WorldWideScience

Sample records for carbon-ion radiotherapy clinical

  1. Relative clinical effectiveness of carbon ion radiotherapy. Theoretical modelling for H and N tumours

    International Nuclear Information System (INIS)

    Antonovic, Laura; Toma-Dasu, Iuliana; Dasu, Alexandru; Furusawa, Yoshiya

    2015-01-01

    Comparison of the efficiency of photon and carbon ion radiotherapy (RT) administered with the same number of fractions might be of limited clinical interest, since a wide range of fractionation patterns are used clinically today. Due to advanced photon treatment techniques, hypofractionation is becoming increasingly accepted for prostate and lung tumours, whereas patients with head and neck tumours still benefit from hyperfractionated treatments. In general, the number of fractions is considerably lower in carbon ion RT. A clinically relevant comparison would be between fractionation schedules that are optimal within each treatment modality category. In this in silico study, the relative clinical effectiveness (RCE) of carbon ions was investigated for human salivary gland tumours, assuming various radiation sensitivities related to their oxygenation. The results indicate that, for hypoxic tumours in the absence of reoxygenation, the RCE (defined as the ratio of D 50 for photons to carbon ions) ranges from 3.5 to 5.7, corresponding to carbon ion treatments given in 36 and 3 fractions, respectively, and 30 fractions for photons. Assuming that interfraction local oxygenation changes take place, results for RCE are lower than that for an oxic tumour if only a few fractions of carbon ions are used. If the carbon ion treatment is given in more than 12 fractions, the RCE is larger for the hypoxic than for the well-oxygenated tumour. In conclusion, this study showed that in silico modelling enables the study of a wide range of factors in the clinical considerations and could be an important step towards individualisation of RT treatments. (author)

  2. Clinical Outcome of Sacral Chordoma With Carbon Ion Radiotherapy Compared With Surgery

    International Nuclear Information System (INIS)

    Nishida, Yoshihiro; Kamada, Tadashi; Imai, Reiko; Tsukushi, Satoshi; Yamada, Yoshihisa; Sugiura, Hideshi; Shido, Yoji; Wasa, Junji; Ishiguro, Naoki

    2011-01-01

    Purpose: To evaluate the efficacy, post-treatment function, toxicity, and complications of carbon ion radiotherapy (RT) for sacral chordoma compared with surgery. Methods and Materials: The records of 17 primary sacral chordoma patients treated since 1990 with surgery (n = 10) or carbon ion RT (n = 7) were retrospectively analyzed for disease-specific survival, local recurrence-free survival, complications, and functional outcome. The applied carbon ion dose ranged from 54.0 Gray equivalent (GyE) to 73.6 GyE (median 70.4). Results: The mean age at treatment was 55 years for the surgery group and 65 years for the carbon ion RT group. The median duration of follow-up was 76 months for the surgery group and 49 months for the carbon ion RT group. The local recurrence-free survival rate at 5 years was 62.5% for the surgery and 100% for the carbon ion RT group, and the disease-specific survival rate at 5 years was 85.7% and 53.3%, respectively. Urinary-anorectal function worsened in 6 patients (60%) in the surgery group, but it was unchanged in all the patients who had undergone carbon ion RT. Postoperative wound complications requiring reoperation occurred in 3 patients (30%) after surgery and in 1 patient (14%) after carbon ion RT. The functional outcome evaluated using the Musculoskeletal Tumor Society scoring system revealed 55% in the surgery group and 75% in the carbon ion RT group. Of the six factors in this scoring system, the carbon ion RT group had significantly greater scores in emotional acceptance than did the surgery group. Conclusion: Carbon ion RT results in a high local control rate and preservation of urinary-anorectal function compared with surgery.

  3. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru

    2014-01-01

    , using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER...... was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  4. Comparison of clinical and functional outcome between surgical treatment and carbon ion radiotherapy for pelvic chondrosarcoma.

    Science.gov (United States)

    Outani, Hidetatsu; Hamada, Kenichiro; Imura, Yoshinori; Oshima, Kazuya; Sotobori, Tsukasa; Demizu, Yusuke; Kakunaga, Shigeki; Joyama, Susumu; Imai, Reiko; Okimoto, Tomoaki; Naka, Norifumi; Kudawara, Ikuo; Ueda, Takafumi; Araki, Nobuhito; Kamada, Tadashi; Yoshikawa, Hideki

    2016-02-01

    As there are no reports of studies in patients with pelvic chondrosarcoma treated with carbon ion radiotherapy (CIRT), the aim of this study was to evaluate the applicability of CIRT for patients with chondrosarcoma of the pelvis. The medical records of 31 patients with chondrosarcoma of the pelvis treated either by surgical resection or by CIRT between 1983 and 2014 were reviewed. There were 22 males and 9 females with a median age of 43 years (range 16-77 years). The median duration of follow-up was 66 months (range 5-289 months). Twenty-four patients underwent surgery, and 7 patients received CIRT (70.4 GyE in 16 fractions over 4 weeks). The overall local recurrence rate was 32 %, and the estimated overall 5- and 10-year survival rates were 72 and 57 %, respectively. The mean Musculoskeletal Tumor Society functional score was 59 %. The treatment procedures (surgery or CIRT) did not affect overall survival (P = 0.347). However, the patients who underwent surgery had impaired function compared with those who received CIRT (P = 0.03). Although more patients need to be monitored to assess the clinical and functional outcomes of CIRT for patients with chondrosarcoma of the pelvis, this treatment might offer an acceptable alternative.

  5. Development of electronic clinical path for patients with H and N cancer treated with carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Ebisutani, Asuka; Okabe, Satsuki; Murakami, Masao; Kagawa, Kazufumi; Hishikawa, Yoshio

    2005-01-01

    The purpose of this study was to develop an electronic clinical path for patients with head and neck (H and N) tumor treated with carbon ion radiotherapy (RT) focusing on acute reactions of the oral mucosa and the skin. Between January and July, 2002, fifteen patients with H and N tumor had been treated with carbon ion radiotherapy including oral cavity in the RT fields. Acute reactions of the oral mucosa and the skin were analyzed together with face scales (FS) that is an indicator of quality of life obtained daily from patients during RT courses. Medical interventions including prescription for mucositis or dermatitis, nursing care, and changes of meal were also analyzed. Average period of being in hospital was 42.6±3.6 days and that of radiation was 27.0±1.9 days. Radiation mucositis appeared 5 days (10.8 GyE) after start of carbon ion RT, reached a maximum reaction at 20 days (Grade 1: 7%, Grade 2: 33%, Grade 3: 60%), and recovered less than Grade 1 at 44 days on average. Radiation dermatitis also appeared 8 days (18 GyE), reached a maximum at 33 days (Grade 1: 47%, Grade 2: 40%, Grade 3: 13%), and recovered less than Grade 1 at 51 days on average. Changes of FS showed deterioration 23 days after start of therapy. At the latter half of RT courses, mucositis, FS, and dermatitis reached a maximum in that order. Through analyses of the time-score plots, the change of FS seemed corresponding to that of dermatitis. The required medical interventions were change of meal in 10, analgesics in 8, and gargles in 15 patients. Based on these results, we established a clinical path as a trial piece. We confirmed that there was a specific pattern in ups and downs of acute reactions of the oral mucosa and the skin during a RT course. We concluded that a clinical path is useful for patients with H and N cancer treated with carbon ion RT. (author)

  6. Carbon ion radiotherapy for sarcomas

    International Nuclear Information System (INIS)

    Imai, Reiko

    2013-01-01

    Principles of heavy ion therapy, its application to bone and soft tissue sarcomas and outline of its general state are described. The heavy ion therapy has advantages of its high dose distribution to the target and strong biological effect due to the Bragg peak formation and high linear energy transfer, respectively. The authors use carbon ion generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) for the therapy of performance state 0-2 patients with the sarcomas unresectable, diagnosed pathologically, and of 60 y, 45% and teens, 8%) have been treated, whose tumor site has been the pelvis in 73%, volume >600 mL in 63%, tissue type of bone tumor in 70% (where cordoma has amounted to>200 cases). Five-year local control rate is found 71% and survival, 59%. In 175 therapeutically fresh cases with sacral cordoma of median age 67 y, with median clinical target volume 9 cm, treated with median dose 70.4 GyE/16 irradiations, the 8-y local control rate is found to be 69% and survival, 74%, within the median follow-up 54 months; with severe skin ulcer in 2 cases and deterioration of nervous dysfunction in 15 cases; suggesting the therapy is as effective and useful as surgical resection. At present, the therapy is not applicable to Japan health insurance. In the author's hospital, the heavy ion therapy has been conducted to total of >6,000 patients, which amounting to the largest number in the world. Now, 3 Japanese facilities can do the therapy as well and 3 countries in the world.(T.T.)

  7. Experience with carbon ion radiotherapy at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, O. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)]. E-mail: o.jaekel@dkfz.de; Schulz-Ertner, D. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Karger, C.P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Heeg, P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Debus, J. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2005-12-15

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  8. Carbon Ion Radiotherapy for Unresectable Retroperitoneal Sarcomas

    International Nuclear Information System (INIS)

    Serizawa, Itsuko; Kagei, Kenji; Kamada, Tadashi; Imai, Reiko; Sugahara, Shinji; Okada, Tohru; Tsuji, Hiroshi; Ito, Hisao; Tsujii, Hirohiko

    2009-01-01

    Purpose: To evaluate the applicability of carbon ion radiotherapy (CIRT) for unresectable retroperitoneal sarcomas with regard to normal tissue morbidity and local tumor control. Methods and Materials: From May 1997 to February 2006, 24 patients (17 male and 7 female) with unresectable retroperitoneal sarcoma received CIRT. Age ranged from 16 to 77 years (median, 48.6 years). Of the patients, 16 had primary disease and 8 recurrent disease. Histologic diagnoses were as follows: malignant fibrous histiocytoma in 6, liposarcoma in 3, malignant peripheral nerve sheath tumor in 3, Ewing/primitive neuroectodermal tumor (PNET) in 2, and miscellaneous in 10 patients. The histologic grades were as follows: Grade 3 in 15, Grade 2-3 in 2, Grade 2 in 3, and unknown in 4. Clinical target volumes ranged between 57 cm 3 and 1,194 cm 3 (median 525 cm 3 ). The delivered carbon ion dose ranged from 52.8 to 73.6 GyE in 16 fixed fractions over 4 weeks. Results: The median follow-up was 36 months (range, 6-143 months). The overall survival rates at 2 and 5 years were 75% and 50%, respectively. The local control rates at 2 and 5 years were 77% and 69%. No complications of the gastrointestinal tract were encountered. No other toxicity greater than Grade 2 was observed. Conclusions: Use of CIRT is suggested to be effective and safe for retroperitoneal sarcomas. The results obtained with CIRT were a good overall survival rate and local control, notwithstanding the fact that most patients were not eligible for surgical resection and had high-grade sarcomas.

  9. Clinical Impact of Re-irradiation with Carbon-ion Radiotherapy for Lymph Node Recurrence of Gynecological Cancers.

    Science.gov (United States)

    Shiba, Shintaro; Okonogi, Noriyuki; Kato, Shingo; Wakatsuki, Masaru; Kobayashi, Daijiro; Kiyohara, Hiroki; Ohno, Tatsuya; Karasawa, Kumiko; Nakano, Takashi; Kamada, Tadashi

    2017-10-01

    To evaluate the safety and efficacy of re-irradiation with carbon-ion radiotherapy (C-ion RT) for lymph node recurrence of gynecological cancers after definitive radiotherapy. Data regarding patients with unresectable and isolated recurrent lymph node from gynecological cancer after definitive radiotherapy were analyzed. Total dose of C-ion RT was 48-57.6 Gy (RBE) in 12 or 16 fractions. Sixteen patients received re-irradiation by C-ion RT were analyzed. Median follow-up was 37 months. Median tumor size was 27 mm. None developed Grade 1 or higher acute toxicities and Grade 3 or higher late toxicities. The 3-year overall survival, local control and disease-free survival rates after C-ion RT were 74%, 94% and 55%, respectively. Re-irradiation with C-ion RT for lymph node recurrence of gynecological cancers after definitive radiotherapy can be safe and effective. This result suggested that C-ion RT could be a curative treatment option for conventionally difficult-to-cure patients. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Quality of life (QOL) assessment in patients received carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Kamada, Tadashi; Mizoe, Jun-Etsu; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Miyamoto, Tada-aki; Kato, Hirotoshi; Oono, Tatsuya; Yamada, Shigeru; Tsujii, Hirohiko

    2003-01-01

    Until February 2003, a total of 1,463 patients were enrolled in clinical trials of carbon ion radiotherapy. Most of the patients had locally advanced and/or medically inoperable tumors. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities. In this study, quality of life (QOL) outcomes of patients with unresectable bone and soft tissue sarcoma after carbon ion radiotherapy are investigated. (author)

  11. Carbon ion radiotherapy in bone and soft tissue sarcomas

    International Nuclear Information System (INIS)

    Kamada, Tadashi; Imai, Reiko; Kagei, Kenji; Tsuji, Hiroshi; Yanagi, Takeshi; Ishikawa, Hitoshi; Tsujii, Hirohiko

    2006-01-01

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing capability. In June 1996, clinical research for the treatment of bone and soft tissue sarcomas was begun using carbon ions generated by the HIMAC. As of February 2006, a total of the 278 patients with bone and soft tissue sarcoma had been enrolled into the clinical trial. Most of the patients had locally advanced and/or medically inoperable tumors. The clinical trial revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in bone and soft tissue sarcomas that were hard to cure with other modalities. (author)

  12. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan.

    Science.gov (United States)

    Mohamad, Osama; Makishima, Hirokazu; Kamada, Tadashi

    2018-03-06

    Charged particles can achieve better dose distribution and higher biological effectiveness compared to photon radiotherapy. Carbon ions are considered an optimal candidate for cancer treatment using particles. The National Institute of Radiological Sciences (NIRS) in Chiba, Japan was the first radiotherapy hospital dedicated for carbon ion treatments in the world. Since its establishment in 1994, the NIRS has pioneered this therapy with more than 69 clinical trials so far, and hundreds of ancillary projects in physics and radiobiology. In this review, we will discuss the evolution of carbon ion radiotherapy at the NIRS and some of the current and future projects in the field.

  13. What's next in carbon ion radiotherapy at NIRS?

    International Nuclear Information System (INIS)

    Kamada, Tadashi

    2011-01-01

    Since its launch by the National Institute of Radiological Sciences (NIRS) in 1994, cancer therapy using heavy ion beams (carbon ion beams) has been used in approximately 5,500 patients. Accumulated clinical experience has identified certain types of malignant tumors that respond exclusively to this treatment. It has also been made clear that this therapy is capable of treating several other types of cancers safely in a relatively short period of time, effecting remission and/or cure without pain or discomfort in a few days or weeks. We can reasonably state that heavy ion radiotherapy has been established as a safe and effective treatment method. NIRS researchers are continuing to make every effort to develop more effective, efficient, and patient-friendly heavy ion irradiation systems. The result of this research and development is also expected to slash the attendant costs of heavy ion radiotherapy. (author)

  14. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    International Nuclear Information System (INIS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Shirai, Toshiyuki; Noda, Koji; Kanai, Tatsuaki; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-01-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with α r = 0.764 Gy −1 and β = 0.0615 Gy −2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  15. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    Science.gov (United States)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  16. Radiotherapy for chordomas and low-grade chondrosarcomas of the skull base with carbon ions

    International Nuclear Information System (INIS)

    Schulz-Ertner, Daniela; Haberer, Thomas; Jaekel, Oliver; Thilmann, Christoph; Kraemer, Michael; Enghardt, Wolfgang; Kraft, Gerhard; Wannenmacher, Michael; Debus, Juergen

    2002-01-01

    Purpose: Compared to photon irradiation, carbon ions provide physical and biologic advantages that may be exploited in chordomas and chondrosarcomas. Methods and Materials: Between August 1998 and December 2000, 37 patients with chordomas (n=24) and chondrosarcomas (n=13) were treated with carbon ion radiotherapy within a Phase I/II trial. Tumor conformal application of carbon ion beams was realized by intensity-controlled raster scanning with pulse-to-pulse energy variation. Three-dimensional treatment planning included biologic plan optimization. The median tumor dose was 60 GyE (GyE Gy x relative biologic effectiveness). Results: The mean follow-up was 13 months. The local control rate after 1 and 2 years was 96% and 90%, respectively. We observed 2 recurrences outside the gross tumor volume in patients with chordomas. Progression-free survival was 100% for chondrosarcomas and 83% for chordomas at 2 years. Partial remission after carbon ion radiotherapy was observed in 6 patients. Treatment toxicity was mild. Conclusion: These are the first data demonstrating the clinical feasibility, safety, and effectiveness of scanning beam delivery of ion beams in patients with skull base tumors. The preliminary results in patients with skull base chordomas and low-grade chondrosarcomas are encouraging, although the follow-up was too short to draw definite conclusions concerning outcome. In the absence of major toxicity, dose escalation might be considered

  17. Five-year quality of life assessment after carbon ion radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Maruyama, Katsuya; Tsuji, Hiroshi; Nomiya, Takuma; Katoh, Hiroyuki; Ishikawa, Hitoshi; Kamada, Tadashi; Wakatsuki, Masaru; Akakura, Koichiro; Shimazaki, Jun; Aoyama, Hidefumi; Tsujii, Hirohiko

    2017-01-01

    The aim of this study was to prospectively assess 5-year health-related quality of life (HRQOL) of patients treated with carbon ion radiotherapy (C-ion RT) for clinically localized prostate cancer. A total of 417 patients received carbon ion radiotherapy at a total dose of 63–66 Gray-equivalents (GyE) in 20 fractions over 5 weeks, and neoadjuvant and adjuvant androgen deprivation therapy (ADT) were administered for intermediate and high-risk patients. A HRQOL assessment was performed at five time points (immediately before the initiation of C-ion RT, immediately after, and at 12, 36 and 60 months after completion of C-ion RT) using Functional Assessment of Cancer Therapy (FACT) questionnaires. FACT-G and FACT-P scores were significantly decreased; however, the absolute change after 60 months was minimal. The transient decreases in the Trial Outcome Index (TOI) score returned to their baseline levels. Use of ADT, presence of adverse events, and biochemical failure were related to lower scores. Scores of subdomains of FACT instruments indicated characteristic changes. The pattern of HRQOL change after C-ion RT was similar to that of other modalities. Further controlled studies focusing on a HRQOL in patients with prostate cancer are warranted.

  18. Carbon-ion radiotherapy for marginal lymph node recurrences of cervical cancer after definitive radiotherapy: a case report

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi; Ohno, Tatsuya; Kiyohara, Hiroki; Noda, Shin-ei; Ohkubo, Yu; Ando, Ken; Wakatsuki, Masaru; Kato, Shingo; Kamada, Tadashi

    2013-01-01

    Recurrences of cervical cancer after definitive radiotherapy often occur at common iliac or para-aortic lymph nodes as marginal lymph node recurrences. Patients with these recurrences have a chance of long-term survival by optimal re-treatment with radiotherapy. However, the re-irradiation often overlaps the initial and the secondary radiotherapy fields and can result in increased normal tissue toxicities in the bowels or the stomach. Carbon-ion radiotherapy, a form of particle beam radiotherapy using accelerated carbon ions, offers more conformal and sharp dose distribution than X-ray radiotherapy. Therefore, this approach enables the delivery of high radiation doses to the target while sparing its surrounding normal tissues. Marginal lymph node recurrences in common iliac lymph nodes after radiotherapy were treated successfully by carbon-ion radiotherapy in two patients. These two patients were initially treated with a combination of external beam radiotherapy and intracavitary and interstitial brachytherapy. However, the diseases recurred in the lymph nodes near the border of the initial radiotherapy fields after 22 months and 23 months. Because re-irradiation with X-ray radiotherapy may deliver high doses to a section of the bowels, carbon-ion radiotherapy was selected to treat the lymph node recurrences. A total dose of 48 Gy (RBE) in 12 fractions over 3 weeks was given to the lymph node recurrences, and the tumors disappeared completely with no severe acute toxicities. The two patients showed no evidence of disease for 75 months and 63 months after the initial radiotherapy and for 50 months and 37 months after the carbon-ion radiotherapy, respectively. No severe late adverse effects are observed in these patients. The two presented cases suggest that the highly conformal dose distribution of carbon-ion radiotherapy may be beneficial in the treatment of marginal lymph node recurrences after radiotherapy. In addition, the higher biological effect of carbon-ion

  19. Carbon ion radiotherapy for chordomas and low-grade chondrosarcomas of the skull base. Results in 67 patients

    Energy Technology Data Exchange (ETDEWEB)

    Schulz-Ertner, D.; Wannenmacher, M. [Dept. of Clinical Radiology, Univ. of Heidelberg (Germany); Nikoghosyan, A.; Thilmann, C.; Jaekel, O.; Karger, C. [German Cancer Research Center (dkfz), Heidelberg (Germany); Haberer, T.; Scholz, M.; Kraft, G. [Dept. of Biophysics, German Ion Research Center (GSI), Darmstadt (Germany); Debus, J. [Dept. of Clinical Radiology, Univ. of Heidelberg (Germany); German Cancer Research Center (dkfz), Heidelberg (Germany)

    2003-09-01

    Purpose: To prospectively evaluate outcome and toxicity after carbon ion radiotherapy (RT) in chordomas and low-grade chondrosarcomas. Patients and Methods: Between September 1998 and December 2001, 74 patients were treated for chordomas and chondrosarcomas with carbon ion RT at the ''Gesellschaft fuer Schwerionenforschung'' (GSI). Seven patients reirradiated with reduced carbon ion doses after conventional RT were excluded from the analysis, leaving 67 evaluable patients (44 chordomas and 23 chondrosarcomas) who received a full course of carbon ion therapy. Tumor-conform application of carbon ion beams was realized by intensity-controlled raster scanning with active energy variation. Three-dimensional treatment planning included intensity modulation and biological plan optimization. A median dose of 60 GyE was applied to the target volume within 20 consecutive days at a dose of 3.0 GyE per fraction. Results: Median follow-up was 15 months (range 3-46 months). At 3 years, actuarial local control was 100% for chondrosarcomas and 87% for chordomas, respectively. Partial tumor remission was observed in 14/44 (31%) chordoma patients and in 4/23 (17%) chondrosarcoma patients. At 3 years, actuarial overall survival was 100% for chondrosarcomas and 89% for chordomas, respectively. No severe side effects > CTC III have been observed. Conclusions: These data demonstrate the clinical efficiency and safety of scanning beam delivery of carbon ion beams in patients with skull base chordomas and chondrosarcomas. The observation of tumor regressions at a dose level of 60 GyE may indicate that the biological effectiveness of carbon ions in chordomas and chondrosarcomas is higher than initially estimated. (orig.)

  20. Carbon ion radiotherapy for chordomas and low-grade chondrosarcomas of the skull base. Results in 67 patients

    International Nuclear Information System (INIS)

    Schulz-Ertner, D.; Wannenmacher, M.; Nikoghosyan, A.; Thilmann, C.; Jaekel, O.; Karger, C.; Haberer, T.; Scholz, M.; Kraft, G.; Debus, J.

    2003-01-01

    Purpose: To prospectively evaluate outcome and toxicity after carbon ion radiotherapy (RT) in chordomas and low-grade chondrosarcomas. Patients and Methods: Between September 1998 and December 2001, 74 patients were treated for chordomas and chondrosarcomas with carbon ion RT at the ''Gesellschaft fuer Schwerionenforschung'' (GSI). Seven patients reirradiated with reduced carbon ion doses after conventional RT were excluded from the analysis, leaving 67 evaluable patients (44 chordomas and 23 chondrosarcomas) who received a full course of carbon ion therapy. Tumor-conform application of carbon ion beams was realized by intensity-controlled raster scanning with active energy variation. Three-dimensional treatment planning included intensity modulation and biological plan optimization. A median dose of 60 GyE was applied to the target volume within 20 consecutive days at a dose of 3.0 GyE per fraction. Results: Median follow-up was 15 months (range 3-46 months). At 3 years, actuarial local control was 100% for chondrosarcomas and 87% for chordomas, respectively. Partial tumor remission was observed in 14/44 (31%) chordoma patients and in 4/23 (17%) chondrosarcoma patients. At 3 years, actuarial overall survival was 100% for chondrosarcomas and 89% for chordomas, respectively. No severe side effects > CTC III have been observed. Conclusions: These data demonstrate the clinical efficiency and safety of scanning beam delivery of carbon ion beams in patients with skull base chordomas and chondrosarcomas. The observation of tumor regressions at a dose level of 60 GyE may indicate that the biological effectiveness of carbon ions in chordomas and chondrosarcomas is higher than initially estimated. (orig.)

  1. Simulating demand for innovative radiotherapies: An illustrative model based on carbon ion and proton radiotherapy

    International Nuclear Information System (INIS)

    Pommier, Pascal; Lievens, Yolande; Feschet, Fabien; Borras, Josep M.; Baron, Marie Helene; Shtiliyanova, Anastasiya; Pijls-Johannesma, Madelon

    2010-01-01

    Background and purpose: Innovative therapies are not only characterized by major uncertainties regarding clinical benefit and cost but also the expected recruitment of patients. An original model was developed to simulate patient recruitment to a costly particle therapy by varying layout of the facility and patient referral (one vs. several countries) and by weighting the treated indication by the expected benefit of particle therapy. Material and methods: A multi-step probabilistic spatial model was used to allocate patients to the optimal treatment strategy and facility taking into account the estimated therapeutic gain from the new therapy for each tumour type, the geographical accessibility of the facilities and patient preference. Recruitment was simulated under different assumptions relating to the demand and supply. Results: Extending the recruitment area, reducing treatment capacity, equipping all treatment rooms with a carbon ion gantry and inclusion of proton protocols in carbon ion facilities led to an increased proportion of indications with the highest expected benefit. Assuming the existence of a competing carbon ions facility, lower values of therapeutic gain, and a greater unwillingness of patients to travel for treatment increased the proportion of indications with low expected benefit. Conclusions: Modelling patient recruitment may aid decision-making when planning new and expensive treatments.

  2. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Inaniwa, T., E-mail: taku@nirs.go.jp; Kanematsu, N. [Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555 (Japan); Tsuji, H.; Kamada, T. [Hospital, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-12-15

    Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 cases each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.

  3. Health-related quality of life after carbon-ion radiotherapy for prostate cancer. A 3-year prospective study

    International Nuclear Information System (INIS)

    Katoh, Hiroyuki; Tsuji, Hiroshi; Ishikawa, Hitoshi

    2014-01-01

    To assess 3-year health-related quality of life of patients treated with carbon ion radiotherapy for prostate cancer. A total of 213 patients received carbon-ion radiotherapy at a total dose of 66 Gy equivalent in 20 fractions over 5 weeks, and neoadjuvant and adjuvant androgen deprivation therapy were administered for high-risk patients for at least 12 months. A health-related quality of life assessment was carried out at four time-points (immediately before the initiation of carbon-ion radiotherapy, immediately after, 12 and 36 months after completion of carbon-ion radiotherapy) using Functional Assessment of Cancer Therapy General and for Prostate Cancer Patients. The evaluable response rates among all responses were more than 94%. Overall, a significant decrease in the scores of the health-related quality of life 12 months after carbon-ion radiotherapy returned to their baseline levels at 36 months. Additionally, no significant decrease was observed in the scores at any of the assessment time-points compared with their baseline scores in the group of carbon-ion radiotherapy without androgen deprivation therapy; however, the presence of morbidity and biochemical failure significantly worsened the scores, and the decreases in the scores did not improve even at 36 months after carbon-ion radiotherapy. An assessment based on a subjective scoring system shows a significant decrease in health-related quality of life at 12 months after carbon-ion radiation therapy, which tends to return to baseline levels at 36 months. The presence of morbidity and bio-chemical failure significantly worsen health-related quality of life scores. Further controlled studies focusing on health-related quality of life assessment in patients with prostate cancer are warranted. (author)

  4. Quality of life (QOL) assessment in patients received carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Imai, Reiko; Kamada, Tadashi; Tsujii, Hirohiko

    2004-01-01

    The purpose of this study was to investigate changes in quality of life (QoL) of medically inoperable bone and soft tissue sarcoma treated carbon ion radiotherapy (CIRT). Fifty-eight patients followed over 1 year were reviewed in this report. The questionnaire, European Organaization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 (EORTC-QLQ-C30) was assessed before the start of CIRT, and subsequently at the end of CIRT, 3, 6, 12, 24 months after CIRT. During follow-up, it was send to the patients by mail. The compliance was 98% for all follow-up period in this study. The scores about QoL and functioning did not significantly change for 1 year. QoL scores tended to decrease in large clinical target volume (CTV) (>600 cc) group compared to small CTV group. CIRT could keep QoL levels of patients with medically inoperable bone and soft tissue tumors. (author)

  5. Feasibility of carbon-ion radiotherapy for re-irradiation of locoregionally recurrent, metastatic, or secondary lung tumors.

    Science.gov (United States)

    Hayashi, Kazuhiko; Yamamoto, Naoyoshi; Karube, Masataka; Nakajima, Mio; Tsuji, Hiroshi; Ogawa, Kazuhiko; Kamada, Tadashi

    2018-03-02

    Intrathoracic recurrence after carbon-ion radiotherapy for primary or metastatic lung tumors remains a major cause of cancer-related deaths. However, treatment options are limited. Herein, we report on the toxicity and efficacy of re-irradiation with carbon-ion radiotherapy for locoregionally recurrent, metastatic, or secondary lung tumors. Data of 95 patients with prior intrathoracic carbon-ion radiotherapy who were treated with re-irradiation with carbon-ion radiotherapy at our institution between 2006 and 2016 were retrospectively analyzed. Seventy-three patients (76.8%) had primary lung tumors and 22 patients (23.2%) had metastatic lung tumors. The median dose of initial carbon-ion radiotherapy was 52.8 Gy (relative biological effectiveness) and the median dose of re-irradiation was 66.0 Gy (relative biological effectiveness). None of the patients received concurrent chemotherapy. The median follow-up period after re-irradiation was 18 months. In terms of grade ≥3 toxicities, one patient experienced each of the following: grade 5 bronchopleural fistula, grade 4 radiation pneumonitis, grade 3 chest pain, and grade 3 radiation pneumonitis. The 2-year local control and overall survival rates were 54.0% and 61.9%, respectively. In conclusion, re-irradiation with carbon-ion radiotherapy was associated with relatively low toxicity and moderate efficacy. Re-irradiation with carbon-ion radiotherapy might be an effective treatment option for patients with locoregionally recurrent, metastatic, or secondary lung tumors. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Dose escalation study of carbon ion radiotherapy for locally advanced carcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Kato, Shingo; Ohno, Tatsuya; Tsujii, Hirohiko; Nakano, Takashi; Mizoe, Jun-etsu; Kamada, Tadashi; Miyamoto, Tadaaki; Tsuji, Hiroshi; Kato, Hirotoshi; Yamada, Shigeru; Kandatsu, Susumu; Yoshikawa, Kyosan; Ezawa, Hidefumi; Suzuki, Michiya

    2006-01-01

    Purpose: To evaluate the toxicity and efficacy of carbon ion radiotherapy (CIRT) for locally advanced cervical cancer by two phase I/II clinical trials. Methods and Materials: Between June 1995 and January 2000, 44 patients were treated with CIRT. Thirty patients had Stage IIIB disease, and 14 patients had Stage IVA disease. Median tumor size was 6.5 cm (range, 4.2-11.0 cm). The treatment consisted of 16 fractions of whole pelvic irradiation and 8 fractions of local boost. In the first study, the total dose ranged from 52.8 to 72.0 gray equivalents (GyE) (2.2-3.0 GyE per fraction). In the second study, the whole pelvic dose was fixed at 44.8 GyE, and an additional 24.0 or 28.0 GyE was given to the cervical tumor (total dose, 68.8 or 72.8 GyE). Results: No patient developed severe acute toxicity. In contrast, 8 patients developed major late gastrointestinal complications. The doses resulting in major complications were ≥60 GyE. All patients with major complications were surgically salvaged. The 5-year local control rate for patients in the first and second studies was 45% and 79%, respectively. When treated with ≥62.4 GyE, the local control was favorable even for the patients with stage IVA disease (69%) or for those with tumors ≥6.0 cm (64%). Conclusions: In CIRT for advanced cervical cancer, the dose to the intestines should be limited to <60 GyE to avoid major complications. Although the number of patients in this study was small, the results support continued investigation to confirm therapeutic efficacy

  7. A case of remnant pancreatic cancer after pancreatoduodenectomy successfully treated using chemotherapy and carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Yamamoto, Tatsuhito; Tokunou, Kazuhisa; Yamamoto, Hisato; Kamei, Ryoji; Kitamura, Yoshinori; Ando, Seiichiro

    2016-01-01

    We report a case of remnant pancreatic cancer after pancreatoduodenectomy that was successfully treated using chemotherapy and carbon-ion radiotherapy. A 68-year-old woman received SSPPD for pancreatic head cancer. Gemcitabine (GEM) was administered for a year as postoperative chemotherapy. One year 8 months after surgery, abdominal CT showed a 20 mm solid mass in the stump of the remnant pancreas and dilation of the distal pancreatic duct. FDG-PET revealed a solitary tumor without any recurrence. We diagnosed the patient with a solitary recurrence of pancreatic cancer. Chemotherapy (GEM) and carbon-ion radiotherapy were performed. After treatment, the lesion was not detected on CT or FDG-PET. Chemotherapy (GEM) and carbon-ion radiotherapy for locally advanced pancreatic cancer seems to be effective and there might result in a survival benefit. (author)

  8. Peripheral lymphocyte subset variation predicts prostate cancer carbon ion radiotherapy outcomes

    Science.gov (United States)

    Shi, Ze-Liang; Li, Bing-Xin; Wu, Xian-Wei; Li, Ping; Zhang, Qing; Wei, Xun-Bin; Fu, Shen

    2016-01-01

    The immune system plays a complementary role in the cytotoxic activity of radiotherapy. Here, we examined changes in immune cell subsets after heavy ion therapy for prostate cancer. The lymphocyte counts were compared with acute radiotherapy-related toxicity, defined according to the Common Terminology Criteria for Adverse Events, and short-term local efficacy, defined based on prostate-specific antigen concentrations. Confirmed prostate cancer patients who had not received previous radiotherapy were administered carbon ion radiotherapy (CIR) in daily fractions of 2.74 GyE with a total dose of 63-66 GyE. Lymphocyte subset counts were investigated before, during and after radiotherapy, and at a 1 month follow-up. Most notable among our findings, the CD4/CD8 ratio and CD19+ cell counts were consistently higher in patients with a complete response (CR) or partial response (PR) to CIR than in those classified in the stable disease (SD) group (P<0.05 for both). But CD3+ and CD8+ cell counts were lower in the CR and PR groups than in the SD group. These results indicate that variations in peripheral lymphocyte subpopulations are predictive of outcome after CIR for prostate cancer. PMID:27029063

  9. Development of C{sup 6+} laser ion source and RFQ linac for carbon ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sako, T., E-mail: takayuki1.sako@toshiba.co.jp; Yamaguchi, A.; Sato, K. [Toshiba Corporation, Yokohama 235-8522 (Japan); Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T. [Cancer Research Center, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Takeuchi, T. [Accelerator Engineering Corporation, Chiba 263-0043 (Japan)

    2016-02-15

    A prototype C{sup 6+} injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  10. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    Science.gov (United States)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  11. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    Science.gov (United States)

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  12. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-01-01

    A prototype C 6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4

  13. Carbon ion radiotherapy for oligo-recurrent lung metastases from colorectal cancer: a feasibility study

    International Nuclear Information System (INIS)

    Takahashi, Wataru; Nakajima, Mio; Yamamoto, Naoyoshi; Yamada, Shigeru; Yamashita, Hideomi; Nakagawa, Keiichi; Tsuji, Hiroshi; Kamada, Tadashi

    2014-01-01

    The purpose of this study was to evaluate the efficacy and feasibility of carbon ion radiotherapy (CIRT) for oligo-recurrent lung tumors from colorectal cancer (CRC). From May 1997 to October 2012, 34 consecutive patients with oligo-recurrent pulmonary metastases from CRC were treated with CIRT. The patients were not surgical candidates for medical reasons or patient refusal. Using a respiratory-gated technique, carbon ion therapy was delivered with curative intent using 4 coplanar beam angles. A median dose of 60 GyE (range, 44–64.8 GyE) was delivered to the planning target volume (PTV), with a median daily dose of 15 GyE (range, 3.6–44 GyE). Treatment outcome was analyzed in terms of local control rate (LCR), survival rate, and treatment-related complications. In total, 34 patients with 44 oligo-recurrent pulmonary lesions were treated with CIRT. Median follow-up period was 23.7 months. The 2- and 3-year actuarial LCRs of the treated patients were 85.4% ± 6.2% and 85.4% ± 6.2%, respectively. Overall survival was 65.1% ± 9.5% at 2 years, and 50.1% ± 10.5% at 3 years. Although survival rates were relatively worse in the subsets of patients aged < 63 years or with early metastasis (< 36 months after resection of primary site), these factors were not significantly correlated with overall survival (P = 0.13 and 0.19, respectively). All treatment-related complications were self-limited, without any grade 3–5 toxicity. CIRT is one of the most effective nonsurgical treatments for colorectal lung metastases, which are relatively resistant to stereotactic body radiotherapy. CIRT is considered to be the least invasive approach even in patients who have undergone repeated prior thoracic metastasectomies

  14. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen; Haberer, Thomas; Jaekel, Oliver

    2013-01-01

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications

  15. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  16. Carbon-ion radiotherapy for locally advanced primary or postoperative recurrent epithelial carcinoma of the lacrimal gland

    International Nuclear Information System (INIS)

    Mizoguchi, Nobutaka; Tsuji, Hiroshi; Toyama, Shingo; Kamada, Tadashi; Tsujii, Hirohiko; Nakayama, Yuko; Mizota, Atsushi; Ohnishi, Yoshitaka

    2015-01-01

    Purpose: To evaluate the applicability of carbon ion beams for the treatment of carcinoma of the lacrimal gland with regard to normal tissue morbidity and local tumor control. Methods and materials: Between April 2002 and January 2011, 21 patients with locally advanced primary epithelial carcinoma of the lacrimal gland were enrolled in a Phase I/II clinical trial of carbon-ion radiotherapy (CIRT) at the National Institute of Radiological Sciences. Acute radiation toxicity was the primary endpoint of this dose-escalation study and the late toxicity, local control, and overall survival were additionally evaluated as secondary endpoints. Of the 21 subjects enrolled, all patients were followed for more than 6 months and analyzed. Results: The radiation dose was increased from the initial dose of 48.0 Gy equivalents (GyE)/12 fractions at 10% increments up to 52.8 GyE. Of the 21 patients, five received a total dose of 48.0 GyE, and 16 received a total dose of 52.8 GyE. No patient developed grade 3 or higher skin toxicity. As late ocular/visual toxicity, three patients had grade 3 retinopathy and seven patients lost their vision. Among the 10 patients treated until May 2005, five patients had local recurrence, three of whom had marginal recurrence. Therefore, the margin for the CTV (clinical target volume) was set to a range according to the orbital exenteration since June 2005. After the application of the extended margin, no local recurrence has been observed. The three-year overall survival and local control rates were 82.2% and 79.0%, respectively. Conclusion: CIRT can be applied for primary epithelial carcinoma of the lacrimal gland, with a borderline acceptable morbidity and sufficient antitumor effect when an extended margin is adopted

  17. Evaluation of Risk Factors for Vertebral Compression Fracture after Carbon-Ion Radiotherapy for Primary Spinal and Paraspinal Sarcoma

    Directory of Open Access Journals (Sweden)

    Yoshihiro Matsumoto

    2017-01-01

    Full Text Available Background and Purpose. Carbon-ion radiotherapy (C-ion RT was effective therapy for inoperable spinal and paraspinal sarcomas. However, a significant adverse event following radiotherapies is vertebral compression fractures (VCFs. In this study, we investigated the incidence of and risk factors for post-C-ion RT VCFs in patients with spinal or paraspinal sarcomas. Material and Methods. Thirty consecutive patients with spinal or paraspinal sarcomas treated with C-ion RT were retrospectively reviewed. Various clinical parameters and the Spinal Instability Neoplastic Score (SINS were used to evaluate the risk factors for post-C-ion RT VCFs. Results. The overall incidence of VCFs was 23% (median time: 7 months. Patients with VCFs showed a markedly higher SINS score (median value, 9 points than those without VCF (5 points. The area under the receiver operating characteristic curve for the SINS score was 0.88, and the optimum SINS cut-off score was 8 points. The cumulative incidence of VCFs at 1 year was 9% for patients with a SINS score under 8 points, versus 80% for those with a SINS score of 8 points or higher (p<0.0001. Conclusions. In patients with a SINS score of 8 points or higher, referral to a spine surgeon for stabilization and multidisciplinary discussion is appropriate.

  18. Outcomes of visual acuity in carbon ion radiotherapy: Analysis of dose-volume histograms and prognostic factors

    International Nuclear Information System (INIS)

    Hasegawa, Azusa; Mizoe, Jun-etsu; Mizota, Atsushi; Tsujii, Hirohiko

    2006-01-01

    Purpose: To analyze the tolerance dose for retention of visual acuity in patients with head-and-neck tumors treated with carbon ion radiotherapy. Methods and Materials: From June 1994 to March 2000, 163 patients with tumors in the head and neck or skull base region were treated with carbon ion radiotherapy. Analysis was performed on 54 optic nerves (ONs) corresponding to 30 patients whose ONs had been included in the irradiated volume. These patients showed no evidence of visual impairment due to other factors and had a follow-up period of >4 years. All patients had been informed of the possibility of visual impairment before treatment. We evaluated the dose-complication probability and the prognostic factors for the retention of visual acuity in carbon ion radiotherapy, using dose-volume histograms and multivariate analysis. Results: The median age of 30 patients (14 men, 16 women) was 57.2 years. Median prescribed total dose was 56.0 gray equivalents (GyE) at 3.0-4.0 GyE per fraction per day (range, 48-64 GyE; 16-18 fractions; 4-6 weeks). Of 54 ONs that were analyzed, 35 had been irradiated with max ]) resulting in no visual loss. Conversely, 11 of the 19 ONs (58%) irradiated with >57 GyE (D max ) suffered a decrease of visual acuity. In all of these cases, the ONs had been involved in the tumor before carbon ion radiotherapy. In the multivariate analysis, a dose of 20% of the volume of the ON (D 2 ) was significantly associated with visual loss. Conclusions: The occurrence of visual loss seems to be correlated with a delivery of >60 GyE to 20% of the volume of the ON

  19. EXPERIMENTAL EVALUATION OF DOSIMETRIC CHARACTERIZATION OF GAFCHROMIC EBT3 AND EBT-XD FILMS FOR CLINICAL CARBON ION BEAMS.

    Science.gov (United States)

    Yonai, Shunsuke; Arai, Chinatsu; Shimoyama, Kaoru; Fournier-Bidoz, Nathalie

    2018-02-03

    Radiochromic film is a very useful tool for 2D dosimetric measurements in radiotherapy because it is self-developing and has very high-spatial resolution. However, considerable care has to be taken in ion beam radiotherapy owing to the quenching effect of high-linear energy transfer (LET) radiation. In this study, the dose responses of GAFchromic EBT3 and EBT-XD films were experimentally investigated using the clinical carbon ion beam at the Heavy Ion Medical Accelerator in Chiba. Results showed that the relations between absorbed dose and net optical density could be expressed well using an equation proposed by Reinhardt (2015). The quenching effect was evaluated by determining their relative efficiencies for photon irradiation as a function of LET. A correction equation derived in this study allowed the absorbed dose to be determined in the small irradiation field used for carbon ion radiotherapy eye treatments. This study contributes to establishing an absolute dosimetry procedure for heavy ion beams using radiochromic film. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Shafie, Rami A. El; Habermehl, Daniel; Rieken, Stefan

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer deaths, being responsible for 6% of all cancer-related deaths. Conventional radiotherapy with or without additional chemotherapy has been applied in the past in the context of neoadjuvant or adjuvant therapy concepts with only modest results, however new radiation modalities, such as particle therapy with promising physical and biological characteristics, present an alternative treatment option for patients with pancreatic cancer. Up until now the raster scanning technique employed at our institution for the application of carbon ions has been unique, and no radiobiological data using pancreatic cancer cells has been available yet. The aim of this study was to evaluate cytotoxic effects that can be achieved by treating pancreatic cancer cell lines with combinations of X-rays and gemcitabine, or alternatively with carbon ion irradiation and gemcitabine, respectively. Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and carbon ions at various doses and treated with gemcitabine. Photon irradiation was applied with a biological cabin X-ray irradiator, and carbon ion irradiation was applied with an extended Bragg peak (linear energy transfer (LET) 103 keV/μm) using the raster scanning technique at the Heidelberg Ion Therapy Center (HIT). Responsiveness of pancreatic cancer cells to the treatment was measured by clonogenic survival. Clonogenic survival curves were then compared to predicted curves that were calculated employing the local effect model (LEM). Cell survival curves were calculated from the surviving fractions of each combination experiment and compared to a drug control that was only irradiated with X-rays or carbon ions, without application of gemcitabine. In terms of cytotoxicity, additive effects were achieved for the cell lines Panc-1 and BxPC-3, and a slight radiosensitizing effect was observed for AsPC-1. Relative biological effectiveness (RBE) of carbon

  1. Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The CINDERELLA trial

    International Nuclear Information System (INIS)

    Combs, Stephanie E; Wick, Wolfgang; Debus, Jürgen; Burkholder, Iris; Edler, Lutz; Rieken, Stefan; Habermehl, Daniel; Jäkel, Oliver; Haberer, Thomas; Haselmann, Renate; Unterberg, Andreas

    2010-01-01

    Treatment of patients with recurrent glioma includes neurosurgical resection, chemotherapy, or radiation therapy. In most cases, a full course of radiotherapy has been applied after primary diagnosis, therefore application of re-irradiation has to be applied cauteously. With modern precision photon techniques such as fractionated stereotactic radiotherapy (FSRT), a second course of radiotherapy is safe and effective and leads to survival times of 22, 16 and 8 months for recurrent WHO grade II, III and IV gliomas. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons. First Japanese Data on the evaluation of carbon ion radiation therapy for the treatment of primary high-grade gliomas showed promising results in a small and heterogeneous patient collective. In the current Phase I/II-CINDERELLA-trial re-irradiation using carbon ions will be compared to FSRT applied to the area of contrast enhancement representing high-grade tumor areas in patients with recurrent gliomas. Within the Phase I Part of the trial, the Recommended Dose (RD) of carbon ion radiotherapy will be determined in a dose escalation scheme. In the subsequent randomized Phase II part, the RD will be evaluated in the experimental arm, compared to the standard arm, FSRT with a total dose of 36 Gy in single doses of 2 Gy. Primary endpoint of the Phase I part is toxicity. Primary endpoint of the randomized part II is survival after re-irradiation at 12 months, secondary endpoint is progression-free survival. The Cinderella trial is the first study to evaluate carbon ion

  2. Customized mouthpieces designed to reduce tongue mucositis in carbon-ion radiotherapy for tumors of the nasal and paranasal sinuses

    Directory of Open Access Journals (Sweden)

    Atsushi Musha

    2017-07-01

    Full Text Available Mouthpieces are used to fix the positions of the lower jaw and teeth during carbon-ion radiotherapy for head and neck tumors. We used a customized mouthpiece to reduce radiation mucositis by displacing the tongue. Acute radiation mucositis gradually increased for the palate and tongue after approximately six irradiation fractions (maximal mean grade: palate, 2.5 during radiation fractions 15; tongue, 0.8 during radiation fractions 12 and 13. The mean grade of mucositis was significantly lower for the tongue than for the palate from irradiation fraction six until two weeks after irradiation.

  3. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U; Bednarz, T

    2014-01-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  4. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    Science.gov (United States)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  5. Clinical investigation on RBE estimation for heavy particle radiotherapy

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Kamada, Tadashi; Yanagi, Takeshi; Mizoe, Junetsu; Tsujii, Hirohiko

    2004-01-01

    Analysis of the clinical updated data of the prostate cancer patients treated with carbon-ions was performed for the purpose of investigating the clinical relative biological effectiveness (RBE) values of carbon ion beams. Most of the patients received the carbon ion radiotherapy (C-ion RT) with the dose of 66.0 GyE/20 fractions. Probabilities of the late urethral morbidity and biochemical tumor control with this dose fractionation were calculated using the actual updated clinical data. The linear energy transfer (LET) values and physical carbon ion doses of urethra were obtained from treatment planning data. RBE values were calculated from the ratio of average carbon physical doses and photon doses which cause the same grade of urethra reaction with the same probabilities. Obtained RBE values were compared with the values that are being used in actual carbon ion radiotherapy in National Institute of Radiological Sciences (NIRS). In addition, relative RBE of carbon ion beams for biochemical tumor control was calculated using the data from the literature. As a result, the RBE values being used for the treatment were thought to be proper enough for both the urethra reaction and tumor control. (author)

  6. Phase II study of induction chemotherapy with TPF followed by radioimmunotherapy with Cetuximab and intensity-modulated radiotherapy (IMRT in combination with a carbon ion boost for locally advanced tumours of the oro-, hypopharynx and larynx - TPF-C-HIT

    Directory of Open Access Journals (Sweden)

    Mavtratzas Athanasios

    2011-05-01

    Full Text Available Abstract Background Long-term locoregional control in locally advanced squamous cell carcinoma of the head and neck (SCCHN remains challenging. While recent years have seen various approaches to improve outcome by intensification of treatment schedules through introduction of novel induction and combination chemotherapy regimen and altered fractionation regimen, patient tolerance to higher treatment intensities is limited by accompanying side-effects. Combined radioimmunotherapy with cetuximab as well as modern radiotherapy techniques such as intensity-modulated radiotherapy (IMRT and carbon ion therapy (C12 are able to limit toxicity while maintaining treatment effects. In order to achieve maximum efficacy with yet acceptable toxicity, this sequential phase II trial combines induction chemotherapy with docetaxel, cisplatin, and 5-FU (TPF followed by radioimmunotherapy with cetuximab as IMRT plus carbon ion boost. We expect this approach to result in increased cure rates with yet manageable accompanying toxicity. Methods/design The TPF-C-HIT trial is a prospective, mono-centric, open-label, non-randomized phase II trial evaluating efficacy and toxicity of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 50 patients with histologically proven locally advanced SCCHN following TPF induction chemotherapy. Patients receive 24 GyE carbon ions (8 fractions and 50 Gy IMRT (2.0 Gy/fraction in combination with weekly cetuximab throughout radiotherapy. Primary endpoint is locoregional control at 12 months, secondary endpoints are disease-free survival, progression-free survival, overall survival, acute and late radiation effects as well as any adverse events of the treatment as well as quality of life (QoL analyses. Discussion The primary objective of TPF-C-HIT is to evaluate efficacy and toxicity of cetuximab in combination with combined IMRT/carbon ion therapy following TPF induction in locally advanced SCCHN. Trial Registration

  7. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry in carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Kanematsu, Nobuyuki; Koba, Yusuke; Ogata, Risa

    2013-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, the authors evaluated dosimetric water equivalence of four common plastics, high-density polyethylene (HDPE), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyoxymethylene (POM). Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, the authors calculated the effective densities of the plastics for these interactions. The authors experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.

  8. Phase I study evaluating the treatment of patients with locally advanced pancreatic cancer with carbon ion radiotherapy: the PHOENIX-01 trial

    International Nuclear Information System (INIS)

    Combs, Stephanie E; Debus, Jürgen; Habermehl, Daniel; Kieser, Meinhard; Dreher, Constantin; Werner, Jens; Haselmann, Renate; Jäkel, Oliver; Jäger, Dirk; Büchler, Markus W

    2013-01-01

    Treatment options for patients with locally advanced pancreatic cancer include surgery, chemotherapy as well as radiotherapy. In many cases, surgical resection is not possible, and therefore treatment alternatives have to be performed. Chemoradiation has been established as a convincing treatment alternative for locally advanced pancreatic cancer. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 1.16 and 2.46 depending on the pancreatic cancer cell line as well as the endpoint analyzed. Japanese Data on the evaluation of carbon ion radiation therapy showed promising results for patients with pancreatic cancer. The present PHOENIX-01 trial evaluates carbon ion radiotherapy using the active rasterscanning technique in patients with advanced pancreatic cancer in combination with weekly gemcitabine and adjuvant gemcitabine. Primary endpoint is toxicity, secondary endpoints are overall survival, progression-free survival and response. The physical and biological properties of the carbon ion beam promise to improve the therapeutic ratio in patients with pancreatic cancer: Due to the inverted dose profile dose deposition in the entry channel of the beam leads to sparing of normal tissue; the Bragg peak can be directed into the defined target volume, and the sharp dose fall-off thereafter again spares normal tissue behind the target volume. The higher RBE of carbon ions, which has been shown also for pancreatic cancer cell lines in the preclinical setting, is likely to contribute to an increase in local control, and perhaps in OS. Early data from Japanese centers have shown promising results. In conclusion, this is the first trial to evaluate actively delivered carbon

  9. Randomised trial of proton vs. carbon ion radiation therapy in patients with low and intermediate grade chondrosarcoma of the skull base, clinical phase III study

    International Nuclear Information System (INIS)

    Nikoghosyan, Anna V; Rauch, Geraldine; Münter, Marc W; Jensen, Alexandra D; Combs, Stephanie E; Kieser, Meinhard; Debus, Jürgen

    2010-01-01

    particle therapies, i.e. protons and carbon ions, directly at the same facility in connection with the treatment of low grade skull base chondrosarcomas. This trial is a phase III study to demonstrate that carbon ion radiotherapy (experimental treatment) is not relevantly inferior and at least as good as proton radiotherapy (standard treatment) with respect to 5 year LPFS in the treatment of chondrosarcomas. Additionally, we expect less toxicity in the carbon ion treatment arm. ClinicalTrials.gov identifier: NCT01182753

  10. submitter Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems

    CERN Document Server

    Molinelli, Silvia; Mairani, Andrea; Matsufuji, Naruhiro; Kanematsu, Nobuyuki; Inaniwa, Taku; Mirandola, Alfredo; Russo, Stefania; Mastella, Edoardo; Hasegawa, Azusa; Tsuji, Hiroshi; Yamada, Shigeru; Vischioni, Barbara; Vitolo, Viviana; Ferrari, Alfredo; Ciocca, Mario; Kamada, Tadashi; Tsujii, Hirohiko; Orecchia, Roberto; Fossati, Piero

    2016-01-01

    Background and purpose: In carbon ion radiotherapy (CIRT), the use of different relative biological effectiveness (RBE) models in the RBE-weighted dose $(D_{RBE})$ calculation can lead to deviations in the physical dose $(D_{phy})$ delivered to the patient. Our aim is to reduce target $D_{phy}$ deviations by converting prescription dose values. Material and methods: Planning data of patients treated at the National Institute of Radiological Sciences (NIRS) were collected, with prescribed doses per fraction ranging from 3.6 Gy (RBE) to 4.6 Gy (RBE), according to the Japanese semi-empirical model. The $D_{phy}$ was Monte Carlo (MC) re-calculated simulating the NIRS beamline. The local effect model (LEM)_I was then applied to estimate $D_{RBE}$. Target median $D_{RBE}$ ratios between MC + LEM_I and NIRS plans determined correction factors for the conversion of prescription doses. Plans were re-optimized in a LEM_I-based commercial system, prescribing the NIRS uncorrected and corrected $D_{RBE}$. Results: The MC ...

  11. Carbon Ion Therapy

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus

    On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... effect. All cell lines investigated here did not reach an OER of 1, even for the smaller structures, which may indicate that the achievable dose average LET of carbon ions is too low, and heavier ions than carbon may be considered for functional LET-painting....

  12. Carbon ion radiotherapy for localized primary sarcoma of the extremities: Results of a phase I/II trial

    International Nuclear Information System (INIS)

    Sugahara, Shinji; Kamada, Tadashi; Imai, Reiko; Tsuji, Hiroshi; Kameda, Noriaki; Okada, Tohru; Tsujii, Hirohiko; Tatezaki, Shinichirou

    2012-01-01

    Purpose: To determine the effectiveness of carbon ion radiotherapy (CIRT) for localized primary sarcomas of the extremities in a prospective study. Patients and materials: From April 2000 to May 2010, 17 (male/female: 12/5) patients with localized primary sarcoma of the extremities received CIRT. The median age was 53 years (range: 14–87 years). Nine patients had primary diseases and eight had recurrent diseases. Of the 17 patients, eight refused amputation, and the remaining nine refused surgical resection. Tumors were located in the upper limbs in four patients and lower limbs in 13. Histological diagnosis was osteosarcoma in three patients, liposarcoma in two, synovial sarcoma in two, rhabdomyosarcoma in two, pleomorphic sarcoma in two, and miscellaneous in six. The CIRT dose to the limb was 52.8 GyE for one patient, 64 GyE for three, 70.4 GyE for 13 in 16 fixed fractions over 4 weeks. Records were reviewed and outcomes including radiologic response, local control (progression-free), and survival were analyzed. Results: The median follow-up was 37 months (range: 11–97 months). Radiological response rate was 65% (PR in 11, SD in 5, and PD in 1). The local control rate at 5 years was 76%. The overall survival rate at 5 years was 56%. Of the 17 patients, 10 survived without disease progression. Four patients had local recurrences, one was salvaged by repeated CIRT and the other three died due to systemic diseases. Distant failure was observed in six patients. One patient suffered from femoral fracture (grade 3) and received surgical fixation 27 months after CIRT. No other severe reactions (grade 3) were observed. Conclusions: CIRT is suggested to be an effective and safe treatment for patients who refuse surgery for localized primary sarcomas of the extremities.

  13. Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning

    International Nuclear Information System (INIS)

    Elsaesser, Thilo; Weyrather, Wilma K.; Friedrich, Thomas; Durante, Marco; Iancu, Gheorghe; Kraemer, Michael; Kragl, Gabriele; Brons, Stephan; Winter, Marcus; Weber, Klaus-Josef; Scholz, Michael

    2010-01-01

    Purpose: To present the first direct experimental in vitro comparison of the biological effectiveness of range-equivalent protons and carbon ion beams for Chinese hamster ovary cells exposed in a three-dimensional phantom using a pencil beam scanning technique and to compare the experimental data with a novel biophysical model. Methods and Materials: Cell survival was measured in the phantom after irradiation with two opposing fields, thus mimicking the typical patient treatment scenario. The novel biophysical model represents a substantial extension of the local effect model, previously used for treatment planning in carbon ion therapy for more than 400 patients, and potentially can be used to predict effectiveness of all ion species relevant for radiotherapy. A key feature of the new approach is the more sophisticated consideration of spatially correlated damage induced by ion irradiation. Results: The experimental data obtained for Chinese hamster ovary cells clearly demonstrate that higher cell killing is achieved in the target region with carbon ions as compared with protons when the effects in the entrance channel are comparable. The model predictions demonstrate agreement with these experimental data and with data obtained with helium ions under similar conditions. Good agreement is also achieved with relative biological effectiveness values reported in the literature for other cell lines for monoenergetic proton, helium, and carbon ions. Conclusion: Both the experimental data and the new modeling approach are supportive of the advantages of carbon ions as compared with protons for treatment-like field configurations. Because the model predicts the effectiveness for several ion species with similar accuracy, it represents a powerful tool for further optimization and utilization of the potential of ion beams in tumor therapy.

  14. Clinical practice of radiotherapy

    International Nuclear Information System (INIS)

    Horiuchi, Junichi; Masaki, Norie; Onoyama, Yasuto

    1987-01-01

    This chapter presents in greater detail radiotherapy used in each clinical setting. The descriptions are given under the following sections: the tongue and oral cavity; the maxilla, larynx, and pharynx; brain tumors; the eyes and orbit; pediatric tumors; lung cancer; the esophagus; breast cancer; the abdominal digestive system; the urogenital system; the uterine cervix; the ovaries and vulva; bone and soft tissues; the skin; hematopoietic tumors; lymph node metastases; and radiotherapy as palliative treatment. (Namekawa, K.)

  15. A preliminary Monte Carlo study for the treatment head of a carbon-ion radiotherapy facility using TOPAS

    Science.gov (United States)

    Liu, Hongdong; Zhang, Lian; Chen, Zhi; Liu, Xinguo; Dai, Zhongying; Li, Qiang; Xu, Xie George

    2017-09-01

    In medical physics it is desirable to have a Monte Carlo code that is less complex, reliable yet flexible for dose verification, optimization, and component design. TOPAS is a newly developed Monte Carlo simulation tool which combines extensive radiation physics libraries available in Geant4 code, easyto-use geometry and support for visualization. Although TOPAS has been widely tested and verified in simulations of proton therapy, there has been no reported application for carbon ion therapy. To evaluate the feasibility and accuracy of TOPAS simulations for carbon ion therapy, a licensed TOPAS code (version 3_0_p1) was used to carry out a dosimetric study of therapeutic carbon ions. Results of depth dose profile based on different physics models have been obtained and compared with the measurements. It is found that the G4QMD model is at least as accurate as the TOPAS default BIC physics model for carbon ions, but when the energy is increased to relatively high levels such as 400 MeV/u, the G4QMD model shows preferable performance. Also, simulations of special components used in the treatment head at the Institute of Modern Physics facility was conducted to investigate the Spread-Out dose distribution in water. The physical dose in water of SOBP was found to be consistent with the aim of the 6 cm ridge filter.

  16. Geant4 simulation of clinical proton and carbon ion beams for the treatment of ocular melanomas with the full 3-D pencil beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele; Tamborini, Aurora [University of Pavia and the INFN section of Pavia, via Bassi 6, 27100 Pavia (Italy); Piersimoni, Pierluigi [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Ciocca, Mario [Medical Physics Unit, CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beams and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)

  17. Proton and carbon ion therapy

    CERN Document Server

    Lomax, Tony

    2013-01-01

    Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...

  18. The progress in radiotherapy techniques and it's clinical implications

    International Nuclear Information System (INIS)

    Reinfuss, M.; Walasek, T.; Byrski, E.; Blecharz, P.

    2011-01-01

    Three modem radiotherapy techniques were introduced into clinical practice at the onset of the 21 st century - stereotactic radiation therapy (SRT), proton therapy and carbon-ion radiotherapy. Our paper summarizes the basic principles of physics, as well as the technical reqirements and clinical indications for those techniques. SRT is applied for intracranial diseases (arteriovenous malformations, acoustic nerve neuromas, brain metastases, skull base tumors) and in such cases it is referred to as stereotactic radiosurgery (SRS). Techniques used during SRS include GammaKnife, CyberKnife and dedicated linacs. SRT can also be applied for extracranial disease (non-small cell lung cancer, lung metastases, spinal and perispinal tumors, primary liver tumors, breast cancer, pancreatic tumors, prostate cancer, head and neck tumors) and in such cases it is referred to as stereotactic body radiation therapy (SBRT). Eye melanomas, skull base and cervical spine chordomas and chordosarcomas, as well as childhood neoplasms, are considered to be the classic indications for proton therapy. Clinical trials are currently conducted to investigate the usefulness of proton beam in therapy of non-small cell lung cancer, prostate cancer, head and neck tumors, primary liver and oesophageal cancer Carbon-ion radiotherapy is presumed to be more advantageous than proton therapy because of its higher relative biological effectiveness (RBE) and possibility of real-time control of the irradiated volume under PET visualization. The basic indications for carbon-ion therapy are salivary glands neoplasms, selected types of soft tissue and bone sarcomas, skull base chordomas and chordosarcomas, paranasal sinus neoplasms, primary liver cancers and inoperable rectal adenocarcinoma recurrences. (authors)

  19. Direct Comparison of Biologically Optimized Spread-out Bragg Peaks for Protons and Carbon Ions

    International Nuclear Information System (INIS)

    Wilkens, Jan J.; Oelfke, Uwe

    2008-01-01

    Purpose: In radiotherapy with hadrons, it is anticipated that carbon ions are superior to protons, mainly because of their biological properties: the relative biological effectiveness (RBE) for carbon ions is supposedly higher in the target than in the surrounding normal tissue, leading to a therapeutic advantage over protons. The purpose of this report is to investigate this effect by using biological model calculations. Methods and Materials: We compared spread-out Bragg peaks for protons and carbon ions by using physical and biological optimization. The RBE for protons and carbon ions was calculated according to published biological models. These models predict increased RBE values in regions of high linear energy transfer (LET) and an inverse dependency of the RBE on dose. Results: For pure physical optimization, protons yield a better dose distribution along the central axis. In biologically optimized plans, RBE variations for protons were relatively small. For carbon ions, high RBE values were found in the high-LET target region, as well as in the low-dose region outside the target. This means that the LET dependency and dose dependency of the RBE can cancel each other. We show this for radioresistant tissues treated with two opposing beams, for which the predicted carbon RBE within the target volume was lower than outside. Conclusions: For tissue parameters used in this study, the model used does not predict a biologic advantage of carbon ions. More reliable model parameters and clinical trials are necessary to explore the true potential of radiotherapy with carbon ions

  20. Clinical practice of radiotherapy

    International Nuclear Information System (INIS)

    Tobias, J.S.

    1992-01-01

    After describing the recent advances in radiotherapy, this brief article presents in tabular form the changing indications for radiotherapy for tumours of the skin, head and neck, adult CNS, lung, thyroid, thymus, breast, female genital tract, soft tissue sarcoma, genitourinary tract, bone sarcoma, Hodgkin's disease, non-Hodgkin lymphoma, multiple myeloma, leukemia and paediatric malignancy. For each tumour type, information is provided for the radiosensitivity, the radiocurability, complications and five-year survival. Combined modality treatment is also briefly discussed. (UK)

  1. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy.

    Science.gov (United States)

    Bauer, J; Sommerer, F; Mairani, A; Unholtz, D; Farook, R; Handrack, J; Frey, K; Marcelos, T; Tessonnier, T; Ecker, S; Ackermann, B; Ellerbrock, M; Debus, J; Parodi, K

    2014-08-21

    Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in

  2. A study on the precise examination needed to decide an optimal planning target volume for carbon ion radiotherapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kato, Hirotoshi; Tsujii, Hirohiko; Mizoe, Junetsu; Kandatsu, Susumu; Ezawa, Hidefumi; Kishimoto, Riwa; Minohara, Shinichi; Ohto, Masao

    2005-01-01

    The purpose of this study was to make two pictures of the randomly-selected cross section of the hepatocellular carcinoma (HCC) lesion using three dimensional (3D) image data obtained from the three dimensional computed tomography (CT) and the three dimensional ultrasonography (US), and to prove their identity as an image of the same cross section. Using the measurement system of three inclined angles of a cross section from the three planes, a horizontal plane and two vertical planes in the three dimensional space, we obtained two images of the same cross section of the HCC lesion originating from 3D-US and 3D-CT image data (US-CT 3D-dual image). To prove the identity of the two images of the US-CT 3D-dual image, 3D-US and 3D-CT images, we compared the two images to the original cross section of the resected HCC specimen. We could visually prove the identity of the two images consisting in the US-CT 3D-dual image originating from the 3D-US image data and 3D-CT image data. The US-CT 3D-dual image seems to be effective to make an exact treatment plan of carbon ion radiotherapy for HCC. (author)

  3. Ethical aspect of the clinical research. Informed consent in the clinical research for heavy ion radiotherapy of cancer

    International Nuclear Information System (INIS)

    Murata, Hajime

    2003-01-01

    The research center for heavy ion therapy of cancer was decided to be built in 1984 as a part of the national 10-year anticancer campaign, and construction of Heavy Ion Medical Accelerator in Chiba (HIMAC) was completed at the National Institute of Radiological Sciences in 1993. The HIMAC is the first heavy ion accelerator for only medical use in the world, and the clinical research of cancer radiotherapy was begun in 1994 using carbon ion generated by HIMAC. The purposes of the clinical research are to evaluate the safety and usefulness of carbon ion for cancer treatment, and to establish carbon ion therapy as a new and valuable tool for cancer therapy. Therefore, to obtain exact data in ethical aspect as well as scientific aspect of the clinical research, many special committees have been organized like as the committees of protocol planning for each organ, clinical study groups for each organ, evaluating committee of clinical data, and the ethical committee. Each clinical research is performed according to the research protocol of each organ, in which study purpose, rationale, patient condition, end-point of the study, adverse reaction are described. The document of informed consent (IC) contains study purpose, patient condition, method, predicted effect and demerit, protection of privacy, etc.. IC to each patient is done precisely by the doctor, and the freely-given IC of the patient is obtained. After the IC was completed, judgement of propriety for carbon ion therapy is done by the ethical committee for IC of each patient. Since 1994 carbon ion therapy has been performed over 1300 patients with cancer in various organs, and its safety and usefulness for cancer treatment has been clarified gradually. The carbon ion therapy is thought to be a new and promising tool for cancer treatment near future. (authors)

  4. Changes in Rectal Dose Due to Alterations in Beam Angles for Setup Uncertainty and Range Uncertainty in Carbon-Ion Radiotherapy for Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Yoshiki Kubota

    Full Text Available Carbon-ion radiotherapy of prostate cancer is challenging in patients with metal implants in one or both hips. Problems can be circumvented by using fields at oblique angles. To evaluate the influence of setup and range uncertainties accompanying oblique field angles, we calculated rectal dose changes with oblique orthogonal field angles, using a device with fixed fields at 0° and 90° and a rotating patient couch.Dose distributions were calculated at the standard angles of 0° and 90°, and then at 30° and 60°. Setup uncertainty was simulated with changes from -2 mm to +2 mm for fields in the anterior-posterior, left-right, and cranial-caudal directions, and dose changes from range uncertainty were calculated with a 1 mm water-equivalent path length added to the target isocenter in each angle. The dose distributions regarding the passive irradiation method were calculated using the K2 dose algorithm.The rectal volumes with 0°, 30°, 60°, and 90° field angles at 95% of the prescription dose were 3.4±0.9 cm3, 2.8±1.1 cm3, 2.2±0.8 cm3, and 3.8±1.1 cm3, respectively. As compared with 90° fields, 30° and 60° fields had significant advantages regarding setup uncertainty and significant disadvantages regarding range uncertainty, but were not significantly different from the 90° field setup and range uncertainties.The setup and range uncertainties calculated at 30° and 60° field angles were not associated with a significant change in rectal dose relative to those at 90°.

  5. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  6. Clinical quality standards for radiotherapy

    Science.gov (United States)

    2012-01-01

    Aim of the study The technological progress that is currently being witnessed in the areas of diagnostic imaging, treatment planning systems and therapeutic equipment has caused radiotherapy to become a high-tech and interdisciplinary domain involving staff of various backgrounds. This allows steady improvement in therapy results, but at the same time makes the diagnostic, imaging and therapeutic processes more complex and complicated, requiring every stage of those processes to be planned, organized, controlled and improved so as to assure high quality of services provided. The aim of this paper is to present clinical quality standards for radiotherapy as developed by the author. Material and methods In order to develop the quality standards, a comparative analysis was performed between European and Polish legal acts adopted in the period of 1980-2006 and the universal industrial ISO 9001:2008 standard, defining requirements for quality management systems, and relevant articles published in 1984-2009 were reviewed, including applicable guidelines and recommendations of American, international, European and Polish bodies, such as the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy & Oncology (ESTRO), the International Atomic Energy Agency (IAEA), and the Organisation of European Cancer Institutes (OECI) on quality assurance and management in radiotherapy. Results As a result, 352 quality standards for radiotherapy were developed and categorized into the following three groups: 1 – organizational standards; 2 – physico-technical standards and 3 – clinical standards. Conclusion Proposed clinical quality standards for radiotherapy can be used by any institution using ionizing radiation for medical purposes. However, standards are of value only if they are implemented, reviewed, audited and improved, and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:23788854

  7. SU-F-T-124: Radiation Biological Equivalent Presentations OfLEM-1 and MKM Approaches in the Carbon-Ion Radiotherapy

    International Nuclear Information System (INIS)

    Hsi, W; Jiang, G; Sheng, Y

    2016-01-01

    Purpose: To study the correlations of the radiation biological equivalent doses (BED) along depth and lateral distance between LEM-1 and MKM approaches. Methods: In NIRS-MKM (Microdosimetric Kinetic Model) approach, the prescribed BED, referred as C-Eq, doses aims to present the relative biological effectiveness (RBE) for different energies of carbon-ions on a fixed 10% survival value of HCG cell with respect to convention X-ray. Instead of a fixed 10% survival, the BED doses of LEM-1 (Local Effect Model) approach, referred as X-Eq, aims to present the RBE over the whole survival curve of chordoma-like cell with alpha/beta ratio of 2.0. The relationship of physical doses as a function of C-Eq and X-Eq doses were investigated along depth and lateral distance for various sizes of cubic targets in water irradiated by carbon-ions. Results: At the center of each cubic target, the trends between physical and C-Eq or X-Eq doses can be described by a linear and 2nd order polynomial functions, respectively. Using fit functions can then calculate a scaling factor between C-Eq and X-Eq doses to have similar physical doses. With equalized C-Eq and X-Eq doses at the depth of target center, over- and under-estimated X-Eq to C-Eq are seen for depths before and after the target center, respectively. Near the distal edge along depth, sharp rising of RBE value is observed for X-Eq, but sharp dropping of RBE value is observed for C-Eq. For lateral locations near and just outside 50% dose level, sharp raising of RBE value is also seen for X-Eq, while only minor increasing with fast dropping for C-Eq. Conclusion: An analytical function to model the differences between the CEq and X-Eq doses along depth and lateral distance need to further investigated to explain varied clinic outcome of specific cancers using two different approaches to calculated BED doses.

  8. Protontherapy versus carbon ion therapy advantages, disadvantages and similarities

    CERN Document Server

    d’Ávila Nunes, Marcos

    2015-01-01

    This book presents a comparison analysis of two cancer treatment therapies: carbon ion therapy and protontherapy. It is divided in 5 sections. The first ones gives the reader a brief history of Radiotherapy and types of radiation. In the second section, the techniques and equipments, including new ones in development such as Cyclinac , Laser and DWA, are described. The third section describes biophysical (such as stopping power and LET) and biological (such as RBE and OER) properties, the fundamental experiments and clinical area. The fourth section presents models and the fifth section compares both techniques, showing advantages and disadvantages of each, and their similarities.

  9. Multiply charged carbon-ion production for medical application

    International Nuclear Information System (INIS)

    Kitagawa, A.; Muramatsu, M.; Sasaki, N.; Takasugi, W.; Wakaisami, S.; Biri, S.; Drentje, A. G.

    2008-01-01

    Over 3000 cancer patients have already been treated by the heavy-ion medical accelerator in Chiba at the National Institute of Radiological Sciences since 1994. The clinical results have clearly verified the effectiveness and safety of heavy-ion radiotherapy. The most important result has been to establish that the carbon ion is one of the most effective radiations for radiotherapy. The ion source is required to realize a stable beam with the same conditions for daily operation. However, the deposition of carbon ions on the wall of the plasma chamber is normally unavoidable. This causes an ''anti-wall-coating effect,'' i.e., a decreasing of the beam, especially for the higher charge-state ions due to the surface material of the wall. The ion source must be required to produce a sufficiently intense beam under the bad condition. Other problems were solved by improvements and maintenance, and thus we obtained enough reproducibility and stability along with decreased failures. We summarize our over 13 years of experience, and show the scope for further developments

  10. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation.

    Directory of Open Access Journals (Sweden)

    Baoping Zhang

    Full Text Available The adverse effect induced by carbon ion radiation (CIR is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy or X-rays (2, 4, 6, and 12 Gy for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy. The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study

  11. Neoplastic transformation induced by carbon ions.

    Science.gov (United States)

    Bettega, Daniela; Calzolari, Paola; Hessel, Petra; Stucchi, Claudio G; Weyrather, Wilma K

    2009-03-01

    The objective of this experiment was to compare the oncogenic potential of carbon ion beams and conventional photon beams for use in radiotherapy. The HeLa X human skin fibroblast cell line CGL1 was irradiated with carbon ions of three different energies (270, 100, and 11.4 MeV/u). Inactivation and transformation data were compared with those for 15 MeV photons. Inactivation and transformation frequencies for the 270 MeV/u carbon ions were similar to those for 15-MeV photons. The maximal relative biologic effectiveness (RBE(alpha)) values for 100MeV/u and 11.4 MeV/u carbon ions, respectively, were as follows: inactivation, 1.6 +/- 0.2 and 6.7 +/- 0.7; and transformation per surviving cell, 2.5 +/- 0.6 and 12 +/- 3. The curve for dose-transformation per cell at risk exhibited a maximum that was shifted toward lower doses at lower energies. Transformation induction per cell at risk for carbon ions in the entrance channel was comparable to that for photons, whereas for the lower energies, 100 MeV/u and 11 MeV/u, which are representative of the energies delivered to the tumor margins and volume, respectively, the probability of transformation in a single cell was greater than it was for photons. In addition, at isoeffective doses with respect to cell killing, the 11.4-MeV/u beam was more oncogenic than were photons.

  12. Development of irradiation techniques and assessment of tumor response carbon ion radiotherapy in ultra-short fraction and time for a small lung cancer

    International Nuclear Information System (INIS)

    Baba, Masayuki; Miyamoto, Tadaaki; Sugawara, Toshiyuki

    2005-01-01

    For planning safety carbon therapy for lung cancer, the minimum (threshold) dose to generate lung reaction on CT image was investigated at each fraction regimen. From 1995 January to 2003 December, 44 patients with stage I non-small cell lung cancer who were treated with carbon ion beams of various fractions (1-12 fractions a port) and total doses (28-90 GyE). The 78 irradiated fields for the early reaction (within 6 months) and 67 for the late (1 year after) were divided into the two groups: the positive (+) and the negative (-) after the reactions on CT image were graded according to Libshits's criteria. The α/βvalue of biological effective dose (BED) responsive curve was determined by assuming the biserial correlation coefficient between positive rate of lung reaction and BED dose. From the BED responsive curve, in turn, the dose responsive curve for lung reaction rate at each fraction regimen was obtained. Based on the curve, D10 (to generate the lung reaction at 10% of the patients) in single fraction regimen was determined to be 10.6 GyE for the late reaction and 9.96 GyE for the early reaction, respectively. These doses seem to be very useful to estimate lung injuries in singe-dose irradiation. (author)

  13. Clinical results in heavy particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; Quivey, J.M.; Saunders, W.M.; Woodruff, K.H.; Chen, G.T.Y.; Lyman, J.T.; Pitluck, S.; Tobias, C.A.; Walton, R.E.; Peters, T.C.

    1980-01-01

    The chapter presents an overview of the use of heavy particles in human cancer radiotherapy. The biophysical characteristics and rationale for using heavy charged particle therapy are explored. The clinical experience with carbon, neon, argon and helium are summarized for various types of tumors including carcinomas of the uterine cervix and lung, skin melanomas and metastatic sarcomas. No obvious normal tissue complications have appeared

  14. Experimental and clinical studies with intraoperative radiotherapy

    International Nuclear Information System (INIS)

    Sindelar, W.F.; Kinsella, T.; Tepper, J.; Travis, E.L.; Rosenberg, S.A.; Glatstein, E.

    1983-01-01

    Studies of normal tissue tolerance to intraoperative radiotherapy were done upon 65 dogs subjected to laparotomy and 11 million electron volt electron irradiation in doses ranging from zero to 5,000 rads. Results of studies indicated that intact aorta and vena cava tolerate up to 5,000 rads without loss of structural integrity. Ureteral fibrosis and stenosis develop at doses of 3,000 rads or more. Arterial anastomoses heal after doses of 4,500 rads, but fibrosis can lead to occlusion. Intestinal suture lines heal after doses of 4,500 rads. Bile duct fibrosis and stenosis develop at doses of 2,000 rads or more. Biliary-enteric anastomoses fail to heal at any dose level. A clinical trial of intraoperative radiotherapy combined with radical surgery was performed upon 20 patients with advanced malignant tumors which were considered unlikely to be cured by conventional therapies and which included carcinomas of the stomach, carcinomas of the pancreas, carcinomas involving the hilus of the liver, retroperitoneal sarcomas and osteosarcomas of the pelvis. All patients underwent resection of gross tumor, followed by intraoperative irradiation of the tumor bed and regional nodal basins. Some patients received additional postoperative external beam radiotherapy. Treatment mortality for combined operation and radiotherapy occurred in four of 20 patients. Postoperative complications occurred in four of the 16 surviving patients. Local tumor control was achieved in 11 of the 16 surviving patients, with an over-all median follow-up period of 18 months. The clinical trial suggested that intraoperative radiotherapy is a feasible adjunct to resection in locally advanced tumors, that the resulting mortality and morbidity is similar to that expected from operation alone and that local tumor control may be improved

  15. Treatment planning for carbon ion radiotherapy

    International Nuclear Information System (INIS)

    Kraemer, M.; Haberer, T.; Kraft, G.; Schardt, D.; Scholz, D.; Weber, U.; Jaekel, O.

    2001-01-01

    The GSI facility realizes for the first time a combination of an active field shaping, using a scanned beam, with an active energy variation of the beam, thus making full use of the advantages of heavy charged particles for therapy. This novel irradiation technique requires a method for dose calculation and optimization which is radically different from conventional approaches used for example in photon and even proton therapy, due to the strong dependence of the RBE on particle charge, energy and absorbed dose. A prerequisite is the development of a physical beam model as well as a radiobiological model to describe the interactions of ion beams with biological material. (orig.)

  16. Grounded theory for radiotherapy practitioners: Informing clinical practice

    International Nuclear Information System (INIS)

    Walsh, N.A.

    2010-01-01

    Radiotherapy practitioners may be best placed to undertake qualitative research within the context of cancer, due to specialist knowledge of radiation treatment and sensitivity to radiotherapy patient's needs. The grounded theory approach to data collection and analysis is a unique method of identifying a theory directly based on data collected within a clinical context. Research for radiotherapy practitioners is integral to role expansion within the government's directive for evidence-based practice. Due to the paucity of information on qualitative research undertaken by radiotherapy radiographers, this article aims to assess the potential impact of qualitative research on radiotherapy patient and service outcomes.

  17. Carbon ion irradiation of the human prostate cancer cell line PC3: A whole genome microarray study

    Science.gov (United States)

    SUETENS, ANNELIES; MOREELS, MARJAN; QUINTENS, ROEL; CHIRIOTTI, SABINA; TABURY, KEVIN; MICHAUX, ARLETTE; GRÉGOIRE, VINCENT; BAATOUT, SARAH

    2014-01-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/μm) at the beam of the Grand Accélérateur National d’Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy. PMID:24504141

  18. Particles that fight cancer: the use of protons and carbon ions in cancer therapy

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Particles that fight cancer: the use of protons and carbon ions in cancer therapy Cancer is a major societal issue. A key challenge for cancer therapy is the complex and multifaceted nature of the disease, which calls for personalised treatment. Radiotherapy has been used to treat tumours for more than a century, and is still a staple in oncology: today, 50 % of cancer patients receive radiotherapy, half of them with curative intent. Hadrontherapy is one of the most technologically advanced methods of delivering radiation dose to the tumour while protecting surrounding healthy tissues. In addition, hadrontherapy can reach otherwise difficult to access deep-seated tumours and can be used for radio resistant tumours as in hypoxia. This year marks 60 years since the first patient was treated with protons in the US and 20 years since the use of carbon ions in Japan. Join us in learning about the journey of particle therapy in Japan and Europe, its challenges, clinical results and future prospects. Thursday 2...

  19. The problem: Tumor radioresistance in clinical radiotherapy

    International Nuclear Information System (INIS)

    Peters, L.J.; Withers, H.R.; Thames, H.D.; Fletcher, G.H.; M.D. Anderson Hospital and Tumor Inst., Houston, TX)

    1983-01-01

    Tumor radioresistance in clinical radiotherapy implies failure to achieve local-regional disease control with radiation doses producing an acceptable degree of morbidity. Such radioresistance may be due to many different causes (biological and technical) which are reviewed in terms of possible remedial actions. Dose-response relationships for human cancers suggest that, in many sites, tumors are heterogeneous with respect to their cure-limiting characteristics. The case is developed that unless the predominant cure-limiting factor can be predicted, little benefit may be seen in trials of new treatment strategies using heterogeneous tumor populations. The fundamental problem of clinical radioresistance is therefore perceived as the inability to identify predictively its cause in the individual patient

  20. Repair of skin damage during fractionated irradiation with gamma rays and low-LET carbon ions

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Uzawa, Akiko; Takai, Nobuhiko; Fukawa, Takeshi; Furusawa, Yoshiya; Aoki, Mizuho; Hirayama, Ryoichi

    2006-01-01

    In clinical use of carbon-ion beams, a deep-seated tumor is irradiated with a Spread-Out Bragg peak (SOBP) with a high-linear energy transfer (LET) feature, whereas surface skin is irradiated with an entrance plateau, the LET of which is lower than that of the peak. The repair kinetics of murine skin damage caused by an entrance plateau of carbon ions was compared with that caused by photons using a scheme of daily fractionated doses followed by a top-up dose. Right hind legs received local irradiations with either 20 keV/μm carbon ions or γ rays. The skin reaction of the irradiated legs was scored every other day up to Day 35 using a scoring scale that consisted of 10 steps, ranging from 0.5 to 5.0. An isoeffect dose to produce a skin reaction score of 3.0 was used to obtain a total dose and a top-up dose for each fractionation. Dependence on a preceding dose and on the time interval of a top-up dose was examined using γ rays. For fractionated γ rays, the total dose linearly increased while the top-up dose linearly decreased with an increase in the number of fractions. The magnitude of damage repair depended on the size of dose per fraction, and was larger for 5.2 Gy than 12.5 Gy. The total dose of carbon ions with 5.2 Gy per fraction did not change till 2 fractions, but abruptly increased at the 3rd fraction. Factors such as rapid repopulation, induced repair and cell cycle synchronization are possible explanations for the abrupt increase. As an abrupt increase/decrease of normal tissue damage could be caused by changing the number of fractions in carbon-ion radiotherapy, we conclude that, unlike photon therapy, skin damage should be carefully studied when the number of fractions is changed in new clinical trials. (author)

  1. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel

    2011-01-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  2. Analysis of error patterns in clinical radiotherapy

    International Nuclear Information System (INIS)

    Macklis, Roger; Meier, Tim; Barrett, Patricia; Weinhous, Martin

    1996-01-01

    Purpose: Until very recently, prescription errors and adverse treatment events have rarely been studied or reported systematically in oncology. We wished to understand the spectrum and severity of radiotherapy errors that take place on a day-to-day basis in a high-volume academic practice and to understand the resource needs and quality assurance challenges placed on a department by rapid upswings in contract-based clinical volumes requiring additional operating hours, procedures, and personnel. The goal was to define clinical benchmarks for operating safety and to detect error-prone treatment processes that might function as 'early warning' signs. Methods: A multi-tiered prospective and retrospective system for clinical error detection and classification was developed, with formal analysis of the antecedents and consequences of all deviations from prescribed treatment delivery, no matter how trivial. A department-wide record-and-verify system was operational during this period and was used as one method of treatment verification and error detection. Brachytherapy discrepancies were analyzed separately. Results: During the analysis year, over 2000 patients were treated with over 93,000 individual fields. A total of 59 errors affecting a total of 170 individual treated fields were reported or detected during this period. After review, all of these errors were classified as Level 1 (minor discrepancy with essentially no potential for negative clinical implications). This total treatment delivery error rate (170/93, 332 or 0.18%) is significantly better than corresponding error rates reported for other hospital and oncology treatment services, perhaps reflecting the relatively sophisticated error avoidance and detection procedures used in modern clinical radiation oncology. Error rates were independent of linac model and manufacturer, time of day (normal operating hours versus late evening or early morning) or clinical machine volumes. There was some relationship to

  3. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  4. Specification of carbon ion dose at the National Institute of Radiological Sciences (NIRS)

    International Nuclear Information System (INIS)

    Matsufuji, Naruhiro; Nakai, Tatsuaki; Kanematsu, Nobuyuki

    2007-01-01

    The clinical dose distributions of therapeutic carbon beams, currently used at National Institute of Radiological Sciences (NIRS) Heavy Ion Medical Accelerator in Chiba (HIMAC), are based on in-vitro Human Salivary Gland (HSG) cell survival response and clinical experience from fast neutron radiotherapy. Moderate radiosensitivity of HSG cells is expected to be a typical response of tumours to carbon beams. At first, the biological dose distribution is designed so as to cause a flat biological effect on HSG cells in the spread-out Bragg peak (SOBP) region. Then, the entire biological dose distribution is evenly raised in order to attain a RBE (relative biological effectiveness)=3.0 at a depth where dose-averaged LET (linear energy transfer) is 80 keV/μm. At that point, biological experiments have shown that carbon ions can be expected to have a biological effect identical to fast neutrons, which showed a clinical RBE of 3.0 for fast neutron radiotherapy at NIRS. The resulting clinical dose distribution in this approximation is not dependent on dose level, tumour type or fractionation scheme and thus reduces the unknown parameters in the analysis of the clinical results. The width SOBP and the clinical/physical dose at the center of SOBP specify the dose distribution. The clinical results analyzed in terms of tumor control probability (TCP) were found to show good agreement with the expected RBE value at higher TCP levels. The TCP analysis method was applied for the prospective dose estimation of hypofractionation. (author)

  5. Radiotherapy

    International Nuclear Information System (INIS)

    Wannenmacher, M.; Debus, J.; Wenz, F.

    2006-01-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  6. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions.

    Science.gov (United States)

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term "relative dose effect" (RDE). This ratio is advantageous, as it allows for simple comparison of dose-response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2-15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses

  7. Quality assurance of radiotherapy and its clinical assessment

    International Nuclear Information System (INIS)

    Inoue, Toshihiko

    2002-01-01

    We investigated the clinical quality assurance (QA) of radiotherapy in Japan since 1981. The aim of this study was to establish the QA of a radiotherapy system and its clinical assessment in Japan. We introduced the Patterns of Care Study (PCS) into Japan to perform this study in 1996. The PCS is a retrospective study designed to establish the national practice for cancer patients during a specific period and should be a complementary study to a prospective randomized controlled study. We collected precise data for 4399 patients with carcinomas of the breast, cervix, esophagus, lung and prostate by means of external audits for 96 institutes from 1998 through 2001. Patients were randomly sampled with two-stage cluster sampling. We stratified 556 institutes into four categories according to the academic condition and annual number of radiotherapy patients. National and regional averages of various factors of radiotherapy could be calculated and were used to measure QA of radiotherapy. Using a standard score, we could compare the process of individual institutions with national averages and feed back the evaluation score to each institution. With a PCS process survey, we could observe the dissemination of the treatment method under evidence-based medicine from the prospective randomized controlled study. We proposed future prediction of the number of radiotherapy patients and a counter plan for equipment and personnel. The first US-Japan PCS Workshop was held at San Francisco in 2001. We could establish QA of a radiotherapy system using PCS 1995-97 in Japan. (author)

  8. Microdosimetry of proton and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Liamsuwan, Thiansin [Thailand Institute of Nuclear Technology, Ongkharak, Nakhon Nayok 26120 (Thailand); Hultqvist, Martha [Medical Radiation Physics, Department of Physics, Stockholm University, SE-10691 (Sweden); Lindborg, Lennart; Nikjoo, Hooshang, E-mail: hooshang.nikjoo@ki.se [Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 SE-17176, Stockholm (Sweden); Uehara, Shuzo [School of Health Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-08-15

    carbon ion beams. The results are useful for characterizing ion beams of practical importance for biophysical modeling of radiation-induced DNA damage response and repair in the depth profiles of protons and carbon ions used in radiotherapy.

  9. Combined radiotherapy-chemotherapy in clinical practice

    International Nuclear Information System (INIS)

    Horwich, A.

    1989-01-01

    This paper investigates the combination of radiotherapy and chemotherapy performed over the last 15 years. The improvement of the therapeutic ratio of anti- cancer effect to normal tissue toxicity and its requirement of a thorough understanding of the biological effects of each modality and of how these effects may interact is presented. Early studies and conclusions are examined

  10. Clinical research of teeth damage from radiotherapy

    International Nuclear Information System (INIS)

    Li Erzhou; Yan Maosheng; Chen Wei; Li Qing

    2003-01-01

    Objective: To analyze various factors inducing teeth damage from radiotherapy and the preventive and treatment methods. Methods: One hundred cases of patients treated by radiotherapy were divided into two groups. In group one there were 60 cases whose teeth were irradiated during treatment; in group two there were 40 cases whose teeth were not irradiated during treatment. Results: The caries incidence was 60% for group one and 15% for group two (P<0.01). By auto-control in 15 patients, the caries incidence on the sick side was obviously higher than that of the healthy side. Hundred percent caries incidence was found in 6 cases who received a dosage of 70 Gy. Conclusion: The authors believe that radiation damage to the teeth is associated with the following factors: 1. The dosage and location of irradiation are closely related to caries incidence; 2. The active dentinoblasts are very sensitive to radiation; 3. Damage to the salivary glands from radiotherapy can result in reduction of salvia and pH value, leading to a high growth rate of Streptococcus mutans. Following preventive measures could be considered in future cases: to apply a caries prevention coating or protective dental crown and TPS, to adjust the dose and time of irradiation, to select conformal radiotherapy technique. The key points for protecting the teeth and salivary gland from caries and damage are protection of the proliferation ability of pulp cells, anti-inflammation, promotion of microcirculation, and strengthening body resistance

  11. Brain Injury After Proton Therapy or Carbon Ion Therapy for Head-and-Neck Cancer and Skull Base Tumors

    International Nuclear Information System (INIS)

    Miyawaki, Daisuke; Murakami, Masao; Demizu, Yusuke; Sasaki, Ryohei; Niwa, Yasue; Terashima, Kazuki; Nishimura, Hideki; Hishikawa, Yoshio; Sugimura, Kazuro

    2009-01-01

    Purpose: To assess the incidence of early delayed or late morbidity of Brain after particle therapy for skull base tumors and head-and-neck cancers. Methods and Materials: Between May 2001 and December 2005, 59 patients with cancerous invasion of the skull base were treated with proton or carbon ion therapy at the Hyogo Ion Beam Medical Center. Adverse events were assessed according to the magnetic resonance imaging findings (late effects of normal tissue-subjective, objective, management, analytic [LENT-SOMA]) and symptoms (Common Terminology Criteria for Adverse Events [CTCAE], version 3.0). Dose-volume histograms were used to analyze the relationship between the dose and volume of the irradiated brain and the occurrence of brain injury. The median follow-up time was 33 months. Results: Of the 48 patients treated with proton therapy and 11 patients treated with carbon ion radiotherapy, 8 (17%) and 7 (64%), respectively, developed radiation-induced brain changes (RIBCs) on magnetic resonance imaging (LENT-SOMA Grade 1-3). Four patients (7%) had some clinical symptoms, such as vertigo and headache (CTCAE Grade 2) or epilepsy (CTCAE Grade 3). The actuarial occurrence rate of RIBCs at 2 and 3 years was 20% and 39%, respectively, with a significant difference in the incidence between the proton and carbon ion radiotherapy groups. The dose-volume histogram analyses revealed significant differences between Brain lobes with and without RIBCs in the actuarial volume of brain lobes receiving high doses. Conclusion: Particle therapies produced minimal symptomatic brain toxicities, but sequential evaluation with magnetic resonance imaging detected a greater incidence of RIBCs. Significant differences were observed in the irradiated brain volume between Brain lobes with and without RIBCs.

  12. Clinical evaluation of radiotherapy for endocrine ophthalmopathy

    International Nuclear Information System (INIS)

    Okada, Kayoko; Oshitani, Takashi; Mieda, Chieko

    1990-01-01

    Ten patients with severe endocrine ophthalmopathy were treated by radiotherapy at Hyogo Medical Center for Adults from May 1984 to February 1988. All but one of the patients had poorly responded to previous systemic or topical corticosteroid therapy. The target of the radiotherapy was both retrobulbar tissues. The radiation field used was about 4 x 4 cm, excluding the pituitary gland and the brain, and was angled 5deg posteriorly to avoid the contralateral lens. A total of 2000 cGy was given to each patient over a 2 week-period. Eight of the ten patients showed some response, with 5 of them (50%) having a good to excellent response. Treatment was more effective for soft tissue changes, proptosis and keratopathy, while myopathy was less responsive. As for the duration of the eye signs and symptoms, those of a shorter duration (less than 12 months) responded better. It was also noted that the degree of the eye muscle enlargement on the pre-treatment orbital CT scan was directly correlated to the results of the treatment. Although three of the patients experienced transient headache, there were no serious acute reactions or long term complications. In conclusion, retrobulbar radiotherapy is a well-tolerated, safe and effective treatment for sever endocrine ophthalmopathy. (author)

  13. Clinical evaluation of radiotherapy for endocrine ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kayoko; Oshitani, Takashi; Mieda, Chieko (Hyogo Medical Center for Adults, Hyogo (Japan)) (and others)

    1990-06-01

    Ten patients with severe endocrine ophthalmopathy were treated by radiotherapy at Hyogo Medical Center for Adults from May 1984 to February 1988. All but one of the patients had poorly responded to previous systemic or topical corticosteroid therapy. The target of the radiotherapy was both retrobulbar tissues. The radiation field used was about 4 x 4 cm, excluding the pituitary gland and the brain, and was angled 5deg posteriorly to avoid the contralateral lens. A total of 2000 cGy was given to each patient over a 2 week-period. Eight of the ten patients showed some response, with 5 of them (50%) having a good to excellent response. Treatment was more effective for soft tissue changes, proptosis and keratopathy, while myopathy was less responsive. As for the duration of the eye signs and symptoms, those of a shorter duration (less than 12 months) responded better. It was also noted that the degree of the eye muscle enlargement on the pre-treatment orbital CT scan was directly correlated to the results of the treatment. Although three of the patients experienced transient headache, there were no serious acute reactions or long term complications. In conclusion, retrobulbar radiotherapy is a well-tolerated, safe and effective treatment for sever endocrine ophthalmopathy. (author).

  14. Development and clinical application of In Vivo dosimetry for radiotherapy

    International Nuclear Information System (INIS)

    Honda, Hirofumi; Oita, Masataka; Tominaga, Masahide; Oto, Yoshihiro

    2016-01-01

    In practical radiotherapy, it is important to deliver radiation to the target correctly and safely according to the treatment planning. The control of radiation dose delivered to each patient in radiotherapy mainly relies on the prediction based on the result of pre-treatment verification and irradiation accuracy of treatment machines. In Vivo dosimetry in radiotherapy is the procedure of quality assurance by the way of direct measurement for the patient whether the calculated prescribed dose in the treatment planning is delivered precisely. The history of In Vivo dosimetry is relatively long, and the TLD dosimetry for clinical radiotherapy started in early 1970's. After 1980's, owing to the development of semiconductor devices such as diode detectors, semiconductor arrays, the clinical applications for the dosimetry and diagnostic radiation imaging devices which contributed to the development of electric portal imaging devices and 2D semiconductor detectors were introduced. In recent years, these radiation measurement devices and non-invasive methods have been developed, they are becoming widespread as clinical practice. In this paper, we reviewed the In Vivo dosimetry devices and their characteristics, and technical application for radiotherapy. (author)

  15. Clinical Applications of 3-D Conformal Radiotherapy

    Science.gov (United States)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  16. Clinical dosimetry in molecular radiotherapy: protocol optimization and clinical implementation

    International Nuclear Information System (INIS)

    Ferrer, Ludovic

    2011-01-01

    Molecular radiotherapy (mrt) consists in destructing tumour targets by radiolabelled vectors. This nuclear medicine specialty is being considered with increasing interest for example via the success achieved in the treatment of non-Hodgkin lymphomas by radioimmunotherapy. One of the keys of mrt optimization relies on the personalising of absorbed doses delivered to the patient: This is required to ascertain that irradiation is focused on tumour cells while keeping surrounding healthy tissue irradiation at an acceptable - non-toxic - level. Radiation dose evaluation in mrt requires in one hand, the spatial and temporal localization of injected radioactive sources by scintigraphic imaging, and on a second hand, the knowledge of the emitted radiation propagating media, given by CT imaging. Global accuracy relies on the accuracy of each of the steps that contribute to clinical dosimetry. There is no reference, standardized dosimetric protocol to date. Due to heterogeneous implementations, evaluation of the accuracy of the absorbed dose is a difficult task. In this thesis, we developed and evaluated different dosimetric approaches that allow us to find a relationship between the absorbed dose to the bone marrow and haematological toxicity. Besides, we built a scientific project, called DosiTest, which aims at evaluating the impact of the various step that contribute to the realization of a dosimetric study, by means of a virtual multicentric comparison based on Monte-Carlo modelling. (author) [fr

  17. Dose-volume histogram analysis of hepatic toxicity related to carbon ion radiation therapy of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yasuda, Shigeo; Kato, Hirotoshi; Tsujii, Hitohiko; Mizoe, Junetsu

    2005-01-01

    The purpose of this study is to analyze the correlation of hepatic toxicity with dose-volume factors of carbon ion radiotherapy in the liver. Forty-nine patients with hepatocellular carcinoma were treated with carbon ion radiotherapy delivered in 4 fractions over 4 to 7 days. Six patients received a total dose of 48 GyE and 43 received 52.8 GyE. The correlation of various blood biochemistry data with dose-volume histogram (DVH) data in non-cancerous liver were evaluated. The strongest significant correlation was seen between percent volume of non-cancerous liver with radiation dose more than 11 GyE (V 11 GyE ) and elevation of serum glutamic oxaloacetic transaminase (GOT) level as early adverse response after carbon ion beam radiation therapy (p=0.0003). In addition, significant correlation between DVH data and change of several other blood biochemistry data were also revealed in early phase. In late phase after carbon ion radiotherapy, the strongest significant correlation was seen between decrease of platelet count and V 26GyE (p=0.015). There was no significant correlation between other blood biochemistry data and DVH data in the late phase. It was suggested that dose-volume factors of carbon ion radiotherapy influenced only transient aggravation of liver function, which improved in the long term after irradiation. (author)

  18. Clinical efficacy of radiotherapy combined with sodium glycididazole ...

    African Journals Online (AJOL)

    Purpose: To assess the clinical efficacy and side effects of radiotherapy combined with sodium glycididazole in the treatment of recurrent esophageal carcinoma. Methods: Ninety patients with locally recurrent oesophageal carcinoma who were admitted to the Oncology Department at Taian City Central Hospital, Shandong, ...

  19. Experimental radiotherapy and clinical radiobiology. Vol. 18. Proceedings

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H. Peter; Zips, Daniel

    2009-01-01

    The proceedings on experimental radiotherapy and clinical radiobiology contain two review articles (prediction of normal tissue reactions after radiotherapy, ?H2AX foci as a marker for DNA double-strand breaks) and 34 contributions to the following topics: Hypoxia and molecular mechanisms of radiation resistance; biological imaging of the tumor micromilieu; DNA repair, genomic instability and carcerogenesis; molecular factors of radiation resistance; actual controversial discussion on possible irradiation caused metastasis risk enhancement; EGFR inhibition and irradiation; biology of experimental radiation/ normal tissue toxicity

  20. Organizational, technical, physical and clinical quality standards for radiotherapy

    Science.gov (United States)

    Bogusz-Czerniewicz, Marta; Kaźmierczak, Daniel

    2012-01-01

    Background Indisputably, radiotherapy has become an entirely interdisciplinary specialty. This situation requires efficient planning, verification, monitoring, quality control and constant improvement of all aspects of service delivery, referring both to patients’ (including diagnosis, prescription and method of treatment, its justification, realization and follow up) and organizational, technical and physics matters. Aim The aim of this work was to develop technical, physics and clinical quality standards for radiotherapy. This paper presents chosen standards for each of the aforementioned category. Materials and methods For the development of quality standards the comparison analysis of EU and Polish acts of law passed between 1980 and 2010 was conducted, the universal industrial ISO norm 9001:2008 referring to quality management system was reviewed. Recommendations of this norm were completed with detailed quality standards based on the author's 11 year work experience and the review of articles on quality assurance and quality control standards for radiotherapy published between 1984 and 2009 and the review of current recommendations and guidelines of American, International, European and National bodies (associations, societies, agencies such as AAPM, ESTRO, IAEA, and OECI) for quality assurance and quality management in radiotherapy. Results As a result 352 quality standards for radiotherapy were developed and categorized into the following three groups: (1) organizational standards, (2) physics and technical standards and (3) clinical standards. Conclusions Proposed quality standards for radiotherapy, can be used by any institution using ionizing radiation for medical procedures. Nevertheless standards are only of value if they are implemented, reviewed, audited and improved and if there is a clear mechanism in place to monitor and address failure to meet agreed standards. PMID:24377023

  1. Clinical considerations of Monte Carlo for electron radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Faddegon, Bruce; Balogh, Judith; Mackenzie, Robert; Scora, Daryl

    1998-01-01

    Technical requirements for Monte Carlo based electron radiotherapy treatment planning are outlined. The targeted overall accuracy for estimate of the delivered dose is the least restrictive of 5% in dose, 5 mm in isodose position. A system based on EGS4 and capable of achieving this accuracy is described. Experience gained in system design and commissioning is summarized. The key obstacle to widespread clinical use of Monte Carlo is lack of clinically acceptable measurement based methodology for accurate commissioning

  2. NIRS methods of specifying carbon ion dose verification of RBE and tumour specific radiosensitivity

    International Nuclear Information System (INIS)

    Matsufuji, Naruhiro; Kanai, Tatsuaki; Kanematsu, Nobuyuki

    2006-01-01

    Clinical dose distribution of therapeutic carbon beams, currently used at National Institute of Radiological Sciences (NIRS) Heavy Ion Medical Accelerator in Chiba (HIMAC), is designed based on in-vitro Human Salivary Gland (HSG) cell survival response and clinical experiences of fast neutron radiotherapy. At first, the biological dose distribution is designed so as to cause a flat biological effect on HSG cells in spread-out Bragg peak (SOBP) region. Then, the entire biological dose distribution is evenly raised in order to attain relative biological effectiveness (RBE)=3.0 at a depth where dose-averaged linear energy transfer (LET) is 80 keV/μm. A retrospective analysis was made to examine appropriateness on the estimation of the biological effectiveness of carbon-ion radiotherapy using resultant data of clinical trials at HIMAC. Using this RBE system, over 2,700 patients have been treated by carbon beams. As a part of these patient data, local control rate of non-small lung cancer, were analysed to verify the clinical RBE of the carbon beam. The local control rate was compared with those for published by groups of Gunma University and Massachusetts General Hospital. Using a simplified tumour control probability (TCP) model, clinical RBE values were obtained for different level of the tumour control probability. For the 50% level of the clinical TCP, the RBE values nearly coincide with those of in-vitro human salivary gland cell survival at 10%. For the higher level of the clinical TCP, the RBE values approach closer to those adapted in clinical trials at HIMAC. The approach was also applied for those of chordoma, bone and soft tissue sarcoma and rectal cancer. Difference in radiosensitivity is observed for the tumours. (author)

  3. Chromosomal aberrations in peripheral blood lymphocytes of prostate cancer patients treated with IMRT and carbon ions

    International Nuclear Information System (INIS)

    Hartel, Carola; Nikoghosyan, Anna; Durante, Marco; Sommer, Sylwester; Nasonova, Elena; Fournier, Claudia; Lee, Ryonfa; Debus, Juergen; Schulz-Ertner, Daniela; Ritter, Sylvia

    2010-01-01

    Background and purpose: To investigate the cytogenetic damage in blood lymphocytes of patients treated for prostate cancer with different radiation qualities and target volumes. Materials and methods: Twenty patients receiving carbon-ion boost irradiation followed by IMRT or IMRT alone for the treatment of prostate cancer entered the study. Cytogenetic damage induced in peripheral blood lymphocytes of these patients was investigated at different times during the radiotherapy course using Giemsa staining and mFISH. A blood sample from each patient was taken before initiation of radiation therapy and irradiated in vitro to test for individual radiosensitivity. In addition, in vitro dose-effect curves for the induction of chromosomal exchanges by X-rays and carbon ions of different energies were measured. Results: The yield of chromosome aberrations increased during the therapy course, and the frequency was lower in patients irradiated with carbon ions as compared to patients treated with IMRT with similar target volumes. A higher frequency of aberrations was measured by increasing the target volume. In vitro, high-LET carbon ions were more effective than X-rays in inducing aberrations and yielded a higher fraction of complex exchanges. The yield of complex aberrations observed in vivo was very low. Conclusion: The investigation showed no higher aberration yield induced by treatment with a carbon-ion boost. In contrast, the reduced integral dose to the normal tissue is reflected in a lower chromosomal aberration yield when a carbon-ion boost is used instead of IMRT alone. No cytogenetic 'signature' of exposure to densely ionizing carbon ions could be detected in vivo.

  4. Prediction of clinical course of glioblastomas by MRI during radiotherapy

    International Nuclear Information System (INIS)

    Leitzen, Christina; Schild, Hans H.; Bungart, Birgitta; Luetter, Christiana; Muedder, Thomas; Wilhelm-Buchstab, Timo; Schueller, Heinrich; Herrlinger, Ulrich

    2010-01-01

    Purpose: Determine the value of MR studies in patients undergoing radiotherapy for glioblastomas pre and during radiotherapy to predict the clinical course. Patients and Methods: MR follow-up studies were performed in 33 patients with glioblastomas before radiotherapy, after 30 Gy, after 60 Gy, and in the treatment follow-up. Findings on MR were categorized into: definite progress, questionable progress, status idem. Patients were followed clinically (median for 11 months). Results: After 30 Gy 23/33 (70%) of the MR examination showed status idem. 10/33 (30%) demonstrated definite (n = 6) or questionable (n = 4) progress. Further tumor progress was faster in these patients and patients succumb to their disease earlier (9 vs. 22 months). The 60 Gy study showed definite (n = 8) and questionable (n = 6) progress in 14/33 (42%) cases. All these tumors were progressing faster and were associated with a comparatively reduced life expectancy. Conclusion: MR follow-up studies after 30 Gy in patients undergoing radiotherapy for glioblastomas allow for prognostic appraisal, and potentially early modification of treatment. (orig.)

  5. Radiotherapy

    International Nuclear Information System (INIS)

    Prosnitz, L.R.; Kapp, D.S.; Weissberg, J.B.

    1983-01-01

    This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted

  6. Intraoperative radiotherapy. Clinical experiences and results

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, F.A.; Santos, M. (Clinica Universitaria, Dept. of Oncology, Service of Radiotherapy, Pamplona (Spain)); Brady, L.W. (Hahnemann Univ., Dept. of Radiation Oncology, Philadelphia, PA (United States)) (eds.)

    1992-01-01

    This monograph reports on the largest clinical series to date in which intraoperative radiation therapy (IORT) has been used in mulitdisciplinary treatment programs for tumors of various sites and differing histological sybtype. It represents the product of 5 years' intensive work by physicians active at a leading European institution. The findings are supplemented by a thorough review of the data presented worldwide during the last two decades. The results in this book are meticulously presented and focus on the most important features of clinical research reports based on phase I-II studies (toxicity, local tumor control, and survival data). The tumor sites and histologies analyzed are: head and neck cancer, lung cancer, gastric cancer, pancreatic cancer, colorectal cancer, bladder cancer, gynecologic cancer, soft tissue sarcomas of the extremities, retroperitoneal and other central soft issue sarcomas, Ewing's sarcoma, osteosarcoma, and intracranial tumors. (orig./MG) With 60 figs.

  7. Proton Radiotherapy for Parameningeal Rhabdomyosarcoma: Clinical Outcomes and Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Stephanie K. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Kozak, Kevin R. [Department of Radiation Oncology, University of Wisconsin Cancer Center Johnson Creek, Madison, WI (United States); Friedmann, Alison M. [Department of Pediatric Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Yeap, Beow Y. [Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Adams, Judith; MacDonald, Shannon M.; Liebsch, Norbert J.; Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States); Yock, Torunn I., E-mail: tyock@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2012-02-01

    Purpose: To report the clinical outcome and late side effect profile of proton radiotherapy in the treatment of children with parameningeal rhabdomyosarcoma (PM-RMS). Methods and Materials: Seventeen consecutive children with PM-RMS were treated with proton radiotherapy at Massachusetts General Hospital between 1996 and 2005. We reviewed the medical records of all patients and asked referring physicians to report specific side effects of interest. Results: Median patient age at diagnosis was 3.4 years (range, 0.4-17.6). Embryonal (n = 11), alveolar (n = 4), and undifferentiated (n = 2) histologies were represented. Ten patients (59%) had intracranial extension. Median prescribed dose was 50.4 cobalt gray equivalents (GyRBE) (range, 50.4-56.0 GyRBE) delivered in 1.8-2.0-GyRBE daily fractions. Median follow-up was 5.0 years for survivors. The 5-year failure-free survival estimate was 59% (95% confidence interval, 33-79%), and overall survival estimate was 64% (95% confidence interval, 37-82%). Among the 7 patients who failed, sites of first recurrence were local only (n = 2), regional only (n = 2), distant only (n = 2), and local and distant (n = 1). Late effects related to proton radiotherapy in the 10 recurrence-free patients (median follow-up, 5 years) include failure to maintain height velocity (n = 3), endocrinopathies (n = 2), mild facial hypoplasia (n = 7), failure of permanent tooth eruption (n = 3), dental caries (n = 5), and chronic nasal/sinus congestion (n = 2). Conclusions: Proton radiotherapy for patients with PM-RMS yields tumor control and survival comparable to that in historical controls with similar poor prognostic factors. Furthermore, rates of late effects from proton radiotherapy compare favorably to published reports of photon-treated cohorts.

  8. An evaluation of the utilisation of the virtual environment for radiotherapy training (VERT) in clinical radiotherapy centres across the UK

    International Nuclear Information System (INIS)

    James, Sarah; Dumbleton, Claire

    2013-01-01

    Aim: The purpose of the survey was to evaluate the utilisation of the Virtual Environment for Radiotherapy Training (VERT) in clinical radiotherapy centres across the UK. Methods: A survey questionnaire was constructed using the Survey Monkey™ tool to evaluate the utilisation of the Virtual Environment for Radiotherapy Training. Once constructed, an online link to the survey questionnaire was emailed to all radiotherapy centre managers in the UK (n = 67) who were invited to provide one response per centre. The survey comprised forty-five questions which were grouped into eleven sections. Key results: The results indicate that 61% of UK radiotherapy centres have VERT installed, twenty centres are currently without a VERT installation and only 1 centre is intending to install a system in the near future. The results also indicate that the use of VERT varies considerably in differing radiotherapy centres with the most frequent use of VERT being for the training of staff, specifically for the training of pre-registration therapeutic radiographers and preparation time for trainers. The majority of centres using VERT for any of the purposes investigated feel it provides benefits. Conclusions and recommendations: The survey highlighted the varied use of VERT in radiotherapy centres across the UK and indicated that when VERT is used in clinical radiotherapy centres, a wide variety of benefits are experienced. Because of the variation in use, it is concluded that the benefits of the VERT installations in radiotherapy centres across the UK are not being fully realised. It is recommended that all radiotherapy service managers commit adequate resources to develop and implement VERT fully and effectively so that its full potential is realised in all radiotherapy centres across the UK

  9. Clinical application of radiotherapy combined with chemotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1978-01-01

    In clinical application of radiation therapy combined with chemotherapy, it is important to gain the maximal therapeutic benefit. At present we have no agents that improve the therapeutic ratio by enhancing the effect of radiation on the tumor cell selectively. Therefore, it is necessary to use combining some or all of following procedures: (1) the intraarterial infusion of the agents, (2) the selective localization by reason of the biological affinity of the agents, (3) the surgical removal of the non-sensitized tumor residue and (4) the selective sensitization of the tumor due to its shorter cell cycle. (author)

  10. Head and neck cancers: clinical benefits of three-dimensional conformal radiotherapy and of intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Giraud, P.; Jaulerry, C.; Brunin, F.; Zefkili, S.; Helfre, S.; Chauvet, I.; Rosenwald, J.C.; Cosset, J.M.

    2002-01-01

    The conformal radiotherapy approach, three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT), is based on modern imaging modalities, efficient 3-D treatment planning systems, sophisticated immobilization systems and rigorous quality assurance and treatment verification. The central objective of conformal radiotherapy is to ensure a high dose distribution tailored to the limits of the target volume while reducing exposure of normal tissues. These techniques would then allow further tumor dose escalation. Head-and-neck tumors are some of the most attractive localizations to test conformal radiotherapy. They combine ballistic difficulties due to particularly complex shapes (nasopharynx, ethmoid) and problems due to the number and low tolerance of neighbouring organs like parotids, eyes, brainstem and spinal cord. The therapeutic irradiation of head-and-neck tumors thus remains a challenge for the radiation oncologist. Conformal radiotherapy does have a significant potential for improving local control and reducing toxicity when compared to standard radiotherapy. However, in the absence of prospective randomized trials, it is somewhat difficult at present to evaluate the real benefits drawn from 3DCRT and IMRT. The published clinical reports on the use of conformal radiotherapy are essentially dealing with dosimetric comparisons on relatively small numbers of patients. Recently, a few publications have emphasized the clinical experience several precursor teams with a suitable follow-up. This paper describes the current state-of-the-art of 3DCRT and IMRT in order to evaluate the impact of these techniques on head-and-neck cancers irradiation. (authors)

  11. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions

    Science.gov (United States)

    Gwosch, K.; Hartmann, B.; Jakubek, J.; Granja, C.; Soukup, P.; Jäkel, O.; Martišíková, M.

    2013-06-01

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient’s geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations

  12. Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT.

    Science.gov (United States)

    Jensen, Alexandra D; Winter, Marcus; Kuhn, Sabine P; Debus, Jürgen; Nairz, Olaf; Münter, Marc W

    2012-03-29

    To investigate repositioning accuracy in particle radiotherapy in 6 degrees of freedom (DOF) and intensity-modulated radiotherapy (IMRT, 3 DOF) for two immobilization devices (Scotchcast masks vs thermoplastic head masks) currently in use at our institution for fractionated radiation therapy in head and neck cancer patients. Position verifications in patients treated with carbon ion therapy and IMRT for head and neck malignancies were evaluated. Most patients received combined treatment regimen (IMRT plus carbon ion boost), immobilization was achieved with either Scotchcast or thermoplastic head masks. Position corrections in robotic-based carbon ion therapy allowing 6 DOF were compared to IMRT allowing corrections in 3 DOF for two standard immobilization devices. In total, 838 set-up controls of 38 patients were analyzed. Robotic-based position correction including correction of rotations was well tolerated and without discomfort. Standard deviations of translational components were between 0.5 and 0.8 mm for Scotchcast and 0.7 and 1.3 mm for thermoplastic masks in 6 DOF and 1.2-1.4 mm and 1.0-1.1 mm in 3 DOF respectively. Mean overall displacement vectors were between 2.1 mm (Scotchcast) and 2.9 mm (thermoplastic masks) in 6 DOF and 3.9-3.0 mm in 3 DOF respectively. Displacement vectors were lower when correction in 6 DOF was allowed as opposed to 3 DOF only, which was maintained at the traditional action level of >3 mm for position correction in the pre-on-board imaging era. Setup accuracy for both systems was within the expected range. Smaller shifts were required when 6 DOF were available for correction as opposed to 3 DOF. Where highest possible positioning accuracy is required, frequent image guidance is mandatory to achieve best possible plan delivery and maintenance of sharp gradients and optimal normal tissue sparing inherent in carbon ion therapy.

  13. Clinical application of radiation dosimetry on X-ray radiotherapy

    International Nuclear Information System (INIS)

    Mizutani, Takeo

    1995-01-01

    In the case of radiotherapy, it is important to give proper dose for a tumor, to be treated with the objective of therapy, and to evaluate the dose, considering dose for other organs at risk to a sufficient extent. To provide an exposure dose at the target volume of tumor parts, it should be required to get a good understanding of the correct dosimetric method and also to apply this to clinical application in practice. All over the country, so as not to produce any difference in the given dose, 'A practical code for the dosimetry of high energy X-rays in radiotherapy' was issued by the Japanese Associations of radiological physicists in 1972. In 1986, it was revised. At about 85% of therapeutic facilities in the country, radiation engineers perform dose measurements and controls. Therefore, I have explained the process of measurement and dose calculation, with the main objective directed at the engineers in charge of the radiotherapy so as to easily radiation dosimetry of X-ray with dosemeters and phantom used at each facility according to the 'practical code'. (author)

  14. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    International Nuclear Information System (INIS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-01-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  15. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  16. Radiotherapy

    Directory of Open Access Journals (Sweden)

    Rema Jyothirmayi

    1999-01-01

    Full Text Available Purpose. Conservative treatment in the form of limited surgery and post-operative radiotherapy is controversial in hand and foot sarcomas, both due to poor radiation tolerance of the palm and sole, and due to technical difficulties in achieving adequate margins.This paper describes the local control and survival of 41 patients with soft tissue sarcoma of the hand or foot treated with conservative surgery and radiotherapy. The acute and late toxicity of megavoltage radiotherapy to the hand and foot are described. The technical issues and details of treatment delivery are discussed. The factors influencing local control after radiotherapy are analysed.

  17. On the cost-effectiveness of Carbon ion radiation therapy for skull base chordoma

    International Nuclear Information System (INIS)

    Jaekel, Oliver; Land, Beate; Combs, Stephanie Elisabeth; Schulz-Ertner, Daniela; Debus, Juergen

    2007-01-01

    Aim: The cost-effectiveness of Carbon ion radiotherapy (RT) for patients with skull base chordoma is analyzed. Materials and Methods: Primary treatment costs and costs for recurrent tumors are estimated. The costs for treatment of recurrent tumors were estimated using a sample of 10 patients presenting with recurrent chordoma at the base of skull at DKFZ. Using various scenarios for the local control rate and reimbursements of Carbon ion therapy the cost-effectiveness of ion therapy for these tumors is analyzed. Results: If local control rate for skull base chordoma achieved with carbon ion therapy exceeds 70.3%, the overall treatment costs for carbon RT are lower than for conventional RTI. The cost-effectiveness ratio for carbon RT is 2539 Euro per 1% increase in survival, or 7692 Euro per additional life year. Conclusion: Current results support the thesis that Carbon ion RT, although more expensive, is at least as cost-effective as advanced photon therapies for these patients. Ion RT, however, offers substantial benefits for the patients such as improved control rates and less severe side effects

  18. Comparative Analysis between preoperative Radiotherapy and postoperative Radiotherapy in Clinical Stage I and II Endometrial Carcinoma

    International Nuclear Information System (INIS)

    Keum, Ki Chang; Lee, Chang Geol; Chung, Eun Ji; Lee, Sang Wook; Kim, Woo Cheol; Chang, Sei Kyung; Oh, Young Taek; Suh, Chang Ok; Kim, Gwi Eon

    1995-01-01

    Purpose : To obtain the optical treatment method in patients with endometrial carcinoma(clinical stage FIGO I, II) by comparative analysis between preoperative radiotherapy(pre-op R) and postoperative radiotherapy(post-op RT). Materials and Methods : A retrospective review of 62 endometrial carcinoma patients referred to the Yonsei Cancer Center for radiotherapy between 1985 and 1991 was undertaken. Of 62 patients, 19 patients(Stage I; 12 patients, Stage II; 7 patients) received pre-op RT before TAH(Total Abdominal Hysterectomy) and BSO(Bilateral Salphingoophorectomy) (Group 1) and 43 patients( Stage 1; 32 patients, Stage 2; 11 patients) received post-op RT after TAH and BSO (Group 2). Pre-op irradiation was given 4-6 weeks prior to surgery and post-op RT was administered on 4-5 weeks following surgery. All patients exept 1 patient(Group2; ICR alone) received external irradiation. Seventy percent(13/19) of pre-op RT group and 54 percent(23/42) of post-op RT group received external pelvic irradiation and intracavitary radiation therapy(ICR). External radiation dose was 39.6-55Gy(median 45Gy) in 5-6 week through opposed AP/PA fields or 4-field box technique treating daily, five days per week, 180cGy per fraction. ICR doses were prescribed to point A(20-39.6 Gy, median 39Gy) in Group 1 and 0.5cm depth from vaginal surface (18-30 Gy, median 21Gy) in Group2. Results : The overall 5 year survival rate was 95%. No survival difference between pre-op and post-op RT group.(89.3% vs 97.7%, p>0.1) There was no survival difference by stage, grade and histology between two groups. The survival rate was not affected by presence of residual tumor of surgical specimen after pre-op RT in Group 1(p>0.1), but affected by presence of lymph node metastasis in post-op RT group(p<0.5). The complication rate of pre-op RT group was higher than post-op RT.(16% vs 5%) Conclusion : Post-op radiotherapy offers the advantages of accurate surgical-pathological staging and low complication rate

  19. Chromosome inversions in lymphocytes of prostate cancer patients treated with X-rays and carbon ions

    International Nuclear Information System (INIS)

    Pignalosa, Diana; Lee, Ryonfa; Hartel, Carola; Sommer, Sylvester; Nikoghosyan, Anna; Debus, Jürgen; Ritter, Sylvia; Durante, Marco

    2013-01-01

    Background and purpose: To investigate the cytogenetic damage of the intrachange type in peripheral blood lymphocytes of patients treated for prostate cancer with different radiation qualities. Material and methods: Prostate cancer patients were enrolled in a clinical trial based at the Heidelberg University Hospital and at the GSI Helmholtz Centre for Heavy Ion Research in 2006. Patients were treated either with intensity-modulated radiation therapy (IMRT) alone or with a carbon-ion boost followed by IMRT. Blood samples were collected at the end of the therapy and the mBAND technique was used to investigate the cytogenetic damage of the inter and intrachange types. Moreover, the mBAND analysis was performed on healthy donor cells irradiated in vitro with X-rays or C-ions. Results: Our results show no statistically significant differences in the yield and the spectrum of chromosome aberrations among patients treated only with IMRT and patients receiving the combined treatment when similar target volumes and doses to the target are compared. Conclusion: The study suggests that the risks of normal tissue late effects and second malignancies in prostate cancer patients are comparable when heavy ions or IMRT radiotherapy are applied

  20. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    International Nuclear Information System (INIS)

    Wu Qingfeng; Li Qiang; Jin Xiaodong; Liu Xinguo; Dai Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  1. Radiotherapy

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kulikov, V.A.; Mardynskij, Yu.S.

    1984-01-01

    The technique for roentgenotopometric and medicamentous preparation of patients for radiotherapy has been reported in detail. The features of planning and performing of remote, intracavitary and combined therapy in urinary bladder cancer are considered. The more effective methods of radiotherapy have been proposed taking into account own experience as well as literature data. The comparative evaluation of treatment results and prognosis are given. Radiation pathomorphism of tumors and tissues of urinary bladder is considered in detail. The problems of diagnosis, prophylaxis and treatment of complications following radiodiagnosis and radiotherapy in patients with urinary bladder cancer are illustrated widely

  2. When Does Neoadjuvant Chemotherapy Really Avoid Radiotherapy? Clinical Predictors of Adjuvant Radiotherapy in Cervical Cancer.

    Science.gov (United States)

    Papadia, Andrea; Bellati, Filippo; Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Lorusso, Domenica; Donfrancesco, Cristina; Gasparri, Maria Luisa; Raspagliesi, Francesco

    2015-12-01

    The aim of this study was to identify clinical variables that may predict the need for adjuvant radiotherapy after neoadjuvant chemotherapy (NACT) and radical surgery in locally advanced cervical cancer patients. A retrospective series of cervical cancer patients with International Federation of Gynecology and Obstetrics (FIGO) stages IB2-IIB treated with NACT followed by radical surgery was analyzed. Clinical predictors of persistence of intermediate- and/or high-risk factors at final pathological analysis were investigated. Statistical analysis was performed using univariate and multivariate analysis and using a model based on artificial intelligence known as artificial neuronal network (ANN) analysis. Overall, 101 patients were available for the analyses. Fifty-two (51 %) patients were considered at high risk secondary to parametrial, resection margin and/or lymph node involvement. When disease was confined to the cervix, four (4 %) patients were considered at intermediate risk. At univariate analysis, FIGO grade 3, stage IIB disease at diagnosis and the presence of enlarged nodes before NACT predicted the presence of intermediate- and/or high-risk factors at final pathological analysis. At multivariate analysis, only FIGO grade 3 and tumor diameter maintained statistical significance. The specificity of ANN models in evaluating predictive variables was slightly superior to conventional multivariable models. FIGO grade, stage, tumor diameter, and histology are associated with persistence of pathological intermediate- and/or high-risk factors after NACT and radical surgery. This information is useful in counseling patients at the time of treatment planning with regard to the probability of being subjected to pelvic radiotherapy after completion of the initially planned treatment.

  3. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    International Nuclear Information System (INIS)

    Amin, Munib

    2008-12-01

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  4. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  5. Present clinical status of hyperthermia associated with radiotherapy

    International Nuclear Information System (INIS)

    Jaulerry, C.; Bataini, J.P.; Brunin, F.; Gaboriaud, G.

    1981-01-01

    Improved techniques for inducing heat: ultrasound, microwaves, diathermy with different application modalities, capable of producing localized superficial or deep, regional or total body hyperthermia have been responsible for the multiplication of clinical trials. These studies have confirmed the tumoricidal effect of hyperthermia alone, or more especially when combined with radiotherapy, and the good tolerance of normal tissues to localized temperatures of 42 to 43.5 0 C even in previously irradiated cases. Localized heating does not seem to increase the incidence of metastasis. Enhancement ratios and therapeutic gain with respect to normal tissues are not yet well documented. Many problems, including the heterogenicity of tissues to be heated, difficulties with temperature monitoring, and selection of appropriate sequential scheduling of radiation and hyperthermia remain unsolved and further investigationss are required [fr

  6. Bystander effects and their implications for clinical radiotherapy

    International Nuclear Information System (INIS)

    Munro, Alastair J

    2009-01-01

    Radiation-induced bystander effects are defined as those biological effects expressed, after irradiation, by cells whose nuclei have not been directly irradiated. Radiation oncologists are only gradually beginning to appreciate the clinical relevance of radiation-induced bystander effects and associated phenomena: adaptive responses, genomic instability and abscopal effects. Incorporating bystander effects into the science underpinning clinical radiotherapy will involve moving beyond simple mechanistic models and towards a more systems-based approach. It is, given the protean nature of bystander effects, difficult to devise a coherent research strategy to investigate the clinical impact and relevance of bystander phenomena. Epidemiological approaches will be required, the traditional research models based on randomised controlled trials are unlikely to be adequate for the task. Any consideration of bystander effects challenges not only clinicians' preconceptions concerning the effects of radiation on tumours and normal tissues but also their ingenuity. This review covers, from a clinical perspective, the issues and problems associated with radiation-induced bystander effects.

  7. Radiotherapy.

    Science.gov (United States)

    Krause, Sonja; Debus, Jürgen; Neuhof, Dirk

    2011-01-01

    Solitary plasmocytoma occurring in bone (solitary plasmocytoma of the bone, SBP) or in soft tissue (extramedullary plasmocytoma, EP) can be treated effectively and with little toxicity by local radiotherapy. Ten-year local control rates of up to 90% can be achieved. Patients with multiple myeloma often suffer from symptoms such as pain or neurological impairments that are amenable to palliative radiotherapy. In a palliative setting, short treatment schedules and lower radiation doses are used to reduce toxicity and duration of hospitalization. In future, low-dose total body irradiation (TBI) may play a role in a potentially curative regimen with nonmyeloablative conditioning followed by allogenic peripheral blood stem cell transplantation.

  8. Mechanical Design of Carbon Ion Optics

    Science.gov (United States)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  9. Experimental radiotherapy and clinical radiobiology. Vol. 22. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 25. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Krause, Mechthild [Universitaetsklinikum Technische Univ. Dresden (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radiologie; Cordes, Nils [Universitaetsklinikum Technische Univ. Dresden (Germany). OncoRay - Nationales Zentrum fuer Strahlenforschung in der Radioonkologie; Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Petersen, Cordula [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie; Rodemann, H. Peter [Universitaetsklinikum Tuebingen (Germany). Sektion fuer Strahlenbiologie; Rothkamm, Kai [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Lab. fuer Strahlentherapie und Experimentelle Radioonkologie; Zips, Daniel (ed.) [Tuebingen Univ. (Germany). Universitaetsklinik fuer Radioonkologie

    2016-05-01

    The proceedings of the 25th symposium on experimental radiotherapy and clinical radiobiology include papers on the following issues: radiotherapy individualization based on imaging; pre-clinic imaging and new experimental methods; methods and models, micromilieu and metabolism, combined therapy; secondary tumors following radiotherapy; radiogenic effects in normal tissue; resistance mechanism of tumors and normal tissue; personalized radio-oncology - which biological data are needed; pre-clinic and personalized radio-oncology; biomarkers - pre-clinic and translational; translational examinations for personalized radio-oncology.

  10. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  11. Non-randomized clinical study comparing chemotherapy plus radiotherapy with radiotherapy alone in neoadjuvant therapy for oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kayahara, Hiroaki; Okuda, Mamiko; Terakado, Nagaaki; Shintani, Satoru; Hamakawa, Hiroyuki [Ehime Univ., Shigenobu (Japan). School of Medicine

    2002-06-01

    Neoadjuvant therapy plays an important role for organ preservation and survival rate in the treatment of oral cancer. We clinically compared the effect of neoadjuvant radiotherapy and chemoradiotherapy in patients with oral cancer. We retrospectively examined 47 patients diagnosed with oral squamous cell carcinoma who underwent neoadjuvant therapy followed by curative surgery in the oral and maxillofacial surgery department of Ehime University Hospital. We divided them into two groups: radiotherapy alone (24 cases) and chemoradiotherapy (23 cases). The patients in the radiotherapy group underwent irradiation of 32.6{+-}5.0 Gy (mean {+-}SD). The patients in the chemoradiotherapy group received a low-dose fraction of cisplatin (8 mg/mm{sup 2}/day, 5 days a week; total dose: 139.4{+-}67.1 mg) and 5-fluorouracil (300 mg/mm{sup 2}/day, 5 days a week; total dose: 5,900{+-}1,839.8 mg) combined with simultaneous irradiation of 31.0{+-}3.2 Gy. None of the 24 patients had a complete response to radiotherapy alone and 12 (50%) had a partial response. Six (26%) of the 23 patients had a complete response to chemoradiotherapy and 12 (52%) had a partial response. The primary control rate (82.6%) to chemoradiotherapy was higher than that (67.5%) to radiotherapy alone although no significant difference was found. The 5-year survival rate was 64.3% in the radiotherapy group and 62.8% in the chemoradiotherapy group. The findings of the present study suggest that while the combination of radiation and cisplatin/5-fluorouracil in neoadjuvant therapy for oral cancer may not bring a significant benefit to improve survival rate, the primary local control rate is improved in comparison with radiotherapy alone. (author)

  12. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 20. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel (eds.)

    2011-07-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  13. Clinical utility of RapidArc™ radiotherapy technology

    International Nuclear Information System (INIS)

    Infusino, Erminia

    2015-01-01

    RapidArc™ is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360°) and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT), compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords “RapidArc”, “Volumetric modulated arc radiotherapy”, and “Intensity-modulated radiotherapy”

  14. Cost-effectiveness of carbon ion radiation therapy for locally recurrent rectal cancer

    International Nuclear Information System (INIS)

    Mobaraki, A.; Ohno, Tatsuya; Sakurai, Hideyuki; Nakano, Takashi; Yamada Shigeru

    2010-01-01

    The aim of this study was to evaluate the cost-effectiveness of carbon ion radiotherapy compared with conventional multimodality therapy in the treatment of patients with locally recurrent rectal cancer. Direct costs for diagnosis, recurrent treatment, follow-up, visits, supportive therapy, complications, and admission were computed for each individual using a sample of 25 patients presenting with local recurrent rectal cancer at the National Institute of Radiological Science (NIRS) and Gunma University Hospital (GUH). Patients received only radical surgery for primary rectal adenocarcinoma and had isolated unresectable pelvic recurrence. Fourteen and 11 patients receiving treatment for the local recurrence between 2003 and 2005 were followed retrospectively at NIRS and GUH, respectively. Treatment was carried out with carbon ion radiotherapy (CIRT) alone at NIRS, while multimodality therapy including three-dimensional conformal radiotherapy, chemotherapy, and hyperthermia was performed at GUH. The 2-year overall survival rate was 85% and 55% for CIRT and multimodality treatment, respectively. The mean cost was 4803946 yen for the CIRT group and 4611100 yen for the multimodality treatment group. The incremental cost-effectiveness ratio for CIRT was 6428 yen per 1% increase in survival. The median duration of total hospitalization was 37 days for CIRT and 66 days for the multimodality treatment group. In conclusion, by calculating all direct costs, CIRT was found to be a potential cost effective treatment modality as compared to multimodality treatment for locally recurrent rectal cancer. (author)

  15. Comparison of the effects of photon versus carbon ion irradiation when combined with chemotherapy in vitro

    International Nuclear Information System (INIS)

    Schlaich, Fabian; Brons, Stephan; Haberer, Thomas; Debus, Jürgen; Combs, Stephanie E; Weber, Klaus-Josef

    2013-01-01

    drugs and carbon ion irradiation might be as feasible as respective photon-based protocols. The present data serve as an important radiobiological basis for further combination experiments, as well as clinical studies on combination treatments

  16. Mammary radiotherapy and patients-risks management with continue evaluation of clinical indicators

    International Nuclear Information System (INIS)

    Untereiner, M.; Frederick, B.; Burie, D.; Cavuto, C.; Rob, L.; Coiffier, N.; Colet, M.

    2009-01-01

    Purpose: The breast irradiation represents 25% of radiotherapy indication in the radiotherapy centers. The modeling of the management of complications risks and recurrences in relation with mammary irradiation constitutes a methodological base allowing to develop a general concept for any other indication of radiotherapy. The objective of the study was a continuous evaluation of clinical risks to get indicators of the therapy results: for the institution, to get an auto-evaluation tool of the functioning (continuous evaluation of clinical results, identification of sentinel events); for the patients to get precise and detailed information on the risks linked to their treatment (communication of clinical results, comparison with the literature, benchmarking). (N.C.)

  17. Rotational radiotherapy for prostate cancer in clinical practice

    DEFF Research Database (Denmark)

    Aznar, Marianne C; Petersen, Peter Meidahl; Logadottir, Ashildur

    2010-01-01

    Radiotherapy is the standard treatment in locally advanced prostate cancer. The latest technological improvement is modulated rotational radiotherapy, where one single rotation of the treatment machine is used to conform the dose delivery to the target and spare organs at risk, requiring less than...

  18. Proceedings of 19. symposium on experimental radiotherapy and clinical radiobiology

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H. Peter; Zips, Daniel

    2010-01-01

    The proceedings include review contributions on radio-oncology, and new radiation technologies and molecular prediction; and poster sessions on the following topics: hypoxia; molecular mechanisms of radiation resistance; molecular targeting; DNA repair; biological imaging; biology of experimental radiations; normal tissue toxicity; modern radiotherapy; tumor hypoxia and metabolic micro milieu; immune system and radiotherapy.

  19. Particle radiotherapy for patients with H and N malignant tumor

    International Nuclear Information System (INIS)

    Murakami, Masao; Demizu, Yusuke; Niwa, Yasue; Terashima, Kazuki; Fujii, Osamu; Mima, Masayuki; Hashimoto, Naoki; Jin, Dongcun

    2011-01-01

    Particle beams have a characteristic called the Bragg peak, which is a peak formed at a fixed depth in the body depending on the acceleration energy. Utilizing this property, a high dose can be concentrated in the target tumor while minimizing damage to surrounding normal tissues. Proton and carbon ion beams have a higher linear energy transfer (LET) than X-rays. The relative biological effectiveness of proton and carbon ion beams compared with X-rays (=1) is estimated to be 1.1 and 3.0, respectively. Therefore, we can expect particle radiotherapy to be effective for patients with radio-resistant tumors such as malignant melanoma, adenoidcystic carcinoma and adenocarcinoma. As of the end of July 2011, there were 9 particle institutes operating in Japan; the Hyogo Ion Beam Medical Center was established in May 2001 as a leading project of the ''Hyogo Cancer Strategy''. One major characteristic is that the Center can generate both proton and carbon ion beams. Locally advanced nasal, paranasal or salivary gland cell tumors are good candidates for particle radiotherapy. Downsizing of the accelerator, price reduction of the machine, broad use of particle therapy in the field of clinical oncology, and intensity modulated particle therapy are future challenges. (author)

  20. Radiotherapy

    International Nuclear Information System (INIS)

    Pistenma, D.A.

    1980-01-01

    The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance

  1. Clinical experience with routine diode dosimetry for electron beam radiotherapy

    International Nuclear Information System (INIS)

    Yaparpalvi, Ravindra; Fontenla, Doracy P.; Vikram, Bhadrasain

    2000-01-01

    Purpose: Electron beam radiotherapy is frequently administered based on clinical setups without formal treatment planning. We felt, therefore, that it was important to monitor electron beam treatments by in vivo dosimetry to prevent errors in treatment delivery. In this study, we present our clinical experience with patient dose verification using electron diodes and quantitatively assess the dose perturbations caused by the diodes during electron beam radiotherapy. Methods and Materials: A commercial diode dosimeter was used for the in vivo dose measurements. During patient dosimetry, the patients were set up as usual by the therapists. Before treatment, a diode was placed on the patient's skin surface and secured with hypoallergenic tape. The patient was then treated and the diode response registered and stored in the patient radiotherapy system database via our in-house software. A customized patient in vivo dosimetry report showing patient details, expected and measured dose, and percent difference was then generated and printed for analysis and record keeping. We studied the perturbation of electron beams by diodes using film dosimetry. Beam profiles at the 90% prescription isodose depths were obtained with and without the diode on the beam central axis, for 6-20 MeV electron beams and applicator/insert sizes ranging from a 3-cm diameter circular field to a 25 x 25 cm open field. Results: In vivo dose measurements on 360 patients resulted in the following ranges of deviations from the expected dose at the various anatomic sites: Breast (222 patients) -20.3 to +23.5% (median deviation 0%); Head and Neck (63 patients) -21.5 to +14.8% (median -0.7%); Other sites (75 patients) -17.6 to +18.8% (median +0.5%). Routine diode dosimetry during the first treatment on 360 patients (460 treatment sites) resulted in 11.5% of the measurements outside our acceptable ±6% dose deviation window. Only 3.7% of the total measurements were outside ±10% dose deviation. Detailed

  2. Clinical results of galantase for diarrhea due to gynecological radiotherapy

    International Nuclear Information System (INIS)

    Tokunaga, Akiteru; Higuchi, Akira.

    1977-01-01

    Galantase, a preparation of lactose-decomposing enzyme, was used for 20 radiotherapeutic patients for prevention and treatment of diarrhea. The results were compared with those of 58 control cases without administration. In the 58 cases, the timing of onset of diarrhea during irradiation was examined, and the mechanism of onset of radioinjury in the digestive tract was discussed. Galantase 6 g/day was administered to 13 of the 20 patients simultaneously with institution of irradiation and to 7 patients simultaneously with the onset of diarrhea during irradiation. As radiotherapy, the patients were given remote cobalt irradiation 5 times a week, each consisting of 200 rad, a total dose of 5,000 rad, in a field of 14 - 16 x 14 - 16 cm by way of 2 ports (anterior and posterior). Diarrhea and soft stool both appeared by irradiation of less than 300 rad, and diarrhea was observed in 84%. Temporal diarrhea occurred in 3 of the 13 patients given galantase simultaneously with irradiation. Diarrhea continued for 6 days in one of the 6 cases in which galantase was administered simultaneously with the onset of diarrhea or watery stool. In the other 5, the stool recovered to be soft or normal 2-3 days after administration. Diarrhea during irradiaion appeared in 21.4% of the cases given galantase and 42.1% of those without it. The clinical value of galantase was recognized. (Chiba, N.)

  3. Clinical dosimetry in photon radiotherapy. A Monte Carlo based investigation

    International Nuclear Information System (INIS)

    Wulff, Joerg

    2010-01-01

    Practical clinical dosimetry is a fundamental step within the radiation therapy process and aims at quantifying the absorbed radiation dose within a 1-2% uncertainty. To achieve this level of accuracy, corrections are needed for calibrated and air-filled ionization chambers, which are used for dose measurement. The procedures of correction are based on cavity theory of Spencer-Attix and are defined in current dosimetry protocols. Energy dependent corrections for deviations from calibration beams account for changed ionization chamber response in the treatment beam. The corrections applied are usually based on semi-analytical models or measurements and are generally hard to determine due to their magnitude of only a few percents or even less. Furthermore the corrections are defined for fixed geometrical reference-conditions and do not apply to non-reference conditions in modern radiotherapy applications. The stochastic Monte Carlo method for the simulation of radiation transport is becoming a valuable tool in the field of Medical Physics. As a suitable tool for calculation of these corrections with high accuracy the simulations enable the investigation of ionization chambers under various conditions. The aim of this work is the consistent investigation of ionization chamber dosimetry in photon radiation therapy with the use of Monte Carlo methods. Nowadays Monte Carlo systems exist, which enable the accurate calculation of ionization chamber response in principle. Still, their bare use for studies of this type is limited due to the long calculation times needed for a meaningful result with a small statistical uncertainty, inherent to every result of a Monte Carlo simulation. Besides heavy use of computer hardware, techniques methods of variance reduction to reduce the needed calculation time can be applied. Methods for increasing the efficiency in the results of simulation were developed and incorporated in a modern and established Monte Carlo simulation environment

  4. Association of taxanes and radiotherapy: preclinical and clinical studies

    International Nuclear Information System (INIS)

    Hennequin, C.

    2004-01-01

    Taxanes (paclitaxel and docetaxel) stabilized microtubules against depolymerization, and inhibit their function. Their radiosensitizing properties have been discovered more than 10 years ago; they synchronized tumor cells in G2/M phase, the most radiosensitive portion of the cell cycle. Other radiosensitizing mechanisms have been also discussed, as reoxygenation, promotion of radio-apoptosis and anti-angiogenic cooperation. Many phase I and II studies have been performed, essentially in bronchus and head and neck carcinomas. In lung cancer, paclitaxel was delivered weekly at a dose of 60 mg/m 2 . Many studies combined cisplatin or carbo-platin with paclitaxel, demonstrating that this combination is feasible and efficient. Only one phase III trial was reported; after two cycles of chemotherapy for inoperable lung cancers, radiotherapy was delivered, with or without paclitaxel radiosensitization: a benefit in disease-free survival was observed for the combination arm. In head and neck carcinomas, concomitant association of cisplatin, paclitaxel and radiation was feasible and showed promising results. Clinical trials with docetaxel are in progress. (author)

  5. Clinical results of galantase for diarrhea due to gynecological radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, A [Niigata Univ. (Japan). School of Medicine; Higuchi, A

    1977-10-01

    Galantase, a preparation of lactose-decomposing enzyme, was used for 20 radiotherapeutic patients for prevention and treatment of diarrhea. The results were compared with those of 58 control cases without administration. In the 58 cases, the timing of onset of diarrhea during irradiation was examined, and the mechanism of onset of radioinjury in the digestive tract was discussed. Galantase 6 g/day was administered to 13 of the 20 patients simultaneously with institution of irradiation and to 7 patients simultaneously with the onset of diarrhea during irradiation. As radiotherapy, the patients were given remote cobalt irradiation 5 times a week, each consisting of 200 rad, a total dose of 5,000 rad, in a field of 14 - 16 x 14 - 16 cm by way of 2 ports (anterior and posterior). Diarrhea and soft stool both appeared by irradiation of less than 300 rad, and diarrhea was observed in 84%. Temporal diarrhea occurred in 3 of the 13 patients given galantase simultaneously with irradiation. Diarrhea continued for 6 days in one of the 6 cases in which galantase was administered simultaneously with the onset of diarrhea or watery stool. In the other 5, the stool recovered to be soft or normal 2-3 days after administration. Diarrhea during irradiaion appeared in 21.4% of the cases given galantase and 42.1% of those without it. The clinical value of galantase was recognized.

  6. Carbon ion therapy for advanced sinonasal malignancies: feasibility and acute toxicity

    International Nuclear Information System (INIS)

    Jensen, Alexandra D; Nikoghosyan, Anna V; Ecker, Swantje; Ellerbrock, Malte; Debus, Jürgen; Münter, Marc W

    2011-01-01

    To evaluate feasibility and toxicity of carbon ion therapy for treatment of sinonasal malignancies. First site of treatment failure in malignant tumours of the paranasal sinuses and nasal cavity is mostly in-field, local control hence calls for dose escalation which has so far been hampered by accompanying acute and late toxicity. Raster-scanned carbon ion therapy offers the advantage of sharp dose gradients promising increased dose application without increase of side-effects. Twenty-nine patients with various sinonasal malignancies were treated from 11/2009 to 08/2010. Accompanying toxicity was evaluated according to CTCAE v.4.0. Tumor response was assessed according to RECIST. Seventeen patients received treatment as definitive RT, 9 for local relapse, 2 for re-irradiation. All patients had T4 tumours (median CTV1 129.5 cc, CTV2 395.8 cc), mostly originating from the maxillary sinus. Median dose was 73 GyE mostly in mixed beam technique as IMRT plus carbon ion boost. Median follow- up was 5.1 months [range: 2.4 - 10.1 months]. There were 7 cases with grade 3 toxicity (mucositis, dysphagia) but no other higher grade acute reactions; 6 patients developed grade 2 conjunctivits, no case of early visual impairment. Apart from alterations of taste, all symptoms had resolved at 8 weeks post RT. Overall radiological response rate was 50% (CR and PR). Carbon ion therapy is feasible; despite high doses, acute reactions were not increased and generally resolved within 8 weeks post radiotherapy. Treatment response is encouraging though follow-up is too short to estimate control rates or evaluate potential late effects. Controlled trials are warranted

  7. Evaluation of a combination tumor treatment using thermo-triggered liposomal drug delivery and carbon ion irradiation.

    Science.gov (United States)

    Kokuryo, Daisuke; Aoki, Ichio; Yuba, Eiji; Kono, Kenji; Aoshima, Sadahito; Kershaw, Jeff; Saga, Tsuneo

    2017-07-01

    The combination of radiotherapy with chemotherapy is one of the most promising strategies for cancer treatment. Here, a novel combination strategy utilizing carbon ion irradiation as a high-linear energy transfer (LET) radiotherapy and a thermo-triggered nanodevice is proposed, and drug accumulation in the tumor and treatment effects are evaluated using magnetic resonance imaging relaxometry and immunohistology (Ki-67, n = 15). The thermo-triggered liposomal anticancer nanodevice was administered into colon-26 tumor-grafted mice, and drug accumulation and efficacy was compared for 6 groups (n = 32) that received or did not receive the radiotherapy and thermo trigger. In vivo quantitative R 1 maps visually demonstrated that the multimodal thermosensitive polymer-modified liposomes (MTPLs) can accumulate in the tumor tissue regardless of whether the region was irradiated by carbon ions or not. The tumor volume after combination treatment with carbon ion irradiation and MTPLs with thermo-triggering was significantly smaller than all the control groups at 8 days after treatment. The proposed strategy of combining high-LET irradiation and the nanodevice provides an effective approach for minimally invasive cancer treatment. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Clinical efficacy of radiotherapy combined with sodium glycididazole ...

    African Journals Online (AJOL)

    treatment group (treated with radiotherapy and sodium glycididazole) and a control group (treated with ... Side effects in both groups included alopecia, headache, nausea, vomiting and ... hypoxic cells in a solid carcinoma to low linear ...

  9. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    International Nuclear Information System (INIS)

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-01-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  10. Dosimetric properties of Gafchromic (registered) EBT films in medical carbon ion beams

    International Nuclear Information System (INIS)

    MartisIkova, Maria; Jaekel, Oliver

    2010-01-01

    High spatial resolution is desired for dosimetrical verification of patient plans for radiotherapy treatments employing scanned ion beams. This is provided by Gafchromic EBT film, the ancestor of currently available EBT2 films. In this contribution, dosimetric properties of EBT films were investigated. Measurements of depth response were performed for monoenergetic fields (250 MeV/u) for different ion fluences as well as for an energy-modulated spread-out Bragg peak of 5 x 5 x 5 cm 3 in 10 cm depth. The films were positioned perpendicular to the incoming carbon ion beams. The observed quenching of the response relative to the same dose of photons was quantified by the relative efficiency. In monenenergetic beams, a relative efficiency of about 0.73 was found in the plateau, 0.4 in the peak and 0.55 in the tail region. No dependence of the relative efficiency on the ion fluence was observed well beyond the clinically used levels. This gives a constant peak to plateau ratio, which is about 1.8 times lower than that for the delivered dose. In the spread-out Bragg peak, the relative efficiency was found to decrease from 0.64 to 0.54 toward the distal end. Thus when aiming for a prediction of the film response in mixed ion beams, the efficiency of the film has to be parametrized as a function of the ion type and energy over the whole ion spectrum. In addition, the relative water-equivalent range of EBT films was measured here to be 1.291 ± 0.015.

  11. Use of 'sham' radiotherapy in randomized clinical trials

    International Nuclear Information System (INIS)

    Schwarz, F.; Christie, D.

    2008-01-01

    The objective of this systematic review was to identify quality trials that use sham radiotherapy in their design and review them to determine its potential value. The Cochrane Library, Pubmed and a Reference Search served as data sources. Trials were included if they met a minimum quality score of 3 on a validated assessment instrument (which assesses randomization, control and blinding) and if they compared sham radiotherapy to active treatment. External beam therapy and brachytherapy trials were considered. Twenty-six trials were identified, collectively including 2663 participants in the period of 1970-2004. All the trials studied the value of radiotherapy for treatment or prevention of benign diseases, including multiple sclerosis, coronary artery restenosis, age-related macular degeneration and Graves' ophthalmopathy. There were no trials relating to the use of radiotherapy in the treatment of malignancy. This review showed that it is possible to carry out sham radiotherapy with due regard for ethical concerns, with effective blinding and high levels of patient acceptance. Large sample sizes with multicentre trial designs were achievable. Although the statistical philosophy for using sham radiotherapy in trials is legitimate, it is no longer routinely used.

  12. Design and implementation of a radiotherapy programme: Clinical, medical physics, radiation protection and safety aspects

    International Nuclear Information System (INIS)

    1998-09-01

    It is widely acknowledged that the clinical aspects (diagnosis, decision, indication for treatment, follow-up) as well as the procedures related to the physical and technical aspects of patient treatment must be subjected to careful control and planning in order to ensure safe, high quality radiotherapy. Whilst it has long been recognized that the physical aspects of quality assurance in radiotherapy are vital to achieve and effective and safe treatment, it has been increasingly acknowledged only recently that a systematic approach is absolutely necessary to all steps within clinical and technical aspects of a radiotherapy programme as well. The need to establish general guidelines at the IAEA, taking into account clinical medical physics, radiation protection and safety considerations, for designing and implementing radiotherapy programmes in Member States has been identified through the Member States' increased interest in the efficient and safe application of radiation in health care. Several consultants and advisory group meetings were convened to prepare a report providing a basis for establishing a programme in radiotherapy. The present TECDOC is addressed to all professionals and administrators involved in the development, implementation and management of a radiotherapy programme in order to establish a common and consistent framework where all steps and procedures in radiotherapy are taken into account

  13. Molecular Ultrasound Imaging of Early Vascular Response in Prostate Tumors Irradiated with Carbon Ions

    Directory of Open Access Journals (Sweden)

    Moritz Palmowski

    2009-09-01

    Full Text Available Individualized treatments with combination of radiotherapy and targeted drugs require knowledge about the behavior of molecular targets after irradiation. Angiogenic marker expression has been studied after conventional radiotherapy, but little is known about marker response to charged particles. For the very first time, we used molecular ultrasound imaging to intraindividually track changes in angiogenic marker expression after carbon ion irradiation in experimental tumors. Expression of intercellular adhesion molecule-1 (ICAM-1 and of αvβ3-integrin in subcutaneous AT-1 prostate cancers in rats treated with carbon ions (16 Gy was studied using molecular ultrasound and immunohistochemistry. For this purpose, cyanoacrylate microbubbles were synthesized and linked to specific ligands. The accumulation of targeted microbubbles in tumors was quantified before and 36 hours after irradiation. In addition, tumor vascularization was analyzed using volumetric Doppler ultrasound. In tumors, the accumulation of targeted microbubbles was significantly higher than in nonspecific ones and could be inhibited competitively. Before irradiation, no difference in binding of αvβ3-integrin-specific or ICAM-1-specific microbubbles was observed in treated and untreated animals. After irradiation, however, treated animals showed a significantly higher binding of αvβ3-integrin-specific microbubbles and an enhanced binding of ICAM-1-specific microbubbles than untreated controls. In both groups, a decrease in vascularization occurred during tumor growth, but no significant difference was observed between irradiated and nonirradiated tumors. In conclusion, carbon ion irradiation upregulates ICAM-1 and αvβ3-integrin expression in tumor neovasculature. Molecular ultrasound can indicate the regulation of these markers and thus may help to identify the optimal drugs and time points in individualized therapy regimens.

  14. Cytogenetic, clinical, and cytologic characteristics of radiotherapy-related leukemias

    International Nuclear Information System (INIS)

    Philip, P.; Pedersen-Bjergaard, J.

    1988-01-01

    From 1978 to 1985, we observed eight cases of acute nonlymphocytic leukemia or preleukemia, three cases of acute lymphoblastic leukemia, and three cases of chronic myeloid leukemia in patients previously treated exclusively with radiotherapy for other tumor types. The latent period from administration of radiotherapy to development of leukemia varied between 12 and 243 months. Clonal chromosome aberrations reported previously as characteristic of acute nonlymphocytic leukemia following therapy with alkylating agents were observed in three of the eight patients with acute nonlymphocytic leukemia (5q- and -7) and in two of the three patients with acute lymphoblastic leukemia (-7 and 12p-). All three patients with radiotherapy-related chronic myeloid leukemia presented a t(9;22)(q34;q11). The results suggest that cytogenetic characteristics may reflect the etiology in radiation-induced acute leukemias, whereas radiation-related chronic myeloid leukemia does not seem to differ chromosomally from de novo cases of the disease

  15. Clinical research on cancer treatment with combined radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Fuwa, Nobukazu; Ito, Yoshiyuki; Kato, Eriko; Koyama, Kazuyuki; Morita, Kozo

    1993-01-01

    There are two purposes of using combined chemotherapy and radiotherapy in the treatment of cancers. One is to suppress distant metastasis, especially micrometastasis; the other is to improve localized control. As a trial of the utility of the former, systemic chemotherapy with CDDP and 5 FU was given successively with radiotherapy to treat nasopharyngeal cancer. The survival rate was significantly improved compared with historical control cases. The main reason for this effectiveness was the improvement of localized control. The suppression of distant metastasis is the subject of future research. As a trial of the utility of the latter, a super-selective intraarterial chemotherapy with CBDCA combined with radiotherapy was used to head and neck localized progressive cancers. The control of localized cancer was remarkably effective. This treatment is considered to be especially suitable for locally advanced tongue cancer and cancer of the root of the tongue. (author)

  16. Cervix cancer: clinical aspects of tumoral control and radiotherapy treatment time

    International Nuclear Information System (INIS)

    Petitto, J.V.

    1994-01-01

    The author analyzed 35 patients with recurrence or residual tumor at the end of the radiotherapy program. These patients were selected out of a group of 338 patients cervix cancer who had also undergone on the same radiotherapy program. Those patients were compared with control group of 30 patients without clinical evidence of the disease, from the same group of 338 patients. It has studied the clinical results considering the total radiotherapy time to developed the radiation program and factors that could modify the time for a longer program, and also modify the final survival results. No significant difference was shown in this study, but it should be taken in consideration the total radiotherapy time, because this is a factor that could change the final results if the time would be longer than what was shown in this work. (author). 26 refs, 10 tabs

  17. Quality assurance in radiotherapy - a clinical point of view

    International Nuclear Information System (INIS)

    Merkle, K.; Lessel, A.; Huettner, J.

    1990-01-01

    Despite the advanced treatment methods now available, the total result in 5-year survival is 40-50% of all patients with malignancies and 20% of these patients will have the chance of a 10-year survival. In the course of their disease a radiotherapy is indicated in about 2/3 of all patients. Thus, radiotherapy makes quite a considerable contribution to the qualitative improvement of the treatment of patients with malignancies. Eradication of the tumor and protection of normal tissue can only be a compromise between tumor control and the production of complications. For the risk assessment of radiotherapy, the steepness of dose-response curves is of paramount importance. That means, small errors in defining and delivering dose can have catastrophic results in terms of failure to control the patient's disease and, on the other side, in terms of complications, that means in quality of life. Although the costs of therapy, in absolute values, vary from one country to the other, it can be stated in rough approximation that a failed radiotherapy will make rise the costs by a factor of 3. According to the fact that in 30-40% of patients, who received radiotherapy, the initial treatment failed to control the primary disease, the enormous additional costs involved become obvious, not to speak of the main argument - the regrowth of the patients's tumor. For the improvement of this situation quality assurance (QA) is an essential prerequisite, which should be guaranteed in all successive steps of radiotherapy. In the paper an analysis is given for all individual steps in the chain of radiotherapeutic measures. (author)

  18. Experimental radiotherapy and clinical radiobiology. Vol. 17. Proceedings

    International Nuclear Information System (INIS)

    Baumann, M.; Dahm-Daphi, J.; Dikomey, E.; Petersen, C.; Rodemann, H.P.; Zips, D.

    2008-01-01

    The proceedings contain the lectures and poster sessions on the following topics: modulation of the immune system for the improvement of tumor radiotherapy; molecular factors and predictors of radiation sensitivity of tumor cells; DNA repair; molecular factors and modulation of radiation reactions of normal tissue; biological studies with differential experimental radiations; tumor stem cells: importance for the radiotherapy; DNA repair and its importance for the radiation sensitivity of tumor cells; biological modification of the radiation sensitivity of tumor cells; biological imaging and tumor microenvironment

  19. Clinical experience with intraoperative radiotherapy for locally advanced colorectal cancer

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Takahashi, Masaharu; Abe, Mitsuyuki

    1988-01-01

    Intraoperative radiotherapy (IORT) was performed on 20 patients with colorectal cancer. IORT with a single dose of 20 to 40 Gy was delivered to the residual tumor, tumor bed, and/or lymphnode regions. Although most of the patients had advanced lesions, local control was achieved in 67 % of the patients when IORT was combined with tumor resection, and 4 patients survived more than 5 years. There were no serious complications, except for contracture or atrophy of the psoas muscle seen in 2 patients. IORT combined with external beam radiotherapy should be a useful adjuvant therapy to surgery for locally advanced colorectal cancer. (author)

  20. Credentialing of radiotherapy centres for a clinical trial of adaptive radiotherapy for bladder cancer (TROG 10.01)

    International Nuclear Information System (INIS)

    Kron, Tomas; Pham, Daniel; Roxby, Paul; Rolfo, Aldo; Foroudi, Farshad

    2012-01-01

    Background: Daily variations in bladder filling make conformal treatment of bladder cancer challenging. On-line adaptive radiotherapy with a choice of plans has been demonstrated to reduce small bowel irradiation in single institution trials. In order to support a multicentre feasibility clinical trial on adaptive radiotherapy for bladder cancer (TROG 10.01) a credentialing programme was developed for centres wishing to participate. Methods: The credentialing programme entails three components: a facility questionnaire; a planning exercise which tests the ability of centres to create three adaptive plans based on a planning and five cone beam CTs; and a site visit during which image quality, imaging dose and image guidance procedures are assessed. Image quality and decision making were tested using customised inserts for a Perspex phantom (Modus QUASAR) that mimic different bladder sizes. Dose was assessed in the same phantom using thermoluminescence dosimetry (TLD). Results: All 12 centres participating in the full credentialing programme were able to generate appropriate target volumes in the planning exercise and identify the correct target volume and position the bladder phantom in the phantom within 3 mm accuracy. None of the imaging doses exceeded the limit of 5 cGy with a CT on rails system having the lowest overall dose. Conclusion: A phantom mimicking the decision making process for adaptive radiotherapy was found to be well suited during site visits for credentialing of centres participating in a clinical trial of adaptive radiotherapy for bladder cancer. Combined with a planning exercise the site visit allowed testing the ability of centres to create adaptive treatment plans and make appropriate decisions based on the volumetric images acquired at treatment.

  1. Characterization of carbon ion-induced mutations in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Shikazono, N.; Suzuki, C.; Kitamura, S.; Watanabe, H.; Tano, S.; Tanaka, A.

    2003-01-01

    Full text: Irradiation of Arabidopsis thaliana by carbon ions was carried out to investigate the mutational effect of ion particles in higher plants. The averaged mutation rate of carbon ions was 2.0 X 10 -6 / Gy, which was 18-fold higher than that of electrons. PCR analysis of the carbon ion-induced mutants showed that, out of 28 mutant alleles, 14 had point-like mutations within the gene, while 14 contained large structural alterations. In the case of 12 electron-induced mutants, 9 had point-like mutations within the gene, while 3 contained large structural alterations. These results suggest that carbon ions are more likely to induce large structural alterations compared with electrons. Further sequence analysis revealed that most of the point-like mutations induced by carbon ions were short deletions. In the case of rearrangements, DNA strand breaks were found to be rejoined using, if present, short homologous sequences for both types of radiation. After carbon ion-irradiation, small deletions were frequently observed around the breakpoints, whereas duplications of terminal sequence were found after electron-irradiation. These results suggest that non-homologous end joining (NHEJ) pathway operates after plant cells are exposed to both ion particles and electrons but that different mode of rejoining deals with the broken ends produced by each radiation. From the present results, it seems reasonable to assume that carbon ions could predominantly induce null mutations in Arabidopsis. The fact that the molecular nature of carbon ion-induced mutation was different from that of electrons and that the molecular mechanisms of cells to induce mutations appeared to be also different implicates that ion particle is not only valuable as a new mutagen but also useful as a new tool to study repair mechanisms of certain types of DNA damage

  2. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    Purpose: To study the effect of conformal radiotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell lung cancer (NSCLC). Methods: A total of 316 patients attending Shanghai Pulmonary Hospital affiliated to Tongji University, were divided ...

  3. Potential benefit and clinical implementation of adaptive radiotherapy

    NARCIS (Netherlands)

    Lutkenhaus, L.J.

    2016-01-01

    The success of radiotherapy is defined by how well we are able to treat the tumor, without overly damaging the healthy tissue. Over the entire treatment period, day-to-day anatomical variations will occur, which can be compensated for by using a different irradiation plan for each treatment day.

  4. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    in second-line treatment of non-small cell lung cancer ... receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell ... were divided into two groups: 106 patients were treated with conformal ... Conformal radiotherapy, Targeted therapy, Survival rate .... regression model was used for survival.

  5. Experimental results and clinical implications of the four R's in fractionated radiotherapy

    International Nuclear Information System (INIS)

    Trott, K.R.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg

    1982-01-01

    Experimental and clinical data on the four R' in fractionated radiotherapy are reviewed. The clinical importance of redistribution has not been proven in the experiment yet. On reoxygenation no unequivocal data in human cancer exists and a lot of variability in rodent tumours. Repair and regeneration are the most important of the four R's in fractionated radiotherapy. The presented experimental and clinical evidence suggests a differential response between tumour and late responding normal tissues with regard to these two R's. Tumours appear to have, in general, a smaller capacity for repairing sublethal radiation damage but a higher capacity for repopulation than late responding normal tissues. (orig.)

  6. Radiotherapy of degenerative joint disorders. Indication, technique and clinical results

    International Nuclear Information System (INIS)

    Keilholz, L.; Sauer, R.; Seegenschmiedt, M.H.; Alfred-Krupp-Krankenhaus, Essen

    1998-01-01

    From 1984 to 1994, 85 patients with painful osteoarthritis were treated. The mean follow-up was 4 (1 to 10) years. Seventy-three patients (103 joints) were available for long-term analysis: 17 patients (27 joints) with omarthrosis, 19 (20 joints) with rhizarthrosis, 31 (49 joints) with osteoarthritis of the knee and 6 patients (7 joints) with osteoarthritis of the hip. All patients were intensively pretreated over long time. Mean symptom duration prior to radiotherapy was 4 (1 to 10) years. Orthovoltage or linac photons were applied using some technical modifications depending upon the joint. Two radiotherapy series (6 x 1 Gy, total dose: 12 Gy, 3 weekly fractions) were prescribed. The interval between the 2 series was 6 weeks. The subjective pain profil was assessed prior to and 6 months after radiotherapy and at last follow-up. Forty-six (63%) patients (64 joints) achieved a reduction of pain symptoms; 16 of those had a 'major pain relief' and 14 'complete pain relief'. Large joints - knee and hip - responded better (64% each) than the rhizarthrosis (53%). All pain categories and grades and their combined pain score were significantly reduced. The pain reduction was mostly pronounced for the symptom 'pain at rest'. The orthopedic score correlated well with the subjective response of the patients. The thumb score improved in 11 (57%) joints, the shoulder score of Constant and Murley in 16 (59%), the Japonese knee score of Sasaki et al. in 33 (67%), the hip score of Harris in 5 (71%) joints. Only 9 of 19 patients which were treated to avoid surgery, had to be operated, and 3 of those received a total arthroplasty of the hip or knee. In multivariate analysis for the endpoint 'complete' or 'major pain relief' only the criterion 'symptom duration ≥2 years prior to radiotherapy' was an independent negative prognostic parameter. (orig./MG) [de

  7. Assessment of Early Toxicity and Response in Patients Treated With Proton and Carbon Ion Therapy at the Heidelberg Ion Therapy Center Using the Raster Scanning Technique

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Stefan; Habermehl, Daniel; Nikoghosyan, Anna; Jensen, Alexandra [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Haberer, Thomas [Heidelberg Ion Therapy Center, Heidelberg (Germany); Jaekel, Oliver [Heidelberg Ion Therapy Center, Heidelberg (Germany); Department of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg (Germany); Muenter, Marc W.; Welzel, Thomas; Debus, Juergen [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Combs, Stephanie E., E-mail: Stephanie.Combs@med.uni-hedielberg.de [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany)

    2011-12-01

    Puropose: To asses early toxicity and response in 118 patients treated with scanned ion beams to validate the safety of intensity-controlled raster scanning at the Heidelberg Ion Therapy Center. Patients and Methods: Between November 2009 and June 2010, we treated 118 patients with proton and carbon ion radiotherapy (RT) using active beam delivery. The main indications included skull base chordomas and chondrosarcomas, salivary gland tumors, and gliomas. We evaluated early toxicity within 6 weeks after RT and the initial clinical and radiologic response for quality assurance in our new facility. Results: In all 118 patients, few side effects were observed, in particular, no high numbers of severe acute toxicity were found. In general, the patients treated with particle therapy alone showed only a few single side effects, mainly Radiation Therapy Oncology Group/Common Terminology Criteria grade 1. The most frequent side effects and cumulative incidence of single side effects were observed in the head-and-neck patients treated with particle therapy as a boost and photon intensity-modulated RT. The toxicities included common radiation-attributed reactions known from photon RT, including mucositis, dysphagia, and skin erythema. The most predominant imaging responses were observed in patients with high-grade gliomas and those with salivary gland tumors. For skull base tumors, imaging showed a stable tumor outline in most patients. Thirteen patients showed improvement of pre-existing clinical symptoms. Conclusions: Side effects related to particle treatment were rare, and the overall tolerability of the treatment was shown. The initial response was promising. The data have confirmed the safe delivery of carbon ions and protons at the newly opened Heidelberg facility.

  8. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    Science.gov (United States)

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  9. Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-07-01

    Full Text Available Carbon ion therapy is a promising modality in radiotherapy to treat tumors, however, a potential risk of induction of late normal tissue damage should still be investigated and protected. The aim of the present study was to explore the long-term cognitive deficits provoked by a high-linear energy transfer (high-LET carbon ions in mice by targeting to hippocampus which plays a crucial role in memory and learning. Our data showed that, one month after 4 Gy carbon ion exposure, carbon ion irradiation conspicuously resulted in the impaired cognitive performance, neurodegeneration and neuronal cell death, as well as the reduced mitochondrial integrity, the disrupted activities of tricarboxylic acid cycle flux and electron transport chain, and the depressed antioxidant defense system, consequently leading to a decline of ATP production and persistent oxidative damage in the hippocampus region. Mechanistically, we demonstrated the disruptions of mitochondrial homeostasis and redox balance typically characterized by the disordered mitochondrial dynamics, mitophagy and glutathione redox couple, which is closely associated with the inhibitions of PINK1 and NRF2 signaling pathway as the key regulators of molecular responses in the context of neurotoxicity and neurodegenerative disorders. Most importantly, we found that administration with melatonin as a mitochondria-targeted antioxidant promoted the PINK1 accumulation on the mitochondrial membrane, and augmented the NRF2 accumulation and translocation. Moreover, melatonin pronouncedly enhanced the molecular interplay between NRF2 and PINK1. Furthermore, in the mouse hippocampal neuronal cells, overexpression of NRF2/PINK1 strikingly protected the hippocampal neurons from carbon ion-elicited toxic insults. Thus, these data suggest that alleviation of the sustained mitochondrial dysfunction and oxidative stress through co-modulation of NRF2 and PINK1 may be in charge of restoration of the cognitive

  10. Application of radiotherapy for hepatocellular carcinoma in current clinical practice guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Chai Hong; Seong, Jin Sil [Dept. of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    In oncologic practice, treatment guidelines provide appropriate treatment strategies based on evidence. Currently, many guidelines are used, including those of the European Association for the Study of the Liver and European Organization for Research and Treatment of Cancer (EASL-EORTC), National Comprehensive Cancer Network (NCCN), Asia-Pacific Primary Liver Cancer Expert (APPLE), and Korean Liver Cancer Study Group and National Cancer Centre (KLCSG-NCC). Although radiotherapy is commonly used in clinical practice, some guidelines do not accept it as a standard treatment modality. In this review, we will investigate the clinical practice guidelines currently used, and discuss the application of radiotherapy.

  11. Application of radiotherapy for hepatocellular carcinoma in current clinical practice guidelines

    International Nuclear Information System (INIS)

    Rim, Chai Hong; Seong, Jin Sil

    2016-01-01

    In oncologic practice, treatment guidelines provide appropriate treatment strategies based on evidence. Currently, many guidelines are used, including those of the European Association for the Study of the Liver and European Organization for Research and Treatment of Cancer (EASL-EORTC), National Comprehensive Cancer Network (NCCN), Asia-Pacific Primary Liver Cancer Expert (APPLE), and Korean Liver Cancer Study Group and National Cancer Centre (KLCSG-NCC). Although radiotherapy is commonly used in clinical practice, some guidelines do not accept it as a standard treatment modality. In this review, we will investigate the clinical practice guidelines currently used, and discuss the application of radiotherapy

  12. Stereotactic radiotherapy for non-small cell lung cancer: From concept to clinical reality. 2011 update

    International Nuclear Information System (INIS)

    Girard, N.; Mornex, F.

    2011-01-01

    Only 60% of patients with early-stage non-small cell lung cancer (NSCLC), a priori bearing a favorable prognosis, undergo radical resection because of the very frequent co-morbidities occurring in smokers, precluding surgery to be safely performed. Stereotactic radiotherapy consists of the use of multiple radiation micro-beams, allowing high doses of radiation to be delivered to the tumour (ranging from 7.5 to 20 Gy per fraction) in a small number of fractions (one to eight on average). Several studies with long-term follow-up are now available, showing the effectiveness of stereotactic radiotherapy to control stage I/II non-small cell lung cancer in medically inoperable patients. Local control rates are consistently reported to be above 95% with a median survival of 34 to 45 months. Because of these excellent results, stereotactic radiation therapy is now being evaluated in operable patients in several randomized trials with a surgical arm. Ultimately, the efficacy of stereotactic radiotherapy in early-stage tumours leads to hypothesize that it may represent an opportunity for locally-advanced tumors. The specific toxicities of stereotactic radiotherapy mostly correspond to radiation-induced chest wall side effects, especially for peripheral tumours. The use of adapted fractionation schemes has made feasible the use of stereotactic radiotherapy to treat proximal tumours. Overall, from a technical concept to the availability of specific treatment devices and the publication of clinical results, stereotactic radiotherapy represents a model of implementation in thoracic oncology. (authors)

  13. On the clinical effect of Pantocin in radiotherapy

    International Nuclear Information System (INIS)

    Natsume, Hiroshi; Obata, Koji; Honda, Yasuaki; Murase, Tatsuyoshi

    1975-01-01

    5-fold powder (3g/day) of Pantocin was given orally to 11 patients with urologic malignant tumor for the prevention of side effects following telecobalt irradiation. The blood test was performed approximately weekly (red blood cell count, hemoglobin, hematocrit, white blood cell count, platelet count). Mild radiation sickness was observed in 6 of the 11 cases, but in no case, continuation of irradiation was impossible. No side effect attributable to the oral administration of Pantocin was observed. Pantocin is thought to be an effective drug for alleviation of radiation sickness as well as for the prevention or treatment of hematological properties in radiotherapy. (Chiba, N.)

  14. Radiotherapy of esophageal cancer. Clinical usefulness of new grouping

    International Nuclear Information System (INIS)

    Hishinuma, Tamio

    1997-01-01

    A total of 188 cases of nonresected esophageal cancer were categorized into the following groups based on T category (1987 UICC) and radiological classification (Japanese Society of Esophageal Diseases): Group 1: superficial or early (T2 or less) tumorous type; Group 2: advanced tumorous type, early serrated or early spiral type; Group 3: others. The response to radiotherapy was significantly related to the group. According to the proportional hazard model, the important factors predicting long-term survival were T category, radiotherapy response at the end of treatment, and group. There was a tendency to obtain better local control in group 1 patients than in group 2 patients, but cause-specific survival was the same for both groups (mainly the appearance of distant metastases). Local control was poor in group 3. If the tumor response at 40 Gy was excellent in group 2 patients, the main cause of death was distant metastases, much the same as in group 1 patients. However, if response at 40 Gy was not excellent, the main cause of death was local failure even though final tumor response was excellent. It seemed that therapy that may improve local control is valuable for group 3 patient, and for group 2 patients whose tumor response at 40 Gy was not excellent. (author)

  15. Response of the skin of hamsters to fractionated irradiation with X rays or accelerated carbon ions

    International Nuclear Information System (INIS)

    Leith, J.T.; Powers-Risius, P.; Woodruff, K.H.; McDonald, M.; Howard, J.

    1981-01-01

    The ventral thoracic skin of hamsters was irradiated with either single, split (two fractions given in 24 hr), or multiple (five fractions given daily) exposures of X rays or accelerated carbon ions using a 4-cm spread Bragg peak. Animals were positioned in the heavy-ion beam so that the ventral thoracic skin surface was 1 cm distal to the proximal peak of the modified beam. Early skin reactions from 6 to 30 days postirradiation were assessed. Using the average skin reactions produced in this period, it was found that the relative biological effect (RBE) for single doses of carbon ions was about 1.6 (5-17 Gy per fraction), for two fractions about 1.8 (5-17 Gy perfraction), and for five fractions about 1.9 (2.4-7.2 Gy per fraction). The fractional amount of sublethal damage repaired after carbon ion irradiation was about 0.3 (at dose levels of 2.4-8.0 Gy per fraction) compared to a value of about 0.45 (at dose levels of 60-13.0 Gy per fraction) found for the fractionated X irradiations, indicting about a 33% decrease in the relative amount of sublethal damage repaired after carbon ion irradiation in this position in the spread Bragg curve. Also, data were interpreted using plots of the reciprocal total dose needed to produce a given level of skin damage versus the dose per fraction used in the multifraction experiments, and of the RBE versus dose per fraction obtained from a nonparametric analysis of the responses. These approaches allow estimation of RBE at dose levels relevant to the clinical situation. Also, estimation may be made of the maximum permissible RBE by using the zero dose intercept value from the linear reciprocal dose plot. With this approach, the RBE at a dose level of 2 Gy is about 2.5 and the maximum RBE value is about 2.7

  16. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L J; Sood, D K; Manory, R R [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  17. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  18. Surface modification of commercial tin coatings by carbon ion implantation

    International Nuclear Information System (INIS)

    Liu, L.J.; Sood, D.K.; Manory, R.R.

    1993-01-01

    Commercial TiN coatings of about 2 μm thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10 17 - 8x10 17 ions cm -2 . Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs

  19. Pre-clinical research in small animals using radiotherapy technology. A bidirectional translational approach

    International Nuclear Information System (INIS)

    Tillner, Falk; Buetof, Rebecca; Krause, Mechthild; Enghardt, Wolfgang; Helmholtz-Zentrum Dresden-Rossendorf, Dresden; Technische Univ. Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden

    2014-01-01

    For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained.

  20. Pre-clinical research in small animals using radiotherapy technology--a bidirectional translational approach.

    Science.gov (United States)

    Tillner, Falk; Thute, Prasad; Bütof, Rebecca; Krause, Mechthild; Enghardt, Wolfgang

    2014-12-01

    For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained. Copyright © 2014. Published by Elsevier GmbH.

  1. Pre-clinical research in small animals using radiotherapy technology. A bidirectional translational approach

    Energy Technology Data Exchange (ETDEWEB)

    Tillner, Falk; Buetof, Rebecca [Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany). Dept. of Radiation Oncology; Thute, Prasad [Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krause, Mechthild [Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany). Dept. of Radiation Oncology; German Cancer Consortium (DKTK), Dresden (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); Enghardt, Wolfgang [Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany). Dept. of Radiation Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiooncology

    2014-07-01

    For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained.

  2. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  3. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  4. On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams

    International Nuclear Information System (INIS)

    Andreo, Pedro

    2009-01-01

    The 'sub-millimetre precision' often claimed to be achievable in protons and light ion beam therapy is analysed using the Monte Carlo code SHIELD-HIT for a broad range of energies. Based on the range of possible values and uncertainties of the mean excitation energy of water and human tissues, as well as of the composition of organs and tissues, it is concluded that precision statements deserve careful reconsideration for treatment planning purposes. It is found that the range of I-values of water stated in ICRU reports 37, 49 and 73 (1984, 1993 and 2005) for the collision stopping power formulae, namely 67 eV, 75 eV and 80 eV, yields a spread of the depth of the Bragg peak of protons and heavier charged particles (carbon ions) of up to 5 or 6 mm, which is also found to be energy dependent due to other energy loss competing interaction mechanisms. The spread is similar in protons and in carbon ions having analogous practical range. Although accurate depth-dose distribution measurements in water can be used at the time of developing empirical dose calculation models, the energy dependence of the spread causes a substantial constraint. In the case of in vivo human tissues, where distribution measurements are not feasible, the problem poses a major limitation. In addition to the spread due to the currently accepted uncertainties of their I-values, a spread of the depth of the Bragg peak due to the varying compositions of soft tissues is also demonstrated, even for cases which could be considered practically identical in clinical practice. For these, the spreads found were similar to those of water or even larger, providing support to international recommendations advising that body-tissue compositions should not be given the standing of physical constants. The results show that it would be necessary to increase the margins of a clinical target volume, even in the case of a water phantom, due to an 'intrinsic basic physics uncertainty', adding to those margins usually

  5. Dedicated Magnetic Resonance Imaging in the Radiotherapy Clinic

    International Nuclear Information System (INIS)

    Karlsson, Mikael; Karlsson, Magnus G.; Nyholm, Tufve; Amies, Christopher; Zackrisson, Bjoern

    2009-01-01

    Purpose: To introduce a novel technology arrangement in an integrated environment and outline the logistics model needed to incorporate dedicated magnetic resonance (MR) imaging in the radiotherapy workflow. An initial attempt was made to analyze the value and feasibility of MR-only imaging compared to computed tomography (CT) imaging, testing the assumption that MR is a better choice for target and healthy tissue delineation in radiotherapy. Methods and Materials: A 1.5-T MR unit with a 70-cm-bore size was installed close to a linear accelerator, and a special trolley was developed for transporting patients who were fixated in advance between the MR unit and the accelerator. New MR-based workflow procedures were developed and evaluated. Results: MR-only treatment planning has been facilitated, thus avoiding all registration errors between CT and MR scans, but several new aspects of MR imaging must be considered. Electron density information must be obtained by other methods. Generation of digitally reconstructed radiographs (DRR) for x-ray setup verification is not straight forward, and reliable corrections of geometrical distortions must be applied. The feasibility of MR imaging virtual simulation has been demonstrated, but a key challenge to overcome is correct determination of the skeleton, which is often needed for the traditional approach of beam modeling. The trolley solution allows for a highly precise setup for soft tissue tumors without the invasive handling of radiopaque markers. Conclusions: The new logistics model with an integrated MR unit is efficient and will allow for improved tumor definition and geometrical precision without a significant loss of dosimetric accuracy. The most significant development needed is improved bone imaging.

  6. Dedicated magnetic resonance imaging in the radiotherapy clinic.

    Science.gov (United States)

    Karlsson, Mikael; Karlsson, Magnus G; Nyholm, Tufve; Amies, Christopher; Zackrisson, Björn

    2009-06-01

    To introduce a novel technology arrangement in an integrated environment and outline the logistics model needed to incorporate dedicated magnetic resonance (MR) imaging in the radiotherapy workflow. An initial attempt was made to analyze the value and feasibility of MR-only imaging compared to computed tomography (CT) imaging, testing the assumption that MR is a better choice for target and healthy tissue delineation in radiotherapy. A 1.5-T MR unit with a 70-cm-bore size was installed close to a linear accelerator, and a special trolley was developed for transporting patients who were fixated in advance between the MR unit and the accelerator. New MR-based workflow procedures were developed and evaluated. MR-only treatment planning has been facilitated, thus avoiding all registration errors between CT and MR scans, but several new aspects of MR imaging must be considered. Electron density information must be obtained by other methods. Generation of digitally reconstructed radiographs (DRR) for x-ray setup verification is not straight forward, and reliable corrections of geometrical distortions must be applied. The feasibility of MR imaging virtual simulation has been demonstrated, but a key challenge to overcome is correct determination of the skeleton, which is often needed for the traditional approach of beam modeling. The trolley solution allows for a highly precise setup for soft tissue tumors without the invasive handling of radiopaque markers. The new logistics model with an integrated MR unit is efficient and will allow for improved tumor definition and geometrical precision without a significant loss of dosimetric accuracy. The most significant development needed is improved bone imaging.

  7. Experimental radiotherapy and clinical radiobiology. Vol. 18. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 18. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H Peter; Zips, Daniel [eds.

    2009-07-15

    The proceedings on experimental radiotherapy and clinical radiobiology contain two review articles (prediction of normal tissue reactions after radiotherapy, ?H2AX foci as a marker for DNA double-strand breaks) and 34 contributions to the following topics: Hypoxia and molecular mechanisms of radiation resistance; biological imaging of the tumor micromilieu; DNA repair, genomic instability and carcerogenesis; molecular factors of radiation resistance; actual controversial discussion on possible irradiation caused metastasis risk enhancement; EGFR inhibition and irradiation; biology of experimental radiation/ normal tissue toxicity.

  8. Development study of a quality control for clinical dosimeters of radiotherapy

    International Nuclear Information System (INIS)

    Damatto, Willian B.; Potiens, Maria P.A.; Santos, Gelson P.; Vivolo, Vitor

    2011-01-01

    This paper presents the partial results of a scientific initiation which the main objective is the enhancement of the quality system of the dosimeter calibration laboratory (LCI-IPEN) on 60 Co gamma radiation to the International Atomic Energy Agency (IAEA), being this the new protocol denominated Calibration of Reference Dosimeters for External Beam Radiotherapy (Technical Reports Series 469). This paper is an actualization of the protocol Absorbed Dose Determination for External Beam Radiotherapy (Technical Reports Series 398). Therefore, in this paper it will presented the study on the clinical dosimeters composed of electrometer, wires, triaxial connectors, and thimble type ionization chamber - 0.60 cm 3 . (author)

  9. Radiotherapy in cooperative clinical trials: Northern California Oncology Group (NCOG) method

    International Nuclear Information System (INIS)

    MacDonald, E.A.; Meurk, M.L.; Ray, G.; Phillips, T.L.; Carter, S.K.

    1980-01-01

    The inclusion of radiation therapy in multimodality clinical research has demonstrated the need for consultion and standardization of terminology and practice between participating centers. A set of guidelines has been developed to ensure that the radiotherapy section of a cooperative study is comprehensive and unambiguous, and that the techniques, fractionation and dosage used are sufficiently uniform to provide a homogeneous group of patients for comparative purposes. An outline is given for the preparation of radiotherapy protocols including the necessary details of physical factors, localization and simulation, portal and treatment volume definition, dosimetry requirements, specification of dose, and treatment documentation

  10. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials

    Science.gov (United States)

    Bekelman, Justin E.; Deye, James A.; Vikram, Bhadrasain; Bentzen, Soren M.; Bruner, Deborah; Curran, Walter J.; Dignam, James; Efstathiou, Jason A.; FitzGerald, T. J.; Hurkmans, Coen; Ibbott, Geoffrey S.; Lee, J. Jack; Merchant, Timothy E.; Michalski, Jeff; Palta, Jatinder R.; Simon, Richard; Ten Haken, Randal K.; Timmerman, Robert; Tunis, Sean; Coleman, C. Norman; Purdy, James

    2012-01-01

    Background In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute (NCI) sponsored a two day workshop to examine the challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. Lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities like proton beam therapy, and the international harmonization of clinical trial QA. Results Four recommendations were made: 1) Develop a tiered (and more efficient) system for radiotherapy QA and tailor intensity of QA to clinical trial objectives. Tiers include (i) general credentialing, (ii) trial specific credentialing, and (iii) individual case review; 2) Establish a case QA repository; 3) Develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and 4) Explore the feasibility of consolidating clinical trial QA in the United States. Conclusion Radiotherapy QA may impact clinical trial accrual, cost, outcomes and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based. PMID:22425219

  11. Heidelberg Ion Therapy Center (HIT): Initial clinical experience in the first 80 patients

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E. (Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)), E-mail: Stephanie.Combs@med.uni-heidelberg.de; Ellerbrock, Malte; Haberer, Thomas (Heidelberger Ionenstrahl Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg (Germany)) (and others)

    2010-10-15

    The Heidelberg Ion Therapy Center (HIT) started clinical operation in November 2009. In this report we present the first 80 patients treated with proton and carbon ion radiotherapy and describe patient selection, treatment planning and daily treatment for different indications. Patients and methods. Between November 15, 2009 and April 15, 2010, 80 patients were treated at the Heidelberg Ion Therapy Center (HIT) with carbon ion and proton radiotherapy. Main treated indications consisted of skull base chordoma (n = 9) and chondrosarcoma (n = 18), malignant salivary gland tumors (n=29), chordomas of the sacrum (n = 5), low grade glioma (n=3), primary and recurrent malignant astrocytoma and glioblastoma (n=7) and well as osteosarcoma (n = 3). Of these patients, four pediatric patients aged under 18 years were treated. Results. All patients were treated using the intensity-modulated rasterscanning technique. Seventy-six patients were treated with carbon ions (95%), and four patients were treated with protons. In all patients x-ray imaging was performed prior to each fraction. Treatment concepts were based on the initial experiences with carbon ion therapy at the Gesellschaft fuer Schwerionenforschung (GSI) including carbon-only treatments and carbon-boost treatments with photon-IMRT. The average time per fraction in the treatment room per patient was 29 minutes; for irradiation only, the mean time including all patients was 16 minutes. Position verification was performed prior to every treatment fraction with orthogonal x-ray imaging. Conclusion. Particle therapy could be included successfully into the clinical routine at the Dept. of Radiation Oncology in Heidelberg. Numerous clinical trials will subsequently be initiated to precisely define the role of proton and carbon ion radiotherapy in radiation oncology.

  12. SU-F-T-144: Analytical Closed Form Approximation for Carbon Ion Bragg Curves in Water

    Energy Technology Data Exchange (ETDEWEB)

    Tuomanen, S; Moskvin, V; Farr, J [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2016-06-15

    Purpose: Semi-empirical modeling is a powerful computational method in radiation dosimetry. A set of approximations exist for proton ion depth dose distribution (DDD) in water. However, the modeling is more complicated for carbon ions due to fragmentation. This study addresses this by providing and evaluating a new methodology for DDD modeling of carbon ions in water. Methods: The FLUKA, Monte Carlo (MC) general-purpose transport code was used for simulation of carbon DDDs for energies of 100–400 MeV in water as reference data model benchmarking. Based on Thomas Bortfeld’s closed form equation approximating proton Bragg Curves as a basis, we derived the critical constants for a beam of Carbon ions by applying models of radiation transport by Lee et. al. and Geiger to our simulated Carbon curves. We hypothesized that including a new exponential (κ) residual distance parameter to Bortfeld’s fluence reduction relation would improve DDD modeling for carbon ions. We are introducing an additional term to be added to Bortfeld’s equation to describe fragmentation tail. This term accounts for the pre-peak dose from nuclear fragments (NF). In the post peak region, the NF transport will be treated as new beams utilizing the Glauber model for interaction cross sections and the Abrasion- Ablation fragmentation model. Results: The carbon beam specific constants in the developed model were determined to be : p= 1.75, β=0.008 cm-1, γ=0.6, α=0.0007 cm MeV, σmono=0.08, and the new exponential parameter κ=0.55. This produced a close match for the plateau part of the curve (max deviation 6.37%). Conclusion: The derived semi-empirical model provides an accurate approximation of the MC simulated clinical carbon DDDs. This is the first direct semi-empirical simulation for the dosimetry of therapeutic carbon ions. The accurate modeling of the NF tail in the carbon DDD will provide key insight into distal edge dose deposition formation.

  13. The impact of radiotherapy on clinical outcomes in parameningeal rhabdomyosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Seon; Lim, Do Hoon [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Radiotherapy (RT) is considered a mainstay of treatment in parameningeal rhabdomyosarcoma (PM-RMS). We aim to determine the treatment outcomes and prognostic factors for PM-RMS patients who treated with RT. In addition, we tried to evaluate the adequate dose and timing of RT. Twenty-two patients with PM-RMS from 1995 to 2013 were evaluated. Seven patients had intracranial extension (ICE) and 17 patients had skull base bony erosion (SBBE). Five patients showed distant metastases at the time of diagnosis. All patients underwent chemotherapy and RT. The median radiation dose was 50.4 Gy (range, 40.0 to 56.0 Gy). The median follow-up was 28.7 months. Twelve patients (54.5%) experienced failure after treatment; 4 local, 2 regional, and 6 distant failures. The 5-year local control (LC) and overall survival (OS) were 77.7% and 38.5%, respectively. The 5-year OS rate was 50.8% for patients without distant metastases and 0% for patients with metastases (p < 0.001). Radiation dose (<50 Gy vs. ≥50 Gy) did not compromise the LC (p = 0.645). However, LC was affected by ICE (p = 0.031). Delayed administration (>22 weeks) of RT was related to a higher rate of local failure (40.0%). RT resulted in a higher rate of local control in PM-RMS. However, it was not extended to survival outcome. A more effective treatment for PM-RMS is warranted.

  14. Nimotuzumab combined with radiotherapy for esophageal cancer: preliminary study of a Phase II clinical trial

    Directory of Open Access Journals (Sweden)

    Liang J

    2013-11-01

    Full Text Available Jun Liang,1 Mingyan E,2 Gang Wu,3 Lujun Zhao,4 Xia Li,5 Xia Xiu,6 Ning Li,1 Bo Chen,1 Zhouguang Hui,1 Jima Lv,1 Hui Fang,1 Yu Tang,1 Nan Bi,1 Wenqing Wang,1 Yirui Zhai,1 Tao Li,1 Dongfu Chen,1 Shuangmei Zou,7 Ning Lu,7 Rolando Perez-Rodríguez,8 Junqi Zheng,9 Luhua Wang11Department of Radiotherapy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; 2Department of Radiotherapy, Cancer Hospital of Harbin Medical University, Harbin, People's Republic of China; 3Department of Radiotherapy, Tongji Cancer Center Hospital, Wuhan, People's Republic of China; 4Department of Radiotherapy, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China; 5Department of Radiotherapy, LiaoNing Province Cancer Hospital, Shenyang, People's Republic of China; 6Department of Radiotherapy, Beijing Hospital, Beijing, People's Republic of China; 7Department of Pathology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; 8Center of Molecular Immunology, Havana, Cuba; 9School of Medicine, Tongji University, Shanghai, People's Republic of ChinaObjective: To determine the safety and therapeutic effects of nimotuzumab (h-R3 combined with radiotherapy in esophageal cancer.Methods: This Phase II clinical trial involved 42 patients with stage II (inoperable or refused surgery to stage IV (supraclavicular lymph node metastasis only esophageal cancers treated between November 2008 and July 2010. All patients had squamous cell carcinomas, and all received three-dimensional conformal radiotherapy and 200 mg nimotuzumab per week during radiotherapy.Results: There were 9, 25, and 8 patients with stage II, III and IV disease, respectively. All except two patients received 50–70 Gy radiation; 37 patients (88.1% received more than five nimotuzumab doses. Grade III toxicities (21.4% of all adverse events included esophagitis and gastrointestinal, dermatological and hematological

  15. Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway.

    Science.gov (United States)

    Liu, Yang; Yan, Jiawei; Sun, Cao; Li, Guo; Li, Sirui; Zhang, Luwei; Di, Cuixia; Gan, Lu; Wang, Yupei; Zhou, Rong; Si, Jing; Zhang, Hong

    2018-07-01

    Carbon ion therapy is a promising modality in radiotherapy to treat tumors, however, a potential risk of induction of late normal tissue damage should still be investigated and protected. The aim of the present study was to explore the long-term cognitive deficits provoked by a high-linear energy transfer (high-LET) carbon ions in mice by targeting to hippocampus which plays a crucial role in memory and learning. Our data showed that, one month after 4 Gy carbon ion exposure, carbon ion irradiation conspicuously resulted in the impaired cognitive performance, neurodegeneration and neuronal cell death, as well as the reduced mitochondrial integrity, the disrupted activities of tricarboxylic acid cycle flux and electron transport chain, and the depressed antioxidant defense system, consequently leading to a decline of ATP production and persistent oxidative damage in the hippocampus region. Mechanistically, we demonstrated the disruptions of mitochondrial homeostasis and redox balance typically characterized by the disordered mitochondrial dynamics, mitophagy and glutathione redox couple, which is closely associated with the inhibitions of PINK1 and NRF2 signaling pathway as the key regulators of molecular responses in the context of neurotoxicity and neurodegenerative disorders. Most importantly, we found that administration with melatonin as a mitochondria-targeted antioxidant promoted the PINK1 accumulation on the mitochondrial membrane, and augmented the NRF2 accumulation and translocation. Moreover, melatonin pronouncedly enhanced the molecular interplay between NRF2 and PINK1. Furthermore, in the mouse hippocampal neuronal cells, overexpression of NRF2/PINK1 strikingly protected the hippocampal neurons from carbon ion-elicited toxic insults. Thus, these data suggest that alleviation of the sustained mitochondrial dysfunction and oxidative stress through co-modulation of NRF2 and PINK1 may be in charge of restoration of the cognitive impairments in a mouse

  16. Iterative reconstruction with boundary detection for carbon ion computed tomography

    Science.gov (United States)

    Shrestha, Deepak; Qin, Nan; Zhang, You; Kalantari, Faraz; Niu, Shanzhou; Jia, Xun; Pompos, Arnold; Jiang, Steve; Wang, Jing

    2018-03-01

    In heavy ion radiation therapy, improving the accuracy in range prediction of the ions inside the patient’s body has become essential. Accurate localization of the Bragg peak provides greater conformity of the tumor while sparing healthy tissues. We investigated the use of carbon ions directly for computed tomography (carbon CT) to create the relative stopping power map of a patient’s body. The Geant4 toolkit was used to perform a Monte Carlo simulation of the carbon ion trajectories, to study their lateral and angular deflections and the most likely paths, using a water phantom. Geant4 was used to create carbonCT projections of a contrast and spatial resolution phantom, with a cone beam of 430 MeV/u carbon ions. The contrast phantom consisted of cranial bone, lung material, and PMMA inserts while the spatial resolution phantom contained bone and lung material inserts with line pair (lp) densities ranging from 1.67 lp cm-1 through 5 lp cm-1. First, the positions of each carbon ion on the rear and front trackers were used for an approximate reconstruction of the phantom. The phantom boundary was extracted from this approximate reconstruction, by using the position as well as angle information from the four tracking detectors, resulting in the entry and exit locations of the individual ions on the phantom surface. Subsequent reconstruction was performed by the iterative algebraic reconstruction technique coupled with total variation minimization (ART-TV) assuming straight line trajectories for the ions inside the phantom. The influence of number of projections was studied with reconstruction from five different sets of projections: 15, 30, 45, 60 and 90. Additionally, the effect of number of ions on the image quality was investigated by reducing the number of ions/projection while keeping the total number of projections at 60. An estimation of carbon ion range using the carbonCT image resulted in improved range prediction compared to the range calculated using a

  17. Postoperative radiotherapy in patients with salivary duct carcinoma. Clinical outcomes and prognostic factors

    International Nuclear Information System (INIS)

    Shinoto, Makoto; Shioyama, Yoshiyuki; Nakamura, Katsumasa

    2013-01-01

    This study sought to investigate the clinical outcome and the role of postoperative radiotherapy for patients with salivary duct carcinoma (SDC) who had undergone surgery and postoperative radiotherapy. We performed a retrospective analysis of 25 SDC patients treated between 1998 and 2011 with surgery and postoperative radiotherapy. The median prescribed dose was 60 Gy (range, 49.5-61.4 Gy). The clinical target volume (CTV) was defined as the tumor bed in four patients, the tumor bed and ipsilateral neck in 14 patients, and the tumor bed and bilateral neck in six patients. Local control (LC), disease-free survival (DFS) and overall survival (OS) were estimated using the Kaplan-Meier method, and prognostic variables were analyzed with the log-rank test. The 5-year LC, DFS and OS were 67%, 45% and 47%, respectively. Disease recurrence was found in 12 patients: seven as local, four as regional and eight as distant failure. Perineural and lymphovascular invasion was a significant prognostic factor for LC (P=0.03). Local failure was common, and the presence of local recurrence significantly affected the OS (P<0.05). We conclude that surgery and postoperative radiotherapy is expected to decrease the risk of local failure and contribute to good prognoses for patients with SDC. It might be advisable to have the CTV include the cranial nerves involved and the corresponding parts of the skull base in cases of pathologically positive perineural invasion. (author)

  18. Multiple daily fractionation in radiotherapy: biological rationale and preliminary clinical experiences

    Energy Technology Data Exchange (ETDEWEB)

    Arcangeli, G [Instituto Medico Scientifico, Rome (Italy). Dept. of Oncology; Mauro, F; Morelli, D; Nervi, C

    1979-09-01

    The biological bases of radiation dose fractionation are reviewed and discussed with special emphasis on reassortment. Experimental data on animal model systems are presented to clarify that reassortment has to be added to sublethal damage repair and reoxygenation in the rationale for an optimized radiotherapy course according to tumor cell kinetics. Clinical results on several human tumors treated with twice or thrice daily fractions are described. These results show that some clinically radioresistant tumors (especially if not characterized by a relatively long clinical doubling line) can be satisfactorily dealt with using multiple daily fractionation. Clinical observations indicate that a relatively high cumulative daily dose (200 + 150 + 150 rad) can be safely administered.

  19. TAS-116, a novel Hsp90 inhibitor, selectively enhances radio-sensitivity of human cancer cells to X-rays and carbon ion radiation

    Science.gov (United States)

    Lee, Younghyun; Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Nickoloff, Jac A.; Okayasu, Ryuichi

    2016-01-01

    Hsp90 inhibitors have been investigated as cancer therapeutics in mono-therapy and to augment radiotherapy, however serious adverse effects of early generation Hsp90 inhibitors limited their development. TAS-116 is a novel Hsp90 inhibitor with lower adverse effects than other Hsp90 inhibitors, and here we investigated the radio-sensitizing effects of TAS-116 in low LET X-ray, and high LET carbon ion irradiated human cancer cells and mouse tumor xenografts. TAS-116 decreased cell survival of both X-ray and carbon ion-irradiated human cancer cell lines (HeLa and H1299 cells), and similar to other Hsp90 inhibitors, it did not affect radiosensitivity of non-cancerous human fibroblasts. TAS-116 increased the number of radiation-induced γ-H2AX foci, and delayed the repair of DNA double-strand breaks (DSBs). TAS-116 reduced the expression of proteins that mediate repair of DSBs by homologous recombination (RAD51) and non-homologous end joining (Ku, DNA-PKcs), and suppressed formation of RAD51 foci and phosphorylation/activation of DNA-PKcs. TAS-116 also decreased expression of the cdc25 cell cycle progression marker, markedly increasing G2/M arrest. Combined treatment of mouse tumor xenografts with carbon ions and TAS-116 showed promising delay in tumor growth compared to either individual treatment. These results demonstrate that TAS-116 radio-sensitizes human cancer cells to both X rays and carbon ions by inhibiting the two major DSB repair pathways, and these effects were accompanied by marked cell cycle arrest. The promising results of combination TAS-116 + carbon ion radiation therapy of tumor xenografts justify further exploration of TAS-116 as an adjunct to radiotherapy using low or high LET radiation. PMID:28062703

  20. Estimating Cardiac Exposure From Breast Cancer Radiotherapy in Clinical Practice

    International Nuclear Information System (INIS)

    Taylor, C.W.; McGale, P.; Povall, J.M.; Thomas, E.; Kumar, S.; Dodwell, D.; Darby, S.C.

    2009-01-01

    Purpose: To assess the value of maximum heart distance (MHD) in predicting the dose and biologically effective dose (BED) to the heart and the left anterior descending (LAD) coronary artery for left-tangential breast or chest wall irradiation. Methods and Materials: A total of 50 consecutive breast cancer patients given adjuvant left-tangential irradiation at a large U.K. radiotherapy center during 2006 were selected. For each patient, the following were derived using three-dimensional computed tomography (CT) planning: (1) mean dose and BED to the heart, (2) mean dose and BED to the LAD coronary artery, (3) MHD, (4) position of the CT slice showing the maximum area of the irradiated heart relative to the mid-plane slice, and (5) sternal and contralateral breast thickness (measures of body fat). Results: A strong linear correlation was found between the MHD and the mean heart dose. For every 1-cm increase in MHD, the mean heart dose increased by 2.9% on average (95% confidence interval 2.5-3.3). A strong linear-quadratic relationship was seen between the MHD and the mean heart BED. The mean LAD coronary artery dose and BED were also correlated with the MHD but the associations were weaker. These relationships were not affected by body fat. The mid-plane CT slice did not give a reliable assessment of cardiac irradiation. Conclusion: The MHD is a reliable predictor of the mean heart dose and BED and gives an approximate estimate of the mean LAD coronary artery dose and BED. Doses predicted by the MHD could help assess the risk of radiation-induced cardiac toxicity where individual CT-based cardiac dosimetry is not possible

  1. Out-of-field dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaderka, Robert

    2011-07-13

    This thesis describes the results from measurements of the out-of-field dose in radiotherapy. The dose outside the treatment volume has been determined in a water phantom and an anthropomorphic phantom. Measurements were performed with linac photons, passively delivered protons, scanned protons, passively delivered carbon ions as well as scanned carbon ions. It was found that the use of charged particles for radiotherapy reduces the out-of-field dose by up to three orders of magnitude compared to conventional radiotherapy with photons.

  2. SU-E-T-755: Timing Characteristics of Proton and Carbon Ion Treatments Using a Synchrotron and Modulated Scanning

    International Nuclear Information System (INIS)

    Zhao, J; Li, Y; Huang, Z; Deng, Y; Sun, L; Moyers, M; Hsi, W; Wu, X

    2015-01-01

    Purpose: The time required to deliver a treatment impacts not only the number of patients that can be treated each day but also the accuracy of delivery due to potential movements of patient tissues. Both macroscopic and microscopic timing characteristics of a beam delivery system were studied to examine their impacts on patient treatments. Methods: 35 patients were treated during a clinical trial to demonstrate safety and efficacy of a Siemens Iontris system prior to receiving approval from the Chinese Food and Drug Administration. The system has a variable cycle time and can provide proton beams from 48 to 221 MeV/n and carbon ions from 86 to 430 MeV/n. A modulated scanning beam delivery technique is used where the beam remains stationary at each spot aiming location and is not turned off while the spot quickly moves from one aiming location to the next. The treatment log files for 28 of the trial patients were analyzed to determine several timing characteristics. Results: The average portal time per target dose was 172.5 s/Gy for protons and 150.7 s/Gy for carbon ions. The maximum delivery time for any portal was less than 300 s. The average dwell time per spot was 12 ms for protons and 3.0 ms for carbon ions. The number of aiming positions per energy layer varied from 1 to 258 for protons and 1 to 621 for carbon ions. The average spill time and cycle time per energy layer were 1.20 and 2.68 s for protons and 0.95 and 4.73 s for carbon ions respectively. For 3 of the patients, the beam was gated on and off to reduce the effects of respiration. Conclusion: For a typical target volume of 153 cc as used in this clinical trial, the portal delivery times were acceptable

  3. Photons, protons or carbon ions for stage I non-small cell lung cancer - Results of the multicentric ROCOCO in silico study.

    Science.gov (United States)

    Wink, Krista C J; Roelofs, Erik; Simone, Charles B; Dechambre, David; Santiago, Alina; van der Stoep, Judith; Dries, Wim; Smits, Julia; Avery, Stephen; Ammazzalorso, Filippo; Jansen, Nicolas; Jelen, Urszula; Solberg, Timothy; de Ruysscher, Dirk; Troost, Esther G C

    2018-03-12

    To compare dose to organs at risk (OARs) and dose-escalation possibility for 24 stage I non-small cell lung cancer (NSCLC) patients in a ROCOCO (Radiation Oncology Collaborative Comparison) trial. For each patient, 3 photon plans [Intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and CyberKnife], a double scattered proton (DSP) and an intensity-modulated carbon-ion (IMIT) therapy plan were created. Dose prescription was 60 Gy (equivalent) in 8 fractions. The mean dose and dose to 2% of the clinical target volume (CTV) were lower for protons and ions compared with IMRT (p < 0.01). Doses to the lungs, heart, and mediastinal structures were lowest with IMIT (p < 0.01), doses to the spinal cord were lowest with DSP (p < 0.01). VMAT and CyberKnife allowed for reduced doses to most OARs compared with IMRT. Dose escalation was possible for 8 patients. Generally, the mediastinum was the primary dose-limiting organ. On average, the doses to the OARs were lowest using particles, with more homogenous CTV doses. Given the ability of VMAT and CyberKnife to limit doses to OARs compared with IMRT, the additional benefit of particles may only be clinically relevant in selected patients and thus should be carefully weighed for every individual patient. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Cyclophilin B Expression Is Associated with In Vitro Radioresistance and Clinical Outcome after Radiotherapy

    Directory of Open Access Journals (Sweden)

    Paul D. Williams

    2011-12-01

    Full Text Available The tools for predicting clinical outcome after radiotherapy are not yet optimal. To improve on this, we applied the COXEN informatics approach to in vitro radiation sensitivity data of transcriptionally profiled human cells and gene expression data from untreated head and neck squamous cell carcinoma (HNSCC and bladder tumors to generate a multigene predictive model that is independent of histologic findings and reports on tumor radiosensitivity. The predictive ability of this 41-gene model was evaluated in patients with HNSCC and was found to stratify clinical outcome after radiotherapy. In contrast, this model was not useful in stratifying similar patients not treated with radiation. This led us to hypothesize that expression of some of the 41 genes contributes to tumor radioresistance and clinical recurrence. Hence, we evaluated the expression the 41 genes as a function of in vitro radioresistance in the NCI-60 cancer cell line panel and found cyclophilin B (PPIB, a peptidylprolyl isomerase and target of cyclosporine A (CsA, had the strongest direct correlation. Functional inhibition of PPIB by small interfering RNA depletion or CsA treatment leads to radiosensitization in cancer cells and reduced cellular DNA repair. Immunohistochemical evaluation of PPIB expression in patients with HNSCC was found to be associated with outcome after radiotherapy. This work demonstrates that a novel 41-gene expression model of radiation sensitivity developed in bladder cancer cell lines and human skin fibroblasts predicts clinical outcome after radiotherapy in head and neck cancer patients and identifies PPIB as a potential target for clinical radiosensitization.

  5. Clinical toxicity of peripheral nerve to intraoperative radiotherapy in a canine model

    International Nuclear Information System (INIS)

    Johnstone, Peter A. S.; DeLuca, Anne Marie; Bacher, John D.; Hampshire, Victoria A.; Terrill, Richard E.; Anderson, William J.; Kinsella, Timothy J.; Sindelar, William F.

    1995-01-01

    Purpose: The clinical late effects of intraoperative radiotherapy (IORT) on peripheral nerve were investigated in a foxhound model. Methods and Materials: Between 1982 and 1987, 40 animals underwent laparotomy with intraoperative radiotherapy of doses from 0-75 Gy administered to the right lumbosacral plexus. Subsequently, all animals were monitored closely and sacrificed to assess clinical effects to peripheral nerve. This analysis reports final clinical results of all animals, with follow-up to 5 years. Results: All animals treated with ≥ 25 Gy developed ipsilateral neuropathy. An inverse relationship was noted between intraoperative radiotherapy dose and time to neuropathy, with an effective dose for 50% paralysis (ED 50 ) of 17.2 Gy. One of the animals treated with 15 Gy IORT developed paralysis, after a much longer latency than the other animals. Conclusions: Doses of 15 Gy delivered intraoperatively may be accompanied by peripheral neuropathy with long-term follow-up. This threshold is less than that reported with shorter follow-up. The value of ED 50 determined here is in keeping with data from other animal trials, and from clinical trials in humans

  6. PP22. PROGRESSING RADIOTHERAPY-DRUG COMBINATIONS TOWARDS EARLY PHASE CLINICAL TRIALS

    Science.gov (United States)

    Jones, Dr Hazel; Stock, Dr Julie; Chalmers, Prof Anthony

    2017-01-01

    Abstract The Radiotherapy-Drug Combinations consortium (RaDCom) works with UK-based investigators to design and deliver high quality preclinical projects evaluating specific radiotherapy-drug combinations. We have several collaborations with industry, from in vitro projects to understand the novel agent in the context of radiobiology, through to preclinical studies that will generate data to support the development of radiotherapy combination trials. RaDCom facilitates the coordination of industry interactions, triage new proposals, monitor active projects, and engages with the radiotherapy community to promote collaboration and networking (via a capability map). The CRUK New Agents Committee Preclinical Combination Grant scheme provides one of the funding options for these studies, with the potential to feed into early phase clinical trials via the ECMC Combinations Alliance. RaDCom also supports broader radiotherapy research initiatives, by working to improve preclinical quality assurance and identifying a route to registration for radiotherapy-drug treatments. These activities will place the UK at the forefront of radiotherapy-drug preclinical research and provide a significant incentive for pharmaceutical companies to invest in this area and utilise the RaDCom network. Further information can be found on our webpage: http://ctrad.ncri.org.uk/research-support/radiation-drug-combinations-radcom Successful projects from RaDCom can then move into early phase combinations trials within the Combinations Alliance. The Combinations Alliance supports early phase combination studies in the UK via the ECMC (Experimental Cancer Medicine Centres) network. It focuses on translational research, and enables clinical project teams to work with disease experts to set up investigator led trials. The CRUK Centre of Drug Development (CDD) supports these studies with further management and coordination ensuring more robust timelines and delivery. The Combinations Alliance framework

  7. Radiotherapy of malignant growths in the eosophagus with clinical and radiological course control

    International Nuclear Information System (INIS)

    Holzhausen, B.

    1981-01-01

    This paper reports on clinical and radiological symptoms observed before during and after radiotherapy of 172 patients treated under high-voltage conditions at the radiological clinic in Muenster in the time from 1962 to 1977. The 1, 2, and 5 year survival rates are 26.5%, 13%, and 5.9%. The examination carried out retrospectively showed in 52% of the patients (46/90) after radiotherapy an expansion of the tumour stenosis. In 67% of the patients (67/101), the disphagia which had been stated before decreased. Thus the palliative effect of the treatment is the most important issue of the therapy. In the case of polypous and diffusely infiltrating tumours, the average survival rate was 11.2 months and 12.3 months which is significantly better than the results obtained with circular-stenosing tumours (6.4 months). (orig./APR) [de

  8. Temporal lobe and hypothalmic-pituitary dysfunctions after radiotherapy for nasopharyngeal carcinoma: a distinct clinical syndrome

    International Nuclear Information System (INIS)

    Woo, E.; Lam, K.; Yu, Y.L.; Ma, J.; Wang, C.; Yeung, R.T.T.

    1988-01-01

    Eleven patients with combined neurological and endocrine complications after external radiotherapy for nasopharyngeal carcinoma are described. Memory disturbance, complex partial seizures and hypodense areas in one or both temporal lobes on CT were typical features. Endocrinologically, hypopituitarism was the prominent manifestation. This constellation of clinical features in a patient with previous radiotherapy to the nasopharynx characterises radiation injury to the inferomedial aspects of the temporal lobes and the hypothalamic-pituitary axis. While parenchymal brain lesions may mimic metastases or glioma on CT, associated endocrine disturbance would betray the correct diagnosis. The importance of recognising hypo-pituitarism which may be clinically asymptomatic and which is amenable to therapy is emphasised, as is the need for a proper fractionation of radiation dose to minimise the incidence of these disabling complications. (author)

  9. RBE and clinical response in radiotherapy with neutron beams

    International Nuclear Information System (INIS)

    Ellis, F.

    1984-01-01

    Consideration of the clinical results reported, when a cyclotron produced neutron beam was used for treatments in the pelvis region, suggested that a constant RBE of 3 should not have been used for all neutron doses. Instead a variable RBE, which increased from approximately 3 to 8 (with decreasing dose), should have been used. Although some of these RBE values are much higher than 3, they have been observed in clinical practice. An ''equivalent photon'' isodose plan was produced by employing a variable RBE and, by taking a TDF limit of 86 for bowel, an isoeffect plan was produced. This shows that in the clinical situation under consideration much of the pelvis was overdosed. Doses to tumour cells and late effects are also briefly considered. It is suggested that, in neutron therapy, both an ''equivalent photon'' isodose plan and an isoeffect plan should be produced prior to treatment. (author)

  10. Clinical applications of an ATM/Ethernet network in departments of neuroradiology and radiotherapy.

    Science.gov (United States)

    Cimino, C; Pizzi, R; Fusca, M; Bruzzone, M G; Casolino, D; Sicurello, F

    1997-01-01

    An integrated system for the multimedia management of images and clinical information has been developed at the Isituto Nazionale Neurologico C. Besta in Milan. The Institute physicians have the daily need of consulting images coming from various modalities. The high volume of archived material and the need of retrieving and displaying new and past images and clinical information has motivated the development of a Picture Archiving and Communication System (PACS) for the automatic management of images and clinical data, related not only to the Radiology Department, but also to the Radiotherapy Department for 3D virtual simulation, to remote teleconsulting, and in the following to all the wards, ambulatories and labs.

  11. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells

    International Nuclear Information System (INIS)

    Ghorai, Atanu; Sarma, Asitikantha; Chowdhury, Priyanka; Ghosh, Utpal

    2016-01-01

    Hadron therapy is an innovative technique where cancer cells are precisely killed leaving surrounding healthy cells least affected by high linear energy transfer (LET) radiation like carbon ion beam. Anti-metastatic effect of carbon ion exposure attracts investigators into the field of hadron biology, although details remain poor. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are well-known radiosensitizer and several PARP-1 inhibitors are in clinical trial. Our previous studies showed that PARP-1 depletion makes the cells more radiosensitive towards carbon ion than gamma. The purpose of the present study was to investigate combining effects of PARP-1 inhibition with carbon ion exposure to control metastatic properties in HeLa cells. Activities of matrix metalloproteinases-2, 9 (MMP-2, MMP-9) were measured using the gelatin zymography after 85 MeV carbon ion exposure or gamma irradiation (0- 4 Gy) to compare metastatic potential between PARP-1 knock down (HsiI) and control cells (H-vector - HeLa transfected with vector without shRNA construct). Expression of MMP-2, MMP-9, tissue inhibitor of MMPs such as TIMP-1, TIMP-2 and TIMP-3 were checked by immunofluorescence and western blot. Cell death by trypan blue, apoptosis and autophagy induction were studied after carbon ion exposure in each cell-type. The data was analyzed using one way ANOVA and 2-tailed paired-samples T-test. PARP-1 silencing significantly reduced MMP-2 and MMP-9 activities and carbon ion exposure further diminished their activities to less than 3 % of control H-vector. On the contrary, gamma radiation enhanced both MMP-2 and MMP-9 activities in H-vector but not in HsiI cells. The expression of MMP-2 and MMP-9 in H-vector and HsiI showed different pattern after carbon ion exposure. All three TIMPs were increased in HsiI, whereas only TIMP-1 was up-regulated in H-vector after irradiation. Notably, the expressions of all TIMPs were significantly higher in HsiI than H-vector at 4 Gy. Apoptosis was

  12. Exposure to carbon ions triggers pro-inflammatory signals, changes in homeostasis and epidermal tissue organization to a similar extent as photons

    Directory of Open Access Journals (Sweden)

    Palma eSimoniello

    2016-01-01

    Full Text Available The increasing application of charged particles in radiotherapy requires a deeper understanding of early and late side effects occurring in skin, which is exposed in all radiation treatments. We measured cellular and molecular changes related to the early inflammatory response of human skin irradiated with carbon ions, in particular cell death induction and changes in differentiation and proliferation of epidermal cells during the first days after exposure.Model systems for human skin from healthy donors of different complexity, i.e. keratinocytes, co-culture of skin cells, 3D skin equivalent and skin explants, were used to investigate the alterations induced by carbon ions (spread-out Bragg-peak, dose averaged LET 100 keV/µm in comparison to X-ray and UV-B exposure. After exposure to ionizing radiation, in none of the model systems apoptosis/necrosis was observed. Carbon ions triggered inflammatory signalling and accelerated differentiation of keratinocytes to a similar extent as X-rays at the same doses. High doses of carbon ions were more effective than X-rays in reducing proliferation and inducing abnormal differentiation. In contrast, changes identified following low dose exposure (≤ 0.5 Gy were induced more effectively after X-ray exposure, i.e. enhanced proliferation and change in the polarity of basal cells.

  13. In vitro co-culture experiments on prostate cancer and small intestine cells irradiated with carbon ions and x-rays

    International Nuclear Information System (INIS)

    Neubeck, C. von; Weyrather, W.-K.; Durante, M.

    2009-01-01

    Intensity modulated radiotherapy (IMRT) delivers the dose in many small irradiation fields of different beam direction to achieve a 3 dimensional tumour conformal dose overlapping with a maximum of normal tissue protection. In 2006 a study was started at GSI to treat prostate cancer patients with a boost irradiation of carbon ions in combination with an IMRT treatment administered at the Uniklinikum Heidelberg. The carbon ions are delivered in two opposing fields. So IMRT irradiation includes more normal tissue than carbon ion treatment but even here parts of the rectum and the bladder are in the irradiated field. This raises the question whether the irradiated tumor cells influence the normal cells (irradiated/ unirradiated) but also whether the normal irradiated cells influences normal tissue in a different way for carbon and photon irradiation. To study this problem, we established an in vitro co-culture model of prostate cancer and small intestine cells of the rat to simulate the patient treatment situation for analyzing tissue reaction exemplary. For characterization of the cells lines the parameters alpha and beta (linear quadratic model) for clonogenic survival were determined for x-rays and for carbon ions of different energies. For co-culture experiments unirradiated and irradiated cells were seeded together and the survival was analyzed

  14. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention

    International Nuclear Information System (INIS)

    Andratschke, Nicolaus; Maurer, Jean; Molls, Michael; Trott, Klaus-Ruediger

    2011-01-01

    The clinical importance of radiation-induced heart disease, in particular in post-operative radiotherapy of breast cancer patients, has been recognised only recently. There is general agreement, that a co-ordinated research effort would be needed to explore all the potential strategies of how to reduce the late risk of radiation-induced heart disease in radiotherapy. This approach would be based, on one hand, on a comprehensive understanding of the radiobiological mechanisms of radiation-induced heart disease after radiotherapy which would require large-scale long-term animal experiments with high precision local heart irradiation. On the other hand - in close co-operation with mechanistic in vivo research studies - clinical studies in patients need to determine the influence of dose distribution in the heart on the risk of radiation-induced heart disease. The aim of these clinical studies would be to identify the critical structures within the organ which need to be spared and their radiation sensitivity as well as a potential volume and dose effect. The results of the mechanistic studies might also provide concepts of how to modify the gradual progression of radiation damage in the heart by drugs or biological molecules. The results of the studies in patients would need to also incorporate detailed dosimetric and imaging studies in order to develop early indicators of impending radiation-induced heart disease which would be a pre-condition to develop sound criteria for treatment plan optimisation.

  15. EPR characterization of carbonate ion effect on TCE and PCE decomposition by gamma-rays

    International Nuclear Information System (INIS)

    Yoon, J.H.; Chung, H.H.; Lee, M.J.; Jung, J.

    2002-01-01

    Carbonate ions significantly inhibit the decomposition of TCE (trichloroethylene) and PCE (perchloroethylene) by gamma-rays. The inhibition effect is larger in the case of TCE than PCE due to a greater dependence of TCE decomposition on hydroxyl radicals. The inhibition effect of carbonate ions was characterized by an EPR/spin-trapping technique. The intensity of DMPO-OH adduct signal decreased as the carbonate ion concentration increased and the percent of signal reduction was linearly proportional to the logarithm of carbonate ion concentration. This directly proves that the carbonate ions inhibit the decomposition of TCE and PCE by scavenging hydroxyl radicals. (author)

  16. Bystander effects on mammalian cells induced by carbon ions

    International Nuclear Information System (INIS)

    Wang Jufang; Zhao Jing; Ma Qiufeng; Chinese Academy of Sciences, Beijing; Li Weijian; Zhou Guangming; Dang Bingrong; Mao Limin; Feng Yan

    2004-01-01

    Bystander effects on unirradiated V79 cells were observed by irradiated conditioned medium (ICM) method and co-cultured with carbon-ion-irradiated V79 cells. The results showed that the colony formation efficiency of unirradiated cells is obviously decreased by ICM. After co-culture with carbon-ion-irradiated cells for some time, the colony formation efficiency of co-cultured cells was lower than expected results assuming no bystander effects. The micronucleus frequency and hprt gene mutation rate was almost the same as expected results. Cytotoxic factor(s), which was effective for cell growth but not for micronucleus and mutation on unirradiated cells, might be released by irradiated cells. (authors)

  17. Clinical target volume for rectal cancer. Preoperative radiotherapy

    International Nuclear Information System (INIS)

    Lorchel, F.; Bossel, J.F.; Baron, M.H.; Goubard, O.; Bartholomot, B.; Mantion, G.; Pelissier, E.P.; Maingon, P.

    2001-01-01

    The total meso-rectal excision allows the marked increase of the local control rate in rectal cancer. Therefore, the meso-rectal space is the usual field for the spread of rectal cancer cells. It could therefore be considered as the clinical target volume in the preoperative plan by the radiation oncologist. We propose to identify the mesorectum on anatomical structures of a treatment-position CT scan. (authors)

  18. Radiological response and clinical outcome in patients with femoral bone metastases after radiotherapy

    International Nuclear Information System (INIS)

    Harada, Hideyuki; Katagiri, Hirohisa; Kamata, Minoru

    2010-01-01

    We evaluated the radiological response and clinical outcome in patients with femoral bone metastases after radiotherapy. 102 consecutive patients with femoral metastases without pathological fracture were treated by surgery or radiotherapy between 2002 and 2005. Twelve of them initially treated with surgery were excluded from this study. The remaining 90 patients with 102 lesions underwent radiation therapy as the initial treatment. Twelve patients who died within 30 days by disease progression and 6 who were lost to follow-up were excluded. The remaining 72 patients with 84 lesions including 43 impending fractures were enrolled in this analysis. Radiological changes were categorized into complete response, partial response, no change, and progressive disease based on plain radiograph findings. Pain relief was reviewed for 77 painful lesions. The median radiation dose was 30 Gy. No re-irradiation was performed. 35 lesions (42%) achieved radiological responses median 3 months after radiotherapy. Pain relief was obtained in 36 of 77 lesions (47%). There was no significant correlation between radiological response and pain relief (P=0.166). Eleven lesions eventually required surgery and considered as treatment failure. The treatment failure rate in the radiological progressive disease (PD) group (8/19, 42%) was significantly higher than that in the non-PD group (3/65, 5%) (P<0.001). Among 43 impending fracture lesions, 15 lesions (36%) experienced radiological response and 35 lesions (81%) required no surgical interventions. Our data suggest that radiotherapy can enable metastatic bone healing and avoid surgery in many lesions. However, radiological PD lesions often require surgery after radiotherapy. (author)

  19. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  20. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  1. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  2. Clinical results from first use of prostate stent as fiducial for radiotherapy of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Carl, Jesper; Nielsen, Jane (Dept. of Medical Physics, Dept. of Oncology, Aalborg Hospital, Aarhus Univ. Hospital, Aalborg (Denmark)), e-mail: jhc@rn.dk; Holmberg, Mats (Dept. of Oncology, Aalborg Hospital, Aarhus Univ. Hospital, Aalborg (Denmark)); Larsen, Erik Hoejkjaer; Fabrin, Knud (Dept. of Urology, Aalborg Hospital, Aarhus Univ. Hospital, Aalborg (Denmark)); Fisker, Rune V. (Dept. of Radiology, Aalborg Hospital, Aarhus Univ. Hospital, Aalborg (Denmark))

    2011-05-15

    Purpose. A clinical feasibility study using a removable prostate stent as fiducial for image-guided radiotherapy (IGRT) of localized prostate cancer (PC). Material and methods. The study included patients with local or locally advanced PC. The clinical target volume (CTV) was outlined on magnetic resonance (MR) images co-registered to planning computer tomography (CT) images. Daily online IGRT was delivered using the stent as fiducial. Risk of migration was estimated using multiple MR. Acute urinary toxicity was scored using the international prostate symptom score (IPSS). Late gastro-intestinal (GI) and genito-urinary (GU) toxicity was scored using the Radio Therapy Oncology Group (RTOG) score, biochemical failure (BF) was defined as an elevation of prostate specific antigen (PSA) above nadir plus 2 ng/ml after radiotherapy. Results. One hundred men were enrolled in the study. Ninety completed radiotherapy with the stent as fiducial. No migration of the stent was seen, but three cases of dislocation of the stent to the bladder were observed. Acute urinary toxicity based on IPSS was comparable to toxicity in patients who had gold markers (GM) as fiducials. Removal of the stent was associated with a high frequency of urinary retention. Late GI and GU toxicity and BF were comparable to those of other studies, but longer observation time is needed. Conclusions. This study reports the first clinical results of using a prostate stent as fiducial. No migration of the stent observed. Dislocation of the stent to the urinary bladder was observed in three cases, requiring removal of the stent and insertion of a new fiducial. Acute toxicity during radiotherapy evaluated from IPSS was comparable to toxicity in patients with GM. Removal of the stent was associated with a high frequency of post procedural urinary retention. Late toxicity and BF were comparable to those of other studies, though longer observation time is needed

  3. Clinical results from first use of prostate stent as fiducial for radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Larsen, Erik Hoejkjaer; Fabrin, Knud; Fisker, Rune V.

    2011-01-01

    Purpose. A clinical feasibility study using a removable prostate stent as fiducial for image-guided radiotherapy (IGRT) of localized prostate cancer (PC). Material and methods. The study included patients with local or locally advanced PC. The clinical target volume (CTV) was outlined on magnetic resonance (MR) images co-registered to planning computer tomography (CT) images. Daily online IGRT was delivered using the stent as fiducial. Risk of migration was estimated using multiple MR. Acute urinary toxicity was scored using the international prostate symptom score (IPSS). Late gastro-intestinal (GI) and genito-urinary (GU) toxicity was scored using the Radio Therapy Oncology Group (RTOG) score, biochemical failure (BF) was defined as an elevation of prostate specific antigen (PSA) above nadir plus 2 ng/ml after radiotherapy. Results. One hundred men were enrolled in the study. Ninety completed radiotherapy with the stent as fiducial. No migration of the stent was seen, but three cases of dislocation of the stent to the bladder were observed. Acute urinary toxicity based on IPSS was comparable to toxicity in patients who had gold markers (GM) as fiducials. Removal of the stent was associated with a high frequency of urinary retention. Late GI and GU toxicity and BF were comparable to those of other studies, but longer observation time is needed. Conclusions. This study reports the first clinical results of using a prostate stent as fiducial. No migration of the stent observed. Dislocation of the stent to the urinary bladder was observed in three cases, requiring removal of the stent and insertion of a new fiducial. Acute toxicity during radiotherapy evaluated from IPSS was comparable to toxicity in patients with GM. Removal of the stent was associated with a high frequency of post procedural urinary retention. Late toxicity and BF were comparable to those of other studies, though longer observation time is needed

  4. Clinical results from first use of prostate stent as fiducial for radiotherapy of prostate cancer.

    Science.gov (United States)

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Larsen, Erik Hoejkjaer; Fabrin, Knud; Fisker, Rune V

    2011-05-01

    A clinical feasibility study using a removable prostate stent as fiducial for image-guided radiotherapy (IGRT) of localized prostate cancer (PC). The study included patients with local or locally advanced PC. The clinical target volume (CTV) was outlined on magnetic resonance (MR) images co-registered to planning computer tomography (CT) images. Daily online IGRT was delivered using the stent as fiducial. Risk of migration was estimated using multiple MR. Acute urinary toxicity was scored using the international prostate symptom score (IPSS). Late gastro-intestinal (GI) and genito-urinary (GU) toxicity was scored using the Radio Therapy Oncology Group (RTOG) score, biochemical failure (BF) was defined as an elevation of prostate specific antigen (PSA) above nadir plus 2 ng/ml after radiotherapy. One hundred men were enrolled in the study. Ninety completed radiotherapy with the stent as fiducial. No migration of the stent was seen, but three cases of dislocation of the stent to the bladder were observed. Acute urinary toxicity based on IPSS was comparable to toxicity in patients who had gold markers (GM) as fiducials. Removal of the stent was associated with a high frequency of urinary retention. Late GI and GU toxicity and BF were comparable to those of other studies, but longer observation time is needed. This study reports the first clinical results of using a prostate stent as fiducial. No migration of the stent observed. Dislocation of the stent to the urinary bladder was observed in three cases, requiring removal of the stent and insertion of a new fiducial. Acute toxicity during radiotherapy evaluated from IPSS was comparable to toxicity in patients with GM. Removal of the stent was associated with a high frequency of post procedural urinary retention. Late toxicity and BF were comparable to those of other studies, though longer observation time is needed.

  5. The clinical implementation of respiratory-gated intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Keall, Paul; Vedam, Sastry; George, Rohini; Bartee, Chris; Siebers, Jeffrey; Lerma, Fritz; Weiss, Elisabeth; Chung, Theodore

    2006-01-01

    The clinical use of respiratory-gated radiotherapy and the application of intensity-modulated radiotherapy (IMRT) are 2 relatively new innovations to the treatment of lung cancer. Respiratory gating can reduce the deleterious effects of intrafraction motion, and IMRT can concurrently increase tumor dose homogeneity and reduce dose to critical structures including the lungs, spinal cord, esophagus, and heart. The aim of this work is to describe the clinical implementation of respiratory-gated IMRT for the treatment of non-small cell lung cancer. Documented clinical procedures were developed to include a tumor motion study, gated CT imaging, IMRT treatment planning, and gated IMRT delivery. Treatment planning procedures for respiratory-gated IMRT including beam arrangements and dose-volume constraints were developed. Quality assurance procedures were designed to quantify both the dosimetric and positional accuracy of respiratory-gated IMRT, including film dosimetry dose measurements and Monte Carlo dose calculations for verification and validation of individual patient treatments. Respiratory-gated IMRT is accepted by both treatment staff and patients. The dosimetric and positional quality assurance test results indicate that respiratory-gated IMRT can be delivered accurately. If carefully implemented, respiratory-gated IMRT is a practical alternative to conventional thoracic radiotherapy. For mobile tumors, respiratory-gated radiotherapy is used as the standard of care at our institution. Due to the increased workload, the choice of IMRT is taken on a case-by-case basis, with approximately half of the non-small cell lung cancer patients receiving respiratory-gated IMRT. We are currently evaluating whether superior tumor coverage and limited normal tissue dosing will lead to improvements in local control and survival in non-small cell lung cancer

  6. Homologous recombination in Arabidopsis seeds along the track of energetic carbon ions

    International Nuclear Information System (INIS)

    Wang Ting; Li Fanghua; Liu Qingfang; Bian Po; Wang Jufang; Wu Yuejin; Wu Lijun; Li Wenjian

    2012-01-01

    Heavy ion irradiation has been used as radiotherapy of deep-seated tumors, and is also an inevitable health concern for astronauts in space mission. Unlike photons such as X-rays and γ-rays, a high linear energy transfer (LET) heavy ion has a varying energy distribution along its track. Therefore, it is important to determine the correlation of biological effects with the Bragg curve energy distribution of heavy ions. In this study, a continuous biological tissue equivalent was constructed using a layered cylinder of Arabidopsis seeds, which was irradiated with carbon ions of 87.5 MeV/nucleon. The position of energy loss peak in the seed pool was determined with CR-39 track detectors. The mutagenic effect in vivo along the path of carbon ions was investigated with the seeds in each layer as an assay unit, which corresponded to a given position in physical Bragg curve. Homologous recombination frequency (HRF), expression level of AtRAD54 gene, germination rate of seeds, and survival rate of young seedlings were used as checking endpoints, respectively. Our results showed that Arabidopsis S0 and S1 plants exhibited significant increases in HRF compared to their controls, and the expression level of AtRAD54 gene in S0 plants was significantly up-regulated. The depth-biological effect curves for HRF and the expression of AtRAD54 gene were not consistent with the physical Bragg curve. Differently, the depth-biological effect curves for the developmental endpoints matched generally with the physical Bragg curve. The results suggested a different response pattern of various types of biological events to heavy ion irradiation. It is also interesting that except for HRF in S0 plants, the depth-biological effect curves for each biological endpoint were similar for 5 Gy and 30 Gy of carbon irradiation.

  7. Design and performance of daily quality assurance system for carbon ion therapy at NIRS

    Science.gov (United States)

    Saotome, N.; Furukawa, T.; Hara, Y.; Mizushima, K.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At National Institute of Radiological Sciences (NIRS), we have been commissioning a rotating-gantry system for carbon-ion radiotherapy. This rotating gantry can transport heavy ions at 430 MeV/u to an isocenter with irradiation angles of ±180° that can rotate around the patient so that the tumor can be irradiated from any direction. A three-dimensional pencil-beam scanning irradiation system equipped with the rotating gantry enables the optimal use of physical characteristics of carbon ions to provide accurate treatment. To ensure the treatment quality using such a complex system, the calibration of the primary dose monitor, output check, range check, dose rate check, machine safety check, and some mechanical tests should be performed efficiently. For this purpose, we have developed a measurement system dedicated for quality assurance (QA) of this gantry system: the Daily QA system. The system consists of an ionization chamber system and a scintillator system. The ionization chamber system is used for the calibration of the primary dose monitor, output check, and dose rate check, and the scintillator system is used for the range check, isocenter, and gantry angle. The performance of the Daily QA system was verified by a beam test. The stability of the output was within 0.5%, and the range was within 0.5 mm. The coincidence of the coordinates between the patient-positioning system and the irradiation system was verified using the Daily QA system. Our present findings verified that the new Daily QA system for a rotating gantry is capable of verifying the irradiation system with sufficient accuracy.

  8. Homologous recombination in Arabidopsis seeds along the track of energetic carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ting [University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026 (China); Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agricultural Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Li Fanghua [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agricultural Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Liu Qingfang [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Bian Po, E-mail: bianpo@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agricultural Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Wang Jufang [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Wu Yuejin; Wu Lijun [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agricultural Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Li Wenjian [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China)

    2012-09-01

    Heavy ion irradiation has been used as radiotherapy of deep-seated tumors, and is also an inevitable health concern for astronauts in space mission. Unlike photons such as X-rays and {gamma}-rays, a high linear energy transfer (LET) heavy ion has a varying energy distribution along its track. Therefore, it is important to determine the correlation of biological effects with the Bragg curve energy distribution of heavy ions. In this study, a continuous biological tissue equivalent was constructed using a layered cylinder of Arabidopsis seeds, which was irradiated with carbon ions of 87.5 MeV/nucleon. The position of energy loss peak in the seed pool was determined with CR-39 track detectors. The mutagenic effect in vivo along the path of carbon ions was investigated with the seeds in each layer as an assay unit, which corresponded to a given position in physical Bragg curve. Homologous recombination frequency (HRF), expression level of AtRAD54 gene, germination rate of seeds, and survival rate of young seedlings were used as checking endpoints, respectively. Our results showed that Arabidopsis S0 and S1 plants exhibited significant increases in HRF compared to their controls, and the expression level of AtRAD54 gene in S0 plants was significantly up-regulated. The depth-biological effect curves for HRF and the expression of AtRAD54 gene were not consistent with the physical Bragg curve. Differently, the depth-biological effect curves for the developmental endpoints matched generally with the physical Bragg curve. The results suggested a different response pattern of various types of biological events to heavy ion irradiation. It is also interesting that except for HRF in S0 plants, the depth-biological effect curves for each biological endpoint were similar for 5 Gy and 30 Gy of carbon irradiation.

  9. Carbon Ion Radiation Therapy for Unresectable Sacral Chordoma: An Analysis of 188 Cases

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Reiko, E-mail: r_imai@nirs.go.jp [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Kamada, Tadashi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Araki, Nobuhito [Department of Orthopedic Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Abe, Satoshi; Iwamoto, Yukihide; Ozaki, Toshifumi; Kanehira, Chihiro; Kaya, Mitsunori; Takahashi, Kazuhisa; Chuman, Hirokazu; Tsujii, Hirohiko; Tsuneyoshi, Masazumi; Nishida, Yoshihiro; Hiraga, Hiroaki; Hiruma, Toru; Machinami, Rikuo; Matsumine, Akihiko; Matsumoto, Seiichi; Morioka, Hideo; Yamaguchi, Takehiko; and others

    2016-05-01

    Purpose: To evaluate the results of carbon ion radiation therapy administered to 188 patients with unresectable primary sacral chordomas. Patients and Methods: One hundred eighty-eight patients were treated with carbon ion radiation therapy at a single institute between 1996 and 2013 and retrospectively analyzed. The median age was 66 years. The highest proximal invasion reached past S2 level in 137 patients. The median clinical target volume was 345 cm{sup 3}. One hundred six patients received 67.2 gray equivalents (GyE)/16 fractions (fr), 74 patients received 70.4 GyE/16 fr, 7 patients received 73.6 GyE/16 fr, and 1 patient received 64.0 GyE/16 fr. Results: The median follow-up period was 62 months (range, 6.8-147.5 months). Seventy percent of patients were followed for 5 years or until death. The 5-year local control, overall survival, and disease-free survival rates were 77.2%, 81.1%, and 50.3%, respectively. Forty-one patients had a local recurrence. Sex, tumor volume, level of proximal invasion, and irradiated dose were unrelated to local control. There was grade 3 toxicity of the peripheral nerves in 6 patients and grade 4 toxicity of the skin in 2 patients. Ambulation remained in 97% of patients. Conclusions: Carbon ion radiation therapy was safe and effective for unresectable chordoma and provided good local control and survival while preserving ambulation.

  10. Clinical significance of changes of serum vascular endothelial growth factor level before and after radiotherapy in patients with esophageal carcinoma

    International Nuclear Information System (INIS)

    Yu Jingping; Sun Zhiqiang; Ni Xinchu; Wang Jian; Li Yi; Hu Lijun; Li Dongqing; Sun Suping

    2011-01-01

    Objective: To investigate the changes and clinical value of serum vascular endothelial growth factor (VEGF) level before, during and after radiotherapy in patients with esophageal carcinoma. Methods: The sera of 67 esophageal carcinoma patients and 30 healthy control cases were collected. The VEGF level in serum samples were measured with enzyme-linked immunosorbent assay (ELISA) method. The relations among VEGF level changes,clinical stages and radiotherapy effect were analyzed. Results: The VEGF levels of patients with esophagus cancer before, during and after radiotherapy were significantly higher than those in control group (F=11.65, P<0.01). The VEGF level after radiotherapy was significant lower than that before radiotherapy (F=10.72, P<0.01). The average VEGF level of patients with T 3 and T 4 was significantly higher than that of control group (F=14.10, P<0.01). The average VEGF level of patients with N 1 and N 2 was significantly higher than that of control group (F=8.64, P<0.01). In 62 patients,the serum VEGF level increased in 21 cases but decreased in 41 cases after radiotherapy. With difference in radiotherapy efficiency of 61.90% and 90.24%, respectively (χ 2 =6.08, P<0.05). The average VEGF level during and after radiotherapy for 50 cases of CR + PR were significantly lower than that before radiotherapy (F=7.98, P<0.01). Conclusions: Monitoring the serum VEGF level of patients with esophagus cancer can help evaluate the radiosensitivity, which has a significance in predicting the prognosis of radiotherapy. (authors)

  11. Clinical treatment planning for stereotactic radiotherapy, evaluation by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kairn, T.; Aland, T.; Kenny, J.; Knight, R.T.; Crowe, S.B.; Langton, C.M.; Franich, R.D.; Johnston, P.N.

    2010-01-01

    Full text: This study uses re-evaluates the doses delivered by a series of clinical stereotactic radiotherapy treatments, to test the accuracy of treatment planning predictions for very small radiation fields. Stereotactic radiotherapy treatment plans for meningiomas near the petrous temporal bone and the foramen magnum (incorp rating fields smaller than I c m2) were examined using Monte Carlo simulations. Important differences between treatment planning predictions and Monte Carlo calculations of doses delivered to stereotactic radiotherapy patients are apparent. For example, in one case the Monte Carlo calculation shows that the delivery a planned meningioma treatment would spare the patient's critical structures (eyes, brainstem) more effectively than the treatment plan predicted, and therefore suggests that this patient could safely receive an increased dose to their tumour. Monte Carlo simulations can be used to test the dose predictions made by a conventional treatment planning system, for dosimetrically challenging small fields, and can thereby suggest valuable modifications to clinical treatment plans. This research was funded by the Wesley Research Institute, Australia. The authors wish to thank Andrew Fielding and David Schlect for valuable discussions of aspects of this work. The authors are also grateful to Muhammad Kakakhel, for assisting with the design and calibration of our linear accelerator model, and to the stereotactic radiation therapy team at Premion, who designed the treatment plans. Computational resources and services used in this work were provided by the HPC and Research Support Unit, QUT, Brisbane, Australia. (author)

  12. Clinical experience with a new stereotactic localisation method for fractionated radiotherapy of extracranial lesions

    International Nuclear Information System (INIS)

    Engenhart-Cabillic, R.; Pastyr, O.; Wenz, F.; Debus, J.; Schlegel, W.; Bahner, M.L.; Wannenmacher, M.

    1996-01-01

    Purpose/Objective: Effectiveness of radiotherapy in terms of local control has been shown to be linked with treatment accuracy. Conformal radiation therapy outside the brain maybe limited by relative inaccuracy of positioning and repositioning uncertainty during treatment planning, simulation and radiotherapy. It has been shown that stereotactic localisation methods provide an excellent localisation accuracy for intracranial lesions. The aim of this study was to develop a stereotactic system for the whole body and to test the feasibility in a clinical study. Materials and Method: The system includes a reversible stereotactic patient fixation, localization and positioning system which can be used during CT-imaging for simulation and for treatment. The target volume and adjacent critical structures were outlined for treatment three dimensional planning and the coordinates of the target point were calculated. The overall accuracy of target localization including soft and hardware inaccuracy was measured by a phantom. Three patients with spinal and paraspinal tumors were treated by conventionally fractionated high precision megavoltage radiotherapy with this system. The treatment time was 6 weeks in each patients. The stereotactic coordinates of anatomical landmarks as well as implanted fiducals were measured by CT-imaging, X-ray localization and electronic portal imaging at 20 different paraspinal localisations. Stereotactic CT-imaging was performed for treatment planning and once a week during treatment. Results: Standard deviation of stereotactic coordinats in the phantom was 0.5 mm in the lateral direction (x), 1.0 mm in the cranio-caudal orientation (z) and 1.2 mm in the dorso-ventral orientation. About 60 minutes are required to immobilise the patient properly for the first set-up and the subsequent daily set-up time during therapy was 10 min. In patients a total of 18 CT examination and 56 portal images have been analysed. The mean variation of the stereotactic

  13. Clinical study of the histologic host response of the patients with lung cancer during radiotherapy

    International Nuclear Information System (INIS)

    Gose, Kyuhei

    1984-01-01

    Serial bronchofiberscopic biopsies were performed during radiotherapy in 28 patients with squamous cell carcinoma of the lung. The effect of radiotherapy on tumor tissue was examined histologically as to the responsiveness of the host against tumor cells. The mononuclear cell infiltration induced in the tumor by irradiation correlated well with its direct effect on the tumor cells. The most remarkable infiltration was observed at the dose of 2000 rad and in the polypoid type. Indirect immunofluonescent technique with monoclonal anti OKT 3 and OKIa revealed that most of the infiltrated cells were T-lymphocytes. There was a good relationship between the grade of mononuclear cell infiltration and the survival period. These facts suggest that the mononuclear cells in the irradiated tumor tissues represent host resistance against cancer and the intensity of the infiltration correlates with the clinical course and prognosis of the lung cancer patients. (author)

  14. Clinical relevance of hemoglobin level in cervical cancer patients administered definitive radiotherapy

    International Nuclear Information System (INIS)

    Serkies, Krystyna; Badzio, Andrzej; Jassem, Jacek

    2006-01-01

    The prognostic impact of pretreatment hemoglobin (Hb) level and its changes during definitive radiotherapy was evaluated by univariate and multivariate analysis in the group of 453 FIGO IB-IIIB cervical cancer patients. Pretreatment anemia (Hb 12 g/dl; p∼0.001). Baseline Hb =12 g/dl was also associated with longer disease-free survival and improved local control. Declining Hb level during radiotherapy predicted for impaired 5-year disease-free survival and local control probability. In multivariate analysis, low pretreatment Hb level remained associated with worse overall and disease-free survival, whereas adverse impact of declining Hb level on outcome was not observed. With regard to other clinical factors, stage and tumor extension (uni- or bilateral parametrium involvement for Stage III) were the only independent determinants of prognosis

  15. Sexual Function After Stereotactic Body Radiotherapy for Prostate Cancer: Results of a Prospective Clinical Trial

    International Nuclear Information System (INIS)

    Wiegner, Ellen A.; King, Christopher R.

    2010-01-01

    Purpose: To study the sexual quality of life for prostate cancer patients after stereotactic body radiotherapy (SBRT). Methods and Materials: Using the Expanded Prostate Cancer Index Composite (EPIC)-validated quality-of-life questionnaire, the sexual function of 32 consecutive patients who received prostate SBRT in a prospective Phase II clinical trial were analyzed at baseline, and at median times of 4, 12, 20, and 50 months after treatment. SBRT consisted of 36.25 Gy in five fractions of 7.25 Gy using the Cyberknife. No androgen deprivation therapy was given. The use of erectile dysfunction (ED) medications was monitored. A comprehensive literature review for radiotherapy-alone modalities based on patient self-reported questionnaires served as historical comparison. Results: Median age at treatment was 67.5 years, and median follow-up was 35.5 months (minimum 12 months). The mean EPIC sexual domain summary score, sexual function score, and sexual bother score decreased by 45%, 49%, and 25% respectively at 50 months follow-up. These differences reached clinical relevance by 20 months after treatment. Baseline ED rate was 38% and increased to 71% after treatment (p = 0.024). Use of ED medications was 3% at baseline and progressed to 25%. For patients aged <70 years at follow-up, 60% maintained satisfactory erectile function after treatment compared with only 12% aged ≥70 years (p = 0.008). Penile bulb dose was not associated with ED. Conclusions: The rates of ED after treatment appear comparable to those reported for other modalities of radiotherapy. Given the modest size of this study and the uncertainties in the physiology of radiotherapy-related ED, these results merit further investigations.

  16. Clinical Outcomes of Patients Receiving Integrated PET/CT-Guided Radiotherapy for Head and Neck Carcinoma

    International Nuclear Information System (INIS)

    Vernon, Matthew R.; Maheshwari, Mohit; Schultz, Christopher J.; Michel, Michelle A.; Wong, Stuart J.; Campbell, Bruce H.; Massey, Becky L.; Wilson, J. Frank; Wang Dian

    2008-01-01

    Purpose: We previously reported the advantages of 18 F-fluorodeoxyglucose-positron emission tomography (PET) fused with CT for radiotherapy planning over CT alone in head and neck carcinoma (HNC). The purpose of this study was to evaluate clinical outcomes and the predictive value of PET for patients receiving PET/CT-guided definitive radiotherapy with or without chemotherapy. Methods and Materials: From December 2002 to August 2006, 42 patients received PET/CT imaging as part of staging and radiotherapy planning. Clinical outcomes including locoregional recurrence, distant metastasis, death, and treatment-related toxicities were collected retrospectively and analyzed for disease-free and overall survival and cumulative incidence of recurrence. Results: Median follow-up from initiation of treatment was 32 months. Overall survival and disease-free survival were 82.8% and 71.0%, respectively, at 2 years, and 74.1% and 66.9% at 3 years. Of the 42 patients, seven recurrences were identified (three LR, one DM, three both LR and DM). Mean time to recurrence was 9.4 months. Cumulative risk of recurrence was 18.7%. The maximum standard uptake volume (SUV) of primary tumor, adenopathy, or both on PET did not correlate with recurrence, with mean values of 12.0 for treatment failures vs. 11.7 for all patients. Toxicities identified in those patients receiving intensity modulated radiation therapy were also evaluated. Conclusions: A high level of disease control combined with favorable toxicity profiles was achieved in a cohort of HNC patients receiving PET/CT fusion guided radiotherapy plus/minus chemotherapy. Maximum SUV of primary tumor and/or adenopathy was not predictive of risk of disease recurrence

  17. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation

    Science.gov (United States)

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Soors, Els; Buset, Jasmine; Chiriotti, Sabina; Tabury, Kevin; Gregoire, Vincent; Baatout, Sarah

    2015-01-01

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated 13C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type–specific responses to the different radiation types. PMID:25190155

  18. A predictive model for survival in metastatic cancer patients attending an outpatient palliative radiotherapy clinic

    International Nuclear Information System (INIS)

    Chow, Edward; Fung, KinWah; Panzarella, Tony; Bezjak, Andrea; Danjoux, Cyril; Tannock, Ian

    2002-01-01

    Purpose: To develop a predictive model for survival from the time of presentation in an outpatient palliative radiotherapy clinic. Methods and Materials: Sixteen factors were analyzed prospectively in 395 patients seen in a dedicated palliative radiotherapy clinic in a large tertiary cancer center using Cox's proportional hazards regression model. Results: Six prognostic factors had a statistically significant impact on survival, as follows: primary cancer site, site of metastases, Karnofsky performance score (KPS), and fatigue, appetite, and shortness of breath scores from the modified Edmonton Symptom Assessment Scale. Risk group stratification was performed (1) by assigning weights to the prognostic factors based on their levels of significance, and (2) by the number of risk factors present. The weighting method provided a Survival Prediction Score (SPS), ranging from 0 to 32. The survival probability at 3, 6, and 12 months was 83%, 70%, and 51%, respectively, for patients with SPS ≤13 (n=133); 67%, 41%, and 20% for patients with SPS 14-19 (n=129); and 36%, 18%, and 4% for patients with SPS ≥20 (n=133) (p<0.0001). Corresponding survival probabilities based on number of risk factors were as follows: 85%, 72%, and 52% (≤3 risk factors) (n=98); 68%, 47%, and 24% (4 risk factors) (n=117); and 46%, 24%, and 11% (≥5 factors) (n=180) (p<0.0001). Conclusion: Clinical prognostic factors can be used to predict prognosis among patients attending a palliative radiotherapy clinic. If validated in an independent series of patients, the model can be used to guide clinical decisions, plan supportive services, and allocate resource use

  19. A clinical distance measure for evaluating treatment plan quality difference with Pareto fronts in radiotherapy

    Directory of Open Access Journals (Sweden)

    Kristoffer Petersson

    2017-07-01

    Full Text Available We present a clinical distance measure for Pareto front evaluation studies in radiotherapy, which we show strongly correlates (r = 0.74 and 0.90 with clinical plan quality evaluation. For five prostate cases, sub-optimal treatment plans located at a clinical distance value of >0.32 (0.28–0.35 from fronts of Pareto optimal plans, were assessed to be of lower plan quality by our (12 observers (p < .05. In conclusion, the clinical distance measure can be used to determine if the difference between a front and a given plan (or between different fronts corresponds to a clinically significant plan quality difference.

  20. Parotid gland-sparing 3-dimensional conformal radiotherapy results in less severe dry mouth in nasopharyngeal cancer patients: A dosimetric and clinical comparison with conventional radiotherapy

    International Nuclear Information System (INIS)

    Jen, Y.-M.; Shih Rompin; Lin, Y.-S.; Su, W.-F.; Ku, C.-H.; Chang, C.-S.; Shueng, P.-W.; Hwang, J.-M.; Liu, D.-W.; Chao, H.-L.; Lin, H.-Y.; Chang, L.-P.; Shum, W.-Y.; Lin, C.-S.

    2005-01-01

    Background and purpose: This study examined the efficacy of parotid gland sparing of three-dimensional conformal radiotherapy (3DCRT) compared with conventional radiotherapy for NPC patients. Both the dose given to the parotids and clinical assessment of dry mouth were conducted. Materials and methods: Dry mouth was assessed for 108 patients treated with conventional technique and 72 treated with 3DCRT. Dose analysis was performed in 48 patients of the 3DCRT group. A dose of 70 Gy was given to the midplane in conventional radiotherapy and to 90% isodose volume in 3DCRT. Prognostic factors affecting the severity of dry mouth were analyzed using Generalized Estimating Equation (GEE). Results: In the 3DCRT group about 50% of the patients' parotid glands received less than 25 Gy. Parallel analysis of dry mouth shows a significant decrease in the incidence of severe xerostomia after 3DCRT. The proportion of patients without dry mouth was also significantly higher in the 3DCRT group than the conventional group at 1-3 years after completion of radiotherapy. Although 3DCRT delivered a higher dose to the tumor, it spared the parotid gland significantly better than the conventional treatment. Late toxicities were mostly similar between the 2 groups while local control in T4 patients and survival were improved for 3DCRT. Conclusion: Dosimetrically and clinically 3DCRT is better than conventional technique regarding parotid gland protection

  1. Dosimetry, clinical factors and medication intake influencing urinary symptoms after prostate radiotherapy: An analysis of data from the RADAR prostate radiotherapy trial

    International Nuclear Information System (INIS)

    Yahya, Noorazrul; Ebert, Martin A.; Bulsara, Max; Haworth, Annette; Kennedy, Angel; Joseph, David J.; Denham, Jim W.

    2015-01-01

    Purpose/objective: To identify dosimetry, clinical factors and medication intake impacting urinary symptoms after prostate radiotherapy. Material and methods: Data describing clinical factors and bladder dosimetry (reduced with principal component (PC) analysis) for 754 patients treated with external beam radiotherapy accrued by TROG 03.04 RADAR prostate radiotherapy trial were available for analysis. Urinary symptoms (frequency, incontinence, dysuria and haematuria) were prospectively assessed using LENT-SOMA to a median of 72 months. The endpoints assessed were prevalence (grade ⩾1) at the end of radiotherapy (representing acute symptoms), at 18-, 36- and 54-month follow-ups (representing late symptoms) and peak late incidence including only grade ⩾2. Impact of factors was assessed using multivariate logistic regression models with correction for over-optimism. Results: Baseline symptoms, non-insulin dependent diabetes mellitus, age and PC1 (correlated to the mean dose) impact symptoms at >1 timepoints. Associations at a single timepoint were found for cerebrovascular condition, ECOG status and non-steroidal anti-inflammatory drug intake. Peak incidence analysis shows the impact of baseline, bowel and cerebrovascular condition and smoking status. Conclusions: The prevalence and incidence analysis provide a complementary view for urinary symptom prediction. Sustained impacts across time points were found for several factors while some associations were not repeated at different time points suggesting poorer or transient impact

  2. Adjuvant radiotherapy for pathologically advanced prostate cancer a randomized clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Ian, M.; Thompson, J.R.; Catherine, M.; Tangen, P.H.; Paradelo, J.; Scott Lucia, M.; Miller, G.; Troyer, D.; Messing, E.; Forman, J.; Chin, J.; Swanson, G.; Canby-Hagino, E.; Crawford, E.D

    2008-01-15

    Context - Despite a stage-shift to earlier cancer stages and lower tumor volumes for prostate cancer, pathologically advanced disease is detected at radical prostatectomy in 38% to 52% of patients. However, the optimal management of these patients after radical prostatectomy is unknown. Objective - To determine whether adjuvant radiotherapy improves metastasis-free survival in patients with stage pT3 NO MO prostate cancer. Design, Setting, and Patients - Randomized, prospective, multi-institutional, US clinical trial with enrollment between August 15, 1988, and January 1, 1997 (with database frozen for statistical analysis on September 21, 2005). Patients were 425 men with pathologically advanced prostate cancer who had undergone radical prostatectomy. Intervention - Men were randomly assigned to receive 60 to 64 Gy of external beam radiotherapy delivered to the prostatic fossa (n = 214) or usual care plus observation (n = 211). Main Outcome Measures - Primary outcome was metastasis-free survival, defined as time to first occurrence of metastatic disease or death due to any cause. Secondary outcomes included prostate-specific antigen (PSA) relapse, recurrence-free survival, overall survival, freedom from hormonal therapy, and postoperative complications. Results - Among the 425 men, median follow-up was 10.6 years (inter-quartile range, 9.2-12.7 years). For metastasis-free survival,76 (35.5%) of 214 men in the adjuvant radiotherapy group were diagnosed with metastatic disease or died (median metastasis-free estimate, 14.7 years), compared with 91 (43.1%) of 211 (median metastasis-free estimate, 13.2 years) of those in the observation group (hazard ratio [HR], 0.75; 95% CI, 0.55-1.02; P = .06). There were no significant between-group differences for overall survival (71 deaths, median survival of 14.7 years for radiotherapy vs 83 deaths, median survival of 13.8 years for observation; HR, 0.80; 95% Cl, 0.58-1.09; P =.16). PSA relapse (median PSA relapse-free survival

  3. Adjuvant radiotherapy for pathologically advanced prostate cancer a randomized clinical trial

    International Nuclear Information System (INIS)

    Ian, M.; Thompson, J.R.; Catherine, M.; Tangen, P.H.; Paradelo, J.; Scott Lucia, M.; Miller, G.; Troyer, D.; Messing, E.; Forman, J.; Chin, J.; Swanson, G.; Canby-Hagino, E.; Crawford, E.D.

    2008-01-01

    Context - Despite a stage-shift to earlier cancer stages and lower tumor volumes for prostate cancer, pathologically advanced disease is detected at radical prostatectomy in 38% to 52% of patients. However, the optimal management of these patients after radical prostatectomy is unknown. Objective - To determine whether adjuvant radiotherapy improves metastasis-free survival in patients with stage pT3 NO MO prostate cancer. Design, Setting, and Patients - Randomized, prospective, multi-institutional, US clinical trial with enrollment between August 15, 1988, and January 1, 1997 (with database frozen for statistical analysis on September 21, 2005). Patients were 425 men with pathologically advanced prostate cancer who had undergone radical prostatectomy. Intervention - Men were randomly assigned to receive 60 to 64 Gy of external beam radiotherapy delivered to the prostatic fossa (n = 214) or usual care plus observation (n = 211). Main Outcome Measures - Primary outcome was metastasis-free survival, defined as time to first occurrence of metastatic disease or death due to any cause. Secondary outcomes included prostate-specific antigen (PSA) relapse, recurrence-free survival, overall survival, freedom from hormonal therapy, and postoperative complications. Results - Among the 425 men, median follow-up was 10.6 years (inter-quartile range, 9.2-12.7 years). For metastasis-free survival,76 (35.5%) of 214 men in the adjuvant radiotherapy group were diagnosed with metastatic disease or died (median metastasis-free estimate, 14.7 years), compared with 91 (43.1%) of 211 (median metastasis-free estimate, 13.2 years) of those in the observation group (hazard ratio [HR], 0.75; 95% CI, 0.55-1.02; P = .06). There were no significant between-group differences for overall survival (71 deaths, median survival of 14.7 years for radiotherapy vs 83 deaths, median survival of 13.8 years for observation; HR, 0.80; 95% Cl, 0.58-1.09; P =.16). PSA relapse (median PSA relapse-free survival

  4. External Beam Radiotherapy for Clinically Localized Hormone-Refractory Prostate Cancer: Clinical Significance of Nadir Prostate-Specific Antigen Value Within 12 Months

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiko; Nakamura, Katsumasa; Sasaki, Tomonari; Onishi, Hiroshi; Koizumi, Masahiko; Shioyama, Yoshiyuki; Araya, Masayuki; Mukumoto, Nobutaka M.S.; Mitsumori, Michihide; Teshima, Teruki

    2009-01-01

    Purpose: To analyze retrospectively the results of external beam radiotherapy for clinically localized hormone-refractory prostate cancer and investigate the clinical significance of nadir prostate-specific antigen (PSA) value within 12 months (nPSA12) as an early estimate of clinical outcomes after radiotherapy. Methods and Materials: Eighty-four patients with localized hormone-refractory prostate cancer treated with external beam radiotherapy were retrospectively reviewed. The total radiation doses ranged from 30 to 76 Gy (median, 66 Gy), and the median follow-up period for all 84 patients was 26.9 months (range, 2.7-77.3 months). Results: The 3-year actuarial overall survival, progression-free survival (PFS), and local control rates in all 84 patients after radiotherapy were 67%, 61%, and 93%, respectively. Although distant metastases and/or regional lymph node metastases developed in 34 patients (40%) after radiotherapy, local progression was observed in only 5 patients (6%). Of all 84 patients, the median nPSA12 in patients with clinical failure and in patients without clinical failure was 3.1 ng/mL and 0.5 ng/mL, respectively. When dividing patients according to low (<0.5 ng/mL) and high (≥0.5 ng/mL) nPSA12 levels, the 3-year PFS rate in patients with low nPSA12 and in those with high nPSA12 was 96% and 44%, respectively (p < 0.0001). In univariate analysis, nPSA12 and pretreatment PSA value had a significant impact on PFS, and in multivariate analysis nPSA12 alone was an independent prognostic factor for PFS after radiotherapy. Conclusions: External beam radiotherapy had an excellent local control rate for clinically localized hormone-refractory prostate cancer, and nPSA12 was predictive of clinical outcomes after radiotherapy.

  5. Proton Radiotherapy for Pediatric Ewing’s Sarcoma: Initial Clinical Outcomes

    International Nuclear Information System (INIS)

    Rombi, Barbara; DeLaney, Thomas F.; MacDonald, Shannon M.; Huang, Mary S.; Ebb, David H.; Liebsch, Norbert J.; Raskin, Kevin A.; Yeap, Beow Y.; Marcus, Karen J.; Tarbell, Nancy J.; Yock, Torunn I.

    2012-01-01

    Purpose: Proton radiotherapy (PT) has been prescribed similarly to photon radiotherapy to achieve comparable disease control rates at comparable doses. The chief advantage of protons in this setting is to reduce acute and late toxicities by decreasing the amount of normal tissue irradiated. We report the preliminary clinical outcomes including late effects on our pediatric Ewing’s sarcoma patients treated with PT at the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (Boston, MA). Methods and Materials: This was a retrospective review of the medical records of 30 children with Ewing’s sarcoma who were treated with PT between April 2003 and April 2009. Results: A total of 14 male and 16 female patients with tumors in several anatomic sites were treated with PT at a median age of 10 years. The median dose was 54 Gy (relative biological effectiveness) with a median follow-up of 38.4 months. The 3-year actuarial rates of event-free survival, local control, and overall survival were 60%, 86%, and 89%, respectively. PT was acutely well tolerated, with mostly mild-to-moderate skin reactions. At the time of writing, the only serious late effects have been four hematologic malignancies, which are known risks of topoisomerase and anthracyline exposure. Conclusions: Proton radiotherapy was well tolerated, with few adverse events. Longer follow-up is needed to more fully assess tumor control and late effects, but the preliminary results are encouraging.

  6. Rise and fall of hypofractionation in clinical radiotherapy in the 20th century

    International Nuclear Information System (INIS)

    Friberg, S.; Ruden, B. I.

    2007-01-01

    The purpose of this article is to review of the use of hypofractionated radiotherapy during the last two centuries. We define hypofractionation as any treatment where the individual fraction exceeds 2.0 Gray (Gy). The number of fractions is disregarded. The struggle of the early radiotherapists, the slow acceptance of fractionation, and the battle between the German and the French schools are reviewed. The early mathematical formulae of biological effects radiation are described and commented on. The paramount contribution in radiotherapy by British scientists gave rise to a new science: radiobiology. This branch had now matured into an exact discipline, separate from, and yet utterly depending on, its 100 years old sibling: Diagnostic Radiology. The come-back and fall of hypofractionation during two centuries is described, and set in relation to the treatment philosophy of the corresponding period. Injuries are described, and the long latency period for late reactions pointed out. Some of the legal aspects of the injuries are discussed. The come-back of hypofractionation - twice declared dead and buried the 20 th century - in the late 1990's is explained. The brilliant incorporation variability (α andβ) into mathematical exactness (the LQ-formula) has had, and will have a profound impact on clinical radiotherapy. (author)

  7. Proton Radiotherapy for Pediatric Ewing's Sarcoma: Initial Clinical Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Rombi, Barbara [ATreP (Provincial Agency for Proton Therapy), Trento (Italy); DeLaney, Thomas F.; MacDonald, Shannon M. [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Huang, Mary S.; Ebb, David H. [Department of Pediatric Hematology and Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Liebsch, Norbert J. [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Raskin, Kevin A. [Department of Orthopaedic Surgery, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Yeap, Beow Y. [Department of Medicine, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Marcus, Karen J. [Division of Radiation Oncology, Children' s Hospital Boston, MA (United States); Tarbell, Nancy J. [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States); Yock, Torunn I., E-mail: tyock@partners.org [Department of Radiation Oncology, Massachusetts General Hospital-Harvard Medical School, Boston, MA (United States)

    2012-03-01

    Purpose: Proton radiotherapy (PT) has been prescribed similarly to photon radiotherapy to achieve comparable disease control rates at comparable doses. The chief advantage of protons in this setting is to reduce acute and late toxicities by decreasing the amount of normal tissue irradiated. We report the preliminary clinical outcomes including late effects on our pediatric Ewing's sarcoma patients treated with PT at the Francis H. Burr Proton Therapy Center at Massachusetts General Hospital (Boston, MA). Methods and Materials: This was a retrospective review of the medical records of 30 children with Ewing's sarcoma who were treated with PT between April 2003 and April 2009. Results: A total of 14 male and 16 female patients with tumors in several anatomic sites were treated with PT at a median age of 10 years. The median dose was 54 Gy (relative biological effectiveness) with a median follow-up of 38.4 months. The 3-year actuarial rates of event-free survival, local control, and overall survival were 60%, 86%, and 89%, respectively. PT was acutely well tolerated, with mostly mild-to-moderate skin reactions. At the time of writing, the only serious late effects have been four hematologic malignancies, which are known risks of topoisomerase and anthracyline exposure. Conclusions: Proton radiotherapy was well tolerated, with few adverse events. Longer follow-up is needed to more fully assess tumor control and late effects, but the preliminary results are encouraging.

  8. The cost of respiration-gated radiotherapy in the framework of a clinical research programme -STIC-

    International Nuclear Information System (INIS)

    Remonnay, R.; Morelle, M.; Carrere, M.O.; Giraud, P.

    2009-01-01

    Purpose. Our study aims to evaluate the impact of the implementation of respiratory gating (R.G.) on the production cost of radiotherapy, as compared to conformational radiotherapy without R.G. (comparator) in patients with lung or breast cancers. Issues surrounding reimbursement were also explored. Materials and methods: A prospective, multicenter, non-randomized study was conducted in the framework of a project entitled 'Support Program for Costly Diagnostic and Therapeutic Innovations'. Of the 20 hospitals involved in the clinical study, eight reference centers participated to the medico-economic study evaluating the costs of staff and equipment, as well as the costs of maintenance and consumables. Results: Three hundred and sixty-five patients were enrolled over two years in the economic study, corresponding to 197 radiotherapy treatments without R.G. and 168 with R.G.. Patients treated during the learning phase (n = 27) were excluded from the comparison with the control group. The use of R.G. in routine practice induced a cost increase of respectively 1256 and 996 Euros per treatment for lung and breast cancer patients treated with breath-hold techniques, versus 1807 and 1510 Euros for lung and breast cancer patients treated with synchronized gating techniques. Over costs were mainly due to extra working time of medical staff and medical technicians and to extra use of equipment during treatment sessions. Conclusion: The results of the full cost estimation suggested that medical reimbursements largely underestimate the costs related to innovation. (authors)

  9. Clinical outcome of stage III non-small-cell lung cancer patients after definitive radiotherapy.

    Science.gov (United States)

    Nakamura, Tatsuya; Fuwa, Nobukazu; Kodaira, Takeshi; Tachibana, Hiroyuki; Tomoda, Takuya; Nakahara, Rie; Inokuchi, Haruo

    2008-01-01

    Primarily combined radiotherapy and chemotherapy are used to treat unresectable non-small-cell lung cancer; however, the results are not satisfactory. In this study treatment results were retrospectively analyzed and the prognostic factors related to survival were identified. From March 1999 to January 2004, 102 patients with stage IIIA/IIIB non-small-cell lung cancer received definitive radiotherapy with or without chemotherapy. Radiotherapy involved a daily dose of 1.8-2.0 Gy five times a week; 60 Gy was set as the total dose. Maximal chemotherapy was given to patients with normal kidney, liver, and bone marrow functions. The 5-year overall survival rate was 22.2%; the median survival was 18 months. The median follow-up of surviving patients was 53 months. The complete or partial response rate was 85%. At the time of the last follow-up, 21 patients were alive and 81 patients had died, including 5 patients who had died due to radiation pneumonitis. There were significant differences in survival and in the fatal radiation pneumonitis rate between patients with superior lobe lesions and those with middle or inferior lobe lesions. Patients whose primary tumor is located in the superior lobe appear to have a better clinical outcome.

  10. Long-Term Outcome After Radiotherapy in Patients With Atypical and Malignant Meningiomas—Clinical Results in 85 Patients Treated in a Single Institution Leading to Optimized Guidelines for Early Radiation Therapy

    International Nuclear Information System (INIS)

    Adeberg, Sebastian; Hartmann, Christian; Welzel, Thomas; Rieken, Stefan; Habermehl, Daniel; Deimling, Andreas von; Debus, Jürgen; Combs, Stephanie E.

    2012-01-01

    Purpose: Previously, we could show that the new World Health Organization (WHO) classification of meningiomas significantly correlated with outcome in patients with atypical and anaplastic histology. In the present work, we analyzed our long-term experience in radiotherapy for atypical and malignant meningioma diagnosed according to the most recent WHO categorization system. Patients and Methods: Sixty-two patients with atypical and 23 patients with malignant meningioma have been treated with radiotherapy. Sixty percent of all patients received radiotherapy (RT) after surgical resection, 19% at disease progression and 8.3% as a primary treatment. Radiation was applied using different techniques including fractionated stereotactic RT (FSRT), intensity-modulated RT, and combination treatment with carbon ions. The median PTV was 156.0 mL. An average dose of 57.6 Gy (range, 30–68.4 Gy) in 1.8–3 Gy fractions was applied. All patients were followed regularly including clinical-neurological follow-up as well as computed tomographies or magnetic resonance imaging. Results: Overall survival was impacted significantly by histological grade, with 81% and 53% at 5 years for atypical or anaplastic meningiomas, respectively. This difference was significant at p = 0.022. Eighteen patients died of tumor progression during follow-up. Progression-free survival was 95% and 50% for atypical, and 63% and 13% for anaplastic histology at 2 and 5 years. This difference was significant at p = 0.017. Despite histology, we could not observe any prognostic factors including age, resection status, or Karnofsky performance score. However, preexisting clinical symptoms observed in 63 patients improved in 29.3% of these patients. Conclusion: RT resulted in improvement of preexisting clinical symptoms; outcome is comparable to other series reported in the literature. RT should be offered after surgical resection after initial diagnosis to increase progression-free survival as well as overall

  11. Radiotherapy and androgen ablation for clinically localized high-risk prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, Alan; Zagars, Gunar K; Kopplin, Susan

    1995-04-30

    Purpose: The response of patients with clinical stages T1-4 prostate cancer to radiotherapy is variable. A particularly poor prognostic group has been found to be comprised of those with pretreatment prostate specific antigen (PSA) levels above 30 ng/ml with any tumor grade, or PSA levels > 10 and {<=} 30 with tumors grade 3 or 4. These patients have over an 80% actuarial risk of biochemical failure 3 years after definitive external beam radiotherapy. Thus, patients with these high-risk features require more aggressive therapy. During the last 3-4 years, the policy to treat such patients with radiotherapy and androgen ablation (XRT/HORM) was instituted. A retrospective comparison was made between high-risk patients treated with radiotherapy alone (XRT) vs. XRT/HORM. Methods and Materials: Between 1987 and 1991, there were 81 high-risk patients treated with XRT. There were 38 high-risk patients treated with XRT/HORM between 1990 and 1992. The median follow-up was 37 months for the XRT group and 22 months for the XRT/HORM group. No patient had clinical, radiographic, or pathologic evidence of lymph node involvement. The median dose to the prostate was 66 Gy for the XRT group and 68 Gy for the XRT/HORM group. Results: The distributions of several potential prognostic factors were analyzed. Significant differences between the groups were observed for tumor grade, pretreatment prostatic acid phosphatase, and age. The XRT/HORM group was composed of patients with worse features, including a greater proportion of patients with grade 4 tumors, more with abnormal acid phosphatase levels, and more under 60 years of age. The actuarial incidence of a rising PSA at 3 years for the XRT group was 81% vs. 15% for the XRT/HORM group (p < 0.0001). In addition, local relapse at 3 years was 34% for the XRT group and 15% for the XRT/HORM group (p < 0.02). There was no difference between the groups in terms of survival. Cox proportional hazards analyses were performed using several

  12. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  13. Preventive Effect of Glycyrrhiza Glabra Extract on Oral Mucositis in Patients under Head and Neck Radiotherapy: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Shamsolmolok Najafi

    2017-12-01

    Full Text Available Objectives: About two-thirds of cancer patients undergo radiotherapy. Oral mucositis represents a major complication of radiotherapy, causing morbidity and mortality and decreasing the quality of life of patients. This study aimed to assess the preventive effect of Glycyrrhiza aqueous extract on oral mucositis in cancer patients under head and neck radiotherapy.Materials and Methods: In this double-blind clinical trial, 37 head and neck cancer patients were divided into intervention (n=19 group receiving Glycyrrhiza aqueous extract and control (n=18 group receiving placebo. Patients in the test group used Glycyrrhiza aqueous extract topically twice a day from the first day of starting radiotherapy until the end of the second week. Patients were examined in the first day of radiotherapy for any type of wound before treatment and those with oral ulcers before radiotherapy were excluded from the study. The grade of mucositis was determined using the classification by the World Health Organization. ANCOVA was performed to assess any difference between the two groups with regard to oral mucosal irritation and wound size after the intervention while controlling for the covariates such as sex and age.Results: Significant differences were found in the maximum grade of mucositis and oral mucosal irritation between the intervention and control groups (P<0.001.Conclusions: This study showed that aqueous extract of Glycyrrhiza can be effective for decreasing the severity of oral mucositis in head and neck cancer patients undergoing radiotherapy.

  14. Main technical aspects and clinical benefits of respiratory Gating for radiotherapy of lung neoplasm

    International Nuclear Information System (INIS)

    Benites, Rafaela Freitas Oliveira

    2016-01-01

    The concern with the irradiation of lung tumors is that many of them can move along the breathing, which can cause problems in defining accurately the target and increases the irradiation of normal tissues. The objectives are to present the 4D CT principles, image acquisition, reconstruction and application in planning of the radiotherapy. It justifies the quick implantation, improvements in acquisition and images, the possibility in quantify the tumor movement, verifying strategies and delivery treatment. It's concluded that the toxicity risk is reduced with the respiratory gating, and the results suggests that the closed RT will be of clinical relevance. (author)

  15. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials—Report of the National Cancer Institute Work Group on Radiotherapy Quality Assurance

    International Nuclear Information System (INIS)

    Bekelman, Justin E.; Deye, James A.; Vikram, Bhadrasain; Bentzen, Soren M.; Bruner, Deborah; Curran, Walter J.; Dignam, James; Efstathiou, Jason A.; FitzGerald, T.J.; Hurkmans, Coen; Ibbott, Geoffrey S.; Lee, J. Jack; Merchant, Thomas E.; Michalski, Jeff; Palta, Jatinder R.; Simon, Richard; Ten Haken, Randal K.; Timmerman, Robert; Tunis, Sean; Coleman, C. Norman

    2012-01-01

    Purpose: In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods and Materials: Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities such as proton beam therapy, and the international harmonization of clinical trial QA. Results: Four recommendations were made: (1) to develop a tiered (and more efficient) system for radiotherapy QA and tailor the intensity of QA to the clinical trial objectives (tiers include general credentialing, trial-specific credentialing, and individual case review); (2) to establish a case QA repository; (3) to develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and (4) to explore the feasibility of consolidating clinical trial QA in the United States. Conclusion: Radiotherapy QA can affect clinical trial accrual, cost, outcomes, and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based.

  16. Redesigning Radiotherapy Quality Assurance: Opportunities to Develop an Efficient, Evidence-Based System to Support Clinical Trials-Report of the National Cancer Institute Work Group on Radiotherapy Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Deye, James A.; Vikram, Bhadrasain [National Cancer Institute, Bethesda, Maryland (United States); Bentzen, Soren M. [University of Wisconsin, Madison, Wisconsin (United States); Bruner, Deborah [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Curran, Walter J. [Emory University, Atlanta, Georgia (United States); Dignam, James [University of Chicago, Chicago, Illinois (United States); Efstathiou, Jason A. [Massachusetts General Hospital, Boston, Massachusetts (United States); FitzGerald, T.J. [University of Massachusetts, Boston, Massachusetts (United States); Hurkmans, Coen [European Organization for Research and Treatment of Cancer, Brussels (Belgium); Ibbott, Geoffrey S.; Lee, J. Jack [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Merchant, Thomas E. [St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Michalski, Jeff [University of Washington, St. Louis, Missouri (United States); Palta, Jatinder R. [University of Florida, Miami, Florida (United States); Simon, Richard [National Institutes of Health, Bethesda, Maryland (United States); Ten Haken, Randal K. [University of Michigan, Ann Arbor, Michigan (United States); Timmerman, Robert [University of Texas Southwestern Medical Center, Dallas, Texas (United States); Tunis, Sean [Center for Medical Technology Policy, Baltimore, Maryland (United States); Coleman, C. Norman [National Cancer Institute, Bethesda, Maryland (United States); and others

    2012-07-01

    Purpose: In the context of national calls for reorganizing cancer clinical trials, the National Cancer Institute sponsored a 2-day workshop to examine challenges and opportunities for optimizing radiotherapy quality assurance (QA) in clinical trial design. Methods and Materials: Participants reviewed the current processes of clinical trial QA and noted the QA challenges presented by advanced technologies. The lessons learned from the radiotherapy QA programs of recent trials were discussed in detail. Four potential opportunities for optimizing radiotherapy QA were explored, including the use of normal tissue toxicity and tumor control metrics, biomarkers of radiation toxicity, new radiotherapy modalities such as proton beam therapy, and the international harmonization of clinical trial QA. Results: Four recommendations were made: (1) to develop a tiered (and more efficient) system for radiotherapy QA and tailor the intensity of QA to the clinical trial objectives (tiers include general credentialing, trial-specific credentialing, and individual case review); (2) to establish a case QA repository; (3) to develop an evidence base for clinical trial QA and introduce innovative prospective trial designs to evaluate radiotherapy QA in clinical trials; and (4) to explore the feasibility of consolidating clinical trial QA in the United States. Conclusion: Radiotherapy QA can affect clinical trial accrual, cost, outcomes, and generalizability. To achieve maximum benefit, QA programs must become more efficient and evidence-based.

  17. Keynote address: the scientific basis of the present and future practice of clinical radiotherapy

    International Nuclear Information System (INIS)

    Fletcher, G.H.

    1983-01-01

    At mid-century radiotherapy was more an art than a science, but is presently based on radiobiological parameters and cell kinetics. This close interaction between basic scientific principles and clinical practice has been made possible because one can correlate quantitatively doses of irradiation with observed responses. First, a short historical review will be made because it gives a perspective for the understanding both of progress made and prevailing misconceptions. The important radiobiological parameters and cell kinetics will then be discussed in some detail to demonstrate that they should be thoroughly understood in their relationship to radiotherapy. The overall treatment planning must be based on the clinical applications of the main radiobiological parameters. The combined treatment with surgery, either pre- or postoperatively, and multiple daily fractionations will be used as examples. The teaching of radiobiology should be considerably expanded, not only for its own scientific merit but also to show how it applies to clinical situations. This should be reflected in the expansion of the board examination

  18. Nasopharyngeal carcinoma. Clinical diagnosis, external radiotherapy and brachytherapy. Status of the art in 2001

    International Nuclear Information System (INIS)

    Eschwege, F.; Bourkhis, J.; El Gueddari, B.

    2001-01-01

    Nasopharynx carcinomas (NPC) are a very special head and neck cancer, in term of epidemiology, clinic and pathology. Endemic disease in South East Asia, undifferentiated nasopharynx carcinoma are very frequent CT scan and NMR allow a better knowledge of the modalities of the clinical presentation. Prognostic factors include local and regional extension. NPC is a well known radiosensitive disease with a dose-response curve well established. Modern imaging modalities and modification of the ballistic explain the amelioration of the local control and the diminution of therapeutic sequelae. Brachytherapy is an interesting modalities for the boost and the treatment of recurrent disease. The exact place of 3 D CRT and IMRT is not yet known as modifications of fractionation. Local control for T1 T2 tumor is excellent but is related to clinical extension (cranial and neurologic involvement) and nodal extension (supra clavicular N3) and show the interest of combined chemo-radiotherapy protocols. (authors)

  19. Significance of breast boost volume changes during radiotherapy in relation to current clinical interobserver variations

    International Nuclear Information System (INIS)

    Hurkmans, Coen; Admiraal, Marjan; Sangen, Maurice van der; Dijkmans, Ingrid

    2009-01-01

    Background and purpose: Nowadays, many departments introduce CT images for breast irradiation techniques, aiming to obtain a better accuracy in the definition of the relevant target volumes. However, the definition of the breast boost volume based on CT images requires further investigation, because it may not only vary between observers, but it may also change during the course of treatment. This study aims to quantify the variability of the CT based visible boost volume (VBV) during the course of treatment in relation to the variability between observers. Materials and methods: Ten patients with stage T1-2 invasive breast cancer treated with breast conservative surgery and post surgical radiotherapy were included in this study. In addition to the regular planning CT which is obtained several days prior to radiotherapy, three additional CT scans were acquired 3, 5 and 7 weeks after the planning CT scan. Four radiation oncologists delineated the VBV in all scans. Conformity of the delineations was analysed both between observers, and between scans taken at different periods of the radiotherapy treatment. Results: The VBV averaged over all patients decreased during the course of the treatment from an initial 40 cm 3 to 28 cm 3 , 27 cm 3 and 25 cm 3 after 3, 5 and 7 weeks, respectively. Assuming the VBV to be spherical, this corresponds to a reduction in diameter of 5-6 mm. More detailed analysis revealed that this reduction was more pronounced when radiotherapy started within 30 days after surgery. These boost volume changes over time were found to be significant (p = 0.02) even in the presence of interobserver variations. Moreover, the conformity index (CI) for the volume changes was of the same magnitude as the conformity index for the interobserver variation (0.25 and 0.31, respectively). Conclusions: Breast boost volume variations during a course of radiotherapy are significant in relation to current clinical interobserver variations. This is an important

  20. Does a too risk-averse approach to the implementation of new radiotherapy technologies delay their clinical use?

    Science.gov (United States)

    Garcia, R; Nyström, H; Fiorino, C; Thwaites, D

    2015-07-01

    Radiotherapy is a generally safe treatment modality in practice; nevertheless, recent well-reported accidents also confirm its potential risks. However, this may obstruct or delay the introduction of new technologies and treatment strategies/techniques into clinical practice. Risks must be addressed and judged in a realistic context: risks must be assessed realistically. Introducing new technology may introduce new possibilities of errors. However, delaying the introduction of such new technology therefore means that patients are denied the potentially better treatment opportunities. Despite the difficulty in quantitatively assessing the risks on both sides of the possible choice of actions, including the "lost opportunity", the best estimates should be included in the overall risk-benefit and cost-benefit analysis. Radiotherapy requires a sufficiently high level of support for the safety, precision and accuracy required: radiotherapy development and implementation is exciting. However, it has been anxious with a constant awareness of the consequences of mistakes or misunderstandings. Recent history can be used to show that for introduction of advanced radiotherapy, the risk-averse medical physicist can act as an electrical fuse in a complex circuit. The lack of sufficient medical physics resource or expertise can short out this fuse and leave systems unsafe. Future technological developments will continue to present further safety and risk challenges. The important evolution of radiotherapy brings different management opinions and strategies. Advanced radiotherapy technologies can and should be safely implemented in as timely a manner as possible for the patient groups where clinical benefit is indicated.

  1. Initiation of conformal radiotherapy with a multileaf-collimator - An approach to clinical routine

    International Nuclear Information System (INIS)

    Bannach, B.; Doll, Th.; Pape, H.; Schmitt, G.

    1995-01-01

    The implementation of a three-dimensional conformal radiotherapy facility in the radiotherapy department of the Heinrich Heine University is described. Complex radiotherapy techniques with commercially available networked systems are introduced to improve clinical work. Over 18 month we have gained clinical experience with a PHILIPS Multileaf Collimator (MLC) mounted on a SL 25 linear accelerator. For a limited period the MLC was used as a conventional blocking device. The standard MLC-shapes are controlled with a stand-alone computer system. In addition, a three-dimensional treatment planning system (3-D-TPS / TMS-Radix, Helax AB) based on convolution/superposition algorithms was recently installed. Treatment optimization is achieved using static field arrangements with complete volumetric computerized tomographic patient data for 3-D-TPS. Conformal adaptation of the 95%-isodose to the Planning Target Volume (PTV, ICRU 50) results in MLC-field-shaping concerning size, position and contour to PTV-projection in beams-eye-view (BEV). Field prescription with defined leaf positions of the MLC-setting for geometrical beam shaping is transferred from TPS via TCP/IP. Patient treatment with complex coplanar and non-coplanar field arrangements is performed with an automatic set-up for gantry and collimator angle position contolled by a verification system. Quality assurance for treatment set-up is gained with a mega-voltage imaging device (MVI / PHILIPS SRI 100). Actual treatment outcome and accurate dose delivery for conformal therapy is verified by intercomparison of geometrical field matching of MVI and digitally reconstructed radiographs (DRR) for each delivered beam in BEV

  2. The impact of introducing intensity modulated radiotherapy into routine clinical practice

    International Nuclear Information System (INIS)

    Miles, Elizabeth A.; Clark, Catharine H.; Urbano, M. Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P.; Harrington, Kevin J.; A'Hern, Roger; Nutting, Christopher M.

    2005-01-01

    Background and purpose: Intensity modulated radiotherapy (IMRT) at Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. Patients and methods: IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. Results: The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8 h was recorded whereas physics time was increased by 4.9 h per patient. Conclusions: IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources

  3. The impact of introducing intensity modulated radiotherapy into routine clinical practice.

    Science.gov (United States)

    Miles, Elizabeth A; Clark, Catharine H; Urbano, M Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P; Harrington, Kevin J; A'Hern, Roger; Nutting, Christopher M

    2005-12-01

    Intensity modulated radiotherapy (IMRT) at the Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8h was recorded whereas physics time was increased by 4.9h per patient. IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources.

  4. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  5. SU-F-T-199: A New Strategy for Integrating Photon with Proton and Carbon Ion in the Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z; Wang, J; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: The aim of this study was to develop a viable strategy to integrate photon plan and proton/carbon ion plan based on deformable registration. Methods: Two prostate cancer patients were enrolled in this study. Each patient has 2 CTs, which were input in the Raystation radiotherapy treatment planning system (TPS). CT1 was deformed to the second CT2 using the Hybrid deformation method. The dice similarity coefficient (DSC) parameter was used to evaluate the difference between the actual structures (bladder, rectum and CTV) and the corresponding deformed structures on CT2. The prescription dose was 63.02GyE to CTV, which included 49.32GyE for CTV1 with carbon and boost 13.7Gy for CTV2 with photon. The carbon plan was made first in Syngo TPS (Syngo PT Planning system, version VB10. Siemens, Germany) on CT1 and transferred to Raystation TPS. Selected Isodoses (23.5Gy, 36.8Gy, 39.1Gy, 47.0Gy and 49.3Gy) of carbon plan were converted to contours and then deformed to CT2, which was used as normal tissues for photon plan optimization on CT2. The final plan was the combination of photon plan and the carbon deformation plan on the CT2. The plan from this strategy was compared with direct optimization of the photon plan on CT2 added some clinical endpoints from carbon plan on CT1. Results: The new strategy with deformable registration is tested and combined plans were successfully obtained for the 2 patients. This strategy obtained both integrated DVH and dose distribution information. For patient 1, the rectum V30, V60 and bladder V63 were 45.8, 10.3 and 9.7 for the combined plan with deformation and 48.1, 11.0 and 12.0 for the direct photon plan. Conclusion: The new strategy for combining photon and carbon/proton is feasible. However, the clinical accuracy is still need more evaluation.

  6. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ying, C K; Bolst, David; Tran, Linh T.; Guatelli, Susanna; Rosenfeld, A. B.; Kamil, W A

    2017-01-01

    Heavy-particle therapy such as carbon ion therapy is currently very popular because of its superior conformality in terms of dose distribution and higher Relative Biological Effectiveness (RBE). However, carbon ion beams produce a complex mixed radiation field, which needs to be fully characterised. In this study, the fragmentation of a 290 MeV/u primary carbon ion beam was studied using the Geant4 Monte Carlo Toolkit. When the primary carbon ion beam interacts with water, secondary light charged particles (H, He, Li, Be, B) and fast neutrons are produced, contributing to the dose, especially after the distal edge of the Bragg peak. (paper)

  7. Mutagenic effects of nitrogen and carbon ions on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Shen Mei; Lu Ting; Shu Shizhen

    1998-06-01

    Dry seeds of stevia were implanted by 60∼100 keV nitrogen ion and 75 keV carbon ion with various doses. The biological effects in M 1 and mutation in M 2 were studied. The results showed that ion beam was able to induce variation on chromosome structure and inhibited mitosis action in root tip cells. The rate of cells with chromosome aberration was increased with the increase of ion beam energy and dose. Energy effects of mitosis were presented between 75 keV and 60, 100 keV. As compared with γ-rays, the effects of ion beam were lower on chromosomal aberration but were higher on frequency of the mutation. The rate of cell with chromosome aberration and M 2 useful mutation induced by implantation of carbon ion was higher than those induced by implantation of nitrogen ion. Mutagenic effects of Feng 1 x Ri Yuan and of Ri Yuan x Feng 2 are higher than that of Ji Ning and Feng 2

  8. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    International Nuclear Information System (INIS)

    Hargrave, C; Deegan, T; Gibbs, A; Poulsen, M; Moores, M; Harden, F; Mengersen, K

    2014-01-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  9. Constructing a clinical decision-making framework for image-guided radiotherapy using a Bayesian Network

    Science.gov (United States)

    Hargrave, C.; Moores, M.; Deegan, T.; Gibbs, A.; Poulsen, M.; Harden, F.; Mengersen, K.

    2014-03-01

    A decision-making framework for image-guided radiotherapy (IGRT) is being developed using a Bayesian Network (BN) to graphically describe, and probabilistically quantify, the many interacting factors that are involved in this complex clinical process. Outputs of the BN will provide decision-support for radiation therapists to assist them to make correct inferences relating to the likelihood of treatment delivery accuracy for a given image-guided set-up correction. The framework is being developed as a dynamic object-oriented BN, allowing for complex modelling with specific subregions, as well as representation of the sequential decision-making and belief updating associated with IGRT. A prototype graphic structure for the BN was developed by analysing IGRT practices at a local radiotherapy department and incorporating results obtained from a literature review. Clinical stakeholders reviewed the BN to validate its structure. The BN consists of a sub-network for evaluating the accuracy of IGRT practices and technology. The directed acyclic graph (DAG) contains nodes and directional arcs representing the causal relationship between the many interacting factors such as tumour site and its associated critical organs, technology and technique, and inter-user variability. The BN was extended to support on-line and off-line decision-making with respect to treatment plan compliance. Following conceptualisation of the framework, the BN will be quantified. It is anticipated that the finalised decision-making framework will provide a foundation to develop better decision-support strategies and automated correction algorithms for IGRT.

  10. Chemical sensitizers for hypoxic cells: a decade of experience in clinical radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dische, S [Mount Vernon Hospital, Northwood (UK)

    1985-02-01

    The clinical work with chemical agents to restore the radiosensitivity of hypoxic cells began in 1973 with metronidazole, misonidazole was first given in 1974. The results so far recorded of the clinical trials with misonidazole have been generally disappointing. Hypoxic cells must exist in all human tumours presenting for treatment and it is, however, probable that the oxygen effect is an important one at all dose fractionation regimes employed in radiotherapy but, after conventional fractionated radiotherapy, hypoxia may be a reason for failure in only a proportion of cases. The most important factor underlying the failure of misonidazole to acheive useful advantage is undoubtedly the low radiosensitizing concentrations achievable with the permitted dose of this neurotoxic drug. New drugs are under development and some have different dose-limiting toxicity. Those showing promise at this time are the Stanford compound, SR-2508 and the Roche compounds, Ro 03-8799. It is possible that the greatest sensitization with the greatest tolerance will be achieved by a combination of drugs.

  11. SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy

    International Nuclear Information System (INIS)

    Jiang, S; Dolly, S; Cai, B; Mutic, S; Li, H

    2016-01-01

    Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deep modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification

  12. SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, S; Dolly, S; Cai, B; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deep modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification

  13. Radiotherapy for pediatric brain tumors: Standards of care, current clinical trials, and new directions

    International Nuclear Information System (INIS)

    Goldwein, Joel W.

    1995-01-01

    The objectives of the course are to evaluate the role of radiation therapy in the treatment of pediatric brain tumors. Areas where the role is evolving will be identified, and the results of clinical trials which been mounted to clarify radiotherapy's role will be reviewed. Brain tumors are the second most common malignancy of childhood after leukemias and lymphomas. However, they remain the most common group of childhood tumors to require radiation therapy. Therefore, a thorough understanding of these tumors, and the appropriate role of surgery, radiation and chemotherapy is critical. Issues surrounding the management of sequelae are no less important. The role of radiotherapy for the treatment of these tumors is far different from that for adults. These differences relate to the profound potential for sequelae from therapy, the higher overall cure rates, and the utility of multimodality therapies. In addition, the rarity of childhood brain tumors compared with adults' makes them more difficult to study. In this session, the following issues will be reviewed; 1. Incidence of pediatric brain tumors, 2. General issues regarding symptoms, diagnosis, diagnostic tests and evaluation, 3. Importance of a team approach, 4. General issues regarding treatment sequelae, 5. Specific tumor types/entities; a. Cerebellar Astrocytomas b. Benign and malignant Gliomas including brainstem and chiasmatic lesions c. Primitive Neuroectodermal Tumors (PNET) and Medulloblastoma d. Ependymomas e. Craniopharyngiomas f. Germ cell tumors g. Miscellaneous and rare pediatric brain tumors 6. Management of sequelae 7. New and future directions a. Treatment of infants b. The expanding role of chemotherapy c. Advances in radiotherapy. The attendees will complete the course with a better understanding of the role that radiation therapy plays in the treatment of pediatric brain tumors. They will be knowledgeable in the foundation for that role, and the changes which are likely to take place in the

  14. Process-based quality management for clinical implementation of adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa, E-mail: smutic@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States)

    2014-08-15

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily

  15. Process-based quality management for clinical implementation of adaptive radiotherapy

    International Nuclear Information System (INIS)

    Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa

    2014-01-01

    Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily

  16. Mutagenic effects of carbon ions near the range end in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@jaea.go.jp [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Ryouhei; Nozawa, Shigeki; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-03-01

    To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425 keV/{mu}m) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113 keV/{mu}m). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113 keV/{mu}m carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>{approx}30 kb) were six times more frequently induced by carbon ions near the range end. When 352 keV/{mu}m neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113 keV/{mu}m carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.

  17. Radiotherapy in Prostate Cancer Patients With Pelvic Lymphocele After Surgery: Clinical and Dosimetric Data of 30 Patients.

    Science.gov (United States)

    Jereczek-Fossa, Barbara Alicja; Colangione, Sarah Pia; Fodor, Cristiana; Russo, Stefania; Cambria, Raffaella; Zerini, Dario; Bonora, Maria; Cecconi, Agnese; Vischioni, Barbara; Vavassori, Andrea; Matei, Deliu Victor; Bottero, Danilo; Brescia, Antonio; Musi, Gennaro; Mazzoleni, Federica; Orsi, Franco; Bonomo, Guido; De Cobelli, Ottavio; Orecchia, Roberto

    2015-08-01

    The purpose of the study was to evaluate the feasibility of irradiation after prostatectomy in the presence of asymptomatic pelvic lymphocele. The inclusion criteria for this study were: (1) patients referred for postoperative (adjuvant or salvage) intensity modulated radiotherapy (IMRT; 66-69 Gy in 30 fractions); (2) detection of postoperative pelvic lymphocele at the simulation computed tomography [CT] scan; (3) no clinical symptoms; and (4) written informed consent. Radiotherapy toxicity and occurrence of symptoms or complications of lymphocele were analyzed. Dosimetric data (IMRT plans) and the modification of lymphocele volume during radiotherapy (cone beam CT [CBCT] scan) were evaluated. Between January 2011 and July 2013, in 30 of 308 patients (10%) treated with radiotherapy after prostatectomy, pelvic lymphocele was detected on the simulation CT. The median lymphocele volume was 47 cm(3) (range, 6-467.3 cm(3)). Lymphocele was not included in planning target volume (PTV) in 8 cases (27%). Maximum dose to lymphocele was 57 Gy (range, 5.7-73.3 Gy). Radiotherapy was well tolerated. In all but 2 patients, lymphoceles remained asymptomatic. Lymphocele drainage-because of symptom occurrence-had to be performed in 2 patients during IMRT and in one patient, 7 weeks after IMRT. CBCT at the end of IMRT showed reduction in lymphocele volume and position compared with the initial data (median reduction of 37%), more pronounced in lymphoceles included in PTV. Radiotherapy after prostatectomy in the presence of pelvic asymptomatic lymphocele is feasible with acceptable acute and late toxicity. The volume of lymphoceles decreased during radiotherapy and this phenomenon might require intermediate radiotherapy plan evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Clinical and technical guide on prostate cancer proposal treated with radiotherapy

    International Nuclear Information System (INIS)

    Loria Ruiz, Rolando Alberto

    2013-01-01

    New treatment schemes with radiotherapy in prostate cancer are reviewed. The different modalities for the treatment of prostate cancer are described, such as surgery, chemotherapy and radiotherapy. Hypofractionated treatments and intensity-modulated radiotherapy are studied. The benefit of implementing these schemes in the Caja Costarricense del Seguro Social is analyzed [es

  19. Combined radiotherapy and chemotherapy for pediatric medulloblastoma: a clinical study of 33 cases

    Directory of Open Access Journals (Sweden)

    Wei ZHENG

    2011-06-01

    Full Text Available Objective To retrospectively review the clinical characteristics of medulloblastoma,discuss the optimized treatment regimen,and analyze the prognostic influential factors.Methods Thirty-three children with pathologically certified medulloblastoma(aged 3-14 years with average of 6.5 years,admitted from Aug.2004 to Dec.2007,received radiotherapy within 3 weeks post surgery.Ratiotherapy consisted of 28~36Gy whole craniospinal radiation and a supplementary radiation aimed at tumors by three-dimensional conformal radiotherapy(3D-CRT for a total dose of 50~54Gy(conventional fraction dose of 1.8-2.0Gy.A part of patients received hyperfractionation radiotherapy(1.0Gy/f,2f/d for alleviating the tardive adverse events.Meanwhile,a synchronized chemotherapy,consisting of lomustine + vincristine + cisplatin,or isophosphamide + carboplatin + etoposide,was administered after the completion of whole craniospinal radiation,and 3-5 courses of sequential chemotherapy were given after the overall radiotherapy was finished.According to the metastasis,and the residual tumor and its size,the 33 patients were divided into 2 groups as follows: low-risk group(n=24: no metastases,total or sub-total excision of tumors(residual tumors ≤1.5cm3;high-risk group(n=9: either metastases or residual tumor > 1.5cm3.The 3-year survival rates of two groups were then compared.Results The combined radiotherapy and chemotherapy was effective to 10 of the 11 patients(90.9% with residual tumors.Out of the 33 patients,31 obtained complete remission(93.9%,and 2 patients showed partial remission or stable status(3.0%,respectively.The median survival time of 33 patients was 51 months,3-year disease free survival(DFS was 75.8%,and 3-year overall survival(OS was 78.8%,including 33.3% in high-risk group and 95.8% in low-risk group(P < 0.01.The major side effects occurred in haematological system and digestive system,such as an incidence of 21.2%(7/33 with grade Ⅲ-Ⅳ bone marrow suppression

  20. Breathing adapted radiotherapy: final clinic results of the program for the support to costly innovating techniques (Stic) of 2003

    International Nuclear Information System (INIS)

    Giraud, P.; Giraud, P.; Morvan, E.; Djadi-Prat, J.; Rosenwald, J.C.; Carrere, M.O.

    2010-01-01

    The authors report the comparison, from a clinic point of view, between breathing adapted conformational radiotherapy (BART) and conventional conformational radiotherapy, in the case of lung and breast cancers. The assessment comprised a clinic examination, a thoracic radiography, breathing functional tests, a thoracic scanography at different moments (3, 6, 12, 18 and 24 months), and dosimetric criteria for tumour target volumes and the different thoracic organs at risk. Data have been collected among more than six hundred patients. Breathing adapted techniques allow acute and late toxicity to be reduced, notably for the lung, heart and oesophagus during a lung irradiation. They are less interesting for mammary irradiation, but could be important for a radiotherapy of the left breast. Short communication

  1. Clinical and histological study of pituitary fibrosarcoma following radiotherapy for pituitary adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazufumi; Hayashi, Minoru; Kubota, Toshihiko; Kawano, Hirokazu; Handa, Yuji [Fukui Medical School, Matsuoka (Japan); Komai, Toshio

    1990-11-01

    A 49-year old male was admitted with a history of radiotherapy for a pituitary adenoma 9 years earlier. Three weeks prior to admission, he noticed visual loss in the left eye. Computed tomography (CT) scan revealed a sellar tumor. The patient underwent craniotomy and the tumor was partially resected. The histological diagnosis was benign pituitary adenoma. Two months after surgery, he began to complain of headache and left hemiparesis. CT scan at that time showed a large parasellar tumor extending into the right temporal lobe. A second craniotomy was performed and a firm tumor was partially removed. Under light microscopy, the tumor was composed of anaplastic spindle cells showing a fascicular pattern. Ultrastructurally, the tumor cells were spindle-shaped with elongated nuclei. The cytoplasm contained numerous distended rough endoplasmic reticula and free ribosomes, Golgi apparatus as well as glycogen granules. Some desmosome-like intercellular adherents were observed. Collagen fibers were scattered in the extracellular space. There was no apparent formation of a basement membrane. These findings suggested a close morphological similarity between tumor cells and fibroblasts, conforming to ultrastructural diagnostic criteria for fibrosarcoma. In spite of intensive treatment, such as a second radiotherapy and subsequent craniotomy, the patient died 9 months after admission. The clinical course and pathological findings of the post-irradiation pituitary fibrosarcoma are discussed. (author).

  2. Clinical experiences with a chemical radioprotector in tumor radiotherapy: WR-2721

    International Nuclear Information System (INIS)

    Tanaka, Y.

    1984-01-01

    Since cysteine was found to protect lethally irradiated rats, sulfhydryl compounds that provide protection of laboratory animals against lethal doses of ionizing radiations have also been given much attention. The SH compounds have been the most extensively investigated, and β-aminoethylisothiouronium (AET) and cysteamine have been selected as being representative of those drugs that are highly protective. However, clinical application is limited, as the toxicity of these compounds is high. In a series of experiments to reevaluate radioprotective agents with low toxicity, the authors found that 2-mercaptopropionylglycine (MPG) and adrenochrome monoguangylhydrazone methanesulfonate (AMM) have a potent radioprotector effect in a dose far below their toxic doses in both mice and humans. Recently, the development of effective thiophosphate derivatives of cysteamine, namely WR-2721 [S-2-(3-amino-propylaminoethyl)phosphorothioate] by the U.S. Army Medical Research and Development Commands, led to a reevaluation of these compounds and their potential in radiotherapy. Initial investigations indicated that WR-2721 provided a considerable degree of radioprotection to normal tissues. This compound provided excellent protection for normal tissues (DMF = 2-2.5) but little protection for the transplanted tumor. Thus this drug may have a differential protection in vivo and may be useful for improving the therapeutic ratio in cancer radiotherapy. The results of animal and chemical experiments in Japan are summarized herein

  3. Can extremely enhanced clinical sensitivity to radiotherapy be detected by measuring chromosomal damage in lymphocytes in vitro?

    International Nuclear Information System (INIS)

    Dunst, J.; Gebhart, E.; Neubauer, S.

    1995-01-01

    We have examined the in-vitro radiosensitivity of lymphocytes in patients with extreme acute and chronic reactions after curative radiotherapy under the assumption of increased genetic radiosensitivity. 16 patients were retrospectively examined 1 to 108 months after radiotherapy. All had undergone definitive or postoperative curative radiotherapy for cancer. None of them had known genetic disorders with increased radiosensitivity. 4 patients were considered as having probably increased radiosensitivity; they had shown poor tolerance to radiotherapy (1 severe acute reaction with cessation of radiotherapy in bladder cancer and subsequent bladder shrinkage after 45 Gy, 1 acute skin reaction well above average with subsequent fibrosis after irradiation for regional recurrence of breast cancer, 1 radiation myelitis after palliative irradiation with 5 x 5 Gy for lung cancer, 1 severe acute reaction after mediastinal irradiation for lung cancer). 12 patients were considered as having normal tolerance to radiotherapy. They had tolerated radiotherapy well with normal acute reactions and no or minimal signs of late radiation sequelae. Lymphocyte cultures were prepared from all patients and irradiated with 0.7 and 2 Gy, respectively; 1 culture served as control (0 Gy). Chromosomes 1, 2 and 4 were stained using fluorescence in-situ hybridization (FISH) with a 3-colour-chromosome-in-situ suppression technique. Chromosomal breaks were counted in 200 to 1000 mitoses. The 4 patients with increased clinical radiation sensitivity showed also increased chromosomal radiation induced damage as compared to the 12 patients with normal radiation tolerance. Patients with increased clinical radiosensitivity exhibited increased chromosomal damage in lymphocytes in vitro measured with chromosome painting with a FISH-technique. This technique may be used to detect patients with severely enhanced radiosensitivity. The results suggest that if radiosensitivity is abnormally elevated this may be

  4. Carbon-ion radiation enhances migration ability and invasiveness of the pancreatic cancer cell, PANC-1, in vitro.

    Science.gov (United States)

    Fujita, Mayumi; Otsuka, Yoshimi; Imadome, Kaori; Endo, Satoshi; Yamada, Shigeru; Imai, Takashi

    2012-04-01

    Pancreatic cancer is an aggressive disease that responds poorly to conventional photon radiotherapy. Carbon-ion (C-ion) radiation has advantages compared with conventional radiotherapy, because it enables more accurate dose distribution and more efficient tumor cell killing. To elucidate the effects of local radiotherapy on the characteristics of metastatic tumors, it is necessary to understand the nature of motility in irradiated tumor cells; this will, in turn, facilitate the development of effective strategies to counter tumor cell motility, which can be used in combination with radiotherapy. The aim of the present study was to examine the invasiveness of pancreatic cancer cells exposed to C-ion irradiation. We found that C-ion irradiation suppressed the migration of MIAPaCa-2, BxPC-3 and AsPC-1; diminished the invasiveness of MIAPaCa-2; and tended to reduce the invasion of BxPC-3 and AsPC-1. However, C-ion irradiation increased the invasiveness of PANC-1 through the activation of plasmin and urokinase-type plasiminogen activator. Administration of serine protease inhibitor (SerPI) alone failed to reduce C-ion-induced PANC-1 invasiveness, whereas the combination of SerPI and Rho-associated coiled-coil forming protein kinase (ROCK) inhibitor suppressed it. Furthermore, PANC-1 showed mesenchymal-amoeboid transition when we treated with SerPI alone. In conclusion, C-ion irradiation is effective in suppressing the invasive potential of several pancreatic tumor cell lines, but not PANC-1; this is the first study showing that C-ion irradiation induces the invasive potential of a tumor cell line. Further in vivo studies are required to examine the therapeutic effectiveness of radiotherapy combined with inhibitors of both mesenchymal and amoeboid modes of tumor cell motility. © 2011 Japanese Cancer Association.

  5. A new fiducial marker for Image-guided radiotherapy of prostate cancer: Clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Hoejkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V. (Dept. of Medical Physics, Oncology, Aalborg Hospital (Denmark))

    2008-08-15

    Background. A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. Method. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. Results. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. Discussion. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs

  6. A new fiducial marker for Image-guided radiotherapy of prostate cancer: clinical experience.

    Science.gov (United States)

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Højkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V

    2008-01-01

    A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs.

  7. Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: Present status and future prospects

    Directory of Open Access Journals (Sweden)

    Dwarakanath B

    2009-09-01

    Full Text Available Higher rates of glucose usage generally correlate with poor prognosis in several types of malignant tumours. Experimental studies (both in vitro and in vivo have shown that 2-deoxy-D-glucose (2-DG, a glucose analog and glycolytic inhibitor, enhances radiation-induced damage selectively in tumor cells while protecting normal cells, thereby suggesting that 2-DG can be used as a differential radiomodifier to improve the efficacy of radiotherapy. Clinical trials undertaken to study the feasibility, safety, and validity of this suggested approach will be described. Based on 2-DG-induced radiosensitization observed in primary organ cultures of cerebral glioma tissues, clinical trials were designed taking into consideration the radiobiology of gliomas and pharmacokinetics of 2-DG. Phase I/II clinical trials have unequivocally demonstrated that a combination of 2-DG (200-300 mg 2-DG per kg body weight orally administered after overnight fasting, 20min before irradiation with large weekly fractions (5 Gy/fraction of low-LET radiotherapy is well tolerated without any acute toxicity or late radiation damage to the normal brain tissue. Nonserious transient side effects similar to hypoglycemia induced disturbances like restlessness, nausea, and vomiting were observed at the 2-DG doses used. Data from these trials involving more than 100 patients have clearly indicated a moderate increase in the survival, with a significant improvement in the quality of life with clinicopathological evidence of protection of normal brain tissue. A phase III multicentric trial to evaluate the efficacy of the combined treatment is in progress. Directions for future studies are discussed.

  8. A new fiducial marker for Image-guided radiotherapy of prostate cancer: Clinical experience

    International Nuclear Information System (INIS)

    Carl, Jesper; Nielsen, Jane; Holmberg, Mats; Hoejkjaer Larsen, Erik; Fabrin, Knud; Fisker, Rune V.

    2008-01-01

    Background. A new fiducial marker for image guided radiotherapy (IGRT) based on a removable prostate stent made of Ni Ti has been developed during two previous clinical feasibility studies. The marker is currently being evaluated for IGRT treatment in a third clinical study. Method. The new marker is used to co-register MR and planning CT scans with high accuracy in the region around the prostate. The co-registered MR-CT volumes are used for delineation of GTV before planning. In each treatment session the IGRT system is used to position the patient before treatment. The IGRT system use a stereo pair of kV images matched to corresponding Digital Reconstructed Radiograms (DRR) from the planning CT scan. The match is done using mutual gray scale information. The pair of DRR's for positioning is created in the IGRT system with a threshold in the Look Up Table (LUT). The resulting match provides the necessary shift in couch coordinates to position the stent with an accuracy of 1-2 mm within the planned position. Results. At the present time 39 patients have received the new marker. Of the 39 one has migrated to the bladder. Deviations of more than 5 mm between CTV outlined on CT and MR are seen in several cases and in anterior-posterior (AP), left-right (LR) and cranial-caudal (CC) directions. Intra-fraction translation movements up to +/- 3 mm are seen as well. As the stent is also clearly visible on images taken with high voltage x-rays using electronic portal images devices (EPID), the positioning has been verified independently of the IGRT system. Discussion. The preliminary result of an on going clinical study of a Ni Ti prostate stent, potentially a new fiducial marker for image guided radiotherapy, looks promising. The risk of migration appears to be much lower compared to previous designs

  9. Radial dose distribution from carbon ion incident on liquid water

    International Nuclear Information System (INIS)

    Scifoni, E.; Surdutovich, E.; Solov'yov, A.V.; Surdutovich, E.

    2010-01-01

    We report calculations of the radial dose deposited along carbon-ion tracks in liquid water using different techniques depending on the energy range of secondary electrons. The models are developed in relation with the experimental data on electron penetration lengths. For electrons with energies higher than 45 eV, we use the Katz model. However, the main focus is on the low-energy electrons, which are largely responsible for DNA damage within 10 nm from the tracks. For these electrons, the dose calculation is based on their random walk behaviour. The results of this combined approach are compared to experimental measurements. Contributions to the deposited energy by electrons of different ranges of energy are discussed. (authors)

  10. Corrosion resistance of uranium with carbon ion implantation

    International Nuclear Information System (INIS)

    Liang Hongwei; Yan Dongxu; Bai Bin; Lang Dingmu; Xiao Hong; Wang Xiaohong

    2008-01-01

    The carbon modified layers prepared on uranium surface by carbon ion implantation, gradient implantation, recoil implantation and ion beam assisted deposition process techniques were studied. Depth profile elements of the samples based on Auger electron spectroscopy, phase composition identified by X-ray diffraction as well as corrosion resistance of the surface modified layers by electrochemistry tester and humid-thermal oxidation test were carried out. The carbon modified layers can be obtained by above techniques. The samples deposited with 45 keV ion bombardment, implanted by 50 keV ions and implanted with gradient energies are of better corrosion resistance properties. The samples deposited carbon before C + implantation and C + assisted deposition exhibit worse corrosion resistance properties. The modified layers are dominantly dot-corraded, which grows from the dots into substructure, however, the assisted deposition samples have comparatively high carbon composition and are corraded weakly. (authors)

  11. Innershell ionization by fast protons, alpha particles and carbon ions

    International Nuclear Information System (INIS)

    Dijk, J.H. van.

    1984-01-01

    The subject of this thesis is the study of inner-shell excitations of atoms induced by fast charged particle collisions. A new method is described for measuring the spectrum of delta-electrons emitted by 208 Pb after excitation by 15 MeV protons or 50 MeV alpha particles. Experimental equipment is described. Results of both experiments are presented and compared with PWBA models and with calculations based on a semi-classical approximation. The small-impact-parameter ionization probabilities obtained are then compared with literature. Also small-impact-parameter measurements done with 100 MeV carbon ions are described. Besides K-shell measurements, the author also presents L-subshell ionization probability results for Pb. An appendix is added in which energy straggling problems in solid targets are treated. (Auth./G.J.P.)

  12. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...... at energies below 20 MeV/u. We implemented this model in the Monte Carlo code FLUKA. At the GSI heavy ion facility in Darmstadt, Germany, alanine has been irradiated with carbon ions at energies between 88 an 400 MeV/u, which is the energy range used for therapy. The irradiation and the detector response have...

  13. Protracted Hypofractionated Radiotherapy for Graves' Ophthalmopathy: A Pilot Study of Clinical and Radiologic Response

    Energy Technology Data Exchange (ETDEWEB)

    Casimiro de Deus Cardoso, Cejana; Giordani, Adelmo Jose [Department of Clinical and Experimental Oncology, Division of Radiotherapy, Federal University of Sao Paulo, Sao Paulo, SP (Brazil); Borri Wolosker, Angela Maria [Department of Radiology, Federal University of Sao Paulo, Sao Paulo, SP (Brazil); Souhami, Luis [Department of Radiotherapy, McGill University Heath Centre, Montreal, Quebec (Canada); Gois Manso, Paulo [Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, SP (Brazil); Souza Dias, Rodrigo; Comodo Segreto, Helena Regina [Department of Clinical and Experimental Oncology, Division of Radiotherapy, Federal University of Sao Paulo, Sao Paulo, SP (Brazil); Araujo Segreto, Roberto, E-mail: segreto.dmed@epm.br [Department of Clinical and Experimental Oncology, Division of Radiotherapy, Federal University of Sao Paulo, Sao Paulo, SP (Brazil)

    2012-03-01

    Purpose: To evaluate the clinical and radiologic response of patients with Graves' ophthalmopathy given low-dose orbital radiotherapy (RT) with a protracted fractionation. Methods and Materials: Eighteen patients (36 orbits) received orbital RT with a total dose of 10 Gy, fractionated in 1 Gy once a week over 10 weeks. Of these, 9 patients received steroid therapy as well. Patients were evaluated clinically and radiologically at 6 months after treatment. Clinical response assessment was carried out using three criteria: by physical examination, by a modified clinical activity score, and by a verbal questionnaire considering the 10 most common signs and symptoms of the disease. Radiologic response was assessed by magnetic resonance imaging. Results: Improvement in ocular pain, palpebral edema, visual acuity, and ocular motility was observed in all patients. Significant decrease in symptoms such as tearing (p < 0.001) diplopia (p = 0.008), conjunctival hyperemia (p = 0.002), and ocular grittiness (p = 0.031) also occurred. Magnetic resonance imaging showed decrease in ocular muscle thickness and in the intensity of the T2 sequence signal in the majority of patients. Treatments were well tolerated, and to date no complications from treatment have been observed. There was no statistical difference in clinical and radiologic response between patients receiving RT alone and those receiving RT plus steroid therapy. Conclusion: RT delivered in at a low dose and in a protracted scheme should be considered as a useful therapeutic option for patients with Graves' ophthalmopathy.

  14. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial

    International Nuclear Information System (INIS)

    Pow, Edmond; Kwong, Dora; McMillan, Anne S.; Wong, May; Sham, Jonathan; Leung, Lucullus; Leung, W. Keung

    2006-01-01

    Purpose: To compare directly the effect of intensity-modulated radiotherapy (IMRT) vs. conventional radiotherapy (CRT) on salivary flow and quality of life (QoL) in patients with early-stage nasopharyngeal carcinoma (NPC). Methods and Materials: Fifty-one patients with T2, N0/N1, M0 NPC took part in a randomized controlled clinical study and received IMRT or CRT. Stimulated whole (SWS) and parotid (SPS) saliva flow were measured and Medical Outcomes Short Form 36 (SF-36), European Organization for Research and Treatment of Cancer (EORTC) core quetionnaire, and EORTC head-and-neck module (QLQ-H and N35) were completed at baseline and 2, 6, and 12 months after radiotherapy. Results: Forty-six patients (88%) were in disease remission 12 months after radiotherapy. At 12 months postradiotherapy, 12 (50.0%) and 20 patients (83.3%) in the IMRT group had recovered at least 25% of preradiotherapy SWS and SPS flow respectively, compared with 1 (4.8%) and 2 patients (9.5%), respectively, in the CRT group. Global health scores showed continuous improvement in QoL after both treatments (p < 0.001). However, after 12 months subscale scores for role-physical, bodily pain, and physical function were significantly higher in the IMRT group, indicating a better condition (p < 0.05). Dry mouth and sticky saliva were problems in both groups 2 months after treatment. In the IMRT group, there was consistent improvement over time with xerostomia-related symptoms significantly less common than in the CRT group at 12 months postradiotherapy. Conclusions: IMRT was significantly better than CRT in terms of parotid sparing and improved QoL for early-stage disease. The findings support the case for assessment of health-related QoL in relation to head-and-neck cancer using a site-specific approach

  15. Clinical Audit of the Radiotherapy Process in Rectal Cancer: Clinical Practice Guidelines and Quality Certification Do Not Avert Variability in Clinical Practice.

    Science.gov (United States)

    Torras, M G; Canals, E; Jurado-Bruggeman, D; Marín-Borras, S; Macià, M; Jové, J; Boladeras, A M; Muñoz-Montplet, C; Molero, J; Picón, C; Puigdemont, M; Aliste, L; Torrents, A; Guedea, F; Borras, J M

    2018-06-01

    The therapeutic approach to cancer is complex and multidisciplinary. Radiotherapy is among the essential treatments, whether used alone or in conjunction with other therapies. This study reports a clinical audit of the radiotherapy process to assess the process of care, evaluate adherence to agreed protocols and measure the variability to improve therapeutic quality for rectal cancer. Multicentre retrospective cohort study in a representative sample of patients diagnosed with rectal cancer in the Institut Català d'Oncologia, a comprehensive cancer centre with three different settings. We developed a set of indicators to assess the key areas of the radiotherapy process. The clinical audit consisted of a review of a random sample of 40 clinical histories for each centre. The demographic profile, histology and staging of patients were similar between centres. The MRI reports did not include the distance from tumour to mesorectal fascia (rCRM) in 38.3% of the cases. 96.7% of patients received the planned dose, and 57.4% received it at the planned time. Surgery followed neoadjuvant treatment in 96.7% of the patients. Among this group, postoperative CRM was recorded in 65.5% of the cases and was negative in 93.4% of these. With regard to the 34.5% (n = 40) of cases where no CRM value was stated, there were differences between the centres. Mean follow-up was 3.4 (SD 0.6) years, and overall survival at four years was 81.7%. The audit revealed a suboptimal degree of adherence to clinical practice guidelines. Significant variability between centres exists from a clinical perspective but especially with regard to organization and process. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. A simplified approach for exit dose in vivo measurements in radiotherapy and its clinical application

    International Nuclear Information System (INIS)

    Banjade, D.P.; Shukri, A.; Tajuddin, A.A.; Shrestha, S.L.; Bhat, M.

    2002-01-01

    This is a study using LiF:Mg;Ti thermoluminescent dosimeter (TLD) rods in phantoms to investigate the effect of lack of backscatter on exit dose. Comparing the measured dose with anticipated dose calculated using tissue maximum ratio (TMR) or percentage depth dose (PDD) gives rise to a correction factor. This correction factor may be applied to in-vivo dosimetry results to derive true dose to a point within the patient. Measurements in a specially designed humanoid breast phantom as well as patients undergoing radiotherapy treatment were also been done. TLDs with reproducibility of within ±3% (1 SD) are irradiated in a series of measurements for 6 and 10 MV photon beams from a medical linear accelerator. The measured exit doses for the different phantom thickness for 6 MV beams are found to be lowered by 10.9 to 14.0% compared to the dose derived from theoretical estimation (normalized dose at d max ). The same measurements for 10 MV beams are lowered by 9.0 to 13.5%. The variations of measured exit dose for different field sizes are found to be within 2.5%. The exit doses with added backscatter material from 2 mm up to 15 cm, shows gradual increase and the saturated values agreed within 1.5% with the expected results for both beams. The measured exit doses in humanoid breast phantom as well as in the clinical trial on patients undergoing radiotherapy also agreed with the predicted results based on phantom measurements. The authors' viewpoint is that this technique provides sufficient information to design exit surface bolus to restore build down effect in cases where part of the exit surface is being considered as a target volume. It indicates that the technique could be translated for in vivo dose measurements, which may be a conspicuous step of quality assurance in clinical practice. Copyright (2002) Australasian College of Physical Scientists and Engineers in Medicine

  17. Clinical profile and response to treatment of patients with pituitary adenomas submitted to radiotherapy

    International Nuclear Information System (INIS)

    Moraes, Paulo Lazaro de; Freire, Geison Moreira; Dias, Rodrigo Souza; Segreto, Roberto Araujo; Segreto, Helena Regina Comodo; Abucham Filho, Julio Zaki

    2008-01-01

    Objective: to evaluate the clinical profile of patients with pituitary adenoma and their response to radiotherapy. Material and method: retrospective study with 22 patients with diagnosis of pituitary adenoma which were submitted to radiotherapy between March 2004 and December 2008. Patients' characteristics such as gender, age, clinical presentation, surgical approach, immunohistochemistry profile, dose of radiation and the response to therapy were analyzed using hormonal dosages and imaging exams. Results: the median age was 51 years and equally distributed in both genders. The tumors were divided according to the Hardy's classification: 27.5% had grade II, 27.5% had grade III and 45% had grade IV. The main symptoms presented by patients at diagnosis were visual impairment in 77% of cases, headache in 68%, amenorrhea and acromegaly in 27% and galactorrhoea in 4.5%. Transphenoidal surgery was performed in 21 patients and only 1 patient was submitted to transcranial approach; 91% of cases had partial resection. Concerning to immunohistochemistry, the expression of ACTH was the most frequent, being present in 41% of cases. The patients were treated in megavoltage equipment mostly with 6 MV linear accelerator. The total radiation dose was 45 Gy in 68% of patients and a dose of 50.4 Gy in 13% of cases. Three-dimensional planning was used in 20 patients. The median follow-up was 41 months. Laboratory and imaging improvement were observed in 73% of patients, stability in 22.5%, and worsening in 4.5%. Conclusion: the results show good rates of response and control of pituitary adenomas by radiation in the first four years after treatment. Considering it has a slow response to treatment, there is a high chance of improvement in results later during the follow-up. (author)

  18. Clinical trials radiotherapy treatment plan review software : is this the first quantified assessment

    International Nuclear Information System (INIS)

    Hatton, J.A.; Cornes, D.A.

    2011-01-01

    Full text: Clinical trials require robust quality assurance (QA) procedures to ensure commonality of all treatments, with independent reviews to assess compliance with trial protocols. All clinical trials tools, including QA software, require testing for validity and reliability. enabling inter- and intra-trial comparison. Unlike clinical radiotherapy treatment planning (RTP) systems, review software has no published guidelines. This study describes the design and development of a test suite to quantify the performance of review software in TROG clinical trials. Test areas are image handling and reconstruction; geometric accuracy; dosimetric accuracy; dose-volume histogram (DVH) calculation; display of plan parameters. TROG have developed tests for commissioning plan review software, assessed with SWAN 2.3, and CMS Elekta FocalPro. While image handling tests were based on published guidelines for RTP systems, dosimetric tests used the TROG QA case review requirements. Treatment plans represented systems of all manufacturers (Pinnacle, Eclipse, Xio and Oncentra) used in Australasian centres. The test suite identified areas for SW A software development, including the DVH algorithm, changed to reduce calculation time. Results, in Fig. I, for known volumes of varying shapes and sizes, demonstrate differences between SWAN 2.1 and 2.3 when compared with Eclipse. Liaison with SWAN programmers enabled re-instatement of 2.1 algorithm. The test suite has quantified the RTP review software, prioritised areas for development with the programmers, and improved the user experience.

  19. Clinical application of intensity and energy modulated radiotherapy with photon and electron beams

    International Nuclear Information System (INIS)

    Xiangkui Mu

    2005-01-01

    In modern, advanced radiotherapy (e.g. intensity modulated photon radiotherapy, IMXT) the delivery time for each fraction becomes prolonged to 10-20 minutes compared with the conventional, commonly 2-5 minutes. The biological effect of this prolongation is not fully known. The large number of beam directions in IMXT commonly leads to a large integral dose in the patient. Electrons would reduce the integral dose but are not suitable for treating deep-seated tumour, due to their limited penetration in tissues. By combining electron and photon beams, the dose distributions may be improved compared with either used alone. One obstacle for using electron beams in clinical routine is that there is no available treatment planning systems that optimise electron beam treatments in a similar way as for IMXT. Protons have an even more pronounced dose fall-off, larger penetration depth and less penumbra widening than electrons and are therefore more suitable for advanced radiotherapy. However, proton facilities optimised for advanced radiotherapy are not commonly available. In some instances electron beams may be an acceptable surrogate. The first part of this study is an experimental in vitro study where the situation in a tumour during fractionated radiotherapy is simulated. The effect of the prolonged fraction time is compared with the predictions by radiobiological models. The second part is a treatment planning study to analyse the mixing of electron and photon beams for at complex target volume in comparison with IMXT. In the next step a research version of an electron beam optimiser was used for the improvement of treatment plans. The aim was to develop a method for translating crude energy and intensity matrices for optimised electrons into a deliverable treatment plan without destroying the dose distribution. In the final part, different methods of treating the spinal canal in medulloblastoma were explored in a treatment planning study that was evaluated with

  20. Beam monitoring in radiotherapy and hadron-therapy

    International Nuclear Information System (INIS)

    Fontbonne, J.M.

    2012-01-01

    Radiotherapy techniques have evolved over the past twenty years. For photon beams, the development of tools such as multi leaf collimators, machines such as Cyberknife or tomo-therapy, have improved the conformation of treatments to the tumor volume and lowered maximum dose to healthy tissue. In another register, the use of proton-therapy is expanding in all countries and the development of carbon ions beams for hadron-therapy is also increasing. If techniques improve, the control requirements for the monitoring of the dose administered to patients are always the same. This document presents, first, the ins and outs of the different techniques of external beam radiotherapy: photon treatments, protons and hadrons. Starting from the basis of clinical requirements, it sets the variables to be measured in order to ensure the quality of treatment for the different considered modalities. It then describes some implementations, based on precise and rigorous specifications, for the monitoring and measurement of beams delivered by external beam radiotherapy equipments. Two instrumental techniques are particularly highlighted, plastic scintillators dosimetry for the control of megavoltage photon beams and ionization chamber dosimetry applied to proton-therapy or radiobiology experiments conducted at the GANIL facility. Analyzes and perspectives, based on the recent developments of treatment techniques, are delivered in conclusion and can serve as guide for future instrumental developments. (author)

  1. Interactive adaptation of a volumetric imaging radiotherapy treatment: development and validation of tools for its implementation in clinical routine

    International Nuclear Information System (INIS)

    Huger, Sandrine

    2013-01-01

    Changing anatomy during radiotherapy can lead to significant dosimetric consequences for organs at risk (OARs) and/or target volumes. Adaptive radiotherapy can compensate for these variations however its deployment for clinical work is hampered by the increased workload for the medical staff and there is still no commercialized software available for clinical use. We developed a simple in vivo dosimetric alert tool allowing rapid identification of patients who might benefit from an adaptive radiotherapy. Dosimetric evaluation of delivered treatment has been conducted onto 3D on board imaging (CBCT) whose dose calculation accuracy has been evaluated. The tool does not require a new volume of interest delineation. Tool alert is based on objectives and quantifiable criteria defined by the exceeding volumes of interest dose thresholds. Tool precision and detectability have been validated and applied in a retrospective study on 10 head and neck patients. The tool allows detecting patients where an adaptive treatment could have been considered. In its clinical implementation, adaptive radiotherapy process requires deformable matching algorithms to follow patient local's deformations occurring during treatment. Nevertheless, their use has not been validated. We conducted an evaluation of the Block Matching deformable algorithm, suitable for multimodality imaging (CT/CBCT), in comparison to rigid algorithm. A study has been conducted for 10 head and neck patients based on volume of interest contours comparison for 76 CBCT. Similarity parameters used consisted on Dice Similarity Index, Robust Hausdorff Distance (in mm) and the absolute volume difference (in cc). (author)

  2. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    Science.gov (United States)

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  3. Clinical and technical characteristics of intraoperative radiotherapy. Analysis of the ISIORT-Europe database

    International Nuclear Information System (INIS)

    Krengli, M.; Sedlmayer, F.

    2013-01-01

    Background: A joint analysis of clinical data from centres within the European section of the International Society of Intraoperative Radiation Therapy (ISIORT-Europe) was undertaken in order to define the range of intraoperative radiotherapy (IORT) techniques and indications encompassed by its member institutions. Materials and methods: In 2007, the ISIORT-Europe centres were invited to record demographic, clinical and technical data relating to their IORT procedures in a joint online database. Retrospective data entry was possible. Results: The survey encompassed 21 centres and data from 3754 IORT procedures performed between 1992 and 2011. The average annual number of patients treated per institution was 42, with three centres treating more than 100 patients per year. The most frequent tumour was breast cancer with 2395 cases (63.8 %), followed by rectal cancer (598 cases, 15.9 %), sarcoma (221 cases, 5.9 %), prostate cancer (108 cases, 2.9 %) and pancreatic cancer (80 cases, 2.1 %). Clinical details and IORT technical data from these five tumour types are reported. Conclusion: This is the first report on a large cohort of patients treated with IORT in Europe. It gives a picture of patient selection methods and treatment modalities, with emphasis on the main tumour types that are typically treated by this technique and may benefit from it. (orig.)

  4. Radiotherapy-induced xerostomia, pre-clinical promise of LMS-611.

    Science.gov (United States)

    Paterson, Claire; Caldwell, B; Porteous, S; McLean, A; Messow, C M; Thomson, M

    2016-02-01

    Radiotherapy-induced xerostomia (RIX) is the most common permanent side effect of radiotherapy (RT) to the head and neck (H&N). There is no effective topical treatment. LMS-611 is a mimetic of a natural lamellar body which prevents thick secretions like saliva from congesting organs. The primary objective of this study was to assess saliva properties before and during RT to the H&N. The secondary objectives were to re-assess saliva properties with the addition of LMS-611, measure inter-patient variability, correlate patient-reported symptoms with laboratory measurements and design subsequent first-in-human clinical trial of LMS-611. Patients with H&N cancer receiving RT as primary treatment were recruited. Patients completed the Groningen RIX (GRIX) questionnaire and provided saliva samples at baseline and weeks 2, 4 and 6 of RT. Saliva adhesiveness and viscosity were tested by measuring time taken to travel 5 cm down an inclined plane. Thirty patients were enrolled. The inclined plane test (IPT) results (s) were as follows: baseline 31.3, week 2 49.7, week 4 51.1 and week 6 55.7. Wide inter-patient variability was seen at baseline. GRIX scores increased as RT progressed. Spearman rank correlation coefficient of inclined plane tests with GRIX scores was -0.06 at baseline, 0.25 at week 2, 0.12 at week 4 and 0.08 at week 6. LMS-611 concentrations of 10 and 20 mg/ml significantly reduced IPT times on saliva samples. Saliva becomes more visco-adhesive and RIX worsens as RT progresses. There is little correlation between objective and subjective measures of RIX. The addition of LMS-611 to thick, sticky saliva restores its fluidity ex vivo. This warrants in vivo analysis of the effect of LMS-611 upon RIX.

  5. Randomized Clinical Trial to Assess the Efficacy of Radiotherapy in Primary Mediastinal Large B-Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Aviles, Agustin, E-mail: agustin.aviles@imss.gob.mx [Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico, D. F. (Mexico); Neri, Natividad [Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico, D. F. (Mexico); Fernandez, Raul [Department of Radiation Therapy, Oncology Hospital, National Medical Center, IMSS, Mexico, D. F. (Mexico); Huerta-Guzman, Judith; Nambo, Maria J. [Department of Hematology, Oncology Hospital, National Medical Center, IMSS, Mexico, D. F. (Mexico)

    2012-07-15

    Purpose: We developed a controlled clinical trial to assess the efficacy and toxicity of adjuvant-involved field radiotherapy (IFRT) in patients with primary mediastinal B-cell lymphoma that achieved complete response after the patients were treated with cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP-14). Methods and Materials: Between January 2001 and June 2004, 124 consecutive patients who were in complete remission after dose dense chemotherapy and rituximab administration (R-CHOP14) were randomly assigned to received IFRT (30 Gy). Sixty-three patients received IFR, and 61 patients did not (control group). Results: The study aimed to include 182 patients in each arm but was closed prematurely because in a security analysis (June 2004), progression and early relapse were more frequent in patients that did not received IFRT. Patients were followed until March 2009, at which point actuarial curves at 10 years showed that progression free-survival was 72% in patients who received IFR and 20% in the control group (p < 0.001), overall survival was 72% and 31%, respectively (p < 0.001). Acute toxicity was mild and well tolerated. Discussion: Adjuvant radiotherapy to sites of bulky disease was the only difference to have an improvement in outcome in our patients; the use of rituximab during induction did not improve complete response rates and did affect overall survival; patients who received rituximab but not IFRT had a worse prognosis. Conclusions: The use of IFRT in patients with primary mediastinal B-cell lymphoma who achieved complete response remain as the best treatment available, even in patients that received rituximab during induction.

  6. Introduction of beam flatness filter for 60Co teletherapy beam and its efficacy in clinical radiotherapy

    International Nuclear Information System (INIS)

    Sathiyan, S.; Ravichandran, R.; Ravikumar, M.

    2003-01-01

    In the western countries cobalt-60 machines have become obsolete, whereas in India we have about 250 machines operational for clinical radiotherapy. The basic differences of 6 MV x-ray beam and cobalt-60 beam are: a) build-up d max point, b) flatness of beam at depths, and c) sharpness of the beam edge. We looked at the homogeneity of delivered dose in the target volume in a 3 field SAD technique for 60 Co (80 cm, 100 cm) and 6 MV treatments. More dose variations are seen in 60 Co treated volume. The excess curvature of isodose curves of 60 Co at depths may be one of the reasons for this inhomogeneity in dose to target volume. Therefore, there is need for achieving perfect flatness in the isodose curves at desired depths. A flattening filter was fabricated using dental wax impression material to account for depths of curvature of 50% 60 Co isodose curve. The filter was fabricated for the Theratron 780C machine for necessary flatness. The beam flatness with filter was measured with a) ionization and b) TL dosimetry methods. The flattened beam profile was compared with 6 MV x-ray beam (Clinac-1800, M/s Varian, USA). Our measurements show uniform flatness of cobalt-60 isodose curve at desired depth and useful radiation field width comparable to 6 MV x-ray photon profile at full width at half maximum (FWHM). If this concept is extendable to short field widths, it appears that there is scope for use of such filter in the treatments of oesophagus, larynx, and pituitary tumours to achieve dose homogeneity. Using this flatness filter and penumbra trimmer, we may achieve better quality cobalt-60 beam for radiotherapy. (author)

  7. Randomized Clinical Trial to Assess the Efficacy of Radiotherapy in Primary Mediastinal Large B-Lymphoma

    International Nuclear Information System (INIS)

    Avilés, Agustin; Neri, Natividad; Fernández, Raúl; Huerta-Guzmán, Judith; Nambo, María J.

    2012-01-01

    Purpose: We developed a controlled clinical trial to assess the efficacy and toxicity of adjuvant-involved field radiotherapy (IFRT) in patients with primary mediastinal B-cell lymphoma that achieved complete response after the patients were treated with cyclophosphamide, doxorubicin, vincristine, prednisone, and rituximab (R-CHOP-14). Methods and Materials: Between January 2001 and June 2004, 124 consecutive patients who were in complete remission after dose dense chemotherapy and rituximab administration (R-CHOP14) were randomly assigned to received IFRT (30 Gy). Sixty-three patients received IFR, and 61 patients did not (control group). Results: The study aimed to include 182 patients in each arm but was closed prematurely because in a security analysis (June 2004), progression and early relapse were more frequent in patients that did not received IFRT. Patients were followed until March 2009, at which point actuarial curves at 10 years showed that progression free-survival was 72% in patients who received IFR and 20% in the control group (p < 0.001), overall survival was 72% and 31%, respectively (p < 0.001). Acute toxicity was mild and well tolerated. Discussion: Adjuvant radiotherapy to sites of bulky disease was the only difference to have an improvement in outcome in our patients; the use of rituximab during induction did not improve complete response rates and did affect overall survival; patients who received rituximab but not IFRT had a worse prognosis. Conclusions: The use of IFRT in patients with primary mediastinal B-cell lymphoma who achieved complete response remain as the best treatment available, even in patients that received rituximab during induction.

  8. Radiotherapy for vertebral metastases. Analysis of symptoms and clinical effects by MR imaging

    International Nuclear Information System (INIS)

    Sugiyama, Akira

    1994-01-01

    Fifty patients with 63 symptomatic vertebral metastasis (18 sites: pain only, 28 sites: radiculopathy with pain, 17 sites: myelopathy) were treated by radiotherapy. Primary lesions were located in the lung (9 cases), breast (9), colorectal area (9), prostate (7) and so on. We correlated the radiologic findings, symptoms and clinical effects with metastatic features which were classified into 4 types by MR imaging: non-deformity, expanding, vertebral collapse, and destructive mass. Each type of metastasis was accompanied with or without epidural tumor. Osteolytic metastases were apt to create features of deformity (expanding type: 18 vertebrae, vertebral collapse type: 17, destructive mass type: 9). The features of osteoblastic metastases were no deformity (18 vertebrae) and expanding type (2). The symptom of pain only occurred most frequently in the lumbosacral spine. The vertebral body deformity of symptomatic sites was relatively slight (non-deformity type: 6 sites, expanding type: 6, vertebral collapse type: 6), and epidural tumors were seen at only 2 sites. The effect of radiotherapy was excellent (complete pain relief: 64.7%, partial pain relief: 29.4%). Radiculopathy occurred most frequently in the lumber spine. Vertebral body deformity was noted in most symptomatic sites (expanding type: 9 sites, vertebral collapse type: 10, destructive mass type: 2). Complete relief was obtained in 6 sites (22.2%), partial relief in 18 (63.0%). Myelopathy occurred most often in the thoracic spine, followed by the lumbar spine. The vertebral body deformity was severe (expanding: 3 cases, vertebral collapse type: 3, destructive mass type: 6). Epidural tumors were also present in all but one case. Six of 13 patients treated with radiation alone improved. These 6 patients had non-deformity or expanding types with epidural tumor. No improvement was seen in the vertebral collapse type with epidural tumor or destructive mass type. (author)

  9. Salvage external beam radiotherapy for clinical failure after cryosurgery for prostate cancer

    International Nuclear Information System (INIS)

    McDonough, Michael J.; Feldmeier, John J.; Parsai, Ishmael; Dobelbower, Ralph R.; Selman, Steven H.

    2001-01-01

    Purpose: To investigate the role of external beam radiotherapy (EBRT) as salvage treatment of prostate cancer after cryosurgery failure. Methods and Materials: Between 1993 and 1998, 6 patients underwent EBRT with curative intent for local recurrence of prostate cancer after cryosurgery. All 6 patients had biopsy-proven recurrence and palpable disease on digital rectal examination at the time of EBRT. The median follow-up was 34 months (range 8-46). The median prostate-specific antigen level was 2.3 ng/mL (range 0.8-4.1). No patient had evidence of metastatic disease. Two patients received hormonal therapy before beginning EBRT. No patient received hormonal therapy after EBRT completion. The median elapsed time between cryosurgery and EBRT was 3 years (range 1.5-4). The median delivered dose was 66 Gy (range 62-70.2) using a 10-MeV photon beam. An in-house-developed three-dimensional treatment planning system was used to plan delivery of the prescribed dose with conformal radiotherapy techniques. Results: After EBRT, all patients had complete resolution of palpable disease. Four patients (66%) were disease free at the time of the last follow-up. Two patients developed biochemical failure as defined by the American Society for Therapeutic Radiology and Oncology consensus definition. One of these patients had a prostate-specific antigen level of 97 ng/mL before cryosurgery. No patient developed distant metastasis during follow-up. Two patients (33%) developed proctitis; 1 case resolved with Rowasa suppositories and 1 required blood transfusion. Conclusions: Our preliminary results suggest that EBRT can render a significant number of patients biochemically free of disease and can cause complete resolution of clinically palpable disease after initial cryosurgery. The results also showed that EBRT can be given without excessive morbidity. EBRT should be considered as a treatment option in these potentially curable cases

  10. Study of carbon ion behavior by using collisional radiative model in the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Kobayashi, Takayuki; Yoshikawa, Masayuki; Kubota, Yuusuke; Saito, Masashi; Matama, Ken; Itakura, Akiyoshi; Cho, Teruji; Kato, Takako

    2006-01-01

    In a plasma experiment, collisional radiative model (CRM) is very useful model to evaluate impurity behaviors and plasma parameters with line emission from a plasma. CRMs for carbon and oxygen have been developed. However verification and application of the model for analysis of experimental results are not enough. Then we applied CRM calculation results to observed impurity spectra in the GAMMA 10 tandem mirror to evaluate the impurity density profile and the particle balance of each charge state of carbon ion. We calculated the effective ionization rate for each charge state of carbon ion and obtained the density profile of each ion. Moreover, we calculated absolute emission intensities from all carbon ions. (author)

  11. Quality of Life in Men Treated With Carbon Ion Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Wakatsuki, Masaru; Tsuji, Hiroshi; Ishikawa, Hitoshi; Yanagi, Takeshi; Kamada, Tadashi; Nakano, Takashi; Suzuki, Hiroyoshi; Akakura, Koichiro; Shimazaki, Jun; Tsujii, Hirohiko

    2008-01-01

    Purpose: To prospectively assess patient quality of life (QOL) after carbon ion radiotherapy (C-ion RT) for prostate cancer, using established questionnaires. Methods and Material: The subjects were 150 patients who underwent C-ion RT. Of these, 25 patients with low-risk prostate cancer received C-ion RT alone, whereas the remaining 125 patients with a high-risk tumor also received androgen deprivation therapy. Quality of life was assessed using the self-administered Functional Assessment of Cancer Therapy-Prostate (FACT-P) questionnaire in all patients three times. In addition, University of California-Los Angeles Prostate Cancer Index (UCLA-PCI) was conducted in the low-risk patients. Results: The FACT-General (FACT-G) and FACT-P scores at 12 months after treatment averaged over all 150 patients showed no significant change compared with those before C-ion RT. In FACT-P subscales, emotional well-being increased significantly just after and 12 months after treatment. In contrast, physical well-being (PWB) and social/family well-being (S/FWB) decreased significantly at 12 months, whereas the prostate cancer subscale (PCS) decreased significantly just after treatment. Average scores for FACT-G, FACT-P, PWB, S/FWB, and PCS for the 125 patients receiving hormone therapy showed substantial detrimental changes at 12 months. In contrast, those of the 25 low-risk patients who had no hormone therapy showed no significant change. Similarly no significant change in the average of the UCLA-PCI scores in the low-risk patients was seen at 12 months. Conclusions: Average QOL parameters reported by patients with localized prostate cancer treated with C-ion RT, in the absence of hormone therapy, showed no significant decrease 12 months after C-ion RT

  12. Normal tissue damage in radiotherapy development of a clinical audit tool

    International Nuclear Information System (INIS)

    Barrett, A.

    2001-01-01

    Radiotherapy treatments are evaluated by two main outcomes, rates of cure or local tumour control and normal tissue complication rates. Many excellent schemes have been devised for recording the late effects of radiotherapy treatments including the RTOG and LENT SOMA Scales. These have proved invaluable in documenting the outcome of clinical trials, but have proved too complex and time consuming for routine daily use in busy departments. A group in Eindhoven led by Professor Lybeert undertook a pilot study of a potential way of auditing late radiation complications. Using a simplified form derived from the LENT SOMA scales, they collected data on grade 3 and 4 complications in a total of 675 patients and were able to correlate a number of particular complications with specific protocols, ICD codes and physician practice. Further review of the case records made it possible to identify specific factors which may have led to toxicity and could be taken into account to modify treatment protocols. From September 1999 clinicians in participating centres undertaking normal follow-up procedures were asked to identify patients who showed evidence of grade 3 or 4 toxicity as defined in the pro-forma. Date of radiotherapy was recorded so that a temporal correlation of complication with treatment could be made, but this study did not attempt to assess the incidence of complications, but to provide a cross-sectional study of prevalence. Centres participating in the study have been Eindhoven, Koeln, Gent, Brussels, Glasgow, Mount Vernon, Madrid, Geneva and Lyon. In Eindhoven 651 reports were collected between January 1995 and December 1999. 89 reports had to be discarded because complications were not validated by the reviewing radiotherapists. Dr Lybeert noticed that individual radiotherapists appeared to have different thresholds for reporting specific complications. 13 patients deaths appeared to be related to radiation problems. An overall level of detection of morbidity was

  13. Microstructure evolution in carbon-ion implanted sapphire

    International Nuclear Information System (INIS)

    Orwa, J. O.; McCallum, J. C.; Jamieson, D. N.; Prawer, S.; Peng, J. L.; Rubanov, S.

    2010-01-01

    Carbon ions of MeV energy were implanted into sapphire to fluences of 1x10 17 or 2x10 17 cm -2 and thermally annealed in forming gas (4% H in Ar) for 1 h. Secondary ion mass spectroscopy results obtained from the lower dose implant showed retention of implanted carbon and accumulation of H near the end of range in the C implanted and annealed sample. Three distinct regions were identified by transmission electron microscopy of the implanted region in the higher dose implant. First, in the near surface region, was a low damage region (L 1 ) composed of crystalline sapphire and a high density of plateletlike defects. Underneath this was a thin, highly damaged and amorphized region (L 2 ) near the end of range in which a mixture of i-carbon and nanodiamond phases are present. Finally, there was a pristine, undamaged sapphire region (L 3 ) beyond the end of range. In the annealed sample some evidence of the presence of diamond nanoclusters was found deep within the implanted layer near the projected range of the C ions. These results are compared with our previous work on carbon implanted quartz in which nanodiamond phases were formed only a few tens of nanometers from the surface, a considerable distance from the projected range of the ions, suggesting that significant out diffusion of the implanted carbon had occurred.

  14. Stereotactic Body Radiotherapy for Oligometastasis: Opportunities for Biology to Guide Clinical Management.

    Science.gov (United States)

    Correa, Rohann J M; Salama, Joseph K; Milano, Michael T; Palma, David A

    2016-01-01

    Oligometastasis refers to a state of limited metastatic disease burden, in which surgical or ablative treatment to all known visible metastases holds promise to extend survival or even effect cure. Stereotactic body radiotherapy is a form of radiation treatment capable of delivering a high biologically effective dose of radiation in a highly conformal manner, with a favorable toxicity profile. Enthusiasm for oligometastasis ablation, however, should be counterbalanced against the limited supporting evidence. It remains unknown to what extent (if any) ablation influences survival or quality of life. Rising clinical equipoise necessitates the completion of randomized controlled trials to assess this, several of which are underway. However, a lack of clear identification criteria or biomarkers to define the oligometastatic state hampers optimal patient selection.This narrative review explores the evolutionary origins of oligometastasis, the steps of the metastatic process at which oligometastases may arise, and the biomolecular mediators of this state. It discusses clinical outcomes with treatment of oligometastases, ongoing trials, and areas of basic and translational research that may lead to novel biomarkers. These efforts should provide a clearer, biomolecular definition of oligometastatic disease and aid in the accurate selection of patients for ablative therapies.

  15. Intensity-modulated radiotherapy for pituitary adenomas: The preliminary report of Cleveland Clinic experience

    International Nuclear Information System (INIS)

    Mackley, Heath B.; Reddy, Chandana A. M.S.; Lee, S.-Y.; Harnisch, Gayle A.; Mayberg, Marc R.; Hamrahian, Amir H.; Suh, John H.

    2007-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) is being increasingly used for the treatment of pituitary adenomas. However, there have been few published data on the short- and long-term outcomes of this treatment. This is the initial report of Cleveland Clinic's experience. Methods and Materials: Between February 1998 and December 2003, 34 patients with pituitary adenomas were treated with IMRT. A retrospective chart review was conducted for data analysis. Results: With a median follow-up of 42.5 months, the treatment has proven to be well tolerated, with performance status remaining stable in 90% of patients. Radiographic local control was 89%, and among patients with secretory tumors, 100% had a biochemical response. Only 1 patient required salvage surgery for progressive disease, giving a clinical progression free survival of 97%. The only patient who received more than 46 Gy experienced optic neuropathy 8 months after radiation. Smaller tumor volume significantly correlated with subjective improvements in nonvisual neurologic complaints (p = 0.03), and larger tumor volume significantly correlated with subjective worsening of visual symptoms (p = 0.05). New hormonal supplementation was required for 40% of patients. Younger patients were significantly more likely to require hormonal supplementation (p 0.03). Conclusions: Intensity-modulated radiation therapy is a safe and effective treatment for pituitary adenomas over the short term. Longer follow-up is necessary to determine if IMRT confers any advantage with respect to either tumor control or toxicity over conventional radiation modalities

  16. Clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy for lung tumors.

    Science.gov (United States)

    Asai, Kaori; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Sasaki, Tomonari; Matsuo, Yoshio; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Shinoto, Makoto; Matsumoto, Keiji; Hirata, Hidenari; Honda, Hiroshi

    2015-12-01

    We retrospectively investigated the clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy (SBRT) for lung tumors. Between April 2003 and July 2012, 473 patients with lung tumors were treated with SBRT. We identified 12 patients (2.5 %) with pneumothorax caused by SBRT, and evaluated the clinical features of pneumothorax. All of the tumors were primary lung cancers. The severity of radiation pneumonitis was grade 1 in 10 patients and grade 2 in two patients. Nine patients had emphysema. The planning target volume and pleura overlapped in 11 patients, and the tumors were attached to the pleura in 7 patients. Rib fractures were observed in three patients before or at the same time as the diagnosis of pneumothorax. The median time to onset of pneumothorax after SBRT was 18.5 months (4-84 months). The severity of pneumothorax was grade 1 in 11 patients and grade 3 in one patient. Although pneumothorax was a relatively rare late adverse effect after SBRT, some patients demonstrated pneumothorax after SBRT for peripheral lung tumors. Although most pneumothorax was generally tolerable and self-limiting, careful follow-up is needed.

  17. Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Caravatta Luciana

    2012-06-01

    Full Text Available Abstract Background Radiotherapy (RT is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs.

  18. Adaptive radiotherapy for head and neck cancer—Dosimetric results from a prospective clinical trial

    International Nuclear Information System (INIS)

    Schwartz, David L.; Garden, Adam S.; Shah, Shalin J.; Chronowski, Gregory; Sejpal, Samir; Rosenthal, David I.; Chen, Yipei; Zhang, Yongbin; Zhang, Lifei; Wong, Pei-Fong; Garcia, John A.; Kian Ang, K.; Dong, Lei

    2013-01-01

    Purpose: To conduct a clinical trial evaluating adaptive head and neck radiotherapy (ART). Methods: Patients with locally advanced oropharyngeal cancer were prospectively enrolled. Daily CT-guided setup and deformable image registration permitted mapping of dose to avoidance structures and CTVs. We compared four planning scenarios: (1) original IMRT plan aligned daily to marked isocenter (BB); (2) original plan aligned daily to bone (IGRT); (3) IGRT with one adaptive replan (ART1); and (4) actual treatment received by each study patient (IGRT with one or two adaptive replans, ART2). Results: All 22 study patients underwent one replan (ART1); eight patients had two replans (ART2). ART1 reduced mean dose to contralateral parotid by 0.6 Gy or 2.8% (paired t-test; p = 0.003) and ipsilateral parotid by 1.3 Gy (3.9%) (p = 0.002) over the IGRT alone. ART2 further reduced the mean contralateral parotid dose by 0.8 Gy or 3.8% (p = 0.026) and ipsilateral parotid by 4.1 Gy or 9% (p = 0.001). ART significantly reduced integral body dose. Conclusions: This pilot trial suggests that head and neck ART dosimetrically outperforms IMRT. IGRT that leverages conventional PTV margins does not improve dosimetry. One properly timed replan delivers the majority of achievable dosimetric improvement. The clinical impact of ART must be confirmed by future trials

  19. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    International Nuclear Information System (INIS)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade; Laufer, Ilya

    2016-01-01

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  20. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Departamento de Radioterapia; Taunk, Neil Kanth; Yamada, Yoshiya [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Laufer, Ilya, E-mail: fymoraes@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Neurosurgery, New York, NY (United States)

    2016-02-15

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  1. Experimental radiotherapy and clinical radiobiology. Vol. 19. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 19. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H Peter; Zips, Daniel [eds.

    2010-12-18

    The proceedings include review contributions on radio-oncology, and new radiation technologies and molecular prediction; and poster sessions on the following topics: hypoxia; molecular mechanisms of radiation resistance; molecular targeting; DNA repair; biological imaging; biology of experimental radiations; normal tissue toxicity; modern radiotherapy; tumor hypoxia and metabolic micro milieu; immune system and radiotherapy.

  2. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Strigari, Lidia [Regina Elena National Cancer Institute, Laboratory of Medical Physics and Expert Systems, Rome (Italy); Konijnenberg, Mark [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Chiesa, Carlo [Instituto Nazionale Tumori, Department of Nuclear Medicine, Milan (Italy); Bardies, Manuel [UMR 1037 INSERM / Universite Paul Sabatier, Centre de Recherche en Cancerologie de Toulouse, Toulouse (France); Du, Yong [Royal Marsden NHS Foundation Trust, Department of Nuclear Medicine and PET/CT, Sutton, London (United Kingdom); Gleisner, Katarina Sjoegreen [Medical Radiation Physics, Clinical Sciences, Lund (Sweden); Lassmann, Michael [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Flux, Glenn [Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Joint Department of Physics, Sutton (United Kingdom)

    2014-10-15

    Molecular radiotherapy (MRT) has demonstrated unique therapeutic advantages in the treatment of an increasing number of cancers. As with other treatment modalities, there is related toxicity to a number of organs at risk. Despite the large number of clinical trials over the past several decades, considerable uncertainties still remain regarding the optimization of this therapeutic approach and one of the vital issues to be answered is whether an absorbed radiation dose-response exists that could be used to guide personalized treatment. There are only limited and sporadic data investigating MRT dosimetry. The determination of dose-effect relationships for MRT has yet to be the explicit aim of a clinical trial. The aim of this article was to collate and discuss the available evidence for an absorbed radiation dose-effect relationships in MRT through a review of published data. Based on a PubMed search, 92 papers were found. Out of 79 studies investigating dosimetry, an absorbed dose-effect correlation was found in 48. The application of radiobiological modelling to clinical data is of increasing importance and the limited published data on absorbed dose-effect relationships based on these models are also reviewed. Based on National Cancer Institute guideline definition, the studies had a moderate or low rate of clinical relevance due to the limited number of studies investigating overall survival and absorbed dose. Nevertheless, the evidence strongly implies a correlation between the absorbed doses delivered and the response and toxicity, indicating that dosimetry-based personalized treatments would improve outcome and increase survival. (orig.)

  3. Clinicopathologic Analysis of Microscopic Extension in Lung Adenocarcinoma: Defining Clinical Target Volume for Radiotherapy

    International Nuclear Information System (INIS)

    Grills, Inga S.; Fitch, Dwight L.; Goldstein, Neal S.; Yan Di; Chmielewski, Gary W.; Welsh, Robert J.; Kestin, Larry L.

    2007-01-01

    Purpose: To determine the gross tumor volume (GTV) to clinical target volume margin for non-small-cell lung cancer treatment planning. Methods: A total of 35 patients with Stage T1N0 adenocarcinoma underwent wedge resection plus immediate lobectomy. The gross tumor size and microscopic extension distance beyond the gross tumor were measured. The nuclear grade and percentage of bronchoalveolar features were analyzed for association with microscopic extension. The gross tumor dimensions were measured on a computed tomography (CT) scan (lung and mediastinal windows) and compared with the pathologic dimensions. The potential coverage of microscopic extension for two different lung stereotactic radiotherapy regimens was evaluated. Results: The mean microscopic extension distance beyond the gross tumor was 7.2 mm and varied according to grade (10.1, 7.0, and 3.5 mm for Grade 1 to 3, respectively, p < 0.01). The 90th percentile for microscopic extension was 12.0 mm (13.0, 9.7, and 4.4 mm for Grade 1 to 3, respectively). The CT lung windows correlated better with the pathologic size than did the mediastinal windows (gross pathologic size overestimated by a mean of 5.8 mm; composite size [gross plus microscopic extension] underestimated by a mean of 1.2 mm). For a GTV contoured on the CT lung windows, the margin required to cover microscopic extension for 90% of the cases would be 9 mm (9, 7, and 4 mm for Grade 1 to 3, respectively). The potential microscopic extension dosimetric coverage (55 Gy) varied substantially between the stereotactic radiotherapy schedules. Conclusion: For lung adenocarcinomas, the GTV should be contoured using CT lung windows. Although a GTV based on the CT lung windows would underestimate the gross tumor size plus microscopic extension by only 1.2 mm for the average case, the clinical target volume expansion required to cover the microscopic extension in 90% of cases could be as large as 9 mm, although considerably smaller for high-grade tumors

  4. SU-D-BRB-02: Investigations of Secondary Ion Distributions in Carbon Ion Therapy Using the Timepix Detector.

    Science.gov (United States)

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jaekel, O; Martisikova, M

    2012-06-01

    Due to the high conformity of carbon ion therapy, unpredictable changes in the patient's geometry or deviations from the planned beam properties can result in changes of the dose distribution. PET has been used successfully to monitor the actual dose distribution in the patient. However, it suffers from biological washout processes and low detection efficiency. The purpose of this contribution is to investigate the potential of beam monitoring by detection of prompt secondary ions emerging from a homogeneous phantom, simulating a patient's head. Measurements were performed at the Heidelberg Ion-Beam Therapy Center (Germany) using a carbon ion pencil beam irradiated on a cylindrical PMMA phantom (16cm diameter). For registration of the secondary ions, the Timepix detector was used. This pixelated silicon detector allows position-resolved measurements of individual ions (256×256 pixels, 55μm pitch). To track the secondary ions we used several parallel detectors (3D voxel detector). For monitoring of the beam in the phantom, we analyzed the directional distribution of the registered ions. This distribution shows a clear dependence on the initial beam energy, width and position. Detectable were range differences of 1.7mm, as well as vertical and horizontal shifts of the beam position by 1mm. To estimate the clinical potential of this method, we measured the yield of secondary ions emerging from the phantom for a beam energy of 226MeV/u. The differential distribution of secondary ions as a function of the angle from the beam axis for angles between 0 and 90° will be presented. In this setup the total yield in the forward hemisphere was found to be in the order of 10 -1 secondary ions per primary carbon ion. The presented measurements show that tracking of secondary ions provides a promising method for non-invasive monitoring of ion beam parameters for clinical relevant carbon ion fluences. Research with the pixel detectors was carried out in frame of the Medipix

  5. Fanconi's anemia and clinical radiosensitivity. Report on two adult patients with locally advanced solid tumors treated by radiotherapy

    International Nuclear Information System (INIS)

    Bremer, M.; Karstens, J.H.; Schindler, D.; Gross, M.; Doerk, T.; Morlot, S.

    2003-01-01

    Background: Patients with Fanconi's anemia (FA) may exhibit an increased clinical radiosensitivity of various degree, although detailed clinical data are scarce. We report on two cases to underline the possible challenges in the radiotherapy of FA patients. Case Report and Results: Two 24- and 32-year-old male patients with FA were treated by definitive radiotherapy for locally advanced squamous cell head and neck cancers. In the first patient, long-term tumor control could be achieved after delivery of 67 Gy with a - in part - hyperfractionated split-course treatment regimen and, concurrently, one course of carboplatin followed by salvage neck dissection. Acute toxicity was marked, but no severe treatment-related late effects occurred. 5 years later, additional radiotherapy was administered due to a second (squamous cell carcinoma of the anus) and third (squamous cell carcinoma of the head and neck) primary, which the patient succumbed to. By contrast, the second patient experienced fatal acute hematologic toxicity after delivery of only 8 Gy of hyperfractionated radiotherapy. While the diagnosis FA could be based on flow cytometric analysis of a lymphocyte culture in the second patient, the diagnosis in the first patient had to be confirmed by hypersensitivity to mitomycin of a fibroblast cell line due to complete somatic lymphohematopoietic mosaicism. In this patient, phenotype complementation and molecular genetic analysis revealed a pathogenic mutation in the FANCA gene. The first patient has not been considered to have FA until he presented with his second tumor. Conclusion: FA has to be considered in patients presenting at young age with squamous cell carcinoma of the head and neck or anus. The diagnosis FA is of immediate importance for guiding the optimal choice of treatment. Radiotherapy or even radiochemotherapy seems to be feasible and effective in individual cases. (orig.)

  6. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.

    Science.gov (United States)

    Qin, Nan; Shen, Chenyang; Tsai, Min-Yu; Pinto, Marco; Tian, Zhen; Dedes, Georgios; Pompos, Arnold; Jiang, Steve B; Parodi, Katia; Jia, Xun

    2018-01-01

    One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Clinical analysis of radiotherapy for nasopharyngeal carcinoma in 145 children and adolescents

    International Nuclear Information System (INIS)

    Liu Juying; Wei Baoqing; Lu Jincheng; Zhu Jun; Zhang Yiqin

    2003-01-01

    Objective: To evaluate the clinical characteristics, treatment, outcome and complications of child and adolescent nasopharyngeal carcinoma (NPC). Methods: From January 1970 to April 1997, the records of 145 NPC patients younger than 21 years of age were reviewed. The clinical stages according to 92' Chinese NPC Staging System were: stage I in 1, II in 8, III in 79 and IV in 57. All patients were treated with external beam radiotherapy. Before 1988, parallel opposed lateral pre-auricular portals were chiefly used in 75 patients and after 1988, parallel opposed lateral facio-cervical portals were adopted in 70. The radiation dose to the primary tumor ranged 45-80 Gy: 70 Gy in 50 cases and 32 of them also received chemotherapy. Results: Distant metastasis developed in 26 cases, while local and/or regional recurrence in 14. The actuarial overall survival rates of 1-, 3-, 5 , and 10-years were 96.3%, 79.9%, 76.5% and 69.4%, respectively. Among 45 dead cases, 16 did so of metastasis, 11 of local and/or regional recurrence and 18 of other reasons. Univariate analysis suggested that clinical stage, size and site of involved lymph nodes, skull base involvement were significant prognostic factors of survival, whereas sex, age,dose, therapeutic method and chemotherapy were not. Conclusions: 1. Even though the majority of pediatric and adolescent NPC were advanced , it signifies a relatively good survival. 2. As the normal tissue of pediatric and adolescent patients tolerates radiation poorly, prudence should be meticulously practiced in deciding the radiation dose and radiotherapeutic fields

  8. Multidisciplinary Team Contributions Within a Dedicated Outpatient Palliative Radiotherapy Clinic: A Prospective Descriptive Study

    International Nuclear Information System (INIS)

    Pituskin, Edith; Fairchild, Alysa; Dutka, Jennifer; Gagnon, Lori; Driga, Amy; Tachynski, Patty; Borschneck, Jo-Ann; Ghosh, Sunita

    2010-01-01

    Purpose: Patients with bone metastases may experience pain, fatigue, and decreased mobility. Multiple medications for analgesia are often required, each with attendant side effects. Although palliative-intent radiotherapy (RT) is effective in decreasing pain, additional supportive care interventions may be overlooked. Our objective was to describe the feasibility of multidisciplinary assessment of patients with symptomatic bone metastases attending a dedicated outpatient palliative RT clinic. Methods and Materials: Consecutive patients referred for RT for painful bone metastases were screened for symptoms and needs relevant to their medications, nutritional intake, activities of daily living, and psychosocial and spiritual concerns from January 1 to December 31, 2007. Consultations by appropriate team members and resulting recommendations were collected prospectively. Patients who received RT were contacted by telephone 4 weeks later to assess symptom outcomes. Results: A total of 106 clinic visits by 82 individual patients occurred. As determined by screening form responses, the clinical Pharmacist, Occupational Therapist, Registered Dietician and Social Worker were consulted to provide assessments and recommendations within the time constraints presented by 1-day palliative RT delivery. In addition to pain relief, significant improvements in tiredness, depression, anxiety, drowsiness and overall well-being were reported at 4 weeks. Conclusions: Systematic screening of this population revealed previously unmet needs, addressed in the form of custom verbal and written recommendations. Multidisciplinary assessment is associated with a high number of recommendations and decreased symptom distress. Our findings lend strong support to the routine assessment by multiple supportive care professionals for patients with advanced cancer being considered for palliative RT.

  9. Intensity-Modulated Radiotherapy Results in Significant Decrease in Clinical Toxicities Compared With Conventional Wedge-Based Breast Radiotherapy

    International Nuclear Information System (INIS)

    Harsolia, Asif; Kestin, Larry; Grills, Inga; Wallace, Michelle; Jolly, Shruti; Jones, Cortney; Lala, Moinaktar; Martinez, Alvaro; Schell, Scott; Vicini, Frank A.

    2007-01-01

    Purpose: We have previously demonstrated that intensity-modulated radiotherapy (IMRT) with a static multileaf collimator process results in a more homogenous dose distribution compared with conventional wedge-based whole breast irradiation (WBI). In the present analysis, we reviewed the acute and chronic toxicity of this IMRT approach compared with conventional wedge-based treatment. Methods and Materials: A total of 172 patients with Stage 0-IIB breast cancer were treated with lumpectomy followed by WBI. All patients underwent treatment planning computed tomography and received WBI (median dose, 45 Gy) followed by a boost to 61 Gy. Of the 172 patients, 93 (54%) were treated with IMRT, and the 79 patients (46%) treated with wedge-based RT in a consecutive fashion immediately before this cohort served as the control group. The median follow-up was 4.7 years. Results: A significant reduction in acute Grade 2 or worse dermatitis, edema, and hyperpigmentation was seen with IMRT compared with wedges. A trend was found toward reduced acute Grade 3 or greater dermatitis (6% vs. 1%, p = 0.09) in favor of IMRT. Chronic Grade 2 or worse breast edema was significantly reduced with IMRT compared with conventional wedges. No difference was found in cosmesis scores between the two groups. In patients with larger breasts (≥1,600 cm 3 , n = 64), IMRT resulted in reduced acute (Grade 2 or greater) breast edema (0% vs. 36%, p <0.001) and hyperpigmentation (3% vs. 41%, p 0.001) and chronic (Grade 2 or greater) long-term edema (3% vs. 30%, p 0.007). Conclusion: The use of IMRT in the treatment of the whole breast results in a significant decrease in acute dermatitis, edema, and hyperpigmentation and a reduction in the development of chronic breast edema compared with conventional wedge-based RT

  10. Luminescence imaging of water during carbon-ion irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Akagi, Takashi; Yamashita, Tomohiro [Hygo Ion Beam Medical Center, Hyogo 679-5165 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2016-05-15

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  11. Luminescence imaging of water during carbon-ion irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Akagi, Takashi; Yamashita, Tomohiro; Toshito, Toshiyuki

    2016-01-01

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  12. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  13. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  14. Mouse skin damages caused by fractionated irradiation with carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K; Chen, Y J; Ohira, C; Nojima, K; Ando, S; Kobayashi, N; Ohbuchi, T; Shimizu, W [Space and Particle Radiation Science Research Group, Chiba (Japan); Koike, S; Kanai, T [National Inst. of Radiological Sciences, Chiba (Japan). Div. of Accelerator Physics

    1997-09-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/{mu}m also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/{mu}m in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/{mu}m were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/{mu} steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  15. Mouse skin damages caused by fractionated irradiation with carbon ions

    International Nuclear Information System (INIS)

    Ando, K.; Chen, Y.J.; Ohira, C.; Nojima, K.; Ando, S.; Kobayashi, N.; Ohbuchi, T.; Shimizu, W.; Koike, S.; Kanai, T.

    1997-01-01

    We have investigated carbon-dose responses of early and late skin damages after daily fractionations to the mouse leg. Depilated legs were irradiated with 7 different positions within 290 MeV/u carbon beams. Fractionation schedules were 1, 2, 4 and 8 daily fractions. Skin reaction was scored every other day for 32 days. Five highest scores in individual mice were averaged, and used as averaged peak reaction. The isoeffect doses to produce an averaged peak skin reaction of 3.0 (moist desquamation) on dose-response curves were calculated with 95% confidence limit. The isoeffect dose for control gamma rays constantly increased with an increase in the number of fraction. The isoeffect doses in low LET carbon ions of 14- and 20 keV/μm also increased up to 4 fractions, but did not increase when 4 fractions increased to 8 fractions. The saturation of isoeffect dose was more prominently observed for 40 keV/μm in such that the isoeffect doses did not change among 2, 4 and 8 fractions. The isoeffect doses for LET higher than 50 keV/μm were smaller than those for lower LET. However, the isoeffect doses for 50-, 60-, 80- and 100 keV/μ steadily increased with an increase in the number of fraction and did not show any saturation up to 8 fractions. Relation between LET and RBE was linear for all fractionation schedules. The slope of regression line in 4 fractions was steepest, and significantly (P<0.05) different from that in 1 fraction. (orig.)

  16. Endolymphatic radiotherapy in malignant lymphomas. A clinical evaluation of 285 patients

    Energy Technology Data Exchange (ETDEWEB)

    Bonadonna, G.; Chiappa, S.; Musumeci, R.; Uslenghi, C.

    1968-10-01

    The authors report treatment of inguinal and retroperitoneal lymph nodes of 285 malignant lymphomas (143 Hodgkin's disease and 142 lymphoreticular sarcomas) with Lipiodol Fluide /sup 131/I (endolymphatic radiotherapy). From 1961 to 1966 the radioactive contrast material was injected in doses ranging from 0.2 to 2.5 mc/cc (10 cc each foot). Adequately opacified nodes responded promptly with marked and progressive reduction in size. When indicated, a second administration of Lipiodol /sup 131/I in a dose of 2.5 mc/cc was always feasible. Several factors prevented a homogeneous and satisfactory distribution of radioactive contrast material throughout the iliac and the para-aortic nodes in one third of the cases. Therefore, in many instances patients had to be treated with external radiation therapy. Histopathologic examination of lymph nodes removed at exploratory laparotomy (four cases) or at autopsy (ten cases) confirmed that Lipiodol /sup 131/I did not fill all the iliac and para-aortic nodes and that destruction of lymphomatous tissue was often incomplete. Recurrences were seen mostly in abnormal adequately filled nodes opacified with high doses of Lipiodol /sup 131/I. In Hodgkin's disease they occurred particularly in the para-aortic area and in lymphoreticular sarcomas in the inguinal and iliac chains. Side effects were minimal. They included amenorrhea, pulmonary insufficiency, hepatic failure and hemolytic anemia. Clinical and histologic signs of pulmonary and hepatic fibrosis were not seen.

  17. Endolymphatic radiotherapy in malignant lymphomas. A clinical evaluation of 285 patients

    International Nuclear Information System (INIS)

    Bonadonna, G.; Chiappa, S.; Musumeci, R.; Uslenghi, C.

    1968-01-01

    The authors report treatment of inguinal and retroperitoneal lymph nodes of 285 malignant lymphomas (143 Hodgkin's disease and 142 lymphoreticular sarcomas) with Lipiodol Fluide 131 I (endolymphatic radiotherapy). From 1961 to 1966 the radioactive contrast material was injected in doses ranging from 0.2 to 2.5 mc/cc (10 cc each foot). Adequately opacified nodes responded promptly with marked and progressive reduction in size. When indicated, a second administration of Lipiodol 131 I in a dose of 2.5 mc/cc was always feasible. Several factors prevented a homogeneous and satisfactory distribution of radioactive contrast material throughout the iliac and the para-aortic nodes in one third of the cases. Therefore, in many instances patients had to be treated with external radiation therapy. Histopathologic examination of lymph nodes removed at exploratory laparotomy (four cases) or at autopsy (ten cases) confirmed that Lipiodol 131 I did not fill all the iliac and para-aortic nodes and that destruction of lymphomatous tissue was often incomplete. Recurrences were seen mostly in abnormal adequately filled nodes opacified with high doses of Lipiodol 131 I. In Hodgkin's disease they occurred particularly in the para-aortic area and in lymphoreticular sarcomas in the inguinal and iliac chains. Side effects were minimal. They included amenorrhea, pulmonary insufficiency, hepatic failure and hemolytic anemia. Clinical and histologic signs of pulmonary and hepatic fibrosis were not seen

  18. Clinical effects of CG (Hythiol) tablets on leukopenia resulting from radiotherapy

    International Nuclear Information System (INIS)

    Fukui, Hideki; Sakaguchi, Kokichi; Sekiba, Kaoru

    1984-01-01

    A double-blind comparative study of CG(L-cysteine) tablets and approved drugs (CG capsules) was made to assess clinical effects of CG tablets on leukopenia. The subjects were 75 patients with cancer of the uterine cervix in whom the number of WBC was 4,500-7,500/mm before irradiation. The ratios of patients who kept WBC as 3,500/mm or more were 64.7% in the group with CG tablets and 50% in the group with CG capsules with no statistical significance. The ratios of patients who kept WBC as 3,000/mm or more were 82.4% in the group with CG tablets and 79.4% in the group with CG capsules with no statistical significance. The ratios to prevent leukopenia were 70.6% in the group with CG tablets and 58.8% in the group with CG capsules with no significant difference. Other hematological findings, subjective symptoms and the performance of radiotherapeutic protocol were not different between the groups. No marked side effects were observed. These results suggest that CG tablets, as well as CG capsules, are effective for preventing leukopenia resulting from radiotherapy. (Namekawa, K.)

  19. Update of the International Consensus on Palliative Radiotherapy Endpoints for Future Clinical Trials in Bone Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Edward, E-mail: Edward.Chow@sunnybrook.ca [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Hoskin, Peter [Mount Vernon Centre for Cancer Treatment, Mount Vernon Hospital, Northwood, Middlesex (United Kingdom); Mitera, Gunita; Zeng Liang [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Lutz, Stephen [Department of Radiation Oncology, Blanchard Valley Regional Cancer Center, Findlay, OH (United States); Roos, Daniel [Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia (Australia); Hahn, Carol [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Linden, Yvette van der [Radiotherapeutic Institute Friesland, Leeuwarden (Netherlands); Hartsell, William [Department of Radiation Oncology, Advocate Good Samaritan Cancer Center, Downers Grove, IL (United States); Kumar, Eshwar [Department of Oncology, Atlantic Health Sciences Cancer Centre, Saint John Regional Hospital, Saint John, NB (Canada)

    2012-04-01

    Purpose: To update the international consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases by surveying international experts regarding previous uncertainties within the 2002 consensus, changes that may be necessary based on practice pattern changes and research findings since that time. Methods and Materials: A two-phase survey was used to determine revisions and new additions to the 2002 consensus. A total of 49 experts from the American Society for Radiation Oncology, the European Society for Therapeutic Radiology and Oncology, the Faculty of Radiation Oncology of the Royal Australian and New Zealand College of Radiologists, and the Canadian Association of Radiation Oncology who are directly involved in the care of patients with bone metastases participated in this survey. Results: Consensus was established in areas involving response definitions, eligibility criteria for future trials, reirradiation, changes in systemic therapy, radiation techniques, parameters at follow-up, and timing of assessments. Conclusion: An outline for trials in bone metastases was updated based on survey and consensus. Investigators leading trials in bone metastases are encouraged to adopt the revised guideline to promote consistent reporting. Areas for future research were identified. It is intended for the consensus to be re-examined in the future on a regular basis.

  20. Automated customized retrieval of radiotherapy data for clinical trials, audit and research.

    Science.gov (United States)

    Romanchikova, Marina; Harrison, Karl; Burnet, Neil G; Hoole, Andrew Cf; Sutcliffe, Michael Pf; Parker, Michael Andrew; Jena, Rajesh; Thomas, Simon James

    2018-02-01

    To enable fast and customizable automated collection of radiotherapy (RT) data from tomotherapy storage. Human-readable data maps (TagMaps) were created to generate DICOM-RT (Digital Imaging and Communications in Medicine standard for Radiation Therapy) data from tomotherapy archives, and provided access to "hidden" information comprising delivery sinograms, positional corrections and adaptive-RT doses. 797 data sets totalling 25,000 scans were batch-exported in 31.5 h. All archived information was restored, including the data not available via commercial software. The exported data were DICOM-compliant and compatible with major commercial tools including RayStation, Pinnacle and ProSoma. The export ran without operator interventions. The TagMap method for DICOM-RT data modelling produced software that was many times faster than the vendor's solution, required minimal operator input and delivered high volumes of vendor-identical DICOM data. The approach is applicable to many clinical and research data processing scenarios and can be adapted to recover DICOM-RT data from other proprietary storage types such as Elekta, Pinnacle or ProSoma. Advances in knowledge: A novel method to translate data from proprietary storage to DICOM-RT is presented. It provides access to the data hidden in electronic archives, offers a working solution to the issues of data migration and vendor lock-in and paves the way for large-scale imaging and radiomics studies.

  1. Update of the International Consensus on Palliative Radiotherapy Endpoints for Future Clinical Trials in Bone Metastases

    International Nuclear Information System (INIS)

    Chow, Edward; Hoskin, Peter; Mitera, Gunita; Zeng Liang; Lutz, Stephen; Roos, Daniel; Hahn, Carol; Linden, Yvette van der; Hartsell, William; Kumar, Eshwar

    2012-01-01

    Purpose: To update the international consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases by surveying international experts regarding previous uncertainties within the 2002 consensus, changes that may be necessary based on practice pattern changes and research findings since that time. Methods and Materials: A two-phase survey was used to determine revisions and new additions to the 2002 consensus. A total of 49 experts from the American Society for Radiation Oncology, the European Society for Therapeutic Radiology and Oncology, the Faculty of Radiation Oncology of the Royal Australian and New Zealand College of Radiologists, and the Canadian Association of Radiation Oncology who are directly involved in the care of patients with bone metastases participated in this survey. Results: Consensus was established in areas involving response definitions, eligibility criteria for future trials, reirradiation, changes in systemic therapy, radiation techniques, parameters at follow-up, and timing of assessments. Conclusion: An outline for trials in bone metastases was updated based on survey and consensus. Investigators leading trials in bone metastases are encouraged to adopt the revised guideline to promote consistent reporting. Areas for future research were identified. It is intended for the consensus to be re-examined in the future on a regular basis.

  2. Clinical Usefulness of Implanted Fiducial Markers for Hypofractionated Radiotherapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Choi, Young Min; Ahn, Sung Hwan; Lee, Hyung Hwan; Lee, Hyung Sik; Hur, Woo Joo; Yoon, Jin Han; Kim, Tae Hyo; Kim, Soo Dong; Yun, Seong Guk

    2011-01-01

    To assess the usefulness of implanted fiducial markers in the setup of hypofractionated radiotherapy for prostate cancer patients by comparing a fiducial marker matched setup with a pelvic bone match. Four prostate cancer patients treated with definitive hypofractionated radiotherapy between September 2009 and August 2010 were enrolled in this study. Three gold fiducial markers were implanted into the prostate and through the rectum under ultrasound guidance around a week before radiotherapy. Glycerin enemas were given prior to each radiotherapy planning CT and every radiotherapy session. Hypofractionated radiotherapy was planned for a total dose of 59.5 Gy in daily 3.5 Gy with using the Novalis system. Orthogonal kV X-rays were taken before radiotherapy. Treatment positions were adjusted according to the results from the fusion of the fiducial markers on digitally reconstructed radiographs of a radiotherapy plan with those on orthogonal kV X-rays. When the difference in the coordinates from the fiducial marker fusion was less than 1 mm, the patient position was approved for radiotherapy. A virtual bone matching was carried out at the fiducial marker matched position, and then a setup difference between the fiducial marker matching and bone matching was evaluated. Three patients received a planned 17-fractionated radiotherapy and the rest underwent 16 fractionations. The setup error of the fiducial marker matching was 0.94±0.62 mm (range, 0.09 to 3.01 mm; median, 0.81 mm), and the means of the lateral, craniocaudal, and anteroposterior errors were 0.39±0.34 mm, 0.46±0.34 mm, and 0.57±0.59 mm, respectively. The setup error of the pelvic bony matching was 3.15±2.03 mm (range, 0.25 to 8.23 mm; median, 2.95 mm), and the error of craniocaudal direction (2.29±1.95 mm) was significantly larger than those of anteroposterior (1.73±1.31 mm) and lateral directions (0.45±0.37 mm), respectively (p< 0.05). Incidences of over 3 mm and 5 mm in setup difference among the

  3. SU-G-TeP1-05: Development and Clinical Introduction of Automated Radiotherapy Treatment Planning for Prostate Cancer

    International Nuclear Information System (INIS)

    Winkel, D; Bol, GH; Asselen, B van; Hes, J; Scholten, V; Kerkmeijer, LGW; Raaymakers, BW

    2016-01-01

    Purpose: To develop an automated radiotherapy treatment planning and optimization workflow for prostate cancer in order to generate clinical treatment plans. Methods: A fully automated radiotherapy treatment planning and optimization workflow was developed based on the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). To evaluate our method, a retrospective planning study (n=100) was performed on patients treated for prostate cancer with 5 field intensity modulated radiotherapy, receiving a dose of 35×2Gy to the prostate and vesicles and a simultaneous integrated boost of 35×0.2Gy to the prostate only. A comparison was made between the dosimetric values of the automatically and manually generated plans. Operator time to generate a plan and plan efficiency was measured. Results: A comparison of the dosimetric values show that automatically generated plans yield more beneficial dosimetric values. In automatic plans reductions of 43% in the V72Gy of the rectum and 13% in the V72Gy of the bladder are observed when compared to the manually generated plans. Smaller variance in dosimetric values is seen, i.e. the intra- and interplanner variability is decreased. For 97% of the automatically generated plans and 86% of the clinical plans all criteria for target coverage and organs at risk constraints are met. The amount of plan segments and monitor units is reduced by 13% and 9% respectively. Automated planning requires less than one minute of operator time compared to over an hour for manual planning. Conclusion: The automatically generated plans are highly suitable for clinical use. The plans have less variance and a large gain in time efficiency has been achieved. Currently, a pilot study is performed, comparing the preference of the clinician and clinical physicist for the automatic versus manual plan. Future work will include expanding our automated treatment planning method to other tumor sites and develop other automated radiotherapy workflows.

  4. Radiotherapy; Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Wannenmacher, M. [Heidelberg Univ., Mannheim (Germany). Abt. fuer Klinische Radiologie; Debus, J. [Univ. Heidelberg (Germany). Abt. Radioonkologie und Strahlentherapie; Wenz, F. (eds.) [Universitaetsklinikum Mannheim (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2006-07-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy.

  5. Initial clinical results of linac stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) for pituitary adenomas

    International Nuclear Information System (INIS)

    Mitsumori, Michihide; Shrieve, Dennis C.; Alexander, Eben; Kaiser, Ursula B.; Richardson, Gary E.; McL Black, Peter; Loeffler, Jay S.

    1997-01-01

    Purpose: To evaluate the initial clinical results of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (SRT) for pituitary adenomas with regard to tumor control and toxicity of the treatment, thus evaluate the feasibility of these technique for the treatment of pituitary adenomas. Subjects and Methods: 48 patients with either inoperable, recurrent or residual pituitary adenoma who underwent either SRS or SRT at the Brigham and Women's Hospital between 9/89 and 9/95 were analyzed. Of these, 18 received treatment with SRS, and 30 received SRT. SRS was contraindicated for the patients in whom the minimal distance of the target and optic chiasm or optic nerve was less than 5 mm. Patient characteristics were similar in the two groups, with the exception of tumor volume and previous irradiation. Median tumor volumes were 1.8 cm 3 and 7.7 cm 3 for SRS and SRT, respectively. Three of the SRS and none of the SRT patients had a history of previous external radiation therapy. Both SRS and SRT were performed by the use of dedicated stereotactic 6-MV linear accelerator with a treatment plan designed using a dedicated software. Doses were prescribed to the isodose distribution that covered the identified target. Dose and normalization used for SRS varied from 1000 cGy at 85 % isodose line to 1800 cGy at 80 % isodose line. For SRT patients, total dose of 4500 cGy was normalized at 90 or 95 % isodose line and this was delivered in 25 fractions of 180 cGy daily dose. Results: Local control: There was 1 case of local failure in each of SRS and SRT series (median follow up 42.5 months and 22 month, respectively). CNS adverse effects: There were 3 SRS cases in whom a ring enhancement in the temporal lobe was observed in follow-up MRI. (median follow up 32 months). Of these, one resolved spontaneously, whereas the other 2 lesion persisted and considered to be radiation necrosis. None of them required surgical intervention to date. These were observed in the

  6. Maximum recovery potential of human tumor cells may predict clinical outcome in radiotherapy

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Beckett, M.

    1987-01-01

    We studied inherent radiosensitivity/resistance (D0), ability to accumulate sublethal damage (n) and repair of potentially lethal damage (PLDR) in established human tumor cell lines as well as early passage human tumor cell lines derived from patients with known outcome following radiotherapy. Survival 24 hrs after treatment of human tumor cells with X rays in plateau phase cultures is a function of initial damage (D0, n), as well as recovery over 24 hrs (PLDR). A surviving fraction greater than .1 24 hrs following treatment with 7 Gy in plateau phase cultures is associated with tumor cell types (melanoma, osteosarcoma) with a high probability of radiotherapy failure or tumor cells derived from patients who actually failed radiotherapy. Therefore, total cellular recovery following radiation may be an important determinant of radiocurability. Accurate assays of radiotherapy outcome may need to account for all these radiobiological parameters

  7. Haemostatis activity in rectal cancer patients exposed to preoperative radiotherapy: a clinical prospective cohort study

    DEFF Research Database (Denmark)

    Stender, Mogens T; Larsen, Torben B; Lundbye-Christensen, Søren

    2009-01-01

    To investigate whether markers of haemostasis activity increased during preoperative radiotherapy and whether postoperative marker levels were increased in irradiated rectal cancer patients when compared with nonirradiated rectal and colon cancer patients. In 45 rectal cancer patients, we measured...... plasma levels of prothrombin fragment 1 + 2 (F1 + 2), thrombin-antithrombin complex, and D-dimer during radiotherapy. Postoperative levels of F1 + 2, thrombin-antithrombin complex, and D-dimer in irradiated patients were compared with postoperative levels in 123 nonirradiated colon and rectal cancer...... for activation of the haemostatic system during preoperative radiotherapy in patients with rectal cancer. Some evidence was provided for increased postoperative haemostatic activity among rectal cancer patients who received short-term high-intensity radiotherapy, when compared with patients who received long...

  8. Clinically significant bleeding in incurable cancer patients: effectiveness of hemostatic radiotherapy

    International Nuclear Information System (INIS)

    Cihoric, Nikola; Crowe, Susanne; Eychmüller, Steffen; Aebersold, Daniel M; Ghadjar, Pirus

    2012-01-01

    This study was performed to evaluate the outcome after hemostatic radiotherapy (RT) of significant bleeding in incurable cancer patients. Patients treated by hemostatic RT between November 2006 and February 2010 were retrospectively analyzed. Bleeding was assessed according to the World Health Organization (WHO) scale (grade 0 = no bleeding, 1 = petechial bleeding, 2 = clinically significant bleeding, 3 = bleeding requiring transfusion, 4 = bleeding associated with fatality). The primary endpoint was bleeding at the end of RT. Key secondary endpoints included overall survival (OS) and acute toxicity. The bleeding score before and after RT were compared using the Wilcoxon signed rank test. Time to event endpoints were estimated using the Kaplan Meier method. Overall 62 patients were analyzed including 1 patient whose benign cause of bleeding was pseudomyxoma peritonei. Median age was 66 (range, 37–93) years. Before RT, bleeding was graded as 2 and 3 in 24 (39%) and 38 (61%) patients, respectively. A median dose of 20 (range, 5–45) Gy of hemostatic RT was applied to the bleeding site. At the end of RT, there was a statistically significant difference in bleeding (p < 0.001); it was graded as 0 (n = 39), 1 (n = 12), 2 (n = 6), 3 (n = 4) and 4 (n = 1). With a median follow-up of 19.3 (range, 0.3-19.3) months, the 6-month OS rate was 43%. Forty patients died (65%); 5 due to bleeding. No grade 3 or above acute toxicity was observed. Hemostatic RT seems to be a safe and effective treatment for clinically and statistically significantly reducing bleeding in incurable cancer patients

  9. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    International Nuclear Information System (INIS)

    Chang, Eric L.; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-01-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r 2 0.0007; p = 0.3). For patients with edema >75 cm 3 , the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm 3 , using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema

  10. Heavy particle clinical radiotherapy trial at Lawrence Berkeley Laboratory. Progress report, July 1975-July 1979

    International Nuclear Information System (INIS)

    Castro, J.R.

    1979-01-01

    The primary objectives of the clinical radiotherapy program are: to evaluate the potential of improved dose localization particularly as exemplified by helium ion irradiation; and to evaluate the combined potential of improved dose localization and increased biologic effect available with heavier ions such as carbon, neon, and argon. It was possible to make modifications rapidly to provide for large field, fractionated, Bragg peak irradiation at the 184-inch cyclotron with the helium ion beam. This allowed the opportunity to gain experience with charged particle irradiation treatment techniques, patient immobilization techniques, treatment planning and dosimetry studies including the utilization of CT scanning for tumor localization and charged particle dose distributions as well as beginning studies in compensating for tissue inhomogeneities in the beam path. These treatment techniques have been directly transferable to the Bevalac facility where a similar patient positioner has been installed for human irradiation with heavier particles. For the studies both with helium and now with heavier particles, patients with multiple skin and subcutaneous metastatic nodules for evaluation of skin RBE data and patients with locally advanced and/or unresectable tumors unlikely to be effectively treated by any conventional modality were sought. In order to facilitate intercomparison with megavoltage irradiation techniques, a conventional dose fractionation scheme has been adopted. A few exceptions to this dose specification scheme have been patients in which pulmonary, subcutaneous or skin nodules have been irradiated with larger fraction sizes ranging up to 400 rads per fraction in order to obtain clinical RBE studies in 8 to 10 fractions of heavy particles

  11. Development and clinical application of respiration gated irradiation system (ReGIS) in heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Osaka, Yasuhiro; Tsujii, Hirohiko; Mizoe, Jun-etsu

    1999-01-01

    In order to achieve maximal radiation dose concentration for thoraco-abdominal tumors and spare normal surrounding tissue in heavy ion therapy, compensation for respiration-related movement is desirable. Hence, a respiration-gated irradiation system (ReGIS) was introduced to the Heavy Ion Medical Accelerator in Chiba (HIMAC) in June 1996. In this report, the development and clinical application of ReGIS, as well as the analysis of respiration-related movement and reduction of target volumes are described. When using ReGIS, a sensor emitting infrared rays is attached to the thoracic or abdominal wall to measure respiratory movement. A position-sensitive device (camera) senses these rays to detect sensor locations and data are forwarded to a computer system. A curve representing respiratory cycles is displayed, upon which a trigger level that is part of a respiratory cycle (about a fourth or fifth of the expiratory phase). Beams can be delivered while the respiratory curve is under the trigger level. Thirty-five patients involving 37 irradiated sites (19 lung cancers, 13 hepatomas, 2 mediastinal tumors, and 3 metastatic lung tumors) were retrospectively analyzed. Target volumes were reduced an average of 29.5% (11.0 to 57.9%) using ReGIS. Average tumor respiration-related movement in gated phase was 3.7 mm (0 mm to 14.6 mm). Although irradiation using ReGIS took more time to perform (average 1.62 times non-gated irradiation), it was considered to be acceptable for routine heavy ion therapy. ReGIS has proved to be useful for compensation of respiration-related movement and reduction of target volume in radiotherapy, and this method is sufficiently simple for practical clinical application. (author)

  12. Past, present and future aspects of studies of heavy ion radiotherapy. 2. Future view of clinical studies of heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Tsujii, Hirohiko; Kamata, Tadashi

    2007-01-01

    The purpose of clinical studies of heavy ion radiotherapy (HIR, using carbon beam) in National Institute of Radiological Sciences (NIRS) is, in treatment of cancers, to elucidate its potential and significance for establishing the methodology for curing the disease safely and reliably to further spread the therapy. Here is presented a future view of clinical studies of HIR based on the past results and along authorities' medical policy. NIRS has treated 3,100 or more cancer patients in about 50 clinical trials from the start of HIR in 1994. In those studies, curing the intractable malignancies has become possible in a short term of therapy, and the irradiating machine is being miniaturized (actually under construction in Gunma Univ.). At the end of 2006, about 4,000 patients have been treated with HIR globally: the impact of NIRS HIR. There are such future HIR plans as the promotion of clinical trials, development of irradiation technology, promotion and efficient practice as an advanced frontier medicare, imaging diagnosis for the aim of treatment, biological studies, and comparative studies to elucidate the usefulness. Cooperation of NIRS, manufacturers and authorities will make HIR a more useful, less burdensome mean to treat patients with more intractable cancers. (R.T.)

  13. Detailed review and analysis of complex radiotherapy clinical trial planning data: Evaluation and initial experience with the SWAN software system

    International Nuclear Information System (INIS)

    Ebert, Martin A.; Haworth, Annette; Kearvell, Rachel; Hooton, Ben; Coleman, Rhonda; Spry, Nigel; Bydder, Sean; Joseph, David

    2008-01-01

    Aim: Contemporary radiotherapy clinical trials typically require complex three-dimensional (3D) treatment planning. This produces large amounts of data relating technique and dose delivery for correlation with patient outcomes. Assessment of the quality of this information is required to ensure protocol compliance, to quantify the variation in treatments given to patients and to enhance the power of studies to determine correlates of patient outcomes. Materials and methods: A software system ('SWAN') was developed to facilitate the objective analysis, quality-assurance and review of digital treatment planning data from multi-centre radiotherapy trials. The utility of this system was assessed on the basis of its functionality and our experience of its use in the context of multi-centre clinical trials and trials-support activities. Results: The SWAN system has been shown to have the functionality required for use in several multi-centre trials, including automated review and archive processes. Approximately 800 treatment plans from over 30 participating institutions have so far been assessed with the system for several treatment planning scenarios. To illustrate this we include a description of the use of the system for a large-recruitment prostate radiotherapy trial being undertaken in Australasia, including examples of how the review process has changed clinical practice. Conclusion: The successful implementation of SWAN has been demonstrated in a number of clinical trials. The software provides an opportunity for comprehensive review of treatment parameters that could impact on clinical outcomes and trial results. Such quality-assurance (QA) has previously been difficult or impossible to achieve, particularly for a clinical trial involving large numbers of patients. Such reviews have highlighted inconsistencies in clinical practice that have since been addressed through feedback from the review process. The process of data collection and review should be

  14. Clinical studies of effect of Jinshi Granule on reducing the toxic radiotherapy reaction in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Jin Hong; Wu Xiangwei

    2002-01-01

    Objective: To study the effects of Jinshi Granule (JSG) on decreasing the toxic reaction of radiotherapy in nasopharyngeal carcinoma (NPC) patients in order to search for an effective method and medicines. Methods: Altogether 90 patients with NPC treated by radical radiotherapy were divided into three groups at random. Each group consisted of 30 patients who all received radiotherapy. Patients of the 1st treatment group were treated by JSG, the 2nd treatment group by Biyan Qingdu Ji (BQJ), and the control group by placebo. Results: (1) In JSG group, the effective rate, the rate of completing radiotherapy, the enhancing and stabilization rate of quality of life were 93.33%, 96.67% and 90.00%, respectively, which were all higher than those in other groups (P < 0.05, P < 0.01). (2) The degree of the toxic reaction syndromes in the JSG group was lower than that in other two groups and the stabilization of peripheral hemogram was much better (P < 0.05, P < 0.01). Conclusion: These data show that JSG has significant effects on reducing the toxic reaction of radiotherapy to NPC and combining it with radiotherapy is an effective method in treating NPC

  15. Automated evaluation of setup errors in carbon ion therapy using PET: Feasibility study

    International Nuclear Information System (INIS)

    Kuess, Peter; Hopfgartner, Johannes; Georg, Dietmar; Helmbrecht, Stephan; Fiedler, Fine; Birkfellner, Wolfgang; Enghardt, Wolfgang

    2013-01-01

    Purpose: To investigate the possibility of detecting patient mispositioning in carbon-ion therapy with particle therapy positron emission tomography (PET) in an automated image registration based manner. Methods: Tumors in the head and neck (H and N), pelvic, lung, and brain region were investigated. Biologically optimized carbon ion treatment plans were created with TRiP98. From these treatment plans, the reference β + -activity distributions were calculated using a Monte Carlo simulation. Setup errors were simulated by shifting or rotating the computed tomography (CT). The expected β + activity was calculated for each plan with shifts. Finally, the reference particle therapy PET images were compared to the “shifted” β + -activity distribution simulations using the Pearson's correlation coefficient (PCC). To account for different PET monitoring options the inbeam PET was compared to three different inroom scenarios. Additionally, the dosimetric effects of the CT misalignments were investigated. Results: The automated PCC detection of patient mispositioning was possible in the investigated indications for cranio-caudal shifts of 4 mm and more, except for prostate tumors. In the rather homogeneous pelvic region, the generated β + -activity distribution of the reference and compared PET image were too much alike. Thus, setup errors in this region could not be detected. Regarding lung lesions the detection strongly depended on the exact tumor location: in the center of the lung tumor misalignments could be detected down to 2 mm shifts while resolving shifts of tumors close to the thoracic wall was more challenging. Rotational shifts in the H and N and lung region of +6° and more could be detected using inroom PET and partly using inbeam PET. Comparing inroom PET to inbeam PET no obvious trend was found. However, among the inroom scenarios a longer measurement time was found to be advantageous. Conclusions: This study scopes the use of various particle therapy

  16. Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Higo, Morihiro; Uzawa, Katsuhiro; Kawata, Tetsuya; Kato, Yoshikuni; Kouzu, Yukinao; Yamamoto, Nobuharu; Shibahara, Takahiko; Mizoe, Jun-etsu; Ito, Hisao; Tsujii, Hirohiko; Tanzawa, Hideki

    2006-01-01

    Purpose The purpose of this study was to assess the gene expression changes in oral squamous cell carcinoma (OSCC) cells after carbon ion irradiation. Methods and Materials Three OSCC cell lines (HSC2, Ca9-22, and HSC3) were irradiated with accelerated carbon ion beams or X-rays using three different doses. The cellular sensitivities were determined by clonogenic survival assay. To identify genes the expression of which is influenced by carbon ion irradiation in a dose-dependent manner, we performed Affymetrix GeneChip analysis with HG-U133 plus 2.0 arrays containing 54,675 probe sets. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time reverse transcriptase-polymerase chain reaction. Results We identified 98 genes with expression levels that were altered significantly at least twofold in each of the three carbon-irradiated OSCC cell lines at all dose points compared with nonirradiated control cells. Among these, SPHK1, the expression of which was significantly upregulated by carbon ion irradiation, was modulated little by X-rays. The function of SPHK1 related to cellular growth and proliferation had the highest p value (p = 9.25e-7 to 2.19e-2). Real-time reverse transcriptase-polymerase chain reaction analysis showed significantly elevated SPHK1 expression levels after carbon ion irradiation (p < 0.05), consistent with microarray data. Clonogenic survival assay indicated that carbon ion irradiation could induce cell death in Ca9-22 cells more effectively than X-rays. Conclusions Our findings suggest that SPHK1 helps to elucidate the molecular mechanisms and processes underlying the biologic response to carbon ion beams in OSCC

  17. Stereotactic radiotherapy for non-small cell lung cancer: From concept to clinical reality. 2011 update; Radiotherapie stereotaxique des cancers broncho-pulmonaires non a petites cellules: d'un concept a une realite clinique. Actualites en 2011

    Energy Technology Data Exchange (ETDEWEB)

    Girard, N. [Service de pneumologie, hopital Louis-Pradel, hospices civils de Lyon, 28, avenue du Doyen-Jean-Lepine, 69500 Bron (France); UMR 754, universite Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69622 Villeurbanne cedex (France); Mornex, F. [Departement de radiotherapie oncologie, centre hospitalier Lyon-Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Benite cedex (France); EA 37-38, universite Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69622 Villeurbanne cedex (France)

    2011-10-15

    Only 60% of patients with early-stage non-small cell lung cancer (NSCLC), a priori bearing a favorable prognosis, undergo radical resection because of the very frequent co-morbidities occurring in smokers, precluding surgery to be safely performed. Stereotactic radiotherapy consists of the use of multiple radiation micro-beams, allowing high doses of radiation to be delivered to the tumour (ranging from 7.5 to 20 Gy per fraction) in a small number of fractions (one to eight on average). Several studies with long-term follow-up are now available, showing the effectiveness of stereotactic radiotherapy to control stage I/II non-small cell lung cancer in medically inoperable patients. Local control rates are consistently reported to be above 95% with a median survival of 34 to 45 months. Because of these excellent results, stereotactic radiation therapy is now being evaluated in operable patients in several randomized trials with a surgical arm. Ultimately, the efficacy of stereotactic radiotherapy in early-stage tumours leads to hypothesize that it may represent an opportunity for locally-advanced tumors. The specific toxicities of stereotactic radiotherapy mostly correspond to radiation-induced chest wall side effects, especially for peripheral tumours. The use of adapted fractionation schemes has made feasible the use of stereotactic radiotherapy to treat proximal tumours. Overall, from a technical concept to the availability of specific treatment devices and the publication of clinical results, stereotactic radiotherapy represents a model of implementation in thoracic oncology. (authors)

  18. The relationship between waiting time for radiotherapy and clinical outcomes: A systematic review of the literature

    International Nuclear Information System (INIS)

    Chen Zheng; King, Will; Pearcey, Robert; Kerba, Marc; Mackillop, William J.

    2008-01-01

    Purpose: To synthesize the direct clinical evidence relating waiting times (WTs) for radiotherapy (RT) to the outcomes of RT. Methods and materials: We did a systematic review of the literature between 1975 and 2005 to identify clinical studies describing the relationship between WTs and outcomes of RT. Only high quality (HQ) studies that had adequately controlled for confounding factors were included in the primary analysis. WTs that had originally been reported as a categorical variable were converted to a continuous variable based on the distribution of WTs in each category. Meta-analyses were done using a fixed-effect model. Results: The systematic review identified 44 relevant studies. Meta-analyses of 20 HQ studies of local control demonstrated a significant increase in the risk of local failure with increasing WT, RR localrecurrence/month = 1.14, 95% Confidence Intervals (CI): 1.09-1.21. For post-operative RT for breast cancer; RR localrecurrence/month = 1.11, 95%CI: 1.04-1.19. For post-operative RT for head and neck cancer, RR localrecurrenc/month = 1.28, 95%CI: 1.08-1.52. For definitive RT for head and neck cancer, RR localrecurrence/month = 1.15, 95%CI: 1.02-1.29. There was little evidence of any association between WTs and the risk of distant metastasis. Meta-analyses of the 6 HQ studies of breast cancer showed RR metastasis/month = 1.04, 95%CI: 0.98-1.09. Meta-analyses of 4 HQ studies of breast cancer showed no significant decrease in survival with increasing WT, RR death/month = 1.06, 95%CI: 0.97-1.16, but there was a marginally significant decrease in survival in 4 HQ studies of head and neck cancer, RR death/month = 1.16, 95%CI: 1.02-1.32. Conclusions: The risk of local recurrence increases with increasing WTs for RT. The increase in local recurrence rate may translate into decreased survival in some clinical situations. WTs for RT should be as short as reasonably achievable

  19. Cytoreductive prostate radiotherapy in oligometastatic prostate cancer: a single centre analysis of toxicity and clinical outcome.

    Science.gov (United States)

    Riva, Giulia; Marvaso, Giulia; Augugliaro, Matteo; Zerini, Dario; Fodor, Cristiana; Musi, Gennaro; De Cobelli, Ottavio; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2017-01-01

    The current standard of care for patients with metastatic prostate cancer (mPCa) at diagnosis is androgen deprivation therapy (ADT) with or without anti-androgen and chemotherapy. The aim of this study was to define the role of a local radiotherapy (RT) treatment in the mPCa setting. We retrospectively reviewed data of patients with PCa and bone oligometastases at diagnosis treated in our institution with ADT followed by cytoreductive prostate-RT with or without RT on metastases. Biochemical and clinical failure (BF, CF), overall survival (OS) and RT-toxicity were assessed. We identified 22 patients treated with ADT and external-beam RT on primary between June 2008 and March 2016. All of them but four were also treated for bone metastases. RT on primary with moderately and extremely hypofractionated regimes started after 10.3 months (3.9-51.7) from ADT. After a median follow-up of 26.4 months (10.3-55.5), 20 patients are alive. Twelve patients showed BF after a median time of 23 months (14.5-104) and CF after a median of 23.6 months (15.3-106.1) from the start of ADT. Three patients became castration resistant, starting a new therapy; median time to castration resistance was 31.03 months (range: 29.9-31.5 months). According to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC), only one patient developed acute grade 3 genitourinary toxicity. No late grade >2 adverse events were observed. Prostate RT in oligometastatic patients is safe and offers long-lasting local control. When compared to ADT alone, RT on primary seems to improve biochemical control and long-term survival; however, this hypothesis should be investigated in prospective studies. Further research is warranted.

  20. Intensity-Modulated Radiotherapy in the Treatment of Oropharyngeal Cancer: Clinical Outcomes and Patterns of Failure

    International Nuclear Information System (INIS)

    Daly, Megan E.; Le, Quynh-Thu; Maxim, Peter G.; Loo, Billy W.; Kaplan, Michael J.; Fischbein, Nancy J.; Pinto, Harlan; Chang, Daniel T.

    2010-01-01

    Purpose: To report outcomes, failures, and toxicities in patients treated with intensity-modulated radiotherapy (IMRT) for squamous cell carcinoma of the oropharynx. Methods And Materials: Between Aug 2001 and Oct 2007, 107 patients were treated with IMRT with curative intent at Stanford University. Twenty-two patients were treated postoperatively, and 85 were treated definitively. Concurrent platinum-based chemotherapy was administered to 86 patients (80%) and cetuximab to 8 patients (7%). The prescribed dose was 66 Gy at 2.2 Gy/fraction for definitively treated cases and 60 Gy at 2 Gy/fraction for postoperative cases. Median follow-up was 29 months among surviving patients (range, 4-105 months). Results: Eight patients had persistent disease or local-regional failure at a median of 6.5 months (range, 0-9.9 months). Six local failures occurred entirely within the high-risk clinical target volume (CTV) (one with simultaneous distant metastasis). One patient relapsed within the high- and intermediate-risk CTV. One patient had a recurrence at the junction between the IMRT and low-neck fields. Seven patients developed distant metastasis as the first site of failure. The 3-year local-regional control (LRC), freedom from distant metastasis, overall survival, and disease-free survival rates were 92%, 92%, 83%, and 81%, respectively. T stage (T4 vs. T1-T3) was predictive of poorer LRC (p = 0.001), overall survival (p = 0.001), and disease-free survival (p < 0.001) rates. Acute toxicity consisted of 58% grade 3 mucosal and 5% grade 3 skin reactions. Six patients (6%) developed grade ≥3 late complications. Conclusions: IMRT provides excellent LRC for oropharyngeal squamous cell carcinoma. Distant metastases are a major failure pattern. No marginal failures were observed.

  1. Proposed Rectal Dose Constraints for Patients Undergoing Definitive Whole Pelvic Radiotherapy for Clinically Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Chan, Linda W.; Xia Ping; Gottschalk, Alexander R.; Akazawa, Michelle; Scala, Matthew; Pickett, Barby M.S.; Hsu, I-C.; Speight, Joycelyn; Roach, Mack

    2008-01-01

    Purpose: Although several institutions have reported rectal dose constraints according to threshold toxicity, the plethora of trials has resulted in multiple, confusing dose-volume histogram recommendations. A set of standardized, literature-based constraints for patients undergoing whole pelvic radiotherapy (RT) for prostate cancer would help guide the practice of prostate RT. The purpose of this study was to develop these constraints, demonstrate that they are achievable, and assess the corresponding rectal toxicity. Methods and Materials: An extensive literature search identified eight key studies relating dose-volume histogram data to rectal toxicity. A correction factor was developed to address differences in the anatomic definition of the rectum across studies. The dose-volume histogram constraints recommended by each study were combined to generate the constraints. The data from all patients treated with definitive intensity-modulated RT were then compared against these constraints. Acute rectal toxicity was assessed. Results: A continuous, proposed rectal dose-constraint curve was generated. Intensity-modulated RT not only met this constraint curve, but also was able to achieve at least 30-40% lower dose to the rectum. The preliminary clinical results were also positive: 50% of patients reported no acute bowel toxicity, 33% reported Grade 1 toxicity, and 17% reported Grade 2 toxicity. No patients reported Grade 3-4 acute rectal toxicity. Conclusions: In this study, we developed a set of proposed rectal dose constraints. This allowed for volumetric assessment of the dose-volume relationship compared with single dose-volume histogram points. Additional research will be performed to validate this threshold as a class solution for rectal dose constraints

  2. Dosimetric and clinical results of three-dimensional conformal radiotherapy for locally recurrent nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Zheng Xiaokang; Ma Jun; Chen Longhua; Xia Yunfei; Shi Yusheng

    2005-01-01

    Purpose: To assess the dosimetric and clinical results of three-dimensional conformal radiotherapy (3D CRT) for locally recurrent nasopharyngeal carcinoma (NPC). Methods: A total of 86 patients with locally recurrent NPC were retreated with 3D CRT. The median prescribed dose was 68 Gy with 2 Gy per fractionation. Dosimetric quality was evaluated with dose distribution in planning target volume (PTV) and specified organs at risk (OAR), dose conformity index (CI) and dose homogeneity index (HI). The actuarial rate of local failure-free (LFF), overall survival (OS) and major late toxicities (MLT) were estimated with Kaplan-Meier method. Multivariate analysis for prognosis was performed using the Cox regression proportional hazards model. Results: The mean dose to PTV averaged 66.8 Gy, and the dose to specified OAR was acceptable. The average value of CI and HI was 0.59 and 9.1%. The 5-year actuarial rate of LFF and OS was 71 and 40%, respectively. The 5-year actuarial incidence of MLT≥Grade 3 and ≥Grade 4 were 100 and 49%, respectively. The major prognostic factors were T stage and the size of gross tumor volume (GTV). Advanced T stage and large GTV volume were associated with poor LFF and OS and high risk of MLT. Conclusion: The dosimetric quality of 3D CRT for locally recurrent NPC is generally excellent. A relatively high local control was achieved with this technique. However, the incidence of late toxicities were not found to decrease as originally expected. Early diagnosis of the recurrence and reasonable definition of the target volume are crucial to achieve a better outcome

  3. Clinical outcomes in patients treated with radiotherapy after surgery for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyung Mi; Park, Won; Huh, Seung Jae; Bae, Duk Soo; Kim, Byoung Gie; Lee, Jeong Won [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study was to analyze clinical outcomes from cervical cancer and stratify patients into risk groups for prognostic factors for early-stage disease. We retrospectively reviewed patients with stage IB or IIA cervical cancer treated with adjuvant radiotherapy (RT) or concurrent chemoradiotherapy (CCRT) following primary surgery at Samsung Medical Center from 2001 to 2011. Adjuvant RT was added for patients with intermediate-risk factors, and adjuvant CCRT was performed on high-risk patients after surgery. We reviewed 247 patients—149 in the high-risk group and 98 in intermediate-risk group. The median follow-up was 62 months. Loco-regional failure (LRF) alone occurred in 7 patients (2.8%), distant metastasis alone in 37 patients (15.0%) and LRF with DM in 4 patients (1.6%). The 5-year disease-free survival (DFS) and overall survival (OS) rates for both groups were 79.7% and 87.6%, respectively. In the high-risk group, the 5-year DFS and OS probabilities were 72.5% and 81.9%, respectively. Histologic type, pathologic tumor size, and the number of pelvic lymph node (PLN) metastasis were significant prognostic factors for DFS and OS. We suggest a scoring system (0–3) using these prognostic factors to predict poor prognosis in high-risk patients. Using this system, patients with higher scores have higher recurrence and lower survival rates. In the high-risk cervical-cancer group who received primary surgery and adjuvant CCRT, non-squamous type, large tumor size and the number of PLN metastasis were significant prognostic factors, and the number of these factors was associated with survival rates.

  4. Energy dependent track structure parametrizations for protons and carbon ions based on nano-metric simulations

    International Nuclear Information System (INIS)

    Frauke, A.; Wilkens, J.J.; Villagrasa, C.; Rabus, H.

    2015-01-01

    The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometer scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant-4 Monte Carlo tool-kit with the Geant-4-DNA processes. Based on the energy transfer points - recorded with nanometer resolution - we investigated parametrizations of overall properties of ion track structure. Three different track structure parametrizations have been developed using the distances to the 10 next neighbouring ionizations, the radial energy distribution and ionisation cluster size distributions. These parametrizations of nanometer-scale track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. (authors)

  5. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials.

    Science.gov (United States)

    Clark, Catharine H; Aird, Edwin G A; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia A D; Thomas, Russell A S; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed.

  6. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials

    Science.gov (United States)

    Aird, Edwin GA; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia AD; Thomas, Russell AS; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed. PMID:26329469

  7. Managing brain metastases patients with and without radiotherapy: initial lessonsfrom a team-based consult service through a multidisciplinary integrated palliative oncology clinic.

    Science.gov (United States)

    Jung, Hellen; Sinnarajah, Aynharan; Enns, Bert; Voroney, Jon-Paul; Murray, Alison; Pelletier, Guy; Wu, Jackson Sai-Yiu

    2013-12-01

    A new ambulatory consultative clinic with integrated assessments by palliative care, radiation oncology, and allied health professionals was introduced to (1) assess patients with brain metastases at a regional comprehensive cancer center and (2) inform and guide patients on management strategies, including palliative radiotherapy, symptom control, and end-of-life care issues. We conducted a quality assurance study to inform clinical program development. Between January 2011 and May 2012, 100 consecutive brain metastases patients referred and assessed through a multidisciplinary clinic were evaluated for baseline characteristics, radiotherapy use, and supportive care decisions. Overall survival was examined by known prognostic groups. Proportion of patients receiving end-of-life radiotherapy (death within 30 and 14 days of brain radiotherapy) was used as a quality metric. The median age was 65 years, with non-small cell lung cancer (n = 38) and breast cancer (n = 23) being the most common primary cancers. At least 57 patients were engaged in advance care planning discussions at first consult visit. In total, 75 patients eventually underwent brain radiotherapy, whereas 25 did not. The most common reasons for nonradiotherapy management were patient preference and rapid clinical deterioration. Overall survival for prognostic subgroups was consistent with literature reports. End-of-life brain radiotherapy was observed in 9 % (death within 30 days) and 1 % (within 14 days) of treated patients. By integrating palliative care expertise to address the complex needs of patients with newly diagnosed brain metastases, end-of-life radiotherapy use appears acceptable and improved over historical rates at our institution. An appreciable proportion of patients are not suitable for palliative brain radiotherapy or opt against this treatment option, but the team approach involving nurses, palliative care experts, allied health, and clinical oncologists facilitates

  8. A phase I trial of pre-operative radiotherapy for prostate cancer: Clinical and translational studies

    International Nuclear Information System (INIS)

    Supiot, Stephane; Shubbar, Shubber; Fleshner, Neil; Warde, Padraig; Hersey, Karen; Wallace, Kris; Cole, Heather; Sweet, Joan; Tsihlias, John; Jewett, Michael A.S.; Klotz, Laurence; Bristow, Robert G.

    2008-01-01

    Background and purpose: Selected patients undergoing radical prostatectomy for localized prostate cancer can be at high-risk for pT3 disease and require subsequent radiotherapy. In a phase I trial, we investigated the feasibility of pre-operative radiotherapy for this patient subset. Materials and methods: Eligibility criteria were: T1/T2N0M0 tumors plus (i) Gleason ≥ 7, PSA > 10 ng/ml and 15 ng/ml and less WAF associated with reduced cell proliferation. Conclusion: Intra-operative morbidity is low following short-course, pre-operative radiotherapy. A phase II trial is planned to fully document biochemical response with this combined-modality approach

  9. Effects of beer administration in mice on acute toxicities induced by X rays and carbon ions

    International Nuclear Information System (INIS)

    Monobe, Manami

    2003-01-01

    We have investigated the tissue specificity of radioprotection by beer, which was previously found for human lymphocytes. C3H/He female mice, aged 14 weeks, received an oral administration of beer, ethanol or saline at a dose of 1 ml/mouse 30 min before whole-body irradiation with 137 Cs γ rays or 50 keV/μm carbon ions. The dicentrics of chromosome aberrations in spleen cells were significantly (p 0 (slope of a dose-survival curve) for γ rays and carbon ions as well. Beer administration significantly (p 50/30 (radiation dose required to kill 50% of mice within 30 days) for γ rays and carbon ions. Ethanol-administration also significantly (p 50/30 value for γ rays, but not for carbon ions. It is concluded that beer administration reduces the radiation injury caused by photons and carbon ions, depending on the tissue type. Radioprotection by beer administration is not solely due to OH radical-scavenging action by the ethanol contained in beer. (author)

  10. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  11. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Nishijima, Shigehiro; Hase, Yoshihiro; Sakamoto, Ayako; Tanaka, Atsushi; Shimizu, Kikuo

    2006-01-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of γ-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by γ-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C → T:A, and all the transitions were G:C → A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by γ-ray irradiation were located uniformly throughout the gene

  12. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matuo, Youichirou [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 (Japan); Hase, Yoshihiro [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Sakamoto, Ayako [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Tanaka, Atsushi [Radiation-Applied Biology Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), Watanuki-machi 1233, Takasaki, Gunma 370-1292 (Japan); Shimizu, Kikuo [Radioisotope Research Center, Osaka University, Yamada-oka 2-4, Suita, Osaka 565-0871 (Japan)]. E-mail: shimizu@rirc.osaka-u.ac.jp

    2006-12-01

    To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of {gamma}-ray irradiation in the budding yeast Saccharomyces cerevisiae. The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by {gamma}-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C {sup {yields}} T:A, and all the transitions were G:C {sup {yields}} A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5'-AC(A/T)-3' sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by {gamma}-ray irradiation were located uniformly throughout the gene.

  13. The survival effects of V79 cells irradiated with carbon ions in different let

    International Nuclear Information System (INIS)

    Wang Jufang; Zhou Guangming; He Jing; Li Wenjian; Li Qiang; Dang Bingrong; Li Xinglin; Weng Xiaoqiong; Xie Hongmei; Wei Zengquan; Gao Qingxiang

    2001-01-01

    The survival of cultured Chinese V79 hamster cells irradiated with carbon ions with different LETs were investigated. Irradiation was performed at the heavy Ion Research Facility in Lanzhou (HIRFL). Results were compared with those obtained from the experiments with γ rats and could be concluded as follows: The survival curves for carbon ions showed as straight lines and were fitted to the one-target one-hit model, but for γ rays the curves with shoulders were fitted to the multi-target one-hit model. As the LETs were 125, 200 and 700 keV/μm for carbon ions, the inactivation cross section 35, 12 and 8 μm 2 , respectively, which suggested that under the experimental conditions, the lower the LET of carbon ions, the more seriously the irradiation killed cells. In the case of 125 keV/μm, the RBEs of carbon ions at the 0.1 and 0.37 survival levels were 1.47 and 2.19 respectively

  14. Association of genetic variants in VEGF-A with clinical recurrence in prostate cancer patients treated with definitive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Langsenlehner, T.; Thurner, E.M.; Kapp, K.S. [Medical University of Graz, Department of Therapeutic Radiology and Oncology, Graz (Austria); Renner, W. [Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Graz (Austria); Gerger, A. [Medical University of Graz, Division of Oncology, Department of Internal Medicine, Graz (Austria); Langsenlehner, U. [GKK Outpatient Department, Division of Internal Medicine, Graz (Austria)

    2014-04-15

    Vascular endothelial growth factor-A (VEGF-A), a key regulator of tumor-induced angiogenesis, is critical for tumor growth and metastasization. The goal of the present study was to evaluate the prognostic value of VEGF single nucleotide polymorphisms (SNPs) and haplotypes for clinical recurrence after definitive radiotherapy for prostate cancer. The association of seven VEGF-A polymorphisms and their haplotypes with clinical recurrence (defined as the occurrence of local recurrence and/or distant metastases) in 496 prostate cancer patients treated with definitive radiotherapy were investigated. Genotypes were determined by 5'-nuclease (TaqMan) assays; haplotypes were analyzed using the Haploview program. Within a median follow-up time of 80 months, 44 patients (9%) developed clinical recurrences. Haplotype analysis showed two separate blocks of high-linkage disequilibrium, formed by five polymorphisms (-2578C > A, -2489C > T, -1498C > T, -634G > C, -7C > T) upstream of the coding sequence (CCCCC, ATTGC, CCCGC, ATTGT) and two polymorphisms (936C > T, 1612G > A) downstream of the coding sequence (CA, CG, TG). Carriers of at least 1 copy of the ATTGC haplotype were at higher risk of recurrence (hazard ratio [HR] 3.83; 95%CI 1.48-9.90, p=0.006); for carriers of 2 copies, the HR was 4.85 (95%CI 1.72-13.6; p=0.003). In multivariate analysis, patients harboring at least one copy of the ATTGC haplotype remained at increased risk of recurrence (HR 3.63, 95%CI 1.38-9.55, p=0.009); in patients carrying 2 copies, the HR was 4.72 (95%CI 1.64-13.6, p=0.004). Our findings indicate that the VEGF-A ATTGC haplotype may predict clinical recurrence in prostate cancer patients treated with radiotherapy. (orig.)

  15. Randomised clinical trial of Levonantradol and Chlorpromazine in the prevention of radiotherapy-induced vomiting

    Energy Technology Data Exchange (ETDEWEB)

    Lucraft, H H; Palmer, M K [Christie Hospital and Holt Radium Inst., Manchester (UK)

    1982-11-01

    Levonantradol is a cannabis derivative. Cannabinoid anti-emetics are being assessed in cancer chemotherapy but have been little used in radiotherapy to date. A pilot study and randomised trial compared the anti-emetic effect of a standard drug (Chlorpromazine 25 mg) with Levonantradol at two doses (0.5 and 0.75 mg) in patients receiving palliative single fraction radiotherapy to sites likely to cause nausea and vomiting. Most patients were out-patients. Both drugs were well tolerated. The frequency of vomiting was similar in all three groups in both the pilot study and randomised trial.

  16. Randomised clinical trial of Levonantradol and Chlorpromazine in the prevention of radiotherapy-induced vomiting

    International Nuclear Information System (INIS)

    Lucraft, H.H.; Palmer, M.K.

    1982-01-01

    Levonantradol is a cannabis derivative. Cannabinoid anti-emetics are being assessed in cancer chemotherapy but have been little used in radiotherapy to date. A pilot study and randomised trial compared the anti-emetic effect of a standard drug (Chlorpromazine 25 mg) with Levonantradol at two doses (0.5 and 0.75 mg) in patients receiving palliative single fraction radiotherapy to sites likely to cause nausea and vomiting. Most patients were out-patients. Both drugs were well tolerated. The frequency of vomiting was similar in all three groups in both the pilot study and randomised trial. (author)

  17. External audit on the clinical practice and medical decision-making at the departments of radiotherapy in Budapest and Vienna.

    Science.gov (United States)

    Esik, O; Seitz, W; Lövey, J; Knocke, T H; Gaudi, I; Németh, G; Pötter, R

    1999-04-01

    To present an example of how to study and analyze the clinical practice and the quality of medical decision-making under daily routine working conditions in a radiotherapy department, with the aims of detecting deficiencies and improving the quality of patient care. Two departments, each with a divisional organization structure and an established internal audit system, the University Clinic of Radiotherapy and Radiobiology in Vienna (Austria), and the Department of Radiotherapy at the National Institute of Oncology in Budapest (Hungary), conducted common external audits. The descriptive parameters of the external audit provided information on the auditing (auditor and serial number of the audit), the cohorts (diagnosis, referring institution, serial number and intention of radiotherapy) and the staff responsible for the treatment (division and physician). During the ongoing external audits, the qualifying parameters were (1) the sound foundation of the indication of radiotherapy, (2) conformity to the institution protocol (3), the adequacy of the choice of radiation equipment, (4) the appropriateness of the treatment plan, and the correspondence of the latter with (5) the simulation and (6) verification films. Various degrees of deviation from the treatment principles were defined and scored on the basis of the concept of Horiot et al. (Horiot JC, Schueren van der E. Johansson KA, Bernier J, Bartelink H. The program of quality assurance of the EORTC radiotherapy group. A historical overview. Radiother. Oncol. 1993,29:81-84), with some modifications. The action was regarded as adequate (score 1) in the event of no deviation or only a small deviation with presumably no alteration of the desired end-result of the treatment. A deviation adversely influencing the result of the therapy was considered a major deviation (score 3). Cases involving a minor deviation (score 2) were those only slightly affecting the therapeutic end-results, with effects between those of cases

  18. External audit on the clinical practice and medical decision-making at the departments of radiotherapy in Budapest and Vienna

    International Nuclear Information System (INIS)

    Esik, O.; Seitz, W.; Loevey, J.; Knocke, T.H.; Gaudi, I.; Nemeth, G.; Poetter, R.

    1999-01-01

    Purpose: To present an example of how to study and analyze the clinical practice and the quality of medical decision-making under daily routine working conditions in a radiotherapy department, with the aims of detecting deficiencies and improving the quality of patient care.Methods: Two departments, each with a divisional organization structure and an established internal audit system, the University Clinic of Radiotherapy and Radiobiology in Vienna (Austria), and the Department of Radiotherapy at the National Institute of Oncology in Budapest (Hungary), conducted common external audits. The descriptive parameters of the external audit provided information on the auditing (auditor and serial number of the audit), the cohorts (diagnosis, referring institution, serial number and intention of radiotherapy) and the staff responsible for the treatment (division and physician). During the ongoing external audits, the qualifying parameters were (1) the sound foundation of the indication of radiotherapy, (2) conformity to the institution protocol (3), the adequacy of the choice of radiation equipment, (4) the appropriateness of the treatment plan, and the correspondence of the latter with (5) the simulation and (6) verification films. Various degrees of deviation from the treatment principles were defined and scored on the basis of the concept of Horiot et al. (Horiot JC, Schueren van der E, Johansson KA, Bernier J, Bartelink H. The program of quality assurance of the EORTC radiotherapy group. A historical overview. Radiother. Oncol. 1993;29:81-84), with some modifications. The action was regarded as adequate (score 1) in the event of no deviation or only a small deviation with presumably no alteration of the desired end-result of the treatment. A deviation adversely influencing the result of the therapy was considered a major deviation (score 3). Cases involving a minor deviation (score 2) were those only slightly affecting the therapeutic end-results, with effects

  19. Predictors of continuous tobacco smoking in a clinical cohort study of Danish laryngeal cancer patients smoking before treated with radiotherapy

    DEFF Research Database (Denmark)

    Møller, Pia Krause; Tolstrup, Janne S; Olsen, Maja H

    2015-01-01

    % still smoked one year after radiotherapy similar to the percentage of smokers during treatment. Being younger than 60 years (OR 1.39, 95% CI 1.00-1.91), commenced smoking before the age of 15 (OR 1.77, 95% CI 1.32-2.38), having a poor WHO Performance status (OR 3.09, 95% CI 1.71-5.61), low income (OR 2......-year follow-up. Tumor stage and the average number of cigarettes smoked per day before radiotherapy were not associated with being a continuous smoker. CONCLUSION: Younger patients, who had an early smoking initiation, a poor performance status, low income and lived alone, were most likely to continue smoking...... to identify predictors of being a continuous smoker during and after radiotherapy. MATERIAL AND METHODS: In the clinical database of the Danish Head and Neck Cancer Group (DAHANCA), we identified 1455 patients diagnosed with laryngeal cancer between 2000 and 2010, who were all smokers at date of diagnosis...

  20. Clinical picture and treatment of complications of lower part of large intestine resulting from radiotherapy for intra-pelvic cancer

    International Nuclear Information System (INIS)

    Ikeda, Yoshihito; Sunagawa, Keishin; Matsumura, Shigejiro; Watanabe, Kenji; Masaoka, Yoshio

    1976-01-01

    The authors described clinical pictures and those treatments of 40 patients with complications of the lower part of the large intestine resulting from radiotherapy for cancer of the uterus, ovarium or the penis. As the radiotherapy, 60 Co-telecobalt (6,000-16,000R) and 60 Co-needle (1,000-8,568 mch) intracavitary irradiation were used alone or in combination. Findings in the complications of the lower part of the large intestine were classified into Grade I (13 cases), II (14), III (14), and IV (4) according to Sherman. The prodromal symptoms of the complications appeared in 2-6 months following the irradiation in more than a half of the patients, and it appeared within a year in most of the patients. Most of the patients complained about melena, anemia, proctagra, tenesmus and diarrhea. In the cases of Grade III, the symptoms of ileus such as constipation, abdominal distention, and abdominal pain appeared. Internal treatment was given principally, and preternal anus was made when frequent blood transfusion was required. Fourteen cases of those in Grade I and II recovered within 1-3 years. The cases which received proctostomy, including those who had bleeding, stricture and fistulation, had favorable prognosis. This result suggested that the radiotherapy for intra-pelvic cancer should be controlled to prevent further development of the complications in the rectum beyond Grade I. (Serizawa, K.)

  1. Physical and clinical aspects of the dynamic intensity-modulated radiotherapy of 21 patients

    International Nuclear Information System (INIS)

    Engler, Mark J.; Tsai, J.-S.; Ulin, Kenneth; Wu Julian; Ling, Marilyn N.; Fagundes, Marcio; Kramer, Bradley; Wazer, David E.

    1996-01-01

    Purpose: To describe the physical and clinical aspects of the dynamic intensity modulated radiotherapy of 21 patients. Methods and Materials: Dynamic, intensity modulated radiotherapy (IMR) was given to 21 patients with advanced or recurrent disease. 13 patients were immobilized with head screws, and 8, with non-invasive thermoplastic masks. The system was selected because it was designed de novo from a well established simulated annealing optimization model (SA), and with stringent leakage requirements and rapid leaf transit time for a multi leaf collimator (MLC). The system included a 6 MV linear accelerator (linac), an MLC, a quad processing computer system with SA software, a computer MLC controller with inclinometers and interlocks to stop radiation upon potential MLC or linac gantry fault detection, and immobilization devices attached to CT and treatment tables. The MLC was built around a 2 x 20 array of leaves with 9 half value layers of attenuation of the primary beam (99.8%). Over a trillion (2 40 ) beamlet patterns were dynamically changeable per deg. of linac gantry rotation. With all leaves shut, transmission was within a secondary collimator standard of < 0.5% of the primary beam. MLC control was via touch screen computer, and a disk drive which read beam pattern sequences from a disk generated by the planning system. Planning included 3D CT and magnetic resonance localization of regions of interest (ROI). The SA cost function incorporated idealized dose-volume parameter sets of up to 21 ROI/patient. Relative importance and spatial pre-eminance of each ROI were quantified into the constraint set, together with an instrument data file (IDR) built from depth dose and crossplot data of 8 x 8 to 20 x 200 mm field sizes and patterns measured with small diodes in a water tanc phantom. Planner output included dose volume histograms, tabulated dosimetry statistics, 2D dose distributions, and 3D translucent renderings of patient surfaces with underlying colored

  2. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    CERN Document Server

    Watts, David; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistiv...

  3. Characterization of the interaction between therapeutical carbon ions and bone-like materials and related impact on treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Anna; Durante, Marco [GSI Helmholtzzentrum fuer Schwereionen, Darmstadt (Germany); TU Darmstadt (Germany); Carlino, Antonio [University of Palermo (Italy); Kaderka, Robert; Kraemer, Michael; La Tessa, Chiara; Scifoni, Emanuele [GSI Helmholtzzentrum fuer Schwereionen, Darmstadt (Germany)

    2013-07-01

    Radiotherapy is one of the most common and effective therapies for cancer. The treatment planning system for ions TRiP98 was developed at GSI, Darmstadt. In TRiP98, the interaction between primary radiation and tissue is modeled from experimental data measured in water and rescaled to other tissue. This approximation is not accurate enough for biological materials whose elemental composition besides density deviates significantly from water. The nuclear attenuation of carbon beams in bone-like materials was measured and an estimation of the fragmentation cross section was done. In parallel, the dose profile inhomogeneity predicted by TRiP98 at the interface between water and bones was investigated and measured at HIT (Heidelberg). A 3D treatment plan was delivered in a water phantom equipped with bone targets. Pin-point ionization chambers and X-ray dosimetric films were used for measuring the dose at different positions. As a further step, the measured cross sections of carbon ions in bone have been implemented in TRiP98. The comparison of the dose profiles calculated with the standard and benchmarked versions of the treatment planning will give an estimate of the improvement.

  4. Clinical outcome in 520 consecutive Danish rectal cancer patients treated with short course preoperative radiotherapy

    DEFF Research Database (Denmark)

    Jensen, L H; Altaf, R; Harling, H

    2010-01-01

    AIM: The purpose of this study was to analyse the results of preoperative short course radiotherapy in a consecutive, national cohort of patients with rectal cancer. METHODS: Through a validated, prospective national database we identified 520 Danish patients who presented with high-risk mobile...... tumours in the lower two thirds of the rectum and were referred for preoperative radiotherapy with 5 x 5 Gy. The inclusion period was 56 months. Radiotherapy data was retrospectively collected. RESULTS: Of the 520 patients, 514 completed radiotherapy and 506 had surgery. Surgery was considered curative...... in 439 patients. The 3-year local recurrence rate was 4.0% (95% CI 2.5-6.5%) and the distant recurrence rate at 3 years was 18.7% (95% CI 15.4-22.5%). The 5-year disease free survival rate was 40.2% (95% CI 27.0-53.1%) and overall survival 50.4% (95% CI 36.1-63.1%). Most tumours (61%) were classified...

  5. A clinical assessment of laser surgery for recurrent tongue cancer following radiotherapy

    International Nuclear Information System (INIS)

    Ishii, Junnosuke; Fujita, Kunio; Komatsubara, Hideki; Umeda, Masahiro; Komori, Takahide

    2004-01-01

    Laser surgery can control intraoperative hemorrhaging and enable lesions to be accurately removed since, unlike an electrotome, it does not effect electrocontractility. It can also reduce postoperative pain and dysfunction. This study investigated the efficacy of laser surgery in recurrent tongue cancer following radiotherapy. Of the total of 105 patients with squamous cell carcinoma of the tongue (T1, T2N0) who underwent radiotherapy at the Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, at some point between 1980 and 1998, 24 (22.9%) experienced local recurrence. Sixteen of these patients underwent surgical removal of the tumor. Of these 16 patients, 8 (4 early- and 4 late-stage recurrence) had partial glossectomy by laser surgery. Following laser surgery, 2 (1 early- and 1 late-stage recurrence) of the 8 patients died from neck metastasis and another 2 (early-stage recurrence) died from other diseases. The primary and neck tumors are both under control in 3 (late-stage recurrence) of the remaining 4 patients. Laser surgery for late-stage recurrent tongue cancer following radiotherapy appears to be a suitable treatment, although comprehensive glossectomy with/without radical neck dissection is necessary for early-stage recurrent cases after radiotherapy. (author)

  6. The clinical rationale for MRI-guided radiotherapy : the dawn of a new era

    NARCIS (Netherlands)

    Kerkhof, E.M.

    2010-01-01

    Current radiotherapy treatment machines use the treatment beam or the integrated cone-beam computed tomography (CBCT) functionality for patient positioning based on bony structures or implanted tumour markers. The University Medical Center Utrecht, in cooperation with Elekta and Philips, is

  7. [Clinical efficacy of alternating chemo-radiotherapy for locally advanced nasopharyngeal carcinoma].

    Science.gov (United States)

    You, Xi; Yang, Yucheng

    2014-03-01

    The purpose of this study is to investigate the effective of alternating Chemo-radiotherapy for locally Advanced Nasopharyngeal Carcinoma. Retrospective analysis 106 cases of patients with locally advanced nasopharyngeal carcinoma between November 2005 and March 2007. All patients received cisplatin-based chemotherapy but 15 patients received radiotherapy(RT) alone. Inducing chemotherapy (IC) + RT + adju-vant chemotherapy (AC) regimen in 36 patients, IC+RT regimen was delivered in 25 patients and AC + RT regimen in 30 patients. 61 patients received 1 to 2 cycles of inducing chemotherapy and 66 patients received 3 to 6 cycles of adjuvant chemotherapy after radiotherapy. Chemotherapy started on the first day after the end of the induction chemotherapy, adjuvant chemotherapy begun after radiotherapy for a week. All patients were treated by radiotherapy using 60 Co r-ray, the nasophyarynx primary site was given a total does of 68 -74 Gy. The lymph nodes of the neck was given 60 to 70 Gy. The prophylactic irradiation does of the neck was 48-50 Gy. RESCULT: The median follow up time was 51 months. A total of 58 patients died, the overall survival rate was 45% in whole groups. The 5-year overall survival rates were 33%, 63%, 60% and 50% in RT, IC + RT + AC, IC + RT and RT+AC group, respectively. The 5-year disease-free survival rates were 13%, 56%, 48% and 40% in RT, IC + RT + AC, IC + RT and RT + AC group, respectively. The 5-year relapse-free survival rates were 13%, 53%, 48% and 50% in RT, IC + RT + AC, IC + RT and RT + AC group, respectively. The 5-year metastasis-free survival rates were 6%, 50%, 44% and 47% in RT, IC + RT + AC, IC+ RT and RT + AC group, respectively. There was significant difference in all groups (P 0.05). IC + RT + AC group had heavier acute toxicity effects than other groups, but it did not affect the treatment process, all patients could be tolerated. This retrospective study has demonstrated that alternating Chemo-radiotherapy and early

  8. Potential clinical predictors of outcome after postoperative radiotherapy of non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Buetof, R. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiation Oncology, Dresden (Germany); Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, OncoRay National Center for Radiation Research in Oncology, Dresden (Germany); Kirchner, K.; Appold, S. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiation Oncology, Dresden (Germany); Loeck, S. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, OncoRay National Center for Radiation Research in Oncology, Dresden (Germany); Rolle, A. [Lungenfachklinik Coswig, Department of Thoracic and Vascular Surgery, Coswig (Germany); Hoeffken, G. [Lungenfachklinik Coswig, Department of Pneumology, Coswig (Germany); Krause, M.; Baumann, M. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiation Oncology, Dresden (Germany); Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, OncoRay National Center for Radiation Research in Oncology, Dresden (Germany); German Cancer Consortium (DKTK), Dresden (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)

    2014-03-15

    The aim of this analysis was to investigate the impact of tumour-, treatment- and patient-related cofactors on local control and survival after postoperative adjuvant radiotherapy in patients with non-small cell lung cancer (NSCLC), with special focus on waiting and overall treatment times. For 100 NSCLC patients who had received postoperative radiotherapy, overall, relapse-free and metastases-free survival was retrospectively analysed using Kaplan-Meier methods. The impact of tumour-, treatment- and patient-related cofactors on treatment outcome was evaluated in uni- and multivariate Cox regression analysis. No statistically significant difference between the survival curves of the groups with a short versus a long time interval between surgery and radiotherapy could be shown in uni- or multivariate analysis. Multivariate analysis revealed a significant decrease in overall survival times for patients with prolonged overall radiotherapy treatment times exceeding 42 days (16 vs. 36 months) and for patients with radiation-induced pneumonitis (8 vs. 29 months). Radiation-induced pneumonitis and prolonged radiation treatment times significantly reduced overall survival after adjuvant radiotherapy in NSCLC patients. The negative impact of a longer radiotherapy treatment time could be shown for the first time in an adjuvant setting. The hypothesis of a negative impact of longer waiting times prior to commencement of adjuvant radiotherapy could not be confirmed. (orig.) [German] Das Ziel der vorliegenden Analyse war, den Einfluss von tumor-, patienten- und therapieabhaengigen Kofaktoren auf die lokoregionale Tumorkontrolle und das Ueberleben nach postoperativer adjuvanter Strahlentherapie bei Patienten mit einem nicht-kleinzelligen Bronchialkarzinom (NSCLC) zu untersuchen. Ein spezieller Fokus lag dabei auf der Wartezeit zwischen Operation und Beginn der Strahlentherapie sowie der Gesamtbehandlungszeit der Strahlentherapie. Fuer 100 Patienten, die eine postoperative

  9. WRAP53 is an independent prognostic factor in rectal cancer- a study of Swedish clinical trial of preoperative radiotherapy in rectal cancer patients

    International Nuclear Information System (INIS)

    Zhang, Hong; Wang, Da-Wei; Adell, Gunnar; Sun, Xiao-Feng

    2012-01-01

    Expression of WRAP53 protein has oncogenic properties and it is up regulated in several types of tumors. We examined expression of WRAP53 protein in rectal cancers and analyzed its relationship to the response to preoperative radiotherapy and patient survival. The WRAP53 protein was examined by immunohistochemistry in normal mucosa, primary tumors and lymph node metastases from 143 rectal cancer patients participated in a Swedish clinical trial of preoperative radiotherapy. Frequency of WRAP53 protein expression was increased in primary rectal cancer compared to the normal mucosa (p < 0.05). In non-radiotherapy group positive WRAP53 in primary tumors (p = 0.03, RR, 3.73, 95% CI, 1.13-11.89) or metastases (p = 0.01, RR, 4.11, 95% CI, 1.25-13.14), was associated with poor prognosis independently of stages and differentiations. In radiotherapy group, positive WRAP53 in the metastasis correlated with better survival (p = 0.04). An interaction analysis showed that the correlations of WRAP53 with the prognostic significance with and without radiotherapy in the metastasis differed (p = 0.01). In the radiotherapy group, expression of WRAP53 in metastases gave a better outcome (p = 0.02, RR, 0.32, 95% CI, 0.13-0.84), and an interaction analysis showed significance between the two groups (p = 0.01). WRAP53 may be a new biomarker used to predict prognosis and to select suitable patients for preoperative radiotherapy

  10. Effectiveness of surgery and individualized high-dose hyperfractionated accelerated radiotherapy on survival in clinical stage I non-small cell lung cancer. A propensity score matched analysis

    International Nuclear Information System (INIS)

    Jimenez, Marcelo F.; Baardwijk, Angela van; Aerts, Hugo J.W.L.; De Ruysscher, Dirk; Novoa, Nuria M.; Varela, Gonzalo; Lambin, Philippe

    2010-01-01

    Background and purpose: Surgery is considered the treatment of choice for early-stage non-small cell lung cancer (NSCLC). Patients with poor pulmonary function or other comorbidities are treated with radiotherapy. The objective of this investigation is to compare the 3-year survival of two early-stage NSCLC populations treated in two different hospitals, either by surgical resection (lobectomy) or by individualized high-dose accelerated radiotherapy, after matching patients by propensity scoring analysis. Methods: A retrospective comparative study has been performed on two series of consecutive patients with cytohistological diagnosis of NSCLC, clinically staged IA by means of PET-scan (radiotherapy group) and pathologically staged IA (surgery group). Results: A total of 157 cases were initially selected for the analysis (110 operated and 47 treated by radiotherapy). Patients in the radiotherapy group were older, with higher comorbidity and lower FEV1% with 3-years probability of survival for operated patients higher than that found for patients treated by radiotherapy. After matching by propensity scoring (using age and FEV1%), differences disappear and 3-years probability of survival had no statistical differences. Conclusions: Although this is a non-randomized retrospective analysis, we have not found 3-years survival differences after matching cases between surgery and radiotherapy. Nevertheless, data presented here support the continuous investigation for non-surgical alternatives in this disease.

  11. SU-E-T-499: Initial Developments of An OpenCL-Based Cross-Platform Monte Carlo Dose Engine for Carbon Ion Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Pinto, M; Dedes, G; Parodi, K [Ludwig-Maximilians-Univ. Munchen, Garching B. Munich (Germany)

    2015-06-15

    Purpose Dose calculation is of critical importance for carbon ion therapy. Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and of all the more fundamental physical quantities related to biological effects. The long computation time, however, limits its routine clinical applications. We have recently started developing a fast MC package, gCMC for carbon therapy on a parallel processing platform, e.g. GPU, aiming at achieving sufficient efficiency to enable MC in clinically important tasks. This abstract reports our progress. Methods gCMC was developed in OpenCL environment. Our initial developments focused on water material. gCMC supported carbon ion transport in the energy range of 1–450 MeV/u. A Class II condensed history algorithm was implemented for charged particle transport simulations with stopping power computed via Bethe-Bloch equation. Energy straggling and multiple scattering were modeled. Total cross section of nuclear interaction was extracted from Geant4. At present, nuclear interaction events were sampled but transports of secondary particles were not included. Results We tested cases with a homogeneous water phantom and a pencil carbon ion beam with energy of 200–400 MeV/u. When only electro-magnetic channel was included, dose/fluence difference between gCMC and Geant4 results averaged within 10% isodose line was <0.5% of the maximum dose/fluence. After enabling nuclear interactions without transporting secondary particles, dose and fluence agreed with the corresponding results computed by Geant4 with <1% difference. Due to the support for multiple platforms of OpenCL, gCMC was executable on NVidia and AMD GPUs, and Intel CPUs. It took ∼50 sec to transport 107 200MeV/u source carbon ions on an NVidia Titan GPU card. Conclusion Preliminary studies have demonstrated the accuracy and efficiency of gCMC. With further developments in near future, gCMC will potentially achieve clinically

  12. SU-E-T-499: Initial Developments of An OpenCL-Based Cross-Platform Monte Carlo Dose Engine for Carbon Ion Therapy

    International Nuclear Information System (INIS)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X; Pinto, M; Dedes, G; Parodi, K

    2015-01-01

    Purpose Dose calculation is of critical importance for carbon ion therapy. Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and of all the more fundamental physical quantities related to biological effects. The long computation time, however, limits its routine clinical applications. We have recently started developing a fast MC package, gCMC for carbon therapy on a parallel processing platform, e.g. GPU, aiming at achieving sufficient efficiency to enable MC in clinically important tasks. This abstract reports our progress. Methods gCMC was developed in OpenCL environment. Our initial developments focused on water material. gCMC supported carbon ion transport in the energy range of 1–450 MeV/u. A Class II condensed history algorithm was implemented for charged particle transport simulations with stopping power computed via Bethe-Bloch equation. Energy straggling and multiple scattering were modeled. Total cross section of nuclear interaction was extracted from Geant4. At present, nuclear interaction events were sampled but transports of secondary particles were not included. Results We tested cases with a homogeneous water phantom and a pencil carbon ion beam with energy of 200–400 MeV/u. When only electro-magnetic channel was included, dose/fluence difference between gCMC and Geant4 results averaged within 10% isodose line was <0.5% of the maximum dose/fluence. After enabling nuclear interactions without transporting secondary particles, dose and fluence agreed with the corresponding results computed by Geant4 with <1% difference. Due to the support for multiple platforms of OpenCL, gCMC was executable on NVidia and AMD GPUs, and Intel CPUs. It took ∼50 sec to transport 107 200MeV/u source carbon ions on an NVidia Titan GPU card. Conclusion Preliminary studies have demonstrated the accuracy and efficiency of gCMC. With further developments in near future, gCMC will potentially achieve clinically

  13. Clinical investigation on the feature of immunological parameters following radiotherapy in patients with primary lung cancer

    International Nuclear Information System (INIS)

    Toyohira, Ken

    1984-01-01

    This study was undertaken to evaluate five systemic immunological parameters; the number of peripheral blood lymphocytes (number of lymphocytes), percentage of cytotoxicity of peripheral blood lymphocytes against allogeneic target cells of bronchogenic carcinoma (percentage of cytotoxicity), stimulation index of lymphocyte blastoid transformation with phytohemagglutinin (stimulation index with PHA) and reactivities of PPD skin test and PHA skin test in 174 patients with primary lung cancer receiving radiotherapy alone. Percentage of cytotoxicity showed a significant increase and the other four parameters showed a significant decrease when compared with values before radiotherapy. The number of lymphocytes, percentage of cytotoxicity and stimulation index with PHA appeared to have no relation with histologic types of pulmonary cancer. The number of lymphocytes showed a significant decrease through radiotherapy in both groups with and without irradiation for mediastinal region. A decrease in stimulation index with PHA and reactivity of PPD skin test and an increase in percentage of cytotoxicity were significant after radiotherapy in the group with mediastinal irradiation. Significant differences in percentage of cytotoxicity, stimulation index with PHA and reactivity of PPD skin test were observed between the groups receiving 2 Gy/day and 1.5 Gy/day. Stimulation index with PHA, reactivity of PPD skin test and percentage of cytotoxicity appeared to be correlated with tumor regression following radiotherapy. The reactivity of PPD skin test measured after irradiation was correlated with prognosis as a single parameter. Survival time was well correlated with grades using the combination of three parameters (the number of lymphocytes, and reactivities of PPD skin test and PHA skin test). (J.P.N.)

  14. Systemic Lupus Erythematosus, Radiotherapy, and the Risk of Acute and Chronic Toxicity: The Mayo Clinic Experience

    International Nuclear Information System (INIS)

    Pinn, Melva E.; Gold, Douglas G. M.; Petersen, Ivy A.; Osborn, Thomas G.; Brown, Paul D.; Miller, Robert C.

    2008-01-01

    Purpose: To determine the acute and chronic toxic effects of radiotherapy in patients with systemic lupus erythematosus (SLE). Methods and Materials: Medical records of 21 consecutive patients with SLE, who had received 34 courses of external beam radiotherapy and one low-dose-rate prostate implant, were retrospectively reviewed. Patients with discoid lupus erythematosus were excluded. Results: Median survival was 2.3 years and median follow-up 5.6 years. Eight (42%) of 19 patients evaluable for acute toxicity during radiotherapy experienced acute toxicity of Grade 1 or greater, and 4 (21%) had acute toxicity of Grade 3 or greater. The 5- and 10-year incidence of chronic toxicity of Grade 1 or greater was 45% (95% confidence interval [CI], 22-72%) and 56% (95% CI, 28-81%), respectively. The 5- and 10-year incidence of chronic toxicity of Grade 3 or greater was 28% (95% CI, 18-60%) and 40% (95% CI, 16-72%), respectively. Univariate analysis showed that chronic toxicity of Grade 1 or greater correlated with SLE renal involvement (p < 0.006) and possibly with the presence of five or more American Rheumatism Association criteria (p < 0.053). Chronic toxicity of Grade 3 or greater correlated with an absence of photosensitivity (p < 0.02), absence of arthritis (p < 0.03), and presence of a malar rash (p < 0.04). Conclusions: The risk of acute and chronic toxicity in patients with SLE who received radiotherapy was moderate but was not prohibitive of the use of radiotherapy. Patients with more advanced SLE may be at increased risk for chronic toxicity

  15. Cranial nerve involvement in nasopharyngeal carcinoma: response to radiotherapy and its clinical impact.

    Science.gov (United States)

    Li, Jian-Cheng; Mayr, Nina A; Yuh, William T C; Wang, Jian Z; Jiang, Guo-Liang

    2006-05-01

    To evaluate the cranial nerve (CN) palsy associated with nasopharyngeal carcinoma (NPC), we studied factors that influenced the neurologic outcome of radiotherapy (RT), and the patterns and time course of neurologic recovery of CN palsy. Between July 1987 and July 1989, 93 patients who presented with CN palsy at the time of diagnosis of NPC were studied. All patients underwent external-beam RT with either cobalt-60 or 6-MV photon beams to a dose of 69 to 84 Gy at 2 Gy per fraction. The time course and pattern of neurologic recovery (complete, partial, or none) from CN palsy were evaluated. Age, sex, stage, histology, incidence and distribution of types of CNs involved, duration of CN palsy, and time course of tumor response during RT were correlated with the patterns and the time course of neurologic CN recovery by univariate and multivariate analyses. The cases of CN palsy most commonly involved CN V (38%), CN VI (26%), and CN XII (11%), which accounted for the majority of the cases (75%). The time course of CN recovery was variable and protracted. Most patients showed significant improvement upon completion of RT (51%, 19%, and 30% complete, partial, and no recovery, respectively) and further improvement 6 months after RT (58%, 17%, and 25%, respectively). Cranial nerves V, VI, and XII accounted for 75% of cases with no recovery. Recovery was best for CNs II, IX, and XI and the sympathetic nerve (100%, 87%, 100%, and 100%, respectively) and worst for CNs IV, VII, and XII (67%, 60%, and 40%, respectively, with no recovery). Neurologic CN recovery correlated significantly with the pretherapy duration ( or =3 months) of CN palsy (88% versus 62%; p = .002, multivariate analysis), the time course of clinical tumor regression, and neurologic symptom improvement during RT. Age, sex, T stage, N stage, histology, anterior versus posterior CN palsies, and base of skull involvement were not significant. According to our limited data, most patients with CN palsy respond well

  16. Initial clinical results of linac-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas

    International Nuclear Information System (INIS)

    Mitsumori, Michihide; Shrieve, Dennis C.; Alexander, Eben; Kaiser, Ursula B.; Richardson, Gary E.; Black, Peter McL.; Loeffler, Jay S.

    1998-01-01

    Purpose: To retrospectively evaluate the initial clinical results of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (SRT) for pituitary adenomas with regard to tumor and hormonal control and adverse effects of the treatment. Subjects and Methods: Forty-eight patients with pituitary adenoma who underwent SRS or SRT between September 1989 and September 1995 were analyzed. Of these, 18 received SRS and 30 received SRT. The median tumor volumes were 1.9 cm 3 for SRS and 5.7 cm 3 for SRT. Eleven of the SRS and 18 of the SRT patients were hormonally active at the time of the initial diagnosis. Four of the SRS and none of the SRT patients had a history of prior radiation therapy. Both SRS and SRT were performed using a dedicated stereotactic 6-MV linear accelerator (LINAC). The dose and normalization used for the SRS varied from 1000 cGy at 85% of the isodose line to 1500 cGy at 65% of the isodose line. For SRT patients, a total dose of 4500 cGy at 90% or 95% of the isodose line was delivered in 25 fractions of 180 cGy daily doses. Results: Disease control--The three year tumor control rate was 91.1% (100% for SRS and 85.3% for SRT). Normalization of the hormonal abnormality was achieved in 47% of the 48 patients (33% for SRS and 54% for SRT). The average time required for normalization was 8.5 months for SRS and 18 months for SRT. Adverse effects--The 3-year rate of freedom from central nervous system adverse effects was 89.7% (72.2% for SRS and 100% for SRT). Three patients who received SRS for a tumor in the cavernous sinus developed a ring enhancement in the temporal lobe as shown by follow-up magnetic resonance imaging. Two of these cases were irreversible and were considered to be radiation necrosis. None of the 48 patients developed new neurocognitive or visual disorders attributable to the irradiation. The incidence of endocrinological adverse effects were similar in the two groups, resulting in 3-year rates of freedom from newly

  17. Molecular analysis of carbon ion-induced mutations in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Tanaka, Atsushi; Watanabe, Hiroshi; Tano, Shigemitsu; Yokota, Yukihiko

    1998-01-01

    In order to elucidate the characteristics of the mutations induced by ion particles at the molecular level in plants, mutated loci in carbon ion-induced mutants of Arabidopsis were investigated by PCR and Southern blot analyses. In the present study, two lines of gl1 mutant and two lines of tt4 mutant were isolated after carbon ion-irradiation. Out of four mutants, one had a deletion, other two contained rearrangements, and one had a point-like mutation. From the present result, it was suggested that ion particles induced different kinds of alterations of the DNA and therefore they could produce various types of mutant alleles in plants. (author)

  18. Additional transport channel of carbon ions for biological research at the Nuclotron of JINR

    International Nuclear Information System (INIS)

    Yudin, I.P.; Panasik, V.A.; Tyutyunnikov, S.I.

    2011-01-01

    The paper deals with the construction of the 12 C +6 beam transport line for biomedical research at the Nuclotron accelerator complex, JINR. We have studied the scheme and modes of magneto-optical elements of the channel. The results of calculations of the investigated beam transport of carbon ions are presented. The algorithms to control the carbon ion beam in the transportation system are discussed. The choice of the magneto-optical system is motivated. The graphs of the beam envelopes in the channel are given. The scanning control beam functions are considered

  19. Additional transport channel of carbon ions for biological research at the Nuclotron of JINR

    International Nuclear Information System (INIS)

    Yudin, I.P.; Panasik, V.A.; Tyutyunnikov, S.I.

    2012-01-01

    The paper deals with the construction of the beam 12 C +6 transport line for biomedical research at the Nuclotron accelerator complex, JINR. We have studied the scheme and modes of magneto-optical elements of the channel. The results of calculations of the investigated beam transport of carbon ions are presented. The algorithms to control the carbon ion beam in the transportation system are discussed. The choice of the magneto-optical system is motivated. The graphs of the beam envelopes in the channel are given. The scanning control beam functions are considered

  20. Temporal lobe injury after re-irradiation of locally recurrent nasopharyngeal carcinoma using intensity modulated radiotherapy: clinical characteristics and prognostic factors.

    Science.gov (United States)

    Liu, Shuai; Lu, Taixiang; Zhao, Chong; Shen, Jingxian; Tian, Yunming; Guan, Ying; Zeng, Lei; Xiao, Weiwei; Huang, Shaomin; Han, Fei

    2014-09-01

    Temporal lobe injury (TLI) is a debilitating complication after radiotherapy for nasopharyngeal carcinoma (NPC), especially in patients who suffer treatment relapses and receive re-irradiation. We explored the clinical characteristics and prognostic factors of TLI in locally recurrent NPC (rNPC) patients after re-irradiation using intensity modulated radiotherapy (IMRT). A total of 454 temporal lobes (TLs) from 227 locally rNPC patients were reviewed. The clinical characteristics of TLI were analyzed. In the two radiotherapy courses, the equivalent dose in 2 Gy per fraction (EQD2) for the TLs was recalculated to facilitate comparison of the individual data. The median follow-up time was 31 (range, 3-127) months. After re-irradiation using IMRT, 31.3 % (71/227) of patients developed TLI. The median latency of TLI was 15 (range, 4-100) months. Univariate and multivariate analysis showed that the interval time (IT) between the two courses of radiotherapy and the summation of the maximum doses of the two radiotherapy courses (EQD2 - ∑max) were independent factors influencing TLI. The 5-year incidence of TLI for an IT ≤26 or >26 months was 35.9 and 53.7 % respectively (p = 0.024). The median maximum doses delivered to the injured TLs were significantly higher than was the case for the uninjured TLs after two courses of radiotherapy (135.3 and 129.8 Gy, respectively: p 2-year interval was found to be relatively safe.

  1. Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: implications for the clinical target volume design of postoperative radiotherapy

    Directory of Open Access Journals (Sweden)

    Wang X

    2016-10-01

    stations 2, 4, 5, and 7 LNs should be delineated as clinical target volume of postoperative prophylactic irradiation, and upper abdominal LNs should be excluded. While for midthoracic ESCC with three or more positive nodes, upper abdominal LNs should also be included. The length of tumor and histological differentiation should be considered comprehensively to design the clinical target volume for radiotherapy. Keywords: esophagus cancer, radiotherapy, recurrence and metastasis, clinical target volume

  2. Transformation of Physical DVHs to Radiobiologically Equivalent Ones in Hypofractionated Radiotherapy Analyzing Dosimetric and Clinical Parameters: A Practical Approach for Routine Clinical Practice in Radiation Oncology

    Directory of Open Access Journals (Sweden)

    Zoi Thrapsanioti

    2013-01-01

    Full Text Available Purpose. The purpose of this study was to transform DVHs from physical to radiobiological ones as well as to evaluate their reliability by correlations of dosimetric and clinical parameters for 50 patients with prostate cancer and 50 patients with breast cancer, who were submitted to Hypofractionated Radiotherapy. Methods and Materials. To achieve this transformation, we used both the linear-quadratic model (LQ model and the Niemierko model. The outcome of radiobiological DVHs was correlated with acute toxicity score according to EORTC/RTOG criteria. Results. Concerning the prostate radiotherapy, there was a significant correlation between RTOG acute rectal toxicity and ( and ( dosimetric parameters, calculated for  Gy. Moreover, concerning the breast radiotherapy there was a significant correlation between RTOG skin toxicity and dosimetric parameter, calculated for both  Gy ( and  Gy (. The new tool seems reliable and user-friendly. Conclusions. Our proposed model seems user-friendly. Its reliability in terms of agreement with the presented acute radiation induced toxicity was satisfactory. However, more patients are needed to extract safe conclusions.

  3. Clinical benefits of new immobilization system for hypofractionated radiotherapy of intrahepatic hepatocellular carcinoma by helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yong; Zhou, Yong-Kang; Chen, Yi-Xing; Shi, Shi-Ming; Zeng, Zhao-Chong, E-mail: zeng.zhaochong@zs-hospital.sh.cn

    2017-04-01

    Objective: A comprehensive clinical evaluation was conducted, assessing the Body Pro-Lok immobilization and positioning system to facilitate hypofractionated radiotherapy of intrahepatic hepatocellular carcinoma (HCC), using helical tomotherapy to improve treatment precision. Methods: Clinical applications of the Body Pro-Lok system were investigated (as above) in terms of interfractional and intrafractional setup errors and compressive abdominal breath control. To assess interfractional setup errors, a total of 42 patients who were given 5 to 20 fractions of helical tomotherapy for intrahepatic HCC were analyzed. Overall, 15 patients were immobilized using simple vacuum cushion (group A), and the Body Pro-Lok system was used in 27 patients (group B), performing megavoltage computed tomography (MVCT) scans 196 times and 435 times, respectively. Pretreatment MVCT scans were registered to the planning kilovoltage computed tomography (KVCT) for error determination, and group comparisons were made. To establish intrafractional setup errors, 17 patients with intrahepatic HCC were selected at random for immobilization by Body Pro-Lok system, undergoing MVCT scans after helical tomotherapy every week. A total of 46 MVCT re-scans were analyzed for this purpose. In researching breath control, 12 patients, randomly selected, were immobilized by Body Pro-Lok system and subjected to 2-phase 4-dimensional CT (4DCT) scans, with compressive abdominal control or in freely breathing states, respectively. Respiratory-induced liver motion was then compared. Results: Mean interfractional setup errors were as follows: (1) group A: X, 2.97 ± 2.47 mm; Y, 4.85 ± 4.04 mm; and Z, 3.77 ± 3.21 mm; pitch, 0.66 ± 0.62°; roll, 1.09 ± 1.06°; and yaw, 0.85 ± 0.82°; and (2) group B: X, 2.23 ± 1.79 mm; Y, 4.10 ± 3.36 mm; and Z, 1.67 ± 1.91 mm; pitch, 0.45 ± 0.38°; roll, 0.77 ± 0.63°; and yaw, 0.52 ± 0.49°. Between-group differences were statistically significant in 6 directions (p

  4. Clinical benefits of new immobilization system for hypofractionated radiotherapy of intrahepatic hepatocellular carcinoma by helical tomotherapy

    International Nuclear Information System (INIS)

    Hu, Yong; Zhou, Yong-Kang; Chen, Yi-Xing; Shi, Shi-Ming; Zeng, Zhao-Chong

    2017-01-01

    Objective: A comprehensive clinical evaluation was conducted, assessing the Body Pro-Lok immobilization and positioning system to facilitate hypofractionated radiotherapy of intrahepatic hepatocellular carcinoma (HCC), using helical tomotherapy to improve treatment precision. Methods: Clinical applications of the Body Pro-Lok system were investigated (as above) in terms of interfractional and intrafractional setup errors and compressive abdominal breath control. To assess interfractional setup errors, a total of 42 patients who were given 5 to 20 fractions of helical tomotherapy for intrahepatic HCC were analyzed. Overall, 15 patients were immobilized using simple vacuum cushion (group A), and the Body Pro-Lok system was used in 27 patients (group B), performing megavoltage computed tomography (MVCT) scans 196 times and 435 times, respectively. Pretreatment MVCT scans were registered to the planning kilovoltage computed tomography (KVCT) for error determination, and group comparisons were made. To establish intrafractional setup errors, 17 patients with intrahepatic HCC were selected at random for immobilization by Body Pro-Lok system, undergoing MVCT scans after helical tomotherapy every week. A total of 46 MVCT re-scans were analyzed for this purpose. In researching breath control, 12 patients, randomly selected, were immobilized by Body Pro-Lok system and subjected to 2-phase 4-dimensional CT (4DCT) scans, with compressive abdominal control or in freely breathing states, respectively. Respiratory-induced liver motion was then compared. Results: Mean interfractional setup errors were as follows: (1) group A: X, 2.97 ± 2.47 mm; Y, 4.85 ± 4.04 mm; and Z, 3.77 ± 3.21 mm; pitch, 0.66 ± 0.62°; roll, 1.09 ± 1.06°; and yaw, 0.85 ± 0.82°; and (2) group B: X, 2.23 ± 1.79 mm; Y, 4.10 ± 3.36 mm; and Z, 1.67 ± 1.91 mm; pitch, 0.45 ± 0.38°; roll, 0.77 ± 0.63°; and yaw, 0.52 ± 0.49°. Between-group differences were statistically significant in 6 directions (p

  5. Methods and clinical utility of intraoperative radiotherapy (IORT) in breast-conserving surgery

    International Nuclear Information System (INIS)

    Miyauchi, Mitsuru; Yamamoto, Naoto; Fujita, Yoshihiro; Honda, Ichiro; Hatano, Kazuo; Sekiya, Yuichi; Suzuki, Masato; Nakajima, Nobuyuki.

    1996-01-01

    We have developed an intraoperative radiotherapy technique in breast-conserving surgery. Following lumpectomy and axillary dissection up to Level II, the subcutaneous fat layer was lifted from the gland over the entire breast. Electron beams of 25 Gy were irradiated within cylinder, avoiding the skin and subcutaneous tissue. The surface of the gland was covered with cotton swabs saturated with normal saline to equalize the energy depth to the chest wall. This technique has so far been applied to 8 patients, all of whom went through a successful postoperative period without serious complications. The cosmetic results were satisfactory from immediately after the operation. Intraoperative radiotherapy combined with breast-conserving surgery may be helpful in improving the QOL of patients by eliminating the adverse effects associated radiation injury to the skin of the breast and long-term postoperative follow-up. (author)

  6. Development of patient support devices for execution of clinical radiotherapy for cancer patients: A preliminary report

    Directory of Open Access Journals (Sweden)

    Babu N

    2006-01-01

    Full Text Available The present paper illustrates our attempt to design and test the reproducibility of low-cost patient positioning devices prepared in-house in our radiotherapy department. Rigid thermocole boards with angulations, scales and support were designed as breast, pelvis and head positioning devices. Reproducibility and accuracy were tested by serial electronic portal imaging detector imaging. The positioning devices (with or without superimposed moulds showed variations within 2-3 mm on serial treatment days which were within acceptable limits. It is therefore concluded that low-cost patient positioning devices for head, breast and pelvis (the common sites of treatments in radiotherapy can be fabricated from available materials in-house. These have been shown to be resulting in accurate immobilization, can be customized for particular techniques and are considerably cheaper than commercially available solutions.

  7. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials

    OpenAIRE

    Clark, Catharine H; Aird, Edwin GA; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia AD; Thomas, Russell AS; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK...

  8. Margin estimation and disturbances of irradiation field in layer-stacking carbon-ion beams for respiratory moving targets.

    Science.gov (United States)

    Tajiri, Shinya; Tashiro, Mutsumi; Mizukami, Tomohiro; Tsukishima, Chihiro; Torikoshi, Masami; Kanai, Tatsuaki

    2017-11-01

    Carbon-ion therapy by layer-stacking irradiation for static targets has been practised in clinical treatments. In order to apply this technique to a moving target, disturbances of carbon-ion dose distributions due to respiratory motion have been studied based on the measurement using a respiratory motion phantom, and the margin estimation given by the square root of the summation Internal margin2+Setup margin2 has been assessed. We assessed the volume in which the variation in the ratio of the dose for a target moving due to respiration relative to the dose for a static target was within 5%. The margins were insufficient for use with layer-stacking irradiation of a moving target, and an additional margin was required. The lateral movement of a target converts to the range variation, as the thickness of the range compensator changes with the movement of the target. Although the additional margin changes according to the shape of the ridge filter, dose uniformity of 5% can be achieved for a spherical target 93 mm in diameter when the upward range variation is limited to 5 mm and the additional margin of 2.5 mm is applied in case of our ridge filter. Dose uniformity in a clinical target largely depends on the shape of the mini-peak as well as on the bolus shape. We have shown the relationship between range variation and dose uniformity. In actual therapy, the upper limit of target movement should be considered by assessing the bolus shape. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. Radiotherapy for malignancy in patients with scleroderma: The Mayo Clinic experience

    International Nuclear Information System (INIS)

    Gold, Douglas G.; Miller, Robert C.; Petersen, Ivy A.; Osborn, Thomas G.

    2007-01-01

    Purpose: To determine the frequency of acute and chronic adverse effects in patients with scleroderma who receive radiotherapy for treatment of cancer. Methods and Materials: Records were reviewed of 20 patients with scleroderma who received radiotherapy. Acute and chronic toxic effects attributable to radiotherapy were analyzed, and freedom from radiation-related toxicity was calculated. Results: Of the 20 patients, 15 had acute toxic effects, with Grade 3 or higher toxicity for 3 patients. Seven patients had self-limited Grade 1 or 2 radiation dermatitis, and no patient had Grade 3 or higher radiation dermatitis. Thirteen patients had chronic toxic effects, with Grade 3 or higher chronic toxicity for 3 patients. The median estimated time to any grade chronic toxicity was 0.4 years, and the median estimated time to Grade 3 or higher chronic toxicity has not been reached. Conclusions: The results suggest that although some patients with scleroderma treated with radiation experience considerable toxic effects, the occurrence of Grade 3 or higher toxicity may be less than previously anticipated

  10. Multiple sclerosis, brain radiotherapy, and risk of neurotoxicity: The Mayo Clinic experience

    International Nuclear Information System (INIS)

    Miller, Robert C.; Lachance, Daniel H.; Lucchinetti, Claudia F.; Keegan, B. Mark; Gavrilova, Ralitza H.; Brown, Paul D.; Weinshenker, Brian G.; Rodriguez, Moses

    2006-01-01

    Purpose: The aim of this study was a retrospective assessment of neurotoxicity in patients with multiple sclerosis (MS) receiving external beam radiotherapy (EBRT) to the brain. Methods and Materials: We studied 15 consecutively treated patients with MS who received brain EBRT. Neurologic toxicity was assessed with the Common Toxicity Criteria v.3.0. Results: Median follow-up for the 5 living patients was 6.0 years (range, 3.3-27.4 years). No exacerbation of MS occurred in any patient during EBRT. Five patients had Grade 4 neurologic toxicity and 1 had possible Grade 5 toxicity. Kaplan-Meier estimated risk of neurotoxicity greater than Grade 4 at 5 years was 57% (95% confidence interval, 27%-82%). Toxicity occurred at 37.5 to 54.0 Gy at a median of 1.0 year (range, 0.2-4.3 years) after EBRT. Univariate analysis showed an association between opposed-field irradiation of the temporal lobes, central white matter, and brainstem and increased risk of neurotoxicity (p < 0.04). Three of 6 cases of toxicity occurred in patients treated before 1986. Conclusions: External beam radiotherapy of the brain in patients with MS may be associated with an increased risk of neurotoxicity compared with patients without demyelinating illnesses. However, this risk is associated with treatment techniques that may not be comparable to modern, conformal radiotherapy

  11. Doses to organs and tissues from concomitant imaging in radiotherapy: a suggested framework for clinical justification.

    Science.gov (United States)

    Harrison, R M

    2008-12-01

    The increasing use of imaging for localization and verification in radiotherapy has raised issues concerning the justifiable doses to critical organs and tissues from concomitant exposures, particularly when extensive image-guided radiotherapy is indicated. Doses at positions remote from the target volume include components from high-energy leakage and scatter, as well as from concomitant imaging. In this paper, simulated prostate, breast and larynx treatments are used to compare doses from both high-energy and concomitant exposures as a function of distance from the target volume. It is suggested that the fraction, R, of the total dose at any point within the patient that is attributable to concomitant exposures may be a useful aid in their justification. R is small within the target volume and at large distances from it. However, there is a critical region immediately adjacent to the planning target volume where the dose from concomitant imaging combines with leakage and scatter to give values of R that approach 0.5 in the examples given here. This is noteworthy because the regions just outside the target volume will receive total doses in the order of 1 Gy, where commensurately high risk factors may not be substantially reduced because of cell kill. Other studies have identified these regions as sites of second cancers. The justification of an imaging regimen might therefore usefully take into account the maximum value of R encountered from the combination of imaging and radiotherapy for particular treatment sites.

  12. Physical, biological and clinical basis of light ions using in radiotherapy: EULIMA project

    International Nuclear Information System (INIS)

    Chauvel, P.

    1991-01-01

    Improving the efficiency of radiotherapy is a constant concern in oncology: more than half of the patients who contract cancer receive radiotherapy at some stage. Use of charged particles in radiotherapy represents indisputable progress in localization of the dose delivered to tumour masses, thereby allowing reduction of dose received by adjacent healthy tissues. Protons improve the physical selectivity of the irradiation, i.e. the dose distribution. High-LET (Linear Energy Transfer) radiations produce different biological effects, decreasing the differences in radiosensitivity, and allowing radiation therapy to control radioresistant tumours. Fast neutrons represent the most known of these high-LET particles, but they suffer of a relatively poor physical selectivity. The two approaches (physical selectivity and biological advantages) are joined in by light ions (Carbon, Oxygen, Neon). Highly selective high-LET radiation therapy can be performed for radioresistant tumours without damage to healthy tissues. Preliminary results obtained in Berkeley (USA) demonstrate an improved local control of unresectable, slowly growing tumours, confirming what could be extrapolated from proton and neutrontherapy. Furthermore, radioactive light ion beams can be used to verify the accuracy of treatment planning by checking the range of the particle with a PET camera, and in the future for the treatment itself. In the framework of its programme Europe against Cancer, the Commission of the European Communities participates in the funding of the EULIMA (European Light Ion Medical Accelerator) project feasibility study, aiming to design an hospital-based light ion therapy facility in Europe [fr

  13. Randomized clinical trial of post-operative radiotherapy versus concomitant carboplatin and radiotherapy for head and neck cancers with lymph node involvement

    International Nuclear Information System (INIS)

    Racadot, Severine; Mercier, Mariette; Dussart, Sophie; Dessard-Diana, Bernadette; Bensadoun, Rene-Jean; Martin, Michel; Malaurie, Emmanuelle; Favrel, Veronique; Housset, Martin; Durdux, Catherine; Journel, Catherine; Calais, Gilles; Huet, Jocelyne; Pillet, Gerard; Hennequin, Christophe; Haddad, Elias; Diana, Christian; Blaska-Jaulerry, Brigitte; Henry-Amar, Michel; Gehanno, Pierre

    2008-01-01

    Background and purpose: Post-operative radiotherapy is indicated for the treatment of head and neck cancers. In vitro, chemotherapy potentiates the cytotoxic effects of radiation. We report the results of a randomized trial testing post-operative radiotherapy alone versus concomitant carboplatin and radiotherapy for head and neck cancers with lymph node involvement. Materials and methods: The study involved patients undergoing curative-intent surgery for head and neck cancers with histological evidence of lymph node involvement. Patients were randomly assigned to receive radiotherapy alone (54-72 Gy, 30-40 fractions, 6-8 weeks) or identical treatment plus concomitant Carboplatin (50 mg/m 2 administered by IV infusion twice weekly). Results: Between February 1994 and June 2002, 144 patients were included. With a median follow-up of 106 months (95% confidence interval (CI) [92-119]), the 2-year rate of loco-regional control was 73% (95% CI: 0.61-0.84) in the combined treatment group and 68% (95% CI: 0.57-0.80) in the radiotherapy group (p = 0.26). Overall survival did not differ significantly between groups (hazard ratio for death, 1.05; 95% CI: 0.69-1.60; p = 0.81). Conclusions: Twice-weekly administration of carboplatin concomitant to post-operative radiotherapy did not improve local control or overall survival rates in this population of patients with node-positive head and neck cancers

  14. Clinical variability of target volume description and treatment plans in conformal radiotherapy in muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Logue, John P; Sharrock, Carole L; Cowan, Richard A.; Read, Graham; Marrs, Julie; Mott, David

    1996-01-01

    Purpose/Objective: The delineation of tumor and the production of a treatment plan to encompass this is the prime step in radiotherapy planning. Conformal radiotherapy is developing rapidly and although plentiful research has addressed the implementation of the radiotherapy prescription, scant attention has been made to the fundamental step of production, by the clinician, of an appropriate target volume. As part of an ongoing randomized trial of conformal radiotherapy, in bladder cancer, we have therefore assessed the interphysician variability of radiologists and radiation oncologists (RO) in assessing Gross Tumor Volume(GTV) (ICRU 50) and the adherence of the radiation oncologists to the study protocol of producing a Planning Target Volume (PTV). Materials and Methods: Four patients with T3 carcinoma of bladder who had been entered into the trial were identified. The clinical details, MR scans and CT scans were made available. Eight RO and 3 dedicated diagnostic oncology radiologists were invited to directly outline the GTV onto CT images on a planning computer consul. The RO in addition created a PTV following the trial protocol of 15mm margin around the GTV. Three RO sub-specialized in Urological radiotherapy; all RO had completed training. Volumes were produced, for each clinician, and comparison of these volumes and their isocenters were analyzed. In addition the margins allowed were measured and compared. Results: There was a maximum variation ratio (largest to smallest volume outlined) of the GTV in the four cases of 1.74 among radiologists and 3.74 among oncologists. There was a significant difference (p=0.01) in mean GTV between RO and the radiologists. The mean GTV of the RO exceeded the radiologists by a factor of 1.29 with a mean difference of 13.4 cm 3 The between observer variance within speciality comprised only 9.9% of the total variance in the data having accounted for case and observers speciality. The variation ratio in PTV among oncologists

  15. Clinical validation of the LKB model and parameter sets for predicting radiation-induced pneumonitis from breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Tsougos, Ioannis; Mavroidis, Panayiotis; Theodorou, Kyriaki; Rajala, J; Pitkaenen, M A; Holli, K; Ojala, A T; Hyoedynmaa, S; Jaervenpaeae, Ritva; Lind, Bengt K; Kappas, Constantin

    2006-01-01

    The choice of the appropriate model and parameter set in determining the relation between the incidence of radiation pneumonitis and dose distribution in the lung is of great importance, especially in the case of breast radiotherapy where the observed incidence is fairly low. From our previous study based on 150 breast cancer patients, where the fits of dose-volume models to clinical data were estimated (Tsougos et al 2005 Evaluation of dose-response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy Phys. Med. Biol. 50 3535-54), one could get the impression that the relative seriality is significantly better than the LKB NTCP model. However, the estimation of the different NTCP models was based on their goodness-of-fit on clinical data, using various sets of published parameters from other groups, and this fact may provisionally justify the results. Hence, we sought to investigate further the LKB model, by applying different published parameter sets for the very same group of patients, in order to be able to compare the results. It was shown that, depending on the parameter set applied, the LKB model is able to predict the incidence of radiation pneumonitis with acceptable accuracy, especially when implemented on a sub-group of patients (120) receiving D-bar-bar vertical bar EUD higher than 8 Gy. In conclusion, the goodness-of-fit of a certain radiobiological model on a given clinical case is closely related to the selection of the proper scoring criteria and parameter set as well as to the compatibility of the clinical case from which the data were derived. (letter to the editor)

  16. Clinical trial of neoadjuvant chemotherapy combined with radiotherapy for primary intracranial germinomas

    International Nuclear Information System (INIS)

    Kitamura, Kei; Suzuki, Keishiro; Shirato, Hiroki; Kagei, Kenji; Aoyama, Hidefumi; Sawamura, Yutaka; Ikeda, Jun; Miyasaka, Kazuo

    1997-01-01

    Purpose/Objective: Since 1992, we have been using neoadjuvant chemotherapy to reduce the radiation dose and irradiated volume in the treatment of intracranial germinomas. This study evaluates the initial response and complications of the treatment and also the IQ score and pituitary function of patients before radiotherapy. Materials and methods: Fifteen patients with histologically confirmed intracranial germinomas were treated between 1992 and 1997. Six patients with solitary pure germinoma received 3 to 4 courses of etoposide and cisplatin (EP regimen) followed by localized irradiation of 24Gy (in 12 fractions within 3 weeks). Three patients with germinoma with syncytiotrophoblastic giant cells (STGC) and 4 patients with multifocal pure germinoma received 3 to 5 courses of ifosfamide, cisplatin and etoposide (ICE regimen), followed by localized irradiation of 24 Gy. Two patients with disseminated pure germinoma received 2 to 4 courses of ICE regimen followed by craniospinal irradiation of 24 Gy. In the planning of localized irradiation, the treatment field was determined so as to cover the tumor with a margin of 2cm. The IQ score and pituitary function before radiotherapy were also examined. MRI was performed in all patients one month after the completion of treatment and every 6 months in the follow-up study. The treatment data of our institute before 1991, as historical control, was analyzed and compared to that of the present study. Results: Complete remission (CR) was obtained in all patients after the treatment. One patient with germinoma with STGC experienced recurrence out of the field at 39 months after surgery. He was re-treated with salvage therapy including the ICE regimen and obtained a second complete remission. All patients are alive without disease with a median follow-up period of 29 months. The examination of IQ score and pituitary function before radiotherapy revealed mental retardation in 2 patients (22%) and hypopituitarism in 13 patients (86

  17. Analysis of a large number of clinical studies for breast cancer radiotherapy: estimation of radiobiological parameters for treatment planning

    International Nuclear Information System (INIS)

    Guerrero, M; Li, X Allen

    2003-01-01

    Numerous studies of early-stage breast cancer treated with breast conserving surgery (BCS) and radiotherapy (RT) have been published in recent years. Both external beam radiotherapy (EBRT) and/or brachytherapy (BT) with different fractionation schemes are currently used. The present RT practice is largely based on empirical experience and it lacks a reliable modelling tool to compare different RT modalities or to design new treatment strategies. The purpose of this work is to derive a plausible set of radiobiological parameters that can be used for RT treatment planning. The derivation is based on existing clinical data and is consistent with the analysis of a large number of published clinical studies on early-stage breast cancer. A large number of published clinical studies on the treatment of early breast cancer with BCS plus RT (including whole breast EBRT with or without a boost to the tumour bed, whole breast EBRT alone, brachytherapy alone) and RT alone are compiled and analysed. The linear quadratic (LQ) model is used in the analysis. Three of these clinical studies are selected to derive a plausible set of LQ parameters. The potential doubling time is set a priori in the derivation according to in vitro measurements from the literature. The impact of considering lower or higher T pot is investigated. The effects of inhomogeneous dose distributions are considered using clinically representative dose volume histograms. The derived LQ parameters are used to compare a large number of clinical studies using different regimes (e.g., RT modality and/or different fractionation schemes with different prescribed dose) in order to validate their applicability. The values of the equivalent uniform dose (EUD) and biologically effective dose (BED) are used as a common metric to compare the biological effectiveness of each treatment regime. We have obtained a plausible set of radiobiological parameters for breast cancer. This set of parameters is consistent with in vitro

  18. A consensus-based guideline defining clinical target volume for primary disease in external beam radiotherapy for intact uterine cervical cancer

    International Nuclear Information System (INIS)

    Toita, Takafumi; Ohno, Tatsuya; Kaneyasu, Yuko

    2011-01-01

    The objective of this study was to develop a consensus-based guideline to define clinical target volume for primary disease (clinical target volume primary) in external beam radiotherapy for intact uterine cervical cancer. The working subgroup of the Japan Clinical Oncology Group (JCOG) Radiation Therapy Study Group began developing a guideline for primary clinical target volume in November 2009. The group consisted of 10 radiation oncologists and 2 gynecologic oncologists. The process started with comparing the contouring on computed tomographic images of actual cervical cancer cases among the members. This was followed by a comprehensive literature review that included primary research articles and textbooks as well as information on surgical procedures. Extensive discussion occurred in face-to-face meetings (three occasions) and frequent e-mail communications until a consensus was reached. The working subgroup reached a consensus on the definition for the clinical target volume primary. The clinical target volume primary consists of the gross tumor volume, uterine cervix, uterine corpus, parametrium, vagina and ovaries. Definitions for these component structures were determined. Anatomical boundaries in all directions were defined for the parametrium. Examples delineating these boundaries were prepared for the posterior border of the parametrium for various clinical situations (id est (i.e.) central tumor bulk, degree of parametrial involvement). A consensus-based guideline defining the clinical target volume primary was developed for external beam radiotherapy for intact uterine cervical cancer. This guideline will serve as a template for radiotherapy protocols in future clinical trials. It may also be used in actual clinical practice in the setting of highly precise external beam radiotherapy, including intensity-modulated radiotherapy. (author)

  19. Does carbonate ion control planktonic foraminifera shell calcification in upwelling regions?

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Godad, S.P.; Naidu, P.D.

    are still debated and to utilize shell weights of a particular species as a surface water carbonate ion proxy, it is important to understand whether [CO = 3 ] controls shell calcification in that species over a period of time. We therefore utilize...

  20. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Kai; Wang, Yibo [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  1. Late quaternary fluctuations in carbonate and carbonate ion content in the northern Indian ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.

    -normalized carbonate ion (CO3=*) range from 90 to 125µmol kg-1 in the tropical region of the world oceans with a weight los of 0.3 ± 0.05µg mol -1kg-1 (Broecker and Clark, 201d). Botm water CO3=* concentration bathing the core tops are in the range of 88 to 13 μmolkg-1...

  2. Radioprotective effects of melatonin on carbon-ion and X ray irradiation in mice

    International Nuclear Information System (INIS)

    Saito, Masayoshi; Kawata, Tetsuya; Liu, C.; Sakurai, Akiko; Ito, Hisao; Ando, Koichi

    2004-01-01

    The radioprotective ability of melatonin was investigated in C3H mice irradiated to a whole-body X-ray (150 Kv, 20 mA) and carbon-ion (290 MeV/u). Mice exposed to X-ray, 13 KeV/μm and 50 KeV/μm carbon-ion dose of 7.0-7.5 Gy, 6.5-7.25 Gy and 6.0-6.5 Gy, respectively. One hour before the irradiation, mice were given an intraperitoneal injection of 0.2 ml of either solvent (soybean oil) or melatonin (250 mg/kg, uniform suspension in soybean oil). Mice were observed for mortality over a period of 30 days following irradiation. Results obtained the first year are as follows. The toxicity of melatonin (at a dose 250 mg/kg) intraperitoneal administered to mice could not be observed. A pretreatment of melatonin is effective in protecting mice from lethal damage of low-linear energy transfer (LET) irradiation (X-ray and 13 KeV/μm carbon-ion). In the high-LET irradiated mice with 50 KeV/μm carbon-ion, melatonin exhibited a slight increase in their survival. (author)

  3. Clinical investigation of twice-a-day fractionated radiotherapy for T2 laryngeal cancer

    International Nuclear Information System (INIS)

    Karasawa, K.; Kaneyasu, Y.; Fukuhara, N.; Kita-Okawa, M.; Okawa, T.

    1996-01-01

    Purpose/objective: To improve the local control rate while minimizing the complication rate in the treatment of T2 laryngeal cancer, we conducted a Phase II trial of twice-a-day fractionated radiotherapy (TDFR) and compared the results with those of historical control treated by conventional radiotherapy. Materials and Methods: Between 1966 and 1995, 126 cases with T2 laryngeal cancer were treated by radiotherapy in our department by Cobalt equipment. Median field sige was 42cm 2 . Since 1986, we started TDFR. Fifty-eight cases were treated by TDFR, among them there were 6 cases of supraglottic lesion, 49 cases of glottic, and 3 cases of subglottic. Their age ranged from 47 to 82 (mean 64), and all but 1 cases were male. They were irradiated with a fraction dose of 1.5 Gy twice a day at least 6 hours apart, 10 times a week to a total dosage of 66 - 78 Gy (mean 69Gy) in 30 to 53 days (median 43 days). Fifty-four (93 %) of the cases needed a split during radiotherapy for acute mucosal reaction. The other 68 cases were treated by conventional radiotherapy (control group). There were 8 cases of supraglottic lesion, 57 of glottic, and 3 of subglottic. Their age ranged from 33 to 86 (mean 62), and 62 cases (91 %) were male. They were irradiated with a fraction dose of 1.8 Gy (38 cases) or 2 Gy (30 cases) to a total dosage of 59 - 72Gy (mean 66 Gy) in 43 - 69 days (median 51 days). Thirteen (19 %) of the cases needed a split during radiotherapy. Acute and late reactions were graded into 4 grades and compared. Results: Five year actuarial local control rate was 79.0 % in the TDFR group and 75.6 % in the control group (n.s.). Five year actuarial survival rate was 79.7 % in the TDFR group and 77.7 % in the control group (n.s.). Five year actuarial cause-specific survival rate was 96.4 % in the TDFR group and 95.2 % in the control group (n.s.). Five year actuarial local control rate of glottic cases was 78.6 % in the TDFR group and 78.8 % in the control group (n.s.). As for

  4. Clinical observation of submandibular gland transfer for the prevention of xerostomia after radiotherapy for nasopharyngeal carcinoma: a prospective randomized controlled study of 32 cases

    Science.gov (United States)

    2014-01-01

    Background The aim of this study was to evaluate the clinical efficacy of submandibular gland transfer for the prevention of xerostomia after radiotherapy for nasopharyngeal carcinoma. Methods Using the randomized controlled clinical research method, 65 patients with nasopharyngeal carcinoma were randomly divided into an experimental group consisting of 32 patients and a control group consisting of 33 patients. The submandibular glands were averted to the submental region in 32 patients with nasopharyngeal carcinoma before they received conventional radiotherapy; a lead block was used to shield the submental region during therapy. Prior to radiotherapy, the function of the submandibular glands was assessed using imaging. Submandibular gland function was measured using 99mTc radionuclide scanning at 60 months after radiotherapy. The data in the questionnaire regarding the degree of xerostomia were investigated and saliva secretion was measured at 3, 6, 12, and 60 months after radiotherapy. In addition, the 5-year survival rate was calculated. Results After follow-up for 3, 6, and 12 months, the incidence of moderate to severe xerostomia was significantly lower in the experimental group than in the control group. The average amount of saliva produced by the experimental and control groups was 1.60 g and 0.68 g, respectively (P xerostomia was significantly lower than in the control group (15.4% and 76.9%, respectively; P xerostomia after radiotherapy for nasopharyngeal carcinoma, we found that clinical efficacy was good. This approach could improve the quality of life of nasopharyngeal carcinoma patients after radiotherapy and would not affect long-term treatment efficacy. PMID:24555575

  5. A regional cooperative clinical study of radiotherapy for cervical cancer in east and south-east Asian countries

    International Nuclear Information System (INIS)

    Nakano, Takashi; Kato, Shingo; Cao, Jianping; Zhou Juying; Susworo, Raden; Supriana, Nana; Sato, Shinichiro; Ohno, Tatsuya; Suto, Hisao; Nakamura, Yuzuru; Cho, Chul-Koo; Ismail, Fuad B.; Calaguas, Miriam J.C.; Reyes, Rey H. de los; Chansilpa, Yaowalak; Thephamongkhol, Kullathom; Nguyen Ba Duc; To Anh Dung; Tsujii, Hirohiko

    2007-01-01

    Purpose: Radiotherapy differed widely in east and south-east Asia because of technical, cultural, and socio-economic differences. With the purpose of standardizing radiotherapy for cervical cancer in the region, an international clinical study was conducted. Materials and methods: Eleven institutions in eight Asian countries participated in the study. Between 1996 and 1998, 210 patients with stage IIIB cervical cancer were enrolled. Patients were treated with a combination of external beam radiotherapy (total dose, 50 Gy) and either high-dose-rate (HDR) or low-dose-rate (LDR) intracavitary brachytherapy (ICBT) according to the institutional practice. The planned point A dose was 20-28 Gy/4 fractions for HDR-ICBT and 30-40 Gy/1-2 fractions for LDR-ICBT. Results: Hundred patients were treated with HDR-ICBT and 110 were treated with LDR-ICBT. The ICBT doses actually delivered to point A ranged widely: 12-32 Gy in the HDR group and 26-52.7 Gy in the LDR group. The 5-year follow-up rate among the countries differed greatly, from 29% to 100%. The 5-year major complication rates were 6% in the HDR group and 10% in the LDR group. The 5-year overall survival rates were 51.1% in the HDR group and 57.5% in the LDR group. Conclusions: Although there were several problems with treatment compliance and patients' follow-up, the study suggests that the protocols provided favorable outcomes with acceptable rates of late complications in the treatment of advanced cervical cancer in east and south-east Asia

  6. A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy

    Energy Technology Data Exch