WorldWideScience

Sample records for carbon-supported cose2 nanoparticles

  1. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting

    Institute of Scientific and Technical Information of China (English)

    Chencheng Sun; Qiuchun Dong; Jun Yang; Ziyang Dai; Jianjian Lin; Peng Chen; Wei Huang

    2016-01-01

    The development of efficient,low-cost,stable,non-noble-metal electrocatalysts for water splitting,particularly those that can catalyze both the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode,is a challenge.We have developed a facile method for synthesizing CoSe2 nanoparticles uniformly anchored on carbon fiber paper (CoSe2/CF) via pyrolysis and selenization of in situ grown zeolitic imidazolate framework-67 (ZIF-67).CoSe2/CF shows high and stable catalytic activity in both the HER and OER in alkaline solution.At a low cell potential,i.e.,1.63 V,a water electrolyzer equipped with two CoSe2/CF electrodes gave a water-splitting current of 10 mA.cm-2.At a current of 20 mA.cm-2,it can operate without degradation for 30 h.This study not only offers a cost-effective solution for water splitting but also provides a new strategy for developing various catalytic nanostructures by changing the metal-organic framework precursors.

  2. Carbon-supported base metal nanoparticles : Cellulose at work

    NARCIS (Netherlands)

    Hoekstra, Jacco; Versluijs-Helder, Marjan; Vlietstra, Edward J.; Geus, John W.; Jenneskens, Leonardus W.

    2015-01-01

    Pyrolysis of base metal salt loaded microcrystalline cellulose spheres gives a facile access to carbon-supported base metal nanoparticles, which have been characterized with temperature-dependent XRD, SEM, TEM, ICP-MS and elemental analysis. The role of cellulose is multifaceted: 1) it facilitates a

  3. Carbon-supported base metal nanoparticles: cellulose at work.

    Science.gov (United States)

    Hoekstra, Jacco; Versluijs-Helder, Marjan; Vlietstra, Edward J; Geus, John W; Jenneskens, Leonardus W

    2015-03-01

    Pyrolysis of base metal salt loaded microcrystalline cellulose spheres gives a facile access to carbon-supported base metal nanoparticles, which have been characterized with temperature-dependent XRD, SEM, TEM, ICP-MS and elemental analysis. The role of cellulose is multifaceted: 1) it facilitates a homogeneous impregnation of the aqueous base metal salt solutions, 2) it acts as an efficacious (carbonaceous) support material for the uniformly dispersed base metal salts, their oxides and the metal nanoparticles derived therefrom, and 3) it contributes as a reducing agent via carbothermal reduction for the conversion of the metal oxide nanoparticles into the metal nanoparticles. Finally, the base metal nanoparticles capable of forming metastable metal carbides catalytically convert the carbonaceous support into a mesoporous graphitic carbon material.

  4. Structure and electrocatalytic performance of carbon-supported platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Esparbe, Isaac; Brillas, Enric; Centellas, Francesc; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Cabot, Pere-Lluis [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2009-05-15

    The structure of Pt nanoparticles and the composition of the catalyst-Nafion films strongly determine the performance of proton exchange membrane fuel cells. The effect of Nafion content in the catalyst ink, prepared with a commercially available carbon-supported Pt, in the kinetics of the hydrogen oxidation reaction (HOR), has been studied by the thin layer rotating disk electrode technique. The kinetic parameters have been related to the catalyst nanoparticles structure, characterized by X-ray diffraction and high-resolution transmission electron microscopy. The size-shape analysis is consistent with the presence of 3D cubo-octahedral Pt nanoparticles with average size of 2.5 nm. The electrochemically active surface area, determined by CO stripping, appears to depend on the composition of the deposited Pt/C-Nafion film, with a maximum value of 73 m{sup 2} g{sub Pt}{sup -1} for 30 wt.% Nafion. The results of CO stripping indicate that the external Pt faces are mainly (1 0 0) and (1 1 1) terraces, thus confirming the cubo-octahedral structure of nanoparticles. Cyclic voltammetry combined with the RDE technique has been applied to study the kinetic parameters of HOR besides the ionomer resistance effect on the anode kinetic current at different ionomer contents. The kinetic parameters show that H{sub 2} oxidation behaves reversibly with an estimated exchange current density of 0.27 mA cm{sup -2}. (author)

  5. Carbon Supported Ag Nanoparticles as High Performance Cathode Catalyst for Anion Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Le eXin

    2013-09-01

    Full Text Available A solution phase-based nanocapsule method was successfully developed to synthesize non-precious metal catalyst - carbon supported Ag nanoparticles (Ag/C. XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm and narrow size distribution (2-9 nm are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR on the Ag/C and commercial Pt/C were investigated using rotating ring disc electrode (RRDE tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80 oC.

  6. Synthesis of carbon-supported PtRh random alloy nanoparticles using electron beam irradiation reduction method

    Science.gov (United States)

    Matsuura, Yoshiyuki; Seino, Satoshi; Okazaki, Tomohisa; Akita, Tomoki; Nakagawa, Takashi; Yamamoto, Takao A.

    2016-05-01

    Bimetallic nanoparticle catalysts of PtRh supported on carbon were synthesized using an electron beam irradiation reduction method. The PtRh nanoparticle catalysts were composed of particles 2-3 nm in size, which were well dispersed on the surface of the carbon support nanoparticles. Analyses of X-ray diffraction and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy revealed that the PtRh nanoparticles have a randomly alloyed structure. The lattice constant of the PtRh nanoparticles showed good correlation with Vegard's law. These results are explained by the radiochemical formation process of the PtRh nanoparticles. Catalytic activities of PtRh/C nanoparticles for ethanol oxidation reaction were found to be higher than those obtained with Pt/C.

  7. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  8. Carbon-supported palladium and ruthenium nanoparticles: application as catalysts in alcohol oxidation, cross-coupling and hydrogenation reactions.

    Science.gov (United States)

    García-Suárez, Eduardo J; Lara, Patricia; García, Ana B; Philippot, Karine

    2013-11-01

    In the last fifteen-years, the application of metal nanoparticles as catalysts in organic synthesis has received a renewed interest. Therefore, much attention is currently being paid to the synthesis of metal nanoparticles in order to achieve the control of their characteristics in terms of size, shape and surface chemistry. Besides this, the recyclability as well as the recovery from the reaction medium still remain the major drawbacks to widespread the use of nanoparticles in catalysis. To overcome these problems, the immobilization of metal nanoparticles on solid supports appears as a promising alternative. In that context, carbon materials offer several advantages as solid supports such as availability, relatively low cost, high mechanical strength, chemical stability, and a pore structure along with an attractive surface chemistry which allows easy modifications, such as its functionalization, to suit the nanoparticles immobilization needs. Among the transition metals Palladium and Ruthenium are widely employed as efficient catalysts in many reactions. Herein, the most recent advances, from recent papers and patents, in relation to the preparation of carbon-supported Pd or Ru nanoparticles systems as well as their application as catalysts in alcohol oxidation, cross-coupling or hydrogenation reactions, are reviewed.

  9. Synthesis of Mg2Cu nanoparticles on carbon supports with enhanced hydrogen sorption kinetics

    NARCIS (Netherlands)

    Au, Y.S.; Ponthieu, M.; van Zwienen, M.; Zlotea, C.; Cuevas, F.; de Jong, K.P.; de Jongh, P.E.

    2013-01-01

    The reaction kinetics and reversibility for hydrogen sorption were investigated for supported Mg2Cu nanoparticles on carbon. A new preparation method is proposed to synthesize the supported alloy nanoparticles. The motivation of using a support is to separate the nanoparticles to prevent sintering a

  10. Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd-M nanoalloys in acid and alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyeva, N. [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Sarapuu, A., E-mail: ave.sarapuu@ut.ee [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Tammeveski, K. [Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Vidal-Iglesias, F.J.; Solla-Gullon, J.; Feliu, J.M. [Instituto de Electroquimica, Universidad de Alicante, Apartado 99, 03080 Alicante (Spain)

    2011-07-30

    Highlights: > Electroreduction of O{sub 2} on carbon-supported Pd, PdCo and PdFe nanoparticles is studied. > Pd-based catalysts were prepared by reduction in the presence of citrate and in microemulsion. > Four-electron reduction of O{sub 2} proceeds in both acid and alkaline media. > Specific activity of PdCo and PdFe nanocatalysts was similar to that of Pd nanoparticles. - Abstract: The kinetics of O{sub 2} reduction on novel electrocatalyst materials deposited on carbon substrates were studied using the rotating disk electrode (RDE) technique. Palladium nanoparticles and Pd-M (PdCo and PdFe) nanoalloys supported on Vulcan XC-72R were prepared using two different synthetic routes. The catalyst samples were examined by transmission electron microscopy (TEM) and the average size of metal nanoparticles was determined. Electrochemical measurements were performed in 0.5 M H{sub 2}SO{sub 4} and in 0.1 M NaOH solutions. The influence of different synthetic conditions on the values of specific activity and other kinetic parameters was investigated. These parameters were determined from the Tafel plots taking into account the real electroactive area for each electrode. Pd nanoparticles and Pd-M nanoalloys exhibit significantly high electrocatalytic activity for the four-electron reduction of oxygen to water.

  11. Structure of carbon-supported Pt-Ru nanoparticles and their electrocatalytic behavior for hydrogen oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, Amado; Centellas, Francesc; Garrido, Jose Antonio; Arias, Conchita; Rodriguez, Rosa Maria; Brillas, Enric; Cabot, Pere-Lluis [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-02-01

    The electrochemical activity towards hydrogen oxidation reaction (HOR) of a high performance carbon-supported Pt-Ru electrocatalyst (HP 20 wt.% 1:1 Pt-Ru alloy on Vulcan XC-72 carbon black) has been studied using the thin-film rotating disk electrode (RDE) technique. The physical properties of the Pt-Ru nanoparticles in the electrocatalyst were previously determined by transmission electron microscopy (TEM), high resolution TEM, fast Fourier transform (FFT), electron diffraction and X-ray diffraction (XRD). The corresponding compositional and size-shape analyses indicated that nanoparticles generally presented a 3D cubo-octahedral morphology with about 26 at.% Ru in the lattice positions of the face-centred cubic structure of Pt. The kinetics for HOR was studied in a hydrogen-saturated 0.5 M H{sub 2}SO{sub 4} solution using thin-film electrodes prepared by depositing an ink of the electrocatalyst with different Nafion contents in a one-step process on a glassy carbon electrode. A maximum electrochemically active surface area (ECSA) of 119 m{sup 2} g Pt{sup -1} was found for an optimum Nafion composition of the film of about 35 wt.%. The kinetic current density in the absence of mass transfer effects was 21 mA cm{sup -2}. A Tafel slope of 26 mV dec{sup -1}, independent of the rotation rate and Nafion content, was always obtained, evidencing that HOR behaves reversibly. The exchange current density referred to the ECSA of the Pt-Ru nanoparticles was 0.17 mA cm{sup -2}, a similar value to that previously found for analogous inks containing pure Pt nanoparticles. (author)

  12. Application of Black Pearl carbon-supported WO 3 nanostructures as hybrid carriers for electrocatalytic RuSe x nanoparticles

    Science.gov (United States)

    Miecznikowski, Krzysztof; Kulesza, Pawel J.; Fiechter, Sebastian

    2011-07-01

    RuSe x electrocatalytic nanoparticles were deposited onto hybrid carriers composed of Black Pearl carbon-supported tungsten oxide; and the resulting system's electrochemical activity was investigated during oxygen reduction reaction. The tungsten oxide-utilizing and RuSe x nanoparticle-containing materials were characterized using transmission electron microscopy, X-ray diffraction and electrochemical diagnostic techniques such as cyclic voltammetry and rotating ring-disk voltammetry. Application of Black Pearl carbon carriers modified with ultra-thin films of WO 3 as matrices (supports) for RuSe x catalytic centers results during electroreduction of oxygen in 0.5 mol dm -3 H 2SO 4 (under rotating disk voltammetric conditions) in the potential shift of ca. 70 mV towards more positive values relative to the behavior of the analogous WO 3-free system. Also the percent formation (at ring in the rotating ring-disk voltammetry) of the undesirable hydrogen peroxide has been decreased approximately twice by utilizing WO 3-modified carbon carriers. The results are consistent with the bifunctional mechanism in which oxygen reduction is initiated at RuSe x centers and the hydrogen peroxide intermediate is reductively decomposed at reactive WO 3-modified Black Pearl supports. The electrocatalytic activity of the system utilizing WO 3-modified Black Pearl supports has been basically unchanged upon addition of acetic acid, formic acid or methyl formate to the sulfuric acid supporting electrolyte.

  13. Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study.

    Science.gov (United States)

    Li, Youji; Ma, Mingyuan; Wang, Xiaohu; Wang, Xiaohua

    2008-01-01

    The activated carbon-supported TiO2 nanoparticles (TiO2/AC) were prepared by a properly controlled sol-gel method. The effects of activated carbons (AC) support on inactivated properties of TiO2 nanoparticles were evaluated by photocatalytic inactivation experiments of Escherichia coli. The key factors affecting the inactivation efficiency were investigated, including electric power of lamp, temperature, and pH values. The results show that the TiO2/AC composites have high inactivation properties of E. coli in comparison with pure TiO2 powder. The kinetics of photocatalytic inactivation of E. coli was found to follow a pseudo-first order rate law for TiO2/AC composites, and kinetic behavior could be described in terms of a modified Langmuir-Hinshelwood model. The values of the adsorption equilibrium constants for the bacteria, K(c), and for the rate constants, k(r), were certainly depended on TiO2 content. At 47 wt.% TiO2 coatings with the highest rate constant, the K(c) and k(r) were 1.17 x 10(-8) L/cfu and 1.43 x 10(6) cfu/(L x min), respectively. The variety of parameters shows significant effects on inactivation rate. The outer layer of bacteria decomposed first resulting in inactivation of cell, and with further illumination, the cells nearly decomposed.

  14. Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study

    Institute of Scientific and Technical Information of China (English)

    LI Youji; MA Mingyuan; WANG Xiaohu; WANG Xiaohua

    2008-01-01

    The activated carbon-supported TiO2 nanoparticles (TiO2/AC) were prepared by a properly controlled sol-gel method. The effects of activated carbons (AC) support on inactivated properties of TiO2 nanoparticles were evaluated by photocatalytic inactivation experiments ofEscherichia coli. The key factors affecting the inactivation efficiency were investigated, including electric power of lamp, temperature, and pH values. The results show that the TiO2/AC composites have high inactivation properties of E. coli in comparison with pure TiO2 powder. The kinetics of photocatalytic inactivation of E. coli was found to follow a pseudo-first order rate law for TiO2/AC composites, and kinetic behavior could be described in terms of a modified Langmuir-Hinshelwood model. The values of the adsorption equilibrium constants for the bacteria, Kc, and for the rate constants, kr, were certainly depended on TiO2 content. At 47 variety of parameters shows significant effects on inactivation rate. The outer layer of bacteria decomposed first resulting in inactivation of cell, and with further illumination, the cells nearly decomposed.

  15. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation

    Science.gov (United States)

    Shang, Changshuai; Hong, Wei; Wang, Jin; Wang, Erkang

    2015-07-01

    In this paper, Ni nanoparticles (NPs) are prepared in an aqueous solution by using sodium borohydride as reducing agent. With Ni NPs as the sacrificial template, hollow NiPdAu NPs are successfully prepared via partly galvanic displacement reaction between suitable metal precursors and Ni NPs. The as-synthesized hollow NiPdAu NPs can well dispersed on the carbon substrate. Transmission electron microscopy, X-ray diffraction and inductively coupled plasma mass spectrometry are taken to analyze the morphology, structure and composition of the as-synthesized catalysts. The prepared catalysts show superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with commercial Pd/C and Pt/C. Catalysts prepared in this work show great potential to be anode catalysts in direct methanol fuel cells.

  16. Temperature dependence of the kinetics of oxygen reduction on carbon-supported Pt nanoparticles

    Directory of Open Access Journals (Sweden)

    NEVENKA R. ELEZOVIC

    2008-06-01

    Full Text Available The temperature dependence of oxygen reduction reaction (ORR was studied on highly dispersed Pt nanoparticles supported on a carbon cryogel. The specific surface area of the support was 517 m2 g-1, the Pt particles diameter was about 2.7 nm and the loading of the catalyst was 20 wt. %. The kinetics of the ORR at the Pt/C electrode was examined in 0.50 mol dm-3 HClO4 solution in the temperature range from 274 to 318 K. At all temperatures, two distinct E–log j regions were observed; at low current densities with a slope of –2.3RT/F and at high current densities with a slope of –2.3´2RT/F. In order to confirm the mechanism of oxygen reduction previously suggested at a polycrystalline Pt and a Pt/Ebonex nanostructured electrode, the apparent enthalpies of activation at selected potentials vs. the reversible hydrogen electrode were calculated in both current density regions. Although ∆Ha,1≠ > ∆Ha,h≠, it was found that the enthalpies of activation at the zero Galvani potential difference were the same and hence it could be concluded that the rate-determining step of the ORR was the same in both current density regions. The synthesized Pt/C catalyst showed a small enhancement in the catalytic activity for ORR in comparison to the polycrystalline Pt, but no change in the mechanism of the reaction.

  17. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnO{sub x}) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lomocso, Thegy L. [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada); Baranova, Elena A., E-mail: elena.baranova@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2011-10-01

    Highlights: > Oxidation of NH{sub 3} is investigated on carbon-supported Pt and PtM (M = Pd, Ir, SnO{sub x}) nanoparticles. > Carbon supported PtPd and PtIr nanoparticles show higher catalytic activity if compared to Pt nanocatalyst. > Pt{sub 7}Ir{sub 3} nanoparticles combine good catalytic activity and enhanced stability for NH{sub 3} oxidation. > Electronic effect between two metals in PtIr is responsible for increase in the catalytic activity. - Abstract: Ammonia electro-oxidation was studied in alkaline solution on carbon-supported Pt and bimetallic Pt{sub y}M{sub 1-y} (M = Pd, Ir, SnO{sub x} and y = 70, 50 at.%) nanoparticles. Catalysts were synthesized using the modified polyol method and deposited on carbon, resulting in 20 wt.% of metal loading. Particle size, structure and surface composition of the particles were investigated using TEM, XRD and XPS. Mean size of PtM bi-metallic nanoparticles varied between 2.0 and 4.7 nm, depending on the second metal (M). XRD revealed the structure of all bi-metallic particles to be face-centered cubic and confirmed alloy formation for Pt{sub y}Pd{sub 1-y} (y = 70, 50 at.%) and Pt{sub 7}Ir{sub 3}nanoparticles, as well as partial alloying between Pt and SnO{sub x}. Electrochemical behaviour of ammonia on Pt and PtM nanoparticles is comparable to that expected for bulk Pt and PtM alloys. Addition of Pd to Pt at the nanoscale decreased the onset potential of ammonia oxidation if compared to pure platinum nanoparticles; however stability of the catalyst was poor. For Pt{sub 7}(SnO{sub x}){sub 3}, current densities were similar to Pt, whereas catalyst stability against deactivation was improved. It is found that carbon supported Pt{sub 7}Ir{sub 3} nanoparticles combine good catalytic activity with enhanced stability for ammonia electro-oxidation. Electronic effect generated between two metals in the bimetallic nanoparticles might be responsible for increase in the catalytic activity of Pd- and Ir-containing catalysts, causing

  18. Formic acid electro-oxidation on carbon supported Pd{sub x}Pt{sub 1-x} (0 {>=} x {>=} 1) nanoparticles synthesized via modified polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Baranova, Elena A., E-mail: elena.baranova@uottawa.c [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur St., Ottawa, ON, K1N 6N5 (Canada); Miles, Neil [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur St., Ottawa, ON, K1N 6N5 (Canada); Mercier, Patrick H.J.; Le Page, Yvon; Patarachao, Bussaraporn [Institute for Chemical Process and Environmental Technology, National Research Council Canada, 1200 Montreal Rd., Ottawa, ON, K1A 0R6 (Canada)

    2010-11-30

    Carbon supported nanoparticle catalysts of Pd{sub x}Pt{sub 1-x} (0 {>=} x {>=} 1) were synthesized using a modified polyol method and poly(N-vinyl-2-pyrrolidone) (PVP) as a stabilizer. Resulting nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperommetry (CA) study for formic acid electro-oxidation. Surface composition of the synthesized nanoparticles found from XPS revealed the Pt surface segregation even for the Pd-rich compositions. It is suggested that the surface segregation behavior in PdPt nanoparticles supported on carbon may be influenced, in addition to the difference in Pd and Pt surface energies, by particle size and particle interaction with the support. According to CA, the carbon supported Pd nanoparticles show the highest initial activity towards formic acid electro-oxidation at the potential of 0.3 V (RHE), due to the promotion of the direct dehydrogenation mechanism. However its stability is quite poor resulting in the fast deactivation of the Pd surface. Addition of Pt considerably improves the steady-state activity of Pd in 12 h CA experiment. CA measurements show that the most active catalyst is Pd{sub 0.5}Pt{sub 0.5} of 4 nm size, which displays narrow size distribution and Pd to Pt surface atomic ratio of 27-73.

  19. Effect of reduction enhancer on a radiolytic synthesis of carbon-supported Pt–Cu nanoparticles and their structural and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kugai, Junichiro, E-mail: jkugai@kobe-kosen.ac.jp [Kobe City College of Technology, Department of Applied Chemistry (Japan); Kubota, Chihiro; Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi [Osaka University, Graduate School of Engineering (Japan); Nitani, Hiroaki [High Energy Accelerator Research Organization, Institute of Materials Structure Science (IMSS) (Japan); Yamamoto, Takao A. [Osaka University, Graduate School of Engineering (Japan)

    2015-06-15

    In order to clarify the effect of reduction enhancer on the nanoparticle formation process and their structural and catalytic properties, carbon-supported Pt–Cu nanoparticles were synthesized by electron beam irradiation on an aqueous precursor solution in the presence/absence of reduction enhancer. In the absence of reduction enhancer, tetravalent platinum oxide particles of approximately 1 nm in diameter were formed on carbon support with copper barely precipitated, while in the presence of 2-propanol or ethylene glycol or glucose both platinum and copper precipitated as few-nanometer-sized alloy particles together with copper oxides. It was suggested that the metal nuclei produced upon electron beam irradiation do not have enough lifetime without reduction enhancer due to fast oxidation of the nuclei by oxidizing radicals, while the reduction enhancer scavenges these oxidizing radicals preventing oxidation of metallic clusters and prolonging their lifetime. Ethylene glycol gave smaller and better alloyed particles with less copper oxides compared to 2-propanol since the carbonyl compounds derived from oxidation of ethylene glycol protect metallic clusters from oxidation further prolonging their lifetime. In the electrochemical measurements, the methanol oxidation activities of Pt–Cu/C catalysts were well explained by their structural characteristics.

  20. Surface sites on carbon-supported Ru, Co and Ni nanoparticles as determined by microcalorimetry of CO adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Cerro-Alarcon, M. [Departamento de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, UNED, C/Senda del Rey no 9, 28040 Madrid (Spain); Grupo de Diseno y Aplicacion de Catalizadores Heterogeneos, Unidad Asociada UNED-ICP(CSIC) (Spain); Maroto-Valiente, A. [Grupo de Diseno y Aplicacion de Catalizadores Heterogeneos, Unidad Asociada UNED-ICP(CSIC) (Spain); Instituto de Catalisis y Petroleoquimica, CSIC, C/Marie Curie no 2, Campus de Cantoblanco, 28049 Madrid (Spain); Rodriguez-Ramos, I. [Grupo de Diseno y Aplicacion de Catalizadores Heterogeneos, Unidad Asociada UNED-ICP(CSIC) (Spain); Instituto de Catalisis y Petroleoquimica, CSIC, C/Marie Curie no 2, Campus de Cantoblanco, 28049 Madrid (Spain); Guerrero-Ruiz, A. [Departamento de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, UNED, C/Senda del Rey no 9, 28040 Madrid (Spain) and Grupo de Diseno y Aplicacion de Catalizadores Heterogeneos, Unidad Asociada UNED-ICP (CSIC) (Spain)]. E-mail: aguerrero@ccia.uned.es

    2005-08-15

    The adsorption of CO on carbon-supported metal (Ru, Co and Ni) catalysts was studied by microcalorimetry. A correlation of the results thus obtained with those reported for monocrystals or with other studies available in the scientific literature for supported metal catalysts, including infrared spectroscopy data, enables the determination of the type of exposed crystalline planes and/or of the different types of CO adsorbed species. The results obtained suggest that the energetic distribution of the surface sites depends on the carbon support material and on the applied reduction treatment. In this way, the use of a high surface area graphite (clean of surface oxygen groups) leads to an electron density enrichment on the small metal particles (Ru) and, in general, to a higher heterogeneity of the active surface sites. The elimination of surface oxygen functional groups (with the reduction treatment at the higher temperature) of the carbon molecular sieve support leads to changes in the surface structure of the metal particles and, consequently, to higher CO adsorption heats, particularly for Ru and Co.

  1. TiN@nitrogen-doped carbon supported Pt nanoparticles as high-performance anode catalyst for methanol electrooxidation

    Science.gov (United States)

    Zhang, Jun; Ma, Li; Gan, Mengyu; Fu, Shenna; Zhao, Yi

    2016-08-01

    In this paper, TiN@nitrogen-doped carbons (NDC) composed of a core-shell structure are successfully prepared through self-assembly and pyrolysis treatment using γ-aminopropyltriethoxysilane as coupling agent, polyaniline as carbon and nitrogen source, respectively. Subsequently, TiN@NDC supporting Pt nanoparticles (Pt/TiN@NDC) are obtained by a microwave-assisted polyol process. The nitrogen-containing functional groups and TiN nanoparticles play a critical role in decreasing the average particle size of Pt and improving the electrocatalytic activity of Pt/TiN@NDC. Transmission electron microscope results reveal that Pt nanoparticles are uniformly dispersed in the TiN@NDC surface with a narrow particle size ranging from 1 to 3 nm in diameter. Moreover, the Pt/TiN@NDC catalyst shows significantly improved catalytic activity and high durability for methanol electrooxidation in comparison with Pt/NDC and commercial Pt/C catalysts, revealed by cyclic voltammetry and chronoamperometry. Strikingly, this novel Pt/TiN@NDC catalyst reveals a better CO tolerance related to Pt/NDC and commercial Pt/C catalysts, which due to the bifunctional mechanism and strong metal-support interaction between Pt and TiN@NDC. In addition, the probable reaction steps for the electrooxidation of CO adspecies on Pt NPs on the basis of the bifunctional mechanism are also proposed. These results indicate that the TiN@NDC is a promising catalyst support for methanol electrooxidation.

  2. Carbon supported nanoparticles Pt Ru (Pt Ru/C electrocatalysts) prepared using electron beam irradiation; Preparacao de nanoparticulas de PtRu suportadas em carbono (eletrocatalisadores PtRu/C) utilizando feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F. da; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Programa de Celulas a Combustivel], e-mail: espinace@ipen.br, e-mail: dfsilva@ipen.br

    2006-07-01

    Carbon-supported Pt Ru (electrocatalysts PtRu/C nanoparticles) were prepared submitting a water/ethylene glycol mixture containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The PtRu/C electrocatalysts were characterized by EDX, XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts were more active for methanol electro-oxidation than the commercial PtRu/C ETEK electrocatalyst at ambient temperature. (author)

  3. Structural and surface coverage effects on CO oxidation reaction over carbon-supported Pt nanoparticles studied by quadrupole mass spectrometry and diffuse reflectance FTIR spectroscopy.

    Science.gov (United States)

    Cheah, Seng Kian; Bernardet, Véronique P; Franco, Alejandro A; Lemaire, Olivier; Gelin, Patrick

    2016-06-01

    The CO oxidation reaction on carbon-supported Pt nanoparticles (average size of 2.8 to 7.7 nm) was studied under flowing conditions at atmospheric pressure and temperatures between 300 and 353 K by coupling quadrupole mass spectrometry (QMS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The Pt loading was varied between 20 and 60 wt%. Gases diluted in He (0.5 mol%) were used together with Ar as a tracer. Reactions with CO and O2 introduced separately onto the samples were studied by QMS, applying successive step changes of the reaction mixtures. Variations in the rate of the reactions were observed and correlated with changes of the calculated coverage of the Pt surface by CO and/or O adspecies at varying steps of the experiment. The transient reaction of CO(g) with adsorbed O (Oad) was fast and mass transport-limited while that of O2(g) with adsorbed CO (COad) was sluggish. Following the same experimental procedures, FTIR spectra of adsorbed CO after varying steps were recorded, confirming the variations of COad and Oad as determined by QMS and indicating changes in the CO distribution over varying types of Pt surface sites. The influence of the adlayer composition (co-adsorption of COad and Oad), the particle size/structure and some possible surface reconstruction effects on the CO oxidation rate were evidenced and discussed. The structure of the Pt nanoparticles supported on carbon appears as an important factor for the efficiency of the so-called O2 bleeding as a CO mitigation strategy in polymer electrolyte membrane fuel cells.

  4. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    Science.gov (United States)

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  5. Preparation of flat carbon support films

    NARCIS (Netherlands)

    Koning, RI; Oostergetel, GT; Brisson, A

    2003-01-01

    Wrinkling of carbon support films is known to limit the resolution of electron microscopy images of protein two-dimensional crystals. The origin of carbon wrinkling during preparation of the support films was investigated by reflected light microscopy. We observed that carbon films go through severa

  6. Nanoporous carbon supported metal particles: their synthesis and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yunxia, E-mail: yunxia.yang@csiro.au; Tang Liangguang; Burke, Nick; Chiang, Ken [CSIRO Earth Science and Resource Engineering (Australia)

    2012-08-15

    In the current work, a simplified hard templating approach is used to synthesise metal (Ag, Rh, Ir and Pt) containing structured carbon. The target metals are first introduced into the NaY zeolite template by wetness impregnation. The metals are carried in the super cages of the zeolite and subsequently embedded in the final structures after the steps of carbonisation and the template removal. Scanning electron microscopy images have confirmed that the carbon structures produced by this method retain the morphology of the original template. Transmission electron microscopy reveals the presence of dispersed metal particles in all the carbon structures produced. The metal loadings in these templated structures can reach 35 wt% without significant losses of surface areas and pore volumes. Selected carbon supported metals are tested for their catalytic activity for the methanation of carbon monoxide. The finding suggested that this method is effective in preparing metal nanoparticles for use as catalysts.

  7. Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Wu, Renbing; Xue, Yanhong; Liu, Bo; Zhou, Kun; Wei, Jun; Chan, Siew Hwa

    2016-10-01

    Highly efficient and cost-effective electrocatalyst for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications. Herein, strongly coupled hybrid composites composed of cobalt diselenide (CoSe2) nanoparticles embedded within graphitic carbon polyhedra (GCP) as high-performance ORR catalyst have been rationally designed and synthesized. The catalyst is fabricated by a convenient method, which involves the simultaneous pyrolysis and selenization of preformed Co-based zeolitic imidazolate framework (ZIF-67). Benefiting from the unique structural features, the resulting CoSe2/GCP hybrid catalyst shows high stability and excellent electrocatalytic activity towards ORR (the onset and half-wave potentials are 0.935 and 0.806 V vs. RHE, respectively), which is superior to the state-of-the-art commercial Pt/C catalyst (0.912 and 0.781 V vs. RHE, respectively).

  8. Carbon-Supported PtRuMo Electrocatalysts for Direct Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    José L.G. Fierro

    2013-10-01

    Full Text Available The review article discusses the current status and recent findings of our investigations on the synthesis and characterization of carbon-supported PtRuMo electrocatalysts for direct alcohol fuel cells. In particular, the effect of the carbon support and the composition on the structure, stability and the activity of the PtRuMo nanoparticles for the electrooxidation of CO, methanol and ethanol have been studied. Different physicochemical techniques have been employed for the analysis of the catalysts structures: X-ray analytical methods (XRD, XPS, TXRF, thermogravimetry (TGA and transmission electron microscopy (TEM, as well as a number of electrochemical techniques like CO adsorption studies, current-time curves and cyclic voltammetry measurements. Furthermore, spectroscopic methods adapted to the electrochemical systems for in situ studies, such as Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS, have been used to evaluate the oxidation process of CO, methanol and ethanol over the carbon-supported PtRuMo electrocatalysts.

  9. Oxidation of Carbon Supports at Fuel Cell Cathodes: Differential Electrochemical Mass Spectrometric Study

    Science.gov (United States)

    Li, Ming-fang; Tao, Qian; Liao, Ling-wen; Xu, Jie; Cai, Jun; Chen, Yan-xia

    2010-08-01

    The effects of O2 and the supported Pt nano-particles on the mechanisms and kinetics of the carbon support corrosion are investigated by monitoring the CO2 production using differential electrochemical mass spectrometry in a dual-thin layer flow cell. Carbon can be oxidized in different distinct potential regimes; O2 accelerates carbon oxidation, the rates of CO2 production from carbon oxidation in O2 saturated solution are two times of that in N2 saturated solution at the same potential; Pt can catalyze the carbon oxidation, with supported Pt nanoparticles, the overpotential for carbon oxidation is much smaller than that without loading in the carbon electrode. The mechanism for the enhanced carbon oxidation by Pt and O2 are discussed.

  10. Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer-Tropsch to olefins reaction

    NARCIS (Netherlands)

    Oschatz, M.; Krans, N.A.; Xie, J.; de Jong, K.P.

    2016-01-01

    The Fischer–Tropsch to olefins (FTO) process is a method for the direct conversion of synthesis gas to lower C2–C4 olefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction. The catalytic activity can be improved and undesired formation of alkanes can be suppres

  11. Effect of counterpart metals in carbon-supported Pt-based catalysts prepared using radiation chemical method

    Science.gov (United States)

    Okazaki, Tomohisa; Seino, Satoshi; Matsuura, Yoshiyuki; Otake, Hiroaki; Kugai, Junichiro; Ohkubo, Yuji; Nitani, Hiroaki; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    The process of nanoparticle formation by radiation chemical synthesis in a heterogeneous system has been investigated. Carbon-supported Pt-based bimetallic nanoparticles were synthesized using a high-energy electron beam. Rh, Cu, Ru, and Sn were used as counterpart metals. The nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry, transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. PtRh formed a uniform random alloy nanoparticle, while Cu partially formed an alloy with Pt and the remaining Cu existed as CuO. PtRu formed an alloy structure with a composition distribution of a Pt-rich core and Ru-rich shell. No alloying was observed in PtSn, which had a Pt-SnO2 structure. The alloy and oxide formation mechanisms are discussed considering the redox potentials, the standard enthalpy of oxide formation, and the solid solubilities of Pt and the counterpart metals.

  12. Catalytic removal of carbon monoxide over carbon supported palladium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Avanish Kumar [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Saxena, Amit [Centre for Fire Explosive and Environmental Safety, Timarpur, Delhi-110054 (India); Shah, Dilip; Mahato, T.H. [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Singh, Beer, E-mail: beerbs5@rediffmail.com [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Shrivastava, A.R.; Gutch, P.K. [Defence Research and Development Establishment, Jhansi Road, Gwalior-474002 (MP) (India); Shinde, C.P. [School of Studies in Chemistry, Jiwaji University, Gwalior-474002 (MP) (India)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Carbon supported palladium (Pd/C) catalyst was prepared. Black-Right-Pointing-Pointer Catalytic removal of CO over Pd/C catalyst was studied under dynamic conditions. Black-Right-Pointing-Pointer Effects of Pd %, CO conc., humidity, GHSV and reaction environment were studied. - Abstract: Carbon supported palladium (Pd/C) catalyst was prepared by impregnation of palladium chloride using incipient wetness technique, which was followed by liquid phase reduction with formaldehyde. Thereafter, Pd/C catalyst was characterized using X-ray diffractometery, scanning electron microscopy, atomic absorption spectroscopy, thermo gravimetry, differential scanning calorimetry and surface characterization techniques. Catalytic removal of carbon monoxide (CO) over Pd/C catalyst was studied under dynamic conditions. Pd/C catalyst was found to be continuously converting CO to CO{sub 2} through the catalyzed reaction, i.e., CO + 1/2O{sub 2} {yields} CO{sub 2}. Pd/C catalyst provided excellent protection against CO. Effects of palladium wt%, CO concentration, humidity, space velocity and reaction environment were also studied on the breakthrough behavior of CO.

  13. Preparation of catalyst for a polymer electrolyte fuel cell using a novel spherical carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Mika; Okubo, Atsuhiko; Kobayashi, Yoshio [Department of Biomolecular Functional Engineering, Faculty of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Yamamoto, Shun [Material and Biological Sciences, Graduate School of Science and Engineering, Faculty of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Kikuchi, Mayuko; Nishitani-Gamo, Mikka [Department of Applied Chemistry, Faculty of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uno, Katsuhiro [Department of Media and Telecommunications Engineering, Faculty of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Ando, Toshihiro [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2010-09-15

    In this study, the support Pt catalyst was supported by a novel spherical carbon using a convenient technique. Two different preparation methods utilizing a nanocolloidal solution method without heat treatment were developed (methods 1 and 2). The scanning electron microscope (SEM) and transmission electron microscope (TEM) observations showed that the Pt nanoparticles (particle size) were supported, with higher dispersion being achieved with method 2 than method 1. The peak of the Pt metal was confirmed from the X-ray diffraction (XRD) measurement. Based on the inductively coupled plasma mass spectrometry (ICP-MS) measurements, Pt loading was 19.5 wt.% in method 1 and approximately 50 wt.% in method 2. The Pt specific surface area of the Pt/novel spherical carbon catalyst calculated from the cyclic voltammetry (CV) measurement result was larger than that of the commercially available Pt/Ketjen catalyst. These results indicated that the Pt nanoparticles were supported in high dispersion without heat treatment using novel spherical carbon as a carbon support. (author)

  14. Selective Oxidation of Glycerol over Carbon-Supported AuPd Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ketchie,W.; Murayama, M.; Davis, R.

    2007-01-01

    Carbon-supported AuPd bimetallic nanoparticles were synthesized, characterized, and evaluated as catalysts in the aqueous-phase selective oxidation of glycerol. The bimetallic catalysts were synthesized by two different methods. The first method involved the deposition of Au onto the surface of 3-nm supported Pd particles by catalytic reduction of HAuCl{sub 4} in aqueous solution by H{sub 2}. The second method used the formation of a AuPd sol that was subsequently deposited onto a carbon support. Characterization of the catalysts using analytical transmission electron microscopy, H{sub 2} titration, and X-ray absorption spectroscopy at the Au L{sub III} and Pd K-edges confirmed that the first synthesis method successfully deposited Au onto the Pd particles. Results from the AuPd sol catalyst also revealed that Au was preferentially located on the surface. Measurement of glycerol oxidation rates (0.3 M glycerol, 0.6 M NaOH, 10 atm O{sub 2}, 333 K) in a semibatch reactor gave a turnover frequency (TOF) of 17 s{sup -1} for monometallic Au and 1 s{sup -1} for monometallic Pd, with Pd exhibiting a higher selectivity to glyceric acid. Although the activity of the bimetallic AuPd catalysts depended on the amount of Au present, none of them had a TOF greater than that of the monometallic Au catalyst. However, the AuPd catalysts had higher selectivity to glyceric acid compared with the monometallic Au. Because a physical mixture of monometallic Au and Pd catalysts also gave higher selectivity to glyceric acid, the Pd is proposed to catalyze the decomposition of the side product H{sub 2}O{sub 2} that is also formed over the Au but is detrimental to the selectivity toward glyceric acid.

  15. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Harvey, David; Dutta, Monica; Colbow, Vesna

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  16. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    Energy Technology Data Exchange (ETDEWEB)

    A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  17. Metal oxide coating of carbon supports for supercapacitor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Tribby, Louis, J (University of New Mexico, Albuquerque, NM); Lakeman, Charles D. E. (TPL, Inc., Albuquerque, NM); Han, Sang M. (University of New Mexico, Albuquerque, NM); Lambert, Timothy N.; Fleig, Patrick F. (TPL, Inc., Albuquerque, NM)

    2008-07-01

    The global market for wireless sensor networks in 2010 will be valued close to $10 B, or 200 M units. TPL, Inc. is a small Albuquerque based business that has positioned itself to be a leader in providing uninterruptible power supplies in this growing market with projected revenues expected to exceed $26 M in 5 years. This project focused on improving TPL, Inc.'s patent-pending EnerPak{trademark} device which converts small amounts of energy from the environment (e.g., vibrations, light or temperature differences) into electrical energy that can be used to charge small energy storage devices. A critical component of the EnerPak{trademark} is the supercapacitor that handles high power delivery for wireless communications; however, optimization and miniaturization of this critical component is required. This proposal aimed to produce prototype microsupercapacitors through the integration of novel materials and fabrication processes developed at New Mexico Technology Research Collaborative (NMTRC) member institutions. In particular, we focused on developing novel ruthenium oxide nanomaterials and placed them into carbon supports to significantly increase the energy density of the supercapacitor. These improvements were expected to reduce maintenance costs and expand the utility of the TPL, Inc.'s device, enabling New Mexico to become the leader in the growing global wireless power supply market. By dominating this niche, new customers were expected to be attracted to TPL, Inc. yielding new technical opportunities and increased job opportunities for New Mexico.

  18. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  19. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation.

    Science.gov (United States)

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-20

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  20. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    Science.gov (United States)

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  1. On the role of reactant transport and (surface) alloy formation for the CO tolerance of carbon supported PtRu polymer electrolyte fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J.; Colmenares, L.; Jusys, Z.; Behm, R.J. [Abt. Oberflaechenchemie und Katalyse, Universitaet Ulm (Germany); Moertel, R.; Boennemann, H. [Max-Planck-Institut fuer Kohlenforschung, Muelheim a.d. Ruhr (Germany); Koehl, G.; Modrow, H.; Hormes, J. [Physikalisches Institut, Universitaet Bonn (Germany)

    2006-07-15

    The role of atomic scale intermixing for the electrocatalytic activity of bimetallic PtRu anode catalysts in reformate operated polymer electrolyte fuel cells (PEFC) was investigated, exploiting the specific properties of colloid based catalyst synthesis for the selective preparation of alloyed and non-alloyed bimetallic catalysts. Three different carbon supported PtRu catalysts with different degrees of Pt and Ru intermixing, consisting of (i) carbon supported PtRu alloy particles (PtRu/C), (ii) Pt and Ru particles co-deposited on the same carbon support (Pt+Ru/C), and (iii) a mixture of carbon supported Pt and carbon supported Ru (Pt/C+Ru/C) as well as the respective monometallic Pt/C and Ru/C catalysts were prepared and characterized by electron microscopy (TEM), X-ray absorption spectroscopy, and CO stripping. Their performance as PEFC anode catalysts was evaluated by oxidation of a H{sub 2}/2%CO gas mixture (simulated reformate) under fuel cell relevant conditions (elevated temperature, continuous reaction and controlled reactant transport) in a rotating disk electrode (RDE) set-up. The CO tolerance and H{sub 2} oxidation activity of the three catalysts is comparable and distinctly different from that of the monometallic catalysts. The results indicate significant transport of the reactants, CO{sub ad} and/or OH{sub ad}, between Pt and Ru surface areas and particles for all three catalysts, with only subtle differences from the alloy catalyst to the physical mixture. The high activity and CO tolerance of the bimetallic catalysts, through the formation of bimetallic surfaces, is explained, e.g., by contact formation in nanoparticle agglomerates or by material transport and subsequent surface decoration/surface alloy formation during catalyst preparation, conditioning, and operation. The instability and mobility of the catalysts under these conditions closely resembles concepts in gas phase catalysis. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Activated Carbon-Supported Palladized Iron Nanoparticles: Applications to Contaminated Site Remediation

    Science.gov (United States)

    This chapter describes the potential of nanotechnology to provide new solutions to managing and cleaning our contaminated water and soil and improving the performance of conventional technologies used in cleanup efforts. Our initial efforts have been focused on key pollutants of ...

  3. Study on hydrogen evolution performance of the carbon supported PtRu alloy film electrodes

    Institute of Scientific and Technical Information of China (English)

    YANG; Bin; LI; Yang; ZAN; Lin-han

    2005-01-01

    The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.

  4. Nitrogen-doped carbon-supported cobalt-iron oxygen reduction catalyst

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang

    2014-04-29

    A Fe--Co hybrid catalyst for oxygen reaction reduction was prepared by a two part process. The first part involves reacting an ethyleneamine with a cobalt-containing precursor to form a cobalt-containing complex, combining the cobalt-containing complex with an electroconductive carbon supporting material, heating the cobalt-containing complex and carbon supporting material under conditions suitable to convert the cobalt-containing complex and carbon supporting material into a cobalt-containing catalyst support. The second part of the process involves polymerizing an aniline in the presence of said cobalt-containing catalyst support and an iron-containing compound under conditions suitable to form a supported, cobalt-containing, iron-bound polyaniline species, and subjecting said supported, cobalt-containing, iron bound polyaniline species to conditions suitable for producing a Fe--Co hybrid catalyst.

  5. nanoparticles

    Science.gov (United States)

    Zhao, Yu; Li, Hui; Liu, Xu-Jun; Guan, Lei-Lei; Li, Yan-Li; Sun, Jian; Ying, Zhi-Feng; Wu, Jia-Da; Xu, Ning

    2014-06-01

    Evenly separated crystalline CuIn0.8Ga0.2Se2 (CIGS) nanoparticles are deposited on ITO-glass substrate by pulsed laser deposition. Such CIGS layers are introduced between conjugated polymer layers and ITO-glass substrates for enhancing light absorbance of polymer solar cells. The P3HT:PCBM absorbance between 300 and 650 nm is enhanced obviously due to the introduction of CIGS nanoparticles. The current density-voltage curves of a P3HT:PCBM/CIGS solar cell demonstrate that the short-circuit current density is improved from 0.77 to 1.20 mA/cm2. The photoluminescence spectra show that the excitons in the polymer are obviously quenched, suggesting that the charge transfer between the P3HT:PCBM and CIGS occurred. The results reveal that the CIGS nanoparticles may exhibit the localized surface plasmon resonance effect just as metallic nanostructures.

  6. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2016-01-01

    behavior of Nafion ionomer on platinized carbon nano fibers (CNFs), carbon nano tubes (CNTs) and amorphous carbon (Vulcan). The interaction is affected by the catalyst surface oxygen groups as well as porosity. Comparisons between the carbon supports and platinized equivalents are carried out. It reveals......, the ionomer may have an adsorption preference to the platinum nano particle rather than to the overall catalyst. This was verified by a close examination on the decomposition temperature of the carbon support and the ionomer. The electrochemical stability of the catalyst ionomer composite electrode suggests...

  7. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  8. Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells

    CERN Document Server

    Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

    2006-01-01

    The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

  9. A novel route to graphite-like carbon supporting SnO2 with high electron transfer and photocatalytic activity.

    Science.gov (United States)

    Chen, Xianjie; Liu, Fenglin; Liu, Bing; Tian, Lihong; Hu, Wei; Xia, Qinghua

    2015-04-28

    Mesoporous graphite-like carbon supporting SnO2 (carbon-SnO2) nanocomposites were prepared by a modified solvothermal method combined with a post-calcination at 500°C under a nitrogen atmosphere. The polyvinylpyrrolidone not only promotes the nucleation and crystallization, but also provides the carbon source in the process. The results of scanning electron microscopy and transmission electron microscopy show a uniform distribution of SnO2 nanoparticles on the graphite- like carbon surface. Raman and X-ray photoelectron spectra indicate the presence of strong C-Sn interaction between SnO2 and graphite-like carbon. Photoelectrochemical measurements confirm that the effective separation of electron-hole pairs on the carbon-SnO2 nanocomposite leads to a high photocatalytic activity on the degradation of Rhodamine B and glyphosate under simulated sunlight irradiation. The nanocomposite materials show a potential application in dealing with the environmental and industrial contaminants under sunlight irradiation.

  10. Ultrasensitive enzyme-free immunoassay for squamous cell carcinoma antigen using carbon supported Pd-Au as electrocatalytic labels.

    Science.gov (United States)

    Gao, Jian; Du, Bin; Zhang, Xiaoyue; Guo, Aiping; Zhang, Yong; Wu, Dan; Ma, Hongmin; Wei, Qin

    2014-06-23

    A novel nonenzymatic sandwich-type electrochemical immunosensor has been developed to detect squamous cell carcinoma antigen (SCCA). Nitrogen-doped graphene sheet (N-GS) was used to increase capacity of capturing primary antibodies (Ab1). Carbon-supported Pd-Au binary nanoparticles (Pd-Au/C) were synthesized and used to label secondary antibodies (Ab2). The specific binding of SCCA and antibodies enabled a quantitative attachment of Pd-Au/C on the electrode surface. Electrocatalytic analysis showed that the prepared Pd-Au/C exhibit excellent electrocatalytic activity towards hydrogen peroxide (H2O2). We use current response of electrocatalytic labels Pd-Au/C to detect the concentration of SCCA. The unique nonenzymatic immunosensor exhibits a relatively wide linear range from 0.005 to 2 ng mL(-1) and high sensitivity with a low detection limit of 1.7 pg mL(-1). The immunsensor also shows good reproducibility (4.2%) and stability (5.8%), which makes it an enormous application prospect in clinical research.

  11. The structural characterization and H(2) sorption properties of carbon-supported Mg(1-x)Nix nanocrystallites.

    Science.gov (United States)

    Bogerd, René; Adelhelm, Philipp; Meeldijk, Johannes H; de Jong, Krijn P; de Jongh, Petra E

    2009-05-20

    Magnesium (hydride) is a promising system for the reversible on-board storage of hydrogen, but suffers from slow sorption kinetics and a high thermodynamic stability of the hydride. We explored a combined approach to tackle these problems: nanosizing and carbon-supporting the magnesium, and doping it with nickel. Samples were prepared by melt infiltration with magnesium of nanoporous carbon onto which 1-12 wt% nickel nanoparticles had been predeposited. For loadings up to 15 wt% MgH2, 10-30 nm crystallites with different compositions were formed inside the porous carbon, each giving a specific H2 desorption signature. Surprisingly, higher Mg loadings resulted in more homogeneously mixed samples, which was due to the facilitated wetting of the carbon with the magnesium due to the presence of nickel. Hydrogen release temperatures close to that of Mg2NiH4 were observed for high MgH2 loadings (50 wt%) and small amounts of Ni (Mg(0.95)Ni(0.05)). The favourable H2 desorption properties could mainly be attributed to excellent kinetics due to the efficient mixing of magnesium, nickel and carbon on the nanoscale.

  12. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  13. A novel route to graphite-like carbon supporting SnO{sub 2} with high electron transfer and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xianjie; Liu, Fenglin; Liu, Bing [Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Hubei University, Wuhan 430062 (China); Ministry of Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Tian, Lihong, E-mail: tian7978@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Hubei University, Wuhan 430062 (China); Ministry of Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Hu, Wei; Xia, Qinghua [Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Hubei University, Wuhan 430062 (China); Ministry of Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2015-04-28

    Highlights: • Mesoporous nanocomposites that graphite-like carbon supporting SnO{sub 2} are prepared by solvothermal method combined with a post- calcination. • The polyvinylpyrrolidone not only promotes the nucleation and crystallization but also provides the carbon source in the process. • The graphite-like carbon hinders the recombination of photogenerated electron and holes efficiently. • The mesoporous carbon–SnO{sub 2} nanocomposite shows high photocatalytic activity on the degradation of Rhodamine B and glyphosate under simulated sunlight. - Abstract: Mesoporous graphite-like carbon supporting SnO{sub 2} (carbon–SnO{sub 2}) nanocomposites were prepared by a modified solvothermal method combined with a post-calcination at 500 °C under a nitrogen atmosphere. The polyvinylpyrrolidone not only promotes the nucleation and crystallization, but also provides the carbon source in the process. The results of scanning electron microscopy and transmission electron microscopy show a uniform distribution of SnO{sub 2} nanoparticles on the graphite- like carbon surface. Raman and X-ray photoelectron spectra indicate the presence of strong C–Sn interaction between SnO{sub 2} and graphite-like carbon. Photoelectrochemical measurements confirm that the effective separation of electron–hole pairs on the carbon–SnO{sub 2} nanocomposite leads to a high photocatalytic activity on the degradation of Rhodamine B and glyphosate under simulated sunlight irradiation. The nanocomposite materials show a potential application in dealing with the environmental and industrial contaminants under sunlight irradiation.

  14. Structural, optical and magnetic properties of cobalt-doped CdSe nanoparticles

    Indian Academy of Sciences (India)

    Jaspal Singh; N K Verma

    2014-05-01

    Pure and Co-doped CdSe nanoparticles have been synthesized by hydrothermal technique. The synthesized nanoparticles have been characterized using X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV–Visible), photoluminescence spectroscopy (PL), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID), at room temperature. From XRD analysis, pure and cobalt-doped CdSe nanoparticles have been found to be polycrystalline in nature and possess zinc blende phase having cubic structure. In addition to this, some peaks related to secondary phase or impurities such as cobalt diselenide (CoSe2) have also been observed. The calculated average crystallite size of the nanoparticles lies in the range, 3–21 nm, which is consistent with the results obtained from TEM analysis. The decrease in average crystallite size and blue shift in the band gap has been observed with Co-doping into the host CdSe nanoparticles. The magnetic analysis shows the ferromagnetic behaviour up to 10% of Co-doping concentration. The increase of Co content beyond 10% doping concentration leads to antiferromagnetic interactions between the Co ions, which suppress the ferromagnetism.

  15. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures....... spectroscopy were applied for determining the carburization temperature and evaluating the composition of the carbide clusters of different samples through determinations of the Mo-C and Mo-Mo coordination numbers....

  16. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    improve the oxygen reduction kinetics due to increased oxygen solubility and suppressed adsorption of phosphoric acid anions. Further enhancement of the catalytic activity can be obtained by operating the polymer electrolytes at higher temperatures. Efforts have been made to develop a polymer electrolyte......Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...

  17. Microwave-assisted synthesis of carbon-supported carbides catalysts for hydrous hydrazine decomposition

    Science.gov (United States)

    Mnatsakanyan, Raman; Zhurnachyan, Alina R.; Matyshak, Valery A.; Manukyan, Khachatur V.; Mukasyan, Alexander S.

    2016-09-01

    Microwave-assisted synthesis of carbon-supported Mo2C and WC nanomaterials was studied. Two different routes were utilized to prepare MoO3 (WO3) - C precursors that were then subjected to microwave irradiation in an inert atmosphere. The effect of synthesis conditions, such as irradiation time and gas environment, was investigated. The structure and formation mechanism of the carbide phases were explored. As-synthesized nanomaterials exhibited catalytic activity for hydrous hydrazine (N2H4·H2O) decomposition at 30-70 °C. It was shown that the catalyst activity significantly increases if microwave irradiation is applied during the decomposition process. Such conditions permit complete conversion of hydrazine to ammonia and nitrogen within minutes. This effect can be attributed to the unique nanostructure of the catalysts that includes microwave absorbing carbon and active carbide constituents.

  18. Effect of Carbon Supported Pt Catalysts on Selective Hydrogenation of Cinnamaldehyde

    Directory of Open Access Journals (Sweden)

    Qing Han

    2016-01-01

    Full Text Available Selective hydrogenation of cinnamaldehyde (CAL to cinnamyl alcohol (COL is of both fundamental and industrial interest. It is of great significance to evaluate the possible differences between different supports arising from metal dispersion and electronic effects, in terms of activity and selectivity. Herein, Pt catalysts on different carbon supports including carbon nanotubes (CNTs and reduced graphene oxides (RGO were developed by a simple wet impregnation method. The resultant catalysts were well characterized by XRD, Raman, N2 physisorption, TEM, and XPS analysis. Applied in the hydrogenation of cinnamaldehyde, 3.5 wt% Pt/CNT shows much higher selectivity towards cinnamyl alcohol (62% than 3.5 wt% Pt/RGO@SiO2 (48%. The enhanced activity can be ascribed to the high graphitization degree of CNTs and high density of dispersed Pt electron cloud.

  19. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.

    Science.gov (United States)

    Yadav, Bholu Ram; Garg, Anurag

    2016-01-01

    The present study deals with the non-catalytic and catalytic wet oxidation (CWO) for the removal of persistent organic compounds from the pulping effluent. Two activated carbon-supported heterogeneous catalysts (Cu/Ce/AC and Cu/Mn/AC) were used for CWO after characterization by the following techniques: temperature-programmed reduction, Fourier transform infrared spectroscopy and thermo-gravimetric analysis. The oxidation reaction was performed in a batch high-pressure reactor (capacity = 0.7  L) at moderate oxidation conditions (temperature = 190°C and oxygen pressure = 0.9 MPa). With Cu/Ce/AC catalyst, the maximum chemical oxygen demand (COD), total organic carbon (TOC) and lignin removals of 79%, 77% and 88% were achieved compared to only 50% removal during the non-catalytic process. The 5-day biochemical oxygen demand (BOD5) to COD ratio (a measure for biodegradability) of the pulping effluent was improved to 0.52 from an initial value of 0.16. The mass balance calculations for solid recovered after CWO reaction showed 8% and 10% deduction in catalyst mass primarily attributed to the loss of carbon and metal leaching. After the CWO process, carbon deposition was also observed on the recovered catalyst which was responsible for around 3-4% TOC reduction.

  20. Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong Shari; Hensley, Alyssa J.; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  1. Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials.

    Science.gov (United States)

    Socaci, C; Pogacean, F; Biris, A R; Coros, M; Rosu, M C; Magerusan, L; Katona, G; Pruneanu, S

    2016-02-01

    The paper describes the preparation of supramolecular assemblies of tetrapyridylporphyrin (TPyP) and its metallic complexes with graphene oxide (GO) and thermally reduced graphene oxide (TRGO). The two carbon supports are introducing different characteristics in the absorption spectra of the investigated nanocomposites. Raman spectroscopy shows that the absorption of iron-tetrapyridylporphyrin is more efficient on GO than TRGO, suggesting that oxygen functionalities are involved in the non-covalent interaction between the iron-porphyrin and graphene. The biomimetic peroxidase activity is investigated and the two iron-containing composites exhibit a better catalytic activity than each component of the assembly, and their cobalt and manganese homologues, respectively. The main advantages of this work include the demonstration of graphene oxide as a very good support for graphene-based nanomaterials with peroxidase-like activity (K(M)=0.292 mM), the catalytic activity being observed even with very small amounts of porphyrins (the TPyP:graphene ratio=1:50). Its potential application in the detection of lipophilic antioxidants (vitamin E can be measured in the 10(-5)-10(-4) M range) is also shown.

  2. Carbon-supported platinum alloy catalysts for phenol hydrogenation for making industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.T.; Song, C.

    1999-07-01

    Phenol is available in large quantities in liquids derived from coal and biomass. Phenol hydrogenation is an industrially important reaction to produce cyclohexanone and cyclohexanol. Cyclohexane, cyclohexene and benzene are obtained as minor products in this reaction. Cyclohexanone is an important intermediate in the production of caprolactam for nylon 6 and cyclohexanol for adipic acid production. In USA, cyclohexanol and cyclohexanone are produced by benzene hydrogenation to cyclohexane over nickel or noble metal catalysts, followed by oxidation of cyclohexane to produce a mixture of cyclohexanol and cyclohexanone. Then cyclohexanol is dehydrogenated in the presence of Cu-Zn catalyst to cyclohexanone. Usually phenol hydrogenation is also carried out by using Ni catalyst in liquid phase. However, a direct single-step vapor phase hydrogenation of phenol to give cyclohexanone selectively is more advantageous in terms of energy savings and process economics, since processing is simplified and the endothermic step of cyclohexanol dehydrogenation can be avoided, as demonstrated by Montedipe and Johnson Matthey using promoted Pd/Al{sub 2}O{sub 3} catalyst. While it is not the purpose of this paper to dwell on the relative merits of these routes, it is necessary to mention that while using monometallic catalysts, generally the problem of catalyst deactivation of sintering as well as coking is frequently encountered. Addition and alloying of noble metal (e.g. Pt) with a second metal can result in a catalyst with better selectivity and activity in the reaction which is more resistant to deactivation. This paper presents the results on the single-step vapor phase hydrogenation of phenol over carbon-supported Pt-M (M=Cr, V, Zr) alloy catalysts to yield mainly cyclohexanone or cyclohexanol.

  3. Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mouat, Aidan R.; Lohr, Tracy L.; Wegener, Evan C.; Miller, Jeffrey T.; Delferro, Massimiliano; Stair, Peter C.; Marks, Tobin J.

    2016-08-23

    A single-site molybdenum dioxo catalyst, (Oc)2Mo(=O)2@C, was prepared via direct grafting of MoO2Cl2(dme) (dme = 1,2-dimethoxyethane) on high-surface- area activated carbon. The physicochemical and chemical properties of this catalyst were fully characterized by N2 physisorption, ICP-AES/OES, PXRD, STEM, XPS, XAS, temperature-programmed reduction with H2 (TPR-H2), and temperature-programmed NH3 desorption (TPD-NH3). The single-site nature of the Mo species is corroborated by XPS and TPR-H2 data, and it exhibits the lowest reported MoOx Tmax of reduction reported to date, suggesting a highly reactive MoVI center. (Oc)2Mo(=O)2@C catalyzes the transesterification of a variety of esters and triglycerides with ethanol, exhibiting high activity at moderate temperatures (60-90 °C) and with negligible deactivation. (Oc)2Mo(=O)2@C is resistant to water and can be recycled at least three times with no loss of activity. The transesterification reaction is determined experimentally to be first order in [ethanol] and first order in [Mo] with ΔH = 10.5(8) kcal mol-1 and ΔS = -32(2) eu. The low energy of activation is consistent with the moderate conditions needed to achieve rapid turnover. This highly active carbon-supported single-site molybdenum dioxo species is thus an efficient, robust, and lowcost catalyst with significant potential for transesterification processes.

  4. Carbon supported Pt-Y electrocatalysts for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Min Ku; McGinn, Paul J. [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2011-02-01

    Carbon supported Pt{sub 3}Y (Pt{sub 3}Y/C) and PtY (PtY/C) were investigated as oxygen reduction reaction (ORR) catalysts. After synthesis via reduction by NaBH{sub 4}, the alloy catalysts exhibited 10-20% higher mass activity (mA mg{sub Pt}{sup -1}) than comparably synthesized Pt/C catalyst. The specific activity ({mu}A cm{sub Pt}{sup -2}) was 23 and 65% higher for the Pt{sub 3}Y/C and PtY/C catalysts, respectively, compared to Pt/C. After annealing at 900 C under a reducing atmosphere, Pt{sub 3}Y/C-900 and PtY/C-900 catalysts showed improved ORR activity; the Pt/C and Pt/C-900 (Pt/C catalyst annealed at 900 C) catalysts exhibited specific activities of 334 and 393 {mu}A cm{sub Pt}{sup -2}, respectively, while those of the Pt{sub 3}Y/C-900 and PtY/C-900 catalysts were 492 and 1050 {mu}A cm{sub Pt}{sup -2}, respectively. X-ray diffraction results revealed that both the Pt{sub 3}Y/C and PtY/C catalysts have a fcc Pt structure with slight Y doping. After annealing, XRD showed that more Y was incorporated into the Pt structure in the Pt{sub 3}Y/C-900 catalyst, while the PtY/C-900 catalyst remained unchanged. Although these results suggested that the high ORR activity of the PtY/C-900 catalyst did not originate from Pt-Y alloy formation, it is clear that the Pt-Y system is a promising ORR catalyst which merits further investigation. (author)

  5. Nitrogen: Unraveling the Secret to Stable Carbon-Supported Pt-Alloy Electrocatalysts

    Science.gov (United States)

    2013-10-01

    electrolyte fuel cells, state-of-the-art elec- trocatalysts made from high surface area carbon materials decorated with a precious-metal nanoparticle phase o...carbon-matrix materials utilized in polymer electrolyte fuel cells (PEFCs) and direct methanol fuel cells (DMFCs), including Pt-based cath- odes...the doping of various forms of carbon including but not limited to graphene sheets, highly oriented pyrolytic graphite, carbon nanotubes, carbon

  6. Electrochemical activation of nanostructured carbon-supported PtRuMo electrocatalyst for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Huerta, M.V., E-mail: mmartinez@icp.csic.e [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, 28049 Madrid (Spain); Tsiouvaras, N.; Pena, M.A.; Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, 28049 Madrid (Spain); Rodriguez, J.L.; Pastor, E. [Departamento de Quimica Fisica, Universidad de La Laguna, Astrofisico Francisco Sanchez s/n, 38071 Tenerife (Spain)

    2010-11-01

    The factors controlling the behavior and the stability of electrocatalysts based on Pt, Ru and Mo nanoparticles during exhaustive electrochemical treatment are examined. Along this treatment, it has been observed that in the case of ternary catalysts there are pronounced changes in the structure of their surface resulting in electrode activation for methanol and CO electrooxidation, whereas the activity of binary PtRu/C and PtMo/C catalysts decreases. Therefore, the role of both Ru and Mo is crucial for the electrochemical activation of the catalyst, though metal losses do occur during electrochemical process. For the first time a detailed study of this phenomenon is presented, including characterization by HRTEM, TXRF, XRD, electrochemical measurements and in situ Fourier transform infrared spectroscopy (FTIR). In order to get a deeper insight into the surface structure, chemical state, and stability of the electrocatalyst under reaction conditions, a combination of cyclic voltammetry, chronoamperometry and X-ray photoelectron spectroscopy (XPS) has been used. By comparing bulk and surface composition, our results point out to the key role of the geometric effect enhanced by previous reduction of the nanoparticles. At the end of the electrochemical treatment, Mo-PtRu/C catalysts surface was restructured with substantial enrichment in Pt and a less pronounced Mo surface enrichment, while Ru is incorporated into the Pt-Mo overlayer. These results underline the possibility of further optimization of the surface structure and composition producing PtRuMo nanoparticles with high methanol and CO oxidation activity.

  7. The removal of uranium onto carbon-supported nanoscale zero-valent iron particles

    Energy Technology Data Exchange (ETDEWEB)

    Crane, Richard A., E-mail: richardandrewcrane@gmail.com; Scott, Thomas [University of Bristol, School of Physics, Interface Analysis Centre (United Kingdom)

    2014-12-15

    In the current work carbon-supported nanoscale zero-valent iron particles (CS nZVI), synthesised by the vacuum heat treatment of ferric citrate trihydrate absorbed onto carbon black, have been tested for the removal of uranium (U) from natural and synthetic waters. Two types of CS nZVI were tested, one vacuum annealed at 600 °C for 4 h and the other vacuum annealed at 700 °C for 4 h, with their U removal behaviour compared to nZVI synthesised via the reduction of ferrous iron using sodium borohydride. The batch systems were analysed over a 28-day reaction period during which the liquid and nanoparticulate solids were periodically analysed to determine chemical evolution of the solutions and particulates. Results demonstrate a well-defined difference between the two types of CS nZVI, with greater U removal exhibited by the nanomaterial synthesised at 700 °C. The mechanism has been attributed to the CS nZVI synthesised at 700 °C exhibiting (i) a greater proportion of surface oxide Fe{sup 2+} to Fe{sup 3+} (0.34 compared to 0.28); (ii) a greater conversion of ferric citrate trihydrate [2Fe(C{sub 6}H{sub 5}O{sub 7})·H{sub 2}O] to Fe{sup 0}; and (iii) a larger surface area (108.67 compared to 88.61 m{sup 2} g{sup −1}). Lower maximum U uptake was recorded for both types of CS nZVI in comparison with the borohydride-reduced nZVI. A lower decrease in solution Eh and DO was also recorded, indicating that less chemical reduction of U was achieved by the CS nZVI. Despite this, lower U desorption in the latter stages of the experiment (>7 days) was recorded for the CS nZVI synthesised at 700 °C, indicating that carbon black in the CS nZVI is likely to have contributed towards U sorption and retention. Overall, it can be stated that the borohydride-reduced nZVI were significantly more effective than CS nZVI for U removal over relatively short timescales (e.g. <48 h), however, they were more susceptible to U desorption over extended time periods.

  8. Surface effects in metallic iron nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Linderoth, Søren

    1994-01-01

    Nanoparticles of metallic iron on carbon supports have been studied in situ by use of Mossbauer spectroscopy. The magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropy. Chemisorption of oxygen results in formation...... of a surface layer with magnetic hyperfine fields similar to those of thicker passivation layers, and with a ferromagnetic coupling to the spins in the core of the particles. In contrast, thicker passivation layers have a noncollinear spin structure....

  9. Ethanol electrooxidation on novel carbon supported Pt/SnO{sub x}/C catalysts with varied Pt:Sn ratio

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Colmenares, L.; Jusys, Z. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Sun, G.Q. [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China)], E-mail: gqsun@dicp.ac.cn; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)], E-mail: juergen.behm@uni-ulm.de

    2007-12-01

    Novel carbon supported Pt/SnO{sub x}/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO{sub ad} stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO{sub x}/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO{sub x}/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO{sub x}/C catalysts, acetic acid and acetaldehyde represent dominant products, CO{sub 2} formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol{sup -1}), but are lower than on Pt/C (32 kJ mol{sup -1}). The somewhat better performance of the Pt/SnO{sub x}/C catalysts compared to alloyed PtSn{sub x}/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.

  10. Synthesis of nanoparticles using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia Xu

    2017-01-24

    The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shell catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a "green" chemistry method.

  11. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    FENG ZeWang; ZHAO XinQi; BI Hua

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in dichloromethane at room temperature.

  12. Selective esterification of non-conjugated carboxylic acids in the presence of conjugated or aromatic carboxylic acids over active carbon supported methanesulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-conjugated carboxylic acids are selectively esterified in good yields in the presence of conjugated or aromatic carboxylic acids by stirring over active carbon supported methanesulfonic acid in di-chloromethane at room temperature.

  13. Carbon-Supported Silver Catalysts for CO Selective Oxidation in Excess Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Limin Chen; Ding Ma; Barbara Pietruszka; Xinhe Bao

    2006-01-01

    Carbon materials were used as supports for Ag catalysts that are prepared using the conventional wet impregnation method, and their catalytic properties for CO selective oxidation in excess hydrogen at temperatures below 483 K were tested. A variety of techniques, e.g. N2 adsorption, XPS, TPD, UV-Vis DRS, TEM and SEM, were used to determine the influence of physical and chemical properties of the carbon on the properties of Ag catalyst. It was found that defects on the carbon surface served as nucleation sites for silver ions, while functional groups on carbon surface induced their reduction to the metallic form. The formation of silver particles on carbon was governed by homogeneous and/or heterogeneous nucleation during the impregnation and subsequent activation processes. The best catalytic performance was obtained with a Ag/carbon black catalyst with a uniform size distribution of silver nanoparticles (about 12 nm), moderate BET surface area (with a mesoporous structure), and a limited amount of carbon-oxygen groups. The research indicates that carbon materials are potentially good supports for silver catalysts for preferential oxidation of CO in excess hydrogen.

  14. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  15. Methanol oxidation on carbon supported Pt-Ru catalysts prepared by electrodeposition - Evaluation of Nafion {sup registered} 117 film effect

    Energy Technology Data Exchange (ETDEWEB)

    Sieben, J.M. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Universidad Nacional del Sur, Av. Alem 1253 (B8000CPB) Bahia Blanca, Buenos Aires (Argentina); Duarte, M.M.E.; Mayer, C.E. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Universidad Nacional del Sur, Av. Alem 1253 (B8000CPB) Bahia Blanca, Buenos Aires (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC) (Argentina)

    2010-03-15

    Diverse electrochemical techniques were performed in order to obtain meaningful information about the methanol oxidation reaction on nanostructured planar carbon supported Pt-Ru electrodes prepared by electrodeposition, on which a layer of Nafion ionomer was incorporated. A metallic deposit consisting of dendritic agglomerates (between 50 and 200 nm) constituted by smaller particles (6 nm) was obtained. The average bulk Ru content obtained by EDX analysis was between 23 and 25 at. %. A decrease of the activity in the electrodes for methanol oxidation was determined when the thickness of the Nafion 117 film was increased. These results may be associated with the partial blocking of the surface active sites by hydrophobic domains of the polymer, and the presence of CO{sub 2} molecules retained within the Nafion hydrophilic microchannels. EIS results indicated that methanol electro-oxidation mechanism does not change with Nafion presence. (author)

  16. Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells - Local H2 Starvation and Start-Stop Induced Carbon-Support Corrosion

    Science.gov (United States)

    Gu, Wenbin; Yu, Paul T.; Carter, Robert N.; Makharia, Rohit; Gasteiger, Hubert A.

    Carbon-support corrosion causes electrode structure damage and thus electrode degradation. This chapter discusses fundamental models developed to predict cathode carbon-support corrosion induced by local H2 starvation and start-stop in a proton-exchange-membrane (PEM) fuel cell. Kinetic models based on the balance of current among the various electrode reactions are illustrative, yielding much insight on the origin of carbon corrosion and its implications for future materials developments. They are particularly useful in assessing carbon corrosion rates at a quasi-steady-state when an H2-rich region serves as a power source that drives an H2-free region as a load. Coupled kinetic and transport models are essential in predicting when local H2 starvation occurs and how it affects the carbon corrosion rate. They are specifically needed to estimate length scales at which H2 will be depleted and time scales that are valuable for developing mitigation strategies. To predict carbon-support loss distributions over an entire active area, incorporating the electrode pseudo-capacitance appears necessary for situations with shorter residence times such as start-stop events. As carbon-support corrosion is observed under normal transient operations, further model improvement shall be focused on finding the carbon corrosion kinetics associated with voltage cycling and incorporating mechanisms that can quantify voltage decay with carbon-support loss.

  17. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Shiguo; Ikoma, Ai; Li, Zhe; Ueno, Kazuhide; Ma, Xiaofeng; Dokko, Kaoru; Watanabe, Masayoshi

    2016-10-04

    Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.

  18. An expeditious synthesis of early transition metal carbide nanoparticles on graphitic carbons.

    Science.gov (United States)

    Ressnig, Debora; Moldovan, Simona; Ersen, Ovidiu; Beaunier, Patricia; Portehault, David; Sanchez, Clément; Carenco, Sophie

    2016-08-01

    An expeditious synthesis of metal carbide nanoparticles onto various carbon supports is demonstrated. The procedure is versatile and readily yields TiC, VC, Mo2C and W2C nanoparticles on different types of carbons. The reaction is initiated at room temperature and proceeds within seconds. This novel synthetic route paves the way for a large variety of metal carbide-carbon nanocomposites that may be implemented in emerging nanotechnology fields.

  19. Oxygen reduction at carbon supported ruthenium-selenium catalysts: Selenium as promoter and stabilizer of catalytic activity

    Science.gov (United States)

    Schulenburg, Hendrik; Hilgendorff, Marcus; Dorbandt, Iris; Radnik, Jörg; Bogdanoff, Peter; Fiechter, Sebastian; Bron, Michael; Tributsch, Helmut

    Carbon supported ruthenium-based catalysts (Ru/C) for the oxygen reduction in acid electrolytes were investigated. A treatment of Ru/C catalysts with selenious acid had a beneficial effect on catalytic activity but no influence on intrinsic kinetic properties, like Tafel slope and hydrogen peroxide generation. Reasons for the increased activity of RuSe x/C catalysts are discussed. Potential step measurements suggest that at potentials around 0.8 V (NHE) a selenium or selenium-oxygen species protects the catalyst from formation of inactive RuO 2-films. This protective effect leads to an enhanced activity of RuSe x/C compared to Ru/C. No evidence was found for a catalytically active stoichiometric selenium compound. The active phase may be described as a ruthenium suboxide RuO x (x RuSe y phase or RuSe yO v (y < 2, v < 2) layer at the particle surface.

  20. Potassium-decorated active carbon supported Co-Mo-based catalyst for water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    Yixin Lian; RuiFen Xiao; Weiping Fang; Yiquan Yang

    2011-01-01

    The effect of potassium-decoration was studied on the activity of water-gas shift(WGS)reaction over the Co-Mo-based catalysts supported on active carbon(AC),which was prepared by incipient wetness co-impregnation method.The decoration of potassium on active carbon in advance enhances the activities of the CoMo-K/AC catalysts for WGS reaction.Highest activity(about 92% conversion)was obtained at250 ℃ for the catalyst with an optimum K2O/AC weight ratio in the range from 0.12 to 0.15.The catalysts were characterized by TPR and EPR,and the results show that activated carbon decorated with potassium makes Co-Mo species highly dispersed,and thus easily reduced and sulfurized.XRD results show that an appropriate content of potassium-decoration on active carbon supports may favors the formation of highly dispersed Co9Ss-type structures which are situated on the edge or a site in contact with MoS2,K-Mo-O-S,Mo-S-K phase.Those active species are responsible for the high activity of CoMo-K/AC catalysts.

  1. Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction

    Science.gov (United States)

    Yuan, Xianxia; Hu, Xin-Xin; Ding, Xin-Long; Kong, Hai-Chuan; Sha, Hao-Dong; Lin, He; Wen, Wen; Shen, Guangxia; Guo, Zhi; Ma, Zi-Feng; Yang, Yong

    2013-11-01

    A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too.

  2. Study of the catalytic layer in polybenzimidazole-based high temperature PEMFC: effect of platinum content on the carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, J.; Canizares, P.; Rodrigo, M.A.; Linares, J.J.; Ubeda, D.; Pinar, F.J. [Chemical Engineering Department, University of Castilla-La Mancha, Ciudad Real (Spain)

    2010-04-15

    In this work, the effect of platinum percentage on the carbon support of commercial catalyst for electrodes to be used in a Polybenzimidazole (PBI)-based PEMFC has been studied. Three percentages were studied (20, 40 and 60%). In all cases, the same quantity of PBI in the catalyst layer was added, which is required as a 'binder'. From Hg porosimetry analyses, pore size distribution, porosity, mean pore size and tortuosity of all electrodes were obtained. The amount of mesopores gets larger as the platinum percentage in the catalytic layer decreases, which reduces the overall porosity and the mean pore size and increases the tortuosity. The electrochemical characterisation was performed by voltamperometric studies, assessing the effective electrochemical surface area (ESA) of the electrodes, by impedance spectroscopy (IS), determining the polarisation resistance, and by the corresponding fuel cell measurements. The best results were obtained for the electrodes with a content of 40% Pt on carbon, as a result of an adequate combination of catalytic activity and mass transfer characteristics of the electrode. It has been demonstrated that the temperature favours the fuel cell performance, and the humidification does not have remarkable effects on the performance of a PBI-based polymer electrolyte membrane fuel cell (PEMFC). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Model study on the stability of carbon support materials under polymer electrolyte fuel cell cathode operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Colmenares, L.C.; Jusys, Z.; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Wurth, A. [TS-IM-IM-CB Inorganic Materials, Evonik Degussa GmbH, D-50997 Cologne (Germany)

    2009-05-01

    The electrochemical oxidation and corrosion resistance of differently prepared and post-treated (graphitization, surface oxidation) carbon support materials, whose surface area and composition were characterized by adsorption measurements and X-ray photoelectron spectroscopy, were investigated in model studies performed under fuel cell cathode relevant potential conditions. These included also the abnormal cathode potentials (up to 1.5 V{sub RHE}) occurring during start-up and shut-down procedures. Reversible surface oxidation, leading, e.g., to the formation of quinones/hydroquinones, and irreversible oxidation to CO{sub 2} were discriminated by combining electrochemical and on-line mass spectrometry measurements. Oxygenated surface carbon species were found to affect the surface area normalized electrooxidation activity much more than the surface area and porosity of the material, with graphitized carbon with low porosity and low oxygen surface content being most resistant towards reversible oxidation and towards irreversible oxidation at high potentials. Trapped CO{sub 2}, formed upon carbon oxidation at high potentials, is proposed to be at least partly responsible for CO{sub 2} release at low potentials, below the standard potential for electrochemical carbon oxidation. (author)

  4. Development of high-performance cathode catalyst of polypyrrole modified carbon supported CoOOH for direct borohydride fuel cell

    Science.gov (United States)

    He, Yan; Zhu, Cai; Chen, Kaijian; Wang, Juan; Qin, Haiying; Liu, Jiabin; Yan, Shuai; Yang, Ke; Li, Aiguo

    2017-01-01

    Polypyrrole modified carbon supported CoOOH electrocatalyst (CoOOH-PPy-C) is prepared by impregnation-chemical method, and the catalytic properties for the oxygen reduction reaction (ORR) in alkaline media are investigated. The X-ray diffraction and transmission electron microscopy results confirm the presence of the expected CoOOH. The electrochemical tests show that the CoOOH-PPy-C catalyst exhibits good electrocatalytic activity towards ORR. The direct borohydride fuel cell using CoOOH-PPy-C as the cathode catalyst demonstrates a good stability performance. There is only 4% decrease of the cell voltage after 80-h operation. The ORR occurs an average 4-electron transfer pathway on the CoOOH-PPy-C catalyst. The good catalytic activity towards ORR benefits from the Cosbnd N bond, which is identified by X-ray photoelectron spectroscopy test. X-ray absorption fine structure experiments further show that two nearest O atoms are substituted by two N atoms bonding to Co ion at a distance of 1.64 Å. The CoOOH-PPy-C exhibits better electrochemical properties than the Co(OH)2 counterpart even though the valence state of Co ion is +3 in CoOOH-PPy-C. Those results indicate that the bonding of Co ion with N atoms should be a key issue regardless the valence of Co ion.

  5. Composition and size dependence of hydrogen interaction with carbon supported bulk-immiscible Pd-Rh nanoalloys.

    Science.gov (United States)

    Oumellal, Yassine; Provost, Karine; Ghimbeu, Camelia Matei; de Yuso, Alicia Martinez; Zlotea, Claudia

    2016-11-18

    In-depth clarification of hydrogen interaction with noble metal nanoparticles and nanoalloys is essential for further development and design of efficient catalysts and hydrogen storage nanomaterials. This issue becomes even more challenging for nanoalloys of bulk-immiscible metals. The hydrogen interaction with bulk-immiscible Pd-Rh nanoalloys (3-6 nm) supported on mesoporous carbon is studied by both laboratory and large scale facility techniques. X-ray diffraction (XRD) reveals a single phase fcc structure for all nanoparticles confirming the formation of nanoalloys in the whole composition range. In situ extended x-ray absorption fine structure (EXAFS) experiments suggest segregated local structures into Pd-rich surface and Rh-rich core coexisting within the nanoparticles. Hydrogen sorption can be tuned by chemical composition: Pd-rich nanoparticles form a hydride phase, whereas Rh-rich phases do not absorb hydrogen under ambient temperature and pressure conditions. The thermodynamics of hydride formation can be tailored by the composition without affecting hydrogen capacity at full hydrogenation. Furthermore, for hydrogen absorbing nanoalloys, in situ EXAFS reveals a preferential occupation of hydrogen for the interstitial sites around Pd atoms. To our knowledge, this is the first study providing insights into the hydrogen interaction mechanism with Pd-Rh nanoalloys that can guide the design of catalysts for hydrogenation reactions and the development of nanomaterials for hydrogen storage.

  6. Composition and size dependence of hydrogen interaction with carbon supported bulk-immiscible Pd-Rh nanoalloys

    Science.gov (United States)

    Oumellal, Yassine; Provost, Karine; Matei Ghimbeu, Camelia; Martinez de Yuso, Alicia; Zlotea, Claudia

    2016-11-01

    In-depth clarification of hydrogen interaction with noble metal nanoparticles and nanoalloys is essential for further development and design of efficient catalysts and hydrogen storage nanomaterials. This issue becomes even more challenging for nanoalloys of bulk-immiscible metals. The hydrogen interaction with bulk-immiscible Pd-Rh nanoalloys (3-6 nm) supported on mesoporous carbon is studied by both laboratory and large scale facility techniques. X-ray diffraction (XRD) reveals a single phase fcc structure for all nanoparticles confirming the formation of nanoalloys in the whole composition range. In situ extended x-ray absorption fine structure (EXAFS) experiments suggest segregated local structures into Pd-rich surface and Rh-rich core coexisting within the nanoparticles. Hydrogen sorption can be tuned by chemical composition: Pd-rich nanoparticles form a hydride phase, whereas Rh-rich phases do not absorb hydrogen under ambient temperature and pressure conditions. The thermodynamics of hydride formation can be tailored by the composition without affecting hydrogen capacity at full hydrogenation. Furthermore, for hydrogen absorbing nanoalloys, in situ EXAFS reveals a preferential occupation of hydrogen for the interstitial sites around Pd atoms. To our knowledge, this is the first study providing insights into the hydrogen interaction mechanism with Pd-Rh nanoalloys that can guide the design of catalysts for hydrogenation reactions and the development of nanomaterials for hydrogen storage.

  7. A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Glauco F. [Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), C.P. 6192, 13083-970 Campinas, SP (Brazil); Institute of Chemistry of São Carlos (IQSC), University of São Paulo (USP), C.P. 780, CEP 13560-970 São Carlos, SP (Brazil); Ramos, Luiz A. [Institute of Chemistry of São Carlos (IQSC), University of São Paulo (USP), C.P. 780, CEP 13560-970 São Carlos, SP (Brazil); Barrett, Dean H. [Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), C.P. 6192, 13083-970 Campinas, SP (Brazil); Curvelo, Antonio Aprígio S. [Institute of Chemistry of São Carlos (IQSC), University of São Paulo (USP), C.P. 780, CEP 13560-970 São Carlos, SP (Brazil); Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), C.P. 6179, 13083-970 Campinas, SP (Brazil); Rodella, Cristiane B., E-mail: cristiane.rodella@lnls.br [Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), C.P. 6192, 13083-970 Campinas, SP (Brazil)

    2015-09-20

    Graphical abstract: - Highlights: • A new method to determine the catalytic conversion of cellulose using TGA has been developed. • TGA is able to differentiate between carbon from cellulose and carbon from the catalyst. • Building an analytical curve from TGA results enables the accurate determination of cellulose conversion. - Abstract: The ability to determine the quantity of solid reactant that has been transformed after a catalytic reaction is fundamental in accurately defining the conversion of the catalyst. This quantity is also central when investigating the recyclability of a solid catalyst as well as process control in an industrial catalytic application. However, when using carbon-supported catalysts for the conversion of cellulose this value is difficult to obtain using only a gravimetric method. The difficulty lies in weighing errors caused by loss of the solid mixture (catalyst and non-converted cellulose) after the reaction and/or moisture adsorption by the substrate. These errors are then propagated into the conversion calculation giving erroneous results. Thus, a quantitative method using thermogravimetric analysis (TGA) has been developed to determine the quantity of cellulose after a catalytic reaction by using a tungsten carbide catalyst supported on activated carbon. Stepped separation of TGA curves was used for quantitative analysis where three thermal events were identified: moisture loss, cellulose decomposition and CO/CO{sub 2} formation. An analytical curve was derived and applied to quantify the residual cellulose after catalytic reactions which were performed at various temperatures and reaction times. The catalytic conversion was calculated and compared to the standard gravimetric method. Results showed that catalytic cellulose conversion can be determined using TGA and exhibits lower uncertainty (±2%) when compared to gravimetric determination (±5%). Therefore, it is a simple and relatively inexpensive method to determine

  8. Removal of CO from CO-contaminated hydrogen gas by carbon-supported rhodium porphyrins using water-soluble electron acceptors

    Science.gov (United States)

    Yamazaki, Shin-ichi; Siroma, Zyun; Asahi, Masafumi; Ioroi, Tsutomu

    2016-10-01

    Carbon-supported Rh porphyrins catalyze the oxidation of carbon monoxide by water-soluble electron acceptors. The rate of this reaction is plotted as a function of the redox potential of the electron acceptor. The rate increases with an increase in the redox potential until it reaches a plateau. This profile can be explained in terms of the electrocatalytic CO oxidation activity of the Rh porphyrin. The removal of CO from CO(2%)/H2 by a solution containing a carbon-supported Rh porphyrin and an electron acceptor is examined. The complete conversion of CO to CO2 is achieved with only a slight amount of Rh porphyrins. Rh porphyrin on carbon black gives higher conversion than that dissolved in solution. This reaction can be used not only to remove CO in anode gas of stationary polymer electrolyte fuel cells but also to regenerate a reductant in indirect CO fuel cell systems.

  9. Carbon-Supported Fe Catalysts for CO2 Electroreduction to High-Added Value Products: A DEMS Study: Effect of the Functionalization of the Support

    Directory of Open Access Journals (Sweden)

    S. Pérez-Rodríguez

    2011-01-01

    Full Text Available Vulcan XC-72R-supported Fe catalysts have been synthesised for the electroreduction of CO2 to high-added value products. Catalysts were obtained by the polyol method, using ethylene glycol as solvent and reducing agent. Prior to the metal deposition, Vulcan was subjected to different oxidation treatments in order to modify its surface chemistry and study its influence on the physicochemical and electrochemical properties of the catalysts, as well as on the product distribution. The oxidation treatments of the supports modify their textural properties, but do not affect significantly the physicochemical properties of catalysts. However, DEMS studies showed that the carbon support degradation, the distribution of products, and the catalytic activity toward the CO2 electroreduction reaction depend significantly on the surface chemistry of the carbon support.

  10. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    OpenAIRE

    John Meynard M. Tengco; Bahareh Alsadat Tavakoli Mehrabadi; Yunya Zhang; Akkarat Wongkaew; John R. Regalbuto; Weidner, John W.; John R. Monnier

    2016-01-01

    Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED) of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) characterization of the base catalyst showed highly dispersed particles. A basic E...

  11. Catalytic transformations of fatty acids derivatives for food, oleochemicals and fuels over carbon supported platinum group metals

    Energy Technology Data Exchange (ETDEWEB)

    Simakova, I.

    2010-07-01

    The main focus of the research is in the development of an alternative harmless Pd-based hydrogenation technology compared to the traditional one based on Ni. Pd counterparts could be recycled, is more active and resistant to acids and form less trans isomers. In order to be economically viable and competitive this technology has to be based on the best catalyst that means an optimized combination of high activity, high life-time and high selectivity. Therefore, the engineering aspects were closely taken into account and much effort was directed into the design of Pd on a mesoporous carbon support as well as in establishing the correlation between catalyst characteristics and its activity in the C=C hydrogenation and isomerization. Detailed characterization (TEM, XRD, XPS, TPR, CO TPD, physisorption and CO chemisorption) of the tested catalysts was carried out. In addition, the influence of temperature, hydrogen pressure, catalytic concentration on the fatty-acid and isomeric composition of hydrogenated oils were determined in the absence of mass transfer limitations. Deoxygenation by full decarboxylation of -COOH function of fatty acid is the best way to make green diesel because paraffins are produced and utilization of expensive hydrogen is not required. Deoxygenation was systematically investigated over Pd/C (Sibunit) using saturated fatty acids C16 - C20 and C22, as feeds, producing one less carbon containing, diesel-like hydrocarbons. The same decarboxylation rates were obtained for pure saturated fatty acids. Comparison of deoxygenation rate for stearic, oleic or linoleic acids as a feedstock at 300 deg C under 1 vol% hydrogen over mesoporous Pd/C (Sibunit) catalyst revealed that catalyst activity and selectivity increased with less unsaturated feedstock. The main products in the case of stearic acid were desired C17 hydrocarbons, whereas the amounts of C17 aromatic compounds increased in case of oleic and linoleic acids. Catalyst deactivation was relatively

  12. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Guo, Xingming; Wu, Feng; Yao, Ying; Yuan, Yifei; Bi, Xuanxuan; Luo, Xiangyi; Shahbazian-Yassar, Reza; Zhang, Cunzhong; Amine, Khalil

    2016-08-24

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbent from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption.

  13. Electrooxidation of H{sub 2}/CO on carbon-supported PtRuMo nanoparticles for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsiouvaras, N.; Pena, M.A.; Fierro, J.L.G.; Martinez-Huerta, M.V. [CSIC, Madrid (Spain). Inst. de Catalisis y Petroleoquimica; Alcaide, F.; Alvarez, G. [CIDETEC-IK4, Donostia, San Sebastian (Spain)

    2010-07-01

    Ternary anodic PtRuMo catalysts have been prepared following a two step procedure. All catalysts prepared present PtRu metal loading of 30%wt and a Mo load of 0, 1, 2.5 and 5%wt supported on Vulcan XC 72R. Different physicochemical techniques have been employed for the analysis of the catalysts as well as electrochemical techniques in combination with FTIR for in situ studies. The fuel cell performance was evaluated at 80 C in a PEMFC fed with H{sub 2}/CO (10 ppm). Catalysts obtained exhibit good dispersion and small particle size (2.6 nm). FTIR results obtained in CO saturated confirm that lower amounts of CO are adsorbed on ternary catalysts compared with binary catalyst, whichever Mo composition was used. However, polarization curves of the catalysts show that the activity strongly depend on the composition, where PtRu-Mo(1%wt)/C displays the highest CO tolerance. (orig.)

  14. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction.

    Directory of Open Access Journals (Sweden)

    K Huang

    Full Text Available Novel graphite-molybdenum carbide nanocomposites (G-Mo2C are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV, rotating disk electrode (RDE and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.

  15. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M

    2015-01-01

    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.

  16. Synthesis and characterization of palladium and palladium-cobalt nanoparticles on Vulcan XC-72R for the oxygen reduction reaction.

    Science.gov (United States)

    Arroyo-Ramírez, Lisandra; Montano-Serrano, Rubenier; Luna-Pineda, Tatiana; Román, Félix R; Raptis, Raphael G; Cabrera, Carlos R

    2013-11-27

    A single-source approach was used to synthesize bimetallic nanoparticles on a high-surface-area carbon-support surface. The synthesis of palladium and palladium-cobalt nanoparticles on carbon black (Vulcan XC-72R) by chemical and thermal reduction using organometallic complexes as precursors is described. The electrocatalysts studied were Pd/C, Pd2Co/C, and PdCo2/C. The nanoparticles composition and morphology were characterized using inductively coupled plasma mass spectrophotometer (ICP-MS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray fluorescence spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. Electrocatalytic activity towards the oxygen reduction reaction (ORR) and methanol tolerance in oxygen-saturated acid solution were determined. The bimetallic catalyst on carbon support synthetized by thermal reduction of the Pd2Co precursor has ORR electrocatalytic activity and a higher methanol tolerance than a Pt/C catalyst.

  17. Catalytic oxidation of formaldehyde over activated carbon-supported platinum catalysts at room temperature%室温下活性炭载纳米铂催化剂对空气中甲醛的去除效果

    Institute of Scientific and Technical Information of China (English)

    黄海保; 张路; 梁耀彰; 叶信国

    2013-01-01

    Objective To explore catalytic oxidation of gaseous formaldehyde over activated carbon- supported platinum catalysts (Pt/AC) at room temperature. Methods Pt/AC catalysts were prepared by liquid reduction method using NaBH4 as the reducing agent. The effect of Pt loading (0.1% ,0.5% and 1% ) on formaldehyde removal was investigated. Results Reduced Pt nanoparticles of 18 ran diameter could be observed by transmission electron microscope. Formaldehyde removal efficiency was 98.2% in case of 0.5% Pt loading after reaction for 5 h. Conclusion The prepared Pt/AC catalysts in this study can be used for the efficient removal of formaldehyde in air.%目的 探讨活性炭载纳米铂催化剂对空气中甲醛的去除效果.方法 采用硼氢化钠液相还原法制备活性炭载纳米铂催化剂,观察不同载铂量(0.1%,0.5%和1%)对甲醛去除率的影响.结果 透射电镜观察显示,活性炭载铂为还原态纳米粒子(d≈18 nm),铂负载量为0.5%时,反应5h甲醛去除率为98.2%.结论 本研究制备的活性炭载纳米铂催化剂可有效去除空气中甲醛.

  18. Fe 3 O 4 Nanoparticles Anchored on Carbon Serve the Dual Role of Catalyst and Magnetically Recoverable Entity in the Aerobic Oxidation of Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Longlong [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Zheng, Bin [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Wang, Xiang [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99352 USA; Zhang, Wenxiang [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Wu, Shujie [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Jia, Mingjun [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China; Yan, Wenfu [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2519 Changchun 130012 P.R. China; Liu, Gang [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Jiefang Road 2519 Changchun 130012 P.R. China

    2016-01-13

    Carbon supported γ-Fe2O3 nanoparticle (γ-Fe2O3/C) possessing both superparamagnetism and activating molecular oxygen properties were prepared by an ammonia-assisted precipitation method. It could catalyze the selective oxidation of various benzyl alcohols with air as oxidant source, and could be easily recycled with an external magnet separation. The correlation between the intrinsic properties of γ-Fe2O3 nanoparticles and the catalytic performance was investigated with a series of characterizations. It shows that the oxidation state of γ-Fe2O3 nanoparticles were facile to be changed, which should be related to its inverse spinel type crystal structure with vacant cation sites. These γ-Fe2O3 nanoparticles should be the active sites and responsible for the high activity of γ-Fe2O3/C in the air oxidation of alcohols. The formation of γ-Fe2O3 nanoparticle was controlled by precipitation agent and carbon support. Using ammonia ethanol solution as precipitation agent, the hydrolysis rate of iron species could be decreased. The surface functional groups of carbon support could act as chelating sites for iron species, controlling the nucleation and growth of the γ-Fe2O3 nanoparticles in the preparation process. Dr. Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work.

  19. Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, P.L.; Hsu, C.H.; Wu, H.M.; Hsu, W.S. [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Kuo, D. [Department of Biochemistry, University of Washington, Seattle, WA (United States)

    2012-08-15

    Novel nitrogen-doped carbon layer surrounding carbon nanotubes composite (NC-CNT) (N/C ratio 3.3-14.3 wt.%) as catalyst support has been prepared using aniline as a dispersant to carbon nanotubes (CNTs) and as a source for both carbon and nitrogen coated on the surface of the CNTs, where the amount of doped nitrogen is controllable. The NC-CNT so obtained were characterized with scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption and desorption isotherms. A uniform dispersion of Pt nanoparticles (ca. 1.5-2.0 nm) was then anchored on the surface of NC-CNT by using aromatic amine as a stabilizer. For these Pt/NC-CNTs, cyclic voltammogram measurements show a high electrochemical activity surface area (up to 103.7 m{sup 2} g{sup -1}) compared to the commercial E-TEK catalyst (55.3 m{sup 2} g{sup -1}). In single cell test, Pt/NC-CNT catalyst has greatly enhanced catalytic activity toward the oxygen reduction reaction, resulting in an enhancement of ca. 37% in mass activity compared with that of E-TEK. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Electrochemical corrosion studies of carbon supports and electrocatalysts and their effects on the durability of low-temperature PEM fuel cells

    Science.gov (United States)

    Dowlapalli, Madhusudhana R.

    Performance of a PEM fuel cell relies heavily on the durability of the platinum and platinum-alloy based electrocatalysts supported on carbon blacks. Carbon corrosion has been widely accepted as an important issue affecting the degradation of the catalytic layer in PEMFCs. Traditional carbon blacks used in today's fuel cell industry are not tailored to suit the corrosive conditions encountered in PEMFCs. Advanced carbon supports should have excellent electrochemical corrosion resistance, good conductivity, high surface area and optimum hydrophilic properties. The principal objective of this work is to investigate the corrosive behavior of carbon blacks and electrocatalysts supported on such carbon blacks in conditions that are typical for fuel cells. Physical and chemical changes during oxidation of these carbon blacks have been reviewed along with methodology for studying their corrosion in a low-temperature fuel cell environment. This study provides an ex-situ corrosion measurement protocol and a gas diffusion electrode half-cell setup to study the electrochemical oxidation resistance behavior of standard carbon blacks, modified carbon blacks, and advanced carbon supports in acid electrolyte at 25°C. Corrosion current-time relationships were evaluated and transient mode of corrosion study was employed to simulate automobile startup/shutdown. The effects of various surface modifications on carbon corrosion behavior have been studied in detail. The aggravated corrosion of carbon supports at potentials higher than the thermodynamic stable regime of water was investigated and a mechanism is proposed to address the same. The role of the metal phase on carbon corrosion at the catalyst-support interphase has also been investigated. The corrosion current dependence on the microstructure and nature of surface groups present on these carbons was examined. Further, measuring carbon corrosion effects on the durability of a single membrane-electrode assembly (MEA) cathode

  1. Assessment of the ethanol oxidation activity and durability of Pt catalysts with or without a carbon support using Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Saleh, Farhana S.; Easton, E. Bradley

    2014-01-01

    We compared the stability and performance of 3 commercially available Johnson Matthey catalysts with various Pt loadings (20, 40 and 100%) using two different accelerated durability testing (ADT) protocols. The various Pt-loaded catalysts were tested by means of a series of intermittent life tests (1, 200, 400, 1000, 2000, 3000 and 4000 cycles). The electrochemical surface area (ECSA) loss of electrode was investigated by electrochemical technique (CV). The use of EIS as an accelerated-testing protocol distinctly elucidates the extent of degradation of Johnson Matthey catalysts with various Pt loading. Using EIS, it was possible to show that Pt-black catalyst layers suffer from increased electronic resistance over the course of ADT which is not observed when a corrosion stable carbon support is present. The effect of Pt loading was further elucidated by comparing the electrocatalytic activity of the catalyst layers towards ethanol oxidation reaction (EOR). The catalyst layer with the lowest Pt loading showed the enhanced EOR performance.

  2. Controlled synthesis of carbon-supported Pt{sub 3}Sn by impregnation-reduction and performance on the electrooxidation of CO and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rodriguez, S.; Pena, M.A.; Fierro, J.L.G.; Rojas, S. [Grupo Energia y Quimica Sostenibles, Instituto de Catalisis y Petroleoquimica, CSIC, C/Marie Curie 2, E-28049 Madrid (Spain)

    2010-09-01

    The paper discusses experimental features relevant to the synthesis of carbon-supported Pt{sub 3}Sn nanosized particles by impregnation-reduction of the salt precursors in carbon. Colloidal techniques are proposed as the most suitable ones for obtaining carbon-supported nanosized Pt{sub 3}Sn particles. In most cases, the electrocatalysts obtained have a wide range of Pt and Sn phases, including bimetallic ones. The synthesis of similar materials by impregnating readily available precursors such as SnCl{sub 2} and H{sub 2}PtCl{sub 6} yields Pt-enriched catalyst precursors. In order to obtain electrocatalysts with the desired Pt:Sn = 3 atomic stoichiometry, it is necessary to eliminate chloride ions prior to thermal treatments. Microscopy characterization and thermal stability studies of the fresh and treated bimetallic materials reveal that if such ions are present, Sn is eliminated as volatile SnCl{sub x} species at around 120-130 C. Chloride elimination is achieved by ageing the catalyst precursor in water to ensure the complete hydrolysis of the SnCl{sub 2} precursor. This treatment should be performed once SnCl{sub 2} has been deposited on the carbon to avoid the formation of large Sn-oxide aggregates. A further thermal treatment in hydrogen results in the formation of the desired Pt{sub 3}Sn intermetallic phase. The performance of the Pt{sub 3}Sn/C samples in the CO and ethanol electrooxidation reaction has been studied by means of electrochemical techniques. The electrocatalysts prepared by the impregnation-reduction approach match the performance of the state-of-the-art Pt{sub 3}Sn samples prepared by colloidal techniques. (author)

  3. Toward highly stable electrocatalysts via nanoparticle pore confinement.

    Science.gov (United States)

    Galeano, Carolina; Meier, Josef C; Peinecke, Volker; Bongard, Hans; Katsounaros, Ioannis; Topalov, Angel A; Lu, Anhui; Mayrhofer, Karl J J; Schüth, Ferdi

    2012-12-19

    The durability of electrode materials is a limiting parameter for many electrochemical energy conversion systems. In particular, electrocatalysts for the essential oxygen reduction reaction (ORR) present some of the most challenging instability issues shortening their practical lifetime. Here, we report a mesostructured graphitic carbon support, Hollow Graphitic Spheres (HGS) with a specific surface area exceeding 1000 m(2) g(-1) and precisely controlled pore structure, that was specifically developed to overcome the long-term catalyst degradation, while still sustaining high activity. The synthetic pathway leads to platinum nanoparticles of approximately 3 to 4 nm size encapsulated in the HGS pore structure that are stable at 850 °C and, more importantly, during simulated accelerated electrochemical aging. Moreover, the high stability of the cathode electrocatalyst is also retained in a fully assembled polymer electrolyte membrane fuel cell (PEMFC). Identical location scanning and scanning transmission electron microscopy (IL-SEM and IL-STEM) conclusively proved that during electrochemical cycling the encapsulation significantly suppresses detachment and agglomeration of Pt nanoparticles, two of the major degradation mechanisms in fuel cell catalysts of this particle size. Thus, beyond providing an improved electrocatalyst, this study describes the blueprint for targeted improvement of fuel cell catalysts by design of the carbon support.

  4. Intermetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  5. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  6. Modeling the cathode in a proton exchange membrane fuel cell using density functional theory How the carbon support can affect durability and activity of a platinum catalyst

    Science.gov (United States)

    Groves, Michael Nelson

    The current global energy and environmental challenges need to be addressed by developing a new portfolio of clean power producing devices. The proton exchange membrane fuel cell has the potential to be included and can fit into a variety of niches ranging from portable electronics to stationary residential applications. One of the many barriers to commercial viability is the cost of the cathode layer which requires too much platinum metal to achieve a comparable power output as well as would need to be replaced more frequently when compared to conventional sources for most applications. Using density functional theory, an ab initio modeling technique, these durability and activity issues are examined for platinum catalysts on graphene and carbon nanotube supports. The carbon supports were also doped by replacing individual carbon atoms with other second row elements (beryllium, boron, nitrogen, and oxygen) and the effect on the platinum-surface interaction along with the interaction between the platinum and the oxygen reduction reaction intermediates are discussed. Keywords: proton exchange membrane fuel cell, density functional theory, platinum catalyst, oxygen reduction reaction, doped carbon surfaces

  7. 从炭载体废催化剂回收铂钯%Recovery of Palladium and Platinum from Carbon Supported Waste Catalysts

    Institute of Scientific and Technical Information of China (English)

    刘时杰

    2014-01-01

    The carbon supported catalysts, Pd/C and Pt/C, are the very important chemical catalysts. The incineration technology is the most simple method for the recovery of platinum or palladium from the waste catalysts. The processes and technologies to prevent the loss of flying-ash during burning were introduced and some examples were listed. The principle of supercritical water oxidation (SCWO) and its technical processes were discussed, and its application prospect was reviewed.%Pd/C、Pt/C是非常重要的化工催化剂。最简单的从废催化剂中回收钯或铂的方法是焚烧法。介绍了工艺过程及防止焚烧时飞扬损失的各种技术措施,列举了应用实例。探讨了超临界水氧化法(SCWO)的原理,工艺过程及处理炭载体废催化剂的应用前景。

  8. Investigation of carbon supported PtW catalysts as CO tolerant anodes at high temperature in proton exchange membrane fuel cell

    Science.gov (United States)

    Hassan, Ayaz; Paganin, Valdecir A.; Ticianelli, Edson A.

    2016-09-01

    The CO tolerance mechanism and the stability of carbon supported PtW electrocatalysts are evaluated in the anode of a proton exchange membrane fuel cell (PEMFC) at two different temperatures. The electrocatalysts are characterized by energy dispersive spectroscopy, X-ray diffraction, and transmission electron spectroscopy. Employed electrochemical techniques include cyclic voltammetry, CO stripping, fuel cell polarization, and online mass spectrometry. At a cell temperature of 85 °C, the PtW/C catalyst shows higher CO tolerance compared to Pt/C due an electronic effect of WOx in the Pt 5d band, which reduces the CO adsorption. An increase in hydrogen oxidation activity in the presence of CO is observed for both the catalysts at a higher temperature, due to the decrease of the Pt-CO coverage. A reduction in the current densities occurs for the PtW/C catalyst in both polarization curves and cyclic voltammograms after 5000 cycles of the anode in the range of 0.1-0.7 V vs. RHE at 50 mVs-1. This decrease in performance is assigned to the dissolution of W, with a consequent increase in the membrane resistivity. However, the observed decline of performance is small either in the presence of pure H2 or in the presence of H2/CO.

  9. Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts - The influence of the platinum to carbon ratio on the degradation rate

    Science.gov (United States)

    Speder, Jozsef; Zana, Alessandro; Spanos, Ioannis; Kirkensgaard, Jacob J. K.; Mortensen, Kell; Hanzlik, Marianne; Arenz, Matthias

    2014-09-01

    A colloidal synthesis approach is used to prepare supported proton exchange membrane fuel cell (PEMFC) catalysts with various Pt loadings - from low to extremely high ones. The catalyst samples are used to continue our investigation of the role of the Pt:C ratio in the degradation processes. The influence of the platinum loading on the electrochemical surface area (ECSA) loss is evaluated in a systematic electrochemical study by using two commercially available carbon blacks, namely Vulcan XC72R and Ketjenblack EC-300J. Accelerated degradation tests simulating load cycle and start-up/shutdown conditions are carried out in accordance with the Fuel Cell Commercialization Conference of Japan (FCCJ) recommendations. Under conditions simulating the load cycle of PEM fuel cells no unambiguous correlation between the ECSA loss and the Pt:C ratio is found. By contrast, under conditions simulating the repetitive start-up/shutdown processes of PEMFCs the ECSA loss first increases with increasing Pt loading. However, it decreases again for very high loadings. Furthermore, the Vulcan samples exhibited higher ECSA losses than the Ketjenblack samples, indicating the important role of the physical and chemical properties of pristine carbon supports in the carbon degradation mechanism.

  10. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    John Meynard M. Tengco

    2016-06-01

    Full Text Available Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD and scanning transmission electron microscopy (STEM characterization of the base catalyst showed highly dispersed particles. A basic ED bath containing PtCl62− as the Pt precursor, dimethylamine borane as reducing agent, and ethylenediamine as stabilizing agent successfully targeted deposition of Pt on Co particles. Simultaneous action of galvanic displacement and ED resulted in Pt-Co alloy formation observed in XRD and energy dispersive X-ray spectroscopy (XEDS mapping. In addition, fast deposition kinetics resulted in hollow shell Pt-Co alloy particles while particles with Pt-rich shell and Co-rich cores formed with controlled Pt deposition. Electrochemical evaluation of the Pt-Co/C catalysts showed lower active surface but much higher mass and surface activities for oxygen reduction reaction compared to a commercial Pt/C fuel cell catalyst.

  11. Effect of heat treatment on the activity and stability of carbon supported PtMo alloy electrocatalysts for hydrogen oxidation in proton exchange membrane fuel cells

    Science.gov (United States)

    Hassan, Ayaz; Carreras, Alejo; Trincavelli, Jorge; Ticianelli, Edson Antonio

    2014-02-01

    The effect of heat treatment on the activity, stability and CO tolerance of PtMo/C catalysts was studied, due to their applicability in the anode of proton exchange membrane fuel cells (PEMFCs). To this purpose, a carbon supported PtMo (60:40) alloy electrocatalyst was synthesized by the formic acid reduction method, and samples of this catalyst were heat-treated at various temperatures ranging between 400 and 700 °C. The samples were characterized by temperature programmed reduction (TPR), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), cyclic voltammetry (CV), scanning electron microscopy (SEM) and wavelength dispersive X-ray spectroscopy (WDS). Cyclic voltammetry was used to study the stability, and polarization curves were used to investigate the performance of all materials as CO tolerant anode on a PEM single cell text fixture. The catalyst treated at 600 °C, for which the average crystallite size was 16.7 nm, showed the highest hydrogen oxidation activity in the presence of CO, giving an overpotential induced by CO contamination of 100 mV at 1 Acm-2. This catalyst also showed a better stability up to 5000 potential cycles of cyclic voltammetry, as compared to the untreated catalyst. CV, SEM and WDS results indicated that a partial dissolution of Mo and its migration/diffusion from the anode to the cathode occurs during the single cell cycling. Polarization results showed that the catalytic activity and the stability can be improved by a heat treatment, in spite of a growth of the catalyst particles.

  12. Robust Nanoparticles

    Science.gov (United States)

    2015-01-21

    SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSOR/MONITOR’S ACRONYM(S) (ES) ARO U.S. Anny Research Office 11 . SPONSOR/MONITOR’S REPORT...Lawrence, Gregory M. Grason, Todd Emrick, Alfred J. Crosby. Stretching of assembled nanoparticle helical springs, Physical Chemistry Chemical...par with thermally sintered conductive adhesives. C. Examination of stretching of nanoparticle-based springs. This part of the project

  13. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  14. Electrochemical Oxidation of the Carbon Support to Synthesize Pt(Cu and Pt-Ru(Cu Core-Shell Electrocatalysts for Low-Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Griselda Caballero-Manrique

    2015-04-01

    Full Text Available The synthesis of core-shell Pt(Cu and Pt-Ru(Cu electrocatalysts allows for a reduction in the amount of precious metal and, as was previously shown, a better CO oxidation performance can be achieved when compared to the nanoparticulated Pt and Pt-Ru ones. In this paper, the carbon black used as the support was previously submitted to electrochemical oxidation and characterized by XPS. The new catalysts thus prepared were characterized by HRTEM, FFT, EDX, and electrochemical techniques. Cu nanoparticles were generated by electrodeposition and were further transformed into Pt(Cu and Pt-Ru(Cu core-shell nanoparticles by successive galvanic exchange with Pt and spontaneous deposition of Ru species, the smallest ones being 3.3 nm in mean size. The onset potential for CO oxidation was as good as that obtained for the untreated carbon, with CO stripping peak potentials about 0.1 and 0.2 V more negative than those corresponding to Pt/C and Ru-decorated Pt/C, respectively. Carbon oxidation yielded an additional improvement in the catalyst performance, because the ECSA values for hydrogen adsorption/desorption were much higher than those obtained for the non-oxidized carbon. This suggested a higher accessibility of the Pt sites in spite of having the same nanoparticle structure and mean size.

  15. The electrocatalytic properties of carbon supported PtRu/C nanoalloys in oxidation of small organic molecules: Comparison with Pt/C catalyst

    Directory of Open Access Journals (Sweden)

    Lović Jelena D.

    2012-01-01

    Full Text Available The electrocatalytic activity of carbon supported PtRu/C catalysts, with different composition, toward the electrooxidation of methanol, CO and formic acid were examined in acid and alkaline solution at ambient temperature using thin-film rotating disk electrode (RDE method and compared with activity of Pt/C. The catalysts were characterized by XRD, AFM and STM techniques. XRD pattern revealed that PtRu-1/C catalyst is consisted of two structures e.g. Pt-Ru-fcc and Ru-hcp (the solid solution of Ru in Pt and the small amount of Ru or solid solution of Pt in Ru, as opposed to PtRu-2/C catalyst which is consisted of one structure mostly, Pt-Ru-fcc. According to STM images, PtRu as well as Pt, particles size were between 2 and 6 nm, which is in a good agreement with the mean particles size determined by XRD. To establish the activity and stability of the catalysts potentiodynamic and quasi steady-state measurements were performed. It was found that the activity of Pt and PtRu for CO and methanol oxidation is a strong function of pH of solution. The kinetics are much higher in alkaline than in acid solution and the difference between Pt/C and PtRu/C is much less pronounced in alkaline media. Results presented in this work indicate that activity of PtRu catalysts depends on catalyst composition, e.g. on Pt/Ru atomic ratio, as well as on alloying degree of catalysts. Comparison of CO, methanol and formic acid oxidation on PtRu-2/C, PtRu-1/C and Pt/C catalysts revealed that PtRu-2/C is the most active one. It was shown that the PtRu-2/C catalyst, due to fact that it is consisted of only one phase, with high alloying degree, through the bifunctional mechanism improved by electronic effect, achieve the activity two times higher related to PtRu-1/C in the oxidation of all organic molecules investigated, and about three times higher compared to Pt/C in the oxidation of methanol and CO, and five times higher in formic acid oxidation.

  16. Biopolymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Sushmitha Sundar, Joydip Kundu and Subhas C Kundu

    2010-01-01

    Full Text Available This review on nanoparticles highlights the various biopolymers (proteins and polysaccharides which have recently revolutionized the world of biocompatible and degradable natural biological materials. The methods of their fabrication, including emulsification, desolvation, coacervation and electrospray drying are described. The characterization of different parameters for a given nanoparticle, such as particle size, surface charge, morphology, stability, structure, cellular uptake, cytotoxicity, drug loading and drug release, is outlined together with the relevant measurement techniques. Applications in the fields of medicine and biotechnology are discussed along with a promising future scope.

  17. Nanoparticle standards

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-08

    We will purchase a COTS materials printer and adapt it for solution printing of known elemental concentration solutions. A methodology will be developed to create deposits of known mass in known locations on selected substrates. The deposits will be characterized for deposited mass, physical morphology, thickness and uniformity. Once an acceptable methodology has been developed and validated, we will create round robin samples to be characterized by LGSIMS instruments at LANL, PNNL and NIST. We will demonstrate the feasibility of depositing nanoparticles in known masses with the goal of creating separated nanoparticles in known locations.

  18. Effect of the graphitic degree of carbon supports on the catalytic performance of ammonia synthesis over Ba-Ru-K/HSGC catalyst

    Institute of Scientific and Technical Information of China (English)

    Wei Jiang; Ying Li; Wenfeng Han; Yaping Zhou; Haodong Tang; Huazhang Liu

    2014-01-01

    A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.

  19. Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx

    Directory of Open Access Journals (Sweden)

    Zengfeng Guo

    2016-04-01

    Full Text Available Different proportions of oxide-rich PdCu/C nanoparticle catalysts were prepared by the NaBH4 reduction method, and their compositions were tuned by the molar ratios of the metal precursors. Among them, oxide-rich Pd0.9Cu0.1/C (Pd:Cu = 9:1, metal atomic ratio exhibits the highest electrocatalytic activity for ethanol oxidation reaction (EOR in alkaline media. X-ray photoelectron spectroscopy (XPS and high resolution transmission electron microscopy (HRTEM confirmed the existence of both Cu and CuOx in the as-prepared Pd0.9Cu0.1/C. About 74% of the Cu atoms are in their oxide form (CuO or Cu2O. Besides the synergistic effect of Cu, CuOx existed in the Pd-Cu bimetallic nanoparticles works as a promoter for the EOR. The decreased Pd 3d electron density disclosed by XPS is ascribed to the formation of CuOx and the spill-over of oxygen-containing species from CuOx to Pd. The low Pd 3d electron density will decrease the adsorption of CH3COads intermediates. As a result, the electrocatalytic activity is enhanced. The onset potential of oxide-rich Pd0.9Cu0.1/C is negative shifted 150 mV compared to Pd/C. The oxide-rich Pd0.9Cu0.1/C also exhibited high stability, which indicated that it is a candidate for the anode of direct ethanol fuel cells (DEFCs.

  20. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  1. Incorporation of indium tin oxide nanoparticles in PEMFC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wolz, Andre [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Zils, Susanne; Ruch, David; Michel, Marc [CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Kotov, Nicholas [University of Michigan, Department of Chemical Engineering, Ann Arbor, MI (United States); Roth, Christina [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); Institute for Applied Materials (IAM)-Energy Storage Systems (ESS), Eggenstein-Leopoldshafen (Germany)

    2012-05-15

    Carbon materials suffer from corrosion at the cathode of polymer electrolyte membrane fuel cells (PEMFCs). In the presence of water, carbon support materials are oxidized to carbon dioxide even at low potentials. Hence, nowadays it is very fashionable to look for alternative support materials, like oxides or conductive polymers. To gain the maximum performance for a new material one should also consider an appropriate electrode structure. This study shows the results for the incorporation of nanosized alternative support materials into advanced electrode architectures. Commercially available indium tin oxide (ITO) nanoparticles (<50 nm) are used as support for Pt nanoparticles in combination with Nafion-coated multi-walled carbon nanotubes (MWCNTs) on the cathode side of a PEMFC. The MWCNTs promote a high electronic conductivity and help to form a porous network, which could accommodate the Pt/ITO nanoparticles. The microscopic investigations show a homogeneous electrode structure composed of Pt/ITO and MWCNT/Nafion multilayer. Single cell measurements show a maximum power density of 73 mW cm{sup -2} and a Pt utilization of 1468 mW mg{sub Pt}{sup -1} for the cathode. The performance data and the Pt utilization are comparable to a standard Pt/carbon black electrode possessing the same Pt loading in the electrode. Beside this, it is shown for the first time that ITO serves as support material under real fuel cell conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.

    Science.gov (United States)

    Hunt, Sean T; Milina, Maria; Alba-Rubio, Ana C; Hendon, Christopher H; Dumesic, James A; Román-Leshkov, Yuriy

    2016-05-20

    We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.1)W(0.9)C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading, enhance the activity, and increase the stability of noble metal catalysts.

  3. Influences of species of metals and supports on the hydrogenation activity of carbon-supported metal sulfides catalysts; Tanso biryushi tanji shokubai no suisoka kassei ni taisuru kassei kinzoku oyobi tantaishu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sakanishi, K.; Hasuo, H.; Taniguchi, H.; Nagamatsu, T.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    In order to design catalysts suitable for primary liquefaction stage and secondary upgrading stage respectively in the multi-stage liquefaction process, various carbon-supported catalysts were prepared. Catalytic activities of them were investigated for the hydrogenation of 1-methylnaphthalene, to discuss the influences of metals and carbon species on the catalytic activity. Various water soluble and oil soluble Mo and Ni salts were used for NiMo supported catalysts. Among various carbon supports, Ketjen Black (KB) was effective for preparing the catalyst showing the most excellent hydrogenation activity. The KB and Black Pearl 2000 (BP2000) showing high hydrogenation activity were fine particles having high specific surface area more than 1000 m{sup 2}/g and primary particle diameter around 30 nm. This was inferred to contribute to the high dispersion support of active metals. Since such fine particles of carbon exhibited hydrophobic surface, they were suitable for preparing catalysts from the methanol-soluble metals. Although Ni and Mo added iron-based catalysts provided lower aromatic hydrogenation activity, they exhibited liquefaction activity competing with the NiMo/KB catalyst. 3 refs., 1 fig., 3 tabs.

  4. Nanoparticles for photothermal therapies.

    Science.gov (United States)

    Jaque, D; Martínez Maestro, L; del Rosal, B; Haro-Gonzalez, P; Benayas, A; Plaza, J L; Martín Rodríguez, E; García Solé, J

    2014-08-21

    The current status of the use of nanoparticles for photothermal treatments is reviewed in detail. The different families of heating nanoparticles are described paying special attention to the physical mechanisms at the root of the light-to-heat conversion processes. The heating efficiencies and spectral working ranges are listed and compared. The most important results obtained in both in vivo and in vitro nanoparticle assisted photothermal treatments are summarized. The advantages and disadvantages of the different heating nanoparticles are discussed.

  5. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance

    Science.gov (United States)

    Zhang, Hao; Yan, Xiaohong; Huang, Yundi; Zhang, Mengru; Tang, Yawen; Sun, Dongmei; Xu, Lin; Wei, Shaohua

    2017-02-01

    For Pd-based nanocatalysts, stabilization of Pd nanoparticles on carbon support could not only effectively avoid particle aggregation and maintain catalytic stability during catalytic processes, but also facilitate enhancing the catalytic activity due to the synergy between Pd nanoparticles and carbon support. Furthermore, the incorporation of non-metal of phosphorus (P) into Pd could effectively modulate the electronic structure of Pd and thus help to boost the catalytic properties. However, one-pot synthesis of such nanohybrids remains a great challenge due to the distinct physiochemical properties of Pd, P and C components. Herein, we demonstrate a one-pot and scalable synthesis of highly dispersed PdP alloy nanoparticle-immobilized on N-doped graphitic carbon nanosheets (abbreviated as Pd-P@N-C nanosheets) by using inorganic-organic hybrid cyanogel as a reaction precursor. In virtue of both compositional and structural advantages, the as-synthesized Pd-P@N-C nanosheets manifest a superior catalytic activity and stability toward the hydrogenation of 4-nitrophenol (4-NP). We believe that the present work will provide a feasible and versatile strategy for the development of efficient catalysts for environmental remediation and can also be extendable to other carbon-based nanohybrids with desirable functionalities.

  6. Shape tunable plasmonic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, Mostafa A.; El-Sayed, Ivan Homer

    2017-03-07

    Noble metal nanoparticles and methods of their use are provided. Certain aspects provided solid noble metal nanoparticles tuned to the near infrared. The disclosed nanoparticles can be used in molecular imaging, diagnosis, and treatment. Methods for imaging cells are also provided.

  7. O3 Nanoparticles

    KAUST Repository

    Wang, Juan

    2016-11-16

    Ti2O3 nanoparticles with high performance of photothermal conversion are demonstrated for the first time. Benefiting from the nanosize and narrow-bandgap features, the Ti2O3 nanoparticles possess strong light absorption and nearly 100% internal solar–thermal conversion efficiency. Furthermore, Ti2O3 nanoparticle-based thin film shows potential use in seawater desalination and purification.

  8. Size-Dependent Electrocatalytic Activity of Gold Nanoparticles on HOPG and Highly Boron-Doped Diamond Surfaces

    Directory of Open Access Journals (Sweden)

    Tine Brülle

    2011-12-01

    Full Text Available Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  9. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  10. Multifunctional nanoparticles: Analytical prospects

    Energy Technology Data Exchange (ETDEWEB)

    Dios, Alejandro Simon de [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Av. Julian Claveria, 8, 33006 Oviedo (Spain); Diaz-Garcia, Marta Elena, E-mail: medg@uniovi.es [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Av. Julian Claveria, 8, 33006 Oviedo (Spain)

    2010-05-07

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  11. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  12. Stimulus Responsive Nanoparticles

    Science.gov (United States)

    Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2015-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  13. Networks of connected Pt nanoparticles supported on carbon nanotubes as superior catalysts for methanol electrooxidation

    Science.gov (United States)

    Huang, Meihua; Zhang, Jianshuo; Wu, Chuxin; Guan, Lunhui

    2017-02-01

    The high cost and short lifetime of the Pt-based anode catalyst for methanol oxidation reaction (MOR) hamper the widespread commercialization of direct methanol fuel cell (DMFC). Therefore, improving the activity of Pt-based catalysts is necessary for their practical application. For the first time, we prepared networks of connected Pt nanoparticles supported on multi-walled carbon nanotubes with loading ratio as high as 91 wt% (Pt/MWCNTs). Thanks for the unique connected structure, the Pt mass activity of Pt/MWCNTs for methanol oxidation reaction is 4.4 times as active as that of the commercial Pt/C (20 wt%). When carbon support is considered, the total mass activity of Pt/MWCNTs is 20 times as active as that of the commercial Pt/C. The durability and anti-poisoning ability are also improved greatly.

  14. Synthesis and characterization of vanadium nanoparticles on activated carbon and their catalytic activity in thiophene hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Susana [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela); Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); D' Ornelas, Lindora [Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); Betancourt, Paulino [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela)], E-mail: pbetanco@strix.ciens.ucv.ve

    2008-06-30

    Vanadium nanoparticles ({approx}7 nm) stabilized on activated carbon were synthesized by the reduction of VCl{sub 3}.3THF with K[BEt{sub 3}H]. This material was characterized by inductive coupled plasma-atomic emission spectroscopy (ICP-AES), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses. The catalytic performance of the carbon-supported vanadium was studied using thiophene hydrodesulfurization (HDS) as model reaction at 300 deg. C and P = 1 atm. The catalytic activity of the vanadium carbide phase on the activated carbon carrier was more significant than that of the reference catalysts, alumina supported NiMoS. The method proposed for the synthesis of such a catalyst led to an excellent performance of the HDS process.

  15. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    Science.gov (United States)

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-01-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T′-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications. PMID:28230105

  16. Activity improvement of Pt/C catalysts by adding CeO2 nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YANG Yuying; ZHANG Ziyu; HU Zhongai

    2011-01-01

    Carbon-supported platinum catalysts were prepared by NaBH4 reduction of metal precursors and the CeO2 nanoparticles were prepared by citric acid sol-gel method. The structure and morphology of two kinds of nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The Pt particles were uniformly dispersed on the carbon surface and showed the rod-like morphology. The CeO2 was spherical in shape. The appropriate amount of CeO2 nanoparticles was added into Pt/C systems to improve activity of the catalysts. Several electrochemical techniques such as cyclic voltammogram (CV), chronoamperometry (I-t)and electrochemical impedance spectroscopy (EIS) were used to investigate the properties of CeO2-Pt/C catalysts for methanol electrooxidation in 1 mol/L CH3OH+0.5H2SO4 aqueous solutions. The results revealed that compared with Pt/C catalysts CeO2-pt/C exhibited a higher activity and stability for methanol electro-oxidation. Moreover, the effect of CeO2 content on the activity of Pt/C catalysts was discussed in detail.

  17. Characterization and electrocatalytic properties of sonochemical synthesized PdAg nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Godinez-Garcia, Andres, E-mail: agodinez@qro.cinvestav.mx [Depto. Materiales, Centro de Investigacion y de Estudios Avanzados del IPN, Libramiento norponiente 2000, Fracc. Real de Juriquilla, C.P. 76230 Santiago de Queretaro, Qro. (Mexico); Perez-Robles, Juan Francisco [Depto. Materiales, Centro de Investigacion y de Estudios Avanzados del IPN, Libramiento norponiente 2000, Fracc. Real de Juriquilla, C.P. 76230 Santiago de Queretaro, Qro. (Mexico); Martinez-Tejada, Hader Vladimir [Grupo de Energia y Termodinamica, Universidad Pontificia Bolivariana, Medellin, Antioquia C.P. 050031 (Colombia); Solorza-Feria, Omar [Depto. Quimica, CINVESTAV-IPN, Av. IPN 2508, A. P. 14-740, 07360 D.F. Mexico (Mexico)

    2012-06-15

    High intensity ultrasound was used in the synthesis of PdAg nanoparticles. PdAg nanoparticles were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM). Catalytic properties for oxygen reduction reaction (ORR) were determined by electrochemical techniques of cyclic voltammetry (CV) and thin-film rotating disk electrode (TF-RDE). Finally the electrocatalyst was tested as a cathode in a single polymer electrolyte membrane fuel cell (PEMFC). Sonochemical synthesis (SS) decreased the overpotential required for the ORR and increased the double-layer capacitance (DLC) respect to the sodium borohydride reduction method due to a better distribution on vulcan carbon support. The electrocatalytic activity of the nanometric bimetallic electrocatalyst for the ORR in acid media showed a favorable multielectron charge transfer process (n = 4e{sup -}) to water formation. The performance of the membrane electrode assembly (MEA) prepared with dispersed PdAg/C as a cathode catalyst in a single PEMFC is lower in comparison to platinum. - Highlights: Black-Right-Pointing-Pointer Sonochemical synthesized PdAg nanoparticles supported on carbon were produced. Black-Right-Pointing-Pointer The material showed catalytic properties for the oxygen reduction reaction (ORR). Black-Right-Pointing-Pointer The ORR favored the pathway to water formation.

  18. Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua; Li, Shuai; Si, Yanmei; Sun, Zhongzhao; Li, Shuying; Lin, Yuehe

    2014-01-01

    Fe3O4 nanoparticles as nanocatalysts may present peroxidase-like catalysis activities and high electrocatalysis if loaded on conductive carbon nanotube (CNT) supports; however, their catalysis performances in an aqueous system might still be challenged by the poor aqueous dispersion of hydrophobic carbon supports and/or low stability of loaded iron catalysts. In this work, amphiphilic graphene oxide nanosheets were employed as “surfactant” to disperse CNTs to create stable graphene oxide-dispersed CNT (GCNT) supports in water for covalently loading cubic Fe3O4 nanoparticles with improved distribution and binding efficiency. Compared with original Fe3O4 nanos and CNT-loaded Fe3O4 nanocomplex, the prepared GCNT–Fe3O4 nanocomposite could achieve higher aqueous stability and, especially, much stronger peroxidase-like catalysis and electrocatalysis to H2O2, presumably resulting from the synergetic effects of two conductive carbon supports and cubic Fe3O4 nanocatalysts effectively loaded. Colorimetric and direct electrochemical detections of H2O2 and glucose using the GCNT–Fe3O4 nanocomposite were conducted with high detection sensitivities, demonstrating the feasibility of practical sensing applications. Such a magnetically recyclable “enzyme mimic” may circumvent some disadvantages of natural protein enzymes and common inorganic catalysts, featuring the multi-functions of high peroxidase-like catalysis, strong electrocatalysis, magnetic separation/recyclability, environmental stability, and direct H2O2 electrochemistry.

  19. Optical properties of nanoparticles

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At the NBI I am involved in projects relating to optical properties of metallic nanoparticles in particular with respect to plasmonic heating with direct applications to photothermal cancer therapy. For this purpose we have developed heating assays that can be used to measure the heating of any...... nanoscopic heat source like an irradiated nanoparticle...

  20. Catalytic ozonation of metronidazole in presence of activated carbon supported metallic oxide catalyst%活性炭负载金属氧化物催化臭氧氧化甲硝唑

    Institute of Scientific and Technical Information of China (English)

    杨文清; 李旭凯; 李来胜; 张秋云; 吕向红; 曾宝强

    2011-01-01

    采用浸渍法制备了Fe、Ni、Ag、Ce 4种金属氧化物负载活性炭(MeOx/AC)催化剂,并用于甲硝唑(MNZ)的催化臭氧氧化降解,以考察其催化活性.在20 mg/h的臭氧投加量下,催化剂的加入(0.5 g)对MNZ(C0=5 mg/L;pH=5.5)的氧化和矿化有明显改善,其中NiOX/AC催化剂表现出较好的催化活性,反应60 min后,MNZ和TOC的去除率分别达87%和30%,较AC催化臭氧氧化(80%和26%)及单独臭氧氧化(70%和10%)有所提高.叔丁醇或硝酸根的加入对MNZ的降解起抑制作用.%Activated carbon-supported(Fe, Ni, Ag, Ce) metallic oxide catalyst (MeOw/AC) was prepared by impregnation. The activity of four kinds of MeOx/AC in the catalytic ozonation of aqueous phase metronidazole (MNZ) was evaluated. In the 20 mg/h of ozone dosage, the oxidation and mineralization of MNZ (CO =5 rog/L; pH = 5.5) was significantly improved in presence of catalyst (0.5 g). NiOx/AC provides preferable catalytic activity. The oxidation of MNZ and its TOC removal rates were 87% and 30% at 60 rain, compared with AC catalytic ozonation (80% and 26% ) and ozonation alone (70% and 10% ). Addition of tea-butanol or nitrate showed inhibition on MNZ degradation.

  1. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  2. Magnetic interactions between nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Mikkel Fougt; Frandsen, Cathrine

    2010-01-01

    We present a short overview of the influence of inter-particle interactions on the properties of magnetic nanoparticles. Strong magnetic dipole interactions between ferromagnetic or ferrimagnetic particles, that would be superparamagnetic if isolated, can result in a collective state...... of nanoparticles. This collective state has many similarities to spin-glasses. In samples of aggregated magnetic nanoparticles, exchange interactions are often important and this can also lead to a strong suppression of superparamagnetic relaxation. The temperature dependence of the order parameter in samples...... of strongly interacting hematite nanoparticles or goethite grains is well described by a simple mean field model. Exchange interactions between nanoparticles with different orientations of the easy axes can also result in a rotation of the sub-lattice magnetization directions....

  3. Energy breathing of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dynich, Raman A., E-mail: dynich@solo.by [Institute of Social Educational Technologies (Belarus)

    2015-06-15

    The paper considers the energy exchange process of the electromagnetic wave with a spherical metal nanoparticle. Based on the account of the temporal dependencies of electric and magnetic fields, the author presents an analytical dependence of the energy flow passing through the spherical surface. It is shown that the electromagnetic energy, localized in metal nanoparticles, is not a stationary value and periodically varies with time. A consequence of the energy nonstationarity is a nonradiating exit of the electromagnetic energy out of the nanoparticle. During the time equal to the period of wave oscillations, the electromagnetic energy is penetrating twice into the particle and quits it twice. The particle warms up because of the difference in the incoming and outgoing energies. Such “energy breathing” is presented for spherical Ag and Au nanoparticles with radii of 10 and 33 nm, respectively. Calculations were conducted for these nanoparticles embedded into the cell cytoplasm near the frequencies of their surface plasmon resonances.

  4. Industrial applications of nanoparticles.

    Science.gov (United States)

    Stark, W J; Stoessel, P R; Wohlleben, W; Hafner, A

    2015-08-21

    Research efforts in the past two decades have resulted in thousands of potential application areas for nanoparticles - which materials have become industrially relevant? Where are sustainable applications of nanoparticles replacing traditional processing and materials? This tutorial review starts with a brief analysis on what makes nanoparticles attractive to chemical product design. The article highlights established industrial applications of nanoparticles and then moves to rapidly emerging applications in the chemical industry and discusses future research directions. Contributions from large companies, academia and high-tech start-ups are used to elucidate where academic nanoparticle research has revolutionized industry practice. A nanomaterial-focused analysis discusses new trends, such as particles with an identity, and the influence of modern instrument advances in the development of novel industrial products.

  5. Microemulsion Synthesis of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gotić, M.

    2013-11-01

    Full Text Available Nanoparticles and nanomaterials have wide applications in electronics, physics, material design, being also utilized as sensors, catalysts, and more and more in biomedicine. Microemulsions are an exceptionally suitable medium for the synthesis of nanoparticles due to their thermodynamical stability, great solubility of both polar and nonpolar components, as well as their ability to control the size, dispersity and shape of the particles. This review presents microemulsion techniques for the synthesis of inorganic nanoparticles. It takes place in water-in-oil microemulsions by mixing one microemulsion with a cationic precursor, and the other with a precipitating or reducing agent, or by direct addition of reducing agents or gas (O2, NH3 ili CO2 into microemul sion (Fig. 1. Metal nanoparticles are used as catalysts, sensors, ferrofluids etc. They are produced by reducing the metal cation with a suitable reducing agent. In a similar way, one can prepare nanoparticles of alloys from the metal salts, provided that the metals are mutually soluble. The microemulsion technique is also suitable for depositing nanoparticles onto various surfaces. Highly active catalysts made from nanoparticles of Pt, Pd, Rh and other noble metals may be obtained in this way. Metal oxides and hydroxides may be prepared by hydrolysis or precipitation in the water core of microemulsion. Precipitation can be initiated by adding the base or precipitating agent into the microemulsion with water solution of metal ions. Similarly, nanoparticles may be prepared of sulphides, halogenides, cyanides, carbonates, sulphates and other insoluble metal salts. To prevent oxidation of nanoparticles, especially Fe, the particles are coated with inert metals, oxides, various polymers etc. Coating may provide additional functionality; e.g. coating with gold allows subsequent functionalization with organic compounds containing sulphur, due to the strong Au–S bond. Polymer coatings decrease

  6. Precise Quantification of Nanoparticle Internalization

    OpenAIRE

    Gottstein, Claudia; Wu, Guohui; Wong, Benjamin J.; Zasadzinski, Joseph Anthony

    2013-01-01

    Nanoparticles have opened new exciting avenues for both diagnostic and therapeutic applications in human disease, and targeted nanoparticles are increasingly used as specific drug delivery vehicles. The precise quantification of nanoparticle internalization is of importance to measure the impact of physical and chemical properties on the uptake of nanoparticles into target cells or into cells responsible for rapid clearance. Internalization of nanoparticles has been measured...

  7. Nanoparticle-based Sensors

    Directory of Open Access Journals (Sweden)

    V.K. Khanna

    2008-09-01

    Full Text Available Nanoparticles exhibit several unique properties that can be applied to develop chemical and biosensorspossessing desirable features like enhanced sensitivity and lower detection limits. Gold nanoparticles arecoated with sugars tailored to recognise different biological substances. When mixed with a weak solution ofthe sugar-coated nanoparticles, the target substance, e.g., ricin or E.coli, attaches to the sugar, thereby alteringits properties and changing the colour. Spores of bacterium labeled with carbon dots have been found to glowupon illumination when viewed with a confocal microscope. Enzyme/nanoparticle-based optical sensors forthe detection of organophosphate (OP compounds employ nanoparticle-modified fluorescence of an inhibitorof the enzyme to generate the signal for the OP compound detection. Nanoparticles shaped as nanoprisms,built of silver atoms, appear red on exposure to light. These nanoparticles are used as diagnostic labels thatglow when target DNA, e.g., those of anthrax or HIV, are present. Of great importance are tools like goldnanoparticle-enhanced surface-plasmon resonance sensor and silver nanoparticle surface-enhanced portableRaman integrated tunable sensor. Nanoparticle metal oxide chemiresistors using micro electro mechanical systemhotplate are very promising devices for toxic gas sensing. Chemiresistors comprising thin films of nanogoldparticles, encapsulated in monomolecular layers of functionalised alkanethiols, deposited on interdigitatedmicroelectrodes, show resistance changes through reversible absorption of vapours of harmful gases. Thispaper reviews the state-of-the-art sensors for chemical and biological terror agents, indicates their capabilitiesand applications, and presents the future scope of these devices.Defence Science Journal, 2008, 58(5, pp.608-616, DOI:http://dx.doi.org/10.14429/dsj.58.1683

  8. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity.

    Science.gov (United States)

    Yang, Songtao; Pelton, Robert

    2011-09-20

    The ability of polystyrene nanoparticles to facilitate the froth flotation of glass beads was correlated to the hydrophobicity of the nanoparticles. Contact angle measurements were used to probe the hydrophobicity of hydrophilic glass surfaces decorated with hydrophobic nanoparticles. Both sessile water drop advancing angles, θ(a), and attached air bubble receding angle measurements, θ(r), were performed. For glass surfaces saturated with adsorbed nanoparticles, flotation recovery, a measure of flotation efficiency, increased with increasing values of each type of contact angle. As expected, the advancing water contact angle on nanoparticle-decorated, dry glass surfaces increased with surface coverage, the area fraction of glass covered with nanoparticles. However, the nanoparticles were far more effective at raising the contact angle than the Cassie-Baxter prediction, suggesting that with higher nanoparticle coverages the water did not completely wet the glass surfaces between the nanoparticles. A series of polystyrene nanoparticles was prepared to cover a range of surface energies. Water contact angle measurements, θ(np), on smooth polymer films formed from organic solutions of dissolved nanoparticles were used to rank the nanoparticles in terms of hydrophobicity. Glass spheres were saturated with adsorbed nanoparticles and were isolated by flotation. The minimum nanoparticle water contact angle to give high flotation recovery was in the range of 51° < θ(np(min)) ≤ 85°.

  9. Degradation of formaldehyde by mesoporous carbon supported Pt%介孔碳负载铂催化剂的制备及降解甲醛的研究

    Institute of Scientific and Technical Information of China (English)

    朱舜; 姚玉元; 林启松; 吕汪洋; 陈文兴

    2013-01-01

    以嵌段共聚物 F127为软模板,低分子量酚醛树脂为前驱体,通过溶剂挥发诱导自组装(EISA)方法制得介孔碳(OMC),经浸渍还原法制备介孔碳负载铂催化剂(Pt/OMC )。采用场发射扫描电镜(FESEM)、X射线能谱(EDS)、透射电镜(TEM)、X射线衍射(XRD)、N2吸附-脱附等温线等对其进行了表征。Pt/OMC对甲醛的催化性能结果表明,反应7h甲醛的去除率可达92.5%,甲醛可矿化为 CO2。还研究了甲醛的降解机理,甲醛首先被氧化成甲酸,然后再矿化为CO2和 H2 O。%The ordered mesoporous carbon was synthesized with triblock copolymer pluronic 127 as the soft tem-plate,phenolic resins with low molecular weight as carbon sources via the evaporation induced self-assembly route.The ordered mesoporous carbon supported platinum (Pt)catalyst (Pt/OMC)was prepared by chemical reduction method,characterized by scanning electron microscope (FESEM),energy dispersive X-ray spectros-copy (EDS),transmission electron microscope (TEM),X-ray diffraction (XRD)and nitrogen adsorption-de-sorption isotherm.The catalytic activity of Pt/OMC on formaldehyde was investigated.It indicated that Pt/OMC had excellent catalytic activity,and the removal rate on formaldehyde was more than 92.5% in 7h.More-over,it could be mineralized to carbon dioxide.High performance liquid chromatography (HPLC)and gas chromatography (GC)were used to investigate the reaction mechanism for degrading formaldehyde,revealing that the formaldehyde was first decomposed into formic acid,then mineralized to carbon dioxide and water.

  10. 大孔碳载Ir催化剂对氧还原的电催化性能和抗甲酸能力%Electrocatalytic Performance and Formic Acid Tolerance Ability of Macropore Carbon Supported Ir Catalyst for Oxygen Reduction

    Institute of Scientific and Technical Information of China (English)

    刘春艳; 徐斌; 唐亚文; 曹高萍; 杨裕生; 陆天虹

    2011-01-01

    The electrocatalytic performance and formic acid tolerance ability of the Vulcan XC-72 carbon black supported Ir(Ir/XC) catalyst and the macropore carbon supported Ir(Ir/MC) catalyst in the direct formic acid fuel cell were investigated by energy dispersive spectroscopy( EDS), X-ray diffraction(XRD) spectroscopy, Raman spectroscopy and electrochemical technique. It is found that the electrocatalytic performance of the Ir/MC catalyst for the oxygen reduction is better than that of the Ir/XC catalyst. The onset reduction potential of oxygen at the Ir/MC catalyst is 0. 1 V more positive than that at the Ir/XC catalyst. The limiting current density of the oxygen reduction at the Ir/MC catalyst is 30% larger than that at the Ir/XC catalyst. This could be only attributed to the large pore diameter and porosity as well as high graphitization extent because the average diameters and relative crystallinity of the two catalysts are similar. In addition, both catalysts have good formic acid tolerance ability. Therefore, MC is a better carbon carrier of the catalyst than XC.%采用X射线能量色散谱(EDS)、X射线衍射(XRD)、拉曼光谱和电化学等技术研究了直接甲酸燃料电池(DFAFC)中Vulcan XC-72碳黑载Ir(Ir/XC)和大孔碳载Ir(Ir/MC)催化剂对氧还原的电催化性能和抗甲酸能力.发现Ir/MC催化剂对氧还原的电催化性能优于Ir/XC催化剂,氧起始还原电位比在Ir/XC催化剂上正移0.1 V,极限电流密度比在Ir/XC催化剂上大30%左右.由于在Ir/MC和Ir/XC催化剂中Ir粒子的平均粒径和结晶度相似,因此,两种催化剂的性能差别可归结于与XC相比MC有较大的孔径和孔率及较高的石墨化程度,这说明MC是一种比XC更好的催化剂碳载体.另外,两种催化剂都有很好的抗甲酸能力.

  11. 超声波辅助活性炭负载杂多酸盐催化合成尼泊金丁酯%CATALYTIC SYNTHESIS OF BUTYL PARABEN WITH ACTIVATED CARBON SUPPORTED HETEMPOLY COMPOUND BY ULTRASONIC ASSISTED METHOD

    Institute of Scientific and Technical Information of China (English)

    徐斌; 王雪源

    2012-01-01

    以对羟基苯甲酸和正丁醇为原料,活性炭负载Keggin型杂多酸盐[(CH2)5NH2]4SiM012O40为催化剂,在超声波辐射下合成尼泊金丁酯.考察了催化剂用量、原料配比、超声波辐射功率及辐射时间对尼泊金丁酯收率的影响.结果表明:超声波辐射下活性炭负载Keggin型杂多酸盐[(CH2)5NH2]4SiMo12O40具有良好的催化活性.较佳工艺条件为:对羟基苯甲酸4.14 g(0.03 mol),酸醇摩尔比1.0:2.0,环己烷40 mL,催化剂7g,450 W超声波辐射20 min.尼泊金丁酯收率达到97%以上.%The butyl paraben was synthesized with p-hydroxy benzoic acid and n-butanol by ultrasonic assisted method, with activated carbon supported keggin-structured hetempoly compound, [(CH2)5NH2]4SiMo12O40, as catalysts. Effects of catalyst dosage, molar ratios of the reactants, ultrasonic wave power and radiation time were investigated. The results showed that the catalytic activity is good under ultrasonic and the optimal conditions were determined as follows: p-hydroxy benzoic 4. 14 g (0. 03 mol), mole ratio of p-hydroxy benzoic acid to n-butanol 1.0 : 2. 0, cyclohexane 40 mL, catalyst 7 g as well as radiation time 20 min with the ultrasonic wave power of 450 W. Under these conditions, the yield of butyl paraben was up to 97%.

  12. Spiral microfluidic nanoparticle separators

    Science.gov (United States)

    Bhagat, Ali Asgar S.; Kuntaegowdanahalli, Sathyakumar S.; Dionysiou, Dionysios D.; Papautsky, Ian

    2008-02-01

    Nanoparticles have potential applications in many areas such as consumer products, health care, electronics, energy and other industries. As the use of nanoparticles in manufacturing increases, we anticipate a growing need to detect and measure particles of nanometer scale dimensions in fluids to control emissions of possible toxic nanoparticles. At present most particle separation techniques are based on membrane assisted filtering schemes. Unfortunately their efficiency is limited by the membrane pore size, making them inefficient for separating a wide range of sizes. In this paper, we propose a passive spiral microfluidic geometry for momentum-based particle separations. The proposed design is versatile and is capable of separating particulate mixtures over a wide dynamic range and we expect it will enable a variety of environmental, medical, or manufacturing applications that involve rapid separation of nanoparticles in real-world samples with a wide range of particle components.

  13. Nanoparticles deliver RNAi therapy

    Directory of Open Access Journals (Sweden)

    Martin C. Woodle

    2005-08-01

    Full Text Available Nanotechnology-based advanced materials are rapidly expanding development of better medicines. Long-standing efforts with lipid and polymer colloidal delivery systems, i.e. nanoparticles, have yielded better imaging and therapy. These benefits of nanotechnology, though limited, have driven efforts to develop advanced nanoparticles. This is particularly the case for targeted nucleic acid (gene therapeutics based on short interfering ribonucleic acid (siRNA, which is a new gene inhibitor that is highly potent and selective. Here, we evaluate the use of modular conjugates to construct targeted nanoparticle therapeutics for nucleic acids. These nanoparticles are beginning to emulate the sophistication of virus particles – nature's own nanoscale assemblies for nucleic acids. For medicine, they promise the creation of a new generation of ‘targeted’ therapeutics that can offer multiple levels of selectivity.

  14. Metallic Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Hernando

    2005-01-01

    Full Text Available In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm, covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  15. Functionalized diamond nanoparticles

    KAUST Repository

    Beaujuge, Pierre M.

    2014-10-21

    A diamond nanoparticle can be functionalized with a substituted dienophile under ambient conditions, and in the absence of catalysts or additional reagents. The functionalization is thought to proceed through an addition reaction.

  16. Predicting toxicity of nanoparticles

    OpenAIRE

    BURELLO ENRICO; Worth, Andrew

    2011-01-01

    A statistical model based on a quantitative structure–activity relationship accurately predicts the cytotoxicity of various metal oxide nanoparticles, thus offering a way to rapidly screen nanomaterials and prioritize testing.

  17. Immunosensing using nanoparticles

    Directory of Open Access Journals (Sweden)

    Alfredo de la Escosura-Muñiz

    2010-07-01

    Full Text Available Immunosensing technology is taking advantage of the lastest developments in materials science and inparticular from the nanomaterials field. Because of their unprecedented optical tunability as well as electrical and electrochemical qualities, we are seeing significant developments in the design of novel immunoassays; various conventional optical and electrical platforms which allow for future applications in several fields are being used. Properties of nanoparticles such as light absorption and dispersion are bringing interesting immunosensing alternatives. Nanoparticles are improving the sensitivity of existing techniques used for protein detection in immunoassays based on Surface Plasmon Resonance, Quartz Crystal Microbalance, Fluorescence spectroscopy etc. Electrochemical techniques are also taking advantage of electrical properties of nanoparticles. Redox properties of metal based nanoparticles, surface impedance change and conductance changes once nanoparticles are present as labelling tags or modifiers of transducer surfaces are also improving the technology. In most of the examples nanoparticle based biosensing systems are being offered as excellent screening and superior alternatives to existing conventional strategies/assays with interest for fields in clinical analysis, food quality, safety and security.

  18. Imaging through plasmonic nanoparticles

    Science.gov (United States)

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-05-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems.

  19. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    Science.gov (United States)

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  20. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  1. CO tolerant PtRu-MoO{sub x} nanoparticles supported on carbon nanofibers for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsiouvaras, N.; Pena, M.A.; Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, 28049 Madrid (Spain); Martinez-Huerta, M.V. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, 28049 Madrid (Spain); Facultad de Quimicas, Universidad de La Laguna, Astrofisico Francisco Sanchez s/n, 38071, La Laguna, Tenerife (Spain); Moliner, R.; Lazaro, M.J. [Instituto de Carboquimica, CSIC, Miguel Luesma Castan 4, 50018 Zaragoza (Spain); Rodriguez, J.L.; Pastor, E. [Facultad de Quimicas, Universidad de La Laguna, Astrofisico Francisco Sanchez s/n, 38071, La Laguna, Tenerife (Spain)

    2009-01-15

    Novel nanostructured catalysts based on PtRu-MoO{sub x} nanoparticles supported on carbon nanofibers have been investigated for CO and methanol electrooxidation. Carbon nanofibers are prepared by thermocatalytic decomposition of methane (NF), and functionalized with HNO{sub 3} (NF.F). Electrocatalysts are obtained using a two-step procedure: (1) Pt and Ru are incorporated on the carbon substrates (Vulcan XC 72R, NF and NF.F), and (2) Mo is loaded on the PtRu/C samples. Differential electrochemical mass spectrometry (DEMS) analyses establish that the incorporation of Mo increases significantly the CO tolerance than respective binary counterparts. The nature of the carbon support affects considerably the stabilization of MoO{sub x} nanoparticles and also the performance in methanol electrooxidation. Accordingly, a significant increase of methanol oxidation is obtained in PtRu-MoO{sub x} nanoparticles supported on non-functionalized carbon nanofiber, in parallel with a large reduction of the Pt amount in comparison with binary counterparts and commercial catalyst. (author)

  2. Platinum Iron Intermetallic Nanoparticles Supported on Carbon Formed In Situ by High-Pressure Pyrolysis for Efficient Oxygen Reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2016-01-01

    Carbon-supported PtFe alloy catalysts are synthesized by the one-step, high-temperature pyrolysis of Pt, Fe, and C precursors. As a result of the high temperature, the formed PtFe nanoparticles possess highly ordered, face-centered tetragonal, intermetallic structures with a mean size of ≈11.8 nm....... At 0.9 V versus the reversible hydrogen electrode, the PtFe nanoparticles show a 6.8 times higher specific activity than the reference Pt/C catalyst towards the oxygen reduction reaction (ORR) as well as excellent stability, most likely because of the durable intermetallic structure and the preleaching...... treatment of the catalyst. During these preliminary syntheses, we found that a portion of the PtFe nanoparticles is buried in the in situ formed carbon phase, which limits Pt utilization in the catalyst and results in a mass-specific activity equivalent to the commercial Pt/C catalyst. Moreover...

  3. Chemistry for oncotheranostic gold nanoparticles.

    Science.gov (United States)

    Trouiller, Anne Juliette; Hebié, Seydou; El Bahhaj, Fatima; Napporn, Teko W; Bertrand, Philippe

    2015-06-24

    This review presents in a comprehensive ways the chemical methods used to functionalize gold nanoparticles with focus on anti-cancer applications. The review covers the parameters required for the synthesis gold nanoparticles with defined shapes and sizes, method for targeted delivery in tumours, and selected examples of anti-cancers compounds delivered with gold nanoparticles. A short survey of bioassays for oncology based on gold nanoparticles is also presented.

  4. Green Synthesis of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghorbani

    2015-03-01

    Full Text Available There is an increased interest in understanding the toxicity and rational design of gold nanoparticles for biomedical applications in recent years. In this study gold nanoparticles were synthesized using dextrose as a reducing agent. The gold nanoparticles displayed characteristic Surface Plasmon Resonance peak at around 550 nm having a mean particle size of 75±30 nm. In order to identify and analyze nanoparticles, UV–Vis spectroscopy, Scanning electron microscopy (SEM, and dynamic light scattering (DLS were used.

  5. Highly basic CaO nanoparticles in mesoporous carbon materials and their excellent catalytic activity.

    Science.gov (United States)

    Raja, Pradeep Kumar; Chokkalingam, Anand; Priya, Subramaniam V; Balasubramanian, Veerappan V; Benziger, Mercy R; Aldeyab, Salem S; Jayavell, Ramasamy; Ariga, Katsukiho; Vinu, Ajayan

    2012-06-01

    Highly basic CaO nanoparticles immobilized mesoporous carbon materials (CaO-CMK-3) with different pore diameters have been successfully prepared by using wet-impregnation method. The prepared materials were subjected to extensive characterization studies using sophisticated techniques such as XRD, nitrogen adsorption, HRSEM-EDX, HRTEM and temperature programmed desorption of CO2 (TPD of CO2). The physico-chemical characterization results revealed that these materials possess highly dispersed CaO nanoparticles, excellent nanopores with well-ordered structure, high specific surface area, large specific pore volume, pore diameter and very high basicity. We have also demonstrated that the basicity of the CaO-CMK-3 samples can be controlled by simply varying the amount of CaO loading and pore diameter of the carbon support. The basic catalytic performance of the samples was investigated in the base-catalyzed transesterification of ethylacetoacetate by aryl, aliphatic and cyclic primary alcohols. CMK-3 catalyst with higher CaO loading and larger pore diameter was found to be highly active with higher conversion within a very short reaction time. The activity of 30% CaO-CMK3-150 catalyst for transesterification of ethylacetoacetate using different alcohols increases in the following order: octanol > butanol > cyclohexanol > benzyl alcohol > furfuryl alcohol.

  6. Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyeva, N. [Institute of Chemistry, University of Tartu, Jakobi 2, 51014 Tartu (Estonia); Tammeveski, K., E-mail: kaido@chem.ut.e [Institute of Chemistry, University of Tartu, Jakobi 2, 51014 Tartu (Estonia); Lopez-Cudero, A.; Solla-Gullon, J.; Feliu, J.M. [Instituto de Electroquimica, Universidad de Alicante, Apartado 99, 03080 Alicante (Spain)

    2010-01-01

    The kinetics of O{sub 2} reduction on novel electrocatalyst materials deposited on carbon substrates were studied in 0.5 M H{sub 2}SO{sub 4} and in 0.1 M NaOH solutions using the rotating disk electrode (RDE) technique. Pt nanoparticles (PtNP) supported on single-walled (PtNP/SWCNT) and multi-walled carbon nanotubes (PtNP/MWCNT) were prepared using two different synthetic routes. Before use, the CNTs were cleaned to minimize the presence of metal impurities coming from the catalyst used in the synthesis of this material, which can interfere in the electrochemical response of the supported Pt nanoparticles. The composite catalyst samples were characterised by transmission electron microscopy (TEM) showing a good dispersion of the particles at the surface of the carbon support and an average Pt particle size of 2.4 +- 0.7 nm in the case of Pt/CNTs prepared in the presence of citrate and of 3.8 +- 1.1 nm for Pt/CNTs prepared in microemulsion. The values of specific activity (SA) and other kinetic parameters were determined from the Tafel plots taking into account the real electroactive area of each electrode. The electrodes exhibited a relatively high electrocatalytic activity for the four-electron oxygen reduction reaction to water.

  7. Evaluation of nanoparticle-ligand distributions to determine nanoparticle concentration.

    Science.gov (United States)

    Uddayasankar, Uvaraj; Shergill, Ravi T; Krull, Ulrich J

    2015-01-20

    The concentration of nanoparticles in solution is an important, yet challenging, parameter to quantify. In this work, a facile strategy for the determination of nanoparticle concentration is presented. The method relies on the quantitative analysis of the inherent distribution of nanoparticle-ligand conjugates that are generated when nanoparticles are functionalized with ligands. Validation of the method was accomplished by applying it to gold nanoparticles and semiconductor nanoparticles (CdSe/ZnS; core/shell). Poly(ethylene glycol) based ligands, with functional groups that quantitatively react with the nanoparticles, were incubated with the nanoparticles at varying equivalences. Agarose gel electrophoresis was subsequently used to separate and quantify the nanoparticle-ligand conjugates of varying valences. The distribution in the nanoparticle-ligand conjugates agreed well with that predicted by the Poisson model. A protocol was then developed, where a series of only eight different ligand amounts could provide an estimate of the nanoparticle concentration that spans 3 orders of magnitude (1 μM to 1 mM). For the gold nanoparticles and semiconductor nanoparticles, the measured concentrations were found to deviate by only 7% and 2%, respectively, from those determined by UV-vis spectroscopy. The precision of the assay was evaluated, resulting in a coefficient of variation of 5-7%. Finally, the protocol was used to determine the extinction coefficient of alloyed semiconductor nanoparticles (CdSxSe1-x/ZnS), for which a reliable estimate is currently unavailable, of three different emission wavelengths (525, 575, and 630 nm). The extinction coefficient of the nanoparticles of all emission wavelengths was similar and was found to be 2.1 × 10(5) M(-1)cm(-1).

  8. Safety of nanoparticles in sunscreens

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Sunscreens may contain ZnO or TiO2 nanoparticles to absorb UV radiation. Available data do not allow for precisely establishing risk associated with these nanoparticles. However, there is substantial evidence that the hazard of TiO2 and ZnO nanoparticles probably comes from their ability to generate

  9. Surface chemistry of "unprotected" nanoparticles

    DEFF Research Database (Denmark)

    Schrader, Imke; Warneke, Jonas; Neumann, Sarah

    2015-01-01

    The preparation of colloidal nanoparticles in alkaline ethylene glycol is a powerful approach for the preparation of model catalysts and ligand-functionalized nanoparticles. For these systems the term "unprotected" nanoparticles has been established because no strongly binding stabilizers are req...

  10. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  11. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  12. Effects of the Electrodeposition Time in the Synthesis of Carbon-Supported Pt(Cu and Pt-Ru(Cu Core-Shell Electrocatalysts for Polymer Electrolye Fuel Cells

    Directory of Open Access Journals (Sweden)

    Griselda Caballero-Manrique

    2016-08-01

    Full Text Available Pt(Cu/C and Pt-Ru(Cu/C electrocatalysts with core-shell structure supported on Vulcan Carbon XC72R have been synthesized by potentiostatic deposition of Cu nanoparticles on the support, galvanic exchange with Pt and spontaneous deposition of Ru species. The duration of the electrodeposition time of the different species has been modified and the obtained electrocatalysts have been characterized using electrochemical and structural techniques. The High Resolution Transmission Electron Microscopy (HRTEM, Fast Fourier Transform (FFT and Energy Dispersive X-ray (EDX microanalyses allowed the determining of the effects of the electrodeposition time on the nanoparticle size and composition. The best conditions identified from Cyclic Voltammetry (CV corresponded to onset potentials for CO and methanol oxidation on Pt-Ru(Cu/C of 0.41 and 0.32 V vs. the Reversible Hydrogen Electrode (RHE, respectively, which were smaller by about 0.05 V than those determined for Ru-decorated commercial Pt/C. The CO oxidation peak potentials were about 0.1 V smaller when compared to commercial Pt/C and Pt-Ru/C. The positive effect of Cu was related to its electronic effect on the Pt shells and also to the generation of new active sites for CO oxidation. The synthesis conditions to obtain the best performance for CO and methanol oxidation on the core-shell Pt-Ru(Cu/C electrocatalysts were identified. When compared to previous results in literature for methanol, ethanol and formic acid oxidation on Pt(Cu/C catalysts, the present results suggest an additional positive effect of the deposited Ru species due to the introduction of the bifunctional mechanism for CO oxidation.

  13. NANOPARTICLES IN NUCLEAR IMAGING

    Directory of Open Access Journals (Sweden)

    Dr. Vicky V Mody PhD

    2011-01-01

    Full Text Available The present review article summarizes the current state radiolabeled nanoparticles for molecular imaging applications mainly targeting cancer. Due to their enormous flexibility, and versatility the radiolabeled nanoparticles have shown their potential in the diagnosis and therapy. As the matter of fact, these radiolabeled imaging agents enable the visualization of the cellular function and the follow-up of the molecular process in living organisms. Moreover, the rapidly advancing field of nanotechnology has provided various innovative radionuclides and delivery systems, such as liposomes, magnetic agents, polymers, dendrimers, quantum dots, and carbon nanotubes to cope up with the hurdles which have been posed by various disease states.

  14. Nanoparticle shuttle memory

    Science.gov (United States)

    Zettl, Alex Karlwalter [Kensington, CA

    2012-03-06

    A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

  15. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...... and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...

  16. Nanoparticles from Renewable Polymers

    Science.gov (United States)

    Wurm, Frederik; Weiss, Clemens

    2014-07-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  17. Biomimetic magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael T. Klem

    2005-09-01

    Full Text Available Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches to materials chemistry have provided a new avenue for the synthesis and assembly of magnetic nanomaterials that has great potential for overcoming these obstacles.

  18. Thermally stable nanoparticles on supports

    Science.gov (United States)

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  19. Nanoparticle-Based Biosensors and Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Wang, Jun; Lin, Yuehe; Wang, Joseph

    2007-10-11

    In this book chapter, we review the recent advances in nanoparticles based bioassay. The nanoparticles include quantum dots, silica nanoparticles and apoferritin nanoparticles. The new nanoparticles-based labels hold great promise for multiplex protein and DNA detection and for enhancing the sensitivity of other bioassays.

  20. Nanoparticles as a tool in capillary electrochromatography

    OpenAIRE

    Ribeiro, Susana

    2009-01-01

    Two different types of molecularly imprinted nanoparticles against (R)-propranolol were used to separate the enantiomers of propranolol in capillary electrochromatography mode, methacrylic acid based nanoparticles and core-shell molecularly imprinted polymer nanoparticles. Partial filling technique was used to avoid interference of molecularly imprinted polymer nanoparticles in UV detection. With methacrylic acid based nanoparticles it was not possible to obtain enantiomer s...

  1. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR

    Science.gov (United States)

    Xiao, Weiping; Zhu, Jing; Han, Lili; Liu, Sufen; Wang, Jie; Wu, Zexing; Lei, Wen; Xuan, Cuijuan; Xin, Huolin L.; Wang, Deli

    2016-08-01

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, a highly active, durable, carbon supported, and monolayer Pt coated Pd-Co-Zn nanoparticle is synthesized via a simple impregnation-reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition-activity volcano curve for the Pd-Co-Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd8CoZn/C nanoparticles show a substantial enhancement in both the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N2-saturated 0.1 M HClO4 solution, Pd8CoZn@Pt/C shows improved mass activity (2.62 A mg-1Pt) and specific activity (4.76 A m-2total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O2-saturated 0.1 M HClO4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. The results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, a highly active, durable, carbon supported, and monolayer Pt coated Pd-Co-Zn nanoparticle is synthesized via a simple impregnation-reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition-activity volcano curve for the Pd-Co-Zn nanoparticles and determined that Pd : Co : Zn = 8

  2. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  3. Nanoparticles in forensic science

    Science.gov (United States)

    Cantu, Antonio A.

    2008-10-01

    Nanoparticles appear in several areas of forensic science including security documents, paints, inks, and reagents that develop latent prints. One reagent (known as the silver physical developer) that visualizes the water insoluble components of latent print residue is based on the formation of highly charged silver nanoparticles. These attach to and grow on the residue and generate a silver image. Another such reagent involves highly charged gold nanoparticles. These attach to the residue forming a weak gold image which can be amplified with a silver physical developer. Nanoparaticles are also used in items such as paints, printing inks, and writing inks. Paints and most printing inks consist of nano-sized pigments in a vehicle. However, certain modern ink jet printing inks now contain nano-sized pigments to improve their light fastness and most gel inks are also based on nano scale pigments. These nanoparticlecontaining materials often appear as evidence and are thus subject to forensic characterization. Both luminescent (quantum dots), up-converting nano scale phosphors, and non luminescent nanoparticles are used as security tags to label product, add security to documents, and as anti counterfeiting measures. These assist in determining if an item is fraudulently made.

  4. Molecularly Imprinted Biodegradable Nanoparticles

    Science.gov (United States)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization. PMID:28071745

  5. Asymmetric Hybrid Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chumanov, George [Clemson Univ., SC (United States)

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  6. Molecularly Imprinted Biodegradable Nanoparticles

    Science.gov (United States)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  7. DNA templated magnetic nanoparticles

    Science.gov (United States)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  8. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    Science.gov (United States)

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  9. Nanobiotechnology today: focus on nanoparticles

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2007-12-01

    Full Text Available Abstract In the recent years the nanobiotechnology field and the Journal of Nanobiotechnology readership have witnessed an increase in interest towards the nanoparticles and their biological effects and applications. These include bottom-up and molecular self-assembly, biological effects of naked nanoparticles and nano-safety, drug encapsulation and nanotherapeutics, and novel nanoparticles for use in microscopy, imaging and diagnostics. This review highlights recent Journal of Nanobiotechnology publications in some of these areas http://www.jnanobiotechnology.com.

  10. Nanobiotechnology today: focus on nanoparticles.

    Science.gov (United States)

    Soloviev, Mikhail

    2007-12-30

    In the recent years the nanobiotechnology field and the Journal of Nanobiotechnology readership have witnessed an increase in interest towards the nanoparticles and their biological effects and applications. These include bottom-up and molecular self-assembly, biological effects of naked nanoparticles and nano-safety, drug encapsulation and nanotherapeutics, and novel nanoparticles for use in microscopy, imaging and diagnostics. This review highlights recent Journal of Nanobiotechnology publications in some of these areas http://www.jnanobiotechnology.com.

  11. Green Nanoparticles for Mosquito Control

    OpenAIRE

    Namita Soni; Soam Prakash

    2014-01-01

    Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicum or C. verum J. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquef...

  12. Glucose biosensor enhanced by nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Glucose biosensors have been formed with glucose oxidase (GOD) immobilized in composite immobilization membrane matrix, which is composed of hydrophobic gold, or hydrophilic gold, or hydrophobic silica nanoparticles, or the combination of gold and silica nanoparticles, and polyvinyl butyral (PVB) by a sol-gel method. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response can be increased from tens of nanoamperometer (nA) to thousands of nanoamperometer to the same glucose concentration, and the electrodes respond very quickly, to about 1 min. The function of nanoparticles effect on immobilization enzyme has been discussed.

  13. Glucose biosensor enhanced by nanoparticles

    Institute of Scientific and Technical Information of China (English)

    唐芳琼; 孟宪伟; 陈东; 冉均国; 郑昌琼

    2000-01-01

    Glucose biosensors have been formed with glucose oxidase (GOD) immobilized in composite immobilization membrane matrix, which is composed of hydrophobic gold, or hydro-philic gold, or hydrophobic silica nanoparticles, or the combination of gold and silica nanoparticles, and polyvinyl butyral (PVB) by a sol-gel method. The experiments show that nanoparticles can significantly enhance the catalytic activity of the immobilization enzyme. The current response can be increased from tens of nanoamperometer (nA) to thousands of nanoamperometer to the same glucose concentration, and the electrodes respond very quickly, to about 1 min. The function of nanoparticles effect on immobilization enzyme has been discussed.

  14. Lung toxicity of biodegradable nanoparticles.

    Science.gov (United States)

    Fattal, Elias; Grabowski, Nadége; Mura, Simona; Vergnaud, Juliette; Tsapis, Nicolas; Hillaireau, Hervé

    2014-10-01

    Biodegradable nanoparticles exhibit high potentialities for local or systemic drug delivery through lung administration making them attractive as nanomedicine carriers. However, since particulate matter or some inorganic manufactured nanoparticles exposed to lung cells have provoked cytotoxic effects, inflammatory and oxidative stress responses, it becomes important to investigate nanomedicine toxicity towards the lungs. This is the reason why, in the present review, the behavior of biodegradable nanoparticles towards the different parts of the respiratory tract as well as the toxicological consequences, measured on several models in vitro, ex vivo or in vivo, are described. Taken all together, the different studies carried out so far conclude on no or slight toxicity of biodegradable nanoparticles.

  15. Nanoparticle Reactions on Chip

    Science.gov (United States)

    Köhler, J. M.; Kirner, Th.; Wagner, J.; Csáki, A.; Möller, R.; Fritzsche, W.

    The handling of heterogenous systems in micro reactors is difficult due to their adhesion and transport behaviour. Therefore, the formation of precipitates and gas bubbles has to be avoided in micro reaction technology, in most cases. But, micro channels and other micro reactors offer interesting possibilities for the control of reaction conditions and transport by diffusion and convection due to the laminar flow caused by small Reynolds numbers. This can be used for the preparation and modification of objects, which are much smaller than the cross section of microchannels. The formation of colloidal solutions and the change of surface states of nano particles are two important tasks for the application of chip reactors in nanoparticle technology. Some concepts for the preparation and reaction of nanoparticles in modular chip reactor arrangements will be discussed.

  16. Hydrogel nanoparticle based immunoassay

    Science.gov (United States)

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  17. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    , laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... in the bulk was studied by polarizing light microscopy, differential scanning calorimetry (DSC) and small angle X-ray scattering (SAXS). Colloidal dispersions with pure and mixed cholesterol ester matrices were prepared by high-pressure melt homogenization and characterized by photon correlation spectroscopy...... administration of lipophilic drugs, the cytotoxicity of selected formulations was compared with that of a clinically used colloidal fat emulsion (Lipofundin MCT) in the murine fibroblast cell line L929 using the sulforhodamine B assay. The supercooled smectic nanoparticle formulations display a good overall cell...

  18. Nanoparticles and Inflammation

    Directory of Open Access Journals (Sweden)

    Ross Stevenson

    2011-01-01

    Full Text Available The development of nanoscale molecular probes capable of diagnosis, characterization, and clinical treatment of disease is leading to a new generation of imaging technologies. Such probes are particularly relevant to inflammation, where the detection of subclinical, early disease states could facilitate speedier detection that could yield enhanced, tailored therapies. Nanoparticles offer robust platforms capable of sensitive detection, and early research has indicated their suitability for the detection of vascular activation and cellular recruitment at subclinical levels. This suggests that nanoparticle techniques may provide excellent biomarkers for the diagnosis and progression of inflammatory diseases with magnetic resonance imaging (MRI, fluorescent quantum dots (QDs, and surface enhanced Raman scattering (SERS probes being just some of the new methodologies employed. Development of these techniques could lead to a range of sensitive probes capable of ultrasensitive, localized detection of inflammation. This article will discuss the merits of each approach, with a general overview to their applicability in inflammatory diseases.

  19. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  20. Gluing Soft Interfaces by Nanoparticles

    Science.gov (United States)

    Cao, Zhen; Dobrynin, Andrey

    Using a combination of the molecular dynamics simulations and scaling analysis we studied reinforcement of interface between two soft gel-like materials by spherical nanoparticles. Analysis of the simulations shows that the depth of penetration of a nanoparticle into a gel is determined by a balance of the elastic energy of the gel and nanoparticle deformations and the surface energy of nanoparticle/gel interface. In order to evaluate work of adhesion of the reinforced interface, the potential of mean force for separation of two gels was calculated. These simulations showed that the gel separation proceeds through formation of necks connecting nanoparticle with two gels. The shapes of the necks are controlled by a fine interplay between nanoparticle/gel surface energies and elastic energy of the neck deformation. Our simulations showed that by introducing nanoparticles at soft interfaces, the work required for separation of two gels could be 10-100 times larger than the work of adhesion between two gels without nanoparticle reinforcement. These results provide insight in understanding the mechanism of gluing soft gels and biological tissues by nano- and micro-sized particles. NSF DMR-1409710.

  1. DNA-guided nanoparticle assemblies

    Science.gov (United States)

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  2. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  3. Synthesizing nanoparticles by mimicking nature

    Science.gov (United States)

    As particulate matter with at least one dimension that is less than 100 nm, nanoparticles are the minuscule building blocks of new commercial products and consumer materials in the emerging field of nanotechnology. Nanoparticles are being discovered and introduced in the marketpl...

  4. Thermal treatment of magnetite nanoparticles

    Directory of Open Access Journals (Sweden)

    Beata Kalska-Szostko

    2015-06-01

    Full Text Available This paper presents the results of a thermal treatment process for magnetite nanoparticles in the temperature range of 50–500 °C. The tested magnetite nanoparticles were synthesized using three different methods that resulted in nanoparticles with different surface characteristics and crystallinity, which in turn, was reflected in their thermal durability. The particles were obtained by coprecipitation from Fe chlorides and decomposition of an Fe(acac3 complex with and without a core–shell structure. Three types of ferrite nanoparticles were produced and their thermal stability properties were compared. In this study, two sets of unmodified magnetite nanoparticles were used where crystallinity was as determinant of the series. For the third type of particles, a Ag shell was added. By comparing the coated and uncoated particles, the influence of the metallic layer on the thermal stability of the nanoparticles was tested. Before and after heat treatment, the nanoparticles were examined using transmission electron microscopy, IR spectroscopy, differential scanning calorimetry, X-ray diffraction and Mössbauer spectroscopy. Based on the obtained results, it was observed that the fabrication methods determine, to some extent, the sensitivity of the nanoparticles to external factors.

  5. Uniform magnetic excitations in nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Britt Rosendahl

    2005-01-01

    We have used a spin-wave model to calculate the temperature dependence of the (sublattice) magnetization of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q=0, is predominant in nanoparticles and gives rise to an approximately linear temperature...... dependence of the (sublattice) magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic excitations in nanoparticles. In nanoparticles of antiferromagnetic...... materials, quantum effects give rise to a small deviation from the linear temperature dependence of the (sublattice) magnetization at very low temperatures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with deviations from antiparallel orientation...

  6. Nanotoxicology of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amedea B. Seabra

    2015-06-01

    Full Text Available This review discusses recent advances in the synthesis, characterization and toxicity of metal oxide nanoparticles obtained mainly through biogenic (green processes. The in vitro and in vivo toxicities of these oxides are discussed including a consideration of the factors important for safe use of these nanomaterials. The toxicities of different metal oxide nanoparticles are compared. The importance of biogenic synthesized metal oxide nanoparticles has been increasing in recent years; however, more studies aimed at better characterizing the potent toxicity of these nanoparticles are still necessary for nanosafely considerations and environmental perspectives. In this context, this review aims to inspire new research in the design of green approaches to obtain metal oxide nanoparticles for biomedical and technological applications and to highlight the critical need to fully investigate the nanotoxicity of these particles.

  7. Perylene Nanoparticles Prepared by Reprecipitation Method

    Institute of Scientific and Technical Information of China (English)

    JI,Xue-Hai(纪学海); FU,Hong-Bing(付红兵); XIE,Rui-Min(谢锐敏); XIAO,De-Bao(肖德宝); YAO,Jian-Nian(姚建年)

    2002-01-01

    Perylene nanoparticles with different sizes were prepared by reprecipitation method. It is found that the nanoparticles show size-dependent optical property. Electron diffraction patterns indicate that all the nanoparticles of different sizes are in crystalline state. The rapid growth of the nanoparticles during the agingg process could be slowed down effectively by the addition of cationic or anionic surfactants.

  8. Solid lipid nanoparticles for parenteral drug delivery

    NARCIS (Netherlands)

    Wissing, S.A.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC) nanoparticle

  9. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  10. Nanocalorimetry of bismuth nanoparticles

    Science.gov (United States)

    Olson, Eric Ashley

    The properties of nanosized bismuth particles are investigated using a nanocalorimetric technique. A brief description of the experimental method and data analysis procedures is reported. Bismuth nanoparticles are found to melt at a temperature below that of bulk material, but higher than expected using the standard model. Also included is the results of a finite element analysis and simulated melting of bismuth films on various kinds of sensors. Temperature distributions are found to be nonuniform for calorimetric sensors with Al metallizations, but much more uniform for Pt metallized sensors. The consequences of this nonuniformity on caloric data are discussed.

  11. Antibacterial properties of nanoparticles.

    Science.gov (United States)

    Hajipour, Mohammad J; Fromm, Katharina M; Ashkarran, Ali Akbar; Jimenez de Aberasturi, Dorleta; de Larramendi, Idoia Ruiz; Rojo, Teofilo; Serpooshan, Vahid; Parak, Wolfgang J; Mahmoudi, Morteza

    2012-10-01

    Antibacterial agents are very important in the textile industry, water disinfection, medicine, and food packaging. Organic compounds used for disinfection have some disadvantages, including toxicity to the human body, therefore, the interest in inorganic disinfectants such as metal oxide nanoparticles (NPs) is increasing. This review focuses on the properties and applications of inorganic nanostructured materials and their surface modifications, with good antimicrobial activity. Such improved antibacterial agents locally destroy bacteria, without being toxic to the surrounding tissue. We also provide an overview of opportunities and risks of using NPs as antibacterial agents. In particular, we discuss the role of different NP materials.

  12. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  13. 1.7 nm platinum nanoparticles: synthesis with glucose starch, characterization and catalysis.

    Science.gov (United States)

    Engelbrekt, Christian; Sørensen, Karsten Holm; Lübcke, Teis; Zhang, Jingdong; Li, Qingfeng; Pan, Chao; Bjerrum, Niels J; Ulstrup, Jens

    2010-09-10

    Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2-(N-morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8 ± 0.5, 1.7 ± 0.2 and 1.6 ± 0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8-6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well-dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions.

  14. Precise quantification of nanoparticle internalization.

    Science.gov (United States)

    Gottstein, Claudia; Wu, Guohui; Wong, Benjamin J; Zasadzinski, Joseph Anthony

    2013-06-25

    Nanoparticles have opened new exciting avenues for both diagnostic and therapeutic applications in human disease, and targeted nanoparticles are increasingly used as specific drug delivery vehicles. The precise quantification of nanoparticle internalization is of importance to measure the impact of physical and chemical properties on the uptake of nanoparticles into target cells or into cells responsible for rapid clearance. Internalization of nanoparticles has been measured by various techniques, but comparability of data between different laboratories is impeded by lack of a generally accepted standardized assay. Furthermore, the distinction between associated and internalized particles has been a challenge for many years, although this distinction is critical for most research questions. Previously used methods to verify intracellular location are typically not quantitative and do not lend themselves to high-throughput analysis. Here, we developed a mathematical model which integrates the data from high-throughput flow cytometry measurements with data from quantitative confocal microscopy. The generic method described here will be a useful tool in biomedical nanotechnology studies. The method was then applied to measure the impact of surface coatings of vesosomes on their internalization by cells of the reticuloendothelial system (RES). RES cells are responsible for rapid clearance of nanoparticles, and the resulting fast blood clearance is one of the major challenges in biomedical applications of nanoparticles. Coating of vesosomes with long chain polyethylene glycol showed a trend for lower internalization by RES cells.

  15. Solventless synthesis of ruthenium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    García-Peña, Nidia G. [Departmento de Tecnociencias, Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A.P. 70-186, C.P. 04510 Coyoacán, México D.F. (Mexico); Redón, Rocío, E-mail: rredon@unam.mx [Departmento de Tecnociencias, Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A.P. 70-186, C.P. 04510 Coyoacán, México D.F. (Mexico); Herrera-Gomez, Alberto [Estudios Avanzados del Instituto Politécnico Nacional, Campus Juriquilla, Querétaro (Mexico); Fernández-Osorio, Ana Leticia [FES-Cuautitlán, Universidad Nacional Autónoma de México, Edo. de Mexico (Mexico); Bravo-Sanchez, Mariela; Gomez-Sosa, Gustavo [Estudios Avanzados del Instituto Politécnico Nacional, Campus Juriquilla, Querétaro (Mexico)

    2015-06-15

    Graphical abstract: - Highlights: • Successful synthesis of Ru nanoparticles by a cheap, fast and solventless approach was achieved. • The zero-valent state as well as the by-product/impurity free of the mechanochemical obtained Ru nanoparticles was proven by XPS, TEM and XRD. • Compared to two other synthesis strategies, the above-mentioned synthesis was more suitable to obtain smaller particles with fewer impurities in shorter time. - Abstract: This paper presents a novel solventless method for the synthesis of zero-valent ruthenium nanoparticles Ru(0). The proposed method, although not entirely new in the nanomaterials world, was used for the first time to synthesize zero-valent ruthenium nanoparticles. This new approach has proved to be an environmentally friendly, clean, cheap, fast, and reproducible technique which employs low amounts of solvent. It was optimized through varying amounts of reducing salt on a determined quantity of precursor and measuring the effect of this variation on the average particle size obtained. The resulting products were fully characterized by powder XRD, TEM, HR-TEM, and XPS studies, all of which corroborated the purity of the nanoparticles achieved. In order to verify the advantages of our method over other techniques, we compared our nanoparticles with two common colloidal-synthesized ruthenium nanoparticles.

  16. Synthesis of noble metal nanoparticles

    Science.gov (United States)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  17. Nanopore and nanoparticle catalysts.

    Science.gov (United States)

    Thomas, J M; Raja, R

    2001-01-01

    The design, atomic characterization, performance, and relevance to clean technology of two distinct categories of new nanocatalysts are described and interpreted. Exceptional molecular selectivity and high activity are exhibited by these catalysts. The first category consists of extended, crystallographically ordered inorganic solids possessing nanopores (apertures, cages, and channels), the diameters of which fall in the range of about 0.4 to about 1.5 nm, and the second of discrete bimetallic nanoparticles of diameter 1 to 2 nm, distributed more or less uniformly along the inner walls of mesoporous (ca. 3 to 10 nm diameter) silica supports. Using the principles and practices of solid-state and organometallic chemistry and advanced physico-chemical techniques for in situ and ex situ characterization, a variety of powerful new catalysts has been evolved. Apart from those that, inter alia, simulate the behavior of enzymes in their specificity, shape selectivity, regio-selectivity, and ability to function under ambient conditions, many of these new nanocatalysts are also viable as agents for effecting commercially significant processes in a clean, benign, solvent-free, single-step fashion. In particular, a bifunctional, molecular sieve nanopore catalyst is described that converts cyclohexanone in air and ammonia to its oxime and caprolactam, and a bimetallic nanoparticle catalyst that selectively converts cyclic polyenes into desirable intermediates. Nanocatalysts in the first category are especially effective in facilitating highly selective oxidations in air, and those in the second are well suited to effecting rapid and selective hydrogenations of a range of organic compounds.

  18. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  19. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  20. Watching nanoparticle kinetics in liquid

    Directory of Open Access Journals (Sweden)

    Yugang Sun

    2012-04-01

    Full Text Available Real-time monitoring of reaction kinetics involved in nanoparticle growth and transformation in liquid environments is crucial for understanding the complex chemical and physical events associated with nanophase evolution. Accordingly, in situ techniques that can “see through” liquids to probe nanomaterial variation are in high demand, as they will help us understand reaction mechanisms and design better synthetic strategies for building nanoparticles with precisely tailored properties. In this review, in situ transmission x-ray microscopy and time-resolved high-energy x-ray scattering techniques are discussed, highlight their capabilities in studying the dynamic processes of nanoparticles.

  1. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  2. Electrochemiluminescent metallopolymer-nanoparticle composites: nanoparticle size effects.

    Science.gov (United States)

    Devadoss, Anitha; Dickinson, Calum; Keyes, Tia E; Forster, Robert J

    2011-03-15

    Metallopolymer-gold nanocomposites have been synthesized in which the metal complex-Au nanoparticle (NP) mole ratio is systematically varied by mixing solutions of 4-(dimethylamino) pyridine protected gold nanoparticles and a [Ru(bpy)(2)PVP(10)](2+) metallopolymer; bpy is 2,2'-bipyridyl and PVP is poly-(4-vinylpyridine). The impact of changing the gold nanoparticle diameter ranging from 4.0 ± 0.5 to 12.5 ± 1 nm has been investigated. The photo induced emission of the metallopolymer undergoes static quenching by the metal nanoparticles irrespective of their size. When the volume ratio of Au NP-Ru is 1, the quenching efficiency increases from 38% to 93% on going from 4.0 ± 0.5 to 12.5 ± 1 nm diameter nanoparticles while the radius of the quenching sphere remains unaffected at 75 ± 5 Å. The conductivity of thin films is initially unaffected by nanoparticle incorporation until a percolation threshold is reached at a mole ratio of 4.95 × 10(-2) after which the conductivity increases before reaching a maximum. For thin films of the nanocomposites on electrodes, the electrochemiluminescence intensity of the nanocomposite initially increases as nanoparticles are added before decreasing for the highest loadings. The electrochemiluminescence intensity increases with increasing nanoparticle diameter. The electrochemiluminescence (ECL) emission intensity of the nanocomposite formed using 12.5 nm particles at mole ratios between 5 × 10(-3) and 10 × 10(-3) is approximately 7-fold higher than that found for the parent metallopolymer. The application of these materials for low cost ECL-based point of care devices is discussed.

  3. Cellular Binding of Anionic Nanoparticles is Inhibited by Serum Proteins Independent of Nanoparticle Composition.

    Science.gov (United States)

    Fleischer, Candace C; Kumar, Umesh; Payne, Christine K

    2013-09-01

    Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.

  4. Missing Fe: hydrogenated iron nanoparticles

    CERN Document Server

    Bilalbegovic, G; Mohacek-Grosev, V

    2016-01-01

    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the ISM have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles posses magnetic and electric moments and should interact with electromagnetic fields in the ISM. Fe_nH_m nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and Fe_nH_m in the ISM.

  5. Missing Fe: hydrogenated iron nanoparticles

    Science.gov (United States)

    Bilalbegović, G.; Maksimović, A.; Mohaček-Grošev, V.

    2017-03-01

    Although it was found that the FeH lines exist in the spectra of some stars, none of the spectral features in the interstellar medium (ISM) have been assigned to this molecule. We suggest that iron atoms interact with hydrogen and produce Fe-H nanoparticles which sometimes contain many H atoms. We calculate infrared spectra of hydrogenated iron nanoparticles using density functional theory methods and find broad, overlapping bands. Desorption of H2 could induce spinning of these small Fe-H dust grains. Some of hydrogenated iron nanoparticles possess magnetic and electric moments and should interact with electromagnetic fields in the ISM. FenHm nanoparticles could contribute to the polarization of the ISM and the anomalous microwave emission. We discuss the conditions required to form FeH and FenHm in the ISM.

  6. Fundamental investigations of catalyst nanoparticles

    DEFF Research Database (Denmark)

    Elkjær, Christian Fink

    area Cu=ZnO=Al2O3 structure that is difficult to study by TEM. We therefore created size-selected CuZn alloy nanoparticles that were transformed by oxidation and reduction into Cu nanoparticles decorated with ZnO. This represents a simplified model system for the high surface area catalyst...... been unknown. We used nanoreactor technology which allows for simultaneous TEM imaging and activity measurement, also referred to as an Operando experiment. With this we revealed that the shape of the Pt nanoparticles changed in phase with changes in global reaction rate. By the use of reactor modeling...... fundamental understanding of catalytic processes and our ability to make use of that understanding. This thesis presents fundamental studies of catalyst nanoparticles with particular focus on dynamic processes. Such studies often require atomic-scale characterization, because the catalytic conversion takes...

  7. Imaging techniques: Nanoparticle atoms pinpointed

    Science.gov (United States)

    Farle, Michael

    2017-02-01

    The locations of atoms in a metallic alloy nanoparticle have been determined using a combination of electron microscopy and image simulation, revealing links between the particle's structure and magnetic properties. See Letter p.75

  8. ADSORPTION OF PROTEIN ON NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    WU Qi

    1994-01-01

    The adsorption of protein on nanoparticles was studied by using dynamic light scattering to measure the hydrodynamic size of both pure protein and nanoparticles adsorbed with different amounts of protein. The thickness of the adsorbed protein layer increases as protein concentration, but decreases as the initial size of nanoparticles. After properly scaling the thickness with the initial diameter, we are able to fit all experimental data with a single master curve. Our experimental results suggest that the adsorbed proteins form a monolayeron the nanoparticle surface and the adsorbed protein molecules are attached to the particle surface at many points through a possible hydrogen-bonding. Our results also indicate that as protein concentration increases, the overall shape of the adsorbed protein molecule continuously changes from a flat layer on the particle surface to a stretched coil extended into water. During the change, the hydrodynamic volume of the adsorbed protein increases linearly with protein concentration.

  9. SOLID LIPID NANOPARTICLES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Mudavath Hanumanaik*, Sandeep Kumar Patel and K. Ramya Sree

    2013-03-01

    Full Text Available ABSTRACT: Solid lipid nanoparticles (SLN are at the forefront of the rapidly developing field of nanotechnology with several potential applications in drug delivery and research. Due to their unique size dependent properties, lipid nanoparticles offer possibility to develop new therapeutics. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could use for drug targeting. Hence solid lipid nanoparticles hold great promise for reaching the goal of controlled and site specific drug delivery and hence attracted wide attention of researchers. This review presents a broad treatment of solid lipid nanoparticles discussing their aims, production procedures, advantages, limitations and their possible remedies. Appropriate analytical techniques for the characterization of SLN like Photon Correlation Spectroscopy (PCS, Scanning Electron Microscopy (SEM, and Differential Scanning Calorimetry are highlighted. Aspects of SLN route of administration and the in vivo fate of the carriers are also discussed.

  10. Targeted nanoparticles for colorectal cancer

    DEFF Research Database (Denmark)

    Cisterna, Bruno A.; Kamaly, Nazila; Choi, Won Il;

    2016-01-01

    Colorectal cancer (CRC) is highly prevalent worldwide, and despite notable progress in treatment still leads to significant morbidity and mortality. The use of nanoparticles as a drug delivery system has become one of the most promising strategies for cancer therapy. Targeted nanoparticles could...... take advantage of differentially expressed molecules on the surface of tumor cells, providing effective release of cytotoxic drugs. Several efforts have recently reported the use of diverse molecules as ligands on the surface of nanoparticles to interact with the tumor cells, enabling the effective...... delivery of antitumor agents. Here, we present recent advances in targeted nanoparticles against CRC and discuss the promising use of ligands and cellular targets in potential strategies for the treatment of CRCs....

  11. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  12. Multiscaffold DNA Origami Nanoparticle Waveguides

    Science.gov (United States)

    2013-01-01

    DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry. PMID:23841957

  13. Exposure to Nanoparticles and Hormesis

    OpenAIRE

    Iavicoli, Ivo; Calabrese, Edward J.; Nascarella, Marc A.

    2010-01-01

    Nanoparticles are particles with lengths that range from 1 to 100 nm. They are increasingly being manufactured and used for commercial purpose because of their novel and unique physicochemical properties. Although nanotechnology-based products are generally thought to be at a pre-competitive stage, an increasing number of products and materials are becoming commercially available. Human exposure to nanoparticles is therefore inevitable as they become more widely used and, as a result, nanotox...

  14. Functionalized magnetic nanoparticle analyte sensor

    Science.gov (United States)

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  15. Diamond Synthesis Employing Nanoparticle Seeds

    Science.gov (United States)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  16. Organophosphorous functionalization of magnetite nanoparticles.

    Science.gov (United States)

    Kalska-Szostko, B; Rogowska, M; Satuła, D

    2013-11-01

    In this work magnetite nanoparticles covered by gold and silver shell were obtained. Analyzed particles were modified by two kinds of organophosphorous compounds: 3-phosphonopropionic acid and 16-phosphonohexadecanoic acid. Enzyme immobilization on particles modified in such a way was tested. The crystal structure of obtained nanoparticles was characterized by transmission electron microscopy and X-ray diffraction. Possible changes on the surfaces were analyzed by the use of infrared spectroscopy. Magnetic properties were studied by Mössbauer spectroscopy.

  17. Count, size and visualize nanoparticles

    Directory of Open Access Journals (Sweden)

    Andrew Malloy

    2011-04-01

    Full Text Available Nanoscale materials including nanotubes, nanowires, ceramics, quantum dots etc. can be produced from a huge variety of substances. Responsible development of new materials requires that risks to health and the environment associated with the development, production, use and disposal of these materials are fully addressed. Characterization of particles at the nanoscale thus becomes extremely important and new tools are being made available including the nanoparticle characterization systems from NanoSight and their technology, Nanoparticle Tracking Analysis.

  18. Sonoelectrochemical Synthesis of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Veronica Sáez

    2009-10-01

    Full Text Available This article reviews the nanomaterials that have been prepared to date by pulsed sonoelectrochemistry. The majority of nanomaterials produced by this method are pure metals such as silver, palladium, platinum, zinc, nickel and gold, but more recently the syntheses have been extended to include the preparation of nanosized metallic alloys and metal oxide semiconductors. A major advantage of this methodology is that the shape andsize of the nanoparticles can be adjusted by varying the operating parameters which include ultrasonic power, current density, deposition potential and the ultrasonic vs electrochemical pulse times. Together with these, it is also possible to adjust the pH, temperature and composition of the electrolyte in the sonoelectrochemistry cell.

  19. Biosensors Incorporating Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    John Rick

    2015-12-01

    Full Text Available This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs, which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today’s society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.

  20. Polyelemental nanoparticle libraries

    Science.gov (United States)

    Chen, Peng-Cheng; Liu, Xiaolong; Hedrick, James L.; Xie, Zhuang; Wang, Shunzhi; Lin, Qing-Yuan; Hersam, Mark C.; Dravid, Vinayak P.; Mirkin, Chad A.

    2016-06-01

    Multimetallic nanoparticles are useful in many fields, yet there are no effective strategies for synthesizing libraries of such structures, in which architectures can be explored in a systematic and site-specific manner. The absence of these capabilities precludes the possibility of comprehensively exploring such systems. We present systematic studies of individual polyelemental particle systems, in which composition and size can be independently controlled and structure formation (alloy versus phase-separated state) can be understood. We made libraries consisting of every combination of five metallic elements (Au, Ag, Co, Cu, and Ni) through polymer nanoreactor-mediated synthesis. Important insight into the factors that lead to alloy formation and phase segregation at the nanoscale were obtained, and routes to libraries of nanostructures that cannot be made by conventional methods were developed.

  1. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  2. Zinc Oxide Nanoparticle Photodetector

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available A zinc oxide (ZnO nanoparticle photodetector was fabricated using a simple method. Under a 5 V applied bias, its dark current and photocurrent were 1.98×10-8 and 9.42×10-7 A, respectively. In other words, a photocurrent-to-dark-current contrast ratio of 48 was obtained. Under incident light at a wavelength of 375 nm and a 5 V applied bias, the detector’s measured responsivity was 3.75 A/W. The transient time constants measured during the turn-ON and turn-OFF states were τON=204 s and τOFF=486 s, respectively.

  3. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    Science.gov (United States)

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size 80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  4. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle.

    Science.gov (United States)

    Saptarshi, Shruti R; Duschl, Albert; Lopata, Andreas L

    2013-07-19

    Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein molecules which may affect the overall bio-reactivity of the nanoparticle. In depth understanding of such interactions can be directed towards generating bio-compatible nanomaterials with controlled surface characteristics in a biological environment. The main aim of this review is to summarise current knowledge on factors that influence nanoparticle-protein interactions and their implications on cellular uptake.

  5. Preparation of Gold Nanoparticles Protected with Polyelectrolyte

    Institute of Scientific and Technical Information of China (English)

    Xu Ping SUN; Zhe Ling ZHANG; Bai Lin ZHANG; Xian Dui DONG; Shao Jun DONG; Er Kang WANG

    2003-01-01

    Gold nanoparticles were synthesized through the reduction of tetrachlorauric acid (HAuCl4) by NaBH4, with polyethyleneimine(PEI) as stabilizer. The nanoparticles were characterized by UV-vis spectroscopy and atomic force microscopy(AFM).

  6. Nanoparticles from the gasphase formation, structure, properties

    CERN Document Server

    Lorke, Axel; Schmechel, Roland; Schulz, Christof

    2012-01-01

    This book offers a broad overview of the complete production and value chain from nanoparticle formation to integration in products and devices, and offers deep insight into the fabrication, characterization and application of nanoparticles from the gasphase.

  7. Titanium nitride nanoparticles for therapeutic applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Kildishev, Alexander V.; Boltasseva, Alexandra;

    2014-01-01

    Titanium nitride nanoparticles exhibit plasmonic resonances in the biological transparency window where high absorption efficiencies can be obtained with small dimensions. Both lithographic and colloidal samples are examined from the perspective of nanoparticle thermal therapy. © 2014 OSA....

  8. Nanoparticles Ease Aching Joints in Mice

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_161188.html Nanoparticles Ease Aching Joints in Mice Treatment might one ... News) -- New research in mice suggests that tiny nanoparticles might one day be a better way to ...

  9. Endotoxin hitchhiking on polymer nanoparticles

    Science.gov (United States)

    Donnell, Mason L.; Lyon, Andrew J.; Mormile, Melanie R.; Barua, Sutapa

    2016-07-01

    The control of microbial infections is critical for the preparation of biological media including water to prevent lethal septic shock. Sepsis is one of the leading causes of death in the United States. More than half a million patients suffer from sepsis every year. Both gram-positive and gram-negative bacteria are responsible for septic infection by the most common organisms i.e., Escherichia coli and Pseuodomonas aeruginosa. The bacterial cell membrane releases negatively charged endotoxins upon death and enzymatic destruction, which stimulate antigenic response in humans to gram-negative infections. Several methods including distillation, ethylene oxide treatment, filtration and irradiation have been employed to remove endotoxins from contaminated samples, however, the reduction efficiency remains low, and presents a challenge. Polymer nanoparticles can be used to overcome the current inability to effectively sequester endotoxins from water. This process is termed endotoxin hitchhiking. The binding of endotoxin on polymer nanoparticles via electrostatic and hydrophobic interactions offers efficient removal from water. However, the effect of polymer nanoparticles and its surface areas has not been investigated for removal of endotoxins. Poly(ε-caprolactone) (PCL) polymer was tested for its ability to effectively bind and remove endotoxins from water. By employing a simple one-step phase separation technique, we were able to synthesize PCL nanoparticles of 398.3 ± 95.13 nm size and a polydispersity index of 0.2. PCL nanoparticles showed ∼78.8% endotoxin removal efficiency, the equivalent of 3.9 × 105 endotoxin units (EU) per ml. This is 8.34-fold more effective than that reported for commercially available membranes. Transmission electron microscopic images confirmed binding of multiple endotoxins to the nanoparticle surface. The concept of using nanoparticles may be applicable not only to eliminate gram-negative bacteria, but also for any gram

  10. Dynamic nanoparticle assemblies.

    Science.gov (United States)

    Wang, Libing; Xu, Liguang; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A

    2012-11-20

    Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic, and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple levels of hierarchy of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously form superstructures containing more than two inorganic nanoscale particles that display the ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the "bottom-up" fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Superstructures of NPs (and those held together by similar intrinsic forces)are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable super structures with a nearly constant number of NPs or Class 2 where the total number of NPs changes, while the organizational motif in the final superstructure remains the same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of

  11. PREPARATION OF POLYALKYLCYANOACRYLATE NANOPARTICLES WITH VARIOUS MORPHOLOGIES

    Institute of Scientific and Technical Information of China (English)

    Qing-lin Xu; He-xian Li; Guo-chang Wang

    2011-01-01

    The effects of various reaction conditions on the preparation of polyalkylcyanoacrylate (PACA) nanoparticles are studied. The PACA nanoparticles with different crosslinking degrees and morphology are prepared. Addition of crosslinkers can not only adjust the particle size, but also change the morphology of PACA nanoparticles. Moreover, the loose network structure of the PACA nanoparticles with “core/shell-like” morphology is investigated by AFM and TEM in detail.

  12. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  13. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  14. Cobalt- and iron-based nanoparticles hosted in SBA-15 mesoporous silica and activated carbon from biomass: Effect of modification procedure

    Science.gov (United States)

    Tsoncheva, Tanya; Genova, Izabela; Paneva, Daniela; Dimitrov, Momtchil; Tsyntsarski, Boyko; Velinov, Nicolay; Ivanova, Radostina; Issa, Gloria; Kovacheva, Daniela; Budinova, Temenujka; Mitov, Ivan; Petrov, Narzislav

    2015-10-01

    Ordered mesoporous silica of SBA-15 type and activated carbon, prepared from waste biomass (peach stones), are used as host matrix of nanosized iron and cobalt particles. The effect of preparation procedure on the state of loaded nanoparticles is in the focus of investigation. The obtained materials are characterized by Boehm method, low temperature physisorption of nitrogen, XRD, UV-Vis, FTIR, Mossbauer spectroscopy and temperature programmed reduction with hydrogen. The catalytic behaviour of the samples is tested in methanol decomposition. The dispersion, oxidative state and catalytic behaviour of loaded cobalt and iron nanoparticles are successfully tuned both by the nature of porous support and the metal precursor used during the samples preparation. Facile effect of active phase deposition from aqueous solution of nitrate precursors is assumed for activated carbon support. For the silica based materials the catalytic activity could be significantly improved when cobalt acetylacetonate is used during the modification. The complex effect of pore topology and surface functionality of different supports on the active phase formation is discussed.

  15. Novel Properties of Photochromic Spirooxazine Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan-Yuan; FAN Mei-Gong; ZHANG Chang-Rui; SHENG Xiao-Hai; YAO Jian-Nian

    2007-01-01

    The nanoparticles of a spirooxazine (SPO) and its photomerocyanine (PMC) were prepared through the reprecipitation method. Two distinct features were observed. One is that the decaying lifetime for PMC nanoparticles was 600 times of that for the dispersed molecules, and the other is that the fluorescence intensity of SPO nanoparticles was enhanced by 240 times of that of the dispersed monomer.

  16. Lactobacillus assisted synthesis of titanium nanoparticles

    Science.gov (United States)

    Prasad, K.; Jha, Anal K.; Kulkarni, A. R.

    2007-05-01

    An eco-friendly lactobacillus sp. (microbe) assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40 60 nm are found.

  17. Tannin biosynthesis of iron oxide nanoparticles

    Science.gov (United States)

    Herrera-Becerra, R.; Rius, J. L.; Zorrilla, C.

    2010-08-01

    In this work, iron oxide nanoparticles synthesized with gallic acid and tannic acid are characterized using High-Resolution Transmission Electron Microscopy (HRTEM). Its size, form, and structure are compared with nanoparticles obtained previously using alfalfa biomass in order to find a simpler, consistent, and environmentally friendly method in the production of iron oxide nanoparticles.

  18. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    Science.gov (United States)

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  19. Peptides and metallic nanoparticles for biomedical applications.

    NARCIS (Netherlands)

    Kogan, M.J.; Olmedo, I.; Hosta, L.; Guerrero, A.R.; Cruz Ricondo, L.J.; Albericio, F.

    2007-01-01

    In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide-nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for th

  20. Incorporated Organic Modified Ag Nanoparticles in Ormocer

    Institute of Scientific and Technical Information of China (English)

    Haiping XIA; Jianli ZHANG; Jinhao WANG; Qiuhua NIE

    2004-01-01

    Ag nanoparticles coated trisodium citrate were incorporated in ormocer by sol-gel method. The doping concentration of Ag in ormocer is about 1.0% in weight. The HRTFM demonstrated that the particles disperse in ormocer, and the size of Ag nanoparticles is 5~10 nm. The absorption band of Ag nanoparticle at 410 nm was observed.

  1. Gold nanoparticles for tumour detection and treatment

    NARCIS (Netherlands)

    Hartsuiker, L.; Petersen, W.; Jose, J.; Es, van P.; Lenferink, A.; Poot, A.A.; Terstappen, L.W.M.M.; Manohar, S.; Otto, C.; Leeuwen, van T.G.

    2011-01-01

    The use of nanoparticles in biomedical applications is emerging rapidly. Recent developments have led to numerous studies of noble metal nanoparticles, down to the level of single molecule detection in living cells. The application of noble metal nanoparticles in diagnostics and treatment of early s

  2. Nanoparticle-mediated treatment for inflammatory

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention provides nanoparticles for treatment of inflammatory diseases. The nanoparticles preferably comprise chitosan and a siRNA targeting a mRNA encoding a pro-inflammatory cytokine, such as e.g. tnf-alfa. A preferred route of administration of the nanoparticles is by injection...

  3. Supersonic flow imaging via nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.

  4. Magnetic nanoparticles for "smart liposomes".

    Science.gov (United States)

    Nakayama, Yoshitaka; Mustapić, Mislav; Ebrahimian, Haleh; Wagner, Pawel; Kim, Jung Ho; Hossain, Md Shahriar Al; Horvat, Joseph; Martinac, Boris

    2015-12-01

    Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs.

  5. APPLICATION OF NANOPARTICLES IN BIOMEDICINE

    Directory of Open Access Journals (Sweden)

    P. G. Telegeeva

    2013-04-01

    Full Text Available The advances in nanotechnology, particularly, application in biomedicine are described in the review. The characteristic of the new drug delivery systems is given including lipid, protein and polymer nanoparticles which provide stable delivery of drugs to the target of distribution in the body and prevent their rapid degradation. The advantages of nanometer scale vectors were analyzed. Due to their small size, structure and large surface area, nanoscale materials acquire necessary physico-chemical properties. These properties allow the nanoparticles, containing specific agents, to overcome the limitations existing for the forms of large sizes. This significantly facilitates the intracellular transport to specific cellular targets. Controlled deli very to the place of action and reduction of exposure time on non-target tissues increases efficacy and reduces toxicity and other side effects, which improves the patient's overall health. Use of different ways to deliver nanoparticles allows to deliver low-molecular drugs, proteins, peptides or nucleic acids to specific tissues. Various ways of nanodrugs delivery to a cell and the possibility of modifying their surface by target ligands are discussed in the review. Types of drug delivery systems: microsponges, viruses, imunoconjugates, liposomes, metal nanoparticles and quantum dots, dendrimers, natural and synthetic polymeric nanoparticles, etc are discussed. A large variety of nanovectors, as well as their modification, and loading of various drugs (the methods of inclusion and adsorption are examined, control of their release into the cell, opens prospects for their wide application for visualization of biological processes, diagnosis and therapy of wide range of diseases.

  6. Nanoparticles in Cancer Imaging

    Directory of Open Access Journals (Sweden)

    Mehrdad Bakhshayeshkaram

    2010-05-01

    Full Text Available Nanotechnology is an interdisciplinary field as a combination of engineering, biology and medicine. It manipulates atoms and molecules to create devices at atomic, molecular and supramolecular levels for potential clinical use. Cancer nanotechnology as the latest trend in cancer diagnosis and treatment has provided nanoscale tools like biosensors, dendrimers, quantum dots and magnetic nanoparticles such as iron oxide with unique optical, magnetic and electronic properties. They are 100 to 1,000-fold smaller than cancer cells and may be conjugated with several functional molecules like imaging probes, specific ligands and antibodies. The capability of transferring through leaky blood vessels, passive and active targeting, intracellular delivery and subcellular localization has made them dual-purpose and multifunctional probes in cancer. Conventional imaging techniques such as CT and MRI using nontargeted contrast agents have limitations in early and accurate diagnosis and monitoring of treatment that may be eventually removed through the use of nanostructures' properties."nCancer diagnosis in an early stage, which influences the patient's survival, is possible earlier than ever imaginable. For example in contrast to mammography, which can detect breast cancer when it has at least 1000,000 cells, these new tools can accurately detect the tumor when it has less than 100 cells. "nThis article is a review on applications of nanotechnology, as a rapidly growing field for cancer imaging in medicine contributing to the early detection of cancer cells through available imaging techniques.

  7. Nanoparticle toxicity and cancer

    Science.gov (United States)

    Prevenslik, T.

    2011-07-01

    Nanoparticles (NPs) have provided significant advancements in cancer treatment. But as in any technology, there is a darkside. Experiments have shown NPs in body fluids pose a health risk by causing DNA damage that in of itself may lead to cancer. To avoid the dilemma that NPs are toxic to both cancer cells and DNA alike, the mechanism of NP toxicity must be understood so that the safe use of NPs may go forward. Reactive oxidative species (ROS) of peroxide and hydroxyl radicals damage the DNA by chemical reaction, but require NPs provide energies of about 5 eV not possible by surface effects. Only electromagnetic (EM) radiations beyond ultraviolet (UV) levels may explain the toxicity of NPs. Indeed, experiments show DNA damage from radiation, Hence, it is reasonable to hypothesize that NPs produce their own source of UV radiation, albeit at low intensity. Ionizing radiation from NPs at UV levels is consistent with the theory of QED induced EM radiation. QED stands for quantum electrodynamics. By this theory, fine radiation need not be limited to natural or man-made NPs. Extensions suggest UV radiation is produced from biological NPs within the body, e.g., enzyme induced fragmentation of epithelial tissue, exocytosis of small proteins, and ironically, the same molecular markers used to detect cancer itself.

  8. Metal Nanoparticle Aerogel Composites

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  9. Magnetic nanoparticles in medical nanorobotics

    Science.gov (United States)

    Martel, Sylvain

    2015-02-01

    Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

  10. Inductive heating of conductive nanoparticles

    CERN Document Server

    Nordebo, Sven

    2016-01-01

    We consider the heating of biological tissue by injecting gold nanoparticles and subjecting the system to an electromagnetic field in the radio frequency spectrum. There are results that indicate that small conducting particles can substantially increase the heating locally and thus provide a method to treat cancer. However, recently there are also other publications that question whether metal nanoparticles can be heated in radiofrequency at all. This paper presents a simplified analysis and some interesting observations regarding the classical electromagnetic background to this effect. Here, it is assumed that the related dipole effects are based solely on conducting nanospheres that are embedded in a surrounding medium. From this point of view it is concluded that the effect of using a capactive coupling i.e., a strong electric field to induce electric dipoles can be disregarded unless the volume fraction of the gold nanoparticles is unrealistically high or if there are some other external electric dipole ...

  11. Green chemistry for nanoparticle synthesis.

    Science.gov (United States)

    Duan, Haohong; Wang, Dingsheng; Li, Yadong

    2015-08-21

    The application of the twelve principles of green chemistry in nanoparticle synthesis is a relatively new emerging issue concerning the sustainability. This field has received great attention in recent years due to its capability to design alternative, safer, energy efficient, and less toxic routes towards synthesis. These routes have been associated with the rational utilization of various substances in the nanoparticle preparations and synthetic methods, which have been broadly discussed in this tutorial review. This article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present several pivotal aspects of synthesis with environmental concerns, involving the selection and evaluation of nontoxic capping and reducing agents, the choice of innocuous solvents and the development of energy-efficient synthetic methods.

  12. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne;

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  13. Lymphatic Biodistribution of Polylactide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Eric J. Chaney

    2010-05-01

    Full Text Available Tumor metastases occur through both the cardiovascular and lymphatic circulations. However, the majority of nanoparticle biodistribution studies have been focused on the cardiovascular circulation. In this study, we report the formulation of Cy5-labeled polylactide (Cy5-PLA nanoparticles with controlled size and surface features and the subsequent evaluation of their lymphatic biodistribution. Cy5-PLA nanoparticles were formulated through Cy5/(BDIZnN(TMS2-mediated [(BDI = 2-((2,6-diisopropylphenyl amido-4-((2,6-diisopropylphenyl-imino-2-pentene] ring-opening polymerization of lactide followed by nanoprecipitation. Their lymphatic biodistribution was evaluated by using whole-body fluorescence imaging of nude mice and ex vivo fluorescence imaging of the resected organs. This technique has the potential for providing optical contrast and drug delivery through the lymphatic circulation for the treatment of metastatic cancer.

  14. Magnetic nanoparticles in medical nanorobotics

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Sylvain, E-mail: sylvain.martel@polymtl.ca [Polytechnique Montréal, NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering (Canada)

    2015-02-15

    Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

  15. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  16. Applications of Thermoresponsive Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ibrahim Yildiz

    2015-01-01

    Full Text Available In recent years, magnetic nanoparticles carrying thermoresponsive polymeric coatings have gained increasing attention in material sciences due to the fact that resultant platforms offer controllable modalities such as imaging, drug delivery, and magnetic separation. As a result, novel materials including biosensors, therapeutic platforms, imaging agents, and magnetic separators have been realized. Since the number of publications reporting the applications of thermoresponsive magnetic nanoparticle has increased steadily over the years, a comprehensive review will be beneficial. In this paper, we aim to review publications studying applications of thermoresponsive nanoparticles in biomedical sciences as well as in environmental and chemical sciences. The paper also briefly discusses chemical formulations, characterizations, and properties of the thermoresponsive magnetic particles and then provides future outlooks.

  17. Polymer Functionalized Nanoparticles in Polymer Nanocomposites

    Science.gov (United States)

    Jayaraman, Arthi

    2013-03-01

    Significant interest has grown around the ability to control spatial arrangement of nanoparticles in a polymer nanocomposite to engineer materials with target properties. Past work has shown that one could achieve controlled assembly of nanoparticles in the polymer matrix by functionalizing nanoparticle surfaces with homopolymers. This talk will focus on our recent work using Polymer Reference Interaction Site Model (PRISM) theory and Monte Carlo simulations and GPU-based molecular dynamics simulations to specifically understand how heterogeneity in the polymer functionalization in the form of a) copolymers with varying monomer chemistry and monomer sequence, and b) polydispersity in homopolymer grafts can tune effective interactions between functionalized nanoparticles, and the assembly of functionalized nanoparticles.

  18. Novel Terbium Chelate Doped Fluorescent Silica Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Ning Qiaoyu; Meng Jianxin; Wang Haiming; Liu Yingliang; Man Shiqing

    2006-01-01

    Novel terbium chelate doped silica fluorescent nanoparticles were prepared and characterized.The preparation was carried out in water-in-oil (W/O) microemulsion containing monomer precursor (pAB-DTPAA-APTEOS), Triton X-100, n-hexanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate and 3-aminopropyl-triethyloxysilane.The nanoparticles are spherical and uniform in size, about 30 nm in diameter, strongly fluorescent, and highly stable.The amino groups directly introduced to the surface of the nanoparticles using APTEOS during preparation made the surface modification and bioconjugation of the nanoparticles easier.The nanoparticles are expected as an efficient time-resolved luminescence biological label.

  19. Fabrication of transparent ceramics using nanoparticles

    Science.gov (United States)

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  20. Cytotoxic Effects of Fucoidan Nanoparticles against Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Ryuichiro Kimura

    2013-10-01

    Full Text Available In this study, we analyzed the size-dependent bioactivities of fucoidan by comparing the cytotoxic effects of native fucoidan and fucoidan lipid nanoparticles on osteosarcoma in vitro and in vivo. In vitro experiments indicated that nanoparticle fucoidan induced apoptosis of an osteosarcoma cell line more efficiently than native fucoidan. The more potent effects of nanoparticle fucoidan, relative to native fucoidan, were confirmed in vivo using a xenograft osteosarcoma model. Caco-2 cell transport studies showed that permeation of nanoparticle fucoidan was higher than native fucoidan. The higher bioactivity and superior bioavailability of nanoparticle fucoidan could potentially be utilized to develop novel therapies for osteosarcoma.

  1. Magnetism in nanoparticles: tuning properties with coatings.

    Science.gov (United States)

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-04

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.

  2. Methane carbon supports aquatic food webs to the fish level.

    Directory of Open Access Journals (Sweden)

    Angela M Sanseverino

    Full Text Available Large amounts of the greenhouse gas methane (CH(4 are produced by anaerobic mineralization of organic matter in lakes. In spite of extensive freshwater CH(4 emissions, most of the CH(4 is typically oxidized by methane oxidizing bacteria (MOB before it can reach the lake surface and be emitted to the atmosphere. In turn, it has been shown that the CH(4-derived biomass of MOB can provide the energy and carbon for zooplankton and macroinvertebrates. In this study, we demonstrate the presence of specific fatty acids synthesized by MOB in fish tissues having low carbon stable isotope ratios. Fish species, zooplankton, macroinvertebrates and the water hyacinth Eichhornia crassipes were collected from a shallow lake in Brazil and analyzed for fatty acids (FA and carbon stable isotope ratios (δ(13C. The fatty acids 16:1ω8c, 16:1ω8t, 16:1ω6c, 16:1ω5t, 18:1ω8c and 18:1ω8t were used as signature for MOB. The δ(13C ratios varied from -27.7‰ to -42.0‰ and the contribution of MOB FA ranged from 0.05% to 0.84% of total FA. Organisms with higher total content of MOB FAs presented lower δ(13C values (i.e. they were more depleted in (13C, while organisms with lower content of MOB signature FAs showed higher δ(13C values. An UPGMA cluster analysis was carried out to distinguish grouping of organisms in relation to their MOB FA contents. This combination of stable isotope and fatty acid tracers provides new evidence that assimilation of methane-derived carbon can be an important carbon source for the whole aquatic food web, up to the fish level.

  3. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports

    Science.gov (United States)

    2013-02-12

    1000 mg of commercially available carbon powder (Cabot Vulcan XCR72R) was placed into the barrel and the chamber was evacuated to approximately 1 × 10−6...unmodified and N-modified Vulcan were obtained on a Philips CM200 TEM. X-ray Photoelectron Spectroscopy (XPS) analysis of the synthesized catalysts was done...durability cycles Pt-Ru/ Vulcan 73 3.3 × 10−5 24 51 10 Pt-Ru/N- Vulcan 55 2.9 × 10−5 17 60 40 Pt-Ru/C JM 5000 69 3.0 × 10−5 20 48 17 tials higher than 0.7 V

  4. Oxygen reduction on carbon supported Pt-W electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Meza, D.; Morales, U.; Salgado, L. [Departamento de Quimica, Area de Electroquimica, Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Distrito Federal (Mexico); Roquero, P. [Unidad de Investigacion en Catalisis, Facultad de Quimica, UNAM, Ciudad Universitaria, 04510 Distrito Federal (Mexico)

    2010-11-15

    The catalytic activity of Pt-W electrocatalysts towards oxygen reduction reaction (ORR) was studied. Pt-W/C materials were prepared by thermolysis of tungsten and platinum carbonyl complexes in 1-2 dichloro-benzene during 48 h. The precursors were mixed to obtain relations of Pt:W: 50:50 and 80:20%w, respectively. The Pt carbonyl complex was previously synthesized by bubbling CO in a chloroplatinic acid solution. The synthesized materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV) and a rotating disk electrode (RDE). The results show that both materials (Pt{sub 50}W{sub 50}/C and Pt{sub 80}W{sub 20}/C) have a crystalline phase associated with metallic platinum and an amorphous phase related with tungsten and carbon. The particle size of the electrocatalysts depends on the relationship between platinum and tungsten. Finally, both materials exhibit catalytic activity for oxygen reduction. (author)

  5. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation......Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...

  6. Thermodynamics of the nanoparticle consolidation

    Directory of Open Access Journals (Sweden)

    Lisovsky A.F.

    2009-01-01

    Full Text Available Thermodynamic functions have been derived that describe the processes of nanoparticle consolidation in solid-mobile phase two- and three-phase dispersed systems. An expression for the shrinkage pressure in a two-phase dispersed system has been deduced, which allows one to calculate stresses generating in the bulk of heterophase composite materials in the course of the nanoparticle consolidation. On the strength of these thermodynamic functions criteria have been suggested that allow one to predict the structure of a nanocomposite material.

  7. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  8. Electrochemical Nanoparticle-Based Sensors

    Science.gov (United States)

    Wang, Joseph

    Electrochemical devices are extremely useful for delivering analytical information in a fast, simple, and low-cost fashion, and are thus uniquely qualified for meeting the demands of point-of-care diagnostics. In particular, nanoparticles offer elegant ways for interfacing biomolecular recognition events with electronic signal transduction, for dramatically amplifying the resulting electrical response, and for designing novel coding strategies. Nanoparticles, such as colloidal gold or inorganic nanocrystals, offer considerable promise as quantitation tags for biological assays owing to their unique amplification and coding capabilities.

  9. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Kim, Young-Pil; Shon, Hyun Kyong; Shin, Seung Koo; Lee, Tae Geol

    2015-01-01

    Bio-conjugated nanoparticles have emerged as novel molecular probes in nano-biotechnology and nanomedicine and chemical analyses of their surfaces have become challenges. The time-of-flight (TOF) secondary ion mass spectrometry (SIMS) has been one of the most powerful surface characterization techniques for both nanoparticles and biomolecules. When combined with various nanoparticle-based signal enhancing strategies, TOF-SIMS can probe the functionalization of nanoparticles as well as their locations and interactions in biological systems. Especially, nanoparticle-based SIMS is an attractive approach for label-free drug screening because signal-enhancing nanoparticles can be designed to directly measure the enzyme activity. The chemical-specific imaging analysis using SIMS is also well suited to screen nanoparticles and nanoparticle-biomolecule conjugates in complex environments. This review presents some recent applications of nanoparticle-based TOF-SIMS to the chemical analysis of complex biological systems.

  10. Memory effects in nanoparticle dynamics and transport

    Science.gov (United States)

    Sanghi, Tarun; Bhadauria, Ravi; Aluru, N. R.

    2016-10-01

    In this work, we use the generalized Langevin equation (GLE) to characterize and understand memory effects in nanoparticle dynamics and transport. Using the GLE formulation, we compute the memory function and investigate its scaling with the mass, shape, and size of the nanoparticle. It is observed that changing the mass of the nanoparticle leads to a rescaling of the memory function with the reduced mass of the system. Further, we show that for different mass nanoparticles it is the initial value of the memory function and not its relaxation time that determines the "memory" or "memoryless" dynamics. The size and the shape of the nanoparticle are found to influence both the functional-form and the initial value of the memory function. For a fixed mass nanoparticle, increasing its size enhances the memory effects. Using GLE simulations we also investigate and highlight the role of memory in nanoparticle dynamics and transport.

  11. Inorganic nanoparticles for cancer imaging and therapy.

    Science.gov (United States)

    Huang, Huang-Chiao; Barua, Sutapa; Sharma, Gaurav; Dey, Sandwip K; Rege, Kaushal

    2011-11-07

    Inorganic nanoparticles have received increased attention in the recent past as potential diagnostic and therapeutic systems in the field of oncology. Inorganic nanoparticles have demonstrated successes in imaging and treatment of tumors both ex vivo and in vivo, with some promise towards clinical trials. This review primarily discusses progress in applications of inorganic nanoparticles for cancer imaging and treatment, with an emphasis on in vivo studies. Advances in the use of semiconductor fluorescent quantum dots, carbon nanotubes, gold nanoparticles (spheres, shells, rods, cages), iron oxide magnetic nanoparticles and ceramic nanoparticles in tumor targeting, imaging, photothermal therapy and drug delivery applications are discussed. Limitations and toxicity issues associated with inorganic nanoparticles in living organisms are also discussed.

  12. Biosynthesis of Metal Nanoparticles: A Review

    Directory of Open Access Journals (Sweden)

    Narendra Kulkarni

    2014-01-01

    Full Text Available The synthesis of nanostructured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap, and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The biomineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology.

  13. Mechanical properties of nanoparticles: basics and applications

    Science.gov (United States)

    Guo, Dan; Xie, Guoxin; Luo, Jianbin

    2014-01-01

    The special mechanical properties of nanoparticles allow for novel applications in many fields, e.g., surface engineering, tribology and nanomanufacturing/nanofabrication. In this review, the basic physics of the relevant interfacial forces to nanoparticles and the main measuring techniques are briefly introduced first. Then, the theories and important results of the mechanical properties between nanoparticles or the nanoparticles acting on a surface, e.g., hardness, elastic modulus, adhesion and friction, as well as movement laws are surveyed. Afterwards, several of the main applications of nanoparticles as a result of their special mechanical properties, including lubricant additives, nanoparticles in nanomanufacturing and nanoparticle reinforced composite coating, are introduced. A brief summary and the future outlook are also given in the final part.

  14. Plasmonic twinned silver nanoparticles with molecular precision

    Science.gov (United States)

    Yang, Huayan; Wang, Yu; Chen, Xi; Zhao, Xiaojing; Gu, Lin; Huang, Huaqi; Yan, Juanzhu; Xu, Chaofa; Li, Gang; Wu, Junchao; Edwards, Alison J.; Dittrich, Birger; Tang, Zichao; Wang, Dongdong; Lehtovaara, Lauri; Häkkinen, Hannu; Zheng, Nanfeng

    2016-09-01

    Determining the structures of nanoparticles at atomic resolution is vital to understand their structure-property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle distortion within fivefold twinned nanostructures of face-centred cubic metals. The Ag nanoparticles reported in this work serve as excellent models to understand the detailed structure distortion within twinned metal nanostructures and also how silver nanoparticles can span from the molecular to the metallic regime.

  15. Synthesis metal nanoparticle

    Science.gov (United States)

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  16. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N.N., E-mail: nnn_1900@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Imamova, S.E.; Atanasov, P.A. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Toshkova, R.A.; Gardeva, E.G.; Yossifova, L.S.; Alexandrov, M.T. [Institute of Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, G. Bonchev Street, bl. 25, Sofia 1113 (Bulgaria); Obara, M. [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  17. Gold nanoparticle capture within protein crystal scaffolds

    Science.gov (United States)

    Kowalski, Ann E.; Huber, Thaddaus R.; Ni, Thomas W.; Hartje, Luke F.; Appel, Karina L.; Yost, Jarad W.; Ackerson, Christopher J.; Snow, Christopher D.

    2016-06-01

    DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was confirmed by single crystal X-ray crystallography.DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was

  18. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell.

    Science.gov (United States)

    Huang, Junchao; Liu, Zhaolin; He, Chaobin; Gan, Leong Ming

    2005-09-08

    Nanosized Pt, PtRu, and Ru particles were prepared by a novel process, the hydrosilylation reaction. The hydrosilylation reaction is an effective method of preparation not only for Pt particles but also for other metal colloids, such as Ru. Vulcan XC-72 was selected as catalyst support for Pt, PtRu, and Ru colloids, and TEM investigations showed nanoscale particles and narrow size distribution for both supported and unsupported metals. All Pt and Pt-rich catalysts showed the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Ru and Ru-rich alloys were more typical of a hexagonal close-packed (hcp) structure. As evidenced by XPS, most Pt and Ru atoms in the nanoparticles were zerovalent, except a trace of oxidation-state metals. The electrooxidation of liquid methanol on these catalysts was investigated at room temperature by cyclic voltammetry and chronoamperometry. The results concluded that some alloy catalysts showed higher catalytic activities and better CO tolerance than the Pt-only catalyst; Pt56Ru44/C have displayed the best electrocatalytic performance among all carbon-supported catalysts.

  19. In vitro cytotoxicity of surface modified bismuth nanoparticles.

    Science.gov (United States)

    Luo, Yang; Wang, Chaoming; Qiao, Yong; Hossain, Mainul; Ma, Liyuan; Su, Ming

    2012-10-01

    This paper describes in vitro cytotoxicity of bismuth nanoparticles revealed by three complementary assays (MTT, G6PD, and calcein AM/EthD-1). The results show that bismuth nanoparticles are more toxic than most previously reported bismuth compounds. Concentration dependent cytotoxicities have been observed for bismuth nanoparticles and surface modified bismuth nanoparticles. The bismuth nanoparticles are non-toxic at concentration of 0.5 nM. Nanoparticles at high concentration (50 nM) kill 45, 52, 41, 34 % HeLa cells for bare nanoparticles, amine terminated bismuth nanoparticles, silica coated bismuth nanoparticles, and polyethylene glycol (PEG) modified bismuth nanoparticles, respectively; which indicates cytotoxicity in terms of cell viability is in the descending order of amine terminated bismuth nanoparticles, bare bismuth nanoparticles, silica coated bismuth nanoparticles, and PEG modified bismuth nanoparticles. HeLa cells are more susceptible to toxicity from bismuth nanoparticles than MG-63 cells. The simultaneous use of three toxicity assays provides information on how nanoparticles interact with cells. Silica coated bismuth nanoparticles can damage cellular membrane yet keep mitochondria less influenced; while amine terminated bismuth nanoparticles can affect the metabolic functions of cells. The findings have important implications for caution of nanoparticle exposure and evaluating toxicity of bismuth nanoparticles.

  20. Preparation methods of alginate nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.; Linden, van der E.; Rijn, van C.J.M.; Sagis, L.M.C.

    2014-01-01

    This article reviews available methods for the formation of alginate nano-aggregates, nanocapsules and nanospheres. Primarily, alginate nanoparticles are being prepared by two methods. In the “complexation method”, complex formation on the interface of an oil droplet is used to form alginate nanocap

  1. Interaction of Nanoparticles with Biofilms

    Science.gov (United States)

    In this work we have studied the interaction and adsorption of engineered nanoparticles such as TiO2, ZnO, CeO2 , and carbon nanotubes with biofilms. Biofilm is an extracellular polymeric substance coating comprised of living material and it is an aggregation of bacteria, algae, ...

  2. Laser generated nanoparticles based photovoltaics.

    Science.gov (United States)

    Petridis, C; Savva, K; Kymakis, E; Stratakis, E

    2017-03-01

    The exploitation of nanoparticles (NP), synthesized via laser ablation in liquids, in photovoltaic devices is reviewed. In particular, the impact of NPs' incorporation into various building blocks within the solar cell architecture on the photovoltaic performance and stability is presented and analysed for the current state of the art photovoltaic technologies.

  3. Thermodynamics of catalytic nanoparticle morphology

    Science.gov (United States)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  4. Volume plasmon of bismuth nanoparticles

    Science.gov (United States)

    Jiang, Nan; Su, Dong; Spence, John C. H.; Zhou, Shifeng; Qiu, Jianrong

    2009-01-01

    This paper reports the measurements of the bulk plasmon of Bi nanoparticles supported by a SiO 2 matrix using electron energy-loss spectroscopy. The blue shifts of plasmon peak in small particles were observed. However, the degree of shift was much smaller than the previous study in the literature and cannot be interpreted by the quantum confinement.

  5. Lake retention of manufactured nanoparticles

    NARCIS (Netherlands)

    Koelmans, A.A.; Quik, J.T.K.; Velzeboer, I.

    2015-01-01

    For twenty-five world lakes and three engineered nanoparticles (ENP), lake retention was calculated using a uniformly mixed lake mass balance model. This follows similar approaches traditionally used in water quality management. Lakes were selected such that lake residence times, depths and areal hy

  6. Biocompatibility of crystalline opal nanoparticles

    Directory of Open Access Journals (Sweden)

    Hernández-Ortiz Marlen

    2012-10-01

    Full Text Available Abstract Background Silica nanoparticles are being developed as a host of biomedical and biotechnological applications. For this reason, there are more studies about biocompatibility of silica with amorphous and crystalline structure. Except hydrated silica (opal, despite is presents directly and indirectly in humans. Two sizes of crystalline opal nanoparticles were investigated in this work under criteria of toxicology. Methods In particular, cytotoxic and genotoxic effects caused by opal nanoparticles (80 and 120 nm were evaluated in cultured mouse cells via a set of bioassays, methylthiazolyldiphenyl-tetrazolium-bromide (MTT and 5-bromo-2′-deoxyuridine (BrdU. Results 3T3-NIH cells were incubated for 24 and 72 h in contact with nanocrystalline opal particles, not presented significant statistically difference in the results of cytotoxicity. Genotoxicity tests of crystalline opal nanoparticles were performed by the BrdU assay on the same cultured cells for 24 h incubation. The reduction of BrdU-incorporated cells indicates that nanocrystalline opal exposure did not caused unrepairable damage DNA. Conclusions There is no relationship between that particles size and MTT reduction, as well as BrdU incorporation, such that the opal particles did not induce cytotoxic effect and genotoxicity in cultured mouse cells.

  7. Carbonaceous Matter in Growing Nanoparticles

    Science.gov (United States)

    Johnston, M. V.; Stangl, C. M.; Horan, A. J.

    2015-12-01

    Atmospheric nanoparticles constitute the greatest portion of ambient aerosol loading by number. A major source of atmospheric nanoparticles is new particle formation (NPF), a gas to particle conversion process whereby clusters nucleate from gas phase precursors to form clusters on the order of one or a few nanometers and then grow rapidly to climatically relevant sizes. A substantial fraction of cloud condensation nuclei (CCN) are thought to arise from NPF. In order to better predict the frequency, growth rates, and climatic impacts of NPF, knowledge of the chemical mechanisms by which nucleated nanoparticles grow is needed. The two main contributors to particle growth are (neutralized) sulfate and carbonaceous matter. Particle growth by sulfuric acid condensation is generally well understood, though uncertainty remains about the extent of base neutralization and the relative roles of ammonia and amines. Much less is known about carbonaceous matter, and field measurements suggest that nitrogen-containing species are important. In this presentation, recent work by our group will be described that uses a combination of ambient measurements, laboratory experiments and computational work to study carbonaceous matter in growing nanoparticles. These studies span a range of particle sizes from the initial adsorption of molecules onto a nanometer-size ammonium bisulfate seed cluster to reactions in particles that are large enough to support condensed-phase chemistry.

  8. Green Nanoparticles for Mosquito Control

    Science.gov (United States)

    Soni, Namita; Prakash, Soam

    2014-01-01

    Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicum or C. verum J. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs). The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito. PMID:25243210

  9. Green nanoparticles for mosquito control.

    Science.gov (United States)

    Soni, Namita; Prakash, Soam

    2014-01-01

    Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag) and gold (Au) nanoparticles (NPs) were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum) (C. zyelanicum or C. verum J. Presl). Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs). The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito.

  10. DNA-scaffolded nanoparticle structures

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Bjoern; Olin, Haakan [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden (Sweden)

    2007-03-15

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications.

  11. Green Nanoparticles for Mosquito Control

    Directory of Open Access Journals (Sweden)

    Namita Soni

    2014-01-01

    Full Text Available Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag and gold (Au nanoparticles (NPs were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum (C. zyelanicum or C. verum J. Presl. Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM. The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs. The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito.

  12. Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces.

    Science.gov (United States)

    Durst, Julien; Chatenet, Marian; Maillard, Frédéric

    2012-10-05

    Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion® ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.

  13. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    Science.gov (United States)

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  14. Engineering biofunctional magnetic nanoparticles for biotechnological applications

    Science.gov (United States)

    Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.

    2010-09-01

    Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the

  15. Nanoparticle ζ -potentials.

    Science.gov (United States)

    Doane, Tennyson L; Chuang, Chi-Hung; Hill, Reghan J; Burda, Clemens

    2012-03-20

    For over half a century, alternating electric fields have been used to induce particle transport, furnishing the ζ-potential of analytes with sizes ranging from a few nanometers to several micrometers. Concurrent advances in nanotechnology have provided new materials for catalysis, self-assembly, and biomedical applications, all of which benefit from a thorough understanding of particle surface charge. Therefore, the measurement of the ζ-potential via electrophoretic light scattering (ELS) has become essential for nanoparticle (NP) research. However, the interpretation of NP electrophoretic mobility, especially that of ligand-coated NPs, can be a complex undertaking. Despite the inherent intricacy of these data, key concepts from colloidal science can help to distill valuable information from ELS. In this Account, we adopt PEGylated Au NPs as an illustrative example to explore extensions of the classical theories of Smoluchowski, Hückel, and Henry to more contemporary theories for ligand-coated NP systems such as those from Ohshima, and Hill, Saville, and Russel. First, we review the basic experimental considerations necessary to understand NP electrophoretic mobility, identifying when O'Brien and White's numerical solution of the standard electrokinetic model should be adopted over Henry's closed-form analytical approximation. Next, we explore recent developments in the theory of ligand-coated particle electrophoresis, and how one can furnish accurate and meaningful relationships between measured NP mobility, ζ-potential, and surface charge. By identifying key ligand-coated NP parameters (e.g., coating thickness, permeability, molecular mass, and hydrodynamic segment size), we present a systematic method for quantitatively interpreting NP electrophoretic mobility. In addition to reviewing theoretical foundations, we describe our recent results that examine how the unique surface curvature of NPs alters and controls their properties. These data provide

  16. Interaction of silver nanoparticles with Tacaribe virus

    Directory of Open Access Journals (Sweden)

    Speshock Janice L

    2010-08-01

    Full Text Available Abstract Background Silver nanoparticles possess many unique properties that make them attractive for use in biological applications. Recently they received attention when it was shown that 10 nm silver nanoparticles were bactericidal, which is promising in light of the growing number of antibiotic resistant bacteria. An area that has been largely unexplored is the interaction of nanomaterials with viruses and the possible use of silver nanoparticles as an antiviral agent. Results This research focuses on evaluating the interaction of silver nanoparticles with a New World arenavirus, Tacaribe virus, to determine if they influence viral replication. Surprisingly exposing the virus to silver nanoparticles prior to infection actually facilitated virus uptake into the host cells, but the silver-treated virus had a significant reduction in viral RNA production and progeny virus release, which indicates that silver nanoparticles are capable of inhibiting arenavirus infection in vitro. The inhibition of viral replication must occur during early replication since although pre-infection treatment with silver nanoparticles is very effective, the post-infection addition of silver nanoparticles is only effective if administered within the first 2-4 hours of virus replication. Conclusions Silver nanoparticles are capable of inhibiting a prototype arenavirus at non-toxic concentrations and effectively inhibit arenavirus replication when administered prior to viral infection or early after initial virus exposure. This suggests that the mode of action of viral neutralization by silver nanoparticles occurs during the early phases of viral replication.

  17. ADSORPTION OF NANO-PARTICLES ON BUBBLE SURFACE IN NANO-PARTICLE SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    Buxuan Wang; Chunhui Li; Xiaofeng Peng

    2005-01-01

    The adsorption of nano-particles on bubble surface is discussed for saturated boiling on thin wire of nano-particle suspensions. Owing to the decrease of surface tension for suspensions, the nano-particles tend to adsorb on the bubble surface to decrease the Gibbs free energy for stability, and meanwhile the velocity of nano-particles would be smaller than that of bubble growth. The long-range van der Waals force existing between "water particles" and nano-particles is considered the attractive force between the nano-particles and the bubble surface. Thus, the nano-particles would attach on the bubble surface if the particle-surface distance is smaller than its critical value. The distribution of nano-particles on the bubble surface and in the adjacent region is also investigated.

  18. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    Airborne nanoparticles can cause severe harm when inhaled. Therefore, small and cheap portable airborne nanoparticle monitors are highly demanded by authorities and the nanoparticle producing industry. We propose to use nanomechanical resonators to build the next generation cheap and portable...

  19. Methods for producing nanoparticles using palladium salt and uses thereof

    Science.gov (United States)

    Chan, Siu-Wai; Liang, Hongying

    2015-12-01

    The disclosed subject matter is directed to a method for producing nanoparticles, as well as the nanoparticles produced by this method. In one embodiment, the nanoparticles produced by the disclosed method have a high defect density.

  20. Interfacial functionalization and engineering of nanoparticles

    Science.gov (United States)

    Song, Yang

    The intense research interest in nanoscience and nanotechnology is largely fueled by the unique properties of nanoscale materials. In this dissertation, the research efforts are focused on surface functionalization and interfacial engineering of functional nanoparticles in the preparation of patchy nanoparticles (e.g., Janus nanoparticles and Neapolitan nanoparticles) such that the nanoparticle structures and properties may be manipulated to an unprecedented level of sophistication. Experimentally, Janus nanoparticles were prepared by an interfacial engineering method where one hemisphere of the originally hydrophobic nanoparticles was replaced with hydrophilic ligands at the air|liquid or solid|liquid interface. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. In a further study, a mercapto derivative of diacetylene was used as the hydrophilic ligands to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold nanoparticles as the starting materials. Exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands and hence marked enhancement of the structural integrity of the Janus nanoparticles, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles. More complicated bimetallic AgAu Janus nanoparticles were prepared by interfacial galvanic exchange reactions of a Langmuir-Blodgett monolayer of 1-hexanethiolate-passivated silver nanoparticles on a glass slide with gold(I)-mercaptopropanediol complex in a water/ethanol solution. The resulting nanoparticles exhibited an asymmetrical distribution not only of the organic capping ligands on the nanoparticle surface but

  1. Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition

    Science.gov (United States)

    Spadaro, M. C.; Luches, P.; Benedetti, F.; Valeri, S.; Turchini, S.; Bertoni, G.; Ferretti, A. M.; Capetti, E.; Ponti, A.; D'Addato, S.

    2017-02-01

    Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiOx and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L2,3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

  2. Conduction across Silicon Nanoparticle-Metal Interfaces

    Science.gov (United States)

    Stupca, Matthew; Nayfeh, Munir; Smith, Adam

    2010-03-01

    We deposited a thin film of 1nm diameter silicon nanoparticles between two metallic films. The nanoparticles are created by an electrochemical process and are collected into solution. The particles are then deposited by evaporating the solution through electrospray or spin coating processes. The nanoparticle films of closely packed particles are observed to strongly absorb UV photons and fluoresce in the blue -- a characteristic of individual nanoparticles. We examine the photoconductivity of the films under UV illumination using IV spectroscopy. Our measurements indicate that the photoconductivy exhibits asymmetry and rectification in current flow for two metals which have different work functions. These results suggest that these films of nanoparticles, while retaining their nanoparticle characteristic luminescence, show the Shottky barrier associated with bulk behavior.

  3. Biosynthesis of Silver Nanoparticles Using Marine Sponge

    Directory of Open Access Journals (Sweden)

    Mahta Rezazaeh Hamed

    2015-12-01

    Full Text Available Biosynthesis of silver nanoparticles using marine sponge extract Haliclona was carried out. Marine sponges' extracts are responsible for the reduction of silver nitrate solution. Silver nanoparticles synthesized using fresh and dry marine sponge. Experimental factors including, time duration, pH, temperature were optimized. Silver nanoparticles were characterized by UV-Visible spectrophotometry. The sizes of synthesis silver nanoparticles were 27-46 nm and confirmed by scanning electron microscopy (SEM. X-ray diffraction (XRD crystallography indicated the silver nanoparticles crystalline nature. Fourier transform infrared spectroscopy (FT-IR was revealed the functional groups of extract of Haliclona, which are capable of reduction of silver nanoparticles. This method is a cost-effective, eco-friendly and nontoxic procedure..

  4. Ordering Gold Nanoparticles with DNA Origami Nanoflowers.

    Science.gov (United States)

    Schreiber, Robert; Santiago, Ibon; Ardavan, Arzhang; Turberfield, Andrew J

    2016-08-23

    Nanostructured materials, including plasmonic metamaterials made from gold and silver nanoparticles, provide access to new materials properties. The assembly of nanoparticles into extended arrays can be controlled through surface functionalization and the use of increasingly sophisticated linkers. We present a versatile way to control the bonding symmetry of gold nanoparticles by wrapping them in flower-shaped DNA origami structures. These "nanoflowers" assemble into two-dimensonal gold nanoparticle lattices with symmetries that can be controlled through auxiliary DNA linker strands. Nanoflower lattices are true composites: interactions between the gold nanoparticles are mediated entirely by DNA, and the DNA origami will fold into its designed form only in the presence of the gold nanoparticles.

  5. Nanosecond laser ablation of silver nanoparticle film

    Science.gov (United States)

    Chung, Jaewon; Han, Sewoon; Lee, Daeho; Ahn, Sanghoon; Grigoropoulos, Costas P.; Moon, Jooho; Ko, Seung H.

    2013-02-01

    Nanosecond laser ablation of polyvinylpyrrolidone (PVP) protected silver nanoparticle (20 nm diameter) film is studied using a frequency doubled Nd:YAG nanosecond laser (532 nm wavelength, 6 ns full width half maximum pulse width). In the sintered silver nanoparticle film, absorbed light energy conducts well through the sintered porous structure, resulting in ablation craters of a porous dome shape or crown shape depending on the irradiation fluence due to the sudden vaporization of the PVP. In the unsintered silver nanoparticle film, the ablation crater with a clean edge profile is formed and many coalesced nanoparticles of 50 to 100 nm in size are observed inside the ablation crater. These results and an order of magnitude analysis indicate that the absorbed thermal energy is confined within the nanoparticles, causing melting of nanoparticles and their coalescence to larger agglomerates, which are removed following melting and subsequent partial vaporization.

  6. Liquid-liquid interfacial nanoparticle assemblies

    Science.gov (United States)

    Emrick, Todd S.; Russell, Thomas P.; Dinsmore, Anthony; Skaff, Habib; Lin, Yao

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  7. SILVER NANOPARTICLES AS PENICILLIN ACTION ENHANCERS

    Directory of Open Access Journals (Sweden)

    O. A. Vasylchenko

    2013-04-01

    Full Text Available Nowadays, the value of bactericidal nanomaterials research increases at the increasing number of bacteria strains resistant to the most highly potent antibiotics. In the review the characteristic of nanoparticles and methods for their production are done. The scope of nanoparticles application is observed, special attention is focused on silver nanoparticles usage in medicine, in particular, as bactericidal products. It is indicated that nanoparticles may have toxic effects. Much attention is paid to nanoparticles application in the treatment of various diseases, for example, for targeted drug delivery, wound healing, bone regeneration, local heating of tumors in cancer pathology, immune system stimulation, for antibodies, viruses, bacteria detection, for liquids filtration. Penicillins and their producers — Penicillium sp. characteristic is done. The mechanism of penicillin antimicrobial action is estimated. It is revealed that silver nanoparticles usage in combination with antibiotics, particularly penicillin, leads to antibiotics antibacterial activity increasing against gram-positive and gram-negative microorganisms.

  8. Antitumor Activities of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria Pilar Vinardell

    2015-06-01

    Full Text Available Nanoparticles have received much attention recently due to their use in cancer therapy. Studies have shown that different metal oxide nanoparticles induce cytotoxicity in cancer cells, but not in normal cells. In some cases, such anticancer activity has been demonstrated to hold for the nanoparticle alone or in combination with different therapies, such as photocatalytic therapy or some anticancer drugs. Zinc oxide nanoparticles have been shown to have this activity alone or when loaded with an anticancer drug, such as doxorubicin. Other nanoparticles that show cytotoxic effects on cancer cells include cobalt oxide, iron oxide and copper oxide. The antitumor mechanism could work through the generation of reactive oxygen species or apoptosis and necrosis, among other possibilities. Here, we review the most significant antitumor results obtained with different metal oxide nanoparticles.

  9. Fabricating solar cells with silicon nanoparticles

    Science.gov (United States)

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  10. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  11. Studies on the biodistribution of dextrin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, C; Gama, F M [IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Minho University, Campus de Gualtar, 4710-057 Braga (Portugal); Ferreira, M F M; Martins, J A [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Santos, A C; Prata, M I M [IBILI, Faculty of Medicine of the University of Coimbra, Coimbra (Portugal); Geraldes, C F G C, E-mail: fmgama@deb.uminho.pt [Departamento de Ciencias da Vida, Faculdade de Ciencia e Tecnologia e Centro de Neurociencias e Biologia Celular, Universidade de Coimbra (Portugal)

    2010-07-23

    The characterization of biodistribution is a central requirement in the development of biomedical applications based on the use of nanoparticles, in particular for controlled drug delivery. The blood circulation time, organ biodistribution and rate of excretion must be well characterized in the process of product development. In this work, the biodistribution of recently developed self-assembled dextrin nanoparticles is addressed. Functionalization of the dextrin nanoparticles with a DOTA-monoamide-type metal chelator, via click chemistry, is described. The metal chelator functionalized nanoparticles were labelled with a {gamma}-emitting {sup 153}Sm{sup 3+} radioisotope and the blood clearance rate and organ biodistribution of the nanoparticles were obtained. The effect of PEG surface coating on the blood clearance rate and organ biodistribution of the nanoparticles was also studied.

  12. The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Engelbrekt, Christian; Zhang, Jingdong

    2013-01-01

    Aquatic toxicology of engineered nanoparticles is challenged by methodological difficulties stemming partly from highly dynamic and poorly understood behavior of nanoparticles in biological test systems. In this paper scientific and technical challenges of testing not readily soluble nanoparticle...

  13. Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.

    NARCIS (Netherlands)

    Vancso, G.J.; Duvigneau, J.; Nederkoorn, P.H.J.; Wassing, T.

    2014-01-01

    A polymer foam is produced comprising a polymer and nanoparticles having a maximum dimensionof 750 nm, which foam has cells with an average cell size of at most 1 µm and a cell density of at least 1012 cells/ml, wherein polymeric grafts have been attached to the nanoparticles. The nanoparticles may

  14. Optoelectrofluidic Manipulation of Nanoparticles and Biomolecules

    Directory of Open Access Journals (Sweden)

    Hyundoo Hwang

    2011-01-01

    Full Text Available This paper presents optoelectrofluidic technologies for manipulation of nanoparticles and biomolecules. Optoelectrofluidics provides an elegant scheme for the programmable manipulation of particles or fluids in microenvironments based on optically induced electrokinetics. Recent progress on the optoelectrofluidic manipulation of nanoobjects, which include nanospheres, nanowires, nanotubes, and biomolecules, is introduced. Some potential applications of the optoelectrofluidic nanoparticle manipulation, such as nanoparticles separation, nanostructures manufacturing, molecular physics, and clinical diagnostics, and their future directions are also discussed.

  15. Thermoinduced magnetization in nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine

    2004-01-01

    We show that there is a thermoinduced contribution to the magnetic moment of nanoparticles of antiferromagnetic materials. It arises from thermal excitations of the uniform spin-precession mode, and it has the unusual property that its magnitude increases with increasing temperature. This has...... the consequence that antiferromagnetism is nonexistent in nanoparticles at finite temperatures and it explains magnetic anomalies, which recently have been reported in a number of studies of nanoparticles of antiferromagnetic materials....

  16. Tiny Nanoparticles - A Big Battlefield Impact?

    Science.gov (United States)

    2014-10-01

    war- fighter from infrared and other sophisticated types of viewing, thanks to a range of metallic nanoparticles including gold and silver that...those models,” DeLacy said. Silver and gold nanoparticles have been extensively studied for their unique optical properties which arise from localized...surface-enhanced Raman scattering and enhanced fluorescence spectroscopy. The size and structure of the sil- ver and gold nanoparticles have a

  17. Imaging carbon nanoparticles and related cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C; Porter, A E; Welland, M [Nanoscience Centre, University of Cambridge, 11 JJ Thompson Ave, Cambridge CB3 OFF (United Kingdom); Muller, K; Skepper, J N [Multi-imaging Centre, Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Downing St, Cambridge, CB2 3DY (United Kingdom); Koziol, K; Midgley, P, E-mail: mew10@cam.ac.u [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St, Cambridge, CB2 3QZ (United Kingdom)

    2009-02-01

    Carbon-based nanoparticles have attracted significant attention due to their unique physical, chemical, and electrical properties. Numerous studies have been published on carbon nanoparticle toxicity; however, the results remain contradictory. An ideal approach is to combine a cell viability assay with nanometer scale imaging to elucidate the detailed physiological and structural effects of cellular exposure to nanoparticles. We have developed and applied a combination of advanced microscopy techniques to image carbon nanoparticles within cells. Specifically, we have used EFTEM, HAADF-STEM, and tomography and confocal microscopy to generate 3-D images enabling determination of nanoparticle spatial distribution in a cell. With these techniques, we can differentiate between the carbon nanoparticles and the cell in both stained and unstained sections. We found carbon nanoparticles (C{sub 60}, single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT)) within the cytoplasm, lysosomes, and nucleus of human monocyte-derived macrophage cells (HMM). C{sub 60} aggregated along the plasma and nuclear membrane while MWNTs and SWNTs were seen penetrating the plasma and nuclear membranes. Both the Neutral Red (NR) assay and ultra-structural analysis showed an increase in cell death after exposure to MWNTs and SWNTs. SWNTs were more toxic than MWNTs. For both MWNTs and SWNTs, we correlated uptake of the nanoparticles with a significant increase in necrosis. In conclusion, high resolution imaging studies provide us with significant insight into the localised interactions between carbon nanoparticles and cells. Viability assays alone only provide a broad toxicological picture of nanoparticle effects on cells whereas the high resolution images associate the spatial distributions of the nanoparticles within the cell with increased incidence of necrosis. This combined approach will enable us to probe the mechanisms of particle uptake and subsequent chemical

  18. Aerosol fabrication methods for monodisperse nanoparticles

    Science.gov (United States)

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  19. Magnetic Nanoparticles From Fabrication to Clinical Applications

    CERN Document Server

    Thanh, Nguyen TK

    2012-01-01

    Offering the latest information in magnetic nanoparticle (MNP) research, Magnetic Nanoparticles: From Fabrication to Clinical Applications provides a comprehensive review, from synthesis, characterization, and biofunctionalization to clinical applications of MNPs, including the diagnosis and treatment of cancers. This book, written by some of the most qualified experts in the field, not only fills a hole in the literature, but also bridges the gaps between all the different areas in this field. Translational research on tailored magnetic nanoparticles for biomedical applications spans a variet

  20. Sophorolipids-functionalized iron oxide nanoparticles

    OpenAIRE

    Baccile, Niki; Noiville, Romain; Stievano, Lorenzo; Van Bogaert, Inge

    2013-01-01

    International audience; Functional iron oxide nanoparticles (NP) have been synthesized in a one and a two-step method using a natural functional glycolipid belonging to the family of sophorolipids (SL). These compounds, whose open acidic form is highly suitable for nanoparticle stabilization, are readily obtained by a fermentation process of the yeast Candida bombicola (polymorph Starmerella bombicola) in large amounts. The final carbohydrate coated iron oxide nanoparticles represent interest...

  1. Cytotoxic Effects of Fucoidan Nanoparticles against Osteosarcoma

    OpenAIRE

    Ryuichiro Kimura; Takayoshi Rokkaku; Shinji Takeda; Masachika Senba; Naoki Mori

    2013-01-01

    In this study, we analyzed the size-dependent bioactivities of fucoidan by comparing the cytotoxic effects of native fucoidan and fucoidan lipid nanoparticles on osteosarcoma in vitro and in vivo. In vitro experiments indicated that nanoparticle fucoidan induced apoptosis of an osteosarcoma cell line more efficiently than native fucoidan. The more potent effects of nanoparticle fucoidan, relative to native fucoidan, were confirmed in vivo using a xenograft osteosarcoma model. Caco-2 cell tran...

  2. Nanoparticle Array Assembly Using Chemical Templates

    Science.gov (United States)

    Adams, Sarah Marie

    This dissertation demonstrates chemically-driven self-assembly techniques to produce assemblies of closely-spaced metal nanoparticles from colloidal nanoparticle solution in order to engineer enhanced optical fields. Planar nanoparticle assemblies provide a platform for a multitude of applications and material architectures. With nanoscale inter-particle spacing, metallic nanoparticles enable increased efficiency of photovoltaic devices due to light focusing and enhancement of electromagnetic fields useful for optical sensing of molecules due to coupling of the plasmon resonance in nanoparticle gaps. For molecular sensors, development of self-assembled two-dimensional assemblies of closely-spaced nanoparticles is useful for producing surface plasmon resonance sensors and surface-enhanced Raman spectroscopy (SERS) based sensing. Using chemical self-assembly, monodisperse, colloidal gold nanoparticles were attached on self-organized polymer templates in order to pattern assemblies of nanoparticle clusters with sub-10 nanometer inter-particle spacing. First citrate-stabilized Au nanoparticles were functionalized with thioctic acid ligands in solution. Then poly(methyl methacrylate) domains in phase-separated poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films were chemically modified with surface amine functional groups. Au nanoparticles were preferentially attached to the functionalized PMMA surface domains using cross-linking chemistry. This method allows for versatility of size, shape, and composition. In this dissertation, we demonstrated attachment of 5, 10, and 20 nm Au and 20 nm Ag nanoparticles. PS-b-PMMA thin films also exhibit versatility of domain size and morphology by varying polymer molecular weights. The nanoparticle diameter to PMMA domain size ratio influenced the cluster size. As the ratio decreased, larger clusters were observed on PMMA domains with increased frequency. SERS measurement of nanoparticle assemblies showed uniform signal

  3. Introduction to metal-nanoparticle plasmonics

    CERN Document Server

    Pelton, Matthew

    2013-01-01

    Based on a popular article in Laser and Photonics Reviews, this book provides an explanation and overview of the techniques used to model, make, and measure metal nanoparticles, detailing results obtained and what they mean. It covers the properties of coupled metal nanoparticles, the nonlinear optical response of metal nanoparticles, and the phenomena that arise when light-emitting materials are coupled to metal nanoparticles. It also provides an overview of key potential applications and offers explanations of computational and experimental techniques giving readers a solid grounding

  4. Nanoparticles applied to plant science: a review.

    Science.gov (United States)

    Arruda, Sandra Cristina Capaldi; Silva, Alisson Luiz Diniz; Galazzi, Rodrigo Moretto; Azevedo, Ricardo Antunes; Arruda, Marco Aurélio Zezzi

    2015-01-01

    The present review addresses certain important aspects regarding nanoparticles and the environment, with an emphasis on plant science. The production and characterization of nanoparticles is the focus of this review, providing an idea of the range and the consolidation of these aspects in the literature, with modifications on the routes of synthesis and the application of the analytical techniques for characterization of the nanoparticles (NPs). Additionally, aspects related to the interaction between the NPs and plants, their toxicities, and the phytoremediation process, among others, are also discussed. Future trends are also presented, supplying evidence for certain possibilities regarding new research involving nanoparticles and plants.

  5. Gold Nanoparticle Mediated Phototherapy for Cancer

    Directory of Open Access Journals (Sweden)

    Cuiping Yao

    2016-01-01

    Full Text Available Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations.

  6. Monovalent plasmonic nanoparticles for biological applications

    Science.gov (United States)

    Seo, Daeha; Lee, Hyunjung; Lee, Jung-uk; Haas, Thomas J.; Jun, Young-wook

    2016-03-01

    The multivalent nature of commercial nanoparticle imaging agents and the difficulties associated with producing monovalent nanoparticles challenge their use in biology, where clustering of target biomolecules can perturb dynamics of biomolecular targets. Here, we report production and purification of monovalent gold and silver nanoparticles for their single molecule imaging application. We first synthesized DNA-conjugated 20 nm and 40 nm gold and silver nanoparticles via conventional metal-thiol chemistry, yielding nanoparticles with mixed valency. By employing an anion-exchange high performance liquid chromatography (AE-HPLC) method, we purified monovalent nanoparticles from the mixtures. To allow efficient peak-separation resolution while keeping the excellent colloidal stability of nanoparticles against harsh purification condition (e.g. high NaCl), we optimized surface properties of nanoparticles by modulating surface functional groups. We characterized the monovalent character of the purified nanoparticles by hybridizing two complementary conjugates, forming dimers. Finally, we demonstrate the use of the monovalent plasmonic nanoprobes as single molecule imaging probes by tracking single TrkA receptors diffusing on the cell membrane and compare to monovalent quantum dot probes.

  7. Resonance scattering spectroscopy of gold nanoparticle

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gold nanoparticles in diameter of 10-95 nm have been prepared by Frens procedure, all of which exhibit a resonance scattering peak at 580 nm. The mechanism of resonance scattering for gold nanoparticle has been considered according to the wave motion theory of nanoparticle in liquid. The principle of superamolecular interface energy band(SIEB) has been set up and utilized to explain the relationship between the diameter and colors for gold nanoparticle in liquid. A novel spectrophotometric ruler for the determination of the diameter has been proposed according to the relationship of the maximum absorption wavelength and diameter.

  8. Current methods for synthesis of gold nanoparticles.

    Science.gov (United States)

    Herizchi, Roya; Abbasi, Elham; Milani, Morteza; Akbarzadeh, Abolfazl

    2016-01-01

    Metal nanoparticles, such as nanoparticles synthesized using gold, have numerous uncommon chemical and physical properties due to the effects of their quantum size and their large surface area, in comparison with other metal atoms or bulk metal. Gold nanoparticles (GNPs), in particular, are very attractive because of their size and shape-dependent properties. Metal nanoparticles have gathered extensive attention due to their uncommon properties and promising applications in photonics, electronics, biochemical sensing, and imaging. This review covers recent advances in the synthesis of GNPs.

  9. Laser fabrication and spectroscopy of organic nanoparticles.

    Science.gov (United States)

    Asahi, T; Sugiyama, T; Masuhara, H

    2008-12-01

    In working with nanoparticles, researchers still face two fundamental challenges: how to fabricate the nanoparticles with controlled size and shape and how to characterize them. In this Account, we describe recent advances in laser technology both for the synthesis of organic nanoparticles and for their analysis by single nanoparticle spectroscopy. Laser ablation of organic microcrystalline powders in a poor solvent has opened new horizons for the synthesis of nanoparticles because the powder sample is converted directly into a stable colloidal solution without additives and chemicals. By tuning laser wavelength, pulse width, laser fluence, and total shot number, we could control the size and phase of the nanoparticles. For example, we describe nanoparticle formation of quinacridone, a well-known red pigment, in water. By modifying the length of time that the sample is excited by the laser, we could control the particle size (30-120 nm) for nanosecond excitation down to 13 nm for femtosecond irradiation. We prepared beta- and gamma-phase nanoparticles from the microcrystal with beta-phase by changing laser wavelength and fluence. We present further results from nanoparticles produced from several dyes, C(60), and an anticancer drug. All the prepared colloidal solutions were transparent and highly dispersive. Such materials could be used for nanoscale device development and for biomedical and environmental applications. We also demonstrated the utility of single nanoparticle spectroscopic analysis in the characterization of organic nanoparticles. The optical properties of these organic nanoparticles depend on their size within the range from a few tens to a few hundred nanometers. We observed perylene nanoscrystals using single-particle spectroscopy coupled with atomic force microscopy. Based on these experiments, we proposed empirical equations explaining their size-dependent fluorescence spectra. We attribute the size effect to the change in elastic properties of

  10. Biogenic synthesized nanoparticles and their applications

    Science.gov (United States)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-05-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV-vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  11. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  12. Electrosprayed nanoparticle delivery system for controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Megdi, E-mail: megdi.eltayeb@sustech.edu [Department of Biomedical Engineering, Sudan University of Science and Technology, PO Box 407, Khartoum (Sudan); Stride, Eleanor, E-mail: eleanor.stride@eng.ox.ac.uk [Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington OX3 7DQ (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Harker, Anthony, E-mail: a.harker@ucl.ac.uk [London Centre for Nanotechnology, Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70 nm at the rate of 1.37 × 10{sup 9} nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈ 21% and the encapsulation efficiency ≈ 70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. - Highlights: • Electrohydrodynamic spraying is used to produce lipid-coated nanoparticles. • A new model is proposed for the release rates of active components from nanoparticles. • The technique has potential applications in food science and medicine. • Electrohydrodynamic processing controlled release lipid nanoparticles.

  13. A collaboration into research on nanoparticles (ACORN)

    Institute of Scientific and Technical Information of China (English)

    David G.Parker

    2009-01-01

    This paper describes the operation and outcome of one of the United Kingdom's largest multi-partner research activities in nanoparticles.The research covers the discovery and development of organic and inorganic crystals/nanoparticles,nanoparticle properties towards specific product applications,The research also encompassed bespoke measurement technology for nanoparticles and structure interactions.Significant research outcomes are summarised.The paper illustrates the advantages from industrially motivated research and value of collective action between a broad group of researchers in a nation.

  14. Microwave assisted template synthesis of silver nanoparticles

    Indian Academy of Sciences (India)

    K J Sreeram; M Nidhin; B U Nair

    2008-12-01

    Easier, less time consuming, green processes, which yield silver nanoparticles of uniform size, shape and morphology are of interest. Various methods for synthesis, such as conventional temperature assisted process, controlled reaction at elevated temperatures, and microwave assisted process have been evaluated for the kind of silver nanoparticles synthesized. Starch has been employed as a template and reducing agent. Electron microscopy, photon correlation spectroscopy and surface plasmon resonance have been employed to characterize the silver nanoparticles synthesized. Compared to conventional methods, microwave assisted synthesis was faster and provided particles with an average particle size of 12 nm. Further, the starch functions as template, preventing the aggregation of silver nanoparticles.

  15. Fighting cancer with magnetic nanoparticles and immunotherapy

    Science.gov (United States)

    Gutiérrez, L.; Mejías, R.; Barber, D. F.; Veintemillas-Verdaguer, S.; Serna, C. J.; Lázaro, F. J.; Morales, M. P.

    2012-03-01

    IFN-γ-adsorbed DMSA-coated magnetite nanoparticles can be used as an efficient in vivo drug delivery system for tumor immunotherapy. Magnetic nanoparticles, with adsorbed interferon-γ, were targeted to the tumor site by application of an external magnetic field. A relevant therapeutic dosage of interferon in the tumor was detected and led to a notable reduction in tumor size. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues by AC susceptibility measurements of the corresponding resected tissues. Magnetic nanoparticle biodistribution is affected by the application of an external magnetic field.

  16. Development of Enzyme-Containing Functional Nanoparticles

    Science.gov (United States)

    2012-08-01

    absorbed) roentgen shake slug torr (nm Hg , 0° C) 1.000 000 X E -10 1.013 25 X E +2 1.000 000 X E +2 1.000 000 X E -28 1.054 350 X E +3 4 .184 000...nanoparticles, containing no enzyme, after particle synthesis to demonstrate that the adsorption of the enzyme or the presence of nanoparticles was not the...thermo-responsive nanoparticle nor enzyme adsorption onto the surface of the nanoparticle were responsible for artificially increasing enzymatic

  17. Polyethylcyanoacrylate nanoparticle transport through the stratum corneum

    Science.gov (United States)

    Díaz-Torres, Roberto; Jiménez Sandoval, Sergio J.; Ibañez-Orozco, Oscar; Rodríguez-Romo, Suemi

    2009-07-01

    The traceability of polyethylcyanoacrylate nanoparticles transported through human skin is studied in this paper. Photoluminescence is used to find the precise diffusion path of polyethylcyanoacrylate nanoparticles through the skin stratum corneum (SC). Reproducible data were obtained, and the nanoparticles' distribution in each layer of the SC is presented. We contribute to the basic knowledge of these phenomena as a stationary stochastic process using a one-dimensional linear chain model with the left end open and the right end closed. Possible applications are in the field of pharmaceutical technology, especially concerning drug transport through the skin by nanoparticle carriers.

  18. Functionalized Gold Nanoparticles and Their Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Shree R. Singh

    2011-06-01

    Full Text Available Metal nanoparticles are being extensively used in various biomedical applications due to their small size to volume ratio and extensive thermal stability. Gold nanoparticles (GNPs are an obvious choice due to their amenability of synthesis and functionalization, less toxicity and ease of detection. The present review focuses on various methods of functionalization of GNPs and their applications in biomedical research. Functionalization facilitates targeted delivery of these nanoparticles to various cell types, bioimaging, gene delivery, drug delivery and other therapeutic and diagnostic applications. This review is an amalgamation of recent advances in the field of functionalization of gold nanoparticles and their potential applications in the field of medicine and biology.

  19. Theranostic nanoparticles for the treatment of cancer

    Science.gov (United States)

    Moore, Thomas Lee

    The main focus of this research was to evaluate the ability of a novel multifunctional nanoparticle to mediate drug delivery and enable a non-invasive approach to measure drug release kinetics in situ for the treatment of cancer. These goals were approached by developing a nanoparticle consisting of an inorganic core (i.e. gadolinium sulfoxide doped with europium ions or carbon nanotubes). This was coated with an external amphiphilic polymer shell comprised of a biodegradable polyester (i.e. poly(lactide) or poly(glycolide)), and poly(ethylene glycol) block copolymer. In this system, the inorganic core mediates the imaging aspect, the relatively hydrophobic polyester encapsulates hydrophobic anti-cancer drugs, and poly(ethylene glycol) stabilizes the nanoparticle in an aqueous environment. The synthesis of this nanoparticle drug delivery system utilized a simple one-pot room temperature ring-opening polymerization that neglected the use of potentially toxic catalysts and reduced the number of washing steps. This functionalization approach could be applied across a number of inorganic nanoparticle platforms. Coating inorganic nanoparticles with biodegradable polymer was shown to decrease in vitro and in vivo toxicity. Nanoparticles could be further coated with multiple polymer layers to better control drug release characteristics. Finally, loading polymer coated radioluminescent nanoparticles with photoactive drugs enabled a mechanism for measuring drug concentration in situ. The work presented here represents a step forward to developing theranostic nanoparticles that can improve the treatment of cancer.

  20. NAOMI: nanoparticle-assisted optical molecular imaging

    Science.gov (United States)

    Faber, Dirk J.; de Bruin, Martijn; Aalders, Maurice C. G.; Verbraak, Frank D.; van Leeuwen, Ton G.

    2007-02-01

    We present our first steps towards nanoparticle assisted, optical molecular imaging (NAOMI) using biodegradable nanoparticles. Our focus is on using optical coherence tomography(OCT) as the imaging modality. We propose to use nanoparticles based on biodegradable polymers, loaded with carefully selected dyes as contrast agent, and outline a method for establishing their desired optical properties prior to synthesis. Moreover, we perform a qualitative pilot study using these biodegradable nanoparticles, measuring their optical properties which are found to be in line with theoretical predictions.

  1. Structure, chemistry, and properties of mineral nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Waychunas, G.A.; Zhang, H.; Gilbert, B.

    2008-12-02

    Nanoparticle properties can depart markedly from their bulk analog materials, including large differences in chemical reactivity, molecular and electronic structure, and mechanical behavior. The greatest changes are expected at the smallest sizes, e.g. 10 nm and below, where surface effects are expected to dominate bonding, shape and energy considerations. The precise chemistry at nanoparticle interfaces can have a profound effect on structure, phase transformations, strain, and reactivity. Certain phases may exist only as nanoparticles, requiring transformations in chemistry, stoichiometry and structure with evolution to larger sizes. In general, mineralogical nanoparticles have been little studied.

  2. Engineered Nanoparticle (Eco)Toxicity

    DEFF Research Database (Denmark)

    Cupi, Denisa

    , various international organizations (e.g. Organisation for Economic Cooperation and Development and International Organization for Standardization) have recognized the need to amend and refine the current standard tests in relation to nanomaterials. Methodological considerations to standard testing...... for the purpose of testing engineered nanoparticles (ENPs) in aquatic system are a central theme in this thesis. The research presented herein has included acute tests with freshwater cladoceran Daphnia magna, genotoxicity tests with bacteria Salmonella typhimurium, as well as acellular and in vitro assays....... An understanding of different physico-chemical properties and specific characteristics of various nanoparticles employed in this project has been attained by reviewing the literature in the field. Specific processes such as agglomeration in aquatic suspension, influence of environmental conditions on toxicity...

  3. Herbal nanoparticles: A patent review

    Directory of Open Access Journals (Sweden)

    Namdeo R Jadhav

    2014-01-01

    Full Text Available Design and development of herbal nanoparticles has become a frontier research in the nanoformulation arena. To update researchers, an attempt has been made to review nanoformulation-based herbal patents. This article mainly covers herbal medicines are used for the treatment of cardiovascular diseases, Parkinsonism, pulmonary diseases, proliferative diseases, Alzheimer′s disease, diabetes, cancer therapy, anti-osteoporosis, and the like. It has been revealed that nanoparticles of Curcumin have been widely designed to increase its bioavailability and for treatment of cancers like breast cancer, lung cancer, pancreatic cancer, and so on. The common nanoformulated herbal medicines are Panax ginseng, Curcuma longa, Silybum marianum, Withania somnifera, Gymnema sylvestre, Salvia miltiorrhiza, and the like, having a profound future potential.

  4. DRAG ON SUBMICRON NANOPARTICLE AGGREGATES

    Institute of Scientific and Technical Information of China (English)

    F.; Einar; Kruis

    2005-01-01

    A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of experiments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electrofilter and then they are passed through a furnace at concentrations low enough not to induce coagulation.

  5. Antimicrobial Activity of Commercial Nanoparticles

    Science.gov (United States)

    Gajjar, Priyanka; Pettee, Brian; Britt, David W.; Huang, Wenjie; Johnson, William P.; Anderson, Anne J.

    2009-07-01

    Engineered nanoparticles are finding increased use in applications ranging from biosensors to prophylactic antimicrobials embedded in socks. The release of heavy metal-containing nanoparticles (NP) into the environment may be harmful to the efficacy of beneficial microbes that function in element cycling, pollutant degradation, and plant growth. Antimicrobial activity of commercial NP of Ag, CuO, and ZnO is demonstrated here against the beneficial soil microbe, Pseudomonas putida KT2440, which was modified to serve as a bioluminescent sentinel organism. "As manufactured" preparations of nano- Ag, -CuO, and -ZnO caused rapid, dose dependent loss of light output in the biosensor. Bulk equivalents of these products showed no inhibitory activity, indicating that particle size was determinant in activity.

  6. Heterogeneous Photolytic Synthesis of Nanoparticles

    OpenAIRE

    2007-01-01

    Nanoparticles of iron, cobalt and tungsten oxide were synthesised by photolytic laser assisted chemical vapour deposition (LCVD). An excimer laser (operating at 193 nm) was used as an excitation source. The LCVD process, was monitored in situ by optical emission spectroscopy (OES). The synthesised particles were further analysed using transmission electron spectroscopy (TEM), X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), X-ray fluorescence spectroscopy (XRF), ...

  7. Extreme Resilience in Cochleate Nanoparticles

    OpenAIRE

    Bozó, Tamás; Brecska, Richárd; Gróf, Pál; Kellermayer, Miklós SZ

    2014-01-01

    Cochleates, prospective nanoscale drug delivery vehicles, are rolls of negatively charged phospholipid membrane layers. The membrane layers are held together by calcium ions; however, neither the magnitude of membrane interaction forces nor the overall mechanical properties of cochleates have been known. Here, we manipulated individual nanoparticles with atomic force microscopy to characterize their nanomechanical behavior. Their stiffness (4.2–12.5 N/m) and membrane-rupture forces (45....

  8. Nanoparticle Solutions for Printed Electronics

    Science.gov (United States)

    2013-09-19

    PET film. Besides sensors and photovoltaic cells , other components which were printed included diodes (as the base system for solar cells and as...were tested by printing PEDOT:PSS and silicon nanoparticle inks on highly doped silicon wafers. Similarly photochemical cells were initially...structures. Both multilayer and planar, with interdigitated top or bottom contacts, architectures were investigated. In the former, attention had to be

  9. Single nanoparticle tracking spectroscopic microscope

    Science.gov (United States)

    Yang, Haw; Cang, Hu; Xu, Cangshan; Wong, Chung M.

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  10. Nanoparticle Ordering in Semicrystalline Polymers

    Science.gov (United States)

    Gimenez-Pinto, Vianney; Zhao, Dan; Kumar, Sanat

    One way to engineer the macroscopic properties of a crystalline polymer matrix is to place nanoparticles into them, but in an organized manner. We have recently found that NP organization can be controlled by varying the crystal growth rate. We develop a coarse-grained model to study this situation - in particular, we focus on the out-of-equilibrium dynamics of nanoparticles being pushed/engulfed by a solidification front depending on crystallization velocity vs. Particle engulfment occurs when vs is higher than a critical velocity vc. When vs is smaller than vc, particles are pushed by the crystallization front and organize in a 2-D plane. Even though most models for particle engulfment consider dynamic force equilibrium at vc, we show the system is not in equilibrium in this regime. Thus, we consider conditions for engulfment based on particle velocity with respect to crystal growth rate. Our results agree with experimental observations on anisotropic organization of nanoparticles in semicrystalline polymers driven by crystallization speed.

  11. Interaction of Nanoparticles with Radiation

    CERN Document Server

    Li, A

    2003-01-01

    Interstellar grains span a wide range of sizes from a few angstroms to a few micrometers. The presence of nanometer-sized or smaller particles in the interstellar medium is indicated directly by the interstellar far ultraviolet (UV) extinction, the ubiquitous 3.3, 6.2, 7.7, 8.6, and 11.3$\\mum$ polycyclic aromatic hydrocarbon (PAH) emission features, the near and mid infrared broadband emission seen in the IRAS 12 and 25$\\mum$ bands and the COBE-DIRBE 3.5, 4.9, 12 and 25$\\mum$ bands, the 10--100$\\GHz$ Galactic foreground microwave emission, and indirectly by the heating of interstellar gas. For nanoparticles under interstellar conditions, UV/visible photon absorption is the dominant excitation process. With a heat capacity smaller than or comparable to the energy of an energetic stellar photon, nanoparticles are subject to single-photon heating, followed by vibrational relaxation, photoionization, and photodestruction. With excited electrons spatially confined, semiconductor nanoparticles are expected to lumin...

  12. Nanoparticles in discotic liquid crystals

    Science.gov (United States)

    Kumar, Sandeep

    The self-assembly of disc-shaped molecules creates discotic liquid crystals (DLCs). These nanomaterials of the sizes ranging from 2-6 nm are emerging as a new class of organic semiconducting materials. The unique geometry of columnar mesophases formed by discotic molecules is of great importance to study the one-dimensional charge and energy migration in organized systems. A number of applications of DLCs, such as, one-dimensional conductor, photoconductor, photovoltaic solar cells, light emitting diodes and gas sensors have been reported. The conductivity along the columns in columnar mesophases has been observed to be several orders of magnitude greater than in perpendicular direction and, therefore, DLCs are described as molecular wires. On the other hand, the fields of nanostructured materials, such as gold nanoparticles, quantum dots, carbon nanotubes and graphene, have received tremendous development in the past decade due to their technological and fundamental interest. Recently the hybridization of DLCs with various metallic and semiconducting nanoparticles has been realized to alter and improve their properties. These nanocomposites are not only of basic science interest but also lead to novel materials for many device applications. This article provides an overview on the development in the field of newly immersed discotic nanoscience. After a brief introduction of DLCs, the article will cover the inclusion of various zero-, one- and two-dimensional nanoparticles in DLCs. Finally, an outlook into the future of this newly emerging intriguing field of discotic nanoscience research will be provided.

  13. Antimicrobial Polymers with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Humberto Palza

    2015-01-01

    Full Text Available Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.

  14. Chemoelectronic circuits based on metal nanoparticles.

    Science.gov (United States)

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  15. Chemoelectronic circuits based on metal nanoparticles

    Science.gov (United States)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  16. Heteroaggregation of nanoparticles with biocolloids and geocolloids.

    Science.gov (United States)

    Wang, Hongtao; Adeleye, Adeyemi S; Huang, Yuxiong; Li, Fengting; Keller, Arturo A

    2015-12-01

    The application of nanoparticles has raised concern over the safety of these materials to human health and the ecosystem. After release into an aquatic environment, nanoparticles are likely to experience heteroaggregation with biocolloids, geocolloids, natural organic matter (NOM) and other types of nanoparticles. Heteroaggregation is of vital importance for determining the fate and transport of nanoparticles in aqueous phase and sediments. In this article, we review the typical cases of heteroaggregation between nanoparticles and biocolloids and/or geocolloids, mechanisms, modeling, and important indicators used to determine heteroaggregation in aqueous phase. The major mechanisms of heteroaggregation include electric force, bridging, hydrogen bonding, and chemical bonding. The modeling of heteroaggregation typically considers DLVO, X-DLVO, and fractal dimension. The major indicators for studying heteroaggregation of nanoparticles include surface charge measurements, size measurements, observation of morphology of particles and aggregates, and heteroaggregation rate determination. In the end, we summarize the research challenges and perspective for the heteroaggregation of nanoparticles, such as the determination of αhetero values and heteroaggregation rates; more accurate analytical methods instead of DLS for heteroaggregation measurements; sensitive analytical techniques to measure low concentrations of nanoparticles in heteroaggregation systems; appropriate characterization of NOM at the molecular level to understand the structures and fractionation of NOM; effects of different types, concentrations, and fractions of NOM on the heteroaggregation of nanoparticles; the quantitative adsorption and desorption of NOM onto the surface of nanoparticles and heteroaggregates; and a better understanding of the fundamental mechanisms and modeling of heteroaggregation in natural water which is a complex system containing NOM, nanoparticles, biocolloids and geocolloids.

  17. Co-precipitation of oppositely charged nanoparticles: the case of mixed ligand nanoparticles

    Science.gov (United States)

    Moglianetti, Mauro; Ponomarev, Evgeniy; Szybowski, Maxime; Stellacci, Francesco; Reguera, Javier

    2015-11-01

    Colloid stability is of high importance in a multitude of fields ranging from food science to biotechnology. There is strong interest in studying the stability of small particles (of a size of a few nanometres) with complex surface structures, that make them resemble the complexity of proteins and other natural biomolecules, in the presence of oppositely charged nanoparticles. While for nanoparticles with homogeneously charged surfaces an abrupt precipitation has been observed at the neutrality of charges, data are missing about the stability of nanoparticles when they have more complex surface structures, like the presence of hydrophobic patches. To study the role of these hydrophobic patches in the stability of nanoparticles a series of negatively charged nanoparticles has been synthesized with different ratios of hydrophobic content and with control on the structural distribution of the hydrophobic moiety, and then titrated with positively charged nanoparticles. For nanoparticles with patchy nanodomains, the influence of hydrophobic content was observed together with the influence of the size of the nanoparticles. By contrast, for nanoparticles with a uniform distribution of hydrophobic ligands, size changes and hydrophobic content did not play any role in co-precipitation behaviour. A comparison of these two sets of nanoparticles suggests that nanodomains present at the surfaces of nanoparticles are playing an important role in stability against co-precipitation.

  18. Antibacterial activities of silver nanoparticles and antibiotic-adsorbed silver nanoparticles against biorecycling microbes.

    Science.gov (United States)

    Khurana, Chandni; Vala, Anjana K; Andhariya, Nidhi; Pandey, O P; Chudasama, Bhupendra

    2014-09-20

    Silver nanoparticles have a huge share in nanotechnology based products used in clinical and hygiene products. Silver nanoparticles leaching from these medical and domestic products will eventually enter terrestrial ecosystems and will interact with the microbes present in the land and water. These interactions could be a threat to biorecycling microbes present in the Earth's crust. The antimicrobial action towards biorecycling microbes by leached silver nanoparticles from medical waste could be many times greater compared to that of silver nanoparticles leached from other domestic products, since medical products may contain traditional antibiotics along with silver nanoparticles. In the present article, we have evaluated the antimicrobial activities of as-synthesized silver nanoparticles, antibiotics - tetracycline and kanamycin, and antibiotic-adsorbed silver nanoparticles. The antimicrobial action of silver nanoparticles with adsorbed antibiotics is 33-100% more profound against the biorecycling microbes B. subtilis and Pseudomonas compared to the antibacterial action of silver nanoparticles of the same concentration. This study indicates that there is an immediate and urgent need for well-defined protocols for environmental exposure to silver nanoparticles, as the use of silver nanoparticles in nanotechnology based products is poorly restricted.

  19. Towards the Rational Design of Nanoparticle Catalysts

    Science.gov (United States)

    Dash, Priyabrat

    This research is focused on development of routes towards the rational design of nanoparticle catalysts. Primarily, it is focused on two main projects; (1) the use of imidazolium-based ionic liquids (ILs) as greener media for the design of quasi-homogeneous nanoparticle catalysts and (2) the rational design of heterogeneous-supported nanoparticle catalysts from structured nanoparticle precursors. Each project has different studies associated with the main objective of the design of nanoparticle catalysts. In the first project, imidazolium-based ionic liquids have been used for the synthesis of nanoparticle catalysts. In particular, studies on recyclability, reuse, mode-of-stability, and long-term stability of these ionic-liquid supported nanoparticle catalysts have been done; all of which are important factors in determining the overall "greenness" of such synthetic routes. Three papers have been published/submitted for this project. In the first publication, highly stable polymer-stabilized Au, Pd and bimetallic Au-Pd nanoparticle catalysts have been synthesized in imidazolium-based 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid (Journal of Molecular Catalysis A: Chemical, 2008, 286, 114). The resulting nanoparticles were found to be effective and selective quasi-homogeneous catalysts towards a wide-range of hydrogenation reactions and the catalyst solution was reused for further catalytic reactions with minimal loss in activity. The synthesis of very pure and clean ILs has allowed a platform to study the effects of impurities in the imidazolium ILs on nanoparticle stability. In a later study, a new mode of stabilization was postulated where the presence of low amounts of 1-methylimidazole has substantial effects on the resulting stability of Au and Pd-Au nanoparticles in these ILs (Chemical Communications, 2009, 812). In further continuation of this study, a comparative study involving four stabilization protocols for nanoparticle

  20. Generation of Nanoparticles by Spark Discharge

    NARCIS (Netherlands)

    Salman Tabrizi, N.

    2009-01-01

    Spark discharge is a method for producing nanoparticles from conductive materials. Besides the general advantages of nanoparticle synthesis in the gas phase, the method offers additional advantages like simplicity, compactness and versatility. The synthesis process is continuous and is performed at

  1. The ecotoxicology and chemistry of manufactured nanoparticles.

    Science.gov (United States)

    Handy, Richard D; von der Kammer, Frank; Lead, Jamie R; Hassellöv, Martin; Owen, Richard; Crane, Mark

    2008-05-01

    The emerging literature on the ecotoxicity of nanoparticles and nanomaterials is summarised, then the fundamental physico-chemistry that governs particle behaviour is explained in an ecotoxicological context. Techniques for measuring nanoparticles in various biological and chemical matrices are also outlined. The emerging ecotoxicological literature shows toxic effects on fish and invertebrates, often at low mg l(-1) concentrations of nanoparticles. However, data on bacteria, plants, and terrestrial species are particularly lacking at present. Initial data suggest that at least some manufactured nanoparticles may interact with other contaminants, influencing their ecotoxicity. Particle behaviour is influenced by particle size, shape, surface charge, and the presence of other materials in the environment. Nanoparticles tend to aggregate in hard water and seawater, and are greatly influenced by the specific type of organic matter or other natural particles (colloids) present in freshwater. The state of dispersion will alter ecotoxicity, but many abiotic factors that influence this, such as pH, salinity, and the presence of organic matter remain to be systematically investigated as part of ecotoxicological studies. Concentrations of manufactured nanoparticles have rarely been measured in the environment to date. Various techniques are available to characterise nanoparticles for exposure and dosimetry, although each of these methods has advantages and disadvantages for the ecotoxicologist. We conclude with a consideration of implications for environmental risk assessment of manufactured nanoparticles.

  2. Zero-valent iron nanoparticles preparation

    Energy Technology Data Exchange (ETDEWEB)

    Oropeza, S. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Corea, M., E-mail: mcoreat@yahoo.com.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Gómez-Yáñez, C. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Cruz-Rivera, J.J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra Leona 550, San Luis Potosí, C.P. 78210 (Mexico); Navarro-Clemente, M.E., E-mail: mnavarroc@ipn.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  3. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    Science.gov (United States)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  4. Preparation of DPPE-Stabilized Gold Nanoparticles

    Science.gov (United States)

    Dungey, Keenan E.; Muller, David P.; Gunter, Tammy

    2005-01-01

    An experiment is presented that introduces students to nanotechnology through the preparation of nanoparticles and their visualization using transmission electron microscopy (TEM). The experiment familiarizes the students with nonaqueous solvents, biphasic reactions, phase-transfer agents, ligands to stabilize growing nanoparticles, and bidentate…

  5. Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens

    KAUST Repository

    Yates, Matthew D.

    2013-09-03

    Sustainable methods are needed to recycle precious metals and synthesize catalytic nanoparticles. Palladium nanoparticles can be produced via microbial reduction of soluble Pd(II) to Pd(0), but in previous tests using dissimilatory metal reducing bacteria (DMRB), the nanoparticles were closely associated with the cells, occupying potential reductive sites and eliminating the potential for cell reuse. The DMRB Geobacter sulfurreducens was shown here to reduce soluble Pd(II) to Pd(0) nanoparticles primarily outside the cell, reducing the toxicity of metal ions, and allowing nanoparticle recovery without cell destruction that has previously been observed using other microorganisms. Cultures reduced 50 ± 3 mg/L Pd(II) with 1% hydrogen gas (v/v headspace) in 6 h incubation tests [100 mg/L Pd(II) initially], compared to 8 ± 3 mg/L (10 mM acetate) without H2. Acetate was ineffective as an electron donor for palladium removal in the presence or absence of fumarate as an electron acceptor. TEM imaging verified that Pd(0) nanoparticles were predominantly in the EPS surrounding cells in H2-fed cultures, with only a small number of particles visible inside the cell. Separation of the cells and EPS by centrifugation allowed reuse of the cell suspensions and effective nanoparticle recovery. These results demonstrate effective palladium recovery and nanoparticle production using G. sulfurreducens cell suspensions and renewable substrates such as H2 gas. © 2013 American Chemical Society.

  6. Mixed iron-manganese oxide nanoparticles

    NARCIS (Netherlands)

    Lai, Jriuan; Shafi, Kurikka V.P.M.; Ulman, Abraham; Loos, Katja; Yang, Nan-Loh; Cui, Min-Hui; Vogt, Thomas; Estournès, Claude; Locke, Dave C.

    2004-01-01

    Designing nanoparticles for practical applications requires knowledge and control of how their desired properties relate to their composition and structure. Here, we present a detailed systematic study of mixed iron-manganese oxide nanoparticles, showing that ultrasonication provides the high-energy

  7. Preparation and Nonlinearity properties of Pd Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Pd nanoparticles less than 8 nm were photoinduced by a near-IR femtosecond laser. The sign of the refraction nonlinearity is negative for the Pd nanoparticles with TiO2, while it is positive for those without TiO2.

  8. Surface patterning of nanoparticles with polymer patches

    Science.gov (United States)

    Choueiri, Rachelle M.; Galati, Elizabeth; Thérien-Aubin, Héloïse; Klinkova, Anna; Larin, Egor M.; Querejeta-Fernández, Ana; Han, Lili; Xin, Huolin L.; Gang, Oleg; Zhulina, Ekaterina B.; Rubinstein, Michael; Kumacheva, Eugenia

    2016-10-01

    Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules, serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient, but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties. At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles, and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. Here we demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. These patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.

  9. Monofunctional gold nanoparticles: synthesis and applications

    Science.gov (United States)

    Huo, Qun; Worden, James G.

    2007-12-01

    The ability to control the assembly of nanoparticle building blocks is critically important for the development of new materials and devices. The properties and functions of nanomaterials are not only dependent on the size and properties of individual particles, but also the interparticle distance and interactions. In order to control the structures of nanoassemblies, it is important to first achieve a precise control on the chemical functionality of nanoparticle building blocks. This review discusses three methods that have been reported recently for the preparation of monofunctional gold nanoparticles, i.e., nanoparticles with a single chemical functional group attached to each particle. The advantages and disadvantages of the three methods are discussed and compared. With a single functional group attached to the surface, one can treat such nanoparticles as molecular building blocks to react with other molecules or nanoparticles. In other words, by using appropriate chemical reactions, nanoparticles can be linked together into nanoassemblies and materials by covalent bonds, similar to the total chemical synthesis of complicated organic compounds from smaller molecular units. An example of using this approach for the synthesis of nanoparticle/polymer hybrid materials with optical limiting properties is presented. Other potential applications and advantages of covalent bond-based nanoarchitectures vs. non-covalent interaction-based supramolecular self-assemblies are also discussed briefly in this review.

  10. Monofunctional gold nanoparticles: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Huo Qun, E-mail: qhuo@mail.ucf.edu; Worden, James G. [University of Central Florida, Nanoscience Technology Center and the Department of Chemistry (United States)

    2007-12-15

    The ability to control the assembly of nanoparticle building blocks is critically important for the development of new materials and devices. The properties and functions of nanomaterials are not only dependent on the size and properties of individual particles, but also the interparticle distance and interactions. In order to control the structures of nanoassemblies, it is important to first achieve a precise control on the chemical functionality of nanoparticle building blocks. This review discusses three methods that have been reported recently for the preparation of monofunctional gold nanoparticles, i.e., nanoparticles with a single chemical functional group attached to each particle. The advantages and disadvantages of the three methods are discussed and compared. With a single functional group attached to the surface, one can treat such nanoparticles as molecular building blocks to react with other molecules or nanoparticles. In other words, by using appropriate chemical reactions, nanoparticles can be linked together into nanoassemblies and materials by covalent bonds, similar to the total chemical synthesis of complicated organic compounds from smaller molecular units. An example of using this approach for the synthesis of nanoparticle/polymer hybrid materials with optical limiting properties is presented. Other potential applications and advantages of covalent bond-based nanoarchitectures vs. non-covalent interaction-based supramolecular self-assemblies are also discussed briefly in this review.

  11. Lipid Nanoparticles for Ocular Gene Delivery

    Directory of Open Access Journals (Sweden)

    Yuhong Wang

    2015-06-01

    Full Text Available Lipids contain hydrocarbons and are the building blocks of cells. Lipids can naturally form themselves into nano-films and nano-structures, micelles, reverse micelles, and liposomes. Micelles or reverse micelles are monolayer structures, whereas liposomes are bilayer structures. Liposomes have been recognized as carriers for drug delivery. Solid lipid nanoparticles and lipoplex (liposome-polycation-DNA complex, also called lipid nanoparticles, are currently used to deliver drugs and genes to ocular tissues. A solid lipid nanoparticle (SLN is typically spherical, and possesses a solid lipid core matrix that can solubilize lipophilic molecules. The lipid nanoparticle, called the liposome protamine/DNA lipoplex (LPD, is electrostatically assembled from cationic liposomes and an anionic protamine-DNA complex. The LPD nanoparticles contain a highly condensed DNA core surrounded by lipid bilayers. SLNs are extensively used to deliver drugs to the cornea. LPD nanoparticles are used to target the retina. Age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy are the most common retinal diseases in humans. There have also been promising results achieved recently with LPD nanoparticles to deliver functional genes and micro RNA to treat retinal diseases. Here, we review recent advances in ocular drug and gene delivery employing lipid nanoparticles.

  12. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen

    2011-08-02

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers on silica nanoparticles (see picture). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  14. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  15. Behavior of engineered nanoparticles in landfill leachate.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R; Santra, Swadeshmukul

    2013-08-01

    This research sought to understand the behavior of engineered nanoparticles in landfill leachate by examining the interactions between nanoparticles and leachate components. The primary foci of this paper are the effects of ZnO, TiO2, and Ag nanoparticles on biological landfill processes and the form of Zn, Ti, and Ag in leachate following the addition of nanoparticles. Insight into the behavior of nanoparticles in landfill leachate was gained from the observed increase in the aqueous concentrations over background for Zn, Ti, and Ag in some tested leachates attributed to leachate components interacting with the nanoparticle coatings resulting in dispersion, dissolution/dissociation, and/or agglomeration. Coated nanoparticles did not affect biological processes when added to leachate; five-day biochemical oxygen demand and biochemical methane potential results were not statistically different when exposed to nanoparticles, presumably due to the low concentration of dissolved free ionic forms of the associated metals resulting from the interaction with leachate components. Chemical speciation modeling predicted that dissolved Zn in leachate was primarily associated with dissolved organic matter, Ti with hydroxide, and Ag with hydrogen sulfide and ammonia; less than 1% of dissolved Zn and Ag was in the free ionic form, and free ionic Ti and Ag concentrations were negligible.

  16. Nonclassical nucleation and growth of inorganic nanoparticles

    Science.gov (United States)

    Lee, Jisoo; Yang, Jiwoong; Kwon, Soon Gu; Hyeon, Taeghwan

    2016-08-01

    The synthesis of nanoparticles with particular compositions and structures can lead to nanoparticles with notable physicochemical properties, thus promoting their use in various applications. In this area of nanoscience, the focus is shifting from size- and shape-uniform single-component nanoparticles to multicomponent nanoparticles with enhanced performance and/or multifunctionality. With the increasing complexity of synthetic reactions, an understanding of the formation mechanisms of the nanoparticles is needed to enable a systematic synthetic approach. This Review highlights mechanistic studies underlying the synthesis of nanoparticles, with an emphasis on nucleation and growth behaviours that are not expected from classical theories. We discuss the structural properties of nanoclusters that are of a size that bridges molecules and solids. We then describe the role of nanoclusters in the prenucleation process as well as in nonclassical nucleation models. The growth of nanoparticles via the assembly and merging of primary particles is also overviewed. Finally, we present the heterogeneous nucleation mechanisms behind the synthesis of multicomponent nanoparticles.

  17. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  18. Collision-spike Sputtering of Au Nanoparticles.

    Science.gov (United States)

    Sandoval, Luis; Urbassek, Herbert M

    2015-12-01

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; the remainder is transported away by the transmitted projectile and the ejecta. The sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.

  19. Fluorescent silver nanoparticles via exploding wire technique

    Indian Academy of Sciences (India)

    Alqudami Abdullah; S Annapoorni

    2005-11-01

    Aqueous solution containing spherical silver nanoparticles of 20–80 nm size have been generated using a newly developed novel electro-exploding wire (EEW) technique where thin silver wires have been exploded in double distilled water. Structural properties of the resulted nanoparticles have been studied by means of X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The absorption spectrum of the aqueous solution of silver nanoparticles showed the appearance of a broad surface plasmon resonance (SPR) peak centered at a wavelength of 390 nm. The theoretically generated SPR peak seems to be in good agreement with the experimental one. Strong green fluorescence emission was observed from the water-suspended silver nanoparticles excited with light of wavelengths 340, 360 and 390 nm. The fluorescence of silver nanoparticles could be due to the excitation of the surface plasmon coherent electronic motion with the small size effect and the surface effect considerations.

  20. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    Science.gov (United States)

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  1. Solid lipid nanoparticles: A drug carrier system

    Directory of Open Access Journals (Sweden)

    Rashmi R Kokardekar

    2011-01-01

    Full Text Available Solid lipid nanoparticles (SLN are a type of nanoparticles. They are submicron colloidal carriers which are composed of physiological lipids, dispersed in water or in aqueous surfactant solutions. SLN have wide range of advantages over other types of nanoparticles. These include availability of large-scale production methods and no signs of cytotoxicity, which are main hindrances in the application of other types of nanoparticles. Hot and cold homogenization techniques are mainly employed for its production. They are mainly evaluated on the basis of their drug release profile and particle internal structure. The products based on SLN are under development. They have a very wide range of applications in cosmetics and pharmaceuticals. They can be applied for any purpose, for which nanoparticles have a distinct advantage. Thus, SLN can be used extensively as an alternative to the existing drug carrier systems, providing more flexibility with respect to the area of applications and also aspects for commercialization.

  2. Diatomite silica nanoparticles for drug delivery

    Science.gov (United States)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  3. Enhanced Transmission through the Nanoparticle Coat

    Energy Technology Data Exchange (ETDEWEB)

    Song, G; Yu, L; Liu, B; Li, T, E-mail: candlesinwind@gmail.com [School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876 (China)

    2011-02-01

    By using the full-vectorial three-dimensional finite-difference time-domain method and the perfect electronic conductor as the materials, we studied the enhanced transmission spectra through a substrate with the perfect electronic conductor nanoparticle coat. Single metal nanoparticle exhibited characteristic localized surface plasmon modes. By placing more plasmonic nanoparticles close to each other to make up of a plane, it was possible to observe the interaction between the modes of each individual nanostructure. The results showed that the enhanced transmission spectra through a substrate with different nanoparticle coats which were made by different numbers of the layers or by different metals exhibited different peaks whose values could reach 1. The number of the nanoparticle coat layers influenced the number and the positions of the enhanced transmission peaks.

  4. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    .6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...... clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines......Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...

  5. Decontaminating soil organic pollutants with manufactured nanoparticles.

    Science.gov (United States)

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  6. Detection of magnetic nanoparticles with magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Jia Wenyan [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Xu, Guizhi [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 (China); Sclabassi, Robert J. [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Zhu Jiangang [Department of Electrical and Computer Engineering, Carnegie Melon University, Pittsburgh, PA 15213 (United States); Bagic, Anto [Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Sun Mingui [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States)], E-mail: mrsun@neuronet.pitt.edu

    2008-04-15

    Superconducting quantum interference devices (SQUIDs) have been widely utilized in biomedical applications due to their extremely high sensitivity to magnetic signals. The present study explores the feasibility of a new type of nanotechnology-based imaging method using standard clinical magnetoencephalographic (MEG) systems equipped with SQUID sensors. Previous studies have shown that biological targets labeled with non-toxic, magnetized nanoparticles can be imaged by measuring the magnetic field generated by these particles. In this work, we demonstrate that (1) the magnetic signals from certain nanoparticles can be detected without magnetization using standard clinical MEG, (2) for some types of nanoparticles, only bound particles produce detectable signals, and (3) the magnetic field of particles several hours after magnetization is significantly stronger than that of un-magnetized particles. These findings hold promise in facilitating the potential application of magnetic nanoparticles to in vivo tumor imaging. The minimum amount of nanoparticles that produce detectable signals is predicted by theoretical modeling and computer simulation.

  7. Parylene nanocomposites using modified magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ignacio, E-mail: iggarcia@cidetec.es [New Materials Department, CIDETEC - Centre for Electrochemical Technologies, Parque Tecnologico de San Sebastian, Paseo Miramon 196, Donostia-San Sebastian E 20009 (Spain); Luzuriaga, A. Ruiz de; Grande, H. [New Materials Department, CIDETEC - Centre for Electrochemical Technologies, Parque Tecnologico de San Sebastian, Paseo Miramon 196, Donostia-San Sebastian E 20009 (Spain); Jeandupeux, L.; Charmet, J.; Laux, E.; Keppner, H. [HES-SO Arc, Institut des Microtechnologies Appliquees, Eplatures- Grises 17, 2300 La Chaux-de Fonds (Switzerland); Mecerreyes, D.; Cabanero, German [New Materials Department, CIDETEC - Centre for Electrochemical Technologies, Parque Tecnologico de San Sebastian, Paseo Miramon 196, Donostia-San Sebastian E 20009 (Spain)

    2010-11-01

    Parylene/Fe{sub 3}O{sub 4} nanocomposites were synthesized and characterized. The nanocomposites were obtained by chemical vapour deposition polymerization of Parylene onto functionalized Fe{sub 3}O{sub 4} nanoparticles. For this purpose, allyltrichlorosilane was used to modify the surface of 7 nm size Fe{sub 3}O{sub 4} nanoparticles obtained by the coprecipitation method. The magnetic nanoparticles and obtained nanocomposite were characterized with X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and magnetic measurements (SQUID). The successful incorporation of different amounts of nanoparticles into Parylene was confirmed by FTIR and TGA. Interestingly, increments in saturation magnetization of the nanocomposites were observed ranging from 0 emu/g of neat Parylene to 16.94 emu/g in the case of nanocomposite films that contained 27.5 wt% of nanoparticles.

  8. Species Differences Take Shape at Nanoparticles

    DEFF Research Database (Denmark)

    Hayashi, Yuya; Miclaus, Teodora; Scavenius, Carsten;

    2013-01-01

    Cells recognize the biomolecular corona around a nanoparticle, but the biological identity of the complex may be considerably different among various species. This study explores the importance of protein corona composition for nanoparticle recognition by coelomocytes of the earthworm Eisenia...... fetida using E. fetida coelomic proteins (EfCP) as a native repertoire and fetal bovine serum (FBS) as a non-native reference. We have profiled proteins forming the long-lived corona around silver nanoparticles (75 nm OECD reference materials) and compared the responses of coelomocytes to protein coronas...... pre-formed of EfCP or FBS. We find that over time silver nanoparticles can competitively acquire a biological identity native to the cells in situ even in non-native media, and significantly greater cellular accumulation of the nanoparticles was observed with corona complexes pre-formed of EfCP (p

  9. Tailoring Imprinted Titania Nanoparticles for Purines Recognition

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2015-01-01

    Full Text Available Molecular imprinted titania nanoparticles were developed for selective recognition of purines, for example, guanine and its final oxidation product uric acid. Titania nanoparticles were prepared by hydrolysis of titanium butoxide as precursor in the presence of pattern molecules. The morphology of synthesized nanoparticles is evaluated by SEM images. Recognition characteristics of imprinted titania nanoparticles are studied by exposing them to standard solution of guanine and uric acid, respectively. The resultant change in their concentration is determined by UV/Vis analysis that indicated imprinted titania nanoparticles possess high affinity for print molecules. In both cases, nonimprinted titania is taken as control to observe nonspecific binding interactions. Cross sensitivity studies suggested that imprinted titania is at least five times more selective for binding print molecules than competing analyte thus indicating its potential for bioassay of purines.

  10. Structural characterization of copolymer embedded magnetic nanoparticles

    Science.gov (United States)

    Nedelcu, G. G.; Nastro, A.; Filippelli, L.; Cazacu, M.; Iacob, M.; Rossi, C. Oliviero; Popa, A.; Toloman, D.; Dobromir, M.; Iacomi, F.

    2015-10-01

    Small magnetic nanoparticles (Fe3O4) were synthesized by co-precipitation and coated by emulsion polymerization with poly(methyl methacrylate-co-acrylic acid) (PMMA-co-AAc) to create surface functional groups that can attach drug molecules and other biomolecules. The coated and uncoated magnetite nanoparticles were stored for two years in normal closed ships and than characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and electron paramagnetic resonance spectroscopy. The solid phase transformation of magnetite to maghemite, as well as an increase in particle size were evidenced for the uncoated nanoparticles. The coated nanoparticles preserved their magnetite structure and magnetic properties. The influences of monomers and surfactant layers on interactions between the magnetic nanoparticles evidenced that the thickness of the polymer has a significant effect on magnetic properties.

  11. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials

    Science.gov (United States)

    2016-05-23

    synthesized by controlling Tetraethyl orthosilicate (TEOS) and ammonia solution concentration. The composites were used as nanoparticles fillers in...important to synthesize the uniform and monodisperse magnetic nanoparticles. So, we, as a team of this collaboration project, focused on synthesizing ...uniform and monodisperse magnetic nanoparticles. First, we synthesized silica-coated monodisperse iron oxide nanoparticles (≈ 30 nm) sent to

  12. Danish Nanochemistry Researchers Use Nanosight NTA to Characterize Nanoparticles

    DEFF Research Database (Denmark)

    2011-01-01

    NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs.......NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  13. The synthesis and characterization of iron nanoparticles

    Science.gov (United States)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  14. Plasma Catalytic Synthesis of Silver Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Tao; GUO Ying; MA Teng-Cai

    2011-01-01

    We present the experimental results of plasma catalytic synthesis of colloidal silver nanoparticles, using AgNO3 as the precursor, ethanol as the solvent and reducing agent, and poly vinyl pyrrolidone (PVP) as the macromolecular surfactant. The plasma is generated by an atmospheric argon dielectric barrier discharge jet. Silver nanoparticles are produced instantly once the plasma is ignited. The system is not heated so it is necessary to use traditional chemical methods. The samples are characterized by UV-visible absorbance and transmission electron microscopy. For glow discharge mode no obvious silver nanoparticles are observed. For low voltage filamentary streamer discharge mode a lot of silver nanoparticles with the mean diameter of ~3.5nm are generated and a further increase of the voltage causes the occurrence of agglomeration.%We present the experimental results of plasma catalytic synthesis of colloidal silver nanoparticles,using AgNO3 as the precursor,ethanol as the solvent and reducing agent,and poly vinyl pyrrolidone (PVP) as the macromolecular surfactant.The plasma is generated by an atmospheric argon dielectric barrier discharge jet.Silver nanoparticles are produced instantly once the plasma is ignited.The system is not heated so it is necessary to use traditional chemical methods.The samples are characterized by UV-visible absorbance and transmission electron microscopy.For glow discharge mode no obvious silver nanoparticles are observed.For low voltage filamentary streamer discharge mode a lot of silver nanoparticles with the mean diameter of ~3.5nm are generated and a further increase of the voltage causes the occurrence of agglomeration.The study of silver nanoparticles has been an extremely active area in recent years because of their important physical and chemical properties as a catalyst and antimicrobial reagent,for example.A number of methods for silver nanoparticle preparation have been developed,[1-3] among them chemical reduction is

  15. Controlled functionalization of nanoparticles & practical applications

    Science.gov (United States)

    Rashwan, Khaled

    With the increasing use of nanoparticles in both science and industry, their chemical modification became a significant part of nanotechnology. Unfortunately, most commonly used procedures provide just randomly functionalized materials. The long-term objective of our work is site- and stoichiometrically-controlled functionalization of nanoparticles with the utilization of solid supports and other nanostructures. On the examples of silica nanoparticles and titanium dioxide nanorods, we have obtained results on the solid-phase chemistry, method development, and modeling, which advanced us toward this goal. At the same time, we explored several applications of nanoparticles that will benefit from the controlled functionalization: imaging of titanium-dioxide-based photocatalysts, bioimaging by fluorescent nanoparticles, drug delivery, assembling of bone implants, and dental compositions. Titanium dioxide-based catalysts are known for their catalytic activity and their application in solar energy utilization such as photosplitting of water. Functionalization of titanium dioxide is essential for enhancing bone-titanium dioxide nanotube adhesion, and, therefore, for its application as an interface between titanium implants and bones. Controlled functionalization of nanoparticles should enhance sensitivity and selectivity of nanoassemblies for imaging and drug delivery applications. Along those lines, we studied the relationship between morphology and surface chemistry of nanoparticles, and their affinity to organic molecules (salicylic and caffeic acid) using Langmuir adsorption isotherms, and toward material surfaces using SEM- and TEM-imaging. We focused on commercial samples of titanium dioxide, titanium dioxide nanorods with and without oleic acid ligands, and differently functionalized silica nanoparticles. My work included synthesis, functionalization, and characterization of several types of nanoparticles, exploring their application in imaging, dentistry, and bone

  16. Physiologically important metal nanoparticles and their toxicity.

    Science.gov (United States)

    Sengupta, Jayeeta; Ghosh, Sourav; Datta, Poulami; Gomes, Aparna; Gomes, Antony

    2014-01-01

    Nanotechnology has been setting benchmarks for the last two decades, but the origins of this technology reach back to ancient history. Today, nanoparticles of both metallic and non-metallic origin are under research and development for applications in various fields of biology/therapeutics. Physiologically important metals are of concern because they are compatible with the human system in terms of absorption, assimilation, excretion, and side effects. There are several physiologically inorganic metals that are present in the human body with a wide range of biological activities. Some of these metals are magnesium, chromium, manganese, iron, cobalt, copper, zinc, selenium and molybdenum. These metals are synthesized in the form of nanoparticles by different physical and chemical methods. Physiologically important nanoparticles are currently under investigation for their bio-medical applications as well as for therapeutics. Along with the applicative aspects of nanoparticles, another domain that is of great concern is the risk assessment of these nanoparticles to avoid unnecessary hazards. It has been seen that these nanoparticles have been shown to possess toxicity in biological systems. Conventional physical and chemical methods of metal nanoparticle synthesis may be one possible reason for nanoparticle toxicity that can be overcome by synthesis of nanoparticles from biological sources. This review is an attempt to establish metal nanoparticles of physiological importance to be the best candidates for future nanotechnological tools and medicines, owing to the acceptability and safety in the human body. This can only be successful if these particles are synthesized with a better biocompatibility and low or no toxicity.

  17. Photoluminescence quenching of semiconducting polymer nanoparticles in presence of Au nanoparticles

    Indian Academy of Sciences (India)

    Santanu Bhattacharyya; Amitava Patra

    2012-10-01

    In this report, we have demonstrated the photoluminescence quenching and energy transfer properties of semiconducting polymer nanoparticles, poly (N-vinylcarbazole) (PVK) in presence of different sized Au nanoparticles by steady state and time-resolved spectroscopy. We have described the quenching phenomena by sphere of action static quenching mechanism and both dynamic and static quenching processes are found in these systems. PL quenching values are 24.22% and 57.3% for 14 nm and 18 nm Au nanoparticles, respectively. It is found that the radiative and nonradiative decay have been modified with the size of Au nanoparticles. PL quenching and shortening of decay time regarding polymer nanoparticles in presence of Au nanoparticles suggest the nonradiative energy transfer process. The values of energy transfer are 6.7%, 49.5% and 53.38% from PVK polymer nanoparticles to 3 nm, 14 nm and 18 nm Au nanoparticles, respectively. Using FRET and SET equations we have calculated the average distance of donor PVK polymer nanoparticles and acceptor Au nanoparticles.

  18. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zejing; Li, Yejia; Zhang, Boyu; Purkait, Tapas [Tulane University, Department of Chemistry (United States); Alb, Alina [Tulane University, Department of Physics and Engineering Physics (United States); Mitchell, Brian S. [Tulane University, Department of Chemical and Biomolecular Engineering (United States); Grayson, Scott M.; Fink, Mark J., E-mail: fink@tulane.edu [Tulane University, Department of Chemistry (United States)

    2015-01-15

    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core–shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC “click” reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites.

  19. Microelectromechanical (MEMS) manipulators for control of nanoparticle coupling interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Daniel; Wiederrecht, Gary; Gosztola, David J.; Mancini, Derrick C.

    2017-01-17

    A nanopositioning system for producing a coupling interaction between a first nanoparticle and a second nanoparticle. A first MEMS positioning assembly includes an electrostatic comb drive actuator configured to selectively displace a first nanoparticle in a first dimension and an electrode configured to selectively displace the first nanoparticle in a second dimensions. Accordingly, the first nanoparticle may be selectively positioned in two dimensions to modulate the distance between the first nanoparticle and a second nanoparticle that may be coupled to a second MEMS positioning assembly. Modulating the distance between the first and second nanoparticles obtains a coupling interaction between the nanoparticles that alters at least one material property of the nanoparticles applicable to a variety of sensing and control applications.

  20. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    Science.gov (United States)

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.

  1. Classification of Magnetic Nanoparticle Systems

    DEFF Research Database (Denmark)

    Bogren, Sara; Fornara, Andrea; Ludwig, Frank

    2015-01-01

    This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxomet...... the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles....... and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from...

  2. Method of tracing engineered nanoparticles

    DEFF Research Database (Denmark)

    2015-01-01

    The present application discloses a population of non-aggregated polymer-coated nanoparticles having a mean particle size (diameter) in the range of 1-100 nm, said population comprising (i) a first subpopulation of (re)active particles coated with a first polymer, and (ii) a second subpopulation...... of non-(re)active tracer particles coated with a second polymer, wherein the weight ratio between said first subpopulation and said second subpopulation is from between 85:15 to 99.99:0.01, as well as a composition comprising such a population. The population of particles is particularly useful...

  3. Spin structures in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Brok, Erik

    in aqueous suspension was controlled by a hydrothermal treatment and by changing the ionic strenght of the suspension. Interestingly addition of NaCl to the suspension resulted in the particles aggregating in long linear chains, with neighbouring particles aligned along a common [001] axis of the hexagonal......, proposed to explain the unusual magnetic properties of the mineral. In summary the thesis have demonstrated methods for investigation of spin structures in magnetic nanoparticles. In particular, the classical model of the temperature dependence of canted spin structures sucessfully explains many...

  4. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  5. Photoconjugation of molecularly imprinted polymer with magnetic nanoparticles

    OpenAIRE

    Xu, Changgang; Uddin, Khan Mohammad Ahsan; Shen, Xiantao; Jayawardena, Surangi; Yan, Mingdi; Ye, Lei

    2013-01-01

    Because of their synthetic accessibility, molecularly imprinted polymer (MIP) nanoparticles are ideal building blocks for preparing multifunctional composites. In this work we developed a general photo-coupling chemistry to enable simple conjugation of MIP nanoparticles with inorganic magnetic nanoparticles. We first synthesized MIP nanoparticles using propranolol as a model template and perfluorophenylazide-modified silica-coated magnetic nanoparticles. Using a simple photoactivation followe...

  6. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    Science.gov (United States)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  7. An Effective Approach towards the Immobilization of PtSn Nanoparticles on Noncovalent Modified Multi-Walled Carbon Nanotubes for Ethanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Xi Geng

    2016-03-01

    Full Text Available In this article, we describe an effective method to tether Pt and PtSn nanoparticles (NPs on polyelectrolyte modified multi-walled carbon nanotubes (MWCNTs for ethanol electrooxidation. By using a polymer wrapping technique, positively charged polyethyleneimine (PEI was attached onto carbon nanotubes (CNTs to provide preferential linking sites for metal precursors. Well-dispersed Pt and PtSn nanocrystals (2–5 nm were subsequently decorated on PEI-functionalized MWCNTs through the polyol reduction method. The successful non-covalent modification of MWCNTs was confirmed by Fourier transform infrared spectroscopy (FTIR and Zeta potential measurements. Energy dispersive X-ray (EDX spectrum indicates approximately 20 wt % Pt loading and a desirable Pt:Sn atomic ratio of 1:1. Electrochemical analysis demonstrated that the as-synthesized PtSn/PEI-MWCNTs nanocomposite exhibited improved catalytic activity and higher poison tolerance for ethanol oxidation as compared to Pt/PEI-MWCNTs and commercial Pt/XC-72 catalysts. The enhanced electrochemical performance may be attributed to the uniform dispersion of NPs as well as the mitigating of CO self-poisoning effect by the alloying of Sn element. This modification and synthetic strategy will be studied further to develop a diversity of carbon supported Pt-based hybrid nanomaterials for electrocatalysis.

  8. Titration of gold nanoparticles in phase extraction.

    Science.gov (United States)

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2015-12-07

    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity.

  9. Functionalization of gold nanoparticles as antidiabetic nanomaterial.

    Science.gov (United States)

    Venkatachalam, M; Govindaraju, K; Mohamed Sadiq, A; Tamilselvan, S; Ganesh Kumar, V; Singaravelu, G

    2013-12-01

    In the present investigation, functionalization of gold nanoparticles synthesized using propanoic acid 2-(3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl) (PAT) an active biocomponent isolated from Cassia auriculata is studied in detail. On reaction of PAT with aqueous HAuCl4, rapid formation of stable gold nanoparticles was achieved. Formation of gold nanoparticles was confirmed by UV-vis spectroscopy, XRD, GC-MS,FTIR, TEM and SEM with EDAX. Gold nanoparticles mostly were monodisperse, spherical in shape and ranged in size 12-41 nm. Gold nanoparticles synthesised using PAT was administered to alloxan (150 mg/kg body weight) induced diabetic male albino rats at different doses (0.25, 0.5, 0.75 and 1.0mg/kg body weight) for 28 days. Plasma glucose level, cholesterol and triglyceride were significantly (pgold nanoparticles at dosage of 0.5mg/kg body weight and plasma insulin increased significantly. The newly genre green gold nanoparticles exhibit remarkable protein tyrosine phosphatase 1B inhibitory activity.

  10. Dynamics of solvent-free grafted nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2012-01-01

    The diffusivity and structural relaxation characteristics of oligomer-grafted nanoparticles have been investigated with simulations of a previously proposed coarse-grained model at atmospheric pressure. Solvent-free, polymer-grafted nanoparticles as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent-free nanoparticles with longer chains have higher relative diffusivities than their short chain counterparts. Solvent-free nanoparticles with short chains undergo a glass transition as indicated by a vanishing diffusivity, diverging structural relaxation time and the formation of body-centered-cubic-like order. Nanoparticles with longer chains exhibit a more gradual increase in the structural relaxation time with decreasing temperature and concomitantly increasing particle volume fraction. The diffusivity of the long chain nanoparticles exhibits a minimum at an intermediate temperature and volume fraction where the polymer brushes of neighboring particles overlap, but must stretch to fill the interparticle space. © 2012 American Institute of Physics.

  11. Blood clot detection using magnetic nanoparticles

    Science.gov (United States)

    Khurshid, Hafsa; Friedman, Bruce; Berwin, Brent; Shi, Yipeng; Ness, Dylan B.; Weaver, John B.

    2017-01-01

    Deep vein thrombosis, the development of blood clots in the peripheral veins, is a very serious, life threatening condition that is prevalent in the elderly. To deliver proper treatment that enhances the survival rate, it is very important to detect thrombi early and at the point of care. We explored the ability of magnetic particle spectroscopy (MSB) to detect thrombus via specific binding of aptamer functionalized magnetic nanoparticles with the blood clot. MSB uses the harmonics produced by nanoparticles in an alternating magnetic field to measure the rotational freedom and, therefore, the bound state of the nanoparticles. The nanoparticles’ relaxation time for Brownian rotation increases when bound [A.M. Rauwerdink and J. B. Weaver, Appl. Phys. Lett. 96, 1 (2010)]. The relaxation time can therefore be used to characterize the nanoparticle binding to thrombin in the blood clot. For longer relaxation times, the approach to saturation is more gradual reducing the higher harmonics and the harmonic ratio. The harmonic ratios of nanoparticles conjugated with anti-thrombin aptamers (ATP) decrease significantly over time with blood clot present in the sample medium, compared with nanoparticles without ATP. Moreover, the blood clot removed from the sample medium produced a significant MSB signal, indicating the nanoparticles are immobilized on the clot. Our results show that MSB could be a very useful non-invasive, quick tool to detect blood clots at the point of care so proper treatment can be used to reduce the risks inherent in deep vein thrombosis.

  12. Surface modification of barite nanoparticles using stearate

    Institute of Scientific and Technical Information of China (English)

    LI Lin-lin; HANG Jian-zhong; SHI Li-yi

    2009-01-01

    In this study,the barite nanoparticles were successfully modified with stearate and the influence of stearate addition on the performance of barite nanoparticles was systematically investigated.The products were characterized by activating factor analysis,contact angle test,surface energy calculation,sedimentation rate calculation,rheological measurement,and FT-IR analysis,etc.As the quantity of added stearate increased,both the activating factor and contact angle of barite nanoparticles increased first then decreased.When the stearate content was 5% of the mass of barite nanoparticles,the activating factor and water contact angle of modified particles reached maximum value,97% and 126~ respectively.At this time,the sedimentation rate reached minimum,and so did the surface energy.The rheological test reveals that the viscosity of modified barite nanoparticles/ petronol system decreases greatly,indicating the surface performance of barite nanoparticles has changed from hydrophilicity to lipophilicity after modification.C=O and COO stretching vibration peaks were found in the FT-IR spectra,which proves that the stearate has combined onto the surface of barite nanoparticles.Finally,according to the zeta potential result of unmodified barite,the possible modification mechanism was provided.

  13. Gold nanoparticles produced in a microalga

    Science.gov (United States)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-12-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40-60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  14. Biosynthesis of gold nanoparticles: A green approach.

    Science.gov (United States)

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed.

  15. Bioenhanced oral curcumin nanoparticles: Role of carbohydrates.

    Science.gov (United States)

    D'Souza, Anisha A; Devarajan, Padma V

    2016-01-20

    The paper discusses polysaccharide-adsorbed curcumin-Gantrez nanoparticles for bioenhancement of oral curcumin. Nanoparticles revealed no change in size over time in pH 1.2 and 7.4, and a rapid drug release in pH 1.2 and 7.4 medium containing surfactant. Without adsorbed polysaccharides, nanoparticles exhibited high Cmax (61.3 ± 22.3 ng/mL), sustained plasma concentration up to 24h and 117% absolute bioavailability, attributed to bioadhesion. In contrast galactose polysaccharides arabinogalactan and kappa-carrageenan adsorbed nanoparticles exhibited rapid absorption with higher Cmax of 109.5 ± 31.2 ng/mL and 92.3 ± 21.2 ng/mL, respectively, but faster elimination and absolute bioavailability of greater than 25%. The glucose polysaccharide pullulan adsorbed nanoparticles exhibited significantly lower Cmax (39.7 ± 20.6 ng/mL) and bioavailability (13%). Lower bioavailability of polysaccharide adsorbed nanoparticles was attributed to high metabolism of curcumin in the intestine as a result of faster gastric elimination and high intestinal localization. However polysaccharide-adsorbed nanoparticles could play an important role in bioenhancement of drugs specifically those exhibiting good stability across the gastrointestinal tract.

  16. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  17. Nanotoxicology and nanoparticle safety in biomedical designs

    Directory of Open Access Journals (Sweden)

    Ai J

    2011-05-01

    Full Text Available Jafar Ai1, Esmaeil Biazar2, Mostafa Jafarpour3, Mohamad Montazeri4, Ali Majdi5, Saba Aminifard5, Mandana Zafari5, Hanie Akbari R6, Hadi Rad Gh71Department of Tissue Engineering, Faculty of Advanced Technologies, Tehran University of Medical Sciences, Tehran; 2Department of Chemistry, Islamic Azad University – Tonekabon Branch, Mazandaran; 3Department of Microbiology, Faculty of Science, Islamic Azad University – Tonekabon Branch, Mazandaran; 4Faculty of Medical Sciences, Babol University of Medical Sciences; 5Young Researchers Club – Islamic Azad University, Tonekabon Branch, Mazandaran; 6Faculty of Medical Sciences, Islamic Azad University – North branch, Tehran; 7Faculty of Medical Sciences, Islamic Azad University – Tonekabon Branch, Mazandaran, IranAbstract: Nanotechnology has wide applications in many fields, especially in the biological sciences and medicine. Nanomaterials are applied as coating materials or in treatment and diagnosis. Nanoparticles such as titania, zirconia, silver, diamonds, iron oxides, carbon nanotubes, and biodegradable polymers have been studied in diagnosis and treatment. Many of these nanoparticles may have toxic effects on cells. Many factors such as size, inherent properties, and surface chemistry may cause nanoparticle toxicity. There are methods for improving the performance and reducing toxicity of nanoparticles in medical design, such as biocompatible coating materials or biodegradable/biocompatible nanoparticles. Most metal oxide nanoparticles show toxic effects, but no toxic effects have been observed with biocompatible coatings. Biodegradable nanoparticles are also used in the efficient design of medical materials, which will be reviewed in this article.Keywords: nanotechnology, nanotoxicology, nanomaterials, nanobiomaterials

  18. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  19. Ion mediated targeting of cells with nanoparticles

    Science.gov (United States)

    Maheshwari, Vivek; Fu, Jinlong

    2010-03-01

    In eukaryotic cells, Ca^2+ ions are necessary for intracellular signaling, in activity of mitochondria and a variety of other cellular process that have been linked to cell apoptosis, proteins synthesis and cell-cycle regulation. Here we show that Ca^2+ ions, serving as the bio-compatible interface can be used to target Saccharomyces cerevisiae (SaC, baker's yeast), a model eukaryotic cell, with Au nanoparticles (10 nm). The Ca^2+ ions bind to the carboxylic acid groups in the citrate functionalized Au nanoparticles. This transforms the nanoparticles into micron long 1-D branched chain assemblies due to inter-particle dipole-dipole interaction and inter-particle bonding due to the divalent nature of the Ca^2+ ion. A similar transformation is observed with the use of divalent ions Mg^2+, Cd^2+ and Fe^2+. The 1-D assembly aids the interfacing of ion-nanoparticles on the cell by providing multiple contact points. Further monovalent ions such as Na^+ are also effective for the targeting of the cell with nanoparticles. However Na-Au nanoparticles are limited in their deposition as they exist in solution as single particles. The cells remain alive after the deposition process and their vitality is unaffected by the interfacing with ion-nanoparticles.

  20. Influence of nanoparticle-graphene separation on the localized surface plasmon resonances of metal nanoparticles

    CERN Document Server

    Saadabad, Reza Masoudian; Shirdel-Havar, Amir Hushang; Havar, Majid Shirdel

    2015-01-01

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4 nm radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  1. Polymeric Nanocapsule from Silica Nanoparticle@Cross-linked Polymer Nanoparticles via One-Pot Approach

    Directory of Open Access Journals (Sweden)

    Shen Ruoping

    2009-01-01

    Full Text Available Abstract A facile strategy was developed here to prepare cross-linked polymeric nanocapsules (CP nanocapsules with silica nanoparticles as templates. The silica nanoparticle@cross-linked polymer nanoparticles were prepared by the encapsulation of the silica nanoparticles by the one-pot approach via surface-initiated atom transfer radical polymerization of hydroxyethyl acrylate in the presence ofN,N′-methylenebisacrylamide as a cross-linker from the initiator-modified silica nanoparticles. After the silica nanoparticle templates were etched with hydrofluoric acid, the CP nanocapsules with particle size of about 100 nm were obtained. The strategy developed was confirmed with Fourier transform infrared, thermogravimetric analysis and transmission electron microscopy.

  2. Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles.

    Science.gov (United States)

    McClements, Jake; McClements, David Julian

    2016-06-10

    There has been a rapid increase in the fabrication of various kinds of edible nanoparticles for oral delivery of bioactive agents, such as those constructed from proteins, carbohydrates, lipids, and/or minerals. It is currently difficult to compare the relative advantages and disadvantages of different kinds of nanoparticle-based delivery systems because researchers use different analytical instruments and protocols to characterize them. In this paper, we briefly review the various analytical methods available for characterizing the properties of edible nanoparticles, such as composition, morphology, size, charge, physical state, and stability. This information is then used to propose a number of standardized protocols for characterizing nanoparticle properties, for evaluating their stability to environmental stresses, and for predicting their biological fate. Implementation of these protocols would facilitate comparison of the performance of nanoparticles under standardized conditions, which would facilitate the rational selection of nanoparticle-based delivery systems for different applications in the food, health care, and pharmaceutical industries.

  3. Silver Nanoparticles and Mitochondrial Interaction

    Directory of Open Access Journals (Sweden)

    Eriberto Bressan

    2013-01-01

    Full Text Available Nanotechnology has gone through a period of rapid growth, thus leading to the constant increase in the application of engineered nanomaterials in daily life. Several different types of nanoparticles have been engineered to be employed in a wide array of applications due to their high surface to volume ratio that leads to unique physical and chemical properties. So far, silver nanoparticles (AgNps have been used in many more different medical devices than any other nanomaterial, mainly due to their antimicrobial properties. Despite the promising advantages posed by using AgNps in medical applications, the possible health effects associated with the inevitable human exposure to AgNps have raised concerns as to their use since a clear understanding of their specific interaction with biological systems has not been attained yet. In light of such consideration, aim of the present work is the morphological analysis of the intracellular behavior of AgNps with a diameter of 10 nm, with a special attention to their interaction with mitochondria.

  4. Enhanced potentiometry by metallic nanoparticles.

    Science.gov (United States)

    Noyhouzer, T; Valdinger, I; Mandler, D

    2013-09-03

    Measuring the oxidation-reduction potential (Eh) requires an interface that is not selective toward specific species but exchanges electrons with all redox couples in the solution. Sluggish electron transfer (ET) kinetics with the species will not reflect the "true" Eh of the solution. Here, we present a novel approach by which adsorbed metal nanoparticles (NPs) are used for enhancing ET exchange rates between redox species and electrode surface and therefore affect significantly the measurement of the open circuit potential (OCP) and cyclic voltammetry (CV). The OCP and CV of various organic and inorganic species such as l-dopa, dopac, iron(II), and iodide are measured by bare stainless steel and by stainless steel modified by either Pt or Au NPs. We study the effect of the surface coverage of the stainless steel surface by NPs on the electrochemical response. Moreover, the stainless steel electrode was modified simultaneously by Au and Pt nanoparticles. This improved concurrently the stainless steel response (CV and potentiometry) toward two different species; l-dopa, which shows fast electron transfer on Pt, and catechol, which exhibits fast electron transfer on Au. We believe that this approach could be a first step toward developing a superior electrode for measuring the "true" Eh of complex aquatic systems.

  5. Magnetic Nanoparticles in Cancer Theranostics.

    Science.gov (United States)

    Gobbo, Oliviero L; Sjaastad, Kristine; Radomski, Marek W; Volkov, Yuri; Prina-Mello, Adriele

    2015-01-01

    In a report from 2008, The International Agency for Research on Cancer predicted a tripled cancer incidence from 1975, projecting a possible 13-17 million cancer deaths worldwide by 2030. While new treatments are evolving and reaching approval for different cancer types, the main prevention of cancer mortality is through early diagnosis, detection and treatment of malignant cell growth. The last decades have seen a development of new imaging techniques now in widespread clinical use. The development of nano-imaging through fluorescent imaging and magnetic resonance imaging (MRI) has the potential to detect and diagnose cancer at an earlier stage than with current imaging methods. The characteristic properties of nanoparticles result in their theranostic potential allowing for simultaneous detection of and treatment of the disease. This review provides state of the art of the nanotechnological applications for cancer therapy. Furthermore, it advances a novel concept of personalized nanomedical theranostic therapy using iron oxide magnetic nanoparticles in conjunction with MRI imaging. Regulatory and industrial perspectives are also included to outline future perspectives in nanotechnological cancer research.

  6. High velocity collisions of nanoparticles

    Science.gov (United States)

    Johnson, Donald F.; Mattson, William D.

    2017-01-01

    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  7. Nanoparticle biofabrication using English ivy (Hedera helix

    Directory of Open Access Journals (Sweden)

    Burris Jason N

    2012-10-01

    Full Text Available Abstract Background English ivy (Hedera helix is well known for its adhesive properties and climbing ability. Essential to its ability to adhere to vertical surfaces is the secretion of a nanocomposite adhesive containing spherical nanoparticles, 60–85 nm in diameter, produced exclusively by root hairs present on adventitious roots. These organic nanoparticles have shown promise in biomedical and cosmetic applications, and represent a safer alternative to metal oxide nanoparticles currently available. Results It was discovered that the maximum adventitious root production was achieved by a 4 h application of 1 mg/ml indole-3 butyric acid (IBA to juvenile English ivy shoot segments cultured in custom vessels. After incubation of the shoots under continuous light at 83 μmol/m2 s at 20°C for 2 weeks, the adventitious roots were harvested from the culture system and it was possible to isolate 90 mg of dry weight nanoparticles per 12 g of roots. The nanoparticle morphology was characterized by atomic force microscopy, and found to be similar to previous studies. Conclusions An enhanced system for the production of English ivy adventitious roots and their nanoparticles by modifying GA7 Magenta boxes and identifying the optimal concentration of IBA for adventitious root growth was developed. This system is the first such platform for growing and harvesting organic nanoparticles from plants, and represents an important step in the development of plant-based nanomanufacturing. It is a significant improvement on the exploitation of plant systems for the formation of metallic nanoparticles, and represents a pathway for the generation of bulk ivy nanoparticles for translation into biomedical applications.

  8. Applications of Bacterial Magnetic Nanoparticles in Nanobiotechnology.

    Science.gov (United States)

    Chen, Chuanfang; Wang, Pingping; Li, Linlin

    2016-03-01

    The bacterial magnetic nanoparticle (BMP) has been well researched in nanobiotechnology as a new magnetic crystal. The BMPs are extracted from magnetotactic bacteria and under precise biological control. Compared with engineered magnetic nanoparticles synthesized by chemical approaches, BMPs have the properties of large production, monodispersity, high crystallinity, and close-to-bulk magnetization, which enable BMPs to be the highly promising magnetic nanoparticles for nanobiotechnology. In this paper, we review the biomedical applications of BMPs in magnetic hyperthermia, drug treatment with tumour and bioseparation. In addition, the biodistribution and toxicity are also reviewed.

  9. Palladium nanoparticles obtained by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Sampedro, B.; Hernando, A. [Instituto de Magnetismo Aplicado (RENFE-UCM-CSIC), P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Dpto. Fisica de Materiales, UCM, 28040 Madrid (Spain); Rojas, T.C.; Fernandez, A. [Instituto de Ciencia de Materiales de Sevilla, Centro mixto CSIC-UNIV, 41092 Sevilla (Spain)

    2006-05-15

    Opposed to the existing chemical methods, we have used a physical one in order to obtain palladium nanoparticles. In this work we present the HRTEM observation of Pd nanoparticles obtained by mechanical milling. These particles are around 6 nm in size. The Pd milled samples have exhaustively been structurally characterized. We have also studied its magnetic properties as a function of the milling time and magnetic measurements are according to those previously carried out by us in palladium nanoparticles obtained by chemical methods. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    Directory of Open Access Journals (Sweden)

    In-Yup Jeon

    2010-06-01

    Full Text Available Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.

  11. Anti-bacterial Studies of Silver Nanoparticles

    CERN Document Server

    Theivasanthi, T

    2011-01-01

    We discuss about the antibacterial activities of Silver nanoparticles and compare them on both Gram negative and Gram positive bacteria in this investigation. The activities of Silver nanoparticles synthesized by electrolysis method are more in Gram (-) than Gram (+) bacteria. First time, we increase its antibacterial activities by using electrical power while on electrolysis synthesis and it is confirmed from its more antibacterial activities (For Escherichia coli bacteria). We investigate the changes of inner unit cell Lattice constant of Silver nanoparticles prepared in two different methods and its effects on antibacterial activities. We note that slight change of the lattice constant results in the enhancement of its antibacterial activities.

  12. Radiative heat transfer between metallic nanoparticles

    CERN Document Server

    Chapuis, Pierre-Olivier; Volz, Sebastian; Greffet, Jean-Jacques

    2008-01-01

    In this letter, we study the radiative heat transfer between two nanoparticles in the near field and in the far field. We find that the heat transfer is dominated by the electric dipole-dipole interaction for dielectric particles and by the magnetic dipole-dipole interaction for metallic nanoparticles. We introduce polarizabilities formulas valid for arbitrary values of the skin depth. While the heat transfer mechanism is different for metallic and dielectric nanoparticles, we show that the distance dependence is the same. However, the dependence of the heat flux on the particle radius is different.

  13. Purification of Nanoparticles by Size and Shape

    Science.gov (United States)

    Robertson, James D.; Rizzello, Loris; Avila-Olias, Milagros; Gaitzsch, Jens; Contini, Claudia; Magoń, Monika S.; Renshaw, Stephen A.; Battaglia, Giuseppe

    2016-06-01

    Producing monodisperse nanoparticles is essential to ensure consistency in biological experiments and to enable a smooth translation into the clinic. Purification of samples into discrete sizes and shapes may not only improve sample quality, but also provide us with the tools to understand which physical properties of nanoparticles are beneficial for a drug delivery vector. In this study, using polymersomes as a model system, we explore four techniques for purifying pre-formed nanoparticles into discrete fractions based on their size, shape or density. We show that these techniques can successfully separate polymersomes into monodisperse fractions.

  14. Antimicrobial property of zinc based nanoparticles

    Science.gov (United States)

    Chiriac, V.; Stratulat, D. N.; Calin, G.; Nichitus, S.; Burlui, V.; Stadoleanu, C.; Popa, M.; Popa, I. M.

    2016-06-01

    Pathogen bacteria strains with wide spectrum can cause serious infections with drastic damages on humans. There are studies reflecting antibacterial effect of nanoparticles type metal or metal oxides as an alternative or concurrent treatment to the diseases caused by infectious agents. Synthesised nanoparticles using different methods like sol-gel, hydrothermal or plant extraction were tested following well-established protocols with the regard to their antimicrobial activity. It was found that zinc based nanoparticles possess strong synergistic effect with commonly used antibiotics on infection tratment.

  15. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia

    2012-09-24

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Method to prepare nanoparticles on porous mediums

    Science.gov (United States)

    Vieth, Gabriel M [Knoxville, TN; Dudney, Nancy J [Oak Ridge, TN; Dai, Sheng [Knoxville, TN

    2010-08-10

    A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.

  17. Exploring the First Steps in Core–Shell Electrocatalyst Preparation: In Situ Characterization of the Underpotential Deposition of Cu on Supported Au Nanoparticles

    Science.gov (United States)

    2011-01-01

    The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galvanic displacement of the Cu template shell to form core–shell electrocatalyst materials is one means by which the Pt-based mass activity targets required for commercialization of PEM fuel cells may be reached. In situ EXAFS measurements were conducted at both the Au L3 and the Cu K absorption edges during deposition of Cu onto a carbon-supported Au electrocatalyst to study the initial stages of formation of such a core–shell electrocatalyst. The Au L3 EXAFS data obtained in 0.5 mol dm–3 H2SO4 show that the shape of the Au core is potential dependent, from a flattened to a round spherical shape as the Cu upd potential is approached. Following the addition of 2 mmol dm–3 Cu, the structure was also measured as a function of the applied potential. At +0.2 V vs Hg/Hg2SO4, the Cu2+ species was found to be a hydrated octahedron. As the potential was made more negative, single-crystal studies predict an ordered bilayer of sulfate anions and partially discharged Cu ions, followed by a complete/uniform layer of Cu atoms. In contrast, the model obtained by fitting the Au L3 and Cu K EXAFS data corresponds first to partially discharged Cu ions deposited at the defect sites in the outer shell of the Au nanoparticles at −0.42 V, followed by the growth of clusters of Cu atoms at −0.51 V. The absence of a uniform/complete Cu shell, even at the most negative potentials investigated, has implications for the structure, and the activity and/or stability, of the core–shell catalyst that would be subsequently formed following galvanic displacement of the Cu shell. PMID:22032178

  18. Exploring the first steps in core-shell electrocatalyst preparation: in situ characterization of the underpotential deposition of Cu on supported Au nanoparticles.

    Science.gov (United States)

    Price, Stephen W T; Speed, Jonathon D; Kannan, Prabalini; Russell, Andrea E

    2011-12-07

    The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galvanic displacement of the Cu template shell to form core-shell electrocatalyst materials is one means by which the Pt-based mass activity targets required for commercialization of PEM fuel cells may be reached. In situ EXAFS measurements were conducted at both the Au L(3) and the Cu K absorption edges during deposition of Cu onto a carbon-supported Au electrocatalyst to study the initial stages of formation of such a core-shell electrocatalyst. The Au L(3) EXAFS data obtained in 0.5 mol dm(-3) H(2)SO(4) show that the shape of the Au core is potential dependent, from a flattened to a round spherical shape as the Cu upd potential is approached. Following the addition of 2 mmol dm(-3) Cu, the structure was also measured as a function of the applied potential. At +0.2 V vs Hg/Hg(2)SO(4), the Cu(2+) species was found to be a hydrated octahedron. As the potential was made more negative, single-crystal studies predict an ordered bilayer of sulfate anions and partially discharged Cu ions, followed by a complete/uniform layer of Cu atoms. In contrast, the model obtained by fitting the Au L(3) and Cu K EXAFS data corresponds first to partially discharged Cu ions deposited at the defect sites in the outer shell of the Au nanoparticles at -0.42 V, followed by the growth of clusters of Cu atoms at -0.51 V. The absence of a uniform/complete Cu shell, even at the most negative potentials investigated, has implications for the structure, and the activity and/or stability, of the core-shell catalyst that would be subsequently formed following galvanic displacement of the Cu shell.

  19. Cytoprotective nanoparticles by conjugation of a polyhis tagged annexin V to a nanoparticle drug.

    Science.gov (United States)

    Chen, Howard H; Yuan, Hushan; Cho, Hoonsung; Sosnovik, David E; Josephson, Lee

    2015-02-14

    We synthesized a cytoprotective magnetic nanoparticle by reacting a maleimide functionalized Feraheme (FH) with a disulfide linked dimer of a polyhis tagged annexin V. Following reductive cleavage of disulfide, the resulting annexin-nanoparticle (diameter = 28.0 ± 2.0 nm by laser light scattering, 7.6 annexin's/nanoparticle) was cytoprotective to cells subjected to plasma membrane disrupting chemotherapeutic or mechanical stresses, and significantly more protective than the starting annexin V. Annexin-nanoparticles provide an approach to the design of nanomaterials which antagonize the plasma membrane permeability characteristic of necrosis and which may have applications as cytoprotective agents.

  20. Synthesis of nanoparticle-cored dendrimers by convergent dendritic functionalization of monolayer-protected nanoparticles.

    Science.gov (United States)

    Shon, Young-Seok; Choi, Daeock; Dare, Jonathan; Dinh, Tuong

    2008-06-01

    This article presents a synthesis method for nanoparticle-cored dendrimers (NCDs), which have dendritic architectures around a monolayer-protected gold nanoparticle. The synthesis method is based on a strategy in which the synthesis of monolayer-protected nanoparticles is followed by adding dendrons on functionalized nanoparticles by a single coupling reaction. NMR spectroscopy, IR spectroscopy, and thermogravimetric analysis (TGA) characterizations confirmed the successful coupling reaction between dendrons with different generations ([G1], [G2], and [G3]) and COOH-functionalized nanoparticles ( approximately Au201L71). The dendrimer wedge density also could be controlled by reacting nanoparticles having different loading of COOH groups ( approximately 60 and approximately 10% COOH of the 71 ligands per gold nanoparticle) with functionalized dendrons. Transmission electron microscope results showed that this synthesis strategy maintains the average size of the nanoparticle core during dendron coupling reactions. This control over the composition and core size makes the systematic study of NCDs with different generations possible. The chemical stability of NCDs was found to be affected by dendron generation around the nanoparticle core. The current-potential response of NCD films on microelectrode arrays exhibited better electrical conductivity for NCDs with lower dendron generation.

  1. GISAXS analysis of 3D nanoparticle assemblies--effect of vertical nanoparticle ordering.

    Science.gov (United States)

    Vegso, K; Siffalovic, P; Benkovicova, M; Jergel, M; Luby, S; Majkova, E; Capek, I; Kocsis, T; Perlich, J; Roth, S V

    2012-02-03

    We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions-layer-by-layer Langmuir-Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished-no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir-Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found.

  2. 载体对超临界水浸渍法制备的中温煤气脱硫剂性能的影响%Effects of Carbon-support in Sorbents Prepared by Supercritical Water Impregnation on Its Desulfurization in Hot Coal Gas

    Institute of Scientific and Technical Information of China (English)

    邱彪; 王建成; 韩丽娜; 常丽萍; 鲍卫仁

    2011-01-01

    以不同活性炭(AC-1、AC-2)和炭化料(CC)为载体,利用超临界水漫溃法制备MnOx/AC系列脱硫剂,采用电感耦合等离子光谱发生仪( ICP-AES)、X射线衍射仪(XRD)和N2吸附仪等测试手段,对活性组分上载量\\脱硫剂的物相组成、比表面积和孔容进行了表征.在固定床上进行脱硫剂的活性评价,考察了制备条件对硫化性能的影响.研究结果表明,比表面积最大的活性炭AC-1脱硫性能最好,可将气体中的H2S脱除到0.1 ppm以下,金属利用率最高可以达到90.96%.以AC-2的炭化料为载体在制备负载型MnOx/AC脱硫剂的同时,还可以活化炭化料,有效提高其比表面积,提高脱硫剂的脱硫活性.在380℃,25 Mpa,前驱体溶液浓度为10%,停留时间为30 min的条件下制得的脱硫剂T380t30W1 0Mn/AC-1的脱硫活性最佳.%Sorbents were prepared by depositing manganese oxide particles onto different active carbon (AC-1, AC-2) and carbonization carbon (CC) using supercritical water impregnation. Morphology and structure, loading amounts of metal in sorbents, pore volume and surface area were characterized by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and nitrogen sorption measurements. The sulfidation tests were performed using a fixed-bed reactor. The effects of the preparation conditions on sulfidation properties of sorbents were investigated. The results showed that the sorbent prepared by support AC-1 with highest surface area had the highest desulfurization activity and its highest metal utilization is 90.96%. During sorbent preparation by supercritical water impregnation, the carbonization carbon support can be activated and the surface area is enhanced, which will cause the improving of desulfurization activity. The properties of sorbent can be improved by the changing support,time and concentration of precursor solution in the process of supercritical water impregnation. T380t30W10Mn

  3. Biosynthesis of Nanoparticles by Microorganisms and Their Applications

    Directory of Open Access Journals (Sweden)

    Xiangqian Li

    2011-01-01

    Full Text Available The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Nowadays, a variety of inorganic nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by using different microorganisms, and their applications in many cutting-edge technological areas have been explored. This paper highlights the recent developments of the biosynthesis of inorganic nanoparticles including metallic nanoparticles, oxide nanoparticles, sulfide nanoparticles, and other typical nanoparticles. Different formation mechanisms of these nanoparticles will be discussed as well. The conditions to control the size/shape and stability of particles are summarized. The applications of these biosynthesized nanoparticles in a wide spectrum of potential areas are presented including targeted drug delivery, cancer treatment, gene therapy and DNA analysis, antibacterial agents, biosensors, enhancing reaction rates, separation science, and magnetic resonance imaging (MRI. The current limitations and future prospects for the synthesis of inorganic nanoparticles by microorganisms are discussed.

  4. Nanoparticle-blood interactions: the implications on solid tumour targeting.

    Science.gov (United States)

    Lazarovits, James; Chen, Yih Yang; Sykes, Edward A; Chan, Warren C W

    2015-02-18

    Nanoparticles are suitable platforms for cancer targeting and diagnostic applications. Typically, less than 10% of all systemically administered nanoparticles accumulate in the tumour. Here we explore the interactions of blood components with nanoparticles and describe how these interactions influence solid tumour targeting. In the blood, serum proteins adsorb onto nanoparticles to form a protein corona in a manner dependent on nanoparticle physicochemical properties. These serum proteins can block nanoparticle tumour targeting ligands from binding to tumour cell receptors. Additionally, serum proteins can also encourage nanoparticle uptake by macrophages, which decreases nanoparticle availability in the blood and limits tumour accumulation. The formation of this protein corona will also increase the nanoparticle hydrodynamic size or induce aggregation, which makes nanoparticles too large to enter into the tumour through pores of the leaky vessels, and prevents their deep penetration into tumours for cell targeting. Recent studies have focused on developing new chemical strategies to reduce or eliminate serum protein adsorption, and rescue the targeting potential of nanoparticles to tumour cells. An in-depth and complete understanding of nanoparticle-blood interactions is key to designing nanoparticles with optimal physicochemical properties with high tumour accumulation. The purpose of this review article is to describe how the protein corona alters the targeting of nanoparticles to solid tumours and explains current solutions to solve this problem.

  5. Membrane tubulation by elongated and patchy nanoparticles

    CERN Document Server

    Raatz, Michael

    2016-01-01

    Advances in nanotechnology lead to an increasing interest in how nanoparticles interact with biomembranes. Nanoparticles are wrapped spontaneously by biomembranes if the adhesive interactions between the particles and membranes compensate for the cost of membrane bending. In the last years, the cooperative wrapping of spherical nanoparticles in membrane tubules has been observed in experiments and simulations. For spherical nanoparticles, the stability of the particle-filled membrane tubules strongly depends on the range of the adhesive particle-membrane interactions. In this article, we show via modeling and energy minimization that elongated and patchy particles are wrapped cooperatively in membrane tubules that are highly stable for all ranges of the particle-membrane interactions, compared to individual wrapping of the particles. The cooperative wrapping of linear chains of elongated or patchy particles in membrane tubules may thus provide an efficient route to induce membrane tubulation, or to store such...

  6. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  7. Temperature responsive hydrogel nanofibers and nanoparticles

    Science.gov (United States)

    Ruokolainen, Janne

    2011-03-01

    Poly(N-isopropylacrylamide) (PNIPAM) is one of the most extensively investigated synthetic temperature-responsive polymers. In this work temperature-responsive PNIPAM based triblock copolymer hydrogels, their self-assembly and phase behavior in bulk, are described. Additionally, recent results from responsive hydrogel nanofibers and hydrogel nanoparticles are shown. It is known that block copolymers form well-organized nano structures in bulk or thin films when annealed thermally or in solvent vapours. However, in the case of nanofibers or nanoparticles, the annealing leads in most cases to aggregation and particle sintering. This work utilizes aerosol-based gas phase method where the preparation and annealing of hydrogel nanoparticles with well-organized, hierarchical inner structures are performed without any particle coagulation or sintering. In the method, the block copolymers assemble within aerosol nanoparticles to form, for instance, lamellar onion-like or gyroid inner structures.

  8. Current particle and nanoparticle technology in Thailand

    Institute of Scientific and Technical Information of China (English)

    Wiwut Tanthapanichakoon

    2008-01-01

    This report gives a brief introduction to key Thai organizations, including research institutions and academic departments, active in particle technology. This is followed by a description of the latest trend of powder technology and nanoparticle technology in Thailand.

  9. Synthesis and Properties of Magnetic Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Sixin LI; Jiancheng ZHANG; Yue SHEN; Bo NI; Jingang ZHANG

    2006-01-01

    The uniform mesoporous SBA-15 consisting of SiO2 with long-range channels offers an excellent host material to synthesize or assemble the magnetic nanocomposites, such as Fe, Ni.In this paper, highly dispersed and uniform iron nanoparticles were incorporated into the pore channels of SBA-15 through a newly developed strategy in which some kinds of coupling agents were used to entrap the nanoparticles into the silica framework.The X-ray diffraction(XRD), fourier transmission infrared spectroscopy(FTIR), high-resolution transmission electronic microscopy(HRTEM)and energy dispersive X-ray spectroscopy(EDX)were performed to further identify the successful incorporation and grafting of iron. Compared with other ordinary non-assembled magnetic nanoparticles, the assembled Fe nanoparticles with the diameter even in the size range of 5~6 nm still have better magnetic properties.

  10. Opportunities from the nanoworld : Gas phase nanoparticles

    NARCIS (Netherlands)

    Palasantzas, G.; Koch, S. A.; Vystavel, T.; De Hosson, J. Th. M.

    2008-01-01

    In this paper we present studies related to coalescence and oxidation of transition metal nanoparticles with sizes ranging between 2 and 10 nm. For cobalt and iron exposure to air leads to thin oxide shell formation (thickness

  11. Liquid crystals from mesogens containing gold nanoparticles

    Science.gov (United States)

    Lewandowski, Wiktor; Gorecka, Ewa

    Long-range ordered structures made of nanoparticles are perspective materials for future optical, electronic and sensing technologies. Conspicuous physicochemical features of nanoparticle aggregates originate from distant-dependent collective interactions, therefore lately a lot of attention was put to the development of assembly strategies allowing control over nanoparticle spatial distribution. In this chapter we will focus on the assembly process based on using thermotropic liquid-crystalline molecules as surface nanoparticle ligands. First, we discuss architectural parameters that inuence structure and thermal properties of the aggregates. Then, we show that this approach enables formation of assemblies with metamaterial characteristic, gives access to dynamic materials with light-, magneto- and thermo-responsive behavior and allows formation of aggregates with unique structures, which all make this strategy an attractive object of research.

  12. Enhancing nanoparticle electrodynamics with gold nanoplate mirrors.

    Science.gov (United States)

    Yan, Zijie; Bao, Ying; Manna, Uttam; Shah, Raman A; Scherer, Norbert F

    2014-05-14

    Mirrors and optical cavities can modify and enhance matter-radiation interactions. Here we report that chemically synthesized Au nanoplates can serve as micrometer-size mirrors that enhance electrodynamic interactions. Because of their plasmonic properties, the Au nanoplates enhance the brightness of scattered light from Ag nanoparticles near the nanoplate surface in dark-field microscopy. More importantly, enhanced optical trapping and optical binding of Ag nanoparticles are demonstrated in interferometric optical traps created from a single laser beam and its reflection from individual Au nanoplates. The enhancement of the interparticle force constant is ≈20-fold more than expected from the increased intensity due to standing wave interference. We show that the additional stability for optical binding arises from the restricted axial thermal motion of the nanoparticles that couples to and reduces the fluctuations in the lateral plane. This new mechanism greatly advances the photonic synthesis of ultrastable nanoparticle arrays and investigation of their properties.

  13. Copper Oxide Nanoparticles Synthesis by Electrochemical Method

    Directory of Open Access Journals (Sweden)

    Nitin DIGHORE

    2016-05-01

    Full Text Available Copper oxide nanoparticles were prepared by electrochemical reduction method which is environmental benign. Tetra ethyl ammonium bromide (TEAB, tetra propyl ammonium bromide (TPAB, tetra butyl ammonium bromide (TBAB were used as stabilizing agent in an organic medium viz. tetra hydro furan (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density. The reduction process takes place under atmospheric condition over a period of 2 h. Such nanoparticles were prepared using simple electrolysis cell in which the sacrificial anode was a commercially available copper metal sheet and platinum (inert sheet acted as a cathode. The stabilizers were used to control the size of a nanoparticles. The synthesized copper oxide nanoparticles were characterized by using UV-Visible, FT-IR, XRD, SEM-EDS and TEM analysis techniques.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7501

  14. Paclitaxel Albumin-stabilized Nanoparticle Formulation

    Science.gov (United States)

    This page contains brief information about paclitaxel albumin-stabilized nanoparticle formulation and a collection of links to more information about the use of this drug, research results, and ongoing clinical trials.

  15. Torsional optomechanics of a levitated nonspherical nanoparticle

    CERN Document Server

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, F; Yin, Zhang-Qi; Li, Tongcang

    2016-01-01

    An optically levitated nanoparticle in vacuum is a paradigm optomechanical system for sensing and studying macroscopic quantum mechanics. While its center-of-mass motion has been investigated intensively, its torsional vibration has only been studied theoretically in limited cases. Here we report the first experimental observation of the torsional vibration of an optically levitated nonspherical nanoparticle in vacuum. We achieve this by utilizing the coupling between the spin angular momentum of photons and the torsional vibration of a nonspherical nanoparticle whose polarizability is a tensor. The torsional vibration frequency can be one order of magnitude higher than its center-of-mass motion frequency, which is promising for ground state cooling. With an ellipsoidal model, we propose a simple yet novel scheme to achieve ground state cooling of its torsional vibration with a linearly-polarized Gaussian cavity mode. A levitated nonspherical nanoparticle in vacuum will also be an ultrasensitive nanoscale tor...

  16. Nanoparticle movement: plasmonic forces and physical constraints.

    Science.gov (United States)

    Batson, P E; Reyes-Coronado, A; Barrera, R G; Rivacoba, A; Echenique, P M; Aizpurua, J

    2012-12-01

    Nanoparticle structures observed in aberration-corrected electron microscopes exhibit many types of behavior, some of which are dominated by intrinsic conditions, unrelated to the microscope environment. Some behaviors are clearly driven by the electron beam, however, and the question arises as to whether these are similar to intrinsic mechanisms, useful for understanding nanoscale behavior, or whether they should be regarded as unwanted modification of as-built specimens. We have studied a particular kind of beam-specimen interaction - plasmon dielectric forces caused by the electric fields imposed by a passing swift electron - identifying four types of forced motion, including both attractive and repulsive forces on single nanoparticles, and coalescent and non-coalescent forces in groups of two or more nanoparticles. We suggest that these forces might be useful for deliberate electron beam guided movement of nanoparticles.

  17. Nanofluidic preconcentration and detection of nanoparticles.

    Science.gov (United States)

    Mitra, Anirban; Ignatovich, Filipp; Novotny, Lukas

    2012-07-01

    The fast detection and characterization of nanoparticles, such as viruses or environmental pollutants, are important in fields ranging from biosensing to quality control. However, most existing techniques have practical throughput limitations, which significantly limit their applicability to low analyte concentrations. Here, we present an integrated nanofluidic scheme for preconcentration and subsequent detection of nanoparticle samples within a continuous flow-through system. Using a Brownian ratchet mechanism, we increase the nanoparticle concentration ∼27-fold. Single nanoparticles are subsequently detected and characterized by optical heterodyne interferometry. A wide range of potential applications can be foreseen, including real-time analysis of clinically relevant virus samples and contamination control of processing fluids used in the semiconductor industry.

  18. Modeling Stimuli-Responsive Nanoparticle Monolayer

    Science.gov (United States)

    Yong, Xin

    2015-03-01

    Using dissipative particle dynamics (DPD), we model a monolayer formed at the water-oil interface, which comprises stimuli-responsive nanoparticles. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with stimuli-responsive polymer chains. The surface-active nanoparticles adsorb to the interface from the suspension to minimize total energy of the system and create a monolayer covering the interface. We investigate the monolayer formation by characterizing the detailed adsorption kinetics. We explore the microstructure of the monolayer at different surface coverage, including the particle crowding and ordering, and elucidate the response of monolayer to external stimuli. The collective behavior of the particles within the monolayer is demonstrated quantitatively by vector-vector autocorrelation functions. This study provides a fundamental understanding of the interfacial behavior of stimuli-responsive nanoparticles.

  19. Solution synthesis of metal silicide nanoparticles.

    Science.gov (United States)

    McEnaney, Joshua M; Schaak, Raymond E

    2015-02-01

    Transition-metal silicides are part of an important family of intermetallic compounds, but the high-temperature reactions that are generally required to synthesize them preclude the formation of colloidal nanoparticles. Here, we show that palladium, copper, and nickel nanoparticles react with monophenylsilane in trioctylamine and squalane at 375 °C to form colloidal Pd(2)Si, Cu(3)Si, and Ni(2)Si nanoparticles, respectively. These metal silicide nanoparticles were screened as electrocatalysts for the hydrogen evolution reaction, and Pd(2)Si and Ni(2)Si were identified as active catalysts that require overpotentials of -192 and -243 mV, respectively, to produce cathodic current densities of -10 mA cm(-2).

  20. Preparation of silver nanoparticles at low temperature

    Science.gov (United States)

    Mishra, Mini; Chauhan, Pratima

    2016-04-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  1. Nanomaterials and nanoparticles : Sources and toxicity

    CERN Document Server

    Buzea, Cristina; Robbie, Kevin

    2008-01-01

    This review is written with the goal of informing public health concerns related to nanoscience, while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to nanoparticles and dust from natural sources and human activities, the recent development of industry and combustion-based engine transportation profoundly increasing anthropogenic nanoparticulate pollution. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Among diseases associated with nanoparticles are asthma, bronchitis, lung cancer, neurodegenerative diseases (such as Parkinson`s and Alzheimer`s diseases), Crohn`s disease, colon cancer. Nanoparticles that enter the circulatory system are related to occurrence of arteriosclerosis, and blood clots, arrhythmia, heart diseases, and ultimately cardiac d...

  2. Si-based Nanoparticles: a biocompatibility study

    Science.gov (United States)

    Rivolta, I.; Lettiero, B.; Panariti, A.; D'Amato, R.; Maurice, V.; Falconieri, M.; Herlein, N.; Borsella, E.; Miserocchi, G.

    2010-10-01

    Exposure to silicon nanoparticles (Si-NPs) may occur in professional working conditions or for people undergoing a diagnostic screening test. Despite the fact that silicon is known as a non-toxic material, in the first case the risk is mostly related to the inhalation of nanoparticles, thus the most likely route of entry is across the lung alveolar epithelium. In the case of diagnostic imaging, nanoparticles are usually injected intravenously and Si-NPs could impact on the endothelial wall. In our study we investigated the interaction between selected Si-based NPs and an epithelial lung cell line. Our data showed that, despite the overall silicon biocompatibility, however accurate studies of the potential toxicity induced by the nanostructure and engineered surface characteristics need to be accurately investigated before Si nanoparticles can be safely used for in vivo applications as bio-imaging, cell staining and drug delivery.

  3. BX CY NZ nanotubes and nanoparticles

    Science.gov (United States)

    Cohen, Marvin Lou; Zettl, Alexander Karlwalter

    2001-01-01

    The invention provides crystalline nanoscale particles and tubes made from a variety of stoichiometries of B.sub.x C.sub.y N.sub.z where x, y, and z indicate a relative amount of each element compared to the others and where no more than one of x, y, or z are zero for a single stoichiometry. The nanotubes and nanoparticles are useful as miniature electronic components, such as wires, coils, schotky barriers, diodes, etc. The nanotubes and nanoparticles are also useful as coating that will protect an item from detection by electromagnetic monitoring techniques like radar. The nanotubes and nanoparticles are additionally useful for their mechanical properties, being comparable in strength and stiffness to the best graphite fibers or carbon nanotubes. The inventive nanoparticles are useful in lubricants and composites.

  4. Designing synthetic RNA for delivery by nanoparticles

    Science.gov (United States)

    Jedrzejczyk, Dominika; Gendaszewska-Darmach, Edyta; Pawlowska, Roza; Chworos, Arkadiusz

    2017-03-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.

  5. Synthesis, characterization, and catalysis of metal nanoparticles

    Science.gov (United States)

    Mott, Derrick M.

    The goal of the dissertation work is the understanding of the physical and chemical properties of materials in the nanoscale regime. As discussed in this dissertation, the goal is accomplished by specifically focusing on the investigation of the synthesis and characterization of metal nanoparticles and supported catalysts. The findings have provided us with new and important insights into the physical and chemical properties of metal nanoparticles and supported catalysts. Several new routes allowed us to synthesize copper, gold-platinum, core-shell nanoparticles with monodispersed sizes, controlled shapes and tunable surface properties. For example, we have demonstrated the ability to control the formation of copper nanorods with high monodispersity and ordering by controlled thermal processing. Another of our studies has focused on the exploitation of the synergistic properties of multimetallic nanoparticles by monitoring the CO adsorption on bimetallic gold-platinum nanoparticles using infrared spectroscopy. The size correlation between using different microscopic techniques such as TEM and AFM has been established for the size determination of nanoparticles. This correlation is important in understanding their physical or chemical properties of nanoparticles on different substrate surfaces. The quantitative correlation demonstrates the ability of AFM in determining sizes of nanoparticles, which has implications to the understanding of the relative radius of curvature of the tip vs. the particle sizes as well as the surface properties of the particles. The preliminary results using computational modeling to elucidate some of the surface binding and energy properties of nanoparticles provides some guidelines to experimental measurements, and also helps in the explanation of the complex experimental data. Overall, these findings and results have provided new insights into the fundamental factors governing the physical and chemical properties in the synthesis and

  6. Shape-induced anisotropy in antiferromagnetic nanoparticles

    OpenAIRE

    H. Gomonay; Kondovych, S.; Loktev, V.

    2013-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials -- antiferromagnets, -- which possess vanishingly small or zero macroscopic magn...

  7. Polymer decorated gold nanoparticles in nanomedicine conjugates.

    Science.gov (United States)

    Capek, Ignác

    2017-02-15

    Noble metal, especially gold nanoparticles and their conjugates with biopolymers have immense potential for disease diagnosis and therapy on account of their surface plasmon resonance (SPR) enhanced light scattering and absorption. Conjugation of noble metal nanoparticles to ligands specifically targeted to biomarkers on diseased cells allows molecular-specific imaging and detection of disease. The development of smart gold nanoparticles (AuNPs) that can deliver therapeutics at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating cancer tumors. We highlight some of the promising classes of targeting systems that are under development for the delivery of gold nanoparticles. Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups to conjugate targeting ligands, cell receptors or drugs. Using targeted nanoparticles to deliver chemotherapeutic agents in cancer therapy offers many advantages to improve drug/gene delivery and to overcome many problems associated with conventional radiotherapy and chemotherapy. The targeted nanoparticles were found to be effective in killing cancer cells which were studied using various anticancer assays. Cell morphological analysis shows the changes occurred in cancer cells during the treatment with AuNPs. The results determine the influence of particle size and concentration of AuNPs on their absorption, accumulation, and cytotoxicity in model normal and cancer cells. As the mean particle diameter of the AuNPs decreased, their rate of absorption by the intestinal epithelium cells increased. These results provide important insights into the relationship between the dimensions of AuNPs and their gastrointestinal uptake and potential cytotoxicity. Furthermore gold nanoparticles efficiently convert the absorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. We also review

  8. Characterization and Preparation of Bimetallic Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Bing; Joe; Hwang; Ching; Hsiang; Chen; Loka; Subramanyam; Sarma; Din-gao; Liu; Jyh; Fu; Lee

    2007-01-01

    1 Results Bimetallic particles in the nanometer size range are of substantial interest due to their vast applications in catalysis[1].The synthesis of bimetallic nanoparticles with definite size with a well-control over their nanostructure remains a challenging problem.Thus there exists a great demand for both synthesis and atomic level characterization of nanostructure of bimetallic nanoparticles (NPs).With the recent advent of high-intensity tunable sources of X-rays,now available at synchrotron radia...

  9. Radiation damping in metal nanoparticle pairs.

    Science.gov (United States)

    Dahmen, Christian; Schmidt, Benjamin; von Plessen, Gero

    2007-02-01

    The radiation damping rate of plasmon resonances in pairs of spherical gold nanoparticles is calculated. The radiative line width of the plasmon resonance indicates significant far-field coupling between the nanoparticles over distances many times the particle diameter. The radiation damping of the coupled particle-plasmon mode alternates between superradiant and subradiant behavior when the particle spacing is varied. At small particle spacings where near-field coupling occurs, the radiation damping rate lies far below that of an isolated particle.

  10. Magnetic nanoparticles for gene and drug delivery

    OpenAIRE

    Dobson, J

    2008-01-01

    Stuart C McBain, Humphrey HP Yiu, Jon DobsonInstitute of Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, U.K.Abstract: Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design...

  11. Microwave Magnetic Permeability of Fe304 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong; YANG Yong; WEN Fu-Sheng; YI Hai-Bo; ZHOU Dong; LI Fa-Shen

    2009-01-01

    Well-dispersed Fe304 nanoparticles are synthesized via an oxidization method with NANO2 as oxidant. The microwave magnetic properties of the composites are studied with different volume fractions of Fe3O4 nanoparti-cles. It is found that a lower volume fraction corresponds to a higher magnetic resonance frequency. This could be ascribed to the enhancement of exchange interaction with a weakened dipolar interaction when the volume fraction decreases.

  12. Synthesis and characterization of new fluorescent nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Liang Tao; Xu Hun; Zhu Jun Zhang

    2008-01-01

    A novel kind of fluorescent nanoparticles (FNPs) has been prepared using a precipitation polymerization method.Methacrylic acid,trimethylolpropane trimethacrylate and azobisisobutyronitrile were used as functional-monomer,cross-linker and initiator,respectively.Compared with other fluorescent nanoparticles,the FNPs have the characteristics including low dye leakage and good photostability.The fluorescence microscopy imaging indicates that the FNPs can be used as fluorescent labels in bioanalysis.

  13. Radiative heat transfer between metallic nanoparticles

    OpenAIRE

    Chapuis, Pierre-Olivier; Laroche, Marine; Volz, Sebastian; Greffet, Jean-Jacques

    2008-01-01

    International audience; In this letter, we study the radiative heat transfer between two nanoparticles in the near field and in the far field. We find that the heat transfer is dominated by the electric dipole-dipole interaction for dielectric particles and by the magnetic dipole-dipole interaction for metallic nanoparticles. We introduce polarizabilities formulas valid for arbitrary values of the skin depth. While the heat transfer mechanism is different for metallic and dielectric nanoparti...

  14. Nanoparticle-sulphur "inverse vulcanisation" polymer composites.

    Science.gov (United States)

    Bear, Joseph C; Peveler, William J; McNaughter, Paul D; Parkin, Ivan P; O'Brien, Paul; Dunnill, Charles W

    2015-07-04

    Composites of sulphur polymers with nanoparticles such as PbS, with tunable optical properties are reported. A hydrothermal route incorporating pre-formed nanoparticles was used, and their physical and chemical properties evaluated by transmission and scanning electron microscopy, thermogravimetric and elemental analyses. These polymers are easily synthesised from an industrial waste material, elemental sulphur, can be cast into virtually any form and as such represent a new class of materials designed for a responsible energy future.

  15. Magnetic induced heating of nanoparticle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S. Hunyadi [Savannah River Site (SRS), Aiken, SC (United States); Univ. of Georgia, Athens, GA (United States); Brown, M. [Savannah River Site (SRS), Aiken, SC (United States); Coopersmith, K. [Savannah River Site (SRS), Aiken, SC (United States); Fulmer, S. [Savannah River Site (SRS), Aiken, SC (United States); Sessions, H. [Savannah River Site (SRS), Aiken, SC (United States); Ali, M. [Univ. of South Carolina, Columbia, SC (United States)

    2016-12-02

    Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.

  16. Ferromagnetic nanoparticles suspensions in twisted nematic

    Science.gov (United States)

    Cîrtoaje, Cristina; Petrescu, Emil; Stan, Cristina; Creangă, Dorina

    2016-05-01

    Ferromagnetic nanoparticles insertions in nematic liquid crystals (NLC) in twisted configuration are studied and a theoretical model is proposed to explain the results. Experimental observation revealed that nanoparticles tend to overcrowd in long strings parallel to the rubbing direction of the alignment substrate of the LC cell. Their behavior under external field was studied and their interaction with their nematic host is described using elastic continuum theory.

  17. Effects of coating spherical iron oxide nanoparticles

    OpenAIRE

    2016-01-01

    International audience; We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed – TEM, DLS, VSM, SAXS and EXAFS – show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower pro...

  18. Electroactivity of high performance unsupported Pt-Ru nanoparticles in the presence of hydrogen and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez-Palenzuela, Amado; Cabot, Pere-Lluis; Centellas, Francesc; Garrido, Jose Antonio; Arias, Conchita; Rodriguez, Rosa Maria; Brillas, Enric [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-10-15

    The electrochemical activity of high performance unsupported (1:1) Pt-Ru electrocatalyst in the presence of hydrogen and carbon monoxide has been studied using the thin-film rotating disk electrode (RDE) technique. The kinetic parameters of these reactions were determined in H{sub 2}- and CO-saturated 0.5 M H{sub 2}SO{sub 4} solutions by means of cyclic voltammetry, including CO stripping, and RDE voltammetry. Pt-Ru/Nafion inks were prepared in one step with different Nafion mass fractions, allowing determining the ionomer influence in electrocatalytic response and obtaining the kinetic current density in absence of mass-transfer effects, being 41 and 12 mA cm{sup 2} (geometrical area), for H{sub 2} and CO oxidation, respectively. These values correspond to mass activities of 1.37 and 0.40 A mg{sub Pt}{sup 1} and to specific activities of 1.52 and 0.44 mA cm{sub Pt}{sup 2}. The Tafel analysis confirmed that hydrogen oxidation was a two-electron reversible reaction, while CO oxidation exhibited an irreversible behavior with a charge-transfer coefficient of 0.42. The kinetic results for CO oxidation are in agreement with the bifunctional theory, in which the reaction between Pt-CO and Ru-OH is the rate-determining step. The exchange current density for hydrogen reaction was 0.28 mA cm{sup 2} (active surface area), thus showing similar kinetics to those found for carbon-supported Pt and Pt-Ru electrocatalyst nanoparticles. (author)

  19. Extreme resilience in cochleate nanoparticles.

    Science.gov (United States)

    Bozó, Tamás; Brecska, Richárd; Gróf, Pál; Kellermayer, Miklós S Z

    2015-01-20

    Cochleates, prospective nanoscale drug delivery vehicles, are rolls of negatively charged phospholipid membrane layers. The membrane layers are held together by calcium ions; however, neither the magnitude of membrane interaction forces nor the overall mechanical properties of cochleates have been known. Here, we manipulated individual nanoparticles with atomic force microscopy to characterize their nanomechanical behavior. Their stiffness (4.2-12.5 N/m) and membrane-rupture forces (45.3-278 nN) are orders of magnitude greater than those of the tough viral nanoshells. Even though the fundamental building material of cochleates is a fluid membrane, the combination of supramolecular geometry, the cross-linking action of calcium, and the tight packing of the ions apparently lead to extreme mechanical resilience. The supramolecular design of cochleates may provide efficient protection for encapsulated materials and give clues to understanding biomolecular structures of similar design, such as the myelinated axon.

  20. Flexible sensors based on nanoparticles.

    Science.gov (United States)

    Segev-Bar, Meital; Haick, Hossam

    2013-10-22

    Flexible sensors can be envisioned as promising components for smart sensing applications, including consumer electronics, robotics, prosthetics, health care, safety equipment, environmental monitoring, homeland security and space flight. The current review presents a concise, although admittedly nonexhaustive, didactic review of some of the main concepts and approaches related to the use of nanoparticles (NPs) in flexible sensors. The review attempts to pull together different views and terminologies used in the NP-based sensors, mainly those established via electrical transduction approaches, including, but, not confined to: (i) strain-gauges, (ii) flexible multiparametric sensors, and (iii) sensors that are unaffected by mechanical deformation. For each category, the review presents and discusses the common fabrication approaches and state-of-the-art results. The advantages, weak points, and possible routes for future research, highlighting the challenges for NP-based flexible sensors, are presented and discussed as well.