and high density carbon made from carbonaceous powder prepared by distillation under reduced pressure

    International Nuclear Information System (INIS)

    It is attempted to produce high density, high strength and isotropic carbon made from carbonaceous powder. The carbonaceous powder was prepared by carbonization of coal-tar pitch at a temperature of 440 - 5000C and subsequent distillation under reduced pressure. The distillation was performed at a temperature of 300 - 5000C below the carbonization temperature. In some cases additional quinoline extraction was carried out on the powder. Green carbon body was formed without binder pitch under isostatic pressure at room temperature. The body was heat-treated at a temperature of 1100 - 28000C. Bulk density, weight loss, shrinkage, strength, lattice parameter, crystallite size and BAF of the obtained carbon body were measured. It is confirmed that high density, high strength and isotropic carbon made from the carbonaceous powder and the following results were obtained. 1) BS (benzene soluble) fraction, β-resin (benzene insoluble and quinoline soluble) fraction and QI (quinoline insoluble) fraction were able to fractionate by distillation under reduced pressure. Concentration gradient of each fraction seems to exist in the carbonaceous powder. 2) Using the powder prepared by a lower temperature of the carbonization and/or the distillation, the carbon body had higher bulk density and higher strength. 3) The β-resin fraction had the effects of increasing the green density and enhancing the shrinkage of carbon body during the heat treatment. (author)

  10. Assessment of Artifacts in Filter Collections for Carbonaceous Aerosol and the Particulate Mass

    Czech Academy of Sciences Publication Activity Database

    Maenhaut, W.; Cafmeyer, J.; Chi, X.; Schwarz, Jaroslav

    2001, s. S673-S674. [European Aerosol Conference EAC 2001. Leipzig (DE), 03.09.2001-07.09.2001] Institutional research plan: CEZ:AV0Z4072921 Keywords : filter sampling * artifacts * carbonaceous aerosol Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2013-04-01

    Full Text Available Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (27–29 June 2010, when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30% was larger than at the CARES urban site (10% and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro

  12. Effects of Chemical Conjugation of l-Leucine to Chitosan on Dispersibility and Controlled Release of Drug from a Nanoparticulate Dry Powder Inhaler Formulation.

    Science.gov (United States)

    Muhsin, Mohammad D A; George, Graeme; Beagley, Kenneth; Ferro, Vito; Wang, Hui; Islam, Nazrul

    2016-05-01

    This study investigated l-leucine-conjugated chitosan as a drug delivery vehicle in terms of dispersibility and controlled release from a nanoparticulate dry powder inhaler (DPI) formulation for pulmonary delivery using diltiazem hydrochloride (DH) as the model drug. DH-loaded nanoparticles of chitosan and conjugate were prepared by water-in-oil emulsification followed by glutaraldehyde cross-linking. Nanoparticles were characterized by dynamic light scattering for particle size, X-ray photoelectron spectroscopy for surface composition, and twin stage impinger for drug dispersibility. The controlled release of DH was studied in phosphate-buffered saline (pH 7.3 ± 0.2, 37 °C) using UV spectrophotometry. The fine particle fractions of conjugated chitosan with and without drug were higher than those of nonconjugated chitosan nanoparticles. The conjugate nanoparticles were superior to those of unmodified chitosan in drug loading, entrapment efficiency, and controlled release profile. The higher dispersibility was attributed to the amphiphilic environment of the l-leucine conjugate and hydrophobic cross-links, and the release profile reflects the greater swelling. The conjugated chitosan nanoparticles could be useful, after appropriate testing for biodegradability and toxicity, as an alternative carrier for lung drug delivery with enhanced aerosolization and prolonged drug release from nanoparticulate DPI formulations. PMID:26998555

  13. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity

    Science.gov (United States)

    Li, Chunlin; Hu, Yunjie; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Wang, Xinming; Mellouki, Abdelwahid

    2016-09-01

    Size-resolved effective density, mixing state, and hygroscopicity of smoke particles from five kinds of agricultural residues burning were characterized using an aerosol chamber system, including a volatility/hygroscopic tandem differential mobility analyzer (V/H-TDMA) combined with an aerosol particle mass analyzer (APM). To profile relationship between the thermodynamic properties and chemical compositions, smoke PM1.0 and PM2.5 were also measured for the water soluble inorganics, mineral elements, and carbonaceous materials like organic carbon (OC) and elemental carbon (EC). Smoke particle has a density of 1.1-1.4 g cm-3, and hygroscopicity parameter (κ) derived from hygroscopic growth factor (GF) of the particles ranges from 0.20 to 0.35. Size- and fuel type-dependence of density and κ are obvious. The integrated effective densities (ρ) and hygroscopicity parameters (κ) both scale with alkali species, which could be parameterized as a function of organic and inorganic mass fraction (forg &finorg) in smoke PM1.0 and PM2.5: ρ-1 =finorg · ρinorg-1 +forg · ρorg-1 and κ =finorg ·κinorg +forg ·κorg . The extrapolated values of ρinorg and ρorg are 2.13 and 1.14 g cm-3 in smoke PM1.0, while the characteristic κ values of organic and inorganic components are about 0.087 and 0.734, which are similar to the bulk density and κ calculated from predefined chemical species and also consistent with those values observed in ambient air. Volatility of smoke particle was quantified as volume fraction remaining (VFR) and mass fraction remaining (MFR). The gradient temperature of V-TDMA was set to be consistent with the splitting temperature in the OC-EC measurement (OC1 and OC2 separated at 150 and 250 °C). Combing the thermogram data and chemical composition of smoke PM1.0, the densities of organic matter (OM1 and OM2 correspond to OC1 and OC2) are estimated as 0.61-0.90 and 0.86-1.13 g cm-3, and the ratios of OM1/OC1 and OM2/OC2 are 1.07 and 1.29 on average

  14. Continuous pyrolysis of carbonaceous materials with model gasification of the solid product

    Czech Academy of Sciences Publication Activity Database

    Kříž, Vlastimil; Káš, Václav; Brožová, Zuzana

    Ostrava: Vysoká škola báňská, 2008 - (Fečko, P.; Čablík, V.), s. 7-10 ISBN 978-80-248-1775-0. [International Conference on Environment and Mineral Processing /2./. Ostrava (CZ), 05.06.2008-07.06.2008] R&D Projects: GA ČR(CZ) GA105/07/1407 Institutional research plan: CEZ:AV0Z30460519 Keywords : rotary kiln * pyrolysis * coal Subject RIV: DM - Solid Waste and Recycling

  15. Hydrogen isotope ratios of aliphatic and diterpenoid hydrocarbons in coals and carbonaceous mudstones from the Liaohe Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Tuo, J.C.; Zhang, M.F.; Wang, X.B.; Zhang, C.L. [Chinese Academy of Sciences, Lanzhou (China). Institute of Geology & Geophysics

    2006-02-15

    Hydrogen-isotope compositions of the aliphatic and diterpenoid hydrocarbons were determined for five coal and carbonaceous mudstone samples collected from drilling cores (1531-1767 m depths) in the Liaohe Basin, China. The bulk organic materials were mainly derived from terrestrial higher plants. {delta}D values for most of the n-alkanes varied from -150 parts per thousand to -220 parts per thousand, and were not significantly different among the samples. Pristane was 34-69 parts per thousand depleted in D relative to phytane; both pristane and phytane, however, had the same trend of variation in {delta}D from sample to sample.Diterpenoids were on average 49-81 parts per thousand depleted in D relative to the n-alkanes. Variations in {delta}D also occurred between different diterpenoids, indicating a different source for these compounds. An enrichment process for the heavy hydrogen isotope was observed as expected when a compound was progressively altered through diagenesis (especially the dehydrogenation process). Overall, {delta}D and {delta}-{sup 13}C showed distinct patterns between structurally different lipid classes, although possible hydrogen exchange cannot be completely excluded during maturation. Our results further support the notion that hydrogen isotopes of lipid biomarkers from ancient sediments can be used to assess the origin of the organic matter, to determine oil-source rock correlation, and perhaps to reconstruct the paleoenvironment under which the organic material was deposited.

  16. The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances

    Directory of Open Access Journals (Sweden)

    Alessandro Minguzzi

    2016-01-01

    Full Text Available Here, we report new gas diffusion electrodes (GDEs prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD, energy dispersive X-ray (EDX, morphological (SEM, high-angle annular dark field (HAADF-scanning transmission electron microscopy (STEM/TEM, surface (Brunauer Emmet Teller (BET-Barrett Joyner Halenda (BJH method and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC with 1.0% Ag-doped hydrothermal MnO2 (M_hydro_1.0%Ag allows reaching very high specific capacity close to  1400 mAh·g−1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO2 nanoparticles.

  17. Dissolved organic matter in Arizona reservoirs: assessment of carbonaceous sources

    Energy Technology Data Exchange (ETDEWEB)

    Mash, H.; Westerhoff, P.K. [Arizona State Univ., Tempe, AZ (United States). Dept. of Civil and Environmental Engineering; Baker, L.A. [University of Minnesota, St. Paul, MN (United States). Water Resources Center; Nieman, R.A. [Arizona State Univ., Tempe, AZ (United States). Dept. of Chemistry and Biochemistry; Nguyen, M.L. [AWWA Research Foundation, Denver, CO (United States)

    2004-07-01

    Most studies of freshwater dissolved organic matter (DOM) have been conducted in temperate climates where allochthonous organic material is abundant. Because climatic conditions of the Southwestern USA are different than temperate environments, DOM from three freshwater reservoirs (Saguaro Lake, Bartlett Lake and Lake Pleasant) was investigated to determine the importance of allochthonous and autochthonous organic material. Results from the study show hydrophobic acids constitute a small percentage of the DOM, while the neutral and hydrophilic fractions are more prevalent. C/N ratios are comparatively low relative to other freshwater systems, ranging between 28 and 35 for the hydrophobic acid fractions, while DOC/DON ratios are seasonally influenced by epilimnionic algal growth. The isolated organic fractions were low in aromatic content measured by solid-state {sup 13}C NMR resulting in low aromatic to aliphatic carbon ratios. Organic material recovered from Saguaro Lake and Lake Pleasant display traits that suggest most allochthonous contributions are highly attenuated favoring organic material from autochthonous sources (low C/N and aromatic/aliphatic carbon ratios), whereas organic material from Bartlett Lake demonstrated a greater seasonal perturbation in source influence. (author)

  18. The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa

    Czech Academy of Sciences Publication Activity Database

    Kříbek, B.; Sýkorová, Ivana; Machovič, V.; Knésl, I.; Laufek, F.; Zachariáš, J.

    2015-01-01

    Roč. 270, November 01 (2015), s. 300-317. ISSN 0301-9268 Institutional support: RVO:67985891 Keywords : carbonaceous matter * gold deposits * graphite Subject RIV: DB - Geology ; Mineralogy Impact factor: 5.664, year: 2014

  19. The Biological Potency Of Carbonaceous Nanoparticles Is Associated With The State Of Oxidation Of Surface Carbon Atoms

    Science.gov (United States)

    Epidemiological studies have shown that exposure to ambient particulate matter (PM) is associated with excess morbidity and mortality. An important component of PM consists of inorganic and organic compounds adsorbed onto a carbonaceous particle core. Toxicological studies indica...

  20. Homogeneous catalytic hydrogenations of complex carbonaceous substrates. [16 references

    Energy Technology Data Exchange (ETDEWEB)

    Cox, J L; Wilcox, W A; Roberts, G L

    1976-11-05

    Results of homogeneous catalytic hydrogenation of complex unsaturated substrates including coal and coal-derived materials are reported, with organic soluble molecular complexes as catalysts. Among the substrates used were Hvab coal, solvent-refined coal, and COED pyrolysate. The hydrogenations were carried out in an autoclave. The results are summarized in tables.

  1. COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS

    International Nuclear Information System (INIS)

    The zodiacal cloud is a thick circumsolar disk of small debris particles produced by asteroid collisions and comets. Their relative contribution and how particles of different sizes dynamically evolve to produce the observed phenomena of light scattering, thermal emission, and meteoroid impacts are unknown. Until now, zodiacal cloud models have been phenomenological in nature, composed of ad hoc components with properties not understood from basic physical processes. Here, we present a zodiacal cloud model based on the orbital properties and lifetimes of comets and asteroids, and on the dynamical evolution of dust after ejection. The model is quantitatively constrained by Infrared Astronomical Satellite (IRAS) observations of thermal emission, but also qualitatively consistent with other zodiacal cloud observations, with meteor observations, with spacecraft impact experiments, and with properties of recovered micrometeorites (MMs). We find that particles produced by Jupiter-family comets (JFCs) are scattered by Jupiter before they are able to orbitally decouple from the planet and drift down to 1 AU. Therefore, the inclination distribution of JFC particles is broader than that of their source comets and leads to good fits to the broad latitudinal distribution of fluxes observed by IRAS. We find that 85%-95% of the observed mid-infrared emission is produced by particles from JFCs and 100 μm undergo a further collisional cascade with smaller fragments being progressively more affected by Poynting-Robertson (PR) drag. Upon reaching D -1 mean for D = 100-200 μm with ∼12 km s-1 being the most common case), many JFC grains should survive frictional heating and land on Earth's surface. This explains why most MMs collected in antarctic ice have primitive carbonaceous composition. The present mass of the inner zodiacal cloud at 19 g, mainly in D = 100-200 μm particles. The inner zodiacal cloud should have been >104 times brighter during the Late Heavy Bombardment (LHB

  2. Magnetite as Possible Template for the Synthesis of Chiral Organics in Carbonaceous Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.

    2014-01-01

    The main goal of the Japanese Aerospace Ex-ploration Agency (JAXA) Hayabusa-2 mission is to visit and return to Earth samples of a C-type asteroid (162173) 1999 JU3 in order to understand the origin and nature of organic materials in the Solar System. Life on Earth shows preference towards the set of organics with particular spatial arrangements, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life 'determines' to use the left- (L-) form over the right- (D-) form of amino acids, resulting in a L-enantiomeric excess (ee). Recent studies have shown that L-ee is found within the alpha-methyl amino acids in meteorites [1, 2], which are amino acids with rare terrestrial occurrence, and thus point towards a plausible abiotic origin for ee. One of the proposed origins of chiral asymmetry of amino acids in meteorites is their formation with the presence of asymmetric catalysts [3]. The catalytic mineral grains acted as a surface at which nebular gases (CO, H2 and NH3) were allowed to condense and react through Fisher Tropsch type (FTT) syntheses to form the organics observed in meteorites [4]. Magnetite is shown to be an effective catalyst of the synthesis of amino acids that are commonly found in meteorites [5]. It has also taken the form as spiral magnetites (a.k.a. 'plaquettes'), which were found in various carbonaceous chondrites (CCs), including C2s Tagish Lake and Esseibi, CI Orgueil, and CR chondrites [e.g., 6, 7, 8]. In addition, L-ee for amino acids are common in the aqueously altered CCs, as opposed to the unaltered CCs [1]. It seems possible that the synthesis of amino acids with chiral preferences is correlated to the alteration process experienced by the asteroid parent body, and related to the configuration of spiral magnetite catalysts. Since C-type asteroids are considered to be enriched in organic matter, and the spectral data of 1999 JU3 indicates a certain de-gree of aqueous alteration [9], the Hayabusa-2 mission serves as

  3. Formation of PAHs and Carbonaceous Solids in Gas-Phase Condensation Experiments

    CERN Document Server

    Jäger, C; Jansa, I Llamas; Henning, T; Huisken, F

    2009-01-01

    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs), that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile 3-5 ring systems. At condensation temperatures higher than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot AGB stars or W...

  4. Petrology of Amoeboid Olivine Aggregates in Antarctic CR Chondrites: Comparison With Other Carbonaceous Chondrites

    Science.gov (United States)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2016-01-01

    Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.

  5. Ion irradiation of carbonaceous chondrites as a simulation of space weathering on C-complex asteroids

    Science.gov (United States)

    Lantz, C.; Brunetto, R.; Barucci, M. A.; Bachelet, C.; Baklouti, D.; Bourçois, J.; Dartois, E.; Duprat, J.; Duret, P.; Engrand, C.; Godard, M.; Ledu, D.; Mivumbi, O.; Fornasier, S.

    2015-10-01

    We are investigating the effects of space weathering on primitive asteroids using ion irradiation on their meteoritic analogs. To do so, we exposed several carbonaceous chondrites (CV Allende, COs Lancé and Frontier Mountain 95002, CM Mighei, CI Alais, and ungrouped Tagish Lake) to 40 keV He+ ions as a simulation of solar wind irradiation using fluences up to 6.1016 ions/cm2 (implantation platform IRMA at CSNSM Orsay). As a test for our new experimental setup, we also studied samples of olivine and diopside. We confirm the reddening and darkening trends on S-type objects, but carbonaceous chondrites present a continuum of behaviors after ion irradiation as a function of the initial albedo and carbon content: from red to blue and from dark to bright.

  6. Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites

    Science.gov (United States)

    Mackinnon, I. D. R.; Zolensky, M. E.

    1984-01-01

    A recent investigation of C2M carbonaceous chondrite meteorite matrices using electron microscopy and High-Resolution Transmission Electron Microscopy (HRTEM) has provided data on the structure and chemistry of Poorly Characterized Phases (PCP). It is suggested that a dominant matrix variety (10 A PCP) has a structure equivalent to iron-rich tochinilite (6Fe0.9S5/Fe, Mg//OHO2/), which consists of coherently intrastratified mackinawite and brucite sheets. In addition, it is proposed that 17 A PCP is a commensurate intergrowth of serpentine and tochinilite layers. Various forms of PCP observed in carbonaceous chondrites appear to be intergrowths of tochinilite, serpentine, and tochinilite-serpentine minerals.

  7. Noble gas trapping and fractionation during synthesis of carbonaceous matter. [in meteorites

    Science.gov (United States)

    Frick, U.; Mack, R.; Chang, S.

    1979-01-01

    An investigation of noble gas entrapment during synthesis of carbonaceous, macromolecular, and kerogen-like substances is presented. High molecular weight organic matter synthesized in aqueous condensation reactions contained little gas, and the composition was consistent with fractionation due to noble gas solubility in water; however, propane soot produced during a modified Miller-Urey experiment in an aritificial gas mixture contained high concentrations of trapped noble gases that displayed strong elemental fractionation from their reservoirs. It is concluded that theses experiemnts show that processes exist for synthesis of carbonaceous carriers that result in high noble gas concentrations and strong elemental fractionation at temperatures well above those required by absorption to achieve similar effects.

  8. Interpretation of measurments of carbonaceous deposition on irradiated CAGR fuel pins

    International Nuclear Information System (INIS)

    Measurements of carbonaceous deposition on irradiated fuel from almost the whole initial charges of the Advanced Gas-cooled reactors (AGRs) at Hinkley Point 'B' and Hunterston 'B' are reviewed. The source of carbonaceous deposition on fuel pins is thought to be oil leakage into the core from the gas circulators, except for the recent occurrence of apparently coolant-derived deposition in Hinkley R3. The implications on the heat-transfer of the observed levels of deposition are discussed, as are the effects of clad surface and possible surface treatments. Effects of irradiation time and coolant composition are assessed and it is shown that operation to the target discharge irradiation of 24 GWd/te will not lead to unacceptable levels of deposition as long as methane and carbon monoxide concentrations are maintained within limits that avoid deposition from these components. (author)

  9. State of the art on reactor designs for solar gasification of carbonaceous feedstock

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Tora, E.A.; Bruno, J.C.;

    2013-01-01

    to produce high quality synthesis gas with a higher output per unit of feedstock and that allows for the chemical storage of solar energy in the form of a readily transportable fuel, among other advantages. The present paper describes the latest advances in solar thermochemical reactors for...... gasification of carbonaceous feedstocks. This work is categorized in this paper into patents and research/journal papers. © 2013 Elsevier Ltd....

  10. Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene

    OpenAIRE

    Swindles, GT; Watson, E.; Turner, TE; Galloway, JM; Hadlari, T; Wheeler, J; Bacon, KL

    2015-01-01

    There has been recent debate over stratigraphic markers used to demarcate the Anthropocene from the Holocene Epoch. However, many of the proposed markers are found only in limited areas of the world or do not reflect human impacts on the environment. Here we show that spheroidal carbonaceous particles (SCPs), a distinct form of black carbon produced from burning fossil fuels in energy production and heavy industry, provide unambiguous stratigraphic markers of the human activities that have ra...

  11. Fermentation, gasification and pyrolysis of carbonaceous residues towards usage in fuel cells

    International Nuclear Information System (INIS)

    In this paper, the technologies of fermentation, gasification and pyrolysis of carbonaceous residues for the production of biohydrogen and other gaseous, liquid or solid fuels, are analysed. The energetic, economic and environmental advantages of linking these energy areas with the fuel cell engines are stressed. In addition, the current status of fuel cell technologies, namely their historic trends, basic electrode mechanisms, cell types, market drivers and leading issues, are reviewed

  12. In Situ Mapping of the Organic Matter in Carbonaceous Chondrites and Mineral Relationships

    Science.gov (United States)

    Clemett, Simon J.; Messenger, S.; Thomas-Keprta, K. L.; Ross, D. K.

    2012-01-01

    Carbonaceous chondrite organic matter represents a fossil record of reactions that occurred in a range of physically, spatially and temporally distinct environments, from the interstellar medium to asteroid parent bodies. While bulk chemical analysis has provided a detailed view of the nature and diversity of this organic matter, almost nothing is known about its spatial distribution and mineralogical relationships. Such information is nevertheless critical to deciphering its formation processes and evolutionary history.

  13. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010

    OpenAIRE

    Lu, Z.; Q. Zhang; D. G. Streets

    2011-01-01

    China and India are the two largest anthropogenic aerosol generating countries in the world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from these two countries for the period 1996–2010, using a technology-based methodology. Emissions from major anthropogenic sources and open biomass burning are included, and time-dependent trends in activity rates and emission ...

  14. Annual variations of carbonaceous PM2.5 in Malaysia: Influence by Indonesian peatland fires

    OpenAIRE

    Fujii, Y.; S. Tohno; Amil, N.; M. T. Latif; Oda, M.; Matsumoto, J.; A. Mizohata

    2015-01-01

    In this study, we quantified carbonaceous PM2.5 in Malaysia through annual observations of PM2.5, focusing on organic compounds derived from biomass burning. We determined organic carbon (OC), elemental carbon and concentrations of solvent-extractable organic compounds (biomarkers derived from biomass burning sources and n-alkanes). We observed seasonal variations in the concentrations of pyrolyzed OC (OP), levoglucosan (LG), mannosan (MN), galactosan, syringaldehyde, vanillic acid (VA) and c...

  15. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  16. Implementing a new EPR lineshape parameter for organic radicals in carbonaceous matter

    OpenAIRE

    Bourbin, Mathilde; Du, Yann Le; Binet, Laurent; Gourier, Didier

    2013-01-01

    Background Electron Paramagnetic Resonance (EPR) is a non-destructive, non-invasive technique useful for the characterization of organic moieties in primitive carbonaceous matter related to the origin of life. The classical EPR parameters are the peak-to-peak amplitude, the linewidth and the g factor; however, such parameters turn out not to suffice to fully determine a single EPR line. Results In this paper, we give the definition and practical implementation of a new EPR parameter based on ...

  17. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  18. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow

    OpenAIRE

    Voisin, Didier; Jaffrezo, Jean-Luc; Houdier, Stephan; Barret, Manuel; Cozic, Julie; King, Martin D.; France, James L.; Reay, Holly J.; Grannas, Amanda; Kos, Gregor; Ariya, Parisa A.; Beine, Harry J.; Domine, Florent

    2012-01-01

    Snowpacks contain many carbonaceous species that can potentially impact on snow albedo and arctic atmospheric chemistry. During the OASIS field campaign, in March and April 2009, Elemental Carbon (EC), Water insoluble Organic Carbon (WinOC) and Dissolved Organic Carbon (DOC) were investigated in various types of snow: precipitating snows, remobilized snows, wind slabs and depth hoars. EC was found to represent less than 5% of the Total Carbon Content (TCC = EC + WinOC + DOC), whereas WinOC wa...

  19. Bulk micromachining of silicon using electron-beam-induced carbonaceous nanomasking

    International Nuclear Information System (INIS)

    This paper reports on an alternative nanolithographic technique for bulk micromachining of silicon. We show how to selectively etch Si(110) in aqueous KOH solutions using electron-beam-induced nanomasking. Already nanometre thin carbonaceous films can completely suppress the wet anisotropic chemical etching of Si performed in alkaline solution (10 wt% KOH+5 wt% isopropanol). It is shown that under optimized conditions, this approach can be exploited for the fabrication of three-dimensional micro- and nanostructures

  20. Bulk micromachining of silicon using electron-beam-induced carbonaceous nanomasking

    Energy Technology Data Exchange (ETDEWEB)

    Djenizian, T [Laboratoire MADIREL (UMR 6121), Electrochemistry of Materials Group, Universite de Provence-CNRS Centre Saint Jerome, F-13397 Marseille Cedex 20 (France); Salhi, B [Institut de Recherche Interdisciplinaire (IRI), Avenue Poincare BP 60069, 59652 Villeneuve d' Ascq (France); Boukherroub, R [Institut de Recherche Interdisciplinaire (IRI), Avenue Poincare BP 60069, 59652 Villeneuve d' Ascq (France); Schmuki, P [Department of Materials Science, University of Erlangen-Nuremberg, WW4-LKO, Martensstrasse 7, D-91058 Erlangen (Germany)

    2006-11-14

    This paper reports on an alternative nanolithographic technique for bulk micromachining of silicon. We show how to selectively etch Si(110) in aqueous KOH solutions using electron-beam-induced nanomasking. Already nanometre thin carbonaceous films can completely suppress the wet anisotropic chemical etching of Si performed in alkaline solution (10 wt% KOH+5 wt% isopropanol). It is shown that under optimized conditions, this approach can be exploited for the fabrication of three-dimensional micro- and nanostructures.

  1. Titanium-rich oxide-bearing plagioclase-olivine inclusions in the unusual Ningqiang carbonaceous chondrite

    OpenAIRE

    Lin,Yangting /Kimura,Makoto

    1997-01-01

    Two plagioclase-olivine inclusions (POIs) from the unusual Ningqiang carbonaceous chondrite were studied to understand their mineralogy and crystallization history. In addition to the major phases plagioclase, spinel, olivine and pyroxene, Ningqiang POIs are characterized by interstitial assemblages composed of Ca-rich and Ca-poor pyroxenes, Ti-rich oxides and the other phases. The Ti-rich oxides include an unidentified titanium mineral series referred to as phase T, Ca-rich and Mg, Fe-rich a...

  2. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    International Nuclear Information System (INIS)

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  3. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance

    OpenAIRE

    Bourbin, Mathilde; Gourier, Didier; Binet, Laurent; Le Du, Yann; Derenne, Sylvie; Westall, Francès; Kremer, Barbara; Gautret, Pascale

    2013-01-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than gre...

  4. Ore-forming environment and ore-forming system of carbonaceous-siliceous-pelitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    It is proposed that there are four types of ore-forming systems about carbonaceous-siliceous-pelitic rock type uranium deposit in China based on systematic study on structural environment and distribution regularity of uraniferous construction of marine carbonaceous-siliceous-pelitic rock in China: continental margin rift valley ore-forming systems, continental margin rifting deep fracture zone ore-forming systems, landmass boundary borderland basin ore-forming systems and epicontinental mobile belt downfaulted aulacogen ore-forming systems. It is propounded definitely that it is controlled by margin rift valley ore-forming systems and continental margin rifting deep fracture zone ore-forming systems for large-scale uranium mineralization of carbonaceous-siliceous-pelitic rock type uranium deposit in China, which is also controlled by uraniferous marine carbonaceous-siliceous-pelitic rock construction made up of silicalite, siliceous phosphorite and carbonaceous-siliceous-pelitic rock, which settled down accompany with submarine backwash and sub marine volcanic eruption in margin rift valley and continental margin rifting mineralizing environment. Continental mar gin rift valley and continental margin rifting thermal sedimentation or exhalation sedimentation is the mechanism of forming large-scale uraniferous marine carbonaceous-siliceous-pelitic rock construction Early Palaeozoic Era in China or large-scale uranium-polymetallic mineralization. (authors)

  5. Anticorrosion properties of tin oxide coatings for carbonaceous bipolar plates of proton exchange membrane fuel cells

    Science.gov (United States)

    Kinumoto, Taro; Nagano, Keita; Yamamoto, Yuji; Tsumura, Tomoki; Toyoda, Masahiro

    2014-03-01

    An anticorrosive surface treatment of a carbonaceous bipolar plate used in proton exchange membrane fuel cells (PEMFCs) was demonstrated by addition of a tin oxide surface coating by liquid phase deposition (LPD), and its effectiveness toward corrosion prevention was determined. The tin oxide coating was deposited by immersion in tin fluoride and boric acid solutions, without any observable decrease in the bipolar plate electrical conductivity. Anticorrosion properties of a flat carbonaceous bipolar plate were investigated in an aqueous HClO4 electrolyte solution (10 μmol dm-3) at 80 °C. CO2 release due to corrosion was significant for the bare specimen above 1.3 V, whereas no CO2 release was noted for the tin-oxide-coated specimen, even approaching 1.5 V. Moreover, minimal changes in contact angle against a water droplet before and after treatment indicated suppressed corrosion of the surface-coated specimen. Anticorrosion properties were also confirmed for a model bipolar plate having four gas flow channels. The tin oxide layer remained on the channel surfaces (inner walls, corners and intersections) after durability tests. Based on these results, tin-oxide-based surface coatings fabricated by LPD show promise as an anticorrosion technique for carbonaceous bipolar plates for PEMFCs.

  6. Bulk Chemical Composition of the Ningqiang Carbonaceous Chondrite:An Issue of Classification

    Institute of Scientific and Technical Information of China (English)

    WANG Guiqin; LIN Yangting

    2007-01-01

    The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and lowtemperature alteration. However, it has not yet been classified into any known chemical group. In order to address this issue, 41 elements of the bulk Ningqiang meteorite were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atom emission spectrometry (ICP-AES) in this study. The Allende (CV3) carbonaceous chondrite and the Jilin (H5)ordinary chondrite were also measured as references, and our analyses are consistent with the previous results. Rare earth and other refractory lithophile elements are depleted in Ningqiang relative to both Allende and mean CK chondrites. In addition, the REE pattern of Ningqiang is nearly flat, while that of Allende shows slight enrichment of LREE relative to HREE. Siderophile elements of Ningqiang are close to those of mean CK chondrites, but lower than those of Allende. Our new analyses indicate that Ningqiang cannot be classified into any known group of carbonaceous chondrites, consistent with previous reports.

  7. The Spatial Distribution of Organic Matter and Mineralogical Relationships in Carbonaceous Chondrites

    Science.gov (United States)

    Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Nakamura-Messenger, K.

    2012-01-01

    Organic matter present within primitive carbonaceous meteorites represents the complex conglomeration of species formed in a variety of physically and temporally distinct environments including circumstellar space, the interstellar medium, the Solar Nebula & Jovian sub-nebulae and asteroids. In each case, multiple chemical pathways would have been available for the synthesis of organic molecules. Consequently these meteorites constitute a unique record of organic chemical evolution in the Universe and one of the biggest challenges in organic cosmochemistry has been in deciphering this record. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is virtually no hard experimental data as to how these species are spatially distributed and their relationship to the host mineral matrix, (with one exception). The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (organics and synthesis of new organics coupled to aqueous mineral alteration. To address such issues we have applied the technique of microprobe two-step laser desorption / photoionization mass spectrometry (L2MS) to map in situ the spatial distribution of a broad range of organic species at the micron scale in the freshly exposed matrices of the Bells, Tagish Lake and Murchison (CM2) carbonaceous chondrites.

  8. Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and Central Himalaya: impact of anthropogenic sources.

    Science.gov (United States)

    Ram, Kirpa; Sarin, M M

    2015-01-15

    In the present-day scenario of growing anthropogenic activities, carbonaceous aerosols contribute significantly (∼20-70%) to the total atmospheric particulate matter mass and, thus, have immense potential to influence the Earth's radiation budget and climate on a regional to global scale. In addition, formation of secondary organic aerosols is being increasingly recognized as an important process in contributing to the air-pollution and poor visibility over urban regions. It is, thus, essential to study atmospheric concentrations of carbonaceous species (EC, OC and WSOC), their mixing state and absorption properties on a regional scale. This paper presents the comprehensive data on emission sources, chemical characteristics and optical properties of carbonaceous aerosols from selected urban sites in the Indo-Gangetic Plain (IGP) and from a high-altitude location in the central Himalaya. The mass concentrations of OC, EC and WSOC exhibit large spatio-temporal variability in the IGP. This is attributed to seasonally varying emissions from post-harvest agricultural-waste burning, their source strength, boundary layer dynamics and secondary aerosol formation. The high concentrations of OC and SO4(2-), and their characteristic high mass scattering efficiency, contribute significantly to the aerosol optical depth and scattering coefficient. This has implications to the assessment of single scattering albedo and aerosol radiative forcing on a regional scale. PMID:25199599

  9. Effects of calcium and phosphate on uranium(IV) oxidation. Comparison between nanoparticulate uraninite and amorphous UIV–phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Latta, Drew E. [Argonne National Lab. (ANL), Argonne, IL (United States); Kemner, Kenneth M. [Argonne National Lab. (ANL), Argonne, IL (United States); Mishra, Bhoopesh [Argonne National Lab. (ANL), Argonne, IL (United States); Illinois Inst. of Technology, Chicago, IL (United States); Boyanov, Maxim I. [Argonne National Lab. (ANL), Argonne, IL (United States); Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2016-02-01

    The mobility of uranium in subsurface environments depends strongly on its redox state, with UIV phases being significantly less soluble than UVI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of UVI reduction in natural systems, a nanoparticulate UO2 phase and an amorphous UIV–Ca–PO4 analog to ningyoite (CaUIV(PO4)2·1–2H2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for UIVO2 and UIV–phosphate in solutions equilibrated with atmospheric O2 and CO2 at pH 7.0 (kobs,UO2 = 0.17 ± 0.075 h-1 vs. kobs,UIVPO4 = 0.30 ± 0.25 h-1). Addition of up to 400 μM Ca and PO4 decreased the oxidation rate constant by an order of magnitude for both UO2 and UIV–phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO4, the product of UO2 oxidation is Na–uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO4 and low carbonate concentration), resulting in low concentrations of dissolved UVI (<2.5 × 10-7 M). Oxidation of UIV–phosphate produced a Na-autunite phase (Na2(UO2)PO4·xH2O), resulting in similarly low dissolved U concentrations (<7.3 × 10-8 M). When Ca and PO4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO2 and UIV–phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca–UVI–PO4 layer on the UO2 surface and suggest a passivation layer mechanism for the decreased rate of UO2 oxidation in the presence of Ca and PO4. Interestingly, the extractions were unable to remove all of the oxidized U from partially oxidized UO2 solids, suggesting that oxidized U is

  10. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous UIV-phosphate

    Science.gov (United States)

    Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; Boyanov, Maxim I.

    2016-02-01

    The mobility of uranium in subsurface environments depends strongly on its redox state, with UIV phases being significantly less soluble than UVI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of UVI reduction in natural systems, a nanoparticulate UO2 phase and an amorphous UIV-Ca-PO4 analog to ningyoite (CaUIV(PO4)2·1-2H2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for UIVO2 and UIV-phosphate in solutions equilibrated with atmospheric O2 and CO2 at pH 7.0 (kobs,UO2 = 0.17 ± 0.075 h-1 vs. kobs,UIVPO4 = 0.30 ± 0.25 h-1). Addition of up to 400 μM Ca and PO4 decreased the oxidation rate constant by an order of magnitude for both UO2 and UIV-phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO4, the product of UO2 oxidation is Na-uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO4 and low carbonate concentration), resulting in low concentrations of dissolved UVI (<2.5 × 10-7 M). Oxidation of UIV-phosphate produced a Na-autunite phase (Na2(UO2)PO4·xH2O), resulting in similarly low dissolved U concentrations (<7.3 × 10-8 M). When Ca and PO4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO2 and UIV-phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca-UVI-PO4 layer on the UO2 surface and suggest a passivation layer mechanism for the decreased rate of UO2 oxidation in the presence of Ca and PO4. Interestingly, the extractions were unable to remove all of the oxidized U from partially oxidized UO2 solids, suggesting that oxidized U is distributed between

  11. Preparation of carbonaceous adsorbents from sewage sludge by chemical activation process - application to air and water treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rio, S.; Le Coq, L.; Faur-Brasquet, C.; Le Cloirec, P. [Ecole des Mines de Nantes (UMR CNRS 6144 GEPEA), 44 - Nantes (France)

    2004-07-01

    Wastewater treatment plants produce considerable amounts of liquid waste material called sewage sludge. In France, sewage sludge production is about 950,000 tons of dried matter per year. The traditional ways of sludge valorization include farmland application, landfill and incineration. But, with some traditional disposal ways coming under pressure like farmland applications and others being phased out like landfill, it is necessary to seek cost - effective and innovative solutions to sewage sludge disposal problem. Today, one promising approach for production of cheap and efficient carbonaceous sorbent is the use of sewage sludge. This study aims to investigate the effect of sulfuric acid activation conditions on physico-chemical and adsorptive properties of the carbonaceous sorbents made from viscous liquid sludge collected at municipal wastewater treatment plant of Nantes, in France. Chemical activation by sulfuric acid is carried out using an impregnation method. Dried viscous liquid sludge is mixed with H{sub 2}SO{sub 4} solutions for 6 h. The resulting mixture is filtered and dried at 105 C. Then, impregnated sludge is activated in a horizontal furnace under nitrogen atmosphere. The effects of impregnation ratio (0.5 - 1.5 gH{sub 2}SO{sub 4}g{sup -1} sludge), temperature (600-800 C) and time (60-180 minutes) are studied using experimental design methodology. The physico-chemical properties of the resulting sorbents are determined using various characterization techniques: - Elemental analysis, determination of surface functional groups by the Boehm method, surface pH measurement and Point of Zero Charge (pH{sub pzc}) enable a complete characterization of the surface chemistry, - BET analyzer allows specific surface area and the meso-porosity and micro-porosity to be determined. Finally, Adsorption properties are determined during copper ion, dyes (Acid Red 18 and Basic Violet 4) and phenol removal experiments in aqueous solution as well as VOC in gas phase

  12. Incorporation de nanoparticules métalliques dans une membrane de filtration pour la réduction catalytique de composés organiques

    OpenAIRE

    Emin, Clelia; Macanás de Benito, Jorge; Lahitte, Jean-François

    2011-01-01

    En raison de leurs grandes surfaces spécifiques les nanoparticules métalliques (N PM) possèdent des propriétés physico-chimiques uniques par rapport à la forme macroscopique du même matériau, en particulier en matière de réactivité catalytique. Afin de conserver ces spécificités, il est important de maitriser leur stabilité en évitant leur agrégation. La synthèse in situ, dite inter-matricielle, de NPM au sein d’une matrice polymère permet de les stabiliser sans perte de réactivité tout en co...

  13. Nanoparticules de photocommutateurs moleculaires bases sur des complexes de fe(II) a conversion de spin et a ligands photo-isomerisables

    OpenAIRE

    Nguyen, Luong-Lam

    2014-01-01

    Enquête sur le fer(II) noyau transition de spin centrée métal coordonner avec des ligands photo-actif (isomérisation tran / cis) et l'étude de la lumière induite par le changement de spin conduit ligand (LD-LISC) propriétés en fer(II) fonctionnalisé complexes sous la forme de nanoparticules dispersées dans des films minces transparents. Pour cette étude, nous avons choisi un ensemble de complexes mononucléaires incorporant un ligand bipyridine substitué soit par un groupe méthyle (de la fonct...

  14. Preparation of magnetron sputtered thin cerium oxide films with a large surface on silicon substrates using carbonaceous interlayers.

    Science.gov (United States)

    Dubau, Martin; Lavková, Jaroslava; Khalakhan, Ivan; Haviar, Stanislav; Potin, Valerie; Matolín, Vladimír; Matolínová, Iva

    2014-01-22

    The study focuses on preparation of thin cerium oxide films with a porous structure prepared by rf magnetron sputtering on a silicon wafer substrate using amorphous carbon (a-C) and nitrogenated amorphous carbon films (CNx) as an interlayer. We show that the structure and morphology of the deposited layers depend on the oxygen concentration in working gas used for cerium oxide deposition. Considerable erosion of the carbonaceous interlayer accompanied by the formation of highly porous carbon/cerium oxide bilayer systems is reported. Etching of the carbon interlayer with oxygen species occurring simultaneously with cerium oxide film growth is considered to be the driving force for this effect resulting in the formation of nanostructured cerium oxide films with large surface. In this regard, results of oxygen plasma treatment of a-C and CNx films are presented. Gradual material erosion with increasing duration of plasma impact accompanied by modification of the surface roughness is reported for both types of films. The CNx films were found to be much less resistant to oxygen etching than the a-C film. PMID:24372305

  15. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.

    Science.gov (United States)

    Parshetti, Ganesh K; Kent Hoekman, S; Balasubramanian, Rajasekhar

    2013-05-01

    A carbon-rich solid product, denoted as hydrochar, was synthesized by hydrothermal carbonization (HTC) of palm oil empty fruit bunch (EFB), at different pre-treatment temperatures of 150, 250 and 350 °C. The conversion of the raw biomass to its hydrochar occurred via dehydration and decarboxylation processes. The hydrochar produced at 350 °C had the maximum energy-density (>27 MJ kg(-1)) with 68.52% of raw EFB energy retained in the char. To gain a detailed insight into the chemical and structural properties, carbonaceous hydrochar materials were characterized by FE-SEM, FT-IR, XRD and Brunauer-Emmett-Teller (BET) analyses. This work also investigated the influence of hydrothermally treated hydrochars on the co-combustion characteristics of low rank Indonesian coal. Conventional thermal gravimetric analysis (TGA) parameters, kinetics and activation energy of different hydrochar and coal blends were estimated. Our results show that solid hydrochars improve the combustion of low rank coals for energy generation. PMID:23127830

  16. Vesicular (liposomal and nanoparticulated delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model

    Directory of Open Access Journals (Sweden)

    Choudhury ST

    2016-05-01

    Full Text Available Somsubhra Thakur Choudhury,1 Nirmalendu Das,2 Swarupa Ghosh,2 Debasree Ghosh,2 Somsuta Chakraborty,2 Nahid Ali1 1Infectious Diseases and Immunology, 2Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India Abstract: The liver plays a vital role in biotransforming and extricating xenobiotics and is thus prone to their toxicities. Short-term administration of carbon tetrachloride (CCl4 causes hepatic inflammation by enhancing cellular reactive oxygen species (ROS level, promoting mitochondrial dysfunction, and inducing cellular apoptosis. Curcumin is well accepted for its antioxidative and anti-inflammatory properties and can be considered as an effective therapeutic agent against hepatotoxicity. However, its therapeutic efficacy is compromised due to its insolubility in water. Vesicular delivery of curcumin can address this limitation and thereby enhance its effectiveness. In this study, it was observed that both liposomal and nanoparticulated formulations of curcumin could increase its efficacy significantly against hepatotoxicity by preventing cellular oxidative stress. However, the best protection could be obtained through the polymeric nanoparticle-mediated delivery of curcumin. Mitochondria have a pivotal role in ROS homeostasis and cell survivability. Along with the maintenance of cellular ROS levels, nanoparticulated curcumin also significantly (P<0.0001 increased cellular antioxidant enzymes, averted excessive mitochondrial destruction, and prevented total liver damage in CCl4-treated rats. The therapy not only prevented cells from oxidative damage but also arrested the intrinsic apoptotic pathway. In addition, it also decreased the fatty changes in hepatocytes, centrizonal necrosis, and portal inflammation evident from the histopathological analysis. To conclude, curcumin-loaded polymeric nanoparticles are more effective in comparison to liposomal curcumin in preventing CCl4

  17. Comets as Parent Bodies of CI1 Carbonaceous Meteorites and Possible Habitats of Ice-Microbiota

    Science.gov (United States)

    Wickramasinghe, N. Chandra; Wallis, Daryl H.; Rozanov, Alexei Yu.; Hoover, Richard B.

    2011-01-01

    Recent studies of comets and cometary dust have confirmed the presence of biologically relevant organic molecules along with clay minerals and water ice. It is also now well established by deuterium/hydrogen ratios that the CI1 carbonaceous meteorites contain indigenous extraterrestrial water. The evidence of extensive aqueous alteration of the minerals in these meteorites led to the hypothesis that water-bearing asteroids or comets represent the parent bodies of the CI1 (and perhaps CM2) carbonaceous meteorites. These meteorites have also been shown to possess a diverse array of complex organics and chiral and morphological biomarkers. Stable isotope studies by numerous independent investigators have conclusively established that the complex organics found in these meteorites are both indigenous and extraterrestrial in nature. Although the origin of these organics is still unknown, some researchers have suggested that they originated by unknown abiotic mechanisms and may have played a role in the delivery of chiral biomolecules and the origin of life on Early Earth. In this paper we review these results and investigate the thermal history of comets. We show that permanent as well as transient domains of liquid water can be maintained on a comet under a plausible set of assumptions. With each perihelion passage of a comet volatiles are preferentially released, and during millions of such passages the comet could shed crustal debris that may survive transit through the Earth s atmosphere as a carbonaceous meteorite. We review the current state of knowledge of comets and carbonaceous meteorites. We also present the results of recent studies on the long-term viability of terrestrial ice-microbiota encased in ancient glacial ice and permafrost. We suggest that the conditions which have been observed to prevail on many comets do not preclude either survivability (or even the active metabolism and growth) of many types of eukaryotic and prokaryotic microbial

  18. Spectro-microscopic measurements of carbonaceous aerosol aging in Central California

    Directory of Open Access Journals (Sweden)

    R. C. Moffet

    2013-10-01

    Full Text Available Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES was designed to study carbonaceous aerosols in the natural environment of the Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of a pollution accumulation event (27–29 June 2010, when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer-controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX and scanning transmission X-ray microscopy coupled with near-edge X-ray absorption spectroscopy (STXM/NEXAFS were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm equivalent circular diameter increased with plume age, as did the organic mass per particle. Comparison of the CARES spectro-microscopic dataset with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that fresh particles in Mexico City contained three times as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (ranging from 16.6 to 47.3% was larger than at the CARES urban site (13.4–15.7%, and the most aged samples from CARES contained fewer carbon–carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol

  19. Carbonaceous residues from biomass gasification as catalysts for biodiesel production

    Institute of Scientific and Technical Information of China (English)

    Rafael Luque; Antonio Pineda; Juan C. Colmenares; Juan M. Campelo; Antonio A. Romero; Juan Carlos Serrano-Ruiz; Luisa F. Cabeza; Jaime Cot-Gores

    2012-01-01

    Tars and alkali ashes from biomass gasification processes currently constitute one of the major problems in biomass valorisation,generating clogging of filters and issues related with the purity of syngas production.To date,these waste residues find no useful applications and they are generally disposed upon generation in the gasification process.A detailed analysis of these residues pointed out the presence of high quantities of Ca (>30 wt%).TG experiments indicated that a treatment under air at moderate temperatures (400-800 ℃) decomposed the majority of carbon species,while XRD indicated the presence of a crystalline CaO phase.CaO enriched valorized materials turned out to be good heterogeneous catalysts for biodiesel production from vegetable oils,providing moderate to good activities (50%-70% after 12 h) to fatty acid methyl esters in the transesterification of sunflower oil with methanol.

  20. The appearance of Carbonaceous Chondrites on (1) Ceres from observations by the Dawn Framing Camera

    Science.gov (United States)

    Schäfer, Tanja; Schäfer, Michael; Mengel, Kurt; Cloutis, Edward A.; Izawa, Matthew R. M.; Thangjam, Guneshwar; Hoffmann, Martin; Platz, Thomas; Nathues, Andreas; Kallisch, Jan; Ripken, Joachim; Russel, Christopher T.

    2016-04-01

    NASA's Dawn spacecraft reached dwarf planet Ceres in March 2015 and started data acquisition using three different instruments. These are the Framing Camera (FC; [1]), the Visible & Infrared Spectrometer (VIR; [2]), and the Gamma Ray and Neutron Detector (GRaND; [3]). In our work we focus on the potential appearance of carbonaceous chondritic (CC) material on the cerean surface using Dawn FC color mosaics covering the VIS/NIR wavelength region. In preparation of the Dawn arrival at Ceres, a discrimination scheme for CC groups using FC color ratios was developed by [4] and is based on 121 CC laboratory spectra compiled from RELAB. As the cerean surface material mainly differs by its spectral slope over the whole FC wavelength range (0.44-0.97 μm), we classified the color mosaics by this parameter. We applied the CC discrimination scheme only to those regions on the cerean surface (more than 90 %) which exhibit spectral slopes ≥ -1 % reflectance per μm to exclude the strongly negative sloped regions of large young craters such as Occator, Haulani, and Oxo. These are not likely to be similar to pure CC material as can be seen by their brightness and their bluish spectral slope [5]. We found that the surface material of Ceres is, among the suite of CCs, most similar to Ivuna samples artificially heated to 200 and 300°C [6] and unusual CCs, which naturally experienced heating. The latter ones comprise Dhofar 225, Y-86789 and Y-82162, which have been determined to have undergone aqueous alteration and subsequent thermal metamorphism (e.g. [7,8]).Our comparison with VIR data shows, that the spectra of Ivuna heated to 200°C and 300°C match well the OH-absorption at 2.7 μm but do not show the smaller 3.05-3.1 μm absorption observed on Ceres [9,10,11]. Nevertheless, the remarkably flat UV drop-off detected on the cerean surface may, at least spectrally, correspond to highly aqueously altered and subsequently thermally metamorphosed CC material. Further alteration of

  1. Program GICC, final report (March 2005), inventory of carbonaceous aerosol particles from 1860 to 2100 or which carbonaceous aerosol for a significant climatic regional/global impact?

    International Nuclear Information System (INIS)

    The aim of our program is to determine past, present and future emission inventories of carbonaceous particles from 1860 to 2100 for fossil fuel and biofuel sources. Emission inventories for savannah and forest fires have been developed by using burnt area products given by satellite for Asia and Africa. The strong collaboration with the different groups attending this GICC program has allowed to develop the following results. 1- With the improvement of algorithms and new choices for emission factors, emission inventories for black carbon (BC), primary organic carbon (OCp) and total organic carbon (OCtot) have been constructed for the period 1950 to 1997 for fossil fuel and biofuel sources. With these new development, biofuel sources have been seen to be significant, especially in the developing countries. 2- Past inventories have been developed for fossil fuel and biofuel sources from 1860 to 1997 by taking into account the evolution of fuel consumption, fuel use and emission factors. 3- Savannah and forest fire inventories have been constructed based on burnt area products, for Africa (1981-1991, 2000) and Asia (2000-2001). These results show the importance of using real time data instead of statistics. 4-Future emission inventory of black carbon by fossil fuel sources has been constructed for 2100 following the IPCC scenario A2 (catastrophic case) and B1 (perfect world). 5-Characterization of biofuel emissions has been realized by organizing an experiment in a combustion chamber where indian and chinese biofuels (fuelwood, agricultural wastes, dung-cake etc..). were burnt, reproducing the burning methods used in these countries. 6-Finally, the differences between the existing inventories of carbonaceous aerosols has been explained. (A.L.B.)

  2. Impact d'un sédiment dopé aux nanoparticules d'or ou de sulfure de cadmium sur un invertébré et un poisson d'eau douce

    OpenAIRE

    Dedeh, Amina

    2014-01-01

    Le but de cette thèse était de déterminer l’impact de deux types de nanoparticules métalliques (sulfure de cadmium – CdS - et or - Au) sur deux organismes aquatiques modèles (vers tubifex et poisson zèbre Danio rerio). L’approche a consisté à doper le sédiment de la Garonne avec les deux types de nanoparticules et caractériser l’effet de cette contamination sur les deux organismes en utilisant plusieurs marqueurs à différents niveaux d'organisation biologique (réponses biochimiques, activité ...

  3. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    H. H. Y. Cheung

    2015-09-01

    Full Text Available Simultaneous measurements of aerosols of varying volatilities and carbonaceous matters at an urban site of Guangzhou, China were conducted in February and March 2014 using a Volatility Tandem Differential Mobility Analyzer (VTDMA and an Organic Carbon/Elemental Carbon (OC/EC Analyzer. In VTDMA, selected aerosols of 40 to 300 nm in mobility diameter were heated at elevated temperatures up to 300 °C and the size distributions of the residual particles were measured. Size dependent distributions were observed for both non-volatile and volatile materials (VM. The 40 nm particles were dominated by particles that completely vaporized (CV at 300 °C, with an average number fraction of about 0.4. Particles larger than 80 nm were dominated by the medium and low volatility (MV and LV, respectively fractions, with average number fractions of 0.5 and 0.15 respectively. VM did not contribute separately to number fraction but contributed to over 50 % of the total volume fraction for all sizes. In both number and volume fractions, diurnal variation was only observed for the high volatility (HV group, CV and VM in 40 nm particles, likely because these particles were related to fresh emissions. The little diurnal variation of larger particles could be attributed to non-locally aged aerosols. Closure analysis between the residual mass of LV + MV and mass of EC or EC+OC2–4 (sum of EC, OC2, OC3, and OC4 of the OC/EC Analyzer suggests that non-volatile materials measured by the VTDMA likely contain less volatile OC.

  4. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    Science.gov (United States)

    Cheung, H. H. Y.; Tan, H. B.; Xu, H. B.; Li, F.; Wu, C.; Yu, J. Z.; Chan, C. K.

    2015-09-01

    Simultaneous measurements of aerosols of varying volatilities and carbonaceous matters at an urban site of Guangzhou, China were conducted in February and March 2014 using a Volatility Tandem Differential Mobility Analyzer (VTDMA) and an Organic Carbon/Elemental Carbon (OC/EC) Analyzer. In VTDMA, selected aerosols of 40 to 300 nm in mobility diameter were heated at elevated temperatures up to 300 °C and the size distributions of the residual particles were measured. Size dependent distributions were observed for both non-volatile and volatile materials (VM). The 40 nm particles were dominated by particles that completely vaporized (CV) at 300 °C, with an average number fraction of about 0.4. Particles larger than 80 nm were dominated by the medium and low volatility (MV and LV, respectively) fractions, with average number fractions of 0.5 and 0.15 respectively. VM did not contribute separately to number fraction but contributed to over 50 % of the total volume fraction for all sizes. In both number and volume fractions, diurnal variation was only observed for the high volatility (HV) group, CV and VM in 40 nm particles, likely because these particles were related to fresh emissions. The little diurnal variation of larger particles could be attributed to non-locally aged aerosols. Closure analysis between the residual mass of LV + MV and mass of EC or EC+OC2-4 (sum of EC, OC2, OC3, and OC4 of the OC/EC Analyzer) suggests that non-volatile materials measured by the VTDMA likely contain less volatile OC.

  5. A Modeling Study of the Effects of Direct Radiative Forcing Due to Carbonaceous Aerosol on the Climate in East Asia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; WANG Zhili; GUO Pinwen; WANG Zaizhi

    2009-01-01

    The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.

  6. High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries

    International Nuclear Information System (INIS)

    Carbonaceous materials have been obtained by the pyrolysis of coconut shells at 800 and 900 deg. C with pore forming substances such as KOH and ZnCl2. The prepared carbons were subjected to XRD, SEM, BET-surface area and charge-discharge studies. The structure and morphology were greatly changed by porogens, which in turn influence the electrochemical properties of the carbonaceous materials. Nanocrystalline tin (Sn) particles were prepared by chemical reduction method. The cycling tests showed that the addition of nanotin with the active material offers a stable cycling behavior. The electrochemical impedance spectra for the Li/C cells have been made and the results are discussed

  7. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis

    Science.gov (United States)

    Breit, G.N.; Wanty, R.B.

    1991-01-01

    Published data relevant to the geochemistry of vanadium were used to evaluate processes and conditions that control vanadium accumulation in carbonaceous rocks. Reduction, adsorption, and complexation of dissolved vanadium favor addition of vanadium to sediments rich in organic carbon. Dissolved vanadate (V(V)) species predominate in oxic seawater and are reduced to vanadyl ion (V(IV)) by organic compounds or H2S. Vanadyl ion readily adsorbs to particle surfaces and is added to the sediment as the particles settle. The large vanadium concentrations of rocks deposited in marine as compared to lacustrine environments are the result of the relatively large amount of vanadium provided by circulating ocean water compared to terrestrial runoff. Vanadium-rich carbonaceous rocks typically have high contents of organically bound sulfur and are stratigraphically associated with phosphate-rich units. A correspondence between vanadium content and organically bound sulfur is consistent with high activities of H2S during sediment deposition. Excess H2S exited the sediment into bottom waters and favored reduction of dissolved V(V) to V(IV) or possibly V(III). The stratigraphic association of vanadiferous and phosphatic rocks reflects temporal and spatial shifts in bottom water chemistry from suboxic (phosphate concentrated) to more reducing (euxinic?) conditions that favor vanadium accumulation. During diagenesis some vanadium-organic complexes migrate with petroleum out of carbonaceous rocks, but significant amounts of vanadium are retained in refractory organic matter or clay minerals. As carbon in the rock evolves toward graphite during metamorphism, vanadium is incorporated into silicate minerals. ?? 1991.

  8. Extraterrestrial Amino Acids Identified in Metal-Rich CH and CB Carbonaceous Chondrites from Antarctica

    Science.gov (United States)

    Burton, Aaron S.; Elsila, Jamie E.; Hein, Jason E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondritesbut are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment(PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675(CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratiomass spectrometry. The (delta D, delta C-13, delta N-15) ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (1316 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.22 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of beta-, gamma-, and delta-amino acids compared to the corresponding alpha-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites.

  9. Microfossils, biomolecules and biominerals in carbonaceous meteorites: implications to the origin of life

    Science.gov (United States)

    Hoover, Richard B.

    2012-11-01

    Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) investigations have shown that a wide variety of carbonaceous meteorites contain the remains of large filaments embedded within freshly fractured interior surfaces of the meteorite rock matrix. The filaments occur singly or in dense assemblages and mats and are often encased within carbon-rich, electron transparent sheaths. Electron Dispersive X-ray Spectroscopy (EDS) spot analysis and 2D X-Ray maps indicate the filaments rarely have detectable nitrogen levels and exhibit elemental compositions consistent with that interpretation that of the meteorite rock matrix. Many of the meteorite filaments are exceptionally well-preserved and show evidence of cells, cell-wall constrictions and specialized cells and processes for reproduction, nitrogen fixation, attachment and motility. Morphological and morphometric analyses permit many of the filaments to be associated with morphotypes of known genera and species of known filamentous trichomic prokaryotes (cyanobacteria and sulfur bacteria). The presence in carbonaceous meteorites of diagenetic breakdown products of chlorophyll (pristane and phytane) along with indigenous and extraterrestrial chiral protein amino acids, nucleobases and other life-critical biomolecules provides strong support to the hypothesis that these filaments represent the remains of cyanobacteria and other microorganisms that grew on the meteorite parent body. The absence of other life-critical biomolecules in the meteorites and the lack of detectable levels of nitrogen indicate the filaments died long ago and can not possibly represent modern microbial contaminants that entered the stones after they arrived on Earth. This paper presents new evidence for microfossils, biomolecules and biominerals in carbonaceous meteorites and considers the implications to some of the major hypotheses for the Origin of Life.

  10. Calculations of the mass absorption cross sections for carbonaceous nanoparticles modeling soot

    International Nuclear Information System (INIS)

    In this paper we use an atomistic model to calculate the mass specific absorption cross section coefficient (MAC) of carbonaceous particles of nanometer size. The carbonaceous particles are built numerically to reproduce most of the structural characteristics of typical primary nanoparticles that are agglomerated in soot emitted in the Troposphere from combustion sources. Our model is based on the knowledge of the atomic positions and polarizabilities inside the primary nanoparticles and is used to study the influence of these atomistic characteristics on the optical properties of these nanoparticles. The results indicate that the atomistic composition of the soot primary nanoparticles may have a sufficiently strong impact on the mass specific absorption cross section coefficient curves to allow detection of differences between nanoparticles by using UV–visible spectroscopic measurements, in a well-suited wavelength range, i.e., typically between 200 and 350 nm. In a more general way, our calculations show that MAC values as well as differences between MAC curves corresponding to different primary nanoparticles may strongly vary with wavelength. As a consequence, measurements at a given wavelength only are certainly not representative of the absorption properties of these nanoparticles and thus should be considered with caution. Moreover, our approach clearly shows significant differences with classical macroscopic electromagnetic theory when calculating the optical properties of realistic primary soot nanoparticles that, in fact, cannot be considered as homogeneous spherical particles due to the presence of defects in their atomistic structure. - Highlights: • We calculate the MAC curves of carbonaceous particles. • Relation between atomistic characteristics and MAC curves is characterized. • We show that MAC curves depend on the atomistic composition of the nanoparticles • Difference between nanoparticles may be characterized by spectroscopic

  11. Carbon isotope analysis of carbonaceous compounds in Puget Sound and Lake Washington

    International Nuclear Information System (INIS)

    A new method has been developed and tested for determining chronological profiles of organic pollutants. This method, Carbon Isotope Analysis (CIA), involves measurements of 12C, 13C and 14C in carbonaceous compounds found in layers of sediment. Lipids, total aliphatic hydrocarbons (TAHs) and polycyclic aromatic hydrocarbons (PAHs) are separated from kg quantities of sediment. Large Soxhlet extractors are used to remove the extractable organics, using ultra-pure benzene-methanol solution and having an extraction efficiency of about 86% for compounds with boiling points higher than n-tetradecane (n-C14). The basic steps in compound separation include freeze-drying, extraction, fractionation, column chromatography and evaporation. Isolating the TAH and PAH fractions is accomplished by eluting samples from Sephadex and alumina/silica-gel columns. The amount of each fraction recovered is determined by converting the hydrocarbons to carbon dioxide and measuring this gas manometrically. Variations in 12C and 13C abundances for carbonaceous compounds are primarily due to thermodynamic, photosynthetic and metabolic fractionation processes. Thus, the source of a particular organic compound can often be determined by measuring its 13C/12C ratio. Combining the information from both the 13C analysis and 14C analysis makes source identification more certain. In addition, this investigation reviews carbon isotopic data and carbon cycling and analyzes organic pollution in two limited ecosystems (Puget Sound and Lake Washington). Specifically, distinct carbonaceous species are analyzed for pollution in sediments of Lake Washington, Elliott Bay, Commencement Bay, central Puget Sound and northern Puget Sound near the Cherry Point oil refineries

  12. Radiocarbon (14C) source apportionment of carbonaceous aerosol components in the Asian Atmospheric Brown Cloud

    International Nuclear Information System (INIS)

    Full text: Light-absorbing carbonaceous matter constitutes one of the largest uncertainties in climate modeling. The high concentrations of black carbon - soot - in the Asian Brown Cloud lead to strong atmospheric heating and large surface cooling that is as important to regional climate forcing as greenhouse gases, yet the sources of these aerosols are not well understood. Emission inventory models suggest that biofuel/biomass burning accounts for 60 - 90 % of the sources of these aerosol components whereas measurements of the elemental composition of ambient aerosols compared with source signatures point to combustion of fossil fuel as the primary culprit. However, both approaches acknowledge large uncertainties in source apportionment of the elusively defined black carbon. This study approached the sourcing challenge by applying microscale radiocarbon measurements to aerosol particles collected during the winter monsoon both over the Indian Ocean and in central India. The radiocarbon approach is ideally suited to this task as fossil sources are void of 14C whereas biomass combustion products hold a contemporary 14C signal. High-volume air samples of total carbonaceous aerosols revealed 14C signals that were similar for N. Indian source and Indian Ocean receptor regions, consistent with the absence of any significant formation of secondary organic aerosols, with a 60 - 70 % contribution from biomass combustion and biogenic sources. Isolates of elemental or soot carbon fractions varied between 40 - 70 %, depending on isolation method. These novel radiocarbon constraints on the sources of light-absorbing carbonaceous matter aid prioritizing of what combustion processes to target for emission mitigations of these health-afflicting and climate-forcing aerosols in the South Asian region. (author)

  13. Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China

    International Nuclear Information System (INIS)

    PM2.5 samples were collected in Sanya, China in summer and winter in 2012/2013. Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (n-C14-n-C40) and polycyclic aromatic hydrocarbons (PAHs) were quantified. The concentrations of these carbonaceous matters were generally higher in winter than summer. The estimated secondary organic carbon (OCsec) accounted for 38% and 54% of the total organic carbon (TOC) in winter and summer, respectively. The higher value of OCsec in addition to the presences of photochemically-produced PAHs in summer supports that photochemical conversions of organics are much active at the higher air temperatures and with stronger intense solar radiation. Carbon preference index (CPI) and percent contribution of wax n-alkanes suggest that anthropogenic sources were more dominant than derivation from terrestrial plants in Sanya. Diagnostic ratios of atmospheric PAHs further indicate that there was a wide mix of pollution sources in winter while fossil fuel combustion was the most dominant in summer. Positive Matrix Factorization (PMF) analysis with 18 PAHs in the winter samples found that motor vehicle emissions and biomass burning were the two main pollution sources, contributing 37.5% and 24.6% of the total quantified PAHs, respectively. - Highlights: • The first comprehensive study to investigate carbonaceous PM2.5 in Sanya, China • Higher carbonaceous levels in winter while more SOC formation in summer • Anthropogenic emission is the dominant sources of n-alkanes • Vehicle emission and biomass burning contributed ≥60% of the total PAHs in winter • The result supports better air quality in Sanya than most megacities in China

  14. Delivery of Organic Material and Water through Asteroid Impacts

    NARCIS (Netherlands)

    Mueller, Michael; Frantseva, Kateryna; van der Tak, Floris; Helmich, Frank P.

    2014-01-01

    Meteorites, specifically carbonaceous chondrites, are frequently invoked as the primary source of Earth's water and organic materials, crucial ingredients for the formation of life. We have started developing a dynamical model of the delivery of their parent bodies, primitive low-albedo asteroids, f

  15. Carbon offers advantages as implant material in human body

    Science.gov (United States)

    Benson, J.

    1969-01-01

    Because of such characteristics as high strength and long-term biocompatability, aerospace carbonaceous materials may be used as surgical implants to correct pathological conditions in the body resulting from disease or injury. Examples of possible medical uses include bone replacement, implantation splints and circulatory bypass implants.

  16. Indigenous Carbonaceous Phases Embedded Within Surface Deposits on Apollo 17 Volcanic Glass Beads

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S. J.; Ross, D. K.; Le, L.; McKay, D. S.; Gibson, E. K.; Gonzalez, C.

    2012-01-01

    The assessment of indigenous organic matter in returned lunar samples was one of the primary scientific goals of the Apollo program. Prior studies of Apollo samples have shown the total amount of organic matter to be in the range of approx 50 to 250 ppm. Low concentrations of lunar organics may be a consequence not only of its paucity but also its heterogeneous distribution. Several processes should have contributed to the lunar organic inventory including exogenous carbonaceous accretion from meteoroids and interplanetary dust particles, and endogenous synthesis driven by early planetary volcanism and cosmic and solar radiation.

  17. Studying properties of carbonaceous reducers and process of forming primary titanium slags

    Directory of Open Access Journals (Sweden)

    T. K. Balgabekov

    2014-10-01

    Full Text Available When smelting a rich titanium slag the most suitable are low-ash reducers, and the studies revealed the suitability for this purpose of special coke and coal. An important property of a reducer is its specific resistance. Therefore there were carried out studies for measuring electric resistance of briquettes consisting of ilmenite concentrate and different carbonaceous reducers. It is recommended to jointly smelt the briquetted and powdered burden (the amount of the powdered burden varies form 20 tо 50 %, this leads to the increase of technical-economic indicators of the process.

  18. Carbonaceous aerosol over semi-arid region of western India: Heterogeneity in sources and characteristics

    Science.gov (United States)

    Sudheer, A. K.; Aslam, M. Y.; Upadhyay, M.; Rengarajan, R.; Bhushan, R.; Rathore, J. S.; Singh, S. K.; Kumar, S.

    2016-09-01

    Carbonaceous species (elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC)) and water-soluble inorganic species (Na+, NH4+, K+, Ca2 +, Mg2 +, Cl-, NO3-, SO42 -) in PM10 and PM2.5 from Ahmedabad and Jodhpur (urban and semi-urban locations, respectively) in western India were measured during May-September, 2011. Stable isotope composition of carbonaceous aerosol (δ13C of TC) in PM10 samples was also determined. Average EC concentration in PM10 at Ahmedabad was 1 μg m- 3 (range: 0.34 to 3.4 μg m- 3), almost 80% of which remained in PM2.5. Similarly, 70% of EC in PM10 (average: 0.9 μg m- 3) resided in PM2.5 at Jodhpur. Average OC concentration at Ahmedabad was 6.4 μg m- 3 and ~ 52% of this was found in PM2.5. On the contrary, OC concentration at Jodhpur was 40 μg m- 3, 80% of which was found in coarse particles contributing substantially to aerosol mass. δ13C of TC (average: - 27.5‰, range: - 29.6 to - 25.8‰) along with WSOC/EC ratio shows an increasing trend at Jodhpur suggesting the possibility of aging of aerosol, since aging results in enrichment of heavier isotope. OC and WSOC show significant correlations with K+ and not with EC, indicating biogenic origin of OC. Different size distributions are also exhibited by WSOC at the two stations. On the other hand, δ13C exhibits an inverse trend with sea-salt constituents at Ahmedabad, indicating the influence of air masses transported from the western/south-western region on carbonaceous aerosol. These results suggest that a strong heterogeneity exists in the sources of carbonaceous aerosol over this region and potential sources of non-combustion emissions such as bio-aerosol that need further investigation.

  19. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    International Nuclear Information System (INIS)

    Particulate matter (PM2.5) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO42− and NO3−) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO42− and NO3−). Furthermore, continuous (online) measurements of PM2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM2.5 (online) range from 18.2 to 500.6 μg m−3 (annual mean of 124.6 ± 87.9 μg m−3) exhibiting higher night-time (129.4 μg m−3) than daytime (103.8 μg m−3) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO3−and SO42−, which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R2 = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day−1) due to agricultural burning effects during the 2012 post-monsoon season. - Highlights: • Very high PM2.5 (> 200 µg m−3) levels over Delhi during agricultural

  20. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, D.S. [Indian Institute of Tropical Meteorology, New Delhi (India); Dumka, U.C., E-mail: dumka@aries.res.in [Aryabhatta Research Institute of Observational Sciences, Nainital (India); Kaskaoutis, D.G. [School of Natural Sciences, Shiv Nadar University, Tehsil Dadri (India); Pipal, A.S. [Department of Chemistry, Savitribai Phule Pune University, Pune (India); Srivastava, A.K. [Indian Institute of Tropical Meteorology, New Delhi (India); Soni, V.K.; Attri, S.D.; Sateesh, M. [India Meteorology Department, Lodhi Road, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology, New Delhi (India)

    2015-07-15

    Particulate matter (PM{sub 2.5}) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM{sub 2.5} samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}). Furthermore, continuous (online) measurements of PM{sub 2.5} (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM{sub 2.5} (online) range from 18.2 to 500.6 μg m{sup −3} (annual mean of 124.6 ± 87.9 μg m{sup −3}) exhibiting higher night-time (129.4 μg m{sup −3}) than daytime (103.8 μg m{sup −3}) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO{sub 3}{sup −}and SO{sub 4}{sup 2−}, which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R{sup 2} = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day{sup −1}) due to agricultural burning effects

  1. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    OpenAIRE

    Tong-Chao Su; Zhen Fang; Fan Zhang; Jia Luo; Xing-Kang Li

    2015-01-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g−1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg−1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% und...

  2. Synthesis and photocatalytic activity of Eu{sup 3+}-doped nanoparticulate TiO{sub 2} sols and thermal stability of the resulting xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Borlaf, Mario; Moreno, Rodrigo [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, CSIC, C/Kelsen 5, 28049 Madrid (Spain); Ortiz, Angel L. [Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Avda. de Elvas S/N, 06006 Badajoz (Spain); Colomer, María T., E-mail: tcolomer@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, CSIC, C/Kelsen 5, 28049 Madrid (Spain)

    2014-03-01

    The synthesis of nanoparticulate TiO{sub 2} sols without and with Eu{sup 3+} doping (1, 2, or 3 mol%) by the colloidal sol–gel method in aqueous media was investigated, with emphasis on the effect of the Eu{sup 3+} doping on the peptization time and rheological properties of the sols. It was found that the addition of Eu{sup 3+} increasingly retards the peptization process, and also results in sols with greater aggregate sizes which are therefore more viscous, although in all cases the distributions of aggregate sizes are unimodal and the flow behavior is Newtonian. The shifting of the isoelectric point of the sols toward greater pH with increasing Eu{sup 3+} doping indicates that the aforementioned trends are due to the chemical adsorption of europium ionic complexes in the form of solvated species. Furthermore, the effect of Eu{sup 3+} doping on the ultraviolet–visible spectrum and photocatalytic activity of the peptized sols was also explored. It was found that the Eu{sup 3+} doping increasingly shifts slightly the absorption edge from the ultraviolet to the visible range, and that its effect on the photocatalytic activity is certainly complex because this is enhanced only if the Eu{sup 3+} cations have some electronic transition (charge transfer transition or transitions between the ground state and the excited states) at the wavelength of the incident radiation, in which case the photocatalytic activity first increases with increasing Eu{sup 3+} content and then decreases perhaps due to occurrence of Eu–Eu interactions or simply to the greater aggregation state. Finally, the influence of the Eu{sup 3+} doping on the thermal stability of the nanoparticulate xerogels resulting from the drying of the peptized sols was also examined by X-ray thermo-diffractometry together with transmission electron microscopy, selected area electron diffractometry, and X-ray energy-dispersive spectrometry. It was found that although the xerogels crystallize all as anatase

  3. Production of activated charcoal beads or green moldnings useful in stationary or fluidized bed uses rotary stirrer(s) for mixing carbonaceous powder with binder

    DEFF Research Database (Denmark)

    2000-01-01

    In the production of activated charcoal beads or green moldings by mixing carbonaceous powder with a binder, mixing is carried out in a stirred vessel with rotary stirrer(s).......In the production of activated charcoal beads or green moldings by mixing carbonaceous powder with a binder, mixing is carried out in a stirred vessel with rotary stirrer(s)....

  4. Performance of a diffusion denuder for the elimination of sampling artifacts for carbonaceous aerosols at three urban and two forested sites in Europe

    Czech Academy of Sciences Publication Activity Database

    Maenhaut, W.; Chi, X.; Viana, M.; Mikuška, Pavel; Večeřa, Zbyněk

    Berkeley, 2008. s. 102. [International Conference on Carbonaceous Particles in the Atmosphere /9./. 12.08.2008-14.08.2008, Berkeley, California] Institutional research plan: CEZ:AV0Z40310501 Keywords : filter sampling artifacts * diffusion denuder * carbonaceous aerosol Subject RIV: CB - Analytical Chemistry, Separation

  5. On the effect of gold nanoparticles loading within carbonaceous macro-mesocellular foams toward lithium-sulfur battery performances

    Science.gov (United States)

    Depardieu, Martin; Demir-Cakan, Rezan; Sanchez, Clément; Birot, Marc; Deleuze, Hervé; Morcrette, Mathieu; Backov, Rénal

    2016-05-01

    Novel carbonaceous monolith foams loaded with gold nanoparticles have been synthesized and thoroughly characterized over several length scale. Their Li-S battery electrode capabilities have been assessed and compared while varying the gold loading and subsequently the specific surface area. Their capacities expressed in either mass (mA h g-1) or volume (mA h cm-3) dimensions have shown that specific surface area and nanoparticles loading are acting in a strong partitioning mode, rather than a cooperative mode, which does not favor the use of gold nanoparticles loading as efficient incremental path toward optimizing porous carbonaceous-based Li-S battery electrodes.

  6. PIXE micro-mapping of minor elements in Hypatia, a diamond bearing carbonaceous stone from the Libyan Desert Glass area, Egypt: Inheritance from a cold molecular cloud?

    Science.gov (United States)

    Andreoli, M. A. G.; Przybylowicz, W. J.; Kramers, J.; Belyanin, G.; Westraadt, J.; Bamford, M.; Mesjasz-Przybylowicz, J.; Venter, A.

    2015-11-01

    Matter originating from space, particularly if it represents rare meteorite samples, is ideally suited to be studied by Particle Induced X-ray Emission (PIXE) as this analytical technique covers a broad range of trace elements and is per se non-destructive. We describe and interpret a set of micro-PIXE elemental maps obtained on two minute (weighing about 25 and 150 mg), highly polished fragments taken from Hypatia, a controversial, diamond-bearing carbonaceous pebble from the SW Egyptian desert. PIXE data show that Hypatia is chemically heterogeneous, with significant amounts of primordial S, Cl, P and at least 10 elements with Z > 21 (Ti, V, Cr, Mn, Fe, Ni, Os, Ir) locally attaining concentrations above 500 ppm. Si, Al, Ca, K, O also occur, but are predominantly confined to cracks and likely represent contamination from the desert environment. Unusual in the stone is poor correlation between elements within the chalcophile (S vs. Cu, Zn) and siderophile (i.e.: Fe vs. Ni, Ir, Os) groups, whereas other siderophiles (Mn, Mo and the Platinum group elements (PGEs)) mimic the distribution of lithophile elements such as Cr and V. Worthy of mention is also the presence of a globular domain (Ø ∼ 120 μm) that is C and metals-depleted, yet Cl (P)-enriched (>3 wt.% and 0.15 wt.% respectively). While the host of the Cl remains undetermined, this chemical unit is enclosed within a broader domain that is similarly C-poor, yet Cr-Ir rich (up to 1.2 and 0.3 wt.% respectively). Our data suggest that the pebble consists of shock-compacted, primitive carbonaceous material enriched in cold, pre-solar dust.

  7. Removal of carbonaceous and nitrogenous pollutants from a synthetic wastewater using a membrane-coupled bioreactor.

    Science.gov (United States)

    Ghosh, Sudeshna; LaPara, Timothy M

    2004-09-01

    Two modified Ludzack-Ettinger (MLE)-type membrane-coupled bioreactors (MBRs) were investigated in this study for the purpose of removing both nitrogenous and carbonaceous pollutants from a synthetic wastewater. During the first MBR experiment, removal efficiencies were high (>90%) for chemical oxygen demand (COD) and ammonia, but total nitrogenous pollutant removal efficiency was poor (approximately 25%). Bacterial community analysis of ammonia oxidizing bacteria (AOB) by a nested PCR-DGGE approach detected two Nitrosomonas-like populations and one Nitrosospira-like population. During the initial portion of the second MBR experiment, COD and ammonia removal efficiencies were similar to the first MBR experiment until the COD of the influent wastewater was increased to provide additional electron donors to support denitrification. Total nitrogen removal efficiencies eventually exceeded 90%, with a hydraulic residence time (HRT) of 24 h and a recirculation ratio of 8. When the HRT of the MBR experiment was decreased to 12 h, however, ammonia removal efficiency was adversely affected. A subsequent increase in the HRT to 18 h helped improve removal efficiencies for both ammonia (>85%) and total nitrogenous compounds (approximately 70%). Our research demonstrates that MBRs can be effectively designed to remove both carbonaceous and nitrogenous pollutants. The ability of the microbial community to switch between anoxic (denitrifying) and oxic (nitrifying) conditions, however, represents a critical process constraint for the application of MLE-type MBR systems, such that little benefit is gained compared to conventional designs. PMID:15338423

  8. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite.

    Science.gov (United States)

    Doyle, Patricia M; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N; Wakita, Shigeru; Ciesla, Fred J; Hutcheon, Ian D

    2015-01-01

    Chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric (53)Mn-(53)Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first (53)Mn-(53)Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as Myr after calcium-aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and (53)Mn-(53)Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ∼1.8-2.5 Myr after CAIs. PMID:26100451

  9. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    Science.gov (United States)

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  10. The interplay between chemistry and nucleation in the formation of carbonaceous dust in supernova ejecta

    CERN Document Server

    Lazzati, Davide

    2015-01-01

    Core-collapse supernovae are considered to be important contributors to the primitive dust enrichment of the interstellar medium in the high-redshift universe. Theoretical models of dust formation in stellar explosions have so far provided controversial results and a generally poor fit to the observations of dust formation in local supernovae. We present a new methodology for the calculation of carbonaceous dust formation in young supernova remnants. Our new technique uses both the nucleation theory and a chemical reaction network to allow us to compute the dust growth beyond the molecular level as well as to consider chemical erosion of the forming grains. We find that carbonaceous dust forms efficiently in the core of the ejecta, but takes several years to condensate, longer than previously estimated. It forms unevenly and remains concentrated in the inner part of the remnant. These results support the role of core-collapse supernovae as dust factories and provide new insight on the observations of SN 1987A...

  11. Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves

    Science.gov (United States)

    Shen, Guofeng; Xue, Miao; Chen, Yuanchen; Yang, Chunli; Li, Wei; Shen, Huizhong; Huang, Ye; Zhang, Yanyan; Chen, Han; Zhu, Ying; Wu, Haisuo; Ding, Aijun; Tao, Shu

    2014-06-01

    Uncertainty in the emission factor (EF) usually contributes largely to the overall uncertainty in the emission inventory. In the present study, the locally measured EFs of particulate matter (PM), organic carbon (OC), and elemental carbon (EC) for solid fuels burned in the residential sector are compiled and compared. These fuels are classified into seven sub-groups of anthracite briquette, anthracite chunk, bituminous briquette, bituminous chunk, crop residue, fuel wood log, and brushwood/branches. The EFs of carbonaceous particles for these fuels vary significantly, generally in the order of anthracite (briquette and chunk) briquette and chunk), with an exception that the brushwood/branches have a relatively high EF of EC. The ratio of EC/OC varies significantly among different fuels, and is generally higher for biomass fuel than that for coal because of the intense flaming conditions formed during the biomass burning process in improved stoves. Distinct ratios calls for a future study on the potential health and climate impacts of carbonaceous PM from the residential combustions of different fuels. A narrow classification of these fuels significantly reduces the variations in the EFs of PM, OC, and EC, and the temporal and geographical distributions of the emissions could be better characterized.

  12. Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation

    Institute of Scientific and Technical Information of China (English)

    Yan HUANG; William L. CHAMEIDES; Qian TAN; Robert E. DICKINSON

    2008-01-01

    The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO42-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO42- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO42-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.

  13. Correlating Mineralogy and Amino Acid Contents of Milligram-Scale Murchison Carbonaceous Chondrite Samples

    Science.gov (United States)

    Burton, Aaron, S.; Berger, Eve L.; Locke, Darren R.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2015-01-01

    Amino acids, the building blocks of proteins, have been found to be indigenous in most of the carbonaceous chondrite groups. The abundances of amino acids, as well as their structural, enantiomeric and isotopic compositions differ significantly among meteorites of different groups and petrologic types. This suggests that there is a link between parent-body conditions, mineralogy and the synthesis and preservation of amino acids (and likely other organic molecules). However, elucidating specific causes for the observed differences in amino acid composition has proven extremely challenging because samples analyzed for amino acids are typically much larger ((is) approximately 100 mg powders) than the scale at which meteorite heterogeneity is observed (sub mm-scale differences, (is) approximately 1-mg or smaller samples). Thus, the effects of differences in mineralogy on amino acid abundances could not be easily discerned. Recent advances in the sensitivity of instrumentation have made possible the analysis of smaller samples for amino acids, enabling a new approach to investigate the link between mineralogical con-text and amino acid compositions/abundances in meteorites. Through coordinated mineral separation, mineral characterization and highly sensitive amino acid analyses, we have performed preliminary investigations into the relationship between meteorite mineralogy and amino acid composition. By linking amino acid data to mineralogy, we have started to identify amino acid-bearing mineral phases in different carbonaceous meteorites. The methodology and results of analyses performed on the Murchison meteorite are presented here.

  14. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Rios, Andro C.

    2016-06-01

    Biological polymers such as nucleic acids and proteins are constructed of only one—the d or l—of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System’s earliest (˜4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life’s carbohydrate-related biopolymers.

  15. Filamentous Trichomic Prokaryotes in Carbonaceous Meteorites: Indigenous Microfossils, Minerals, or Modern Bio-Contaminants?

    Science.gov (United States)

    Hoover, Richard B.; Rozanov, Alexei Yu.

    2011-01-01

    Large complex filaments have been detected in freshly fractured interior surfaces of a variety of carbonaceous meteorites. Many exhibit the detailed morphological and morphometric characteristics of known filamentous trichomic prokaryotic microorganisms. In this paper we review prior studies of filamentous microstructures encountered in the meteorites along with the elemental compositions and characteristics of the, fibrous evaporite minerals and filamentous cyanobacteria and homologous trichomic sulfur bacteria. The meteorite images and elemental compositions will compared with data obtained with the same instruments for abiotic microstructures and living and fossil microorganisms in order to evaluate the relative merits of the alternate hypotheses that have been advanced to explain the nature and characteristics of the meteorite filaments. The possibiility that the filaments found in the meteorites may be comprise modern bio-contaminants will be evaluated in light of their observed elemental compositions and data by other researchers on the detection of indigenous complex organic biosignatures, and extraterrestrial amino acids and nucleobases found in the Murchison CM2 and the Orgueil CI1 carbonaceous meteorites.

  16. Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai

    Directory of Open Access Journals (Sweden)

    H. Fu

    2011-07-01

    Full Text Available 834 individual aerosol particles were collected during Octoberober and Novemberember 2010 in urban Shanghai, China. Morphologies, compositions and mixing states of carbonaceous aerosols were investigated by transmission electron microscopy (TEM coupled with energy-dispersive X-ray (EDX. Structures of some particles were verified using selected-area electron diffraction (SAED. Among the aerosol particles observed, carbonaceous aerosols were categorized into five types: polymeric organic compound (POC, soot, tar ball, char, and biogenic particle. Based on the detailed TEM-EDX analysis, most of particles were coated with secondary organic aerosols (SOA, which commonly formed through condensation or heterogeneous reactions of precursor gases on pre-existing particles. The internally particles of sulphates, organics and soot were encountered frequently. Such internally mixed particles may be preferentially formed during a stagnated air mass which often occurred during serious pollution events, such as a haze episode on 13 Novemberember. Although relative number counts varied with different species, sulphates (38 %–71 % and soot (11 %–22 % constituted the most dominant species observed in the samples. With an exception of the sample collected during a dust storm on 12 Novemberember, soil-derived particles (68 % were relatively more frequently observed. Of particular interest was the biogenic particles encountered almost as frequently as soot on the sample collected on 13 November (18 % vs. 22 %. The result from air mass back-trajectory analysis indicated that these particles were marine-originated, most likely from the Yellow Sea.

  17. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-01

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS. PMID:25365738

  18. Chemical digestion of low level nuclear solid waste material

    International Nuclear Information System (INIS)

    A method is described for processing low level, light weight, bulky, combustible nuclear solid waste material comprising the steps of reacting said solid waste material with concentrated sulfuric acid at a temperature within the range of 230 deg - 300 deg C and simultaneously, subsequently, or both simultaneously and subsequently contacting said waste with concentrated nitric acid or nitrogen oxides whereby carbonaceous material is oxidized to gaseous byproducts and a low volume residue. (author)

  19. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Seiji, E-mail: takeda@sanken.osaka-u.ac.jp; Kuwauchi, Yasufumi; Yoshida, Hideto

    2015-04-15

    Atomic resolution has been obtained using environmental transmission electron microscopy (ETEM) by installing a spherical aberration corrector (Cs-corrector) on the objective lens. Simultaneously, the technology for controlling the environment around a specimen in ETEM has advanced significantly in the past decade. Quantification methodology has recently been established for deriving relevant experimental data in catalyst materials from substantial and systematic ETEM observation at the atomic scale. With this background, this paper summarizes aspects of the evolutional microscopy technique: necessary conditions for atomic resolution in ETEM; reduction of the scattering of electrons by the medium surrounding a specimen; and an environmental cell for structural imaging of a crystalline specimen. The high spatial resolution of a Cs-corrected ETEM is demonstrated for different observation conditions. After statistical analysis combined with numerical image analysis of ETEM data is briefly described, the recent applications of the Cs-corrected ETEM to catalyst materials are reviewed. For gold nanoparticulate catalysts, the structural information on the reaction sites and adsorption sites are deduced. For Pt nanoparticulate catalysts, ETEM studies elucidate the correlation between the catalytic activity and the morphology of the nanoparticles. These studies also reveal oxidation and reduction on the topmost Pt surface layer at the atomic scale. Finally, current issues and the future perspectives of Cs-corrected ETEM are summarized, including the reproducibility of ETEM observation data, the control of environments, the critical evaluation of electron irradiation effects, the full implementation of transmission electron microscopy technology in ETEM, and the safety issues for an ETEM laboratory. - Highlights: • Advancement of Cs corrected environmental transmission electron microscopy. • Structural determination of catalyst materials in reaction environments.

  20. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector

    International Nuclear Information System (INIS)

    Atomic resolution has been obtained using environmental transmission electron microscopy (ETEM) by installing a spherical aberration corrector (Cs-corrector) on the objective lens. Simultaneously, the technology for controlling the environment around a specimen in ETEM has advanced significantly in the past decade. Quantification methodology has recently been established for deriving relevant experimental data in catalyst materials from substantial and systematic ETEM observation at the atomic scale. With this background, this paper summarizes aspects of the evolutional microscopy technique: necessary conditions for atomic resolution in ETEM; reduction of the scattering of electrons by the medium surrounding a specimen; and an environmental cell for structural imaging of a crystalline specimen. The high spatial resolution of a Cs-corrected ETEM is demonstrated for different observation conditions. After statistical analysis combined with numerical image analysis of ETEM data is briefly described, the recent applications of the Cs-corrected ETEM to catalyst materials are reviewed. For gold nanoparticulate catalysts, the structural information on the reaction sites and adsorption sites are deduced. For Pt nanoparticulate catalysts, ETEM studies elucidate the correlation between the catalytic activity and the morphology of the nanoparticles. These studies also reveal oxidation and reduction on the topmost Pt surface layer at the atomic scale. Finally, current issues and the future perspectives of Cs-corrected ETEM are summarized, including the reproducibility of ETEM observation data, the control of environments, the critical evaluation of electron irradiation effects, the full implementation of transmission electron microscopy technology in ETEM, and the safety issues for an ETEM laboratory. - Highlights: • Advancement of Cs corrected environmental transmission electron microscopy. • Structural determination of catalyst materials in reaction environments.

  1. Toxicity of nanoparticulate and bulk ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} to the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanhua; Wick, Robert L. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Stockbridge Hall, Amherst, MA 01003 (United States)], E-mail: bx@pssci.umass.edu

    2009-04-15

    Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC{sub 50}) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC{sub 50} for ZnO NPs (2.3 mg L{sup -1}) and bulk ZnO was not significantly different, but significantly different between Al{sub 2}O{sub 3} NPs (82 mg L{sup -1}) and bulk Al{sub 2}O{sub 3} (153 mg L{sup -1}), and between TiO{sub 2} NPs (80 mg L{sup -1}) and bulk TiO{sub 2} (136 mg L{sup -1}). Oxide solubility influenced the toxicity of ZnO and Al{sub 2}O{sub 3} NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. - ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans.

  2. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L-1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L-1) and bulk Al2O3 (153 mg L-1), and between TiO2 NPs (80 mg L-1) and bulk TiO2 (136 mg L-1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs. - ZnO, Al2O3 and TiO2 nanoparticles are more toxic than their bulk counterparts to the nematode, Caenorhabditis elegans

  3. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    Science.gov (United States)

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  4. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    Science.gov (United States)

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  5. Intraparticulate speciation analysis of soft nanoparticulate metal complexes. The impact of electric condensation on the binding of Cd(2+)/Pb(2+)/Cu(2+) by humic acids.

    Science.gov (United States)

    Town, Raewyn M; van Leeuwen, Herman P

    2016-04-21

    In aqueous dispersions of soft, charged nanoparticles, the physicochemical conditions prevailing within the particle body generally differ substantially from those in the bulk medium. Accordingly it is necessary to define intrinsic descriptors that appropriately reflect the chemical speciation inside the particle's microenvironment. Herein the speciation of divalent metal ions within the body of negatively charged soft nanoparticulate complexants is elaborated for the example case of humic acid association with Cd(ii), Pb(ii) and Cu(ii). The electrostatic effects are described by a two-state model that accounts for counterion condensation in the intraparticulate double layer shell at the particle/medium interface and Donnan partitioning within the bulk of the particle body. Inner-sphere complex formation is defined by an intrinsic binding constant expressed in terms of local reactant concentrations as controlled by the pertinent electrostatic conditions. For the high particle charge density case (Debye length smaller than charged site separation), three distinct intraparticulate metal species are identified, namely free hydrated ions, electrostatically condensed ions, and inner-sphere metal-humic complexes. For all metal ions studied, the electrostatic contribution to the association of the metal ion with the oppositely charged particle is found to account for a substantial fraction of the total metal bound. PMID:27004844

  6. Derivation of attenuation map for attenuation correction of PET data in the presence of nanoparticulate contrast agents using spectral CT imaging

    International Nuclear Information System (INIS)

    Uptake value in quantitative PET imaging is biased due to the presence of CT contrast agents when using CT-based attenuation correction. Our aim was to examine spectral CT imaging to suppress inaccuracy of 511 keV attenuation map in the presence of multiple nanoparticulate contrast agents. Using a simulation study we examined an image-based K-edge ratio method, in which two images acquired from energy windows located above and below the K-edge energy are divided by one another, to identify the exact location of all contrast agents. Multiple computerized phantom studies were conducted using a variety of NP contrast agents with different concentrations. The performance of the proposed methodology was compared to conventional single-kVp and dual-kVp methods using wide range of contrast agents with varying concentrations. The results demonstrate that both single-kVp and dual-kVp energy mapping approaches produce inaccurate attenuation maps at 511 keV in the presence of multiple simultaneous contrast agents. In contrast, the proposed method is capable of handling multiple simultaneous contrast agents, thus allowing suppression of 511 keV attenuation map inaccuracy. Attenuation map produced by spectral CT clearly outperforms conventional single-kVp and dual-kVp approaches in the generation of accurate attenuation maps in the presence of multiple contrast agents. (author)

  7. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.

    Science.gov (United States)

    Kim, Hak-Hyeon; Lee, Hongshin; Kim, Hyung-Eun; Seo, Jiwon; Hong, Seok Won; Lee, Jeong-Yong; Lee, Changha

    2015-12-01

    The production of reactive oxidants from nanoparticulate zero-valent iron (nZVI) and ferrous ion (Fe(II)) in the presence of oxygen was greatly enhanced by the addition of tetrapolyphosphate (TPP) as an iron-chelating agent. Compared to other ligands, TPP exhibited superior activity in improving the oxidant yields. The nZVI/TPP/O2 and the Fe(II)/TPP/O2 systems showed similar oxidant yields with respect to the iron consumed, indicating that nZVI only serves as a source of Fe(II). The degradation efficacies of selected organic compounds were also similar in the two systems. It appeared that both hydroxyl radical (OH) and ferryl ion (Fe(IV)) are produced, and OH dominates at acidic pH. However, at pH > 6, little occurrence of hydroxylated oxidation products suggests that Fe(IV) is a dominant oxidant. The degradation rates of selected organic compounds by the Fe(II)/TPP/O2 system had two optimum points at pH 6 and 9, and these pH-dependent trends are likely attributed to the speciation of Fe(IV) with different reactivities. PMID:26093796

  8. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    Science.gov (United States)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  9. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    International Nuclear Information System (INIS)

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  10. Seasonal variation of urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta, China

    Science.gov (United States)

    Li, Bing; Zhang, Jie; Zhao, Yu; Yuan, Siyu; Zhao, Qiuyue; Shen, Guofeng; Wu, Haisuo

    2015-04-01

    The Yangtze River Delta (YRD) is one of the regions with the most dynamic economy and severe atmospheric pollution in China. In order to characterize the particle features, especially the carbonaceous component in the YRD, particulate matter smaller than 2.5 μm (PM2.5) and 10 μm (PM10) samples in each season were collected in urban Nanjing, a typical city that locates in the west part of the YRD. The organic carbon (OC) and elemental carbon (EC) was differentiated using the thermal optical reflectance method. The average concentrations of PM2.5, OC and EC during the study periods were observed to be 117.6, 13.8, and 5.3 μg/m3 respectively, with all the highest levels in winter. The mass fraction of the Total carbonaceous aerosol (TCA) in PM2.5 was estimated at 23% on average, lower than those reported for other cities in the YRD. The OC and EC correlated well in all the seasons, especially in spring and winter, implying that OC and EC were attributed to common emission sources. Good correlation was observed between OC and estimated K+ from biomass burning in the harvest season in autumn and summer, indicating biomass burning a significant source of carbonaceous aerosols. This could also be confirmed by the lower fraction of OC3 + OC4 in OC during autumn and summer. The secondary organic carbon (SOC) estimated by EC-tracer method was the highest in winter (7.3 μg/m3) followed by autumn (6.7 μg/m3), summer (3.7 μg/m3) and spring (2.0 μg/m3). However, the SOC/OC in winter was not as high as that in summer and autumn, implying the high concentration of OC in winter was probably due to the stable weather but not mainly caused by SOC formation. The high SOC/OC ratio in summer was attributed to stronger oxidation, which could be suggested by higher sulfur oxidation ratio (SOR).

  11. What Are Space Exposure Histories Telling Us about CM Carbonaceous Chondrites?

    Science.gov (United States)

    Takenouchi, A.; Zolensky, Michael E.; Nishiizumi, K.; Caffee, M.; Velbel, M. A.; Ross, K.; Zolensky, P.; Le, L.; Imae, N.; Yamaguchi, A.; Mikouchi, T.

    2013-01-01

    Chondrites are chemically primitive and carbonaceous (C) chondrites are potentially the most primitive among them because they mostly escaped thermal metamor-phism that affected the other chondrite groups and ratios of their major, non-volatile and most of the volatile elements are similar to those of the Sun. Therefore, C chondrites are ex-pected to retain a good record of the origin and early history of the solar system. Carbonaceous chondrites are chemically differentiated from other chondrites by their high Mg/Si ratios and refractory elements, and have experienced various degrees of aqueous alteration. They are subdivided into eight subgroups (CI, CM, CO, CV, CK, CR, CB and CH) based on major element and oxygen isotopic ratios. Their elemental ratios spread over a wide range though those of ordinary and enstatite chondrites are relatively uniform. It is critical to know how many sepa-rate bodies are represented by the C chondrites. In this study, CM chondrites, the most abundant carbona-ceous chondrites, are examined. They are water-rich, chon-drule- and CAI-bearing meteorites and most of them are brec-cias. High-temperature components such as chondrules, iso-lated olivine and CAIs in CMs are frequently altered and some of them are replaced by clay minerals and surrounded by sul-fides whose Fe was derived from mafic silicates. On the basis of degrees of aqueous alteration, CMs have been classified into subtypes from 1 to 2, although Rubin et al. [1] assigned subtype 1 to subtype 2 and subtype 2 to subtype 2.6 using various petrologic properties. The classification is based on petrographic and mineralogic properties. For example, though tochilinite (2[(Fe, Mg, Cu, Ni[])S] 1.57-1.85 [(Mg, Fe, Ni, Al, Ca)(HH)2]) clumps are produced during aqueous alteration, they disappear and sulfide appears with increasing degrees of aqueous alteration. Cosmic-ray exposure (CRE) age measurements of CM chondrites reveal an unusual feature. Though CRE ages of other chondrite

  12. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2011-12-01

    Full Text Available In the present study, natural and anthropogenic sources of particulate organic carbon (OCp and elemental carbon (EC have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm collected at four Nordic rural background sites [Birkenes (Norway, Hyytiälä (Finland, Vavihill (Sweden, Lille Valby, (Denmark] during late summer (5 August–2 September 2009. Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC, have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC was totally dominated by natural sources (69–86%, with biogenic secondary organic aerosol (BSOA being the single most important source (48–57%. Interestingly, primary biological aerosol particles (PBAP were the second most important source (20–32%. The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24%, whereas no more than 3–7% was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, which accounted for 4–12% of TCp, whereas <1.5% of EC was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural

  13. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2011-06-01

    Full Text Available In the present study, natural and anthropogenic sources of particulate organic carbon (OCp and elemental carbon (EC have been quantified based on weekly filter samples of PM10 collected at four Nordic rural background sites (Birkenes (Norway, Hyytiälä (Finland Vavihill (Sweden, Lille Valby (Denmark during late summer (5 August–2 September 2009. Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC, have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS was used to statistically treat the multitude of possible combinations resulting from this approach.

    The carbonaceous aerosol (here: TCp; i.e. particulate TC was totally dominated by natural sources (69–86 %, with biogenic secondary organic aerosol (BSOA being the single most important source (48–57 %. Interestingly, primary biological aerosol particles (PBAP were the second most important source (20–32 %. The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24 %, whereas no more than 3–7 % was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, accounting for 4–12 % of TCp, whereas <1.5 % was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources.

    Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for

  14. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing.

    Science.gov (United States)

    Bisht, D S; Dumka, U C; Kaskaoutis, D G; Pipal, A S; Srivastava, A K; Soni, V K; Attri, S D; Sateesh, M; Tiwari, S

    2015-07-15

    Particulate matter (PM2.5) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO4(2-) and NO3(-)) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO4(2-) and NO3(-)). Furthermore, continuous (online) measurements of PM2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM2.5 (online) range from 18.2 to 500.6μgm(-3) (annual mean of 124.6±87.9μgm(-3)) exhibiting higher night-time (129.4μgm(-3)) than daytime (103.8μgm(-3)) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO3(-)and SO4(2-), which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R(2)=0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~1.8-2.0Kday(-1)) due to agricultural burning effects during the 2012 post-monsoon season. PMID:25864155

  15. Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites

    Science.gov (United States)

    Aponte, José C.; McLain, Hannah L.; Dworkin, Jason P.; Elsila, Jamie E.

    2016-09-01

    Meteoritic water-soluble organic compounds provide a unique record of the processes that occurred during the formation of the solar system and the chemistry preceding the origins of life on Earth. We have investigated the molecular distribution, compound-specific δ13C isotopic ratios and enantiomeric compositions of aliphatic monoamines present in the hot acid-water extracts of the carbonaceous chondrites LAP 02342 (CR2), GRA 95229 (CR2), LON 94101 (CM2), LEW 90500 (CM2), and ALH 83100 (CM1/2). Analyses of the concentration of monoamines in these meteorites revealed: (a) the CR2 chondrites studied here contain higher concentrations of monoamines relative to the analyzed CM2 chondrites; (b) the concentration of monoamines decreases with increasing carbon number; and (c) isopropylamine is the most abundant monoamine in these CR2 chondrites, while methylamine is the most abundant amine species in these CM2 and CM1/2 chondrites. The δ13C values of monoamines in CR2 chondrite do not correlate with the number of carbon atoms; however, in CM2 and CM1/2 chondrites, the 13C enrichment decreases with increasing monoamine carbon number. The δ13C values of methylamine in CR2 chondrites ranged from -1 to +10‰, while in CM2 and CM1/2 chondrites the δ13C values of methylamine ranged from +41 to +59‰. We also observed racemic compositions of sec-butylamine, 3-methyl-2-butylamine, and sec-pentylamine in the studied carbonaceous chondrites. Additionally, we compared the abundance and δ13C isotopic composition of monoamines to those of their structurally related amino acids. We found that monoamines are less abundant than amino acids in CR2 chondrites, with the opposite being true in CM2 and CM1/2 chondrites. We used these collective data to evaluate different primordial synthetic pathways for monoamines in carbonaceous chondrites and to understand the potential common origins these molecules may share with meteoritic amino acids.

  16. Characteristics of carbonaceous aerosols at a pair of suburban and downtown sites in Nanjing, China

    Science.gov (United States)

    Cui, H.; Zhang, J.; Zhao, Y.

    2014-12-01

    Carbonaceous species in PM2.5 were measured in three seasons (except winter) in downtown and around a year in suburban in Nanjing. In particular, the OC and EC concentrations were continuously measured with 1-h interval at both sites. The mean concentrations of PM2.5, OC, EC were 85.9 μg/m3, 10.4 μg/m3, 4.2 μg/m3 and 63.4 μg/m3, 8.1 μg/m3, 5.3μg/m3 for downtown and suburban respectively. At the suburban site, compared to the lowest average concentration in spring, the relatively higher concentration of carbonaceous aerosol in summer was caused by biomass-burning activities. Significant increasing peaks of OC (up to 122.9 ug/m3) and EC (up to 35.8 ug/m3) in suburban were recorded in the June 10th night, and it is indicated using back trajectory that the air mass came through nearby agriculture areas. On the other hand, the OC and EC concentrations during the 2nd AYG (Asian Youth Games, Aug 16th - 24th in 2013) compared to that in rest days in August reduced by 21% and 10%, respectively, attributing to the effective control measures on reduction of industrial point sources, temporary control of motor vehicle and fugitive dusts. Rations of OC/EC in suburban were much lower than that in downtown. This might be due to the fact that the sampling point in suburban is quite close (in 400 meters) to a main highway. Both OC and EC concentrations in suburban were higher in nighttime than daytime, except OC in summer, indicating the existence of strong SOC and supported by high OC/EC and O3 at noon. The annual average SOC estimated by EC-tracer methods occupied 34.5% and 36.7% of the total OC for the downtown and suburban areas, respectively. OC/EC correlations in suburban were much weaker than those from downtown areas, which shows suburban areas is much more affected by long-range transport of pollution and/or complex sources including domestic coal combustion, biomass burning, industrial and transportation, especially in three other seasons except winter, which is

  17. Variations in carbonaceous species at a high-altitude site in western India: Role of synoptic scale transport

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, Ashwini; KirpaRam; Ojha, N.

    Atmospheric fine-mode particulate matter (PM2.5), collected during January to December 2007 at a high-altitude site (Mt. Abu, 24.6°N, 72.7°E, 1680 m asl) in the western India, have been analysed for carbonaceous and inorganic species to assess...

  18. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the Megapoli summer and winter campaigns

    NARCIS (Netherlands)

    Fountoukis, C.; Megaritis, A.G.; Skyllakou, K.; Charalampidis, P.E.; Denier van der Gon, H.A.C.; Crippa, M.; Prevot, A.S.H.; Fachinger, F.; Wiedensohler, A.; Pilinis, C.; Pandis, S.N.

    2016-01-01

    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 x 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol dur-ing a summer (July 2009) and a winter (January/February 2010) period as part of

  19. Effects of day-of-week trends and vehicle types on PM2.5-bounded carbonaceous compositions

    International Nuclear Information System (INIS)

    Carbonaceous compositions of PM2.5 were measured in the heart of Bangkok from 17th November 2010 to 19th January 2012, and a data set of 94 samples was constructed. Effects of day-of-week trends and vehicle types on PM2.5-bound TC, OC, and EC were carefully investigated. In this study, OC was the most important contributor to the total PM2.5 mass concentration. The average PM2.5-bound OC content measured at CHAOS (18.8 ± 9.18 μg m−3) was approximately 11 times higher than at Chaumont, Switzerland (1.7 μg m−3), but approximately five times lower than at Xi'an, China (93.0 μg m−3). The application of diagnostic binary ratios of OC/EC and estimations of secondary organic carbon (SOC) coupled with autocorrelation plots (Box and Jenkins) highlight the enhanced impacts of traffic emissions, especially from diesel vehicles, on PM2.5-bound carbonaceous compositions on weekdays relative to weekends. Hierarchical cluster analysis (HCA) coupled with principal component analysis (PCA) underline the importance of diesel emissions as the primary contributors of carbonaceous aerosols, particularly during weekdays. - Highlights: • Traffic emissions play an important role in governing OC and EC during weekdays. • Time series analysis shows the existence of day-of-week trends of OC and EC. • Diesel vehicles are the main contributors of carbonaceous compositions

  20. Carbonaceous PM2.5 emitted from light-duty vehicles operating on low-level ethanol fuel blends.

    Science.gov (United States)

    This study aims to examine carbonaceous aerosol emissions from three Tier 2-certified 2008 model year LDVs burning e0, e10, and e85 fuel blends at -7°C and 24°C. The LDVs were tested on an electric chasis dynamometer using the LA-92 Urban Driving Cycle (UDC). Exhaust was ...

  1. Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant.

    Science.gov (United States)

    Gong, Yutong; Xie, Lei; Li, Haoran; Wang, Yong

    2014-10-28

    Monodisperse, uniform colloidal carbonaceous spheres were fabricated by the hydrothermal treatment of glucose with the help of a tiny amount of sodium polyacrylate (PAANa). This synthetic strategy is effective at high glucose concentration and for scale-up experiments. The sphere size can be easily tuned by the reaction time, temperature and glucose concentration. PMID:25199065

  2. Hydrogen Production by Thermo-catalytic Decomposition of Natural Gas: Carbonaceous Catalysts

    International Nuclear Information System (INIS)

    TCD of CH4 using different kinds of carbon catalyst, activated carbons (AC) and carbon blacks (CB) have been studied. AC showed an acceptable initial reaction rate but they become rapidly deactivated, while CB with high surface area provided more stable and sustainable hydrogen production. Regeneration of the carbonaceous catalysts after deactivation, using CO2 as activating agent has been studied. A commercial active carbon has been selected for the regeneration tests. The optimum operation conditions for the catalysts regeneration have been studied, attending to the burn off of the catalysts during the regeneration, which is important for the self-consistence of the process, and the recovering in the surface area, which is one of the most important factors affecting the activity of these catalysts. (authors)

  3. Rapid Contamination During Storage of Carbonaceous Chondrites Prepared for Micro FTIR Measurements

    Science.gov (United States)

    Kebukawa, Yoko; Nakashima, Satoru; Otsuka, Takahiro; Nakamura-Messenger, Keiko; Zolensky, ichael E.

    2008-01-01

    The carbonaceous chondrites Tagish Lake and Murchison, which contain abundant hydrous minerals, when pressed on aluminum plates and analyzed by micro FTIR, were found to have been contaminated during brief (24 hours) storage. This contamination occurred when the samples were stored within containers which included silicone rubber, silicone grease or adhesive tape. Long-path gas cell FTIR measurements for silicone rubber revealed the presence of contaminant volatile molecules having 2970 cm(sup -1) (CH3) and 1265 cm(sup -1) (Si-CH3) peaks. These organic contaminants are found to be desorbed by in-situ heating infrared measurements from room temperature to 200-300 C. Careful preparation and storage are therefore needed for precious astronomical samples such as meteorites, IDPs and mission returned samples from comets, asteroids and Mars, if useful for FTIR measurements are to be made.

  4. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    Directory of Open Access Journals (Sweden)

    H. Cui

    2015-03-01

    Full Text Available China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC and elemental carbon (EC and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg to 2012 (2749 Gg and EC by 37% (from 1356 to 1857 Gg. The residential, industrial, and transportation sectors contributed an estimated 76 ± 2, 19 ± 2 and 5 ± 1% of the total emissions of OC, respectively, and 52 ± 3, 32 ± 2 and 16 ± 2% of EC. Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while larger OC/EC and SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher SOC/OC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC/OC is reduced, particularly at

  5. Filaments in Carbonaceous Meteorites: Mineral Crystals, Modern Bio-Contaminants or Indigenous Microfossils of Trichomic Prokaryotes?

    Science.gov (United States)

    Hoover, Richard B.; Borisyak, A. A.

    2011-01-01

    Environmental (ESEM) and Field Emission Scanning Electron Microscopy (FESEM) investigations have resulted in the detection of a large number of complex filaments in a variety of carbonaceous meteorites. Many of the filaments were observed to be clearly embedded the rock matrix of freshly fractured interior surfaces of the meteorites. The high resolution images obtained combined with tilt and rotation of the stage provide 3-dimensional morphological and morphometric data for the filaments. Calibrated Energy Dispersive X-ray Spectroscopy (EDS) and 2-D elemental X-ray maps have provided information on the chemical compositions of the filaments and the minerals of the associated meteorite rock matrix. These observations are used to evaluate diverse hypotheses regarding the possible abiotic or biogenic nature of the filaments found embedded in these meteorites.

  6. Carbon, hydrogen and nitrogen isotopes in solvent-extractable organic matter from carbonaceous chondrites

    Science.gov (United States)

    Becker, R. H.; Epstein, S.

    1982-01-01

    CCl4 and CH3OH solvent extractions were performed on the Murray, Murchison, Orgueil and Renazzo carbonaceous chondrites. Delta-D values of +300-+500% are found in the case of the CH3OH-soluble organic matter. The combined C, H and N isotope data makes it unlikely that the CH3OH-soluble components are derivable from, or simply related to, the insoluble organic polymer found in the same meteorites. A relation between the event that formed hydrous minerals in CI1 and CM2 meteorites and the introduction of water- and methanol-soluble organic compounds is suggested. Organic matter soluble in CCl4 has no N, and delta-C-13 values are lower than for CH3OH-soluble phases. It is concluded that there either are large isotopic fractionations for carbon and hydrogen between different soluble organic phases, or the less polar components are partially of terrestrial origin.

  7. Molecular Composition of Carbonaceous Globules in the Bells (CM2) Chondrite

    Science.gov (United States)

    Clemett, S. J.; Nakamura-Messenger, K.; Thomas-Keprta, K. L.; Robinson, G.-A.; Mckay, D. S.

    2009-01-01

    Some meteorites and IDPs contain micron-size carbonaceous globules that are associated with significant H and/or N isotopic anomalies. This has been interpreted as indicating that such globules may contain at least partial preserved organic species formed in the outer reaches of the proto-solar disk or the presolar cold molecular cloud. Owing to their small sizes, relatively little is known about their chemical compositions. Here we present in situ measurements of aromatic molecular species in organic globules from the Bells (CM2) chondrite by microprobe two-step laser mass spectrometry. This meteorite was chosen for study because we have previously found this meteorite to contain high abundances of globules that often occur in clusters. The Bells (CM2) globules are also noteworthy for having particularly high enrichments in H-2. and N-15. In this study, we identified individual globules and clusters of globules using native UV fluorescence.

  8. Carbowaste: treatment and disposal of irradiated graphite and other carbonaceous waste

    International Nuclear Information System (INIS)

    The European Project on 'Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)' addressed the retrieval, characterization, treatment, reuse and disposal of irradiated graphite with the following main results: - I-graphite waste features significantly depend on the specific manufacture process, on the operational conditions in the nuclear reactor (neutron dose, atmosphere, temperature etc.) and on radiolytic oxidation leading to partial releases of activation products and precursors during operation. - The neutron activation process generates significant recoil energies breaking pre-existing chemical bonds resulting in dislocations of activation products and new chemical compounds. - Most activation products exist in different chemical forms and at different locations. - I-graphite can be partly purified by thermal and chemical treatment processes leaving more leach-resistant waste products. - Leach tests and preliminary performance analyses show that i-graphite can be safely disposed of in a wide range of disposal systems, after appropriate treatment and/or conditioning. (authors)

  9. The investigation of the matrix structure of ceramic brick made from carbonaceous mudstone tailings

    Science.gov (United States)

    Stolboushkin, A.; Fomina, O.; Fomin, A.

    2016-04-01

    The study of the matrix structure of ceramic brick made from carbonaceous mudstone tailings of Korkinsky coal opened pit mine is presented in the current paper. This study includes a thin sections analysis by the polarizing microscope, X-ray, SEM and infrared spectra investigations. It has been discovered that processes of solid- and liquid-phase sintering with the formation of new mineral phases occur inside and on the surfaces of granules during firing. It is shown that a liquid phase is formed in the matrix. It fills inter-grain gaps and connects mineral particles between themselves. It has been found that the advanced physical and mechanical properties of ceramic bricks obtained by creation of the matrix ceramic crock structure, intensive forming of a glass phase on the boundary of the section medium of ceramic composite and temperature reduction of the processes of solid-phase sintering.

  10. 2002 materials report; Rapport materiaux 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This report is the very first devoted to the researches carried out in all centres of the French atomic energy commission (CEA) in the domain of materials. Each material, technology or process is presented with some explanations. The report is divided in three chapters dealing with: 1 - the nano-materials and the engineering of surfaces: surface functionalization (new coatings for cutting tools, new CVD process for the deposition of carbon nano-tubes, nano-structured metallic films, polymerization by gaseous phase deposition, electro-chromium systems, functional coatings by sol-gel process, sol-gel processing of optical fibers, modeling of the plasma projection process); nano-particulates and emerging materials (synthesis of SiCN nano-particulates by laser pyrolysis, hot-forming of Si/C/N/O nano-metric powders by isostatic compression, synthesis of aligned carbon nano-tubes by pyrolysis of mixed aerosols, elaboration and characterization of new oxide-type materials in supercritical CO{sub 2} phase, fluorescent semiconductor nano-crystals for labelling, fibrillary proteins and their behaviour at interfaces); 2 - materials engineering and numerical materials (simulation of the welding process by YAG laser pulses, welded joints reliability, control of precipitation microstructures by the addition of nucleating agents, optimization of pressing cycles for the forming of industrial parts by matrix compaction, mechanical and thermal pre-dimensioning of thermo-structural composites, modeling of the behaviour of thermo-structural composites, joints follow up system for innovative welding control process); joining technologies (feasibility study for the fabrication by diffusion welding of the first wall panels of ITER reactor, welding of spent fuel containers for long lasting storage, electron beam welding of aluminium 6061 and hot cracking risk, hybrid welding technology, heat source model for TIG welding, cladding of the amplifying plates of the Megajoule laser facility

  11. Emission factors of gaseous carbonaceous species from residential combustion of coal and crop residue briquettes

    Institute of Scientific and Technical Information of China (English)

    Qin WANG; Chunmei GENG; Sihua LU; Wentai CHEN; Min SHAO

    2013-01-01

    Experiments were performed to measure the emission factors (EFs) of gaseous carbonaceous species, such as CO2, CO, CH4, and non-methane volatile organic compounds (NMVOCs), from the combustion of five types of coal of varying organic maturity and two types of biomass briquettes under residential burning conditions. Samples were collected in stainless steel canisters and 2,4- dinitrophenylhydrazine (DNPH) cartridges and were analyzed by GC FID/MS and HPLC, respectively. The EFs from crop residue briquette burning were generally higher than those from coals, with the exception of CO2. The dominant NMVOC species identified in coal smoke were carbonyls (41.7%), followed by C2 unsaturated hydrocarbons (29.1%) and aromatics (12.1%), while C2 unsaturated hydrocarbons were the dominant species (68.9%) emitted from the combustion of crop residue briquettes, followed by aromatics (14.4%). A comparison of burning normal crop residues in stoves and the open field indicated that briquettes emitted a larger proportion of ethene and acetylene. Both combustion efficiency and coal organic maturity had a significant impact on NMVOC EFs from burning coal: NMVOC emissions increased with increasing coal organic maturity but decreased as the combustion efficiency improved. Emissions from the combustion of crop residue briquettes from stoves occurred mainly during the smoldering process, with low combustion efficiency. Therefore, an improved stove design to allow higher combustion efficiency would be beneficial for reducing emissions of carbonaceous air pollutants.

  12. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    Science.gov (United States)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles NWO grants Nr. 820.01.001, and 834.08.002).

  13. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia

    Science.gov (United States)

    Fujii, Yusuke; Iriana, Windy; Oda, Masafumi; Puriwigati, Astiti; Tohno, Susumu; Lestari, Puji; Mizohata, Akira; Huboyo, Haryono Setiyo

    2014-04-01

    Biomass burning is a significant source of fine particulate matter (PM2.5). Forest, bush, and peat fires in Kalimantan and Sumatra, Indonesia are major sources of transboundary haze pollution in Southeast Asia. However, limited data exist regarding the chemical characteristics of aerosols at sources. We conducted intensive field studies in Riau Province, Sumatra, Indonesia, during the peatland fire and non-burning seasons in 2012. We characterized PM2.5 carbonaceous aerosols emitted from peatland fire based on ground-based source-dominated sampling. PM2.5 aerosols were collected with two mini-volume samplers using Teflon and quartz fiber filters. Background aerosols were also sampled during the transition period between the non-burning and fire seasons. We analyzed the carbonaceous content (organic carbon (OC) and elemental carbon (EC)) by a thermal optical reflectance utilizing the IMPROVE_A protocol and the major organic components of the aerosols by a gas chromatography/mass spectrometry. PM2.5 aerosols emitted from peatland fire were observed in high concentrations of 7120 ± 3620 μg m-3 and were primarily composed of OC (71.0 ± 5.11% of PM2.5 mass). Levoglucosan exhibited the highest total ion current and was present at concentrations of 464 ± 183 μg m-3. The OC/EC ratios (36.4 ± 9.08), abundances of eight thermally-derived carbon fractions, OC/Levoglucosan ratios (10.6 ± 1.96), and Levoglucosan/Mannosan ratios (10.6 ± 2.03) represent a signature profile that is inherent in peatland fire. These data will be useful in identifying contributions from single or multiple species in atmospheric aerosol samples collected from peatland fires.

  14. Carbonaceous aerosol determination in Valenzuela City using a thermal-optical technique

    International Nuclear Information System (INIS)

    Carbonaceous aerosol, broadly classified into organic carbon (OC) and elemental carbon (EC), are atmospheric particulates known to have significant effects to health, climate and visibility. Concentrations of organic carbon and elemental carbon in the PM2.5 range were measured for Valenzuela City, Metro Manila (Philippines) from September 2011 to August 2012. The method employed was thermal-optical reflectance (TOR) following the IMPROVEA protocol. Results show that OC (8.00 ug/m3) and EC (6.63 ug/m3) contributed 21.0% and 17.4%, respectively to the whole PM2.5 mass. Carbonaceous aerosol in total, therefore, accounted for about 38.4% of the total fine particulate matter. Compared to cities of neighboring countries in Asia, the OC level of Valenzuela City is generally intermediate while EC levels are higher than the most, resulting in one of the lowest OC/EC ratios in the region of about 1.21. This suggests minimal secondary organic aerosol formation and the dominance of combustion sources which are probably less efficient (e.g. greater diesel and two-stroke engine contribution) compared to that of the other countries. Time series comparison of EC with black carbon (BC) levels obtained through reflectometry, a method currently used for monitoring in the country, also shows a generally good agreement between the two methods. There are specific days however, that obtained values are far from each other, lowering the correlation of the two parameters (r2 = 0.33). This is likely due to the presence of other light-absorbing particulates other than EC. Further efforts are necessary to better understand the relationship between these quantities and the cause of deviations. (author)

  15. Carbonaceous aerosols in megacity Xi'an, China: Implications of thermal/optical protocols comparison

    Science.gov (United States)

    Han, Y. M.; Chen, L.-W. A.; Huang, R.-J.; Chow, J. C.; Watson, J. G.; Ni, H. Y.; Liu, S. X.; Fung, K. K.; Shen, Z. X.; Wei, C.; Wang, Q. Y.; Tian, J.; Zhao, Z. Z.; Prévôt, André S. H.; Cao, J. J.

    2016-05-01

    Carbonaceous aerosol is an important component that influences the environment, climate, and human health. Organic and elemental carbon (OC and EC) are the two main constituents of carbonaceous aerosols that have opposite, i.e., cooling versus warming, effects on the Earth's radiation balance. Knowledge on the variability of OC/EC splits measured by different thermal/optical protocols is useful for understanding the uncertainty in the climate models. This study shows good correlations within OC or EC (r2 > 0.83, P < 0.001) across the IMPROVE, IMPROVE_A, and EUSAAR_2 protocols for both ambient aerosol samples and biomass burning samples. However, EC concentrations differ by more than two folds, and OC/EC ratios differ up to a factor of 2.7. The discrepancies were attributed to the selection between the reflectance and transmittance corrections and the different peak inert-atmosphere temperature. The IMPROVE and IMPROVE_A protocols also quantified different char and soot concentrations, two subtypes of EC with distinct chemical and optical properties. Char, but not soot, was found to correlate with the humic-like substances (HULIS) content in the samples, suggesting that both char and HULIS originate mainly from biomass burning. A one-year (2012-2013) ambient aerosol monitoring in Xi'an, China, shows that OC, EC, and char displayed winter highs and summer lows, while soot had no seasonal trend. The char/soot ratios showed a "single peak" in winter, while OC/EC ratios exhibited "dual peak" feature due to the influence of secondary organic aerosol formation. In addition to commonly measured OC and EC, we recommend both char and soot from a common reference method to be considered in the chemical transport and climate models.

  16. Coating of calcium phosphate on biometallic materials by electrophoretic deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    Although biometallic materials have been used as bone implant materials for a long time, they are still detected as foreign bodies by human immune system. Calcium phosphate coating, especially hydroxyapatite(HA)coating attracts special attention due to its good biocompatibility. Being one of the effective methods used to deposit HA coating onto the metallic implant, the electrophoretic deposition(EPD) was reviewed in detail, including the process of EPD, the advantages and disadvantages, the important processing factors and the microstructure and mechanical properties of the coating. Research results on the processing and the coating show potential application of EPD process to the biomedical materials surface modification. In addition, the nanoparticulate HA coating as a new trend in HA coating was also introduced.

  17. Synthesis and characterization of nano-structured CoSb3 thermoelectric material

    OpenAIRE

    Khan, Abdullah

    2009-01-01

    In this project, nano powder of CoSb3 thermoelectric material was synthesized using chemical alloying novel co-precipitation method. This method involved co-precipitation of TE precursor compounds in controlled pH aqueous solutions followed by thermo-chemical treatments including calcination and reduction to produce nano-particulates of CoSb3. The nano powder was consolidated using rapid solid state spark plasma sintering (SPS) and the processing time was of the order of few minutes. On a res...

  18. A model for treating avian aspergillosis: serum and lung tissue kinetics for Japanese quail (Coturnix japonica) following single and multiple aerosol exposures of a nanoparticulate itraconazole suspension.

    Science.gov (United States)

    Rundfeldt, Chris; Wyska, Elżbieta; Steckel, Hartwig; Witkowski, Andrzej; Jeżewska-Witkowska, Grażyna; Wlaź, Piotr

    2013-11-01

    Aspergillosis is frequently reported in parrots, falcons and other birds held in captivity. Inhalation is the main route of infection for Aspergillus fumigatus, resulting in both acute and chronic disease conditions. Itraconazole (ITRA) is an antifungal commonly used in birds, but administration requires repeated oral dosing and the safety margin is narrow. We describe lung tissue and serum pharmacokinetics of a nanoparticulate ITRA suspension administered to Japanese quail by aerosol exposure. Aerosolized ITRA (1 and 10% suspension) administered over 30 min did not induce adverse clinical reactions in quail upon single or 5-day repeated doses. High lung concentrations, well above the inhibitory levels for A. fumigatus, of 4.14 ± 0.19 μg/g and 27.5 ± 4.58 μg/g (mean ± SEM, n = 3), were achieved following single-dose inhalation of 1% and 10% suspension, respectively. Upon multiple dose administration of 10% suspension, mean lung concentrations reached 104.9 ± 10.1 μg/g. Drug clearance from the lungs was slow with terminal half-lives of 19.7 h and 35.8 h following inhalation of 1% and 10% suspension, respectively. Data suggest that lung clearance is solubility driven. Lung concentrations of hydroxy-itraconazole reached 1-2% of the ITRA lung tissue concentration indicating metabolism in lung tissue. Steady, but low, serum concentrations of ITRA could be measured after multiple dose administration, reaching less than 0.1% of the lung tissue concentration. This formulation may represent a novel, easy to administer treatment modality for fungal lung infection, preventing high systemic exposure. It may also be useful as metaphylaxis to prevent the outbreak of aspergillosis in colonized animals. PMID:23815436

  19. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.

    Science.gov (United States)

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior. Cu- or Ag-coated polyurethane (PU) catheters led to bacterial inactivation needing about ∼30 min. The accelerated bacterial inactivation by Cu-Ag coated on 3D catheters sputtered was investigated in a detailed way. The release of Cu/Ag ions during bacterial inactivation was followed by inductively coupled plasma mass-spectrometry (ICP-MS) and the amount of Cu and Ag-ions released were below the cytotoxicity levels permitted by the sanitary regulations. By stereomicroscopy the amount of live/dead cells were followed during the bacterial inactivation time. By Fourier transform infrared spectroscopy (FTIR), the systematic shift of the -(CH2) band stretching of the outer lipo-polysaccharide bilayer (LPS) was followed to monitor the changes leading to cell lysis. A hydrophobic to hydrophilic transformation of the Cu-Ag PU catheter surface under light was observed within 30 min followed concomitantly to a longer back transformation to the hydrophobic initial state in the dark. Physical insight is provided for the superior performance of Cu-Ag films compared to Cu or Ag films in view of the drastic acceleration of the bacterial inactivation observed on bimetal Cu-Ag films coating PU catheters. A mechanism of bacterial inactivation is suggested that is consistent with the findings reported in this study. PMID:26699928

  20. High pinning performance of YBa2Cu3O7−x films added with Y2O3 nanoparticulate defects

    International Nuclear Information System (INIS)

    We report the epitaxial growth and superconducting properties of Y2O3-added YBa2Cu3Ox (YBCO) films grown on SrTiO3-buffered MgO substrates by pulsed-laser deposition using surface-modified YBCO targets. Areas of Y2O3 sectors on the YBCO target were increased to 5.44% and 9.22% of the total YBCO pellet in order to find a correlation between the Y2O3 content, morphology, and the pinning properties of YBCO + Y2O3 mixed films. The maximum global pinning forces, FP, at 77 K were 14.3 GN m−3 and 1.15 GN m−3 for the Y2O3 5.44A% and 9.22A%, respectively. The 5.44A% Y2O3-added sample presents a very high value of pinning force at 77 K, approaching the value obtained in YBCO films with added BaZrO3 nanorods, but with less depression in the superconducting critical temperature, Tc. In accordance with scanning transmission electron microscopy (STEM) observations, both films present nanoparticulate Y2O3 dispersed in a YBCO matrix where Y2Ba4Cu8O16 (Y248) intergrowths were also observed. Consistent with the strong pinning theory, the size and distribution of randomly dispersed Y2O3 particles are optimal for the flux pinning of a 5.44A% Y2O3-YBCO film, while in the case of a 9.22A% film, the YBCO matrix is degraded by jam-packed Y248 intergrowth, which leads to a comparatively poor pinning performance. We further used the single-vortex dynamics model to account for vortex pinning in the samples. The 5.44A% Y2O3-YBCO film result shows good agreement with the model fit up to 4 T of the applied magnetic field. (paper)

  1. Dynamique, réactivité et écotoxicité des nanoparticules d’oxydes métalliques dans les sols : impact sur les fonctions et la diversité des communautés microbiennes

    OpenAIRE

    Simonin, Marie

    2015-01-01

    Les nanoparticules métalliques manufacturées (NPs) sont des polluants émergents dont la concentration augmente dans les sols en raison de leur utilisation croissante dans de nombreux produits commerciaux de la vie courante (cosmétiques, aliments, peintures…). Des études in vitro ont montré la toxicité des NPs pour les microorganismes, mais il existe encore peu de données sur l'écotoxicité et le devenir de ces contaminants dans les sols. L'objectif de cette thèse est donc d'évaluer l'influence...

  2. Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite

    OpenAIRE

    Phipps, Matthew C.; Clem, William C.; Catledge, Shane A.; Xu, Yuanyuan; Hennessy, Kristin M.; Thomas, Vinoy; Jablonsky, Michael J.; Chowdhury, Shafiul; Stanishevsky, Andrei V; Vohra, Yogesh K.; Susan L Bellis

    2011-01-01

    The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold form...

  3. Synthesis and characterization of nano structures of Silica SBA-16 containing Gadolinium-159 as potential nanoparticulated system for cancer therapy

    International Nuclear Information System (INIS)

    Cancer is a leading cause of death worldwide, and malignant neoplasms of the lung, stomach, liver, colon and breast in greater numbers. And recently observed in the literature a large number of reviews where new materials, especially nanoparticle, has been studied as drug carriers and radioisotopes applied to cancer treatment. How mesoporous materials based on silica, thanks to its huge surface area and biocompatibility, have been studied intensively providing broad applications in various areas, the use of nanostructured silica SBA-16 might be a carrier specific radioisotope accumulate in the cells malignant. Thus the aim of this study is to develop in vitro studies using SBA-16 can selectively concentrate in malignant cells therapeutic amounts of the radioisotope Gadolinium-159 escorting them to death. This work was performed orderly synthesis of mesoporous silica, SBA-16 and incorporating the complex Gd-DTPA-BMA, as well as chemical and structural characterization. The techniques used to analyze the occurrence of the incorporation of the gadolinium complex in the silica matrix were elemental analysis (CHN), atomic emission spectroscopy (ICP-AES), infrared spectroscopy (FTIR), nitrogen adsorption (BET), small-angle X-ray scattering (SAXS) and thermogravimetric analysis (TG). To analyze the morphology of pure silica used the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By photon correlation spectroscopy (PCS) it was possible to obtain a measure of mean particle size, the polydispersity index (PDI) of the silica SBA-16, and the zeta potential by laser Doppler anemometry (LDA). The results of incorporation analyzed by ICP-AES indicated that the material SBA-16 had a higher rate of incorporation of gadolinium (93%). The release kinetics in simulated body fluid, showed considerable stability and low release (1%). The mesoporous silica SBA-16 showed cell viability in direct contact with cell culture. Samples with gadolinium

  4. Performance of a diffusion denuder for the elimination of sampling artifacts for carbonaceous aerosols at urban and forested sites in Europe

    Czech Academy of Sciences Publication Activity Database

    Maenhaut, W.; Chi, X.; Viana, M.; Mikuška, Pavel; Večeřa, Zbyněk

    Thessaloniki, 2008. -. [European Aerosol Conference 2008. 24.08.2008-29.08.2008, Thessaloniki] Institutional research plan: CEZ:AV0Z40310501 Keywords : filter sampling artifacts * diffusion denuder * carbonaceous aerosol Subject RIV: CB - Analytical Chemistry, Separation

  5. Investigating the Use of a Diffusion Flame to Produce Black Carbon Standards for Thermal- Optical Analysis of Carbonaceous Aerosols

    Science.gov (United States)

    Ortiz Montalvo, D. L.; Kirchstetter, T. W.; Soto-García, L. L.; Mayol-Bracero, O. L.

    2006-12-01

    Combustion generated particles are a concern to both climate and public health due to their ability to scatter and absorb solar radiation and alter cloud properties, and because they are small enough to be inhaled and deposit in the lungs where they may cause respiratory and other health problems. Specific concern is focused on particles that originate from the combustion of diesel fuel. Diesels particles are composed mainly of carbonaceous material, especially in locations where diesel fuel sulfur is low. These particles are black due to the strongly light absorbing nature of the refractory carbon components, appropriately called black carbon (BC). This research project focuses on the uncertainty in the measurement of BC mass concentration, which is typically determined by analysis of particles collected on a filter using a thermal-optical analysis (TOA) method. Many studies have been conducted to examine the accuracy of the commonly used variations of the TOA method, which vary in their sample heating protocol, carrier gas, and optical measurement. These studies show that BC measurements are inaccurate due to the presence of organic carbon (OC) in the aerosols. OC may co-evolve with BC or char to form BC during analysis, both of which make it difficult to distinguish between the OC and BC in the sample. The goal of this study is to develop the capability of producing standard samples of known amounts of BC, either alone or mixed with other aerosol constituents, and then evaluate which TOA methods accurately determine the BC amount. An inverted diffusion flame of methane and air was used to produce particle samples containing only BC as well as samples of BC mixed with humic acid (HA). Our study found that HA is light absorbing and catalyzes the combustion of BC. It is expected that both of these attributes will challenge the ability of TOA methods in distinguishing between OC and BC, such as the simple two step TOA method which relies solely on temperature to

  6. Characteristics of carbonaceous aerosols in Emilia-Romagna (Northern Italy) based on two fall/winter field campaigns

    Science.gov (United States)

    Costa, V.; Bacco, D.; Castellazzi, S.; Ricciardelli, I.; Vecchietti, R.; Zigola, C.; Pietrogrande, M. C.

    2016-01-01

    The carbonaceous aerosol in Emilia-Romagna region (Northern Italy) was characterized in two fall/winter monitoring campaigns conducted through the years 2011-2012 and 2012-2013. Nearly 650 PM2.5 samples were collected at three monitoring stations describing urban background (main city Bologna, MS, Parma and Rimini) and one rural background site (San Pietro, SP). OC and EC values were measured by the thermal-optical transmittance method (TOT). Low flow-rate sampling strategy (24 m3 air volume per day) was used to reduce loading of light absorbing material on the filter surface in order to ensure the correct OC/EC discrimination. The TC values measured in winter 2011-2012 ranged from 9.8 μgC m- 3 at San Pietro to 12.0 μgC m- 3 at Parma, consisting of OC from 8.6 μgC m- 3 at SP to 9.9 μgC m- 3 at MS and EC from 1.3 μgC m- 3 at SP to 2.5 μgC m- 3 at Rimini. In winter 2012-2013, lower values were in general found with TC values ranging from 7.8 to 9.1 μgC m- 3 consisting of OC from 5.1 to 7.0 μgC m- 3 and EC from 1.5 to 2.2 μgC m- 3. Such differences can be likely explained by higher pollutant emissions related to domestic heating in colder fall/winter 2011/2012 (mean temperature ≈ 2 °C in comparison with ≈ 7 °C in winter 2012/2013). This hypothesis is supported by high levels of levoglucosan, as unambiguous tracer for biomass burning emission, and of polycyclic aromatic hydrocarbons related to combustion (levoglucosan ≃ 1000 ng m- 3 and burning PAHs ≃ 4 ng m- 3 at MS and SP sites).

  7. Organic petrology of subbituminous carbonaceous shale samples from Chalaw, Kabul Province, Afghanistan: Considerations for paleoenvironment and energy resource potential

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Paul C.; SanFilipo, John R. [U.S. Geological Survey, MS 956 National Center, Reston VA, 20192 (United States); Azizi, Gul Pacha [Afghanistan Geological Survey, Macroryan Square, Kabul (Afghanistan); Davis, Philip A. [U.S. Geological Survey, 520 N. Park Avenue, Tucson AZ, 85719 (United States); Starratt, Scott W. [U.S. Geological Survey, MS 910, 345 Middlefield Rd, Menlo Park CA, 94025 (United States)

    2010-04-01

    Neogene (?) subbituminous carbonaceous shale deposits from Chalaw, Afghanistan, were investigated through organic petrology techniques and standard coal analyses to determine paleoenvironment and potential for resource utilization. The Chalaw deposit, approximately 30 km southeast of Kabul, currently is exploited for brick making and domestic heating and cooking. Three multiple-bench channel samples of the mined bed at Chalaw were collected and evaluated. The presence of significant huminite (ranging from 0.2 to 59.0 vol.%, mineral-inclusive basis) is suggestive of a terrestrial lignin-rich precursor plant material. Measured reflectance values of 0.38-0.55% indicate subbituminous rank. This rank suggests burial depths of approximately 1500 m and maximum temperatures of approximately 50 C. Structured liptinite macerals generally are absent except for some fluorescing morphologies interpreted to be poorly-preserved root cork suberinite. Sponge spicule bioliths including gemmoscleres and megascleres are common. These petrographic observations, in addition to high mineral matter content (33 to > 95 vol.%), medium to high sulfur content (2.1-11.5 wt.%, dry basis; db), and the presence of common gastropod? shell fragments and an aragonite-needle chalk bed are consistent with, but not directly indicative of, a marginal marine or estuarine mangrove depositional environment. However, additional data are necessary to confirm this hypothesis and deposition in a freshwater environment cannot be ruled out at this time. Commercial-scale development and utilization of the Chalaw deposit as a thermal fuel resource may be possible using a fluidized bed combustion system which could accept the low-quality mine product currently produced. Samples examined herein contain high-ash yield (45-90 wt.%, db), high total moisture content (17-39 wt.%), low calorific value (980-6860 Btu/lb, m,mmf), and have poor agglomerating properties (FSI = 0), consistent with fuels utilized in fluidized

  8. Carbonaceous aerosols and mineral dust in atmospheric outflow from the Indo-Gangetic Plain

    Science.gov (United States)

    Sarin, M.; Srinivas, B.; Rengarajan, R.

    2012-12-01

    Atmospheric carbonaceous aerosols and mineral dust over south and south-east Asia has been a subject of major debate over the past two decades because of their potential impact on the regional air quality and climate forcing. A comprehensive study through ground-based measurements and data-base for aerosol chemical composition (involving both organic and inorganic constituents) is, thus, essential to constrain the large uncertainties associated with the climate impact. Our systematic study from a downwind site (Kharagpur: 22.02N, 87.11E) in the Indo-Gangetic Plain (IGP) suggests large temporal variability in the atmospheric mass concentrations of mineral dust, organic and elemental carbon (OC, EC), water-soluble organic carbon (WSOC) and inorganic species (WSIS). This is attributed to seasonally varying anthropogenic emissions, their source strength, boundary layer dynamics, secondary aerosol formation and long-range transport of mineral dust from desert regions. Based on diagnostic ratios [OC/EC ≈ 7.0 ± 2.2, WSOC/OC ≈ 0.6 and K+/EC ≈ 0.48 ± 0.17], we document biomass burning emissions (wood-fuel and post-harvest agricultural-waste burning) as a major source of carbonaceous aerosols. The characteristic ratios: nss-SO42-/EC (3.9 ± 2.1), nss-SO42-/OC (0.61 ± 0.46), high abundance of SO42- (6.9 - 25.3 μg m-3) and SO42-/ΣWSIS = 45 - 77 % in the outflow provide better assessment of aerosol optical properties. The subsequent downwind transport of pollutants from the IGP significantly influences the chemical composition of aerosols over the Bay of Bengal. The dominance of aerosol SO42- in the marine atmospheric boundary layer (MABL) is evident from the wide-spread depletion of chloride with respect to sea-salt composition. The Ca/Al and Fe/Al ratios in the IGP-outflow, used as a proxy for the long-range transport of mineral dust, are consistent with those in the MABL. The mass closure for PM2.5 composition suggests that contribution of mineral dust (20

  9. Hydrothermal alteration of CM carbonaceous chondrites: Implications of the identification of tochilinite as one type of meteoritic PCP

    Science.gov (United States)

    Zolensky, M. E.

    1984-01-01

    Poorly characterized phases (PCP's) constitute up to 30 volume percent of some CM carbonaceous chondrites, and are therefore an important key to an understanding of the physico-chemical conditions attending matrix evolution. An iron rich form of the terrestrial phase tochilinite was recently identified as a common type of PCP. Tochilinite has the general formula 6Fe(0.9)S.5(Mg,Fe)(OH)2 and consists of alternating machinawite (FeS) and brucite ((Mg,Fe)(OH)2) sheets, with iron vacancies in the sulfide sheets. In iron rich tochilinite, ferrous hydroxide, called amakinite, replaces brucite. If CM carbonaceous kchondrites have underdone hydrothermal alteration, iron rich tochilinite, at least, probably grew from aqueous solutions characterized by low FO2, high FS2, pH 10 to 12, and at a temperature at or below 170 C.

  10. Raman imaging of metastable opal in carbonaceous microfossils of the 700-800 ma old Draken Formation.

    Science.gov (United States)

    Foucher, Frédéric; Westall, Frances

    2013-01-01

    Opaline silica was detected, with Raman spectroscopy, in carbonaceous microfossils (especially Myxococcoides) in silicified filamentous microbial mats within dolomitized conglomerates of the Draken Formation (-800 to -700 Ma). High-resolution electron microscopy (HRTEM) and microprobe analyses were used to confirm the nature of this phase in the quartz matrix of the microbial mats. The silica likely precipitated in a microcrystalline form onto the organic macromolecules around, and within, the degrading microorganisms and preserved them by inhibiting the natural phase change to quartz. The Raman signal of opaline silica associated with carbonaceous matter and other biosignatures could be a potential indicator of biogenicity. This kind of association could be very useful during the future ExoMars mission (ESA/Roscosmos, 2018) that will search for traces of past life on Mars. PMID:23276206

  11. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources

    Directory of Open Access Journals (Sweden)

    Z. Cong

    2014-10-01

    Full Text Available To quantitatively evaluate the effect of carbonaceous aerosols on the south edge of the Tibetan Plateau, aerosol samples were collected weekly from August 2009 to July 2010 at Mt. Everest (Qomolangma Station for Atmospheric and Environmental Observation and Research, briefly QOMS, 28.36° N, 86.95° E, 4276 m a.s.l.. The samples were analyzed for organic carbon (OC, elemental carbon (EC, water-soluble organic carbon (WSOC and major ions. The average concentrations of OC, EC and WSOC were 1.43, 0.25 and 0.77 μg m−3, respectively. The concentration levels of OC and EC at QOMS are comparable to those at high elevation sites on the southern slopes of the Himalayas (Langtang and NCO-P, but three to six times lower than those at Manora Peak, India and Godavari, Nepal. Sulfate was the most abundant anion species followed by nitrate, accounting for 25 and 12% of total ionic mass, respectively. Ca2+ was the most abundant cation species (annual average of 0.88 μg m−3. The various aerosol compositions showed distinctive seasonality. The dust loading, represented by Ca2+ concentration, was relatively constant throughout the year. While OC, EC and other ionic species (NH4+, K+, NO3−, and SO42− exhibited a pronounced peak in the pre-monsoon period and a minimum in the monsoon season. Similar seasonal trends of aerosol composition were also reported previously from the southern slope of the Himalayas, such as Langtang and NCO-P. This phenomenon indicates that both slopes of Himalayas share a common atmospheric environment regime. The strong correlation of OC and EC in QOMS aerosols with K+ and levoglucosan indicates that they were mainly originated from biomass burning. The active fire spots observed by MODIS and their backward trajectories further demonstrate that in pre-monsoon season, agricultural and forest fires in the northern India and Nepal were most likely sources of carbonaceous aerosol at QOMS. In addition to large-scale atmospheric

  12. Wall-rock metasomatism of carbonaceous terrigenous rocks in the Lena gold district

    Science.gov (United States)

    Rusinov, V. L.; Rusinova, O. V.; Kryazhev, S. G.; Shchegol'Kov, Yu. V.; Alysheva, E. I.; Borisovsky, S. E.

    2008-02-01

    The Lena gold district is situated in the fold-and-shear belt of the southern framework of the Siberian Platform. The gold deposits are hosted in the Riphean-Vendian Khomolkho and Aunakit formations, revealing the strict control of ore mineralization by folding and shearing. The microstructure of metasomatically altered ore-bearing carbonaceous sedimentary rocks at the Sukhoi Log, Golets Vysochaishy, and Verninsky deposits (the latter includes the Pervenets vein zone) testifies to parallelism in the development of shearing, foliation, and ore-forming metasomatism. The local pressure gradients are marked by removal of silica from pressured zones into opened cleavage fractures and pockets. Two metasomatic stages are recognized: (1) early sodic metasomatism, which is characterized by the assemblage of magnesian siderite and paragonite, and (2) late potassic metasomatism, with formation of muscovite in association with sideroplesite and ankerite. The rocks altered at the early stage are distinguished by elevated Ni, Cr, and probably PGE contents. The second stage, close in age to the emplacement of Hercynian granitic plutons, was accompanied by the gain of chalcophile metals and deposition of the bulk of gold. In mineral composition, the metasomatic rocks are close to beresites, but the alteration differed in somewhat elevated alkalinity, so that microveinlets of albite and potassium feldspar occur in the ore zone together with muscovite. The ratio of modal muscovite to paragonite contents in orebodies is substantially higher than in the surrounding metasomatized rocks. This ratio directly depends on the degree of rock permeability and the intensity of the flow of ore-forming solutions. Carbonaceous matter (CM) in the ore zone underwent reworking and redeposition. CM is graphitized to a lesser extent than in the rocks affected by regional metamorphism. The spatial distribution of CM containing nitro and amino groups indicates more oxidizing conditions in the zone of

  13. Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical Indian aerosols

    Directory of Open Access Journals (Sweden)

    C. M. Pavuluri

    2011-02-01

    Full Text Available To better characterize South and Southeast Asian aerosols, PM10 samples collected from tropical Chennai, India (13.04° N; 80.17° E were analyzed for carbonaceous and water-soluble ionic components. Concentration ranges of elemental carbon (EC and organic carbon (OC were 2.4–14 μg m−3 and 3.2–15.6 μg m−3 in winter samples whereas they were 1.1–2.5 μg m−3 and 4.1–17.6 μg m−3 in summer samples, respectively. Concentration of secondary organic carbon (SOC retrieved from EC-tracer method was 4.6 ± 2.8 μg m−3 in winter and 4.3 ± 2.8 μg m−3 in summer. SO42- (8.8 ± 2.5 μg m−3 and 4.1 ± 2.7 μg m−3 in winter and summer, respectively was found as the most abundant ionic species (57% on average, n = 49, followed by NH4+ (15% > NO3 > Cl > K+> Na+ > Ca2+ > MSA > Mg2+. The mass fractions of EC, organic matter (OM and ionic species varied seasonally, following the air mass trajectories and corresponding source strength. Based on mass concentration ratios of selected components and relations of EC and OC to marker species, we found that biofuel/biomass burning is the major source of atmospheric aerosols in South and Southeast Asia. The high concentrations of SOC and WSOC/OC ratios (ave. 0.45; n = 49 as well as good correlations between SOC and WSOC suggest that the secondary production of organic aerosols during long-range atmospheric transport is also significant in this region. This study provides the baseline data of carbonaceous aerosols for southern part of the Indian subcontinent.

  14. Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite

    Science.gov (United States)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.

    2014-01-01

    Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above

  15. FAST TRACK COMMUNICATION: Enhanced dc conductivity of low volume-fraction nano-particulate suspensions in silicone and perfluorinated oils

    Science.gov (United States)

    Wilson, S. A.; Libor, Z.; Skordos, A. A.; Zhang, Q.

    2009-03-01

    The dc conductivities of several different types of nanoparticles (nickel, barium titanate and magnetite) suspended in both silicone and perfluorinated oils have been measured and contrasted. Enhanced dc conductivity through interaction between the particles and the fluid has been demonstrated, even at quite moderate fields, and different types of nanoparticles have been shown to exhibit different behavioural trends. Whilst the dc enhancement is partly related to the concentration (or spatial arrangement) of the particles as expected, there is clear evidence that energy-activated (electric field activated) processes also play a major role. It can be said that effective-medium theories based solely on the electrical properties and volume fractions of the component materials have limited applicability when assessing the dc conductivities of these nanoparticle-fluid combinations at low volume fractions.

  16. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite.

    Directory of Open Access Journals (Sweden)

    Matthew C Phipps

    Full Text Available The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs. In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL, collagen I, and hydroxyapatite (HA nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA. The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL, 100% collagen I (col, and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA. Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.

  17. Extended chronologies of aqueous alteration in the CM2 carbonaceous chondrites: evidence from carbonates in Queen Alexandra Range 93005

    OpenAIRE

    Lee, M.; Lindgren, P.; Sofe, M.; Alexander, C.; Wang, J.

    2012-01-01

    The Antarctic CM2 carbonaceous chondrite QUE 93005 contains four compositionally distinct carbonates, namely breunnerite, calcite, dolomite and a Ca-poor dolomite. These carbonates can form monomineralic grains, or may be intergrown as bimineralic grains consisting of dolomite plus breunnerite and dolomite plus calcite, or polymineralic grains containing an intergrowth of breunnerite, Ca-poor dolomite and calcite. Carbonates in all grain types have inclusions of Fe,Ni sulphides and/or Mg-Fe p...

  18. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    OpenAIRE

    Cooper, George; Reed, Chris; Nguyen,Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact ...

  19. Effects of day-of-week trends and vehicle types on PM{sub 2.5}-bounded carbonaceous compositions

    Energy Technology Data Exchange (ETDEWEB)

    Pongpiachan, Siwatt, E-mail: pongpiajun@gmail.com [NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), 118 Moo 3, Sereethai Road, Klong-Chan, Bangkapi, Bangkok 10240 (Thailand); SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi' an 710075 (China); Kositanont, Charnwit [Department of Microbiology, Faculty of Sciences, Chulalongkorn University, Bangkok 10330 (Thailand); Palakun, Jittree [Faculty of Education, Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU), No.1 Moo 20, Phaholyothin Road, Klong luang, Pathumthani 13180 (Thailand); Liu, Suixin; Ho, Kin Fai; Cao, Junji [SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi' an 710075 (China)

    2015-11-01

    Carbonaceous compositions of PM{sub 2.5} were measured in the heart of Bangkok from 17th November 2010 to 19th January 2012, and a data set of 94 samples was constructed. Effects of day-of-week trends and vehicle types on PM{sub 2.5}-bound TC, OC, and EC were carefully investigated. In this study, OC was the most important contributor to the total PM{sub 2.5} mass concentration. The average PM{sub 2.5}-bound OC content measured at CHAOS (18.8 ± 9.18 μg m{sup −3}) was approximately 11 times higher than at Chaumont, Switzerland (1.7 μg m{sup −3}), but approximately five times lower than at Xi'an, China (93.0 μg m{sup −3}). The application of diagnostic binary ratios of OC/EC and estimations of secondary organic carbon (SOC) coupled with autocorrelation plots (Box and Jenkins) highlight the enhanced impacts of traffic emissions, especially from diesel vehicles, on PM{sub 2.5}-bound carbonaceous compositions on weekdays relative to weekends. Hierarchical cluster analysis (HCA) coupled with principal component analysis (PCA) underline the importance of diesel emissions as the primary contributors of carbonaceous aerosols, particularly during weekdays. - Highlights: • Traffic emissions play an important role in governing OC and EC during weekdays. • Time series analysis shows the existence of day-of-week trends of OC and EC. • Diesel vehicles are the main contributors of carbonaceous compositions.

  20. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990-2005

    International Nuclear Information System (INIS)

    Multi-year inventories of carbonaceous aerosol emissions from biomass open burning at a high spatial resolution of 0.5o x 0.5o have been constructed in China using GIS methodology for the period 1990-2005. Black carbon (BC) emissions have increased by 383.03% at an annual average rate of 25.54% from 14.05 Gg in 1990 to 67.87 Gg in 2005; while organic carbon (OC) emissions have increased by 365.43% from 57.37 Gg in 1990 to 267.00 Gg in 2005. Through the estimation period, OC/BC ratio for biomass burning was averagely 4.09, suggesting that it was not the preferred control source from a climatic perspective. Spatial distribution of BC and OC emissions were similar, mainly concentrated in three northeastern provinces, central provinces of Shandong, Jiangsu, Anhui and Henan, and southern provinces of Guangxi, Guangdong, Hunan and Sichuan basin, covering 24.89% of China's territory, but were responsible for 63.38% and 67.55% of national BC and OC emissions, respectively. - Highlights: → Multi-year carbonaceous aerosol emission inventory of biomass burning is established. → Spatial distribution of carbonaceous aerosol emissions is determined. → Black carbon emissions have increased by 383.03% from 1990 to 2005. → Organic carbon emissions have increased by 365.43% from 1990 to 2005. → OC/BC ratio for biomass burning was averagely 4.09 for the period 1990-2005. - Chinese multi-year carbonaceous aerosol emission inventories from biomass open burning were established for the period of 1990-2005 for the first time.

  1. Annual variations of carbonaceous PM2.5 in Malaysia: influence by Indonesian peatland fires

    OpenAIRE

    Fujii, Y.; S. Tohno; Amil, N.; M. T. Latif; Oda, M.; Matsumoto, J.; A. Mizohata

    2015-01-01

    In this study, we quantified carbonaceous PM2.5 in Malaysia through annual observations of PM2.5, focusing on organic compounds derived from biomass burning. We determined organic carbon (OC), elemental carbon (EC) and concentrations of solvent-extractable organic compounds (biomarkers derived from biomass burning sources and n-alkanes). We observed seasonal variations in the concentrations of pyrolyzed OC (OP), levoglucosan (LG), mannosan (MN), galactosan, ...

  2. Annual variations of carbonaceous PM2.5 in Malaysia: influence by Indonesian peatland fires

    OpenAIRE

    Fujii, Y.; S. Tohno; Amil, N.; M. T. Latif; Oda, M.; Matsumoto, J.; A. Mizohata

    2015-01-01

    In this study, we quantified carbonaceous PM2.5 in Malaysia through annual observations of PM2.5, focusing on organic compounds derived from biomass burning. We determined organic carbon (OC), elemental carbon and concentrations of solvent-extractable organic compounds (biomarkers derived from biomass burning sources and n-alkanes). We observed seasonal variations in the concentrations of pyrolyzed OC (OP), levoglucosan (LG), mannosan (MN), galactosan, syringaldehyde, vanil...

  3. A TGA/FT-IR study for OC and EC quantification applied to carbonaceous aerosol collected in Milan (Italy)

    OpenAIRE

    Fermo, P.; Piazzalunga, A.; Vecchi, R.; Valli, G.; Ceriani, M.

    2005-01-01

    Carbon analysis consists in the evaluation of the carbonaceous content of the aerosol (TC) but, more importantly, of its distribution between the two components EC (Elemental Carbon) and OC (Organic Carbon) that are characterized by different physical-chemical properties. In spite of the numerous studies focused on this topic, nowadays, a universal methodology for the determination of the two components EC and OC is not available. In fact OC and EC (also known as black carbon or soot) are ope...

  4. CARBONACEOUS, NITROGENOUS AND PHOSPHORUS MATTERS REMOVAL FROM DOMESTIC WASTEWATER BY AN ACTIVATED SLUDGE REACTOR OF NITRIFICATION-DENITRIFICATION TYPE

    Directory of Open Access Journals (Sweden)

    MOHAMAD ALI FULAZZAKY

    2009-03-01

    Full Text Available This paper proposes an environmental engineering method based on biotechnology approach as one of the expected solutions that should be considered to implementing the activated sludge for improving the quality of water and living environment, especially to remove the major pollutant elements of domestic wastewater. Elimination of 3 major pollutant elements, i.e., carbon, nitrogen and phosphor containing the domestic wastewater is proposed to carry out biological method of an anoxic-aerobic reactor therein these types of pollutants should be consecutively processed in three steps. Firstly, eliminate the carbonaceous matter in the aerobic reactor. Secondly, to remove the carbonaceous and nitrogenous matters, it is necessary to modify the reactor’s nature from the aerobic condition to an anoxic-aerobic reactor. And finally, when the cycle of nitrification-denitrification is stable to achieve the target’s efficiency of reactor by adding the ferric iron into the activated sludge, it can be continued to remove the carbonaceous, nitrogenous and phosphorous matters simultaneously. The efficiency of carbonaceous and nitrogenous matters removal was confirmed with the effluent standard, COD is less than 100 mgO2/L and the value of global nitrogen is less than 10 mgN/L. The effectiveness of suspended matter removal is higher than 90% and the decantation of activated sludge is very good as identifying the Molhman’s index is below of 120 mL/L. The total phosphorus matter removal is more effective than the soluble phosphorus matter. By maintaining the reactor’s nature at the suitable condition, identifying the range of pH between 6.92 and 7.16 therefore the excellent abatement of phosphor of about 80% is achieving with the molar Fe/P ratio of 1.4.

  5. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    OpenAIRE

    Cheung, H. H. Y.; H. B. Tan; Xu, H. B.; F. Li; C. Wu; J. Z. Yu; Chan, C K

    2015-01-01

    Simultaneous measurements of aerosols of varying volatilities and carbonaceous matters at an urban site of Guangzhou, China were conducted in February and March 2014 using a Volatility Tandem Differential Mobility Analyzer (VTDMA) and an Organic Carbon/Elemental Carbon (OC/EC) Analyzer. In VTDMA, selected aerosols of 40 to 300 nm in mobility diameter were heated at elevated temperatures up to 300 °C and the size distributions of the residual particles were ...

  6. Fabrication of high quality carbonaceous coating on Cu nanoparticle using poly(vinyl pyrrolidone) and its application for oxidation prevention

    Science.gov (United States)

    Pyo, Youngjun; Choi, Dahyun; Son, Yeon-Ho; Kang, Suhee; Yoon, Eric H.; Jung, Seung-Boo; Kim, Yongil; Sunyong Lee, Caroline

    2016-05-01

    A novel method of carbonaceous coating on the surface of copper particles was developed through a chemical vapor deposition (CVD) process to prevent the oxidation of copper nanoparticles (CNPs). The types of poly(vinyl pyrrolidone) (PVP) used were K-12 (M W 3,500) and K-30 (M W 45,000). The amounts of PVP used ranged from 10 to 50 wt %. Additionally, processing temperatures of 900 and 875 °C were tested and compared. The optimum CVD process conditions for the carbonaceous coating were as follows: 875 °C processing temperature, 50 wt % K12 PVP solution, and gas conditions of \\text{Ar}:\\text{H}2 = 1:1. The resistivity change in the fabricated copper pattern was confirmed that the initial resistivity value of the ink with a mixing ratio of carbonaceous-coated CNPs to 1-octanethiol-coated CNPs of 4:6 (w/w) maintained its initial resistivity value of 2.93 × 10‑7 Ω·m for more than 210 days.

  7. Proprietes structurelles et magnetiques d'alliages de nanoparticules fabriquees par procedes lasers pour des applications biomedicales

    Science.gov (United States)

    Boyer, Paul

    mixture that is generated after multiple fragmentation events. Moreover, these particles had similar diameters and size distributions, allowing the comparison of their magnetic behaviour. Doing so, we observed a behaviour similar to the Slater-Pauling prediction of the magnetization of bulk materials as a function of the number of electrons of type d. However, important differences have also been observed, and the overall behaviour is closer to that of amorphous materials. The transition by zero of the spontaneous magnetization as a function of the number of d electrons occurs at Ni instead of the Ni 40Cu60 alloy. This indicates a loss of 0.6 µB , 35% of the magnetization of bulk Co at 0 K, in strong ferromagnetic materials. These modifications of the magnetization have been attributed to the multiple roles played by the oxide shell formed on the nanoparticles surface. Unlike what is reported in literature, the presence of oxidation not only reduces the magnetization by converting the external atomic layers in an antiferromagnetic material. The nanoparticles’ magnetization can also be improved by creating heterogeneous structures by introducing noble metals like gold into the particles. When the gold concentration becomes higher, the nanoparticles tend to repel the gold toward the surface in order to minimise the internal stress and to increase the particles stability to fragmentation. In this configuration similar to a core-shell structure, we have observed an increase of the core magnetization from 28 to 51 emu/g for an atomic fraction of Co68%Au32%. Gold then acts as an oxygen diffusion barrier and this structure was formed using laser processes that were not selective to the nature of the materials, as long as they tend to remain bonded to atoms of the same element. We have also observed that the magnetization of those hybrids cannot be explained by considering that the system’s magnetization occurs from the sum of the independent responses of each individual

  8. Resonant laser processing of nanoparticulate Au/TiO2 films on glass supports: Photothermal modification of a photocatalytic nanomaterial

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Thomas, Marc; Hagemann, Ulrich; Hartmann, Nils

    2016-08-01

    Resonant laser processing at λ = 532 nm is used to modify thin Au/TiO2 nanoparticle films on soda lime glass plates. A microfocused continuous-wave laser is employed for local patterning at distinct laser powers. In conjunction with microscopic techniques this approach allows for reproducible high-throughput screening of laser-induced material modifications. Optical microscopy and microspectroscopy reveal laser darkening, i.e. a significantly increased optical absorbance. Scanning electron microscopy and X-ray photoelectron spectroscopy show laser-induced film growth and roughening along with the integration of SiO2 from the glass supports. Raman spectroscopy displays a phase transition from anatase to rutile. Au evaporation and/or integration only takes place at high laser powers. All these modifications provide promising perspectives in view of photocatalytic applications. Data from complementary laser experiments with unblended pure TiO2 coatings at λ = 532 nm and λ = 355 nm point to a photothermal process, in which the optical energy is selectively deposited in the Au nanoparticles and transformed into heat. As a result, thermally activated modifications take place. General prospects of laser processing in targeted modification of nanomaterials for photocatalysis are emphasized.

  9. A plausible link between the asteroid 21 Lutetia and CH carbonaceous chondrites

    CERN Document Server

    Moyano-Cambero, Carles E; Llorca, Jordi; Fornasier, Sonia; Barucci, Maria A; Rimola, Albert

    2016-01-01

    A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near-infrared (0.3 to 2.2 {\\mu}m) and in the mid-infrared to thermal infrared (2.5 to 30.0 {\\mu}m or 4000 to ~333 cm^-1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studi...

  10. A contamination assessment of the CI carbonaceous meteorite Orgueil using a DNA-directed approach

    Science.gov (United States)

    Aerts, J. W.; Elsaesser, A.; RöLing, W. F. M.; Ehrenfreund, P.

    2016-05-01

    The Orgueil meteorite has become one of the most well-studied carbonaceous meteorites, after it fell in France 150 yr ago. Extraterrestrial organic compounds such as amino acids and nucleobases in the parts per billion ranges were identified in Orgueil samples with supporting isotopic analyses. However, speculations of terrestrial contamination such as organic inclusions in the form of microbes and seeds accompanied the analyses of the Orgueil meteorite ever since its fall. By using molecular analysis, we performed DNA extractions and spiking experiments combined with 16S and 18S rRNA gene targeted PCR amplification to quantify the level of terrestrial biocontamination. Our results indicate that terrestrial contamination with DNA was insignificant in the investigated meteorite fraction. We also remeasured and confirmed concentrations of amino acids found in previous studies and conclude that their rather high concentrations and distribution cannot be explained by terrestrial contamination with microorganisms alone. These results represent the first analysis using DNA-directed tools in the analysis of the Orgueil meteorite to determine trace levels of biomarkers.

  11. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China

    Science.gov (United States)

    Ni, Haiyan; Han, Yongming; Cao, Junji; Chen, L.-W. Antony; Tian, Jie; Wang, Xiaoliang; Chow, Judith C.; Watson, John G.; Wang, Qiyuan; Wang, Ping; Li, Hua; Huang, Ru-Jin

    2015-12-01

    Open burning of crop residue is an important source of carbonaceous pollutants, and has a large impact on the regional environment and global climate change. Laboratory burn tests were conducted using a custom-made combustion chamber to determine pollutants (i.e. CO2, CO, PM2.5, organic carbon (OC) and elemental carbon (EC)) emission factors (EFs) of wheat straw, rice straw and corn stalk; the three major agricultural crop residues in China. The average EFs were estimated to be 1351 ± 147 g kg-1 for CO2, 52.0 ± 18.9 g kg-1 for CO, 10.6 ± 5.6 g kg-1 for PM2.5, 4.8 ± 3.1 g kg-1 for OC and 0.24 ± 0.12 g kg-1 for EC. In addition, the effect of fuel moisture was investigated through the controlled burning of wheat straw. Increasing the moisture content decreased the CO2 EF, and increased the EFs of CO, PM2.5 and OC. Based on measurements from this study and nationwide statistics in crop type and area, pollutants emission inventories for crop residue combustion with 1° × 1° resolution were compiled for 2008. Total emissions were 120 Tg CO2, 4.6 Tg CO, 0.88 Tg PM2.5, 0.39 Tg OC and 0.02 Tg EC.

  12. Spheroidal carbonaceous particles are a defining stratigraphic marker for the Anthropocene

    Science.gov (United States)

    Swindles, Graeme T.; Watson, Elizabeth; Turner, T. Edward; Galloway, Jennifer M.; Hadlari, Thomas; Wheeler, Jane; Bacon, Karen L.

    2015-05-01

    There has been recent debate over stratigraphic markers used to demarcate the Anthropocene from the Holocene Epoch. However, many of the proposed markers are found only in limited areas of the world or do not reflect human impacts on the environment. Here we show that spheroidal carbonaceous particles (SCPs), a distinct form of black carbon produced from burning fossil fuels in energy production and heavy industry, provide unambiguous stratigraphic markers of the human activities that have rapidly changed planet Earth over the last century. SCPs are found in terrestrial and marine sediments or ice cores in every continent, including remote areas such as the high Arctic and Antarctica. The rapid increase in SCPs mostly occurs in the mid-twentieth century and is contemporaneous with the ‘Great Acceleration’. It therefore reflects the intensification of fossil fuel usage and can be traced across the globe. We integrate global records of SCPs and propose that the global rapid increase in SCPs in sedimentary records can be used to inform a Global Standard Stratigraphic Age for the Anthropocene. A high-resolution SCP sequence from a lake or peatland may provide the much-needed ‘Golden Spike’ (Global Boundary Stratotype Section and Point).

  13. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave

    Science.gov (United States)

    Su, Tong-Chao; Fang, Zhen; Zhang, Fan; Luo, Jia; Li, Xing-Kang

    2015-12-01

    In this study, magnetic carbonaceous acids were synthesized by pyrolysis of the homogeneous mixtures of glucose and magnetic Fe3O4 nanoparticles, and subsequent sulfonation. The synthesis conditions were optimized to obtain a catalyst with both high acid density (0.75 mmol g-1) and strong magnetism [magnetic saturation, Ms = 19.5 Am2 kg-1]. The screened catalyst (C-SO3H/Fe3O4) was used to hydrolyze ball-milled cellulose in a microwave reactor with total reducing sugar (TRS) yield of 25.3% under the best conditions at 190 °C for 3.5 h. It was cycled for at least seven times with high catalyst recovery rate (92.8%), acid density (0.63 mmol g-1) and magnetism (Ms = 12.9 Am2 kg-1), as well as high TRS yield (20.1%) from the hydrolysis of ball-milled cellulose. The catalyst was further successfully tested for the hydrolysis of tropical biomass with high TRS and glucose yields of 79.8% and 58.3% for bagasse, 47.2% and 35.6% for Jatropha hulls, as well as 54.4% and 35.8% for Plukenetia hulls.

  14. Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest

    International Nuclear Information System (INIS)

    Fungal spores are ubiquitous in the Earth’s atmosphere, especially in the environment of tropical rainforests with intense biological activities. To assess the impact of fungi on chemical components of atmospheric aerosols at a Chinese tropical rainforest site, size-segregated fungal spore tracers (i.e. arabitol and mannitol) were measured along with major aerosol components, including carbonaceous species and water-soluble inorganic ions. The fungal spore tracers were found to be predominately associated with coarse particles, in which organic carbon (OC) and potassium (K+) were also present at significant levels. Enhanced amounts of fungal spore tracers were closely linked to rainfall events. Moreover, fungal spore tracers exhibited positive correlations with relative humidity and negative correlations with wind speed, temperature or radiation. The relationships between fungal spore tracers and meteorological factors are consistent with the emission features of actively discharged fungal spores, which are generally associated with sugar alcohols and by-products such as the inorganic ion K+. The excellent correlations between fungal spore tracers and OC or K+ in the coarse particles further suggested their common emission sources. Absolute principal factor analysis further identified fungi as the largest contributor to coarse OC and K+ (both at ∼66%) in this rainforest. (letter)

  15. Feasibility of Carbonaceous Nanomaterial-Assisted Photocatalysts Calcined at Different Temperatures for Indoor Air Applications

    Directory of Open Access Journals (Sweden)

    Wan-Kuen Jo

    2012-01-01

    Full Text Available This study examined the characteristics and photocatalytic activity of multiwall carbon nanotube-assisted TiO2 (MWNT-TiO2 nanocomposites calcined at different temperatures to assess their potential indoor air applications. It was confirmed that the composites calcined at low temperatures (300 and 400°C contained TiO2 nanoparticles bound intimately to the MWNT networks. Meanwhile, almost no MWNTs were observed when the calcination temperature was increased to 500 and 600°C. The MWNT-TiO2 composites calcined at low temperatures showed higher photocatalytic decomposition efficiencies for aromatic hydrocarbons at indoor concentrations than those calcined at high temperatures. The mean efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX by the composite calcined at 300°C were 32, 70, 79, and 79%, respectively, whereas they were 33, 71, 78, and 78% for the composite calcined at 400°C, respectively. In contrast, the efficiencies decreased to close to zero when the calcination temperature was increased to 600°C. Moreover, the MWNT-TiO2 exhibited superior photocatalytic performance for the decomposition efficiencies compared to TiO2 under conventional UV-lamp irradiations. Consequently, these carbonaceous nanomaterial-assisted photocatalysts can be applied effectively to indoor air applications depending upon the calcination temperature.

  16. Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa M.; Kirchstetter, Thomas W.; Thatcher, Tracy L.; Hering, Susanne V.; Brown, Nancy J.

    2007-06-25

    A field study was conducted in an unoccupied single story residence in Clovis, California to provide data to address issues important to assess the indoor exposure to particles of outdoor origin. Measurements of black and organic carbonaceous aerosols were performed using a variety of methods, resulting in both near real-time measurements as well as integrated filter based measurements. Comparisons of the different measurement methods show that it is crucial to account for gas phase adsorption artifacts when measuring organic carbon (OC). Measured concentrations affected by the emissions of organic compounds sorbed to indoor surfaces imply a higher degree of infiltration of outdoor organic carbon aerosols into the indoor environment for our unoccupied house. Analysis of the indoor and outdoor data for black carbon (BC) aerosols show that, on average, the indoor concentration of black carbon aerosols behaves in a similar manner to sulfate aerosols. In contrast, organic carbon aerosols are subject to chemical transformations indoors that, for our unoccupied home, resulted in lower indoor OC concentrations than would be expected by physical loss mechanisms alone. These results show that gas to particle partitioning of organic compounds, as well as gas to surface interactions within the residence, are an important process governing the indoor concentration to OC aerosols of outdoor origin.

  17. Influence of CVD process duration on morphology, structure and sensing properties of carbonaceous-palladium films

    International Nuclear Information System (INIS)

    We present the nanocomposite carbonaceous-palladium (C-Pd) thin films prepared by physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods. Scanning electron microscope (SEM) and transmission electron microscope (TEM) methods were used to study the topography, morphology and structure of carbon and palladium nanograins contained in these films. The quantitative analysis of the elemental composition of C-Pd films was determined by energy-dispersive spectroscopy (EDS). The initial PVD films were modified in a CVD quartz reactor using xylene (the mixture of isomers) as a modifying factor at different times (5, 10 and 30 minutes) at a constant temperature of 650°C in atmospheric pressure. It was observed that the average size of palladium nanograins increased with an increasing duration of modification process. The differences in microstructures observed in the CVD films modified at different times, affect their response in measurements of resistance changes in the gas containing H2 in various concentrations. All samples were measured by cathodoluminescence (CL) method. In CL studies a large amount of objects with high intensity of CL was found. Some of them show the emission bands both at 450 nm and 750 nm. Other reveals emission band only at 450 nm. CL observations show that Pd nanograins coated by graphite shells exhibit optical activity

  18. Functionalized magnetic carbonaceous microspheres for trypsin immobilization and the application to fast proteolysis.

    Science.gov (United States)

    Yao, Guoping; Qi, Dawei; Deng, Chunhui; Zhang, Xiangmin

    2008-12-26

    In this study, magnetic carbonaceous (MC) microspheres prepared with a large-scale synthesis approach were developed as the novel substrate for enzyme immobilization, and the trypsin-immobilized MC microspheres were successfully applied to protein fast digestion. Firstly, MC microspheres with small size, strong magnetism, and biological compatibility were prepared through two-step solvothermal reactions. Secondly, MC microsphere surface was modified by 3-glycidoxypropyltrimethoxysilane (GLYMO). Finally, the enzyme was immobilized on the GLYMO-functionalized MC microspheres. The enzyme-immobilized magnetic microspheres were applied for fast protein digestion with microwave-assistance. Bovine serum albumin, myoglobin and cytochrome c, were used as model proteins to verify the digestion efficiency, and the digestion products were then characterized using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with sequence coverage of 43%, 90% and 77%, respectively. The enzyme-immobilized magnetic particles were also successfully applied to the analysis of human pituitary extract. After database search, 485 proteins (p<0.01) were identified when the extract was digested by the microspheres. This opens a route for its future application in bottom-up proteomic analysis. PMID:19026420

  19. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-05-01

    Full Text Available Although the definition and measurement methods of atmospheric ''black carbon'' (''BC'' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black (''brown carbon, Cbrown'' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes directly from aerosol absorption measurements near specific combustion sources, from observations of spectral properties of water extracts of continental aerosol, from laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that these species may severely bias measurements of ''BC'' and ''EC'' over vast parts of the troposphere, where mass concentration of Cbrown is high relative to that of combustion soot. We also imply that due to the strongly skewed absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. The possible consequences of these effects on our understanding of tropospheric processes are discussed.

  20. Enantiomeric excesses of chiral amines in ammonia-rich carbonaceous meteorites

    Science.gov (United States)

    Pizzarello, Sandra; Yarnes, Christopher T.

    2016-06-01

    Chiral homogeneity is essential to the structure and function of terrestrial biopolymers but the origin of this "homochirality" is poorly understood and remains one of the many unknowns surrounding the origins of life. Several amino acids extracted from Carbonaceous Chondrite meteorites display L-enantiomeric excesses (ee) and their findings have encouraged suggestions that an input of non-racemic meteoritic compounds to early Earth might have led to terrestrial homochirality. Motivated by occasional indications of possible ee in other classes of soluble meteoritic compounds, we have undertaken a systematic study of the chiral distribution of amines in Renazzo-type (CR) meteorites, where they are the second most abundant organic molecular species and ammonia is by far the most abundant single molecule. We report here the first time finding of L-ee for two chiral amines in several pristine CR meteorites from Antarctica and outline a proposal by which the compounds possibly formed from the same ketone precursors as some of the chiral amino acids. This would occur during a warm hydrous stage of the asteroidal parent body, via a reductive amination process in the presence of a large abundance of ammonia, where the precursors' adsorption upon mineral phases possessing asymmetry offered the opportunity for chiral induction. Because the precursor ketones are achiral, the proposal underscores the likelihood of diverse asymmetric influences and processes in cosmochemistry.