WorldWideScience

Sample records for carbon-hydrogen coupling constants

  1. Oxidative coupling of sp 2 and sp 3 carbon-hydrogen bonds to construct dihydrobenzofurans.

    Science.gov (United States)

    Shi, Jiang-Ling; Wang, Ding; Zhang, Xi-Sha; Li, Xiao-Lei; Chen, Yu-Qin; Li, Yu-Xue; Shi, Zhang-Jie

    2017-08-10

    Metal-catalyzed cross-couplings provide powerful, concise, and accurate methods to construct carbon-carbon bonds from organohalides and organometallic reagents. Recent developments extended cross-couplings to reactions where one of the two partners connects with an aryl or alkyl carbon-hydrogen bond. From an economic and environmental point of view, oxidative couplings between two carbon-hydrogen bonds would be ideal. Oxidative coupling between phenyl and "inert" alkyl carbon-hydrogen bonds still awaits realization. It is very difficult to develop successful strategies for oxidative coupling of two carbon-hydrogen bonds owning different chemical properties. This article provides a solution to this challenge in a convenient preparation of dihydrobenzofurans from substituted phenyl alkyl ethers. For the phenyl carbon-hydrogen bond activation, our choice falls on the carboxylic acid fragment to form the palladacycle as a key intermediate. Through careful manipulation of an additional ligand, the second "inert" alkyl carbon-hydrogen bond activation takes place to facilitate the formation of structurally diversified dihydrobenzofurans.Cross-dehydrogenative coupling is finding increasing application in synthesis, but coupling two chemically distinct sites remains a challenge. Here, the authors report an oxidative coupling between sp 2 and sp 3 carbons by sequentially activating the more active aryl site followed by the alkyl position.

  2. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Rasmus; Sauer, Stephan P. A. [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-31

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  3. Coupling constant in dispersive model

    Indian Academy of Sciences (India)

    Abstract. The average of the moments for event shapes in e+e− → hadrons within the con- text of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied. Moments used in this article are 〈1 − T〉, 〈ρ〉, 〈BT〉 and 〈BW〉. We extract αs, the coupling con- stant in perturbative theory and α0 in the ...

  4. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  5. Symmetry breakdown and coupling constants of leptons

    Directory of Open Access Journals (Sweden)

    Gil C. Marques

    2007-06-01

    Full Text Available Based on a new approach to symmetries of the fundamental interactions we deal, in this paper, with the electroweak interactions of leptons. We show that the coupling constants, arising in the way leptons are coupled to intermediate bosons, can be understood as parameters associated to the breakdown of SU(2 and parity symmetries. The breakdown of both symmetries is characterized by a new parameter (the asymetry parameter of the electroweak interactions. This parameter gives a measure of the strength of breakdown of symmetries. We analyse the behaviour of the theory for three values of this parameter. The most relevant value is the one for which only the electromagnetic interactions do not break parity (the maximally allowed left-right asymetric theory. Maximamally allowed parity asymmetry is a requirement that is met for a value of Weinberg's theta-angle that is quite close to the experimental value of this parameter.Com base em uma formulação nova para simetrias das interações fundamentais nós lidamos, neste trabalho, com interações eletrofracas de leptons. Mostramos que as constantes do acoplamento, associadas aos acoplamentos de bósons intermediários, podem ser entendidas como parâmetros associados à quebra de simetrias SU(2 e paridade. A quebra de ambas as simetrias é caracterizada por um parâmetro novo (o parâmetro de assimetria das interações eletrofracas. Este parâmetro dá uma medida da intensidade com que a simetria é quebrada. Analisamos o comportamento da teoria para três valores deste parâmetro. O valor mais relevante é aquele para o qual apenas as interações eletromagnéticas não quebram a paridade (a teoria assimétrica esquerda-direita permitida da maneira máxima. A assimetria máxima permitida é uma exigência que leva a um ângulo de Weinberg cujo valor é próximo daquele observado experimentalmente.

  6. Scalar-tensor theory of gravitation with negative coupling constant

    Science.gov (United States)

    Smalley, L. L.; Eby, P. B.

    1976-01-01

    The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.

  7. Constants and Pseudo-Constants of Coupled Beam Motion in the PEP-II Rings

    Energy Technology Data Exchange (ETDEWEB)

    Decker, F.J.; Colocho, W.S.; Wang, M.H.; Yan, Y.T.; Yocky, G.; /SLAC

    2011-11-01

    Constants of beam motion help as cross checks to analyze beam diagnostics and the modeling procedure. Pseudo-constants, like the betatron mismatch parameter or the coupling parameter det C, are constant till certain elements in the beam line change them. This can be used to visually find the non-desired changes, pinpointing errors compared with the model.

  8. Experimental determination of the effective strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  9. Five-Loop Running of the QCD Coupling Constant.

    Science.gov (United States)

    Baikov, P A; Chetyrkin, K G; Kühn, J H

    2017-02-24

    We analytically compute the five-loop term in the beta function which governs the running of α_{s}-the quark-gluon coupling constant in QCD. The new term leads to a reduction of the theory uncertainty in α_{s} taken at the Z-boson scale as extracted from the τ-lepton decays as well as to new, improved by one more order of perturbation theory, predictions for the effective coupling constants of the standard model Higgs boson to gluons and for its total decay rate to the quark-antiquark pairs.

  10. The properties of C-parameter and coupling constants

    Indian Academy of Sciences (India)

    2016-12-03

    Dec 3, 2016 ... Abstract. We present the properties of the C-parameter as an event-shape variable. We calculate the coupling constants in the perturbative and also in the non-perturbative parts of the QCD theory, using the dispersive as well as the shape function models. By fitting the corresponding theoretical predictions ...

  11. Precise strength of the $\\pi$NN coupling constant

    CERN Document Server

    Ericson, Torleif Eric Oskar; Rahm, J; Blomgren, J; Olsson, N; Thomas, A W

    1998-01-01

    We report here a preliminary value for the piNN coupling constant deduced from the GMO sumrule for forward piN scattering. As in our previous determination from np backward differential scattering cross sections we give a critical discussion of the analysis with careful attention not only to the statistical, but also to the systematic uncertainties. Our preliminary evaluation gives $g^2_c$(GMO) = 13.99(24).

  12. Non-minimally coupled varying constants quantum cosmologies

    CERN Document Server

    Balcerzak, Adam

    2015-01-01

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability of transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.

  13. Non-minimally coupled varying constants quantum cosmologies

    Science.gov (United States)

    Balcerzak, Adam

    2015-04-01

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability of transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.

  14. Assessment of zinc finger orientations by residual dipolar coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Vickie; Zhu Leiming; Huang, T.-H.; Wright, Peter E.; Case, David A. [Scripps Research Institute, Department of Molecular Biology (United States)

    2000-01-15

    Residual dipolar coupling constants measured in anisotropic solution contain information on orientations between internuclear vectors and the magnetic field, providing long-range information that may help determine the relative orientations of distinct domains in biomolecules. Here we describe the measurement and use of residual dipolar coupling restraints in the refinement of the structure of the complex of DNA with three zinc fingers of transcription factor IIIA (TFIIIA), measured in a DMPC/DHPC bicelle solution. These dipolar restraints were applied on a variety of orientations of the zinc finger domains (derived from crystallography, previous NMR studies, and systematic modeling) in order to examine the validity and sensitivity of using residual dipolar splittings to study interdomain orientations. The spread in interdomain angles between zinc fingers is reduced from 24 deg. to 9 deg. upon incorporation of dipolar restraints. However, the results also show that the ability to determine relative orientations is strongly dependent on the structural accuracy of the local domain structures.

  15. The GMO Sumrule and the πNN Coupling Constant

    Science.gov (United States)

    Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.

    The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π-p and π-d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data gc2(GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or fc2/ 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π-p and π-d scattering lengths our analysis leads also to accurate values for (1/2)(aπ-p+aπ-n) and (1/2) (aπ-p-aπ-n).

  16. Strong coupling constant from Adler function in lattice QCD

    Science.gov (United States)

    Hudspith, Renwick J.; Lewis, Randy; Maltman, Kim; Shintani, Eigo

    2016-09-01

    We compute the QCD coupling constant, αs, from the Adler function with vector hadronic vacuum polarization (HVP) function. On the lattice, Adler function can be measured by the differential of HVP at two different momentum scales. HVP is measured from the conserved-local vector current correlator using nf = 2 + 1 flavor Domain Wall lattice data with three different lattice cutoffs, up to a-1 ≈ 3.14 GeV. To avoid the lattice artifact due to O(4) symmetry breaking, we set the cylinder cut on the lattice momentum with reflection projection onto vector current correlator, and it then provides smooth function of momentum scale for extracted HVP. We present a global fit of the lattice data at a justified momentum scale with three lattice cutoffs using continuum perturbation theory at 𝒪(αs4) to obtain the coupling in the continuum limit at arbitrary scale. We take the running to Z boson mass through the appropriate thresholds, and obtain αs(5)(MZ) = 0.1191(24)(37) where the first is statistical error and the second is systematic one.

  17. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  18. Hyperfine coupling constants from internally contracted multireference perturbation theory

    CERN Document Server

    Shiozaki, Toru

    2016-01-01

    We present an accurate method for calculating hyperfine coupling constants (HFCCs) based on the complete active space second-order perturbation theory (CASPT2) with full internal contraction. The HFCCs are computed as a first-order property using the relaxed CASPT2 spin-density matrix that takes into account orbital and configurational relaxation due to dynamical electron correlation. The first-order unrelaxed spin-density matrix is calculated from one- and two-body spin-free counterparts that are readily available in the CASPT2 nuclear gradient program [M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142, 051103 (2015)], whereas the second-order part is computed directly using the newly extended automatic code generator. The relaxation contribution is then calculated from the so-called Z-vectors that are available in the CASPT2 nuclear gradient program. Numerical results are presented for the CN and AlO radicals, for which the CASPT2 values are comparable (or, even superior in some cases) to the ones computed ...

  19. epsilon -meson coupling constants and scale invariance breaking

    CERN Document Server

    Petersen, J L

    1972-01-01

    A general method for obtaining ratios of coupling constants (defined by pole residues) in a way which is completely free of resonance /background separation troubles is devised and applied to the epsilon -meson. Huge discrepancies between previous determinations are shown to arise (i) from inherent ambiguities in the methods used, (ii) from lack of knowledge about the epsilon -pole position and (iii) from the well-known up-down ambiguity in the isospin-0 s-wave pi pi phase shift delta /sub 0//sup o/. Taking as input pi N phase shifts, available information on delta /sup 0//sub 0/ and including all possible uncertainties, the authors find for down-up or up-up delta /sup 0//sub 0/: g/sub epsilon NN//g/sub epsilon pi pi /=(6+or-3) mu /sup -1/, and for down-down or up-up delta /sup 0//sub 0/: g/sub epsilon NN//g/sub epsilon pi pi /=(1.8+or-0.5) mu /sup -1/ The precise validity of the scale invariance breaking prediction (g/sub epsilon NN//g/sub epsilon pi pi /). m/sup 2//sub epsilon //2M=1 is fulfilled in some th...

  20. Strong coupling constant extraction from high-multiplicity Z+jets observables

    OpenAIRE

    Johnson, Mark; Maître, Daniel

    2017-01-01

    We present a strong coupling constant extraction at Next-to-Leading Order QCD accuracy using ATLAS Z+2,3,4 jets data. This is the first extraction using processes with a dependency to high powers of the coupling constant. We obtain values of the strong coupling constant at the $Z$ mass compatible with the world average and with uncertainties commensurate with other NLO extractions at hadron colliders. Our most conservative result for the strong coupling constant is $\\alpha_S=0.1178 ^{+0.0051}...

  1. Role of zero-point vibrational corrections to carbon hyperfine coupling constants in organic π radicals.

    Science.gov (United States)

    Chen, X; Rinkevicius, Z; Ruud, K; Ågren, H

    2013-02-07

    By analyzing a set of organic π radicals, we demonstrate that zero-point vibrational corrections give significant contributions to carbon hyperfine coupling constants, in one case even inducing a sign reversal for the coupling constant. We discuss the implications of these findings for the computational analysis of electron paramagnetic spectra based on hyperfine coupling constants evaluated at the equilibrium geometry of radicals. In particular, we note that a dynamical description that involves the nuclear motion is in many cases necessary in order to achieve a semi-quantitatively predictive theory for carbon hyperfine coupling constants. In addition, we discuss the implications of the strong dependence of the carbon hyperfine coupling constants on the zero-point vibrational corrections for the selection of exchange-correlation functionals in density functional theory studies of these constants.

  2. Realization of power law inflation & variants via variation of the strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    AlHallak, M. [Physics Department, Damascus University,Damascus (Syrian Arab Republic); Chamoun, N. [Physics Department, HIAST,P.O. Box 31983, Damascus (Syrian Arab Republic); Physikalisches Institut der Universität Bonn,Nußalle 12, D-53115 Bonn (Germany)

    2016-09-05

    We present a model of power law inflation generated by variation of the strong coupling constant. We then extend the model to two varying coupling constants which leads to a potential consisting of a linear combination of exponential terms. Some variants of the latter may be self-consistent and can accommodate the experimental data of the Planck 2015 and other recent experiments.

  3. Chemical shift and coupling constant analysis of dibenzyloxy disulfides.

    Science.gov (United States)

    Stoutenburg, Eric G; Gryn'ova, Ganna; Coote, Michelle L; Priefer, Ronny

    2015-02-05

    Dialkoxy disulfides have found applications in the realm of organic synthesis as an S2 or alkoxy donor, under thermal and photolytic decompositions conditions, respectively. Spectrally, dibenzyloxy disulfides possess an ABq in the (1)H NMR, which can shift by over 1.1ppm depending on the substituents present on the aromatic ring, as well as the solvent employed. The effect of the said substituents and solvent were analyzed and compared to the center of the ABq, geminal coupling, and the differences in chemical shifts of the individual doublets. Additionally, quantum-chemical calculations demonstrated the intramolecular H-bonding arrangement, found within the dibenzyloxy disulfides. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A new scheme for the running coupling constant in gauge theories using Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Kurachi, Masafumi [Los Alamos National Laboratory; Bilgici, Erek [AUSTRIA; Flachi, Antonion [KYOTO UNIV; Itou, Etsuko [KOGAKUIN UNIV; David Lin, C J [NATIONAL CHIAO-TUNG UNIV; Matsufuru, Hideo [KEK; Ohki, Hiroshi [KYOTO UNIV; Onogi, Tetsuya [KYOTO UNIV; Yamazaki, Takeshi [UNIV OF TSUKUBA

    2009-01-01

    We propose a new renormalization scheme of the running coupling constant in general gauge theories defined by using the Wilson loops. The renormalized coupling constant is obtained from the Cretz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter calculation is performed by adopting the zeta-function resummation techniques. We make a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with relatively small number of gauge configurations.

  5. Latest Constraints from Jet Measurements on Parton Distribution Functions and on the Strong Coupling Constant

    CERN Document Server

    Naumann-Emme, Sebastian Mirko

    2013-01-01

    Recent measurements of jet cross sections at HERA, the Tevatron and the LHC that provide constraints on parton distribution functions and allow for determinations of the strong coupling constant are presented.

  6. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  7. On the calculations of the nuclear spin-spin coupling constants in small water clusters

    Energy Technology Data Exchange (ETDEWEB)

    Cybulski, Hubert [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Pecul, Magdalena [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Sadlej, Joanna [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)], E-mail: sadlej@chem.uw.edu.pl

    2006-08-01

    The calculations of the nuclear spin-spin coupling constants were carried out for small water clusters (H{sub 2}O) {sub n}, n = 2-6, 12, and 17, using density functional theory (DFT) and second-order polarization propagator method (SOPPA). A wide range of different standard and modified basis sets was tested to enable the choice of the possibly smallest and most flexible basis set. The changes in the oxygen-proton coupling constants upon the cluster formation between the nuclei involved in hydrogen bonding cover a range of ca. 13 Hz. The range of the calculated changes in intramolecular {sup 1} J {sub OH} couplings shows that the simple model of rigid water clusters seems to be sufficient to reproduce properly the sign and to estimate the magnitude of the gas-to-liquid shift. The sign of the complexation-induced changes in the intramolecular {sup 2} J {sub HH} coupling constant is different for molecules with a different coordination number. While the sign is positive for the molecules of the single donor-single acceptor (DA) and single donor-double acceptor (DAA) types, it is negative for the double donor-single acceptor (DDA) molecules. In the four-coordinated double donor-double acceptor (DDAA) molecules the sign of {delta}{sup 2} J {sub HH} varies. The hydrogen-bond transmitted intermolecular coupling constants are substantial: {sup 1h} J {sub OH} spans the range from 2.8 to 8.4 Hz while {sup 2h} J {sub OO} varies from -0.6 to 7.5 Hz. The average intermolecular {sup 1h} J {sub OH} coupling constant decays slowly with the H...O distance in the cyclic clusters n = 2-6. The average {sup 2h} J {sub OO} coupling decreases exponentially with the O...O separation for the cyclic clusters n = 2-6.

  8. Nuclear spin-spin coupling constants evaluated using many body methods

    Science.gov (United States)

    Sekino, Hideo; Bartlett, Rodney J.

    1986-10-01

    In nuclear spin-spin coupling constant determinations, correlation corrections to the Fermi contact term are significant. In this paper we report the coupling constants calculated for the HD and HF molecules obtained by the infinite-order coupled cluster singles and doubles (CCSD) methods and MBPT(4). These are in good agreement with the experimentally estimated value for the Fermi-contact term. In addition, it is well known that the coupled perturbed Hartree-Fock (CPHF) scheme fails for multiply bonded molecules because the closed shell Hartree-Fock solution is triplet unstable. A CCSD method using ordinary nonrelaxed SCF orbitals is presented in order to circumvent this problem, and illustrated by application to the C2H4 molecule. It is shown that CCSD results based upon ordinary SCF orbitals include effectively all the effect of orbital relaxation and reproduce the experimental values for most of the coupling constants. Unlike previous results, the 3J(H-H) constant is positive in agreement with experiment.

  9. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.

    Science.gov (United States)

    Wodyński, Artur; Malkina, Olga L; Pecul, Magdalena

    2016-07-21

    The (2)JCC, (3)JCC, and (4)JCC spin-spin coupling constants in the systems with a heavy atom (Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po) in the coupling path have been calculated by means of density functional theory. The main goal was to estimate the relativistic effects on spin-spin coupling constants and to explore the factors which may influence them, including the nature of the heavy atom and carbon hybridization. The methods applied range, in order of reduced complexity, from the Dirac-Kohn-Sham (DKS) method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component zeroth-order regular approximation (ZORA) Hamiltonians, to scalar effective core potentials (ECPs) with the nonrelativistic Hamiltonian. The use of DKS and ZORA methods leads to very similar results, and small-core ECPs of the MDF and MWB variety reproduce correctly the scalar relativistic effects. Scalar relativistic effects usually are larger than the spin-orbit coupling effects. The latter tend to influence the most the coupling constants of the sp(3)-hybridized carbon atoms and in compounds of the p-block heavy atoms. Large spin-orbit coupling contributions for the Po compounds are probably connected with the inverse of the lowest triplet excitation energy.

  10. Relativistic DFT calculations of hyperfine coupling constants in the 5d hexafluorido complexes

    DEFF Research Database (Denmark)

    Haase, Pi Ariane Bresling; Repisky, Michal; Komorovsky, Stanislav

    2017-01-01

    ions. We find that both methods lead to very similar deviations from the experimental values for the [ReF6]2- complex, i.e. ~20% for the coupling constant using hybrid functionals. None of the methods is, however, able to reproduce the large anisotropy of the [ReF6]2- hyperfine tensor. For [IrF6...

  11. Stellar delta matter with delta-meson coupling constants constrained by QCD sum rule

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Antonio Ferreira da [Secretaria de Educacao, Cultura e Desportos do Estado de Roraima (SECD/RR), Boa Vista, RR (Brazil); Oliveira, Jose Carlos Teixeira de [Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil); Rodrigues, Hilario [Centro Federal de Educacao Tecnologica (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Duarte, Sergio Barbosa [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2010-07-01

    The considerable presence of delta-resonances (30% of baryonic population) in the dense phase of relativistic heavy ion collisions leads to a great interest in the study of the delta matter formation in the deep interior of compact stars. In the present work we determine the equation of state and the population of baryons and leptons and discuss the effects of the baryon-meson coupling constants to the formation of delta matter in the stellar medium. We use the non-linear Walecka model consisting of the octet of baryons of spin 1=2 (n, p, {Lambda}{sup 0}, {Sigma}{sup -}, {Sigma}{sup 0}, {Sigma}{sup +}, {Xi}{sup -}, {Xi}{sup 0}) and baryonic resonances of spin 3=2, represented by the delta resonances ({Delta}{sup -}, ({Delta}{sup 0}, ({Delta}{sup +}, ({Delta}{sup ++}) and {Omega}{sup -}, in the baryonic sector. In the leptonic sector we consider the electrons and muons. The coupling constants between the hyperons {Lambda}, {Sigma}, and {Xi} and the mesons {omega} and {rho} are fixed by using SU(6) symmetry, while the hyperons-{sigma} coupling constants are constrained by the consistence of the hypernuclear potential in the nuclear matter with hypernuclear data. In addition, we use the finite density QCD sum rule to determine the possible values of delta-meson coupling constants. (author)

  12. Ranges and limits of the electron-phonon coupling constant of ...

    African Journals Online (AJOL)

    A simplified study of the effect of including self energy and vertex corrections to the BCS critical temperature Tc expression is carried out her to identify the possible ranges and limits of the electron-phonon coupling constant λ in superconductivity. The results show that the inclusion of the self energy will reduce the BCS Tc to ...

  13. The variation of the fine-structure constant from disformal couplings

    Science.gov (United States)

    van de Bruck, Carsten; Mifsud, Jurgen; Nunes, Nelson J.

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  14. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-01-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation...... in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been...... employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections...

  15. Determination of the sign of the deuteron quadrupole coupling constant in the high temperature limit

    Science.gov (United States)

    Gosling, P.; Brett, C. R.; Rabbani, S. R.

    1987-05-01

    Normally it is impossible to determine the sign of the quadrupole coupling constant in the high temperature limit. However if two nuclei are coupled via the magnetic dipole interaction the characteristic spectra may be modified in such a way that the sign can be determined. This paper discusses the circumstances which are needed to be satisfied by the Hamiltonian describing the form of the interaction between two deuterons and proceeds to describe the features of the deuteron nuclear quadrupole double resonance (NQDR) spectrum which enable the sign to be determined. Comparison with experimental spectra from the crystal hydrates BeSO 4·4H 2O, CH 3COOLi·2H 2O, LiI·3H 2O, LiBr·2H 2O and AlCl 3·6H 2O and the amine groups in adenosine reveals the sign of the quadrupole coupling constant for the first time in the solid state. It is found that the quadrupole coupling constant may be positive or negative depending on the environment of the deuteron sites.

  16. Highly resolved HSQC experiments for the fast and accurate measurement of homonuclear and heteronuclear coupling constants

    Science.gov (United States)

    Souza, Alexandre A.; Gil, Roberto R.; Parella, Teodor

    2017-09-01

    A number of J-upscaled NMR experiments are currently available to measure coupling constants along the indirect F1 dimension of a 2D spectrum. A major drawback is the limited F1 digital resolution that requires long acquisition times in order to achieve reasonably accurate measures. Here is shown how high levels of F1 digital resolution in a multiple-purpose HSQC experiment can be easily achieved by implementing a general J/δ-scaling strategy. In particular, a set of new J-resolved HSQC experiments is presented for a faster and much more accurate J determination in small molecules. Several options and practical aspects are discussed and exemplified by measuring the magnitude and/or the sign of several homo- and heteronuclear coupling constants in one shot.

  17. S3 HMBC hetero: Spin-State-Selective HMBC for accurate measurement of long-range heteronuclear coupling constants

    Science.gov (United States)

    Hoeck, Casper; Gotfredsen, Charlotte H.; Sørensen, Ole W.

    2017-02-01

    A novel method, Spin-State-Selective (S3) HMBC hetero, for accurate measurement of heteronuclear coupling constants is introduced. The method extends the S3 HMBC technique for measurement of homonuclear coupling constants by appending a pulse sequence element that interchanges the polarization in 13C-1H methine pairs. This amounts to converting the spin-state selectivity from 1H spin states to 13C spin states in the spectra of long-range coupled 1H spins, allowing convenient measurement of heteronuclear coupling constants similar to other S3 or E.COSY-type methods. As usual in this type of techniques, the accuracy of coupling constant measurement is independent of the size of the coupling constant of interest. The merits of the new method are demonstrated by application to vinyl acetate, the alkaloid strychnine, and the carbohydrate methyl β-maltoside.

  18. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    Science.gov (United States)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  19. Quark mass dependence of pseudo-scalar masses and coupling constants qq+q Collaboration

    Science.gov (United States)

    Farchioni, F.; Gebert, C.; Montvay, I.; Scholz, E.; Scorzato, L.

    2004-03-01

    The dependence of pseudo-scalar masses and decay constants on the sea and valence quark masses is investigated in the pseudo- Goldstone boson sector of QCD with two light quark flavours. The sea quark masses are at present in the range {1}/{3}m s ≤ m ud ≤ {2}/{3}m s whereas the valence quark masses satisfy {1}/{2}m sea ≤ m val ≤ 2m sea. The values of the Gasser-Leutwyler low energy constants L4, L5, L6 and L8 are estimated. The computation is done with the Wilson-quark lattice action at gauge coupling β = 5.1 on 16 4 lattices. O(a) effects are taken into account by applying chiral perturbation theory for the Wilson lattice action as proposed by Rupak and Shoresh.

  20. Calculations of the indirect nuclear spin-spin coupling constants of PbH4

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Sauer, Stephan P. A.

    1999-01-01

    dominates the Pb-H coupling, whereas for the H-H coupling it is not more important than the orbital paramagnetic and diamagnetic contributions. Correlation affects mainly the Fermi contact term. Its contribution to the one-bond coupling constant is reduced by correlation, independent of the method used...

  1. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlögl, Udo

    2009-07-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  2. The strong coupling constant and the gluon density from jet production in DIS at HERA

    CERN Document Server

    Tassi, E

    2001-01-01

    We present results on the determination of the strong coupling constant and the gluon density of the proton obtained in recent QCD analyses of HERA jet data. Topics include updated determinations of alpha /sub s/(M/sub Z/), tests of the alpha /sub s/ energy scale dependence, a study of the influence of HERA dijet cross sections on the extraction of the gluon density in a DGLAP fit, and a first attempt to a direct simultaneous determination of alpha /sub s/(M/sub Z/) and the gluon density of the proton.

  3. Intramolecular surfaces for vicinal proton-proton coupling constants 3JHH

    Science.gov (United States)

    Díez, Ernesto; Esteban, Angel L.; San Fabián, Jesús; Galache, María P.; Casanueva, Jorge; Contreras, Rubén H.

    2014-08-01

    Equations for the intramolecular surfaces of the 3JHH coupling constants in ethane, ethylene, and acetylene are formulated, and the corresponding coefficients are estimated from calculations at the DFT/B3LYP level. The chosen variables are changes in bond lengths, in the torsion angle φ between the coupled protons Ha and Hb, in bond angles, and in dihedral angles. The 3JHH surface of ethane is formulated as an extended Karplus equation with the coefficients of a truncated Fourier series on the torsion angle φ expanded as second-order Taylor series in the chosen variables taking into account the invariance of 3JHH under reflections and rotations of nuclear coordinates. Partial vibrational contributions from linear and square terms corresponding to changes in the geometry of the Ha - Ca - Cb - Hb fragment are important while those from cross terms are small with a few exceptions. The 3JHH surface of ethane is useful to predict contributions to 3JHH from changes in local geometry of derivatives but vibrational contributions are predicted less satisfactorily. The predicted values at the B3LYP/BS2 level of the 3JHH couplings (vibrational contributions at 300 K) from equilibrium geometries are 9.79 (-0.17) for acetylene, and 17.08 (1.93) and 10.73(0.93) for the trans and cis couplings of ethylene.

  4. Pseudoscalar-Meson Octet-Baryon Coupling Constants from two-flavor Lattice QCD

    CERN Document Server

    Takahashi, Toru T; Oka, Makoto

    2009-01-01

    We evaluate the pseudoscalar-meson octet-baryon coupling constants and the corresponding axial charges in eight channels ($\\pi N\\N$, $\\pi\\Sigma\\Sigma$, $\\pi\\Lambda\\Sigma$, $K\\Lambda N$, $K \\Sigma N $, $\\pi\\Xi\\Xi$, $K\\Lambda\\Xi$ and $K\\Sigma\\Xi$) in lattice QCD with two flavors of dynamical quarks. The parameter $\\alpha\\equiv F/(F+D)$ representing the SU(3)-flavor symmetry is computed at each u,d-quark hopping parameter and at the flavor-SU(3) symmetric point where the three quark flavors are degenerate at the physical $s$-quark mass. In particular, we obtain $\\alpha=0.395(6)$ at the SU(3) symmetric limit. The quark-mass dependences of the coupling constants are obtained by changing the $u$- and the $d$-quark masses and we find that the SU(3)-flavor symmetry is broken by only a few percent at each quark-mass we employ.

  5. Determination of the pion-nucleon coupling constant and scattering lengths

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2002-01-01

    We critically evaluate the isovector GMO sum rule for forward pion-nucleon scattering using the recent precision measurements of negatively charged pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data a pseudoscalar coupling constant of 14.17+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0786(11). This value is intermediate between that of indirect methods and the direct determination from backward neutron-proton differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the negatively charged pion-proton and pion-neutron scattering lengths with high precision. The symmetric sum gives 0.0017+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one 0.0900+-0.0003(statistical)+-0.0013(systematic), both in units of inverse charged pi...

  6. On Geometric Probability, Holography, Shilov Boundaries and the Four Physical Coupling Constants of Nature

    Directory of Open Access Journals (Sweden)

    Castro C.

    2005-07-01

    Full Text Available By recurring to Geometric Probability methods, it is shown that the coupling constants, αEM; αW; αC associated with Electromagnetism, Weak and the Strong (color force are given by the ratios of the ratios of the measures of the Shilov boundaries Q2=S1×RP1; Q3=S2×RP1; S5, respectively, with respect to the ratios of the measures μ[Q5]/μN[Q5] associated with the 5D conformally compactified real Minkowski spacetime ˉ M5 that has the same topology as the Shilov boundary Q5 of the 5 complex-dimensional poly-disc D5. The homogeneous symmetric complex domain D5=SO(5,2/SO(5×SO(2 corresponds to the conformal relativistic curved 10 real-dimensional phase space H10 associated with a particle moving in the 5D Anti de Sitter space AdS5. The geometric coupling constant associated to the gravitational force can also be obtained from the ratios of the measures involving Shilov boundaries. We also review our derivation of the observed vacuum energy density based on the geometry of de Sitter (Anti de Sitter spaces.

  7. J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, Julien [Universitaet Heidelberg, Organisch-Chemisches Institut (Germany); John, Michael; Kessler, Horst; Luy, Burkhard [Technische Universitaet Muenchen, Department Chemie: Organische Chemie II (Germany)], E-mail: Burkhard.Luy@ch.tum.de

    2007-03-15

    The access to weak alignment media has fuelled the development of methods for efficiently and accurately measuring residual dipolar couplings (RDCs) in NMR-spectroscopy. Among the wealth of approaches for determining one-bond scalar and RDC constants only J-modulated and J-evolved techniques retain maximum resolution in the presence of differential relaxation. In this article, a number of J-evolved experiments are examined with respect to the achievable minimum linewidth in the J-dimension, using the peptide PA{sub 4} and the 80-amino-acid-protein Saposin C as model systems. With the JE-N-BIRD{sup d,X}-HSQC experiment, the average full-width at half height could be reduced to approximately 5 Hz for the protein, which allows the additional resolution of otherwise unresolved peaks by the active (J+D)-coupling. Since RDCs generally can be scaled by the choice of alignment medium and alignment strength, the technique introduced here provides an effective resort in cases when chemical shift differences alone are insufficient for discriminating signals. In favorable cases even secondary structure elements can be distinguished.

  8. How Precisely can we Determine the $\\piNN$ Coupling Constant from the Isovector GMO Sum Rule?

    CERN Document Server

    Loiseau, B; Thomas, A W

    1999-01-01

    The isovector GMO sum rule for zero energy forward pion-nucleon scattering iscritically studied to obtain the charged pion-nucleon coupling constant usingthe precise negatively charged pion-proton and pion-deuteron scattering lengthsdeduced recently from pionic atom experiments. This direct determination leadsto a pseudoscalar charged pion-nucleon coupling constant of 14.23 +- 0.09(statistic) +- 0.17 (systematic). We obtain also accurate values for thepion-nucleon scattering lengths.

  9. Hyperon puzzle and the RMF model with scaled hadron masses and coupling constants

    Science.gov (United States)

    Kolomeitsev, E. E.; Maslov, K. A.; Voskresensky, D. N.

    2016-01-01

    The equation of state of cold baryonic matter is studied within a relativistic mean-field model with hadron masses and coupling constants depending on a scalar field. We demonstrate that if the effective nucleon mass stops to decrease with a density increase at densities n > n*> n0, where n0 is the nuclear saturation density, the equation of state stiffens for these densities and the limiting neutron star mass increases. The stabilization of the nucleon mass can be realised if in the equation of motion for the scalar mean-field there appear a term sharply varying in a narrow vicinity of the field value corresponding to the density n*. We show several possible realizations of this mechanism getting sufficiently stiff equations of state. The appearance of hyperons in dense neutron star interiors is accounted for. The obtained equations of state remain sufficiently stiff if the reduction of the ϕ meson mass is incorporated. Thereby, the hyperon puzzle can be resolved.

  10. Precision determination of the $\\pi N$ scattering lengths and the charged $\\pi NN$ coupling constant

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2000-01-01

    We critically evaluate the isovector GMO sumrule for the charged $\\pi N N$ coupling constant using recent precision data from $\\pi ^-$p and $\\pi^-$d atoms and with careful attention to systematic errors. From the $\\pi ^-$d scattering length we deduce the pion-proton scattering lengths ${1/2}(a_{\\pi ^-p}+a_{\\pi ^-n})=(-20\\pm 6$(statistic)$ \\pm 10$ (systematic))~$\\cdot 10^{-4}m_{\\pi_c}^{-1}$ and ${1/2}(a_{\\pi ^-p}-a_{\\pi ^-n})=(903 \\pm 14)\\cdot 10^{-4}m_{\\pi_c}^{-1}$. From this a direct evaluation gives $g^2_c(GMO) =14.20\\pm 0.07$(statistic)$\\pm 0.13$(systematic) or $f^2_c= 0.0786\\pm 0.0008$.

  11. On the mass, width and coupling constants of the f sub 0 (980)

    CERN Document Server

    Escribano, R; Lucio-Martinez, J L; Moreno, G; Pestieau, J

    2003-01-01

    Using the pole approach we determine the mass and width of the f sub 0 (980); in particular, we analyze the possibility that two nearby poles are associated to it. We restrict our analysis to a neighborhood of the resonance, using pi pi data for the phase shift and inelasticity, and the invariant mass spectrum of the J/psi-> phi pi pi,phi K anti K decays. The formalism we use is based on unitarity and a generalized version of the Breit-Wigner parameterization. We find that a single pole describes the f sub 0 (980), the precise position depending upon the pi pi data used. As a byproduct, values for the g sub f sub sub 0 subpi subpi and g sub f sub sub 0 sub K sub a sub n sub t sub i sub K coupling constants are obtained. (orig.)

  12. Magnetic coupling constants for MnO as calculated using hybrid density functional theory

    Science.gov (United States)

    Logsdail, Andrew J.; Downing, Christopher A.; Catlow, C. Richard A.; Sokol, Alexey A.

    2017-12-01

    The properties of MnO have been calculated using generalised gradient approximation (GGA-) and hybrid (h-) density functional theory (DFT), specifically variants of the popular PBE and PBESol exchange-correlation functionals. The GGA approaches are shown to be poor at reproducing experimental magnetic coupling constants and rhombohedral structural distortions, with the PBESol functional performing worse than PBE. In contrast, h-DFT results are in reasonable agreement with experiment. Calculation of the Néel temperatures using the mean-field approximation gives overestimates relative to experiment, but the discrepancies are as low as 15 K for the PBE0 approach and, generally, the h-DFT results are significant improvements over previous theoretical studies. For the Curie-Weiss temperature, larger disparities are observed between the theoretical results and previous experimental results.

  13. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations.

    Science.gov (United States)

    Teale, Andrew M; Lutnæs, Ola B; Helgaker, Trygve; Tozer, David J; Gauss, Jürgen

    2013-01-14

    Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.

  14. Importance of triples contributions to NMR spin-spin coupling constants computed at the CC3 and CCSDT levels

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.; Gauss, Jürgen

    2017-01-01

    We present the first analytical implementation of CC3 second derivatives using the spin-unrestricted approach. This allows, for the first time, the calculation of nuclear spin-spin coupling constants (SSCC) relevant to NMR spectroscopy at the CC3 level of theory in a fully analytical manner. CC3......-3%, but much higher corrections were found for 1JCN in FCN, 15.7%, and 1JOF in OF2, 6.4%. The changes vary significantly for multi-bond couplings, with differences of up to 10 %, and even 13.6% for 3JFH in fluoroacetylene. Calculations at the coupled cluster singles, doubles, and triples (CCSDT) level indicate...... that the most important contributions arising from connected triple excitations in the coupled cluster expansion are accounted for at the CC3 level. Thus we believe that the CC3 method will become the standard approach for calculation of reference values of nuclear spin-spin coupling constants....

  15. Measurement of jet production with the ATLAS detector and extraction of the strong coupling constant

    CERN Document Server

    Sawyer, Lee; The ATLAS collaboration

    2017-01-01

    The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8TeV and 13TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the di-jet cross section at a center-of-mass energy of 13TeV as a function of the di-jet mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (ATEEC) in multi-jet events at a center...

  16. Thermodynamics of dipolar hard spheres with low-to-intermediate coupling constants.

    Science.gov (United States)

    Elfimova, Ekaterina A; Ivanov, Alexey O; Camp, Philip J

    2012-08-01

    The thermodynamic properties of the dipolar hard-sphere fluid are studied using theory and simulation. A new theory is derived using a convenient mathematical approximation for the Helmholtz free energy relative to that for the hard-sphere fluid. The approximation is designed to give the correct low-density virial expansion. New theoretical and numerical results for the fourth virial coefficient are given. Predictions of thermodynamic functions for dipolar coupling constants λ=1 and 2 show excellent agreement with simulation results, even at the highest value of the particle volume fraction φ. For higher values of λ, there are deviations at high volume fractions, but the correct low-density behavior is retained. The theory is compared critically against the established thermodynamic perturbation theory; it gives significant improvements at low densities and is more convenient in terms of the required numerics. Dipolar hard spheres provide a basic model for ferrofluids, and the theory is accurate for typical experimental parameters λ

  17. The ATLAS Measurements of Jet Production and the Strong Coupling Constant

    CERN Document Server

    Sawyer, Lee; The ATLAS collaboration

    2017-01-01

    The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density in the parton distribution function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8 TeV and 13 TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the dijet cross section at a center-of-mass energy of 13 TeV as a function of the dijet invariant mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (...

  18. Supersymmetry breaking and determination of the unification gauge coupling constant in string theories

    CERN Document Server

    De Carlos, B; Muñoz, C

    1993-01-01

    We study in a systematic and modular invariant way gaugino condensation in the hidden sector as a potential source of hierarchical supersymmetry breaking and a non--trivial potential for the dilaton $S$ whose real part corresponds to the tree level gauge coupling constant (${\\rm Re}\\ S\\sim g_{gut}^{-2}$). For the case of pure Yang--Mills condensation, we show that no realistic results (in particular no reasonable values for ${\\rm Re}\\ S$) can emerge, even if the hidden gauge group is not simple. However, in the presence of hidden matter (i.e. the most frequent case) there arises a very interesting class of scenarios with two or more hidden condensing groups for which the dilaton dynamically acquires a reasonable value (${\\rm Re}\\ S\\sim 2$) and supersymmetry is broken at the correct scale ($m_{3/2}\\sim 10^3\\ GeV$) with no need of fine--tuning. Actually, good values for ${\\rm Re}\\ S$ and $m_{3/2}$ are correlated. We make an exhaustive classification of the working possibilities. Remarkably, the results are basi...

  19. Precision determination of the strong coupling constant within a global PDF analysis arXiv

    CERN Document Server

    Ball, Richard D.; Del Debbio, Luigi; Forte, Stefano; Kassabov, Zahari; Rojo, Juan; Slade, Emma; Ubiali, Maria

    We present a determination of the strong coupling constant $\\alpha_s(m_Z)$ based on the NNPDF3.1 determination of parton distributions, which for the first time includes constraints from jet production, top-quark pair differential distributions, and the $Z$ $p_T$ distributions using exact NNLO theory. Our result is based on a novel extension of the NNPDF methodology - the correlated replica method - which allows for a simultaneous determination of $\\alpha_s$ and the PDFs with all correlations between them fully taken into account. We study in detail all relevant sources of experimental, methodological and theoretical uncertainty. At NNLO we find $\\alpha_s(m_Z) = 0.1185 \\pm 0.0005^\\text{(exp)}\\pm 0.0001^\\text{(meth)}$, showing that methodological uncertainties are negligible. We conservatively estimate the theoretical uncertainty due to missing higher order QCD corrections (N$^3$LO and beyond) from half the shift between the NLO and NNLO $\\alpha_s$ values, finding $\\Delta\\alpha^{\\rm th}_s =0.0011$.

  20. Determination of the pion-nucleon coupling constant and s-wave scattering lengths

    CERN Document Server

    Samaranayake, V K

    1972-01-01

    Presently available values of D/sub +or-/, the real parts of the pi /sup +or-/p elastic scattering amplitudes in the forward direction in the laboratory frame, obtained by extrapolation of experimental data to the forward direction, have been fitted up to a pion lab. kinetic energy of 2 GeV using forward dispersion relation. A substantial number of data points have to be discarded to obtain a reasonable goodness of fit. Above 300 MeV the values of D/sub +or-/ obtained from the CERN phase shift analysis are strongly favoured compared with those from the Saclay analysis. The final results for the pion-nucleon coupling constant and s-wave scattering lengths are: 10/sup 3/f/sup 2 /=76.3+or-2.0, 10/sup 3/D/sub +/( mu )=-102.4+or-5.2, 10/sup 3/D/sub - /( mu )=104.8+or-5.4, 10/sup 3/(a/sub 1/-a/sub 3/)=270.6+or-11.3, 10 /sup 3/(a/sub 1/+2a/sub 3/)=3.1+or-8.0. The errors quoted take account of experimental uncertainties and also attempt to include systematic errors arising from the unphysical continuum and from the v...

  1. The quasi-magnetic-hysteresis behavior of polydisperse ferrofluids with small coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Li Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Lin Yueqiang; Liu Xiaodong; Lin Lihua; Zhang Qingmei; Fu Jun; Chen Longlong [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2012-12-15

    The magnetization behaviors of ferrofluids based on {gamma}-Fe{sub 2}O{sub 3}/Ni{sub 2}O{sub 3} composite nanoparticles of size about 11 nm have been investigated. The dipole coupling constant {lambda} of these particles is so small (0.43) that they cannot form aggregates through magnetic interaction alone. Experimental results have shown that for a polydisperse ferrofluid with a particle volume fraction of {phi}{sub V}=2.4%, the magnetization curve exhibits quasi-magnetic-hysteresis behavior, i.e., the demagnetization curve lies above the magnetization curve in a high field. However, for a more dilute {gamma}-Fe{sub 2}O{sub 3}/Ni{sub 2}O{sub 3} ferrofluid with {phi}{sub V}=0.94%, the magnetization curve does not show such behavior. According to the bidisperse model for polydisperse ferrofluids, these magnetization behaviors may be attributed to field-induced effects of self-assembled pre-existing chain-like aggregates. For such pre-existing chain-like aggregates, the orientation of the moments inside the particles is not co-linear, so that during the magnetization and demagnetization processes, their apparent magnetizations at the high-field limit are different. As a consequence, the magnetization curve of the ferrofluid with {phi}{sub V}=2.4% displays quasi-magnetic-hysteresis.

  2. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium

    DEFF Research Database (Denmark)

    Rusakov, Yury Yu; Krivdin, Leonid B.; Østerstrøm, Freja From

    2013-01-01

    This paper documents a very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for the medium sized organotellurium molecules. The 125Te-1H spin-spin coupling...... constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels in a good agreement with experiment. A new full-electron basis set av3z-J for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations...

  3. Chiral symmetry effect on the pion-nucleon coupling constant; O efeito da simetria quiral na constante de acoplamento pion-nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Vanilse da Silva

    1997-12-31

    In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear {sigma}- model. First, we introduce the linear {sigma}-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+{pi}{sub NN}(q{sup 2}) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear {sigma}-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear {sigma}-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of g{sub {pi}nn} (q{sup 2}) and of the mean square radius. (author) 21 refs., 17 figs., 4 tabs.

  4. Determination of the equilibrium constants of organophosphorus liquid-liquid extractants by inductively coupled Plasma-Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ke-an, L.; Muralidharan, S.; Freiser, H.

    1985-12-01

    The technique of inductively coupled Plasma-Atomic Emission Spectroscopy (ICP) has been used for determining the equilibrium constants of organophosphorus extractants in liquid-liquid extraction systems. The 213.618 nm first order atomic emission line of phosphorus was monitored to determine the equilibrium constants. The relevant equilibrium constants of bis(2,4,4-trimethylpentyl)phosphinic acid, bis(2-ethylhexyl)phosphoric acid, diphenylphosphinic acid, trioctylphosphine oxide and tri-n-butylphosphate have been determined in this manner. It has been demonstrated for the first time that the equilibrium constants for liquid-liquid extractants can be determined in a facile manner using ICP. 14 references, 1 figure, 1 table.

  5. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator

    Science.gov (United States)

    Hu, Ji-Ying; Li, Zhao-Hui; Sun, Yang; Li, Qi-Hu

    2016-12-01

    Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A. Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).

  6. Consequences of nonzero neutrino masses on the evaluation of the weak coupling constant and on τ leptonic decays

    Science.gov (United States)

    Bryman, D. A.; Picciotto, C. E.

    1987-12-01

    The effect of the limit of the muon-neutrino mass on the precision with which the weak coupling constant GF can be evaluated from the experimental muon decay rate is calculated and discussed. Present limits allow an effect as large as 23 ppm. In τ leptonic decays the effects of a nonzero τ-neutrino mass amount to a decrease in the branching fraction B(τ-->eνeντ) of ΔB/B<1.2%.

  7. The cosmological evolution of the nucleon mass and the electroweak coupling constants

    CERN Document Server

    Calmet, X; Calmet, Xavier; Fritzsch, Harald

    2002-01-01

    Starting from astrophysical indications that the fine structure constant might undergo a small time shift, we discuss the implications of such an effect from the point of view of particle physics. Grand unification implies small time shifts for the nucleon mass, the magnetic moment of the nucleon and the Fermi constant as well. The relative change of the nucleon mass is 123 times larger than the relative change of alpha. Astrophysical constraints indicate that the data from astrophysics are inconsistent, or the errors are largely underestimated. Laboratory measurements using very advanced methods in quantum optics might soon reveal small time shifts of the nucleon mass, the magnetic moment of the nucleon and the fine structure constant, thereby providing not only a breakthrough in the understanding of the unified particle interactions, but also an important cross-link between particle physics and cosmology.

  8. CAL3JHH: a Java program to calculate the vicinal coupling constants (3J H,H) of organic molecules.

    Science.gov (United States)

    Aguirre-Valderrama, Alonso; Dobado, José A

    2008-12-01

    Here, we present a free web-accessible application, developed in the JAVA programming language for the calculation of vicinal coupling constant (3J(H,H)) of organic molecules with the H-Csp3-Csp3-H fragment. This JAVA applet is oriented to assist chemists in structural and conformational analyses, allowing the user to calculate the averaged 3J(H,H) values among conformers, according to its Boltzmann populations. Thus, the CAL3JHH program uses the Haasnoot-Leeuw-Altona equation, and, by reading the molecule geometry from a protein data bank (PDB) file format or from multiple pdb files, automatically detects all the coupled hydrogens, evaluating the data needed for this equation. Moreover, a "Graphical viewer" menu allows the display of the results on the 3D molecule structure, as well as the plotting of the Newman projection for the couplings.

  9. S3 HMBC hetero: Spin-State-Selective HMBC for accurate measurement of long-range heteronuclear coupling constants

    DEFF Research Database (Denmark)

    Hoeck, Casper; Gotfredsen, Charlotte Held; Sørensen, Ole W.

    2017-01-01

    A novel method, Spin-State-Selective (S3) HMBC hetero, for accurate measurement of heteronuclear coupling constants is introduced. The method extends the S3 HMBC technique for measurement of homonuclear coupling constants by appending a pulse sequence element that interchanges the polarization...

  10. COUPLING SJÖSTRAND AND FEYNMAN METHODS IN PROMPT NEUTRON DECAY CONSTANT ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Gabrielli, F.; Rineiski, A; Pyeon, C H

    2016-01-01

    The Sjöstrand and Feynman methods have been widely applied to subcritical assemblies analyses. Within the point kinetics framework, the Sjöstrand method determines the system reactivity by the ratio between the prompt and delayed areas from pulsed neutron source experiments. In addition, the slope of the prompt area gives the prompt neutron decay constant. The latter parameter can be also obtained from fitting the Feynman curve. Consequently, the goal of this work is to combine the Sjöstrand and Feynman methods in order to find the best fitting domain for calculating the prompt neutron decay constant. The experiments and MCNP simulations performed to accomplish this goal have analyzed the KUKA subcritical assembly facility of Japan driven by 100 MeV protons.

  11. Erosion dynamics modelling in a coupled catchment-fan system with constant external forcing

    OpenAIRE

    Pepin, E.; Carretier, Sébastien; Hérail, Gérard

    2010-01-01

    Recent alluvial fan models have suggested that deep alluvial fan entrenchment could occur without any change in sediment and water influx. Moreover, other studies have shown that the evolution of a fan could strongly depend on feedback between the fan and the mountain catchment. We evaluate if natural entrenchment still occurs in a coupled catchment-fan system, and we evaluate its possible impact on the evolution of mountain erosion. We use a landscape evolution model where the mountain corre...

  12. ANALYSIS OF INDUCTION MOTOR WITH BROKEN BARS AND CONSTANT SPEED USING CIRCUIT-FIELD COUPLED METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2015-07-01

    Full Text Available The paper presents the use of the two-dimensional finite element method for modeling the three-phase squirrel-cage induction motor by using circuit coupled method. In order to analyze the machine performances, the voltage source is considered. The Ansys magnetic analysis software is used for calculating the magnetic field of an induction motor having a cage fault. The experimental results prove that the proposed approach constitutes a useful tool for the study and diagnostics of induction motors.

  13. Improved constraints on the coupling constants of axion-like particles to nucleons from recent Casimir-less experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klimchitskaya, G.L.; Mostepanenko, V.M. [Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, St. Petersburg (Russian Federation); St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology and Telecommunications, St. Petersburg (Russian Federation)

    2015-04-01

    We obtain improved constraints on the coupling constants of axion-like particles to nucleons from a recently performed Casimir-less experiment. For this purpose, the differential force between a Au-coated sphere and either the Au or the Si sector of a rotating disc, arising due to two-axion exchange, is calculated. Over a wide region of axion masses, from 1.7 x 10{sup -3} eV to 0.9 eV, the obtained constraints are up to a factor of 60 stronger than the previously known ones following from the Cavendish-type experiment and measurements of the effective Casimir pressure. (orig.)

  14. Two-loop coupling constant renormalization in lattice SU(N)xSU(N) 2D chiral models

    Energy Technology Data Exchange (ETDEWEB)

    Magnoli, N.; Ravanini, F.

    1986-08-01

    For the most general link action of lattice SU(N)xSU(N) two dimensional chiral models, the two loop coupling constant renormalization is discussed in the context of the background field method. A non-linear reparametrization of the fields, necessary to keep the invariance of the theory, introduces unpleasant extra-terms. However some of the non-universal contributions are unaffected by these extra-terms and can be easily calculated. This allows to compute the difference between the first non-universal coefficients of the Callan-Symanzik beta functions for two actions having the same scale ..lambda...

  15. Consequences of nonzero neutrino masses on the evaluation of the weak coupling constant and on tau leptonic decays

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.A.; Picciotto, C.E.

    1987-12-01

    The effect of the limit of the muon-neutrino mass on the precision with which the weak coupling constant G/sub F/ can be evaluated from the experimental muon decay rate is calculated and discussed. Present limits allow an effect as large as 23 ppm. In tau leptonic decays the effects of a nonzero tau-neutrino mass amount to a decrease in the branching fraction B(tau..-->..e..nu../sub e/..nu../sub tau/) of ..delta..B/B<1.2%.

  16. Strong-coupling constant with flavor thresholds at five loops in the anti M anti S scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A.; Kotikov, A.V.; Onishchenko, A.I.; Veretin, O.L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-07-15

    We present in analytic form the matching conditions for the strong-coupling constant {alpha}{sub s}{sup (n{sub f})}({mu}) at the flavor thresholds to four loops in the modified minimal-subtraction scheme. Taking into account the present knowledge on the coefficient {beta}{sub 4} of the Callan-Symanzik beta function of quantum chromo-dynamics, we thus derive a five-loop formula for {alpha}{sub s}{sup (n{sub f})}({mu}) together with appropriate relationships between the asymptotic scale parameters {lambda}{sup (n{sub f})} for different numbers of flavors n{sub f}. (Orig.)

  17. Design and simulation of the AC-coupled burst-mode receiver with a large time constant

    Science.gov (United States)

    Huang, Qiuyuan; Liu, Luling; Li, Senmao

    2008-11-01

    Due to the Multipoint-to-Point nature of the uplink, the upstream data transmission in a GPON system is burst-mode, and both the guard time and preamble time are short. This burst-mode nature of the GPON uplink brings many challenges for the design of the burst-mode receiver. This paper presents a newly designed AC-coupled burst-mode optical receiver. The AC-coupled receiver uses a large time constant and a high-speed reset switch. The concept of cumulative bit difference of pattern-dependent jitter is also put forwarded in this paper. Finally, simulation results are provided to show the feasibility of the scheme.

  18. Evaluation of the strong coupling constant {alpha}{sub s} using the ATLAS inclusive jet cross-section data

    Energy Technology Data Exchange (ETDEWEB)

    Malaescu, B. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Starovoitov, P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-03-15

    We perform a determination of the strong coupling constant using the latest ATLAS inclusive jet cross section data, from proton-proton collisions at {radical}(s)=7 TeV, and their full information on the bin-to-bin correlations. Several procedures for combining the statistical information from the different data inputs are studied and compared. The theoretical prediction is obtained using NLO QCD, and it also includes non-perturbative corrections. Our determination uses inputs with transverse momenta between 45 and 600 GeV, the running of the strong coupling being also tested in this range. Good agreement is observed when comparing our result with the world average at the Z-boson scale, as well as with the most recent results from the Tevatron. (orig.)

  19. Dynamic stereochemistry of erigeroside by measurement of 1H- 1H and 13C- 1H coupling constants

    Science.gov (United States)

    Tafazzoli, Mohsen; Ghiasi, Mina; Moridi, Mahdi

    2008-07-01

    Erigeroside was extracted from Satureja khuzistanica Jamzad (Marzeh Khuzistani in Persian, family of lamiaceae), and 1H, 13C, 13C{ 1H}, 1H- 1H COSY, HMQC and J-HMBC were obtained to identify this compound and determine a complete set of J-coupling constants ( 1JC-H, 2JC-H, 3JC-H and 3JH-H) values within the exocyclic hydroxymethyl group (CH 2OH) and anomeric center. In parallel, density functional theory (DFT) using B3LYP functional and split-valance 6-311++G** basis set has been used to optimized the structures and conformers of erigeroside. In all calculations solvent effects were considered using a polarized continuum (overlapping spheres) model (PCM). The dependencies of 1J, 2J and 3J involving 1H and 13C on the C 5'-C 6' ( ω), C 6'-O 6' ( θ) and C 1'-O 1' ( φ) torsion angles in erigeroside were computed using DFT method. Complete hyper surfaces for 1JC1',H1', 2JC5',H6'R, 2JC5',H6'S, 2JC6',H5', 3JC4',H6'R, 3JC4',H6'S and 2JH6'R-H5'S as well as 3JH5',H6'R were obtained and used to derive Karplus equations to correlate these couplings to ω, θ and φ. These calculated J-couplings are in agreement with experimental values. These results confirm the reliability of DFT calculated coupling constants in aqueous solution.

  20. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay

    Science.gov (United States)

    Win, Maung Nyan; Klein, Joshua S.; Smolke, Christina D.

    2006-01-01

    RNA aptamers that bind the opium alkaloid codeine were generated using an iterative in vitro selection process. The binding properties of these aptamers, including equilibrium and kinetic rate constants, were determined through a rapid, high-throughput approach using surface plasmon resonance (SPR) analysis to measure real-time binding. The approach involves direct coupling of the target small molecule onto a sensor chip without utilization of a carrier protein. Two highest binding aptamer sequences, FC5 and FC45 with Kd values of 2.50 and 4.00 μM, respectively, were extensively studied. Corresponding mini-aptamers for FC5 and FC45 were subsequently identified through the described direct coupling Biacore assays. These assays were also employed to confirm the proposed secondary structures of the mini-aptamers. Both aptamers exhibit high specificity to codeine over morphine, which differs from codeine by a methyl group. Finally, the direct coupling method was demonstrated to eliminate potential non-specific interactions that may be associated with indirect coupling methods in which protein linkers are commonly employed. Therefore, in addition to presenting the first RNA aptamers to a subclass of benzylisoquinoline alkaloid molecules, this work highlights a method for characterizing small molecule aptamers that is more robust, precise, rapid and high-throughput than other commonly employed techniques. PMID:17038331

  1. Measurements of the Strong Coupling Constant and the QCD Colour Factors using Four-jet Observables from Hadronic Z Decays

    CERN Document Server

    Heister, A; Barate, R; De Bonis, I; Décamp, D; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Boix, G; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Martínez, M; Merino, G; Miquel, R; Mir, L M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Azzurri, P; Buchmüller, O L; Cattaneo, M; Cerutti, F; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Greening, T C; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schneider, O; Sguazzoni, G; Tejessy, W; Teubert, F; Valassi, Andrea; Videau, I; Ward, J; Badaud, F; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Halley, A; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, P J; Girone, M; Marinelli, N; Sedgbeer, J K; Thompson, J C; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Bonissent, A; Coyle, P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Veillet, J J; Yuan, C; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Tenchini, Roberto; Venturi, A; Verdini, P G; Xie, Z; Blair, G A; Cowan, G; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Konstantinidis, N P; Litke, A M; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Ngac, A; Prange, G; Sieler, U; Giannini, G; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G

    2003-01-01

    Data from e+e- annihilation into hadrons, taken with the ALEPH detector at the Z resonance, are analyzed. The four-jet rate is studied as a function of the resolution parameter and compared to next-to-leading order calculations combined with resummation of large logarithms. Angular correlations in four-jet events are measured and compared to next-to-leading order QCD predictions. With these observables two different measurements are performed. In a first analysis the strong coupling constant is measured from the four-jet rate yielding alpha_s(M_ Z}) = 0.1170 \\pm 0.0001(stat) \\pm 0.0014(sys) In a second measurement the strong coupling constant and the \\textsc{QCD} colour factors are determined simultaneously from a fit to the four-jet rate and the four-jet angular correlations, giving alpha_s(M_ Z) = 0.119 \\pm 0.006(stat) \\pm 0.026 (sys) C_A = 2.93 \\pm 0.14(stat) \\pm 0.58 (sys) C_F} = 1.35 \\pm 0.07 (stat) \\pm 0.26 (sys) in good agreement with the expectation from QCD.

  2. Calculated hyperfine coupling constants for 5,5-dimethyl-1-pyrroline N-oxide radical products in water and benzene

    Science.gov (United States)

    Nardali, Ş.; Ucun, F.; Karakaya, M.

    2017-11-01

    The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.

  3. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    Science.gov (United States)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  4. S(3) HMBC: Spin-State-Selective HMBC for accurate measurement of homonuclear coupling constants. Application to strychnine yielding thirteen hitherto unreported J(HH).

    Science.gov (United States)

    Kjaerulff, Louise; Benie, Andrew J; Hoeck, Casper; Gotfredsen, Charlotte H; Sørensen, Ole W

    2016-02-01

    A novel method, Spin-State-Selective (S(3)) HMBC, for accurate measurement of homonuclear coupling constants is introduced. As characteristic for S(3) techniques, S(3) HMBC yields independent subspectra corresponding to particular passive spin states and thus allows determination of coupling constants between detected spins and homonuclear coupling partners along with relative signs. In the presented S(3) HMBC experiment, spin-state selection occurs via large one-bond coupling constants ensuring high editing accuracy and unequivocal sign determination of the homonuclear long-range relative to the associated one-bond coupling constant. The sensitivity of the new experiment is comparable to that of regular edited HMBC and the accuracy of the J/RDC measurement is as usual for E.COSY and S(3)-type experiments independent of the size of the homonuclear coupling constant of interest. The merits of the method are demonstrated by an application to strychnine where thirteen J(HH) coupling constants not previously reported could be measured. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Erosion dynamics in a coupled catchment- fan system under constant external forcing

    Science.gov (United States)

    Pepin, E.; Carretier, S.; Herail, G.

    2009-04-01

    Changes in external forcing like climate or tectonic uplift are known to control the geomorphological evolution of mountain catchments and associated alluvial fans. For this reason, geomorphologic studies often use landscape morphologies like entrenchment as a marker of past climate or tectonic changes. However, recent studies have shown that the evolution of a catchment-fan system could also depend strongly on autogenic mechanisms and feedbacks between mountains and fans. These feedbacks can be strong because on one hand, the elevation of alluvial fans determines the base level of mountain catchments, and on the other hand, fluxes exiting on mountain catchments feed the piedmont fans. Thus, any change in one of the sub-system affects the other one. Recent theoretical studies showed that deep fan entrenchment could occur without any changes of influxes. We evaluate the conditions for such a behavior in a coupled catchment-fan system using a landscape evolution model (CIDRE). The mountain corresponds to an uplifting block and fans form over an initial horizontal surface. We confirm that deep entrenchment at fan apex can occur, pending to two necessary conditions: 1- transport threshold (critical shear stress) is significant and 2- the downstream boundary condition corresponds to a transversal river able to carry all incoming sediments. The entrenchment occurs always when sediments reach this boundary condition and then, it remains stable. It occurs whatever the evolution state of the mountain (transient or equilibrium). This could be explained by a depositional slope close to the critical transport slope during fan progradation, and then by a fan slope increase which allows the transport threshold to be overpassed. Fan entrenchment drives a strong erosion in the mountain, with an intensity and a response time similar to those observed for the initial mountain uplift. These results indicate that determining the part of natural erosion by autogenic mechanisms is

  6. Determination of the strong coupling constant $\\alpha_s$ in multijet production with the ATLAS detector at the LHC.

    CERN Document Server

    Llorente Merino, Javier; The ATLAS collaboration

    2018-01-01

    A measurement of transverse energy--energy correlations and its asymmetry in $pp$ collisions recorded by the ATLAS detector at the LHC at $\\sqrt{s} = 8$ TeV is presented. The results are intepreted as a precision test of Quantum Chromodynamics, used to determine the strong coupling constant $\\alpha_s(m_Z)$ and to test asymptotic freedom up to scales close to 1 TeV. A global fit to the transverse energy--energy correlation distributions yields $\\alpha_{\\mathrm{s}}(m_Z) = 0.1162 \\pm 0.0011 \\mbox{ (exp.)}^{+0.0084}_{-0.0070} \\mbox{ (theo.)}$, while a global fit to the asymmetry distributions yields a value of $\\alpha_{\\mathrm{s}}(m_Z) = 0.1196 \\pm 0.0013 \\mbox{ (exp.)}^{+0.0075}_{-0.0045} \\mbox{ (theo.)}$.

  7. Design and simulation of the AC-coupled burst-mode receiver with the small time constant

    Science.gov (United States)

    Huang, Qiuyuan; Liu, Luling; Li, Senmao; Sun, Leijun

    2008-12-01

    Due to the Multipoint-to-Point nature of the uplink, the upstream data transmission in a GPON system is burst-mode, and both the guard time and preamble time are much shorter(32 bits and 44 bits respectively).This burst-mode nature of the GPON uplink brings many challenges for the design of the burst-mode receiver. This paper presents an improved design of the main amplifier which is fit for the AC-coupled burst-mode optical receiver with short time constant. Simulation analysis of this scheme at the aspect of the pattern dependent jitter and the data pattern jitter is also presented. Finally, simulation results are provided to show the feasibility of the scheme.

  8. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  9. Analytic solutions of Oldroyd-B fluid with fractional derivatives in a circular duct that applies a constant couple

    Directory of Open Access Journals (Sweden)

    M.B. Riaz

    2016-12-01

    Full Text Available The aim of this article was to analyze the rotational flow of an Oldroyd-B fluid with fractional derivatives, induced by an infinite circular cylinder that applies a constant couple to the fluid. Such kind of problem in the settings of fractional derivatives has not been found in the literature. The solutions are based on an important remark regarding the governing equation for the non-trivial shear stress. The solutions that have been obtained satisfy all imposed initial and boundary conditions and can easily be reduced to the similar solutions corresponding to ordinary Oldroyd-B, fractional/ordinary Maxwell, fractional/ordinary second-grade, and Newtonian fluids performing the same motion. The obtained results are expressed in terms of Newtonian and non-Newtonian contributions. Finally, the influence of fractional parameters on the velocity, shear stress and a comparison between generalized and ordinary fluids is graphically underlined.

  10. Universal effective coupling constant ratios of 3D scalar ϕ4 field theory and pseudo-ϵ expansion

    Directory of Open Access Journals (Sweden)

    Sokolov A. I.

    2016-01-01

    Full Text Available The ratios R2k = g2k/gk − 14 of renormalized coupling constants g2k entering the small-field equation of state approach universal values R*2k at criticality. They are calculated for the three-dimensional λϕ4 field theory within the pseudo-ϵ expansion approach. Pseudo-ϵ expansions for R*6, R*8, R*10 are derived in the five-loop approximation, numerical estimates are obtained with a help of the Padé–Borel–Leroy resummation technique. Its use gives R*6 = 1.6488, the number which perfectly agrees with the most recent lattice result R*6 = 1.649. For the octic coupling the pseudo-ϵ expansion is less favorable numerically. Nevertheless the Padé–Borel–Leroy resummation leads to the estimate R*8 = 0.890 close to the values R*8 = 0.87, R*8 = 0.857 extracted from the lattice and field-theoretical calculations. The pseudo-ϵ expansion for R*10 turns out to have big and rapidly increasing coefficients. This makes correspondent estimates strongly dependent on the Borel–Leroy shift parameter b and prevents proper evaluation of R*10

  11. The Effect of Approximating Some Molecular Integrals in Coupled-Cluster Calculations: Fundamental Frequencies and Rovibrational Spectroscopic Constants of Cyclopropenylidene

    Science.gov (United States)

    Lee, Timothy J.; Dateo, Christopher E.

    2005-01-01

    The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, denoted CCSD(T), has been used, in conjunction with approximate integral techniques, to compute highly accurate rovibrational spectroscopic constants of cyclopropenylidene, C3H2. The approximate integral technique was proposed in 1994 by Rendell and Lee in order to avoid disk storage and input/output bottlenecks, and today it will also significantly aid in the development of algorithms for distributed memory, massively parallel computer architectures. It is shown in this study that use of approximate integrals does not impact the accuracy of CCSD(T) calculations. In addition, the most accurate spectroscopic data yet for C3H2 is presented based on a CCSD(T)/cc-pVQZ quartic force field that is modified to include the effects of core-valence electron correlation. Cyclopropenylidene is of great astronomical and astrobiological interest because it is the smallest aromatic ringed compound to be positively identified in the interstellar medium, and is thus involved in the prebiotic processing of carbon and hydrogen. The singles and doubles coupled-cluster method that includes a perturbational estimate of

  12. Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    DEFF Research Database (Denmark)

    Zarycz, M. Natalia C.; Sauer, Stephan P. A.; Provasi, Patricio F.

    2014-01-01

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the 1J(C-H) coupling constant of CH4 using a decomposition into contributions from localized molecular orbitals and compare with the 1J(N-H) coupling constant in NH3. In particular we discuss the well...... on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane....

  13. Simultaneous measurement of J(HH) and two different (n)J(CH) coupling constants from a single multiply edited 2D cross-peak.

    Science.gov (United States)

    Saurí, Josep; Parella, Teodor

    2013-07-01

    Three different J-editing methods (IPAP, E.COSY and J-resolved) are implemented in a single NMR experiment to provide spin-state-edited 2D cross-peaks from which a simultaneous measurement of different homonuclear and heteronuclear coupling constants can be performed. A new J-selHSQMBC-IPAP experiment is proposed for the independent measurement of two different (n)J(CH) coupling constants along the F2 and F1 dimensions of the same 2D cross-peak. In addition, the E.COSY pattern provides additional information about the magnitude and relative sign between J(HH) and (n)J(CH) coupling constants. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Measurement of the strong coupling constant αs from global event-shape variables of hadronic Z decays

    Science.gov (United States)

    Decampo, D.; Deschizeaux, B.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Alemany, R.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Mato, P.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Pacheco, A.; Perlas, J. A.; Tubau, E.; Catanesi, M. G.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Gao, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Ruan, T.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Albrecht, H.; Atwood, W. B.; Bird, F.; Blucher, E.; Bonvicini, G.; Bossi, F.; Brown, D.; Burnett, T. H.; Drevermann, H.; Dydak, F.; Forty, R. W.; Grab, C.; Hagelberg, R.; Haywood, S.; Jost, B.; Kasemann, M.; Kellner, G.; Knobloch, J.; Lacourt, A.; Lehraus, I.; Lohse, T.; Lüke, D.; Marchioro, A.; Martinez, M.; May, J.; Menary, S.; Minten, A.; Miotto, A.; Nash, J.; Palazzi, P.; Ranjard, F.; Redlinger, G.; Roth, A.; Rothberg, J.; Rotscheidt, H.; von Rüden, W.; St. Denis, R.; Schlatter, D.; Takashima, M.; Talby, M.; Tejessy, W.; Wachsmuth, H.; Wasserbaech, S.; Wheeler, S.; Wiedenmann, W.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Falvard, A.; El Fellous, R.; Gay, P.; Harvey, J.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nielsen, E. R.; Nilsson, B. S.; Petersen, G.; Efthymiopoulos, I.; Simopoulou, E.; Vayaki, A.; Badier, J.; Blondel, A.; Bonneaud, G.; Bourotte, J.; Braems, F.; Brient, J. C.; Fouque, G.; Gamess, A.; Guirlet, R.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Videau, H.; Candlin, D. J.; Veitch, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Massimo-Brancaccio, F.; Murtas, F.; Murtas, G. P.; Nicoletti, G.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Zografou, P.; Altoon, B.; Boyle, O.; Halley, A. W.; Ten Have, I.; Hearns, J. L.; Lynch, J. G.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Patton, S. J.; Sedgbeer, J. K.; Taylor, G.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Keemer, N. R.; Nuttall, M.; Rowlingson, B. S.; Sloan, T.; Snow, S. W.; Barczewski, T.; Bauerdick, L. A. T.; Kleinknecht, K.; Renk, B.; Roehn, S.; Sander, H.-G.; Schmelling, M.; Schmidt, H.; Steeg, F.; Albanese, J.-P.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Courvoisier, D.; Etienne, F.; Papalexiou, S.; Payre, P.; Pietrzyk, B.; Qian, Z.; Blum, W.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Fernandez-Bosman, M.; Hansl-Kozanecka, T.; Hauser, G.; Jahn, A.; Kozanecki, W.; Lange, E.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Pan, Y.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Stierlin, U.; Thomas, J.; Wolf, G.; Bertin, V.; de Bouard, G.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Ganis, G.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Journé, V.; Kim, D. W.; Lefrançois, J.; Lutz, A.-M.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Ciocci, M. A.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Moneta, L.; Palla, F.; Sanguinetti, G.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Venturi, A.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Medcalf, T.; Saich, M. R.; Strong, J. A.; Thomas, R. M.; Wildish, T.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Klopfenstein, C.; Lançon, E.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Ashman, J. G.; Booth, C. N.; Buttar, C.; Carney, R.; Cartwright, S.; Combley, F.; Dinsdale, M.; Dogru, M.; Hatfield, F.; Martin, J.; Parker, D.; Reeves, P.; Thompson, L. F.; Brandt, S.; Burkhardt, H.; Grupen, C.; Meinhard, H.; Mirabito, L.; Neugebauer, E.; Schäfer, U.; Seywerd, H.; Apollinari, G.; Giannini, G.; Gobbo, B.; Liello, F.; Rolandi, L.; Stiegler, U.; Bellantoni, L.; Boudreau, J. F.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Deweerd, A. J.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Harton, J. L.; Hilgart, J.; Jacobsen, J. E.; Jared, R. C.; Johnson, R. P.; Leclaire, B. W.; Pan, Y. B.; Parker, T.; Pater, J. R.; Saadi, Y.; Sharma, V.; Wear, J. A.; Weber, F. V.; Wu, Sau Lan; Zobernig, G.

    1991-02-01

    An analysis of global event-shape variables has been carried out for the reaction e+e--->Z0-->hadrons to measure the strong coupling constant αs. This study is based on 52 720 hadronic events obtained in 1989/90 with the ALEPH detector at the LEP collider at energies near the peak of the Z-resonance. In order to determine αs, second order QCD predictions modified by effects of perturbative higher orders and hadronization were fitted to the experimental distributions of event-shape variables. From a detailed analysis of the theoretical uncertainties we find that this approach is best justified for the differential two-jet rate, from which we obtain αs(MZ2) = 0.121 +/- 0.002(stat.)+/-0.003(sys.)+/-0.007(theor.) using a renormalization scale ω = 1/2MZ. The dependence of αs(MZ2) on ω is parameterized. For scales mb<ω

  15. Electron spectra of forbidden β decays and the effective value of the axial-vector coupling constant gA

    Science.gov (United States)

    Suhonen, Jouni

    2017-10-01

    Attempts to measure the neutrinoless ββ decay in the present and future underground experiments constitute an essential and important component of the present-day particle and neutrino physics. Sensitivity of these experiments depends on the values of the nuclear matrix elements that define the eventual half-life of these decays. Consederable effort has been invested in calculating accurately these matrix elements but at the same time it is becoming clear that this is not enough: To have a handle on the exact relationship between the neutrino mass and the expected ββ half-lives one needs to know the effective value of the weak axial-vector coupling constant gA since its value affects strongly the ββ half-life. In order to gain knowledge of the possible quenching of gA in finite nuclei one can study, e.g., allowed Gamow-Teller β decays of forbidden β decays. A particularly appealing method is the spectrum-shape method where comparison of the computed and measured shapes of electron spectra of forbidden non-unique β decays can potentially yield information on the quenching of gA.

  16. Measurement of multi-jet production cross sections, the strong coupling constant alphas and jet properties with the ATLAS detector

    CERN Document Server

    Cooper-Sarkar, Amanda; The ATLAS collaboration

    2016-01-01

    The production of multi­jet final states at hadron colliders probes pQCD at several mass scales. The processes can also be used to probe the gluon density function of the proton. The ATLAS collaboration has measured the production of 4­jets final states in in 20.3 /fb of data collected at a center­of­mass energy of 8 TeV. The measurements have been performed differentially as a function of a variety of kinematic and topological observables, amongst others the rapidity separation between the leading two jets. The results are compared with state­of­the­art theory calculations at NLO in pQCD, with the predictions of several MC generators as well as resummation calculations by in the HEJ approximation. The collaboration has also used multi­jets events in data taken at an effective integrated luminosity of 158 /pb at a center­of­mass energy of 7 TeV to measure the transverse energy correlation and its asymmetry and derive a measurement of the strong coupling constant. The average charge and the multiplic...

  17. Communication: spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme.

    Science.gov (United States)

    Datta, Dipayan; Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and MS = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH2CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  18. Spin-orbit corrections to the indirect nuclear spin-spin coupling constants in XH4 (X=C, Si, Ge, and Sn)

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Jensen, Hans Jørgen Aagaard; Oddershede, Jens

    1997-01-01

    Using the quadratic response function at the ab initio SCF level of approximation we have calculated the relativistic corrections from the spin-orbit Hamiltonian, HSO, to the indirect nuclear spin-spin coupling constants of XH4 (X = C, Si, Ge, and Sn). We find that the spin-orbit contributions...... to JX-H are small, amounting only to about 1% for JSn-H. For the geminal H-H coupling constants the relativistic corrections are numerically smaller than for JH-H, but in some cases relatively larger compared to the actual magnitude of JH-H. We also investigate the use of an effective one-electron spin...

  19. Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD)

    DEFF Research Database (Denmark)

    Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.

    1998-01-01

    We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster sing......We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled...

  20. Carbon-hydrogen activation of cycloalkanes by cyclopentadienylcarbonylrhodium--a lifetime enigma.

    Science.gov (United States)

    Pitts, Amanda L; Wriglesworth, Alisdair; Sun, Xue-Zhong; Calladine, James A; Zarić, Snežana D; George, Michael W; Hall, Michael B

    2014-06-18

    Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = η(5)-C5H5 (Cp) or η(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the σ-complexes is faster than the C-H activation for this larger cycloalkane.

  1. Nonempirical quantum mechanical calculations of the /sup 1/H, /sup 13/C, /sup 15/N and /sup 17/O magnetic shielding constants and of the spin-spin coupling constants in formamide, hydrated formamide and N-methylformamide

    Energy Technology Data Exchange (ETDEWEB)

    Prado, F.R.; Giessner-Prettre, C.; Pullman, A.; Hinton, J.F.; Harpool, D.; Metz, K.R.

    1982-04-01

    The magnetic shielding constants of the different atoms of formamide, hydrated formamide and N-methylformamide are calculated by an ab initio method. For the protons of formamide the measured differences between their chemical shifts are correctly reproduced by theory, provided that the molecular geometry used as input is carefully chosen. The differences between the values of the magnetic shielding constants calculated for formamide and hydrated formamide show that the intermolecular hydrogen bonding produces variations of chemical shifts for all the atoms of the molecule except the formyl proton. The calculated chemical shift variations between formamide and N-methylformamide are compared to the experimental values and discussed in relation with different hydrogen bonding possibilities of the two molecules. The calculation of the contact term of the spin-spin coupling constants of formamide and hydrated formamide shows that in most cases the measured trends are satisfactorily reproduced and that the variations of these terms upon hydration are less than 3%.

  2. Analysis of the interactions between difluoroacetylene and one or two hydrogen fluoride molecules based on calculated spin–spin coupling constants

    DEFF Research Database (Denmark)

    Provasi, Patricio F.; Caputo, María Cristina; Sauer, Stephan P. A.

    2012-01-01

    A theoretical study of FCCF:(HF)n complexes, with n = 1 and 2, has been carried out by means of ab initio computational methods. Two types of complexes are formed: those with FH···p interactions and those with FH···FC hydrogen bonds. The indirect spin–spin coupling constants have been calculated ...

  3. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    DEFF Research Database (Denmark)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCC), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections......-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated...... to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states....

  4. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    Science.gov (United States)

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  5. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  6. Analytical Determination of the Confinement Potential and Coupling Constant of Spin--Orbit Interactions of Electrons in Nanostructures

    CERN Document Server

    Dineykhan, M; Zhaugasheva, S A; Al Farabi Kazakh State National University. Almaty

    2005-01-01

    Multilayer nanocrystalline structure is represented by the electrostatic field inducted by total image charge, and the confinement potential for electrons is determined. Assuming that at a given distance the confinement potential is equal to the Coulomb repulsion and an interaction between electrons becomes spin-orbit, the constant of the spin-orbit interaction of electrons in nanostructures is determined. The dependence of the constant of the spin-orbit interaction on environment parameters and the distance between electrons is studied.

  7. Determination of the strong coupling constant from the inclusive jet cross section in ppbar collisions at sqrt(s)=1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Michigan U. /Northeastern U.

    2009-11-01

    We determine the strong coupling constant {alpha}{sub s} and its energy dependence from the p{sub T} dependence of the inclusive jet cross section in p{bar p} collisions at {radical}s = 1.96 TeV. The strong coupling constant is determined over the transverse momentum range 50 < p{sub T} < 145 GeV. Using perturbative QCD calculations to order {Omicron}({alpha}{sub s}{sup 3}) combined with {Omicron}({alpha}{sub s}{sup 4}) contributions from threshold corrections, we obtain {alpha}{sub s}(M{sub Z}) = 0.1173{sub -0.0049}{sup +0.0041}. This is the most precise result obtained at a hadron-hadron collider.

  8. A user-friendly Matlab program and GUI for the pseudorotation analysis of saturated five-membered ring systems based on scalar coupling constants

    Directory of Open Access Journals (Sweden)

    Martins José C

    2008-10-01

    Full Text Available Abstract Background The advent of combinatorial chemistry has revived the interest in five-membered heterocyclic rings as scaffolds in pharmaceutical research. They are also the target of modifications in nucleic acid chemistry. Hence, the characterization of their conformational features is of considerable interest. This can be accomplished from the analysis of the 3JHH scalar coupling constants. Results A freely available program including an easy-to-use graphical user interface (GUI has been developed for the calculation of five-membered ring conformations from scalar coupling constant data. A variety of operational modes and parameterizations can be selected by the user, and the coupling constants and electronegativity parameters can be defined interactively. Furthermore, the possibility of generating high-quality graphical output of the conformational space accessible to the molecule under study facilitates the interpretation of the results. These features are illustrated via the conformational analysis of two 4'-thio-2'-deoxynucleoside analogs. Results are discussed and compared with those obtained using the original PSEUROT program. Conclusion A user-friendly Matlab interface has been developed and tested. This should considerably improve the accessibility of this kind of calculations to the chemical community.

  9. A user-friendly Matlab program and GUI for the pseudorotation analysis of saturated five-membered ring systems based on scalar coupling constants.

    Science.gov (United States)

    Hendrickx, Pieter M S; Martins, José C

    2008-10-24

    The advent of combinatorial chemistry has revived the interest in five-membered heterocyclic rings as scaffolds in pharmaceutical research. They are also the target of modifications in nucleic acid chemistry. Hence, the characterization of their conformational features is of considerable interest. This can be accomplished from the analysis of the 3J(HH) scalar coupling constants. A freely available program including an easy-to-use graphical user interface (GUI) has been developed for the calculation of five-membered ring conformations from scalar coupling constant data. A variety of operational modes and parameterizations can be selected by the user, and the coupling constants and electronegativity parameters can be defined interactively. Furthermore, the possibility of generating high-quality graphical output of the conformational space accessible to the molecule under study facilitates the interpretation of the results. These features are illustrated via the conformational analysis of two 4'-thio-2'-deoxynucleoside analogs. Results are discussed and compared with those obtained using the original PSEUROT program. A user-friendly Matlab interface has been developed and tested. This should considerably improve the accessibility of this kind of calculations to the chemical community.

  10. Measurement of the strong coupling constant {alpha}{sub s} with hadronic jets in deep inelastic scattering; Mesure de la constante de couplage forte {alpha}{sub s} avec les jets hadroniques en diffusion inelastique profonde

    Energy Technology Data Exchange (ETDEWEB)

    Gouzevitch, Maxime

    2008-12-15

    In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant {alpha}{sub s}. The jets have been selected in the NC DIS events at large momentum transvers 1505. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on {alpha}{sub s}(m{sub Z}) has been obtained with the combination ob the three observables at Q{sup 2}>150 GeV{sup 2}: {alpha}{sub s}(m{sub Z})=0.1180{+-}0.0007(exp.){sub -0.0034}{sup +0.0050}(th.){+-}0.0017(pdf.).

  11. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    Science.gov (United States)

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  12. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    Science.gov (United States)

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  13. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  14. Multidimensional isotope analysis of carbon, hydrogen and oxygen as tool for identification of the origin of ibuprofen.

    Science.gov (United States)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans Hermann

    2015-11-10

    Multidimensional isotope profiling is a useful tool for the characterization of the provenance of active pharmaceutical ingredients (API). To evaluate this approach, samples of the nonsteroidal anti-inflammatory drug (NSAIDs) ibuprofen were collected from 32 manufactures and 13 countries, and carbon, hydrogen and oxygen isotope ratios were analyzed by elemental analyzer, chromium-filled elemental analyzer and high temperature conversion elemental analyzer (EA, Cr-EA and TC/EA) coupled to an isotope ratio mass spectrometry (IRMS). The range of isotope values of ibuprofen (δ(13)C: -33.2±0.1‰ to -27.4±0.1‰; δ(2)H: -121.4±1.5‰ to -41.2±0.8‰; and δ(18)O: -12.6±0.3‰ to 19.0±0.6‰) allowed characterization and distinction of 5 groups, which reflect synthetic pathways and/or use of different raw materials, as well as possible isotope fractionation during the synthesis reactions. This study highlights that multi isotope fingerprinting has potential for identification of sources, and provides a database of isotope composition of ibuprofen (δ(2)H, δ(13)C, δ(18)O) that might improve the tracing of origin, transport pathways and environmental fate of ibuprofen. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Measurement of the strong-coupling constant. cap alpha. /sub s/ to second order for 22< or =. sqrt. s < or =46. 78 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Becker, U.; Becker-Szendy, R.; Berdugo, J.; Boehm, A.; Branson, J.G.; Burger, J.D.; Capell, M.; Cerrada, M.; Chang, C.C.; Chang, Y.H.; Chen, H.S.; Chen, M.; Chen, M.L.; Chen, M.Y.; Deffur, E.; Demarteau, M.; Dong, B.Z.; Duinker, P.; Fesefeldt, H.S.; Fong, D.; Fukushima, M.; Garrido, L.; Han, R.D.; Harting, D.; Herten, G.; Ho, M.C.; Hueser, D.; Hussain, M.; Ilyas, M.M.; Jiang, D.Z.; Krenz, W.; Kuijer, P.; Li, Q.Z.; Linnhoefer, D.; Luckey, D.; Luit, E.J.; Mana, C.; Marquina, M.A.; Martinez, M.; Massaro, G.G.G.; Mnich, J.; Mount, R.; Nadeem, K.; Newman, H.; Pohl, M.; Poschmann, F.P.; Rau, R.R.; Rodriguez, S.; Rohde, M.; Rubio, J.A.; Rykaczewski, H.; Salicio, J.; Schroeder, U.; Stone, H.; Swider, G.M.; Tang, H.W.; Teuchert, D.; Ting, S.C.C.; Tung, K.L.; Wang, M.Q.; White, M.; Wu, H.G.; Wu, S.X.; Wyslouch, B.; Yang, B.X.; Zhou, B.; Zhu, R.Y.

    1985-04-22

    Using the Mark-J detector at the high-energy e/sup +/e/sup -/ collider PETRA, we compare the data from hadron production with the complete second-order QCD calculation over the energy region 22 to 46.78 GeV. We determine the QCD parameter ..lambda.. = 100 +- 30/sub -/45/sup +65/ MeV which yields the strong-coupling constant ..cap alpha../sub s/ = 0.12 +- 0.02 for ..sqrt..s = 44 GeV.

  16. Characterization of Doubly Ionic Hydrogen Bonds in Protic Ionic Liquids by NMR Deuteron Quadrupole Coupling Constants: Differences to H-bonds in Amides, Peptides, and Proteins.

    Science.gov (United States)

    Khudozhitkov, Alexander E; Stange, Peter; Golub, Benjamin; Paschek, Dietmar; Stepanov, Alexander G; Kolokolov, Daniil I; Ludwig, Ralf

    2017-11-06

    We present the first deuteron quadrupole coupling constants (DQCCs) for selected protic ionic liquids (PILs) measured by solid-state NMR spectroscopy. The experimental data are supported by dispersion-corrected density functional theory (DFT-D3) calculations and molecular dynamics (MD) simulations. The DQCCs of the N-D bond in the triethylammonium cations are the lowest reported for deuterons in PILs, indicating strong hydrogen bonds between ions. The NMR coupling parameters are compared to those in amides, peptides, and proteins. The DQCCs show characteristic behavior with increasing interaction strength of the counterion and variation of the H-bond motifs. We report the similar presence of the quadrupolar splitting pattern and the narrow liquid line in the NMR spectra over large temperature ranges, indicating the heterogeneous nature of PILs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A novel PH-CT-COSY methodology for measuring J{sub PH} coupling constants in unlabeled nucleic acids. Application to HIV-2 TAR RNA

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, Teresa [Biophysical Chemistry (Germany)], E-mail: tcarlom@gewdg.de; Hennig, Mirko; Williamson, James R. [Scripps Research Institute, Department of Molecular Biology and the Skaggs Institute for Chemical Biology (United States)], E-mail: jrwill@scripps.edu

    2002-01-15

    A quantitative analysis of J{sub PH} scalar couplings in nucleic acids is difficult due to small couplings to phosphorus, the extreme overlap of the sugar protons and the fast relaxation of the spins involved in the magnetization transfer. Here we present a new methodology that relies on heteronuclear Constant Time Correlation Spectroscopy (CT-COSY). The three vicinal {sup 3}J{sub PH3'}, {sup 3}J{sub PH5'} and {sup 3}J{sub PH5''} scalar couplings can be obtained by monitoring the intensity decay of the P{sub i}-H3'{sub i-1} peak as a function of the constant time T in a 2D correlation map. The advantage of the new method resides in the possibility of measuring the two {sup 3}J{sub PH5'} and {sup 3}J{sub PH5''} scalar couplings even in the presence of overlapped H5'/H5'' resonances, since the quantitative information is extracted from the intensity decay of the P-H3' peak. Moreover, the relaxation of the H3' proton is considerably slower than that of the H5'/H5'' geminal protons and the commonly populated conformations of the phosphate backbone are associated with large {sup 3}J{sub PH3'} couplings and relatively small {sup 3}J{sub PH5'/H5''}. These two facts lead to optimal signal-to-noise ratio for the P-H3' correlation compared to the P-H5'/H5'' correlation.The heteronuclear CT-COSY experiment is suitable for oligonucleotides in the 10-15 kDa molecular mass range and has been applied to the 30mer HIV-2 TAR RNA. The methodology presented here can be used to measure P-H dipolar couplings (D{sub PH}) as well. We will present qualitative results for the measurement of P-H{sub base} and P-H2' dipolar couplings in the HIV-2 TAR RNA and will discuss the reasons that so far precluded the quantification of the D{sub PH}s for the 30mer RNA.

  18. F···HO intramolecular hydrogen bond as the main transmission mechanism for (1h)J(F,H(O)) coupling constant in 2'-fluoroflavonol.

    Science.gov (United States)

    Fonseca, Tânia A O; Ramalho, Teodorico C; Freitas, Matheus P

    2012-08-01

    Flavonoids are useful compounds in medicinal chemistry and exhibit conformational isomerism, which is ruled by intramolecular interactions. One of the main intramolecular forces governing the stability of conformations is the hydrogen bond. Hydrogen bond involving fluorine covalently bonded to carbon has been found to be rare, but it appears in 2'-fluoroflavonol, although the F···HO hydrogen bond cannot be considered the main effect governing the conformational stability of this compound. Because (19)F is magnetically active and suitable for NMR studies, the (1h)J(F,H(O)) coupling constant can be used as a probe for such an interaction in 2'-fluoroflavonol. In fact, the (1h)J(F,H(O)) coupling was computationally analyzed in this work, and the F···HO hydrogen bond was found to be its main transmission mechanism, which modulates this coupling in 2'-fluoroflavonol, rather than overlap of proximate electronic clouds, such as in 2-fluorophenol. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Direct determination of rate constants for coupling between aromatic radical anions and alkyl and benzyl radicals by laser-flash photolysis

    DEFF Research Database (Denmark)

    Lund, T.; Christensen, P.; Wilbrandt, Robert Walter

    2003-01-01

    Coupling rates between the radicals methyl, n-, sec-, tert-butyl and benzyl (R-.) and the aromatic radical anions of 1,4-dicyanonaphthalene, 9,10-dicyanoanthracene and fluorenone (A(-.)) have been obtained using a new laser-flash photolysis method. The radicals R-. and the radical anions A(-.) we...... of the radicals and the structure and standard potentials of the aromatic radical anions.......Coupling rates between the radicals methyl, n-, sec-, tert-butyl and benzyl (R-.) and the aromatic radical anions of 1,4-dicyanonaphthalene, 9,10-dicyanoanthracene and fluorenone (A(-.)) have been obtained using a new laser-flash photolysis method. The radicals R-. and the radical anions A(-.) were...... generated by a photoinduced electron transfer reaction between the aromatic compound A and the alkyl or benzyl triphenylborate anion RB(Ph)(3)(-). For the first time the rate constants of the coupling reaction between methyl and benzyl radicals with aromatic radical anions have been obtained. For all...

  20. Determination of the strong coupling constant $\\alpha_s(m_Z)$ from measurements of the total cross section for top-antitop quark production arXiv

    CERN Document Server

    Klijnsma, Thomas; Dissertori, Günther; Salam, Gavin P.

    We present a determination of the strong coupling constant $\\alpha_s(m_Z)$ using inclusive top-quark pair production cross section measurements performed at the LHC and at the Tevatron. Following a procedure first applied by the CMS collaboration, we extract individual values of $\\alpha_s(m_Z)$ from measurements by different experiments at several centre-of-mass energies, using QCD predictions complete in NNLO perturbation theory, supplemented with NNLL approximations to all orders, and suitable sets of parton distribution functions. The determinations are then combined using a likelihood-based approach, where special emphasis is put on a consistent treatment of theoretical uncertainties and of correlations between various sources of systematic uncertainties. Our final combined result is $\\alpha_s(m_Z) = 0.1177^{+0.0034}_{-0.0036}$.

  1. Determination of the strong coupling constant α _s ( m_Z ) from measurements of the total cross section for top-antitop-quark production

    Science.gov (United States)

    Klijnsma, Thomas; Bethke, Siegfried; Dissertori, Günther; Salam, Gavin P.

    2017-11-01

    We present a determination of the strong coupling constant α _s ( m_Z ) using inclusive top-quark pair production cross section measurements performed at the LHC and at the Tevatron. Following a procedure first applied by the CMS Collaboration, we extract individual values of α _s ( m_Z ) from measurements by different experiments at several centre-of-mass energies, using QCD predictions complete in NNLO perturbation theory, supplemented with NNLL approximations to all orders, and suitable sets of parton distribution functions. The determinations are then combined using a likelihood-based approach, where special emphasis is put on a consistent treatment of theoretical uncertainties and of correlations between various sources of systematic uncertainties. Our final combined result is α _s ( m_Z ) =0.1177^{+0.0034{}}_{-0.0036{}}.

  2. Precise Determination of the Strong Coupling Constant at NNLO in QCD from the Three-Jet Rate in Electron-Positron Annihilation at LEP

    Science.gov (United States)

    Dissertori, G.; Gehrmann-Deridder, A.; Gehrmann, T.; Glover, E. W. N.; Heinrich, G.; Stenzel, H.

    2010-02-01

    We present the first determination of the strong coupling constant from the three-jet rate in e+e- annihilation at LEP, based on a next-to-next-to-leading-order (NNLO) perturbative QCD prediction. More precisely, we extract αs(MZ) by fitting perturbative QCD predictions at O(αs3) to data from the ALEPH experiment at LEP. Over a large range of the jet-resolution parameter ycut, this observable is characterized by small nonperturbative corrections and an excellent stability under renormalization scale variation. We find αs(MZ)=0.1175±0.0020(expt)±0.0015(theor), which is more accurate than the values of αs(MZ) from e+e- event-shape data currently used in the world average.

  3. Measurement of the Strong Coupling Constant $\\alpha_s$ and the Vector and Axial-Vector Spectral Functions in Hadronic Tau Decays

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha_s, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha_s(mtau**2) = 0.348 +- 0.009 +- 0.019 at the tau-mass scale and alpha_s(mz**2) = 0.1219 +- 0.0010 +- 0.0017 at the Z-mass scale. The values obtained for alpha_s(mz**2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The running of the strong coupling between s_0 ~1.3 GeV**2 and s_0 = mtau**2 has been tested from direct fits to the integrated differential hadronic decay rate R_tau. A test of the saturation of QCD sum rules at the tau-mass scale has been...

  4. Coupling constant in dispersive model

    Indian Academy of Sciences (India)

    perturbative theory using the dispersive model. By fitting the experimental data, the values of ( M Z ° ) = 0.1171 ± 0.00229 and 0 ( I = 2 GeV ) = 0.5068 ± 0.0440 are found. Our results are consistent with the above model. Our results are also ...

  5. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. NMR chemical shielding and spin-spin coupling constants of liquid NH3: a systematic investigation using the sequential QM/MM method.

    Science.gov (United States)

    Gester, Rodrigo M; Georg, Herbert C; Canuto, Sylvio; Caputo, M Cristina; Provasi, Patricio F

    2009-12-31

    The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the (1)J(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, sigma((15)N) calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.

  7. New perspectives in the PAW/GIPAW approach: J(P-O-Si) coupling constants, antisymmetric parts of shift tensors and NQR predictions.

    Science.gov (United States)

    Bonhomme, Christian; Gervais, Christel; Coelho, Cristina; Pourpoint, Frédérique; Azaïs, Thierry; Bonhomme-Coury, Laure; Babonneau, Florence; Jacob, Guy; Ferrari, Maude; Canet, Daniel; Yates, Jonathan R; Pickard, Chris J; Joyce, Siân A; Mauri, Francesco; Massiot, Dominique

    2010-12-01

    In 2001, Pickard and Mauri implemented the gauge including projected augmented wave (GIPAW) protocol for first-principles calculations of NMR parameters using periodic boundary conditions (chemical shift anisotropy and electric field gradient tensors). In this paper, three potentially interesting perspectives in connection with PAW/GIPAW in solid-state NMR and pure nuclear quadrupole resonance (NQR) are presented: (i) the calculation of J coupling tensors in inorganic solids; (ii) the calculation of the antisymmetric part of chemical shift tensors and (iii) the prediction of (14)N and (35)Cl pure NQR resonances including dynamics. We believe that these topics should open new insights in the combination of GIPAW, NMR/NQR crystallography, temperature effects and dynamics. Points (i), (ii) and (iii) will be illustrated by selected examples: (i) chemical shift tensors and heteronuclear (2)J(P-O-Si) coupling constants in the case of silicophosphates and calcium phosphates [Si(5)O(PO(4))(6), SiP(2)O(7) polymorphs and α-Ca(PO(3))(2)]; (ii) antisymmetric chemical shift tensors in cyclopropene derivatives, C(3)X(4) (X = H, Cl, F) and (iii) (14)N and (35)Cl NQR predictions in the case of RDX (C(3)H(6)N(6)O(6)), β-HMX (C(4)H(8)N(8)O(8)), α-NTO (C(2)H(2)N(4)O(3)) and AlOPCl(6). RDX, β-HMX and α-NTO are explosive compounds. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Determination of the strong coupling constant from the measurement of inclusive multijet event cross sections in pp collisions at $\\sqrt{s} = 8~\\mathrm{TeV}$

    CERN Document Server

    CMS Collaboration

    2017-01-01

    A measurement of inclusive multijet event cross sections is presented from proton-proton collisions recorded at $\\sqrt{s} = 8\\,$TeV with the CMS detector and corresponding to an integrated luminosity of $19.7\\,\\mathrm{fb}^{-1}$. Jets are reconstructed with the anti-k$_t$ clustering algorithm for a jet size parameter $R=0.7$ in a phase space region ranging up to jet transverse momenta $p_\\mathrm{T}$ of $2.0\\,$TeV and an absolute rapidity of $|y|=2.5$. The inclusive 2-jet and 3-jet event cross sections are measured as a function of the average $p_\\mathrm{T}$ of the two leading jets. The data are well described by predictions at next-to-leading order in perturbative quantum chromodynamics and additionally are compared to several Monte Carlo event generators. The strong coupling constant at the scale of the Z boson mass is inferred from a fit of the ratio of the 3-jet over 2-jet event cross section giving $\\alpha_s(M_Z) = 0.1150\\,\\pm0.0010\\,\\textrm{(exp)}\\,\\pm0.0013\\,\\textrm{(PDF)}\\, \\pm0.0015\\,\\textrm{(NP)}\\,^{+...

  9. Conformational study of L-methionine and L-cysteine derivatives through quantum chemical calculations and 3JHH coupling constant analyses.

    Science.gov (United States)

    Silva, Weslley G D P; Braga, Carolyne B; Rittner, Roberto

    2017-01-01

    The understanding of the conformational behavior of amino acids and their derivatives is a challenging task. Here, the conformational analysis of esterified and N-acetylated derivatives of L-methionine and L-cysteine using a combination of 1H NMR and electronic structure calculations is reported. The geometries and energies of the most stable conformers in isolated phase and taking into account the implicit solvent effects, according to the integral equation formalism polarizable continuum model (IEF-PCM), were obtained at the ωB97X-D/aug-cc-pVTZ level. The conformational preferences of the compounds in solution were also determined from experimental and theoretical 3JHH coupling constants analysis in different aprotic solvents. The results showed that the conformational stability of the esterified derivatives is not very sensitive to solvent effects, whereas the conformational equilibrium of the N-acetylated derivatives changes in the presence of solvent. According to the natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) and noncovalent interactions (NCI) methodologies, the conformational preferences for the compounds are not dictated by intramolecular hydrogen bonding, but by a joint contribution of hyperconjugative and steric effects.

  10. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben.

    Science.gov (United States)

    Elghobashy, Mohamed R; Bebawy, Lories I; Shokry, Rafeek F; Abbas, Samah S

    2016-03-15

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL(-1) for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method. Copyright © 2015. Published by Elsevier B.V.

  11. Regularized unfolding of jet cross sections in deep-inelastic ep scattering at HERA and determination of the strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Britzger, Daniel Andreas

    2013-10-15

    In this thesis double-differential cross sections for jet production in neutral current deep-inelastic e{sup {+-}}p scattering (DIS) are presented at the center-of-mass energy of {radical}(s)=319 GeV, and in the kinematic range of the squared four-momentum transfer 150< Q{sup 2}<15 000 GeV{sup 2} and the inelasticity 0.2coupling constant {alpha}{sub s}(M{sub Z}) at the scale of the mass of the Z{sup 0} boson in the framework of perturbative quantum chromodynamics in next-to-leading order. Values are derived separately for the absolute

  12. Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism.

    Science.gov (United States)

    Yuan, Changxia; Liang, Yong; Hernandez, Taylor; Berriochoa, Adrian; Houk, Kendall N; Siegel, Dionicio

    2013-07-11

    Methods for carbon-hydrogen (C-H) bond oxidation have a fundamental role in synthetic organic chemistry, providing functionality that is required in the final target molecule or facilitating subsequent chemical transformations. Several approaches to oxidizing aliphatic C-H bonds have been described, drastically simplifying the synthesis of complex molecules. However, the selective oxidation of aromatic C-H bonds under mild conditions, especially in the context of substituted arenes with diverse functional groups, remains a challenge. The direct hydroxylation of arenes was initially achieved through the use of strong Brønsted or Lewis acids to mediate electrophilic aromatic substitution reactions with super-stoichiometric equivalents of oxidants, significantly limiting the scope of the reaction. Because the products of these reactions are more reactive than the starting materials, over-oxidation is frequently a competitive process. Transition-metal-catalysed C-H oxidation of arenes with or without directing groups has been developed, improving on the acid-mediated process; however, precious metals are required. Here we demonstrate that phthaloyl peroxide functions as a selective oxidant for the transformation of arenes to phenols under mild conditions. Although the reaction proceeds through a radical mechanism, aromatic C-H bonds are selectively oxidized in preference to activated Csp3-H bonds. Notably, a wide array of functional groups are compatible with this reaction, and this method is therefore well suited for late-stage transformations of advanced synthetic intermediates. Quantum mechanical calculations indicate that this transformation proceeds through a novel addition-abstraction mechanism, a kind of 'reverse-rebound' mechanism as distinct from the common oxygen-rebound mechanism observed for metal-oxo oxidants. These calculations also identify the origins of the experimentally observed aryl selectivity.

  13. MATHEMATICAL CONSTANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, H.P.; Potter, Elinor

    1971-03-01

    This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.

  14. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  15. Sulfur, carbon, hydrogen, and oxygen isotope geochemistry of the Idaho cobalt belt

    Science.gov (United States)

    Johnson, Craig A.; Bookstrom, Arthur A.; Slack, John F.

    2012-01-01

    Cobalt-copper ± gold deposits of the Idaho cobalt belt, including the deposits of the Blackbird district, have been analyzed for their sulfur, carbon, hydrogen, and oxygen isotope compositions to improve the understanding of ore formation. Previous genetic hypotheses have ranged widely, linking the ores to the sedimentary or diagenetic history of the host Mesoproterozoic sedimentary rocks, to Mesoproterozoic or Cretaceous magmatism, or to metamorphic shearing. The δ34S values are nearly uniform throughout the Blackbird dis- trict, with a mean value for cobaltite (CoAsS, the main cobalt mineral) of 8.0 ± 0.4‰ (n = 19). The data suggest that (1) sulfur was derived at least partly from sedimentary sources, (2) redox reactions involving sulfur were probably unimportant for ore deposition, and (3) the sulfur was probably transported to sites of ore for- mation as H2S. Hydrogen and oxygen isotope compositions of the ore-forming fluid, which are calculated from analyses of biotite-rich wall rocks and tourmaline, do not uniquely identify the source of the fluid; plausible sources include formation waters, metamorphic waters, and mixtures of magmatic and isotopically heavy meteoric waters. The calculated compositions are a poor match for the modified seawaters that form vol- canogenic massive sulfide (VMS) deposits. Carbon and oxygen isotope compositions of siderite, a mineral that is widespread, although sparse, at Blackbird, suggest formation from mixtures of sedimentary organic carbon and magmatic-metamorphic carbon. The isotopic compositions of calcite in alkaline dike rocks of uncertain age are consistent with a magmatic origin. Several lines of evidence suggest that siderite postdated the emplacement of cobalt and copper, so its significance for the ore-forming event is uncertain. From the stable isotope perspective, the mineral deposits of the Idaho cobalt belt contrast with typical VMS and sedimentary exhalative deposits. They show characteristics of deposit

  16. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  17. Determination of the strong coupling constant from transverse energy-energy correlations in multi-jet events in pp collisions at 13 TeV using the ATLAS detector at the LHC

    CERN Document Server

    Alvarez, Manuel; Llorente, Javier

    This analysis presents measurements of transverse energy-energy correlations (TEEC) and its associated asymmetry (ATEEC) in multi-jet events in bins of the scalar sum of the two leading jets transverse momenta. The data are unfolded to the particle level and compared to Monte Carlo generators like PYTHIA8, HERWIG++ and SHERPA. A comparison with NLOJET++ predictions is also performed. The value of the strong coupling constant is extracted and the running is tested up to scales beyond 1 TeV.

  18. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    , in the solution state the 2-bond and 3-bond J(1H–13C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl......-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl...

  19. Coupled perturbed HF/KS calculation of the dielectric constant of crystalline systems. The case of six members of the garnet family

    Science.gov (United States)

    Meyer, A.; Ferrero, M.; Valenzano, L.; Zicovich-Wilson, C. M.; Orlando, R.; Dovesi, R.

    2012-12-01

    The dielectric constant ɛ of pyrope (Mg3Al2(SiO4)3), grossular (Ca3Al2(SiO4)3), andradite (Ca3Fe2(SiO4)3), almandine (Fe3Al2(SiO4)3), spessartine (Mn3Al2(SiO4)3), and uvarovite (Ca3Cr2(SiO4)3) garnets has been calculated by using for the first time the CPHF/KS computational scheme recently implemented in the CRYSTAL code. Garnets are large unit cell (80 atoms in the primitive cell) highly symmetric (Ia3¯d space group) compounds of relevant importance in geology and mineralogy. An all electron Gaussian type Basis Set has been adopted for all atoms. For the four compound containing transition metal atoms the unrestricted formulation of the HF or KS equations has been used. The Basis Set effect has been explored, as well as the influence of the adopted functional, that ranges from LDA to HF through GGA (PBE) and hybrids PBE0 and B3LYP.

  20. Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarli, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-06-26

    The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7$~\\mathrm{TeV}$ was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0$~\\mathrm{fb}^{-1}$. The measurement covers a phase space up to 2$~\\mathrm{TeV}$ in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass $M_{\\mathrm{Z}}$ is determined to be $\\alpha_S(M_{\\mathrm{Z}}) = 0.1185 \\pm 0.0019\\,(\\mathrm{exp})\\,^{+0.0060}_{-0.0037}\\,(\\mathrm{theo})$, which is in a...

  1. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Bagaturia, Iuri; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0...

  2. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene

    Science.gov (United States)

    Morrison, Adrian F.; Herbert, John M.

    2017-06-01

    Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.

  3. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.

    Science.gov (United States)

    Morrison, Adrian F; Herbert, John M

    2017-06-14

    Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.

  4. Solvent Effects on Nuclear Magnetic Resonance 2J(C,Hf and 1J(C,Hf Spin–Spin Coupling Constants in Acetaldehyde

    Directory of Open Access Journals (Sweden)

    Angel Esteban

    2003-02-01

    Full Text Available Abstract: The known solvent dependence of 1J(Cc,Hf and 2J(C1,Hf couplings in acetaldehyde is studied from a theoretical viewpoint based on the density functional theory approach where the dielectric solvent effect is taken into account with the polarizable continuum model. The four terms of scalar couplings, Fermi contact, paramagnetic spin orbital, diamagnetic spin orbital and spin dipolar, are calculated but the solvent effect analysis is restricted to the first term since for both couplings it is by far the dominant contribution. Experimental trends of Δ1J(Cc,Hf and Δ2J(C1,Hf Vs ε (the solvent dielectric constant are correctly reproduced although they are somewhat underestimated. Specific interactions between solute and solvent molecules are studied for dimethylsulfoxide, DMSO, solutions considering two different one-to-one molecular complexes between acetaldehyde and DMSO. They are determined by interactions of type C=O---H---C and S=O---H---C, and the effects of such interactions on 1J(Cc,Hf and 2J(C1,Hf couplings are analyzed. Even though only in a semiquantitative way, it is shown that the effect of such interactions on the solvent effects, of Δ1J(Cc,Hf and Δ2J(C1,Hf, tend to improve the agreement between calculated and experimental values. These results seem to indicate that a continuum dielectric model has not enough flexibility for describing quantitatively solvent effects on spin-spin couplings. Apparently, even for relatively weak hydrogen bonding, the contribution from “direct” interactions is of the same order of magnitude as the “dielectric” effect.

  5. Valence bond/broken symmetry analysis of the exchange coupling constant in copper(II) dimers. Ferromagnetic contribution exalted through combined ligand topology and (singlet) covalent-ionic mixing.

    Science.gov (United States)

    Onofrio, Nicolas; Mouesca, Jean-Marie

    2010-05-27

    In this paper we aim at presenting a full-VB (valence-bond) analysis of the DFT broken symmetry (BS) exchange coupling constant J(BS). We extend Kahn and Briat's "two sites-two electrons" VB original formalism (Kahn, O.; Briat, B. J. Chem. Soc. Farady Trans. II, 1976, 72, 268) by taking into account the covalent-ionic singlet state mixing, here translated into intersite magnetic orbital delocalization. In this way, two explicit contributions to the magnetic orbital overlap appear, one from the purely covalent state, and the other one from the covalent-ionic mixing. This scheme allows us to relax the strict orthogonality constraint of Kahn and Briat's chemically heuristic model resulting into ferromagnetism. Moreover, we show how DFT-BS calculations applied to various copper(II) dimers yield effective parameters that can be injected into the full-VB model, allowing for a breaking down of J(BS) into various contributions, one of which being either ferromagnetic or antiferromagnetic depending on the bridging ligand topology. Two classes of systems emerge from this analysis and the exceptional ferromagnetic coupling property of the "end-on" azido-bridged copper dimer is especially emphasized.

  6. Determination of the top-quark pole mass and strong coupling constant from the $t\\bar{t}$ production cross section in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Kalogeropoulos, Alexis; Keaveney, James; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Selvaggi, Michele; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bluj, Michal; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Garutti, Erika; Gebbert, Ulla; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Heine, Kristin; Höing, Rebekka Sophie; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Marchesini, Ivan; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Kornmayer, Andreas; Lobelle Pardo, Patricia; Martschei, Daniel; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Saxena, Pooja; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Triossi, Andrea; Ventura, Sandro; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Oh, Young Do; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Grigelionis, Ignas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Almeida, Nuno; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Tsirova, Natalia; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Roeck, Albert; De Visscher, Simon; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lee, Yen-Jie; Lourenco, Carlos; Magini, Nicolo; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Quertenmont, Loic; Racz, Attila; Reece, William; Rojo, Juan; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Chiochia, Vincenzo; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Tupputi, Salvatore; Verzetti, Mauro; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarlı, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Takasugi, Eric; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Jandir, Pawandeep; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Lacroix, Florent; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Griffiths, Scott; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Giurgiu, Gavril; Gritsan, Andrei; Hu, Guofan; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Kim, Yongsun; Klute, Markus; Lai, Yue Shi; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Gonzalez Suarez, Rebeca; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Jung, Kurt; Koybasi, Ozhan; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Loveless, Richard; Mohapatra, Ajit; Mozer, Matthias Ulrich; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2014-01-20

    The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass, $m_t^{pole}$, or the strong coupling constant, $\\alpha_S$. With the parton distribution function set NNPDF2.3, a pole mass of 176.7$^{+3.0}_{-2.8}$ GeV is obtained when constraining $\\alpha_S$ at the scale of the Z boson mass, $m_Z$, to the current world average. Alternatively, by constraining $m_t^{pole}$ to the latest average from direct mass measurements, a value of $\\alpha_S(m_Z)$ = 0.1151$^{+0.0028}_{-0.0027}$ is extracted. This is the first determination of $\\alpha_S$ using events from top-quark production.

  7. Measurement of transverse energy-energy correlations in multi-jet events in $pp$ collisions at $\\sqrt{s} = 7$ TeV using the ATLAS detector and determination of the strong coupling constant $\\alpha_{\\mathrm{s}}(m_Z)$

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; L{ö}sel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-09-24

    High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy--energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 $\\mathrm{pb}^{-1}$. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the $Z$ boson mass is determined to be $\\alpha_{\\mathrm{s}}(m_Z) = 0.1173 \\pm 0.0010 \\mbox{ (exp.) }^{+0.0065}_{-0.0026} \\mbox{ (theo.)}$.

  8. Measurement of transverse energy–energy correlations in multi-jet events in pp collisions at s=7 TeV using the ATLAS detector and determination of the strong coupling constant αs(mZ

    Directory of Open Access Journals (Sweden)

    G. Aad

    2015-11-01

    Full Text Available High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy–energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 pb−1. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the Z boson mass is determined to be αs(mZ=0.1173±0.0010 (exp. −0.0026+0.0065 (theo..

  9. Varying Constants, Gravitation and Cosmology.

    Science.gov (United States)

    Uzan, Jean-Philippe

    2011-01-01

    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  10. Varying Constants, Gravitation and Cosmology

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Uzan

    2011-03-01

    Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  11. Mirror QCD and Cosmological Constant

    Directory of Open Access Journals (Sweden)

    Roman Pasechnik

    2017-05-01

    Full Text Available An analog of Quantum Chromo Dynamics (QCD sector known as mirror QCD (mQCD can affect the cosmological evolution due to a non-trivial contribution to the Cosmological Constant analogous to that induced by the ground state in non-perturbative QCD. In this work, we explore a plausible hypothesis for trace anomalies cancellation between the usual QCD and mQCD. Such an anomaly cancellation between the two gauge theories, if it exists in Nature, would lead to a suppression or even elimination of their contributions to the Cosmological Constant. The trace anomaly compensation condition and the form of the non-perturbative mQCD coupling constant in the infrared limit have been proposed by analysing a partial non-perturbative solution of the Einstein–Yang-Mills equations of motion.

  12. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    Science.gov (United States)

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  13. Cosmological constant, fine structure constant and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hao; Zou, Xiao-Bo; Li, Hong-Yu; Xue, Dong-Ze [Beijing Institute of Technology, School of Physics, Beijing (China)

    2017-01-15

    In the present work, we consider the cosmological constant model Λ ∝ α{sup -6}, which is well motivated from three independent approaches. As is well known, the hint of varying fine structure constant α was found in 1998. If Λ ∝ α{sup -6} is right, it means that the cosmological constant Λ should also be varying. Here, we try to develop a suitable framework to model this varying cosmological constant Λ ∝ α{sup -6}, in which we view it from an interacting vacuum energy perspective. Then we consider the observational constraints on these models by using the 293 Δα/α data from the absorption systems in the spectra of distant quasars. We find that the model parameters can be tightly constrained to the very narrow ranges of O(10{sup -5}) typically. On the other hand, we can also view the varying cosmological constant model Λ ∝ α{sup -6} from another perspective, namely it can be equivalent to a model containing ''dark energy'' and ''warm dark matter'', but there is no interaction between them. We find that this is also fully consistent with the observational constraints on warm dark matter. (orig.)

  14. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  15. Cosmological Constant, Fine Structure Constant and Beyond

    CERN Document Server

    Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze

    2016-01-01

    In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...

  16. A natural cosmological constant from chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)

    2015-07-30

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  17. A natural cosmological constant from chameleons

    Directory of Open Access Journals (Sweden)

    Horatiu Nastase

    2015-07-01

    Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.

  18. Developpement d'un modele thermodynamique pour les cristallites de coke: Application aux systems carbone-hydrogene et carbone-soufre

    Science.gov (United States)

    Ouzilleau, Philippe

    cristallite size parameters La (diameter of the crystallite) and Lc (height of the crystallite). The use of the Compound Energy Formalism is necessary to establish the methodology of the present model. Globally, the planar structure of the crystallites is divided into three sublattices on which individual chemical species are assumed to mix randomly. Appropriate thermodynamic paths are used to define the relative enthalpies and absolute entropies of these chemical species. The relative enthalpy and absolute entropy of the coke crystallites are derived for various values of La in the carbon/hydrogen and carbon/sulfur chemical systems. For the carbon/hydrogen system, the model parameters are based on the known values for the entropy of formation of simple hydrogenous organic compounds in the gaseous phase and known carbon/hydrogen bond enthalpies. Also, additional enthalpic properties of coke crystallites and graphitic structures are required for the definition of the thermodynamic paths (for example, the enthalpy associated with the delocalization of one electron in graphitic structures). Results for the carbon/hydrogen system are compared to experiments concerning the dehydrogenation of various cokes. A very satisfying agreement is obtained between the dehydrogenation curves predictively calculated by the model and the reported experimental results (obtained using slow heating rates). Most of the hydrogen content of coke crystallites (this content does not inclue the hydrogen in the condensed volatile matter phase) is predicted to leave the crystalline structure for temperatures between 1100 and 1300 K. Also, experimental measurements of the Gibbs energy of coke relative to graphite are reported. These measurements were obtained using a solid state electrochemical technique. A stabiliy of approximately 900 J g-1, relative to graphite, is reported for temperatures between 950 and 1250 K and for a crystallite size La of ˜10 nm. This value is in excellent agreement with the

  19. On Aryabhata's Planetary Constants

    OpenAIRE

    Kak, Subhash

    2001-01-01

    This paper examines the theory of a Babylonian origin of Aryabhata's planetary constants. It shows that Aryabhata's basic constant is closer to the Indian counterpart than to the Babylonian one. Sketching connections between Aryabhata's framework and earlier Indic astronomical ideas on yugas and cyclic calendar systems, it is argued that Aryabhata's system is an outgrowth of an earlier Indic tradition.

  20. Generalized Pickands constants

    NARCIS (Netherlands)

    K.G. Debicki

    2001-01-01

    textabstractPickands constants play an important role in the exact asymptotic of extreme values for Gaussian stochastic processes. By the {it generalized Pickands constant ${cal H_{eta$ we mean the limit begin{eqnarray* {cal H_{eta= lim_{T to inftyfrac{ {cal H_{eta(T){T, end{eqnarray* where ${cal

  1. Glycol-Water Interactions and co-existing phases and Temperature Dependent Solubility. An Example Of Carbon-Hydrogen Chemistry In Water

    CERN Document Server

    Michael, Fredrick

    2010-01-01

    Recently there has been great interest in Glycol-Water chemistry and solubility and temperature dependent phase dynamics. The Glycol-Water biochemistry of interactions is present in plant biology and chemistry, is of great interest to chemical engineers and biochemists as it is a paradigm of Carbon-Hydrogen Water organic chemistry. There is an interest moreover in formulating a simpler theory and computation model for the Glycol-Water interaction and phase dynamics, that is not fully quantum mechanical yet has the high accuracy available from a fully quantum mechanical theory of phase transitions of fluids and Fermi systems. Along these lines of research interest we have derived a Lennard-Jones -like theory of interacting molecules-Water in a dissolved adducts of Glycol-Water system interacting by Hydrogen bonds whose validity is supported at the scale of interactions by other independent molecular dynamics investigations that utilize force fields dependent on their experimental fittings to the Lennard-Jones ...

  2. Strong Coupling Constants of Negative Parity Heavy Baryons with π and K Mesons

    OpenAIRE

    Aliev, T. M.; Bilmis, S.; Savci, M.

    2017-01-01

    The strong coupling constants of negative parity heavy baryons belonging to sextet and antitriplet representations of SUf(3) with light π and K mesons are estimated within the light cone QCD sum rules. It is observed that each class of the sextet-sextet, sextet-antitriplet, and antitriplet-antitriplet transitions can be described by only one corresponding function. The pollution arising from the positive to positive, positive to negative, and negative to positive parity baryons transitions is...

  3. Deconstructing the Cosmological Constant

    CERN Document Server

    Jejjala, V; Minic, D; Jejjala, Vishnu; Leigh, Robert G.; Minic, Djordje

    2003-01-01

    Deconstruction provides a novel way of dealing with the notoriously difficult ultraviolet problems of four-dimensional gravity. This approach also naturally leads to a new perspective on the holographic principle, tying it to the fundamental requirements of unitarity and diffeomorphism invariance, as well as to a new viewpoint on the cosmological constant problem. The numerical smallness of the cosmological constant is implied by a unique combination of holography and supersymmetry, opening a new window into the fundamental physics of the vacuum.

  4. Graviton fluctuations erase the cosmological constant

    Science.gov (United States)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological ;constant; in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  5. Beyond the Hubble Constant

    Science.gov (United States)

    1995-08-01

    of SN 1995K of about 22.7, but the uncertainty of this value is still so large that this measurement alone cannot be used to determine the value of q0. This will require many more observations of supernovae at least as distant as the present one, a daunting task that may nevertheless be possible within this broad, international programme. It is estimated that a reliable measurement of q0 may become possible when about 20 Type Ia supernovae with accurate peak magnitudes have been measured. According to the discovery predictions, this could be possible within the next couple of years. In this connection, it is of some importance that for this investigation, it is in principle not necessary to know the correct value of the Hubble constant H0 in advance; q0 may still be determined by comparing the relative distance scale of distant supernovae with that of nearby ones. This research is described in more detail in a forthcoming article in the September 1995 issue of the ESO Messenger. Notes: [1] Brian P. Schmidt (Mount Stromlo and Siding Spring Observatories, Australia), Bruno Leibundgut, Jason Spyromilio, Jeremy Walsh (ESO), Mark M. Phillips, Nicholas B. Suntzeff, Mario Hamuy, Robert A. Schommer (Cerro Tololo Inter-American Observatory), Roberto Aviles (formerly Cerro Tololo Inter-American Observatory; now at ESO), Robert P. Kirshner, Adam Riess, Peter Challis, Peter Garnavich (Center for Astrophysics, Cambridge, Massachussetts, U.S.A.), Christopher Stubbs, Craig Hogan (University of Washington, Seattle, U.S.A.), Alan Dressler (Carnegie Observatories, U.S.A.) and Robin Ciardullo (Pennsylvania State University, U.S.A.) [2] In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy gives a direct estimate of the apparent recession velocity as caused by the universal expansion. Since the expansion rate increases with the distance, the velocity is itself a

  6. Elastic constants of calcite

    Science.gov (United States)

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  7. Algorithm for structure constants

    CERN Document Server

    Paiva, F M

    2011-01-01

    In a $n$-dimensional Lie algebra, random numerical values are assigned by computer to $n(n-1)$ especially selected structure constants. An algorithm is then created, which calculates without ambiguity the remaining constants, obeying the Jacobi conditions. Differently from others, this algorithm is suitable even for poor personal computer. ------------- En $n$-dimensia algebro de Lie, hazardaj numeraj valoroj estas asignitaj per komputilo al $n(n-1)$ speciale elektitaj konstantoj de strukturo. Tiam algoritmo estas kreita, kalkulante senambigue la ceterajn konstantojn, obeante kondicxojn de Jacobi. Malsimile al aliaj algoritmoj, tiu cxi tauxgas ecx por malpotenca komputilo.

  8. Radiographic constant exposure technique

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1985-01-01

    The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality was tes...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...

  9. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    electromagnetic force between subatomic charged parti- cles, and essentially determines how an atom holds to- gether its electrons. It is however not obvious why this constant has this ..... about α in 1948: “The theoretical interpretation of its numerical value is one of the most important unsolved problems of atomic physics.”

  10. Gravitational constant calculation methodologies

    OpenAIRE

    Shakhparonov, V. M.; Karagioz, O. V.; Izmailov, V. P.

    2011-01-01

    We consider the gravitational constant calculation methodologies for a rectangular block of the torsion balance body presented in the papers Phys. Rev. Lett. 102, 240801 (2009) and Phys.Rev. D. 82, 022001 (2010). We have established the influence of non-equilibrium gas flows on the obtained values of G.

  11. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds

    Science.gov (United States)

    Aspers, Ruud L. E. G.; Ampt, Kirsten A. M.; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S.

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, nJCF- and nJFF-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all nJCF- and nJFF-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to facilitate the

  12. N.M.R. study of organo-phosphorus compounds: non equivalence of methylenic protons in the {alpha} position of an asymmetric phosphorus atom. Application to study of coupling constants J{sub P,H} and J{sub H,H}; R.M.N. de composes organo-phosphores: non equivalence de protons methyleniques en {alpha} d'un phosphore asymetrique. Application a l'etude des constantes de couplage J{sub P,H} et J{sub H,H}

    Energy Technology Data Exchange (ETDEWEB)

    Albrand, J.P. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Non-equivalent methylenic protons, with respect to an asymmetric center, have been observed in the n.m.r. spectra of some three- and tetra-coordinated phosphorus compounds. The analysis of these spectra yield the following results: in the studied secondary phosphines, the inversion rate at the phosphorus atom is slow on the n.m.r. time scale; the geminal coupling constant, for a free-rotating methylene group attached to a phosphorus atom, is negative; in phosphines the non equivalence of methylenic protons reveals two {sup 2}J{sub P-C-H} coupling constants which differ by about 5 Hz. This result is in agreement with previous studies on cyclic phosphines. In phosphine oxides, the {sup 2}J{sub P-C-H} values are negative. The {sup 3}J{sub H-P-C-H} coupling constant is positive in both phosphines and phosphine oxides. In phosphines, the non-equivalent methylenic protons exhibit two nearly equal values for this coupling constant. (author) [French] La non-equivalence de protons methyleniques observee dans quelques composes phosphores tricoordines et tetracoordines a apporte les resultats suivants, concernant la stereochimie et les constantes de couplage dans ces composes: dans les phosphines secondaires, la structure pyramidale des liaisons issues du phosphore est fixe a l'echelle de temps de mesure de la R.M.N.; la constante de couplage {sup 2}J{sub H-C-H}, pour un methylene en libre rotation en {alpha} d'un atome de phosphore, est negative; dans les phosphines etudiees, la non-equivalence. observee pour les protons methyleniques s'accompagne d'une difference importante (5 Hz) entre les deux constantes de couplage {sup 2}J{sub P-C-H} determinees par l'analyse; ce resultat est en accord avec la stereospecificite deja observee pour ce couplage dans les phosphines cycliques. Les valeurs observees pour {sup 2}J{sub P-C-H} dans les oxydes de phosphines sont negatives. Les valeurs de la constante de couplage {sup 3}J{sub H-P-C-H}, dans les phosphines

  13. Graviton fluctuations erase the cosmological constant

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-10-01

    Full Text Available Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological “constant” in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  14. The Hubble Constant.

    Science.gov (United States)

    Jackson, Neal

    2015-01-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0 values of around 72-74 km s(-1) Mpc(-1), with typical errors of 2-3 km s(-1) Mpc(-1). This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s(-1) Mpc(-1) and typical errors of 1-2 km s(-1) Mpc(-1). The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  15. Measurement of the 3-jet mass cross section in pp collisions at 7 TeV and determination of the strong coupling constant from 3-jet masses in the TeV range

    CERN Document Server

    CMS Collaboration

    2013-01-01

    This study presents a measurement of the double-differential cross section of 3-jet events at a center-of-mass energy of $\\sqrt{s}=7\\TeV$, using data corresponding to an integrated luminosity of $5\\,\\mathrm{fb}^{-1}$ collected with the CMS detector in 2011\\@. The cross section is measured as a function of the invariant mass and maximum rapidity of the 3-jet system and is unfolded for detector effects. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory like the parton distribution functions of the proton and the strong coupling $\\alpha_S$ is studied. A fit of all data points at central rapidity gives the value of the strong coupling at the scale of the $Z$ boson mass to be $\\alpha_S(M_Z) = 0.1160 \\pm_{0.0023}^{0.0025}\\,(\\mathrm{exp,PDF,NP})\\pm_{0.0021}^{0.0068}\\,(\\mathrm{scale})$.

  16. Influence of the reactant carbon-hydrogen-oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water.

    Science.gov (United States)

    Gong, Miao; Zhu, Wei; Fan, Yujie; Zhang, Huiwen; Su, Ying

    2016-05-01

    The supercritical water gasification of ten different types of dewatered sewage sludges was investigated to understand the relationship between sludge properties and gasification products. Experiments were performed in a high-pressure autoclave at 400°C for 60 min. Results showed that gasification of sewage sludge in supercritical water consists mainly of a gasification reaction, a carbonization reaction and a persistent organic pollutants synthesis reaction. Changes in the reactant C/H/O composition have significant effects on the key gasification products. Total gas production increased with increasing C/H2O of the reactant. The char/coke content increased with increasing C/H ratio of the reactant. A decrease in the C/O ratio of the reactant led to a reduction in polycyclic aromatic hydrocarbon formation. This means that we can adjust the reactant C/H/O composition by adding carbon-, hydrogen-, and oxygen-containing substances such as coal, algae and H2O2 to optimize hydrogen production and to inhibit an undesired by-product formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Density functional theory study of the reaction mechanism for competitive carbon-hydrogen and carbon-halogen bond activations catalyzed by transition metal complexes.

    Science.gov (United States)

    Yang, Xinzheng; Hall, Michael B

    2009-03-12

    Carbon-hydrogen and carbon-halogen bond activations between halobenzenes and metal centers were studied by density functional theory with the nonempirical meta-GGA Tao-Perdew-Staroverov-Scuseria functional and an all-electron correlation-consistent polarized valence double-zeta basis set. Our calculations demonstrate that the hydrogen on the metal center and halogen in halobenzene could exchange directly through a kite-shaped transition state. Transition states with this structure were previously predicted to have high energy barriers (J. Am. Chem. Soc. 2005, 127, 279), and this prediction misled others in proposing a mechanism for their recent experimental study (J. Am. Chem. Soc. 2006, 128, 3303). Furthermore, other halo-carbon activation pathways were found in the detailed mechanism for the competitive reactions between cationic titanium hydride complex [Cp*((t)Bu(3)P=N)TiH](+) and chlorobenzene under different pressure of H(2). These pathways include the ortho-C-H and Ti-H bond activations for the formation and release of H(2) and the indirect C-Cl bond activation via beta-halogen elimination for the movement of the C(6)H(4) ring and the formation of a C-N bond in the observed final product. A new stable isomer of the observed product with a similar total energy and an unexpected bridging between the Cp* ring and the metal center by a phenyl ring is also predicted.

  18. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  19. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  20. Reconstruction of constant slow-roll inflation

    Science.gov (United States)

    Gao, Qing

    2017-09-01

    Using the relations between the slow-roll parameters and the power spectra for the single field slow-roll inflation, we derive the scalar spectral tilt n s and the tensor to scalar ratio r for the constant slow-roll inflation, and obtain the constraint on the slow-roll parameter η from the Planck 2015 results. The inflationary potential for the constant slow-roll inflation is then reconstructed in the framework of both general relativity and the scalar-tensor theory of gravity, and compared with the recently reconstructed E model potential. In the strong coupling limit, we show that the η attractor is reached.

  1. Spaces of constant curvature

    CERN Document Server

    Wolf, Joseph A

    2010-01-01

    This book is the sixth edition of the classic Spaces of Constant Curvature, first published in 1967, with the previous (fifth) edition published in 1984. It illustrates the high degree of interplay between group theory and geometry. The reader will benefit from the very concise treatments of riemannian and pseudo-riemannian manifolds and their curvatures, of the representation theory of finite groups, and of indications of recent progress in discrete subgroups of Lie groups. Part I is a brief introduction to differentiable manifolds, covering spaces, and riemannian and pseudo-riemannian geomet

  2. The coupled cluster approach with a hybrid treatment of connected triple excitations: Spectroscopic constants in open-shell diatomic molecules, and bond-breaking or twisting potential energy surfaces

    Science.gov (United States)

    Kou, Zhuangfei; Shen, Jun; Xu, Enhua; Li, Shuhua

    2012-06-01

    A coupled cluster singles, doubles, and a hybrid treatment of triples [denoted as CCSD(T)-h] has been applied to investigate the equilibrium geometries and harmonic frequencies of five diatomic open-shell molecules, bond breaking potential energy surfaces in C2 and F2+, and the twisting potential energy surface of ethylene. In the present work, CCSD(T)-h calculations are based on the restricted or restricted open-shell Hartree-Fock (RHF or ROHF) reference. A general procedure for constructing the active RHF or ROHF orbitals is proposed. A comparison of CCSD(T)-h with other CC methods show that for all systems CCSD(T)-h is an excellent approximation to CCSDT, being much better than CCSD(T) especially when a molecule exhibits strong multireference character.

  3. Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at $\\sqrt{s}$ = 7 TeV and first determination of the strong coupling constant in the TeV range

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Kalogeropoulos, Alexis; Keaveney, James; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Selvaggi, Michele; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Costanza, Francesco; Diez Pardos, Carmen; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Heine, Kristin; Höing, Rebekka Sophie; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Kornmayer, Andreas; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Saxena, Pooja; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Sgaravatto, Massimo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Dellacasa, Giulio; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Zanetti, Anna; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Oh, Young Do; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Grigelionis, Ignas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; De Visscher, Simon; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lee, Yen-Jie; Lourenco, Carlos; Magini, Nicolo; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rojo, Juan; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Chiochia, Vincenzo; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Tupputi, Salvatore; Verzetti, Mauro; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Takasugi, Eric; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Gutsche, Oliver; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Lacroix, Florent; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Griffiths, Scott; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Hu, Guofan; Maksimovic, Petar; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Bauer, Gerry; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Kim, Yongsun; Klute, Markus; Lai, Yue Shi; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Gonzalez Suarez, Rebeca; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Wolfe, Homer; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Jung, Kurt; Koybasi, Ozhan; Kress, Matthew; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Wang, Fuqiang; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Loveless, Richard; Mohapatra, Ajit; Mozer, Matthias Ulrich; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-10-19

    A measurement is presented of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section as a function of the average transverse momentum, , of the two leading jets in the event. The data sample was collected during 2011 at a proton-proton centre-of-mass energy of 7 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 5.0 inverse femtobarns. The strong coupling constant at the scale of the Z boson mass is determined to be alphaS[MZ] = 0.1148 +/- 0.0014 (exp.) +/- 0.0018(PDF) +0.0050/-0.0000 (scale), by comparing the ratio in the range 0.42 < 1.39 TeV to the predictions of perturbative QCD at next-to-leading order. This is the first determination of alphaS[MZ] from measurements at momentum scales beyond 0.6 TeV. The predicted ratio depends only indirectly on the evolution of the parton distribution functions of the proton such that this measurement also serves as a test of the evolution of the strong coupling constant beyond 0.42 TeV. No deviation from...

  4. Quantum Theory without Planck's Constant

    OpenAIRE

    Ralston, John P.

    2012-01-01

    Planck's constant was introduced as a fundamental scale in the early history of quantum mechanics. We find a modern approach where Planck's constant is absent: it is unobservable except as a constant of human convention. Despite long reference to experiment, review shows that Planck's constant cannot be obtained from the data of Ryberg, Davisson and Germer, Compton, or that used by Planck himself. In the new approach Planck's constant is tied to macroscopic conventions of Newtonian origin, wh...

  5. When constants are important

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1997-04-01

    In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.

  6. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Jackson Neal

    2007-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. In the last 20 years, much progress has been made and estimates now range between 60 and 75 km s^-1 Mpc^-1, with most now between 70 and 75 km s^-1 Mpc^-1, a huge improvement over the factor-of-2 uncertainty which used to prevail. Further improvements which gave a generally agreed margin of error of a few percent rather than the current 10% would be vital input to much other interesting cosmology. There are several programmes which are likely to lead us to this point in the next 10 years.

  7. Vanishing cosmological constant in elementary particles theory

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, F. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Tonasse, M.D. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs. 32 refs.

  8. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  9. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  10. Meson-Baryon coupling constants in QCD sum rules

    NARCIS (Netherlands)

    Erkol, Güray

    2006-01-01

    There is a long history of describing the baryon-baryon interactions in terms of One Boson Exchange (OBE) models. These phenomenological models give an effective first-order approximation of the complete interaction and provide a very accurate description of the rich nucleon-nucleon (N!N) and the

  11. Spectrophotometric determination of association constant

    DEFF Research Database (Denmark)

    2016-01-01

    Least-squares 'Systematic Trial-and-Error Procedure' (STEP) for spectrophotometric evaluation of association constant (equilibrium constant) K and molar absorption coefficient E for a 1:1 molecular complex, A + B = C, with error analysis according to Conrow et al. (1964). An analysis of the Charge...

  12. High precision fundamental constants at the TeV scale

    CERN Document Server

    Moch, S.; Alekhin, S.; Blumlein, J.; de la Cruz, L.; Dittmaier, S.; Dowling, M.; Erler, J.; Espinosa, J.R.; Fuster, J.; Garcia i Tormo, X.; Hoang, A.H.; Huss, A.; Kluth, S.; Mulders, M.; Papanastasiou, A.S.; Piclum, J.; Rabbertz, K.; Schwinn, C.; Schulze, M.; Shintani, E.; Uwer, P.; Zerf, N.

    2014-01-01

    This report summarizes the proceedings of the 2014 Mainz Institute for Theoretical Physics (MITP) scientific program on "High precision fundamental constants at the TeV scale". The two outstanding parameters in the Standard Model dealt with during the MITP scientific program are the strong coupling constant $\\alpha_s$ and the top-quark mass $m_t$. Lacking knowledge on the value of those fundamental constants is often the limiting factor in the accuracy of theoretical predictions. The current status on $\\alpha_s$ and $m_t$ has been reviewed and directions for future research have been identified.

  13. Methodology for extracting local constants from petroleum cracking flows

    Science.gov (United States)

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  14. Learning Read-constant Polynomials of Constant Degree modulo Composites

    DEFF Research Database (Denmark)

    Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt

    2011-01-01

    Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...... in the target polynomial appears in a constant number of monomials. Our algorithm extends to superconstant but low degree polynomials and still runs in quasipolynomial time....

  15. Contribution to the study of the {sup 31}P, {sup 1}H spin spin coupling constant N. M. R. in three co-ordinated phosphorus compounds. Influence of the bond orientation and of the nature of the substituent around the phosphorus atom; Contribution a l'etude des constantes de couplage {sup 31}P, {sup 1}H en R.M.N. dans les composes organo-phosphores tricoordines. Influence des facteurs geometriques et de la nature des substituants au niveau du phosphore

    Energy Technology Data Exchange (ETDEWEB)

    Robert, J.B. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    In order to investigate the influence of the configuration at the phosphorus atom and the influence of the substituents attached to the phosphorus atom on the J{sub PH} spin spin coupling constant, we have performed the NMR spectrum analysis of some three coordinated organo-phosphorus compounds. The studied coupling constants are {sup 3}J{sub PH} through P-O-C-H and P-C-C-H fragments and {sup 2}J{sub PH} through P-C-H fragment. The results clearly show that on the NMR time scale, in all the studied compounds (1,3,2-dioxaphospholanes, 1,3,2-dioxaphosphorinanes, 3-phospha-cyclopentene and 4-phosphorinanone) there is no inversion of the bonds around phosphorous. This conclusion held also for secondary phosphines. For a given geometry of the bonds joining the P and H atoms, and a given disposition of the bonds around the phosphorus atom, there is only a little influence of the nature of the substituents on the J{sub PH} spin coupling constants. The geometrical dependence of the {sup 3}J{sub PH} cannot be explained by a 'Karplus law'. There is an influence of the bond disposition around phosphorus. In the case of the {sup 2}J{sub P-C-H}, one can plot a curve {sup 2}J{sub P-C-H} = f({alpha}) (0{<=} {alpha} {<=} 180), {alpha} denote the dihedral angle of the two plane defined the first one by the P, C and H atoms, and the second one by the P-C bond together with the three-fold axis of the bond around phosphorus assuming a regular pyramidal arrangement. The function {sup 2}J{sub P-C-H} = f({alpha}) has two maxima, one for {alpha} = 0 degrees and the other for {alpha} = 180 degrees, and also a minimum for {alpha} = 110 degrees. (author) [French] Ce travail consiste en l'analyse par resonance magnetique nucleaire des constantes de couplage phosphore-proton dans des derives organo-phosphores tricoordines dans un double but: examen de la stabilite des liaisons au niveau du phosphore et etude de l'influence de la disposition des liaisons et de la nature de

  16. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    Directory of Open Access Journals (Sweden)

    Marco de Cesare

    2016-09-01

    Full Text Available We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  17. Systematics of constant roll inflation

    Science.gov (United States)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  18. From the Rydberg constant to the fundamental constants metrology; De la constante de Rydberg a la metrologie des constantes fondamentales

    Energy Technology Data Exchange (ETDEWEB)

    Nez, F

    2005-06-15

    This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)

  19. The Henry's constant of monochloramine.

    Science.gov (United States)

    Garcia, Miguel A; Anderson, Michael A

    2018-02-01

    Monochloramine is a secondary disinfectant used in drinking water and is also formed in chlorinated wastewater. While known to hydrolyze over time and react with dissolved organic matter, its partitioning between the aqueous and gas phase has not been extensively studied. Preliminary experiments demonstrated that monochloramine concentrations in solutions open to the atmosphere or actively aerated decreased more rapidly than in sealed solutions, indicating significant losses to the atmosphere. For example, a monochloramine solution open to the atmosphere yielded a loss rate constant of 0.08 d-1, a value twice that for sealed samples without headspace (0.04 d-1) where loss occurs exclusively as a result of hydrolysis. A solution aerated at 10 mL s-1 had a loss rate constant nearly 10× greater than that for hydrolysis alone (0.35 d-1). To better understand partitioning of monochloramine to the gas phase and potential for volatilization, the dimensionless Henry's law constants of monochloramine (KH) were determined using an equilibrium headspace technique at five different temperatures (11, 16, 21, 27, and 32 °C). The resulting values ranged from 8 × 10-3 to 4 × 10-2, indicating a semi-volatile compound, and were found to be consistent with quantitative structure activity relationship predictions. At 20 °C, monochloramine exhibits a dimensionless Henry's constant of about 1.7 × 10-2 which is 35 times greater than ammonia but comparable to the Henry's constant of inorganic semi-volatile compounds such sulfur dioxide. The Henry's constant values for monochloramine suggests that volatilization could be a relevant loss process in open systems such as rivers receiving chlorinated wastewater effluent, swimming pools and cooling towers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Analyses élémentaires (carbone,hydrogène,oxygène,azote,soufre des fractions lourdes du pétrole. Elemental Analysis (Carbon,Hydrogen,Oxygen,Nitrogen,Sulfur of Heavy Oil Fractions Bibliographic Study

    Directory of Open Access Journals (Sweden)

    Barbelet M.

    2006-11-01

    Full Text Available La détermination des éléments carbone, hydrogène, oxygène, azote, soufre est essentielle pour la connaissance des fractions lourdes du pétrole. Cette étude bibliographique présente les principales méthodes d'analyse élémentaire utilisées dans ce domaine. On décrit les méthodes de minéralisation, de détection, et l'évolution suivie depuis plusieurs années dans l'automatisation des dosages. Determining, carbon, hydrogen, oxygen, nitrogen and sulfer elements is essential for understanding heavy oil fractions. This bibliographic study describes the leading elemental analysis methods used in this field. Mineralization and detection methods are described, and the development of titra-tion automation in recent years is reviewed.

  1. Constant Proportion Debt Obligations (CPDOs)

    DEFF Research Database (Denmark)

    Cont, Rama; Jessen, Cathrine

    2012-01-01

    Constant Proportion Debt Obligations (CPDOs) are structured credit derivatives that generate high coupon payments by dynamically leveraging a position in an underlying portfolio of investment-grade index default swaps. CPDO coupons and principal notes received high initial credit ratings from...

  2. GRAPHICAL DETERMINATION OF DISSOCIATION CONSTANT ...

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The dissociation constant (pKa) of non – polar amino acids including (alanine, glycine, valine phenylalanine and tryptophan) were determined by potentiometric titration technique. The pKa values obtained by extrapolation for alanine, glycine, and valine were 10.29, 9.87 and 9.91 respectively. The implications ...

  3. GRAPHICAL DETERMINATION OF DISSOCIATION CONSTANT ...

    African Journals Online (AJOL)

    DR. AMINU

    3: Plot of pH versus Log [HA]/[A-] for pKa of Valine. CONCLUSION. The acid dissociation constant of non polar amino acids determined graphically for the first time from the available literature were found to be similar with corresponding calculated values reported in the literature. Therefore the graphical approach is ...

  4. On Semi-classical Degravitation and the Cosmological Constant Problems

    CERN Document Server

    Patil, Subodh P

    2010-01-01

    In this report, we discuss a candidate mechanism through which one might address the various cosmological constant problems. We first observe that the renormalization of gravitational couplings (induced by integrating out various matter fields) manifests non-local modifications to Einstein's equations as quantum corrected equations of motion. That is, at the loop level, matter sources curvature through a gravitational coupling that is a non-local function of the covariant d'Alembertian. If the functional form of the resulting Newton's `constant' is such that it annihilates very long wavelength sources, but reduces to $1/M^2_{pl}$ ($M_{pl}$ being the 4d Planck mass) for all sources with cosmologically observable wavelengths, we would have a complimentary realization of the degravitation paradigm-- a realization through which its non-linear completion and the corresponding modified Bianchi identities are readily understood. We proceed to consider various theories whose coupling to gravity may a priori induce no...

  5. Wormholes and the cosmological constant

    Science.gov (United States)

    Klebanov, Igor; Susskind, Leonard; Banks, Tom

    1989-05-01

    We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We show that in a minisuperspace model wormhole-connected universes dominate the path integral. We also provide evidence that the euclidean path integral over geometries with spherical topology is unstable with respect to formation of infinitely many wormhole-connected 4-spheres. Consistency is restored by summing over all topologies, which leads to Coleman's result. Coleman's argument for determination of other parameters is reviewed and applied to the mass of the pion. A discouraging result is found that the pion mass is driven to zero. We also consider qualitatively the implications of the wormhole theory for cosmology. We argue that a small number of universes containing matter and energy may exist in contact with infinitely many cold and empty universe. Contact with the cold universe insures that the cosmological constant in the warm ones in zero.

  6. Wormholes and the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Klebanov, I.; Susskind, L.; Banks, T.

    1989-05-08

    We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We show that in a minisuperspace model wormhole-connected universes dominate the path integral. We also provide evidence that the euclidean path integral over geometries with spherical topology is unstable with respect to formation of infinitely many wormhole-connected 4-spheres. Consistency is restored by summing over all topologies, which leads to Coleman's result. Coleman's argument for determination of other parameters is reviewed and applied to the mass of the pion. A discouraging result is found that the pion mass is driven to zero. We also consider qualitatively the implications of the wormhole theory for cosmology. We argue that a small number of universes containing matter and energy may exist in contact with infinitely many cold and empty universes. Contact with the cold universes insures that the cosmological constant in the warm ones is zero.

  7. A new cosmological constant model

    CERN Document Server

    López, J L; Lopez, J; Nanopoulos, D

    1996-01-01

    We propose a new cosmological model with a time-dependent cosmological constant (\\Lambda\\propto 1/t^2), which starting at the Planck time as \\Lambda_{Pl}\\sim M^2_{Pl}, evolves to the present-day allowed value of \\Lambda_0\\sim10^{-120}M^2_{Pl}. This scenario is supported by non-critical string theory considerations. We compute the age of the Universe and the time-dependence of the scale factor in this model, and find general agreement with recent determinations of the Hubble parameter for substantial values of \\Omega_{\\rm \\Lambda}. This effectively low-density open Universe model differs from the traditional cosmological constant model, and has observable implications for particle physics and cosmology.

  8. Cosmological Constant and Local Gravity

    CERN Document Server

    Bernabeu, Jose; Mavromatos, Nick E

    2010-01-01

    We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and $\\Lambda > 0$, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild-de Sitter exact solution of Einstein's equations (due to a generalization of Birkhoff's theorem) in the domain between the two horizons. We manage to transform it first to a gauge in whic...

  9. Searching for Kaprekar's constants: algorithms and results

    OpenAIRE

    Walden, Byron L.

    2005-01-01

    We examine some new results on Kaprekar's constants, specifically establishing the unique 7-digit (in base 4) and 9-digit (in base 5) Kaprekar's constants and showing that there are no 15-, 21-, 27-, or 33-digit Kaprekar's constants.

  10. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  11. Cryptography in constant parallel time

    CERN Document Server

    Applebaum, Benny

    2013-01-01

    Locally computable (NC0) functions are 'simple' functions for which every bit of the output can be computed by reading a small number of bits of their input. The study of locally computable cryptography attempts to construct cryptographic functions that achieve this strong notion of simplicity and simultaneously provide a high level of security. Such constructions are highly parallelizable and they can be realized by Boolean circuits of constant depth.This book establishes, for the first time, the possibility of local implementations for many basic cryptographic primitives such as one-way func

  12. Formas estructurales de fuerza constante

    Directory of Open Access Journals (Sweden)

    Zalewski, Waclaw

    1963-05-01

    Full Text Available The author seeks to prove the need to obtain the most essential form in the various types of structures by applying a number of rational principles, of which the constant stress principle is one of the most decisive. The structural form should be a logical consequence of all its functional circumstances, and this requires a clear understanding of the general behaviour of each part of the structure, and also of the main stresses which operate on it, considered as a unitary whole. To complete his theoretical argument, the author gives some examples, in the design of which the criterion of constant stress has been adopted. The author considers the various aspects which are involved in obtaining a structural design that satisfies given functional and aesthetic requirements. In doing so he refers to his personal experience within Poland, and infers technical principles of general validity which should determine the rational design of the form, as an integrated aspect of the structural pattern. The projects which illustrate this paper are Polish designs of undoubted constructive significance, in which the principle of constant stress has been applied. Finally the author condenses his whole theory in a simple and straightforward practical formula, which should be followed if a truly rational form is to be achieved: the constancy of stress in the various structural elements.El autor se esfuerza en mostrar la necesidad de llegar a la forma real en las distintas estructuras siguiendo una serie de principios racionales, entre los que domina el criterio de la fuerza constante. La forma ha de ser una consecuencia lógica en todos sus aspectos, y esto exige un claro conocimiento del comportamiento general de cada una de las partes de la estructura, y de los esfuerzos generales que dominan en la misma al considerarla como un todo. Para completar la exposición de orden teórico, el autor presenta algunos ejemplos en cuyo proyecto se ha seguido el criterio de

  13. Graphs with constant μ and μ

    NARCIS (Netherlands)

    van Dam, E.R.; Haemers, W.H.

    1995-01-01

    A graph G has constant u = u(G) if any two vertices that are not adjacent have u common neighbours. G has constant u and u if G has constant u = u(G), and its complement G has constant u = u(G). If such a graph is regular, then it is strongly regular, otherwise precisely two vertex degrees occur. We

  14. Stability constant estimator user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P.; Castleton, K.J.; Rustad, J.R.

    1996-12-01

    The purpose of the Stability Constant Estimator (SCE) program is to estimate aqueous stability constants for 1:1 complexes of metal ions with ligands by using trends in existing stability constant data. Such estimates are useful to fill gaps in existing thermodynamic databases and to corroborate the accuracy of reported stability constant values.

  15. The Gravitational Instability of the Vacuum: Insight into the Cosmological Constant Problem

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S

    2004-07-06

    A mechanism for suppressing the cosmological constant is developed, based on an analogy with a superconducting phaseshift in which free fermions coupled perturbatively to a weak gravitational field are in an unstable false vacuum state. The coupling of the fermions to the gravitational field generates fermion condensates with zero momentum and a phase transition induces a nonperturbative transition to a true vacuum state by producing a positive energy gap {Delta} in the vacuum energy, identified with {radical}{Lambda}, where {Lambda} is the cosmological constant. In the strong coupling limit a large cosmological constant induces a period of inflation in the early universe, followed by a weak coupling limit in which {radical}{Lambda} vanishes exponentially fast as the universe expands due to the dependence of the energy gap on the density of Fermi surface fermions, D({epsilon}), predicting a small cosmological constant in the present universe.

  16. Higgs inflation and the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-02-15

    The Higgs not only induces the masses of all SM particles, the Higgs, given its special mass value, is the natural candidate for the inflaton and in fact is ruling the evolution of the early universe, by providing the necessary dark energy which remains the dominant energy density. SM running couplings not only allow us to extrapolate SM physics up to the Planck scale, but equally important they are triggering the Higgs mechanism. This is possible by the fact that the bare mass term in the Higgs potential changes sign at about μ{sub 0}≅1.40 x 10{sup 16} GeV and in the symmetric phase is enhanced by quadratic terms in the Planck mass. Such a huge Higgs mass term is able to play a key role in triggering inflation in the early universe. In this article we extend our previous investigation by working out the details of a Higgs inflation scenario. We show how different terms contributing to the Higgs Lagrangian are affecting inflation. Given the SM and its extrapolation to scales μ>μ{sub 0} we find a calculable cosmological constant V(0) which is weakly scale dependent and actually remains large during inflation. This is different to the Higgs fluctuation field dependent ΔV(φ), which decays exponentially during inflation, and actually would not provide a sufficient amount of inflation. The fluctuation field has a different effective mass which shifts the bare Higgs transition point to a lower value μ'{sub 0} ≅7.7 x 10{sup 14} GeV. The vacuum energy V(0) being proportional to M{sub Pl}{sup 4} has a coefficient which vanishes near the Higgs transition point, such that the bare and the renormalized cosmological constant match at this point. The role of the Higgs in reheating and baryogenesis is emphasized.

  17. Constant training in direct ophthalmoscopy

    Directory of Open Access Journals (Sweden)

    Younan HC

    2017-08-01

    Full Text Available Helen-Cara Younan, Rishi Iyer, Janaki Natasha DesaiFaculty of Medicine, Imperial College London, London, UKWe read with great interest the review by Ricci and Ferraz on the advances in training and practice in ophthalmoscopy simulation.1As final year medical students, we have recently experienced direct ophthalmoscopy teaching and agree with the authors that “simulation is a helpful tool in ophthalmoscopy training”.1 Indeed, in our experience, simulation is useful in teaching a wide variety of clinical skills including venepuncture, intravenous cannulation, and catheterization. We were taught all of these clinical skills in our first clinical year of study through use of simulation models. With regards to our direct ophthalmoscopy teaching, we were first taught to recognize the normal retina and different retinal pathologies using images, before practicing our technique and recognition of those images in a model similar to the THELMA (The Human Eye Learning Model Assistant described by the authors.1However, we feel that the use of simulation models alone is not enough to provide confidence and competency in direct ophthalmoscopy among medical students. The authors conclude that “constant training is a well-known strategy for skill enhancement”,1 and we have found that a lack of constant training in direct ophthalmoscopy is evident. After learning venepuncture, cannulation, and catheterization on the simulation models, we were able to observe doctors performing these skills before performing them on patients either in the wards or in theatre. These are skills that we are constantly trained in across a wide variety of medical and surgical attachments. However, opportunities to observe and practice ophthalmoscopy during our attachments are more limited, and thus we are not continuing to use the skills we learn.Authors' replyLucas Holderegger Ricci,1 Caroline Amaral Ferraz21Department of Ophthalmology, School of Medicine, Laureate

  18. The fundamental constants a mystery of physics

    CERN Document Server

    Fritzsch, Harald

    2009-01-01

    The speed of light, the fine structure constant, and Newton's constant of gravity — these are just three among the many physical constants that define our picture of the world. Where do they come from? Are they constant in time and across space? In this book, physicist and author Harald Fritzsch invites the reader to explore the mystery of the fundamental constants of physics in the company of Isaac Newton, Albert Einstein, and a modern-day physicist

  19. Omnidirectional antenna having constant phase

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Matthew

    2017-04-04

    Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintaining a required spacing/parallelism therebetween.

  20. Henry's law constants of polyols

    Science.gov (United States)

    Compernolle, S.; Müller, J.-F.

    2014-12-01

    Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs), solid state vapour pressures or activity coefficient ratios are obtained as intermediate results. An error analysis on the intermediate quantities and the obtained HLC is included. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

  1. Henry's law constants of polyols

    Directory of Open Access Journals (Sweden)

    S. Compernolle

    2014-12-01

    Full Text Available Henry's law constants (HLC are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs, solid state vapour pressures or activity coefficient ratios are obtained as intermediate results. An error analysis on the intermediate quantities and the obtained HLC is included. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014, an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.

  2. Philicities, Fugalities, and Equilibrium Constants.

    Science.gov (United States)

    Mayr, Herbert; Ofial, Armin R

    2016-05-17

    The mechanistic model of Organic Chemistry is based on relationships between rate and equilibrium constants. Thus, strong bases are generally considered to be good nucleophiles and poor nucleofuges. Exceptions to this rule have long been known, and the ability of iodide ions to catalyze nucleophilic substitutions, because they are good nucleophiles as well as good nucleofuges, is just a prominent example for exceptions from the general rule. In a reaction series, the Leffler-Hammond parameter α = δΔG(⧧)/δΔG° describes the fraction of the change in the Gibbs energy of reaction, which is reflected in the change of the Gibbs energy of activation. It has long been considered as a measure for the position of the transition state; thus, an α value close to 0 was associated with an early transition state, while an α value close to 1 was considered to be indicative of a late transition state. Bordwell's observation in 1969 that substituent variation in phenylnitromethanes has a larger effect on the rates of deprotonation than on the corresponding equilibrium constants (nitroalkane anomaly) triggered the breakdown of this interpretation. In the past, most systematic investigations of the relationships between rates and equilibria of organic reactions have dealt with proton transfer reactions, because only for few other reaction series complementary kinetic and thermodynamic data have been available. In this Account we report on a more general investigation of the relationships between Lewis basicities, nucleophilicities, and nucleofugalities as well as between Lewis acidities, electrophilicities, and electrofugalities. Definitions of these terms are summarized, and it is suggested to replace the hybrid terms "kinetic basicity" and "kinetic acidity" by "protophilicity" and "protofugality", respectively; in this way, the terms "acidity" and "basicity" are exclusively assigned to thermodynamic properties, while "philicity" and "fugality" refer to kinetics

  3. Turbine blade having a constant thickness airfoil skin

    Science.gov (United States)

    Marra, John J

    2012-10-23

    A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

  4. Calculation of hyperfine structure constants of small molecules using ...

    Indian Academy of Sciences (India)

    The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular components of the magnetic hyperfine structure constant of a few small alkaline earth hydrides (BeH, MgH, and CaH) and fluorides (MgF and CaF). We have compared our Z-vector results with the values ...

  5. Arrhenius Rate: constant volume burn

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-06

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derived and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.

  6. The fundamental constants and quantum electrodynamics

    CERN Document Server

    Taylor, Barry N; Langenberg, D N

    1969-01-01

    Introduction ; review of experimental data ; least-squares adjustment to obtain values of the constants without QED theory ; implications for quantum electrodynamics ; final recommended set of fundamental constants ; summary and conclusions.

  7. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  8. ESR melting under constant voltage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schlienger, M.E.

    1997-02-01

    Typical industrial ESR melting practice includes operation at a constant current. This constant current operation is achieved through the use of a power supply whose output provides this constant current characteristic. Analysis of this melting mode indicates that the ESR process under conditions of constant current is inherently unstable. Analysis also indicates that ESR melting under the condition of a constant applied voltage yields a process which is inherently stable. This paper reviews the process stability arguments for both constant current and constant voltage operation. Explanations are given as to why there is a difference between the two modes of operation. Finally, constant voltage process considerations such as melt rate control, response to electrode anomalies and impact on solidification will be discussed.

  9. Positive cosmological constant, non-local gravity and horizon entropy

    Energy Technology Data Exchange (ETDEWEB)

    Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France)

    2012-08-21

    We discuss a class of (local and non-local) theories of gravity that share same properties: (i) they admit the Einstein spacetime with arbitrary cosmological constant as a solution; (ii) the on-shell action of such a theory vanishes and (iii) any (cosmological or black hole) horizon in the Einstein spacetime with a positive cosmological constant does not have a non-trivial entropy. The main focus is made on a recently proposed non-local model. This model has two phases: with a positive cosmological constant {Lambda}>0 and with zero {Lambda}. The effective gravitational coupling differs essentially in these two phases. Generalizing the previous result of Barvinsky we show that the non-local theory in question is free of ghosts on the background of any Einstein spacetime and that it propagates a standard spin-2 particle. Contrary to the phase with a positive {Lambda}, where the entropy vanishes for any type of horizon, in an Einstein spacetime with zero cosmological constant the horizons have the ordinary entropy proportional to the area. We conclude that, somewhat surprisingly, the presence of any, even extremely tiny, positive cosmological constant should be important for the proper resolution of the entropy problem and, possibly, the information puzzle.

  10. Towards a consistent estimate of the chiral low-energy constants

    Energy Technology Data Exchange (ETDEWEB)

    Cirigliano, V. [California Institute of Technology, Pasadena, CA 91125 (United States); Ecker, G. [Institut fuer Theoretische Physik, Universitaet Wien, Boltzmanngasse 5, A-1090 Vienna (Austria); Eidemueller, M. [Departament de Fisica Teorica, IFIC, CSIC, Universitat de Valencia, Edifici d' Instituts de Paterna, Apt. Correus 22085, E-46071 Valencia (Spain); Kaiser, R. [Centre de Physique Theorique, Unite mixte de recherche (UMR 6207) du CNRS et des Universites Aix-Marseille I, Aix-Marseille II, et du Sud Toulon-Var, laboratoire affilie a la FRUMAM (FR 2291). CNRS-Luminy, Case 907, F-13288 Marseille Cedex 9 (France); Pich, A. [Departament de Fisica Teorica, IFIC, CSIC, Universitat de Valencia, Edifici d' Instituts de Paterna, Apt. Correus 22085, E-46071 Valencia (Spain); Portoles, J. [Departament de Fisica Teorica, IFIC, CSIC, Universitat de Valencia, Edifici d' Instituts de Paterna, Apt. Correus 22085, E-46071 Valencia (Spain)]. E-mail: jorge.portoles@ific.uv.es

    2006-10-02

    Guided by the large-N{sub C} limit of QCD, we construct the most general chiral resonance Lagrangian that can generate chiral low-energy constants up to O(p{sup 6}). By integrating out the resonance fields, the low-energy constants are parametrized in terms of resonance masses and couplings. Information on those couplings and on the low-energy constants can be extracted by analysing QCD Green functions of currents both for large and small momenta. The chiral resonance theory generates Green functions that interpolate between QCD and chiral perturbation theory. As specific examples we consider the and Green functions.

  11. Critical survey of stability constants of EDTA complexes critical evaluation of equilibrium constants in solution stability constants of metal complexes

    CERN Document Server

    Anderegg, G

    2013-01-01

    Critical Survey of Stability Constants of EDTA Complexes focuses on the computations, values, and characteristics of stability constants. The book emphasizes that for a critical discussion of experimentally determined stability constants, it is important to consider the precision of the values that manifests the self-consistency of the constant, taking into consideration the random errors. The publication reviews the stability constants of metal complexes. The numerical calculations affirm the reactions and transformations of metal ions when exposed to varying conditions. The text also present

  12. Surprises in numerical expressions of physical constants

    OpenAIRE

    Amir, Ariel; Lemeshko, Mikhail; Tokieda, Tadashi

    2016-01-01

    In science, as in life, `surprises' can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like pi or e. The inverse problem also arises, whereby the measured value of a physical constant admits a `surprisingly' simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a me...

  13. Searching for Kaprekar's constants: algorithms and results

    Directory of Open Access Journals (Sweden)

    Byron L. Walden

    2005-01-01

    Full Text Available We examine some new results on Kaprekar's constants, specifically establishing the unique 7-digit (in base 4 and 9-digit (in base 5 Kaprekar's constants and showing that there are no 15-, 21-, 27-, or 33-digit Kaprekar's constants.

  14. Untangling Fixed Effects and Constant Regressors

    NARCIS (Netherlands)

    Klaassen, F.; Teulings, R.

    2015-01-01

    Fixed effects (FE) in panel data models overlap each other and prohibit the identification of the impact of "constant" regressors. Think of regressors that are constant across countries in a country-time panel with time FE. The traditional approach is to drop some FE and constant regressors by

  15. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...

  16. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    Science.gov (United States)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  17. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    a labor market position for (female) spouses with limited alternative opportunities. This decision has positive effects: the financial benefits for each of the spouses, and especially the fe-male, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. This also......We study motivations for and outcomes of couples starting up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010, while comparing them to a set of comparable firms and couples. The main motivation for joint entrepreneurship is to create...

  18. Axiomatic approach to the cosmological constant

    Science.gov (United States)

    Beck, Christian

    2009-09-01

    A theory of the cosmological constant Λ is currently out of reach. Still, one can start from a set of axioms that describe the most desirable properties a cosmological constant should have. This can be seen in certain analogy to the Khinchin axioms in information theory, which fix the most desirable properties an information measure should have and that ultimately lead to the Shannon entropy as the fundamental information measure on which statistical mechanics is based. Here we formulate a set of axioms for the cosmological constant in close analogy to the Khinchin axioms, formally replacing the dependence of the information measure on probabilities of events by a dependence of the cosmological constant on the fundamental constants of nature. Evaluating this set of axioms one finally arrives at a formula for the cosmological constant given by Λ=1ħG(, where G is the gravitational constant, me the electron mass, and α the low-energy limit of the fine structure constant. This formula is in perfect agreement with current WMAP data. Our approach gives physical meaning to the Eddington-Dirac large-number hypothesis and suggests that the observed value of the cosmological constant is not at all unnatural.

  19. Magnetodielectric coupling in multiferroic transition metal oxides

    NARCIS (Netherlands)

    Adem, Umut

    2008-01-01

    The study of materials that show cross-coupling effects between magnetization and electrical polarization (thus dielectric constant), has become one of the most popular areas in the field of solid state physics since the discovery of large magnetoelectric coupling in TbMnO3 in 2003. The revival of

  20. Generalized coupling in the Kuramoto model

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2007-01-01

    We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....

  1. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse - most commonly the female - has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound in-vestment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  2. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female......We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound investment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of non...

  3. Tuning the cosmological constant, broken scale invariance, unitarity

    Energy Technology Data Exchange (ETDEWEB)

    Förste, Stefan; Manz, Paul [Bethe Center for Theoretical Physics,Nussallee 12, 53115 Bonn (Germany); Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany)

    2016-06-10

    We study gravity coupled to a cosmological constant and a scale but not conformally invariant sector. In Minkowski vacuum, scale invariance is spontaneously broken. We consider small fluctuations around the Minkowski vacuum. At the linearised level we find that the trace of metric perturbations receives a positive or negative mass squared contribution. However, only for the Fierz-Pauli combination the theory is free of ghosts. The mass term for the trace of metric perturbations can be cancelled by explicitly breaking scale invariance. This reintroduces fine-tuning. Models based on four form field strength show similarities with explicit scale symmetry breaking due to quantisation conditions.

  4. Carbon: Hydrogen Carrier or Disappearing Skeleton?

    NARCIS (Netherlands)

    Jong, K.P. de; Wechem, H.M.H. van

    1994-01-01

    The use of liquid hydrocarbons as energy carriers implies the use of carbon as a carrier for hydrogen to facilitate hydrogen transport and storage. The current trend for liquid energy carriers used in the transport sector is to maximize the load of hydrogen on the carbon carrier. The recently

  5. Constant Width Planar Computation Characterizes ACC0

    DEFF Research Database (Denmark)

    Hansen, K.A.

    2004-01-01

    We obtain a characterization of ACC 0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...

  6. Stability constants for silicate adsorbed to ferrihydrite

    DEFF Research Database (Denmark)

    Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten

    1994-01-01

    Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption e...

  7. The case for the cosmological constant

    Indian Academy of Sciences (India)

    I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (or -term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe.

  8. The case for the cosmological constant

    Indian Academy of Sciences (India)

    Abstract. I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (orA-term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe.

  9. DETERMINATION OF STABILITY CONSTANTS OF MANGANESE (II ...

    African Journals Online (AJOL)

    DR. AMINU

    Keywords: Amino acids, dissociation constant, potentiometry, stability constant. INTRODUCTION. Acids – base titration involves the gradual addition or removal of protons for example using the deprotic form of glycine. The plot has two distinct stages corresponding to the deprotonation of the two different groups on glycine.

  10. Some zero-sum constants with weights

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 118; Issue 2. Some Zero-Sum Constants with Weights. S D Adhikari ... Motivated by some recent developments around the notion of Davenport constant with weights, we study them in some basic cases. We also define a new combinatorial invariant related to ...

  11. Fullerene derivatives with increased dielectric constants

    NARCIS (Netherlands)

    Jahani, Fatemeh; Torabi, Solmaz; Chiechi, Ryan C; Koster, L Jan Anton; Hummelen, Jan C

    2014-01-01

    The invention of new organic materials with high dielectric constants is of extreme importance for the development of organic-based devices such as organic solar cells. We report on a synthetic way to increase the dielectric constant of fullerene derivatives. It is demonstrated that introducing

  12. Electromechanical systems generating constant frequency alternating current

    Directory of Open Access Journals (Sweden)

    Т.А. Мазур

    2008-01-01

    Full Text Available  In the article we consider the usage of electromechanical drivers of constant speed rotation, which is based on many stepped electrodynamic reduction unit, in onboard main systems of electric supply of alternative current with constant frequency.

  13. Shapley value for constant-sum games

    NARCIS (Netherlands)

    Khmelnitskaya, Anna Borisovna

    2003-01-01

    It is proved that Young’s [4] axiomatization for the Shapley value by marginalism, efficiency, and symmetry is still valid for the Shapley value defined on the class of nonnegative constant-sum games with nonzero worth of grand coalition and on the entire class of constant-sum games as well.

  14. Strong Coupling Optimization With Planar Spiral Resonators

    CERN Document Server

    Klein, Avraham; 10.1016/j.cap.2011.02.017

    2011-01-01

    Planar spirals offer a highly scalable geometry appropriate for wireless power transfer via strongly coupled inductive resonators. We numerically derive a set of geometric scale and material independent coupling terms, and analyze a simple model to identify design considerations for a variety of different materials. We use our model to fabricate integrated planar resonators of handheld sizes, and optimize them to achieve high Q factors, comparable to much larger systems, and strong coupling over significant distances with approximately constant efficiency.

  15. Interpreting Dynamically-Averaged Scalar Couplings in Proteins

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Best, Robert B.; Vendruscolo, Michele

    2005-01-01

    The experimental determination of scalar three-bond coupling constants represents a powerful method to probe both the structure and dynamics of proteins. The detailed structural interpretation of such coupling constants is usually based on Karplus relationships, which allow the measured couplings...... present a method to derive such parameters that uses ensembles of conformations determined through dynamic-ensemble refinement - a method that provides structural ensembles that simultaneously represent both the structure and the associated dynamics of a protein....

  16. How universe evolves with cosmological and gravitational constants

    Directory of Open Access Journals (Sweden)

    She-Sheng Xue

    2015-08-01

    Full Text Available With a basic varying space–time cutoff ℓ˜, we study a regularized and quantized Einstein–Cartan gravitational field theory and its domains of ultraviolet-unstable fixed point gir≳0 and ultraviolet-stable fixed point guv≈4/3 of the gravitational gauge coupling g=(4/3G/GNewton. Because the fundamental operators of quantum gravitational field theory are dimension-2 area operators, the cosmological constant is inversely proportional to the squared correlation length Λ∝ξ−2. The correlation length ξ characterizes an infrared size of a causally correlate patch of the universe. The cosmological constant Λ and the gravitational constant G are related by a generalized Bianchi identity. As the basic space–time cutoff ℓ˜ decreases and approaches to the Planck length ℓpl, the universe undergoes inflation in the domain of the ultraviolet-unstable fixed point gir, then evolves to the low-redshift universe in the domain of ultraviolet-stable fixed point guv. We give the quantitative description of the low-redshift universe in the scaling-invariant domain of the ultraviolet-stable fixed point guv, and its deviation from the ΛCDM can be examined by low-redshift (z≲1 cosmological observations, such as supernova Type Ia.

  17. Interacting universes and the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Serrano, A. [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado 14, 06411 Medellín (Spain); Bastos, C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, O. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Robles-Pérez, S., E-mail: salvarp@imaff.cfmac.csic.es [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado 14, 06411 Medellín (Spain); Física Teórica, Universidad del País Vasco, Apartado 644, 48080 Bilbao (Spain)

    2013-02-12

    In this Letter it is studied the effects that an interaction scheme among universes can have in the values of their cosmological constants. In the case of two interacting universes, the value of the cosmological constant of one of the universes becomes very close to zero at the expense of an increasing value of the cosmological constant of the partner universe. In the more general case of a chain of N interacting universes with periodic boundary conditions, the spectrum of the Hamiltonian splits into a large number of levels, each of them associated with a particular value of the cosmological constant, that can be occupied by single universes revealing a collective behavior that plainly shows that the multiverse is much more than the mere sum of its parts.

  18. The time constant of the somatogravic illusion

    NARCIS (Netherlands)

    Correia Grácio, B.J.; Winkel, K.N. de; Groen, E.L.; Wentink, M.; Bos, J.E.

    2013-01-01

    Met desdemona hebben we gevonden dat de tijd constante van de somatografische illusie rond twee seconden is. Dit resultaat verschilt van wat was gevonden in ander onderzoek dat gebruikt maakt van een gewone centrifuge

  19. Building evolutionary architectures support constant change

    CERN Document Server

    Ford, Neal; Kua, Patrick

    2017-01-01

    The software development ecosystem is constantly changing, providing a constant stream of new tools, frameworks, techniques, and paradigms. Over the past few years, incremental developments in core engineering practices for software development have created the foundations for rethinking how architecture changes over time, along with ways to protect important architectural characteristics as it evolves. This practical guide ties those parts together with a new way to think about architecture and time.

  20. Trialogue on the number of fundamental constants

    CERN Document Server

    Duff, Michael J; Veneziano, Gabriele

    2002-01-01

    This paper consists of three separate articles on the number of fundamental dimensionful constants in physics. We started our debate in summer 1992 on the terrace of the famous CERN cafeteria. In the summer of 2001 we returned to the subject to find that our views still diverged and decided to explain our current positions. LBO develops the traditional approach with three constants, GV argues in favor of just two, while MJD advocates zero.

  1. Improved in situ spring constant calibration for colloidal probe atomic force microscopy

    Science.gov (United States)

    McBride, Sean P.; Law, Bruce M.

    2010-11-01

    In colloidal probe atomic force microscopy (AFM) surface forces cannot be measured without an accurate determination of the cantilever spring constant. The effective spring constant k depends upon the cantilever geometry and therefore should be measured in situ; additionally, k may be coupled to other measurement parameters. For example, colloidal probe AFM is frequently used to measure the slip length b at solid/liquid boundaries by comparing the measured hydrodynamic force with Vinogradova slip theory (V-theory). However, in this measurement k and b are coupled, hence, b cannot be accurately determined without knowing k to high precision. In this paper, a new in situ spring constant calibration method based upon the residuals, namely, the difference between experimental force-distance data and V-theory is presented and contrasted with two other popular spring constant determination methods. In this residuals calibration method, V-theory is fitted to the experimental force-distance data for a range of systematically varied spring constants where the only adjustable parameter in V-theory is the slip length b. The optimal spring constant k is that value where the residuals are symmetrically displaced about zero for all colloidal probe separations. This residual spring constant calibration method is demonstrated by studying three different liquids (n-decanol, n-hexadecane, and n-octane) and two different silane coated colloidal probe-silicon wafer systems (n-hexadecyltrichlorosilane and n-dodecyltrichlorosilane).

  2. Improved in situ spring constant calibration for colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Sean P.; Law, Bruce M. [Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506-2601 (United States)

    2010-11-15

    In colloidal probe atomic force microscopy (AFM) surface forces cannot be measured without an accurate determination of the cantilever spring constant. The effective spring constant k depends upon the cantilever geometry and therefore should be measured in situ; additionally, k may be coupled to other measurement parameters. For example, colloidal probe AFM is frequently used to measure the slip length b at solid/liquid boundaries by comparing the measured hydrodynamic force with Vinogradova slip theory (V-theory). However, in this measurement k and b are coupled, hence, b cannot be accurately determined without knowing k to high precision. In this paper, a new in situ spring constant calibration method based upon the residuals, namely, the difference between experimental force-distance data and V-theory is presented and contrasted with two other popular spring constant determination methods. In this residuals calibration method, V-theory is fitted to the experimental force-distance data for a range of systematically varied spring constants where the only adjustable parameter in V-theory is the slip length b. The optimal spring constant k is that value where the residuals are symmetrically displaced about zero for all colloidal probe separations. This residual spring constant calibration method is demonstrated by studying three different liquids (n-decanol, n-hexadecane, and n-octane) and two different silane coated colloidal probe-silicon wafer systems (n-hexadecyltrichlorosilane and n-dodecyltrichlorosilane).

  3. Base units of the SI, fundamental constants and modern quantum physics.

    Science.gov (United States)

    Bordé, Christian J

    2005-09-15

    Over the past 40 years, a number of discoveries in quantum physics have completely transformed our vision of fundamental metrology. This revolution starts with the frequency stabilization of lasers using saturation spectroscopy and the redefinition of the metre by fixing the velocity of light c. Today, the trend is to redefine all SI base units from fundamental constants and we discuss strategies to achieve this goal. We first consider a kinematical frame, in which fundamental constants with a dimension, such as the speed of light c, the Planck constant h, the Boltzmann constant k(B) or the electron mass m(e) can be used to connect and redefine base units. The various interaction forces of nature are then introduced in a dynamical frame, where they are completely characterized by dimensionless coupling constants such as the fine structure constant alpha or its gravitational analogue alpha(G). This point is discussed by rewriting the Maxwell and Dirac equations with new force fields and these coupling constants. We describe and stress the importance of various quantum effects leading to the advent of this new quantum metrology. In the second part of the paper, we present the status of the seven base units and the prospects of their possible redefinitions from fundamental constants in an experimental perspective. The two parts can be read independently and they point to these same conclusions concerning the redefinitions of base units. The concept of rest mass is directly related to the Compton frequency of a body, which is precisely what is measured by the watt balance. The conversion factor between mass and frequency is the Planck constant, which could therefore be fixed in a realistic and consistent new definition of the kilogram based on its Compton frequency. We discuss also how the Boltzmann constant could be better determined and fixed to replace the present definition of the kelvin.

  4. Selective sp3 C-H alkylation via polarity-match-based cross-coupling

    Science.gov (United States)

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-07-01

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp3)-C(sp2) coupling, there is a growing demand for C-H alkylation reactions, wherein sp3 C-H bonds are replaced with sp3 C-alkyl groups. Here we describe a polarity-match-based selective sp3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  5. The time dependence of fundamental constants

    Energy Technology Data Exchange (ETDEWEB)

    Udem, Thomas [Max-Planck Institut fuer Quantenoptik, Garching (Germany)

    2008-07-01

    Since Webb et al. have detected a slightly smaller fine structure constant by quasar absorption spectra about 10 billion years ago an old idea of P.A.M. Dirac from 1937 was revived. Using arguments philosophical in nature he speculated that fundamental constants should vary along with the expanding universe. For a long time the only possibility to search for these minute changes was to exploit the large look-back time of astronomical or geological observations. With the advent of frequency combs the possibility to check for these time variations in the laboratory with optical transitions in atoms, ions and molecules became readily available. Even though the time period covered by these laboratory measurements is typically 10 orders of magnitude shorter than for astronomical observations, they can be 10 orders of magnitude more accurate to provide comparable sensitivity. The question of the time dependence of fundamental constants is of high relevance in the context of modern cosmological models.

  6. Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Huang, Lipei

    2014-01-01

    DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability...

  7. Our Universe from the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Barrau, Aurélien; Linsefors, Linda, E-mail: Aurelien.Barrau@cern.ch, E-mail: linda.linsefors@lpsc.in2p3.fr [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, 53, avenue des Martyrs, 38026 Grenoble Cedex (France)

    2014-12-01

    The issue of the origin of the Universe and of its contents is addressed in the framework of bouncing cosmologies, as described for example by loop quantum gravity. If the current acceleration is due to a true cosmological constant, this constant is naturally conserved through the bounce and the Universe should also be in a (contracting) de Sitter phase in the remote past. We investigate here the possibility that the de Sitter temperature in the contracting branch fills the Universe with radiation that causes the bounce and the subsequent inflation and reheating. We also consider the possibility that this gives rise to a cyclic model of the Universe and suggest some possible tests.

  8. f( R) constant-roll inflation

    Science.gov (United States)

    Motohashi, Hayato; Starobinsky, Alexei A.

    2017-08-01

    The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f( R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f( R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined.

  9. Cosmological constant, supersymmetry, nonassociativity, and big numbers

    Energy Technology Data Exchange (ETDEWEB)

    Dzhunushaliev, Vladimir [KazNU, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); IETP, Al-Farabi KazNU, Almaty (Kazakhstan)

    2015-02-01

    The nonassociative generalization of supersymmetry is considered. It is shown that the associator of four supersymmetry generators has the coefficient ∝ ℎ/l{sub 0}{sup 2} where l0 is some characteristic length. Two cases are considered: (a) l{sub 0}{sup -2} coincides with the cosmological constant; (b) l{sub 0} is the classical radius of the electron. It is also shown that the scaled constant is of the order of 10{sup -120} for the first case and 10{sup -30} for the second case. The possible manifestation and smallness of nonassociativity is discussed. (orig.)

  10. Flexible alternatives to constant frequency systems

    Science.gov (United States)

    Stewart-Wilson, John

    The use of hybrid systems in which variable frequency is used as generated, with a proportion being converted to constant frequency by electronic conversion, is examined as a flexible alternative to constant frequency systems. Here, some practical solutions to the technical issues raised by adopting the more flexible approach to electrical system generation are presented. In particular, attention is given to the frequency ranges used, impact on aircraft equipment, motor-driven equipment, transformer rectifier units, lighting, and avionics. The discussion also covers fan-assisted galley ovens, system architecture, special airworthiness requirements, and power quality.

  11. The Cosmological Constant Problem (1/2)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.

  12. The Cosmological Constant Problem (2/2)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will review the cosmological constant problem as a serious challenge to our notion of naturalness in Physics. Weinberg’s no go theorem is worked through in detail. I review a number of proposals possibly including Linde's universe multiplication, Coleman's wormholes, the fat graviton, and SLED, to name a few. Large distance modifications of gravity are also discussed, with causality considerations pointing towards a global modification as being the most sensible option. The global nature of the cosmological constant problem is also emphasized, and as a result, the sequestering scenario is reviewed in some detail, demonstrating the cancellation of the Standard Model vacuum energy through a global modification of General Relativity.

  13. Estimations of cosmological parameters from the observational variation of the fine structure constant

    Science.gov (United States)

    Zhai, Zhong-Xu; Liu, Xian-Ming; Zhang, Zhi-Song; Zhang, Tong-Jie

    2013-12-01

    We present constraints on the quintessence scalar field model from observational data of the variation of the fine structure constant obtained from the Keck telescope and VLT. Within the theoretical frame proposed by Bekenstein, the constraints on the parameters of the quintessence scalar field model are obtained. Considering the prior of Ωm0 as WMAP 7 suggests, we obtain various results from different samples. Based on these results, we also calculate the probability density function of the coupling constant ζ. The best-fit values show a consistent relationship between ζ and the different experimental results. In our work, we test two different potential models, namely, the inverse power law potential and the exponential potential. The results show that both the large value of the parameters in the potential and the strong coupling can cause a variation in the fine structure constant.

  14. The Frequency Characteristics of Coupled Microstrip Lines

    Directory of Open Access Journals (Sweden)

    Audrius Krukonis

    2013-05-01

    Full Text Available The article deals with the use of the finite difference time domain method and uniaxial perfectly matching layer for analysis of frequency characteristics of coupled microstrip transmission lines. It describes calculation techniques for voltage, current, characteristic impedance and effective dielectric constant of each signal conductor. Besides, it analyses the frequency dependencies of characteristic impedance and the effective dielectric constant.Article in Lithuanian

  15. Union-Find with Constant Time Deletions

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Thorup, Mikkel; Gørtz, Inge Li

    2014-01-01

    modification of the classical union-find data structure that supports delete, as well as makeset and union operations, in constant worst-case time, while still supporting find operations in O(log n) worst-case time and O(α_M/N_(n)) amortized time. Our analysis supplies, in particular, a very concise potential...

  16. Timelike Constant Mean Curvature Surfaces with Singularities

    DEFF Research Database (Denmark)

    Brander, David; Svensson, Martin

    2014-01-01

    We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces...

  17. Some zero-sum constants with weights

    Indian Academy of Sciences (India)

    imsc.res.in. MS received 28 February 2007. Abstract. For an abelian group G, the Davenport constant D(G) is defined to be the smallest natural number k such that any sequence of k elements in G has a non- empty subsequence whose sum is ...

  18. Benjamin Constant. Ontdekker van de moderne vrijheid

    NARCIS (Netherlands)

    de Hert, Paul; Kinneging, A.; Colette, M.

    2015-01-01

    In 1806 analyseerde de Zwitsers-Franse politicus, filosoof en essayist Benjamin Constant (1767-1830) de moderne samenleving in zijn bekende boek Principes de politique. Uit dit klassiek geworden werk spreekt Constant’s ambivalentie en gevoel van nuance en subtiliteit. De “moderne” individuele

  19. Experimental Determination of the Avogadro Constant

    Indian Academy of Sciences (India)

    obtained from a frame-by-frame analysis of the video over a suffi- ciently long period of time. The diffusion coefficient D is given by σ 2/(2∆t). Once again using Stokes–Einstein relation (equation 6) we can obtain the Boltzmann constant and hence the Avogadro number. Counting α Particles. Rutherford in 1903 demonstrated ...

  20. Redundant internal coordinates, compliance constants and non ...

    Indian Academy of Sciences (India)

    If chosen properly, the internal coordinates will have minimum mixing in the normal mode representation. This can in principle lead to an automation ... It was shown in the literature that the relaxed force constants could be used as a measure of bond order in all atom-atom distance coordinates. Some of the bonded and ...

  1. Redundant internal coordinates, compliance constants and non ...

    Indian Academy of Sciences (India)

    Redundant internal coordinates, compliance constants and non-bonded interactions – some new insights. MOUMITA MAJUMDER and SADASIVAM MANOGARAN. ∗. Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India e-mail: sm@iitk.ac.in. MS received 21 February 2012; revised 8 July ...

  2. Pion decay constants in dense skyrmion matter

    Directory of Open Access Journals (Sweden)

    Lee H.-J.

    2010-10-01

    Full Text Available According to the QCD, the hadronic matter can have various phases with matter density and temperature. In general, when there is phase transition in a matter, it is known that a symmetry in the matter changes. In case of the hadronic matter, the chiral symmetry in the matter is expected to be restored when the matter density (or temperature increases. The actual order parameter with respect to the chiral symmetry in the hadronic matter is known as the quark condensate from the QCD, but the pion decay constant, corresponding to the radius of the chiral circle, plays the role of the order parameter in an effective field theoretical approach to the QCD. In this paper, by using the skyrmion model which is an effective theory to the QCD, we construct the skyrmion matter as a model of the hadronic matter (nuclear matter and calculate the pion decay constant in the matter. Because of presence of the matter, the pion decay constant is split into the two components, the temporal component and the spatial component. We discuss the phase transition in the skyrmion matter and behavior of the two components of the decay constant for massless pion with density of the skyrmion matter.

  3. Teaching Nanochemistry: Madelung Constants of Nanocrystals

    Science.gov (United States)

    Baker, Mark D.; Baker, A. David

    2010-01-01

    The Madelung constants for binary ionic nanoparticles are determined. The computational method described here sums the Coulombic interactions of each ion in the particle without the use of partial charges commonly used for bulk materials. The results show size-dependent lattice energies. This is a useful concept in teaching how properties such as…

  4. Optical Constants of Cometary Ice Tholins

    Science.gov (United States)

    Khare, B. N.; Cruikshank, D.; Arakawa, E. T.; McDonald, G. D.

    1997-07-01

    We have previously reported the optical constants from 0.06 to 40 mu m of ice tholin I, produced by plasma irradiation of 1:6 ethane:water frost at 77K (Khare et al. 1993, Icarus 103, 290). Such ices containing water and small amounts of simple hydrocarbons either in the form of clathrates or intimate physical mixtures are thought to be common outer solar system condensates that were incorporated into comets and other bodies. For the imaginary part of the refractive index (k)index n is not affected by these changes since the k values are small. Here we present our revised optical constants for ice tholin I, and compare with optical constants of ice tholin II, produced by plasma irradiation of ices made from a 80:16:3.2:0.8 water:methanol:carbon dioxide:ethane gas mixture (McDonald et al. 1996, Icarus 122, 107), a first order approximation to known and inferred cometary compositions. These additional data on the optical constants of ice tholin II will provide another choice for comparison with spectra of comets and other icy solar system bodies.

  5. Constant force extensional rheometry of polymer solutions

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.; Clasen, Christian

    2012-01-01

    We revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta and Tytus [J. Non-Newton. Fluid Mech. 35 (1990) 215–229]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution...

  6. dielectric constants of irradiated and carbonated polymers

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... irradiated and carbonated polymers as a function of carbon concentration are investigated. Both low and high density polymers are used. Results predict a quadratic increase in the dielectric constant of specimen as the percentage concentration of carbon is increased. This may be due to the formation of ...

  7. B meson spectrum and decay constant from Nf=2 simulations

    CERN Document Server

    Blossier, Benoit; Della Morte, Michele; Donnellan, Michael; Fritzsch, Patrick; Garron, Nicolas; Heitger, Jochen; von Hippel, Georg; Leder, Bjorn; Simma, Hubert; Sommer, Rainer

    2010-01-01

    We report on the status of an ALPHA Collaboration project to extract quantities for B physics phenomenology from Nf=2 lattice simulations. The framework is Heavy Quark Effective Theory (HQET) expanded up to the first order of the inverse b-quark mass. The couplings of the effective theory are determined by imposing matching conditions of observables computed in HQET with their counterpart computed in QCD. That program, based on Nf=2 simulations in a small physical volume with SF boundary conditions, is now almost finished. On the other side the analysis of configurations selected from the CLS ensembles, in order to measure HQET hadronic matrix elements, has just started recently so that only results obtained at a single lattice spacing, a=0.07 fm, will be discussed. We give our first results for the b-quark mass and for the B meson decay constant.

  8. Constant-Fluence Area Scaling for Laser Propulsion

    Science.gov (United States)

    Sinko, John E.

    2008-04-01

    A series of experiments was conducted on polyoxymethylene (POM, trade name Delrin®) propellants in air at atmospheric pressure. A TEA CO2 laser with maximum output power up to 20 J was used to deliver 300 ns pulses of 10.6 μm radiation to POM targets. Ablation at a constant fluence and a range of spot areas was achieved by varying combinations of the laser energy and spot size. Relevant empirical scaling laws governing laser propulsion parameters such as the momentum coupling coefficient (Cm) and specific impulse (Isp) for spot areas within a range of about 0.05-0.25 cm2 are presented. Experimental measurements of imparted impulse, Cm, Isp, and ablated mass per pulse were made using dynamic piezoelectric force sensors and a scientific balance. Finally, Schlieren ICCD imaging of shock waves and vapor plumes was performed and analyzed.

  9. A FLRW cosmological model with running cosmological constant

    CERN Document Server

    Shapiro, I L; Shapiro, Ilya L; Sola, Joan

    2003-01-01

    The idea of a variable dark energy has been entertained many times in the literature and from many different points of view. Quintessence is just a popular way to implement this idea in recent times, but so far with little success. Another possibility is to think of the cosmological term, Lambda, as a ``running quantity'' much in the same way as the electromagnetic coupling constant. However, the fact that Lambda is a dimension-four parameter implies that it may obey a peculiar renormalization group equation, which at low energies could be dominated by ``soft decoupling'' contributions of the form Lambda ~ H^2 M_P^2 stemming from physics near the Planck scale. This value lies in the ballpark of the measurements from CMB and high-z supernovae. A ``renormalized'' FLRW cosmology of this kind may reveal itself as a sound, and testable, proposal for a variable Lambda model within quantum field theory in curved space time.

  10. Strong Nuclear Gravitational Constant and the Origin of Nuclear Planck Scale

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-07-01

    Full Text Available Whether it may be real or an equivalent, existence of strong nuclear gravitational con- stant G S is assumed. Its value is obtained from Fermi’s weak coupling constant as G S = 6 : 9427284 10 31 m 3 / kg sec 2 and thus “nuclear planck scale” is defined. For strong interaction existence of a new integral charged “confined fermion” of mass 105.383 MeV is assumed. Strong coupling constant is the ratio of nuclear planck energy = 11.97 MeV and assumed 105.383 MeV. 1 s = X s is defined as the strong interaction mass gen- erator. With 105.383 MeV fermion various nuclear unit radii are fitted. Fermi’s weak coupling constant, strong interaction upper limit and Bohr radius are fitted at funda- mental level. Considering Fermi’s weak coupling constant and nuclear planck length a new number X e = 294.8183 is defined for fitting the electron, muon and tau rest masses. Using X s , X e and 105 : 32 = 0 : 769 MeV as the Coulombic energy constant = E c , en- ergy coe cients of the semi-empirical mass formula are estimated as E v = 16 : 32 MeV ; E s = 19 : 37 MeV ; E a = 23 : 86 MeV and E p = 11 : 97 MeV where Coulombic energy term contains [ Z ] 2 : Starting from Z = 2 nuclear binding energy is fitted with two terms along with only one energy constant = 0.769 MeV. Finally nucleon mass and its excited levels are fitted.

  11. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    Science.gov (United States)

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  12. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  13. Time place learning and activity profile under constant light and constant dark in zebrafish (Danio rerio).

    Science.gov (United States)

    Moura, Clarissa de Almeida; Lima, Jéssica Polyana da Silva; Silveira, Vanessa Augusta Magalhães; Miguel, Mário André Leocadio; Luchiari, Ana Carolina

    2017-05-01

    The ability to learn about the signs of variability in space and time is known as time place learning (TPL). To adjust their circadian rhythms, animals use stimuli that change regularly, such as the light-dark cycle, temperature, food availability or even social stimuli. Because light-dark cycle is the most important environmental temporal cue, we asked how a diurnal animal would perform TPL if this cue was removed. Zebrafish has been extensively studied in the chronobiology area due to it diurnal chronotype, thus, we studied the effects of constant light and constant dark on the time-place learning and activity profile in zebrafish. Our data show that while under constant light and dark condition zebrafish was not able of TPL, after 30days under the constant conditions, constant light led to higher activity level and less significant (robust) 24h rhythm. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of material constants on power output in piezoelectric vibration-based generators.

    Science.gov (United States)

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  15. Constant-complexity stochastic simulation algorithm with optimal binning

    Science.gov (United States)

    Sanft, Kevin R.; Othmer, Hans G.

    2015-08-01

    At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie's Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.

  16. Constant-complexity stochastic simulation algorithm with optimal binning.

    Science.gov (United States)

    Sanft, Kevin R; Othmer, Hans G

    2015-08-21

    At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie's Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.

  17. Multiphoton amplitude in a constant background field

    Science.gov (United States)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  18. f(R) constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hayato [Universidad de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics, RAS, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation)

    2017-08-15

    The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f(R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f(R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined. (orig.)

  19. BOREAS RSS-17 Dielectric Constant Profile Measurements

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea

    2000-01-01

    The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Mixed quantum states with variable Planck constant

    Science.gov (United States)

    de Gosson, Maurice A.

    2017-09-01

    Recent cosmological measurements tend to confirm that the fine structure constant α is not immutable and has undergone a tiny variation since the Big Bang. Choosing adequate units, this could also reflect a variation of Planck's constant h. The aim of this Letter is to explore some consequences of such a possible change of h for the pure and mixed states of quantum mechanics. Surprisingly enough it is found that not only is the purity of a state extremely sensitive to such changes, but that quantum states can evolve into classical states, and vice versa. A complete classification of such transitions is however not possible for the moment being because of yet unsolved mathematical difficulties related to the study of positivity properties of trace class operators.

  1. Benjamin Constant. Libertad, democracia y pluralismo

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Fonnegra Osorio

    2015-12-01

    Full Text Available A partir de un enfoque interpretativo, en este artículo se aborda por qué para Benjamin Constant la democracia solo puede darse en donde se presenta una relación necesaria entre la libertad entendida como defensa de los derechos individuales -libertad como independencia o negativa- y la libertad concebida como principio de la participación pública -libertad como autonomía o positiva-. Asimismo, se presenta la importancia que atribuye el autor a las tradiciones que dan vida a la configuración del universo cultural de un pueblo. Se concluye que en la obra de Constant se encuentra una clara defensa del Estado de derecho y del pluralismo, la cual puede iluminar la comprensión de los problemas políticos de la contemporaneidad.

  2. Some Dynamical Effects of the Cosmological Constant

    Science.gov (United States)

    Axenides, M.; Floratos, E. G.; Perivolaropoulos, L.

    Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigravity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ~=10-52 m-2), we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc), the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1 Mpc or larger however we find that the vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the local group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.

  3. Daylight calculations using constant luminance curves

    Energy Technology Data Exchange (ETDEWEB)

    Betman, E. [CRICYT, Mendoza (Argentina). Laboratorio de Ambiente Humano y Vivienda

    2005-02-01

    This paper presents a simple method to manually estimate daylight availability and to make daylight calculations using constant luminance curves calculated with local illuminance and irradiance data and the all-weather model for sky luminance distribution developed in the Atmospheric Science Research Center of the University of New York (ARSC) by Richard Perez et al. Work with constant luminance curves has the advantage that daylight calculations include the problem's directionality and preserve the information of the luminous climate of the place. This permits accurate knowledge of the resource and a strong basis to establish conclusions concerning topics related to the energy efficiency and comfort in buildings. The characteristics of the proposed method are compared with the method that uses the daylight factor. (author)

  4. Disturbing Implications of a Cosmological Constant

    Science.gov (United States)

    Dyson, Lisa; Kleban, Matthew; Susskind, Leonard

    2002-10-01

    In this paper we consider the implications of a cosmological constant for the evolution of the universe, under a set of assumptions motivated by the holographic and horizon complementarity principles. We discuss the ``causal patch'' description of spacetime required by this framework, and present some simple examples of cosmologies described this way. We argue that these assumptions inevitably lead to very deep paradoxes, which seem to require major revisions of our usual assumptions.

  5. Efficient Determination of Reverberation Chamber Time Constant

    OpenAIRE

    Zhang, Xiaotian; Robinson, Martin P.; Flintoft, Ian D.; Dawson, John F.

    2017-01-01

    Determination of the rate of energy loss in a reverberation chamber is fundamental to many different measurements such as absorption cross-section, antenna efficiency, radiated power, and shielding effectiveness. Determination of the energy decay time-constant in the time domain by linear fitting the power delay profile, rather than using the frequency domain quality-factor, has the advantage of being independent of the radiation efficiency of antennas used in the measurement. However, determ...

  6. Electromagnetic corrections to pseudoscalar decay constants

    Energy Technology Data Exchange (ETDEWEB)

    Glaessle, Benjamin Simon

    2017-03-06

    First principles Lattice quantum chromodynamics (LQCD) calculations enable the determination of low energy hadronic amplitudes. Precision LQCD calculations with relative errors smaller than approximately 1% require the inclusion of electromagnetic effects. We demonstrate that including (quenched) quantum electrodynamics effects in the LQCD calculation effects the values obtained for pseudoscalar decay constants in the per mille range. The importance of systematic effects, including finite volume effects and the charge dependence of renormalization and improvement coefficients, is highlighted.

  7. Gravitation, the Quantum, and Cosmological Constant

    OpenAIRE

    Mazur, Pawel O.

    1996-01-01

    The arguments of statistical nature for the existence of constituents of active gravitational masses are presented. The present paper proposes a basis for microscopic theory of universal gravitation. Questions like the relation of cosmological constant and quantum theory, black hole radiance and the nature of inertia are addressed. This paper is the second in the series of papers published in Acta Physica Polonica {\\bf B}.

  8. Constant load and constant volume response of municipal solid waste in simple shear.

    Science.gov (United States)

    Zekkos, Dimitrios; Fei, Xunchang

    2017-05-01

    Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Relationship of coagulation constant to time

    Energy Technology Data Exchange (ETDEWEB)

    Nadirov, N.K.; Anisimov, B.F.; Borodkin, L.P.

    1982-01-01

    Tests were carried out for the purpose of constructing mathematical models of electrodehydration of petroleum. Work was performed in electric fields with constant current. A 1% emulsion ''water in vaseline oil'' was placed into a cell after a 5 minute treatment in a UZDN-1 ultrasound disperser. Distance between electrodes was held at 25 mm. The cell was fed high voltage current from the source (VS-20-10), which was held constant throughout the entire test period. Current was measured with a microampermeter type M266M. Changes in the emulsion were observed using a KM-6 cathetometer. It was shown that the character of changes in function M(t), are dependent on the voltage of the electric field, viscosity of the media, initial concentration and initial distribution of particles according to size. The constant of kinetic coagulation is dependent on time: during the initial moment of electro-treatment of a reverse emulsion, thermal coagulation was observed, which gradually is replaced with electro-gravitational coagulation.

  10. Thermodynamic binding constants for gallium transferrin

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W.R.; Pecoraro, V.L.

    1983-01-18

    Gallium-67 is widely used as an imaging agent for tumors and inflammatory abscesses. It is well stablished that Ga/sup 3 +/ travels through the circulatory system bound to the serum iron transport protein transferrin and that this protein binding is an essential step in tumor localization. However, there have been conflicting reports on the magnitude of the gallium-transferrin binding constants. Therefore, thermodynamic binding constants for gallium complexation at the two specific metal binding sites of human serum transferrin at pH 7.4 and 5 mM NaHCO/sub 3/ have been determined by UV difference spectroscopy. The conditional constants calculated for 27 mM NaHCO/sub 3/ are log K/sub 1/* = 20.3 and log K/sub 2/* = 19.3. These results are discussed in relation to the thermodynamics of transferrin binding of Fe/sup 3 +/ and to previous reports on gallium binding. The strength of transferrin complexation is also compared to that of a series of low molecular weight ligands by using calculated pM values (pM = -log (Ga(H/sub 2/O)/sub 6/)) to express the effective binding strength at pH 7.4.

  11. Emergent gravity in spaces of constant curvature

    Science.gov (United States)

    Alvarez, Orlando; Haddad, Matthew

    2017-03-01

    In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.

  12. Emergent gravity in spaces of constant curvature

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Orlando; Haddad, Matthew [Department of Physics, University of Miami,1320 Campo Sano Ave, Coral Gables, FL 33146 (United States)

    2017-03-07

    In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.

  13. Strain sweeps from Oldroyd 8-constant framework

    Science.gov (United States)

    Saengow, Chaimongkol; Giacomin, Alan Jeffrey

    2017-05-01

    Large-amplitude oscillatory shear flow is a popular experiment for studying the nonlinear physics of complex fluids. Specifically, the strain sweep is used routinely to identify when a complex fluid begins to exhibit nonlinear behavior. In this paper, we give the exact shear stress expression for the Oldroyd 8-constant framework evaluated for large-amplitude oscillatory shear flow (LAOS). We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 14 of these cases). From our shear stress expression, we get exact expressions for the real and imaginary parts of the complex viscosity as functions of both the test frequency, and the shear rate amplitude. We then demonstrate the use of our results for our favorite special case of the Oldroyd 8-constant framework, the corotational Jeffreys model. In our Worked Example, we use this case to explore the influence of η∞ on the strain sweep response. We find that increasing η∞ raises the real part of the complex viscosity, and decreases its imaginary part.

  14. Analysis of the chemical equilibrium of combustion at constant volume

    OpenAIRE

    Marius BREBENEL

    2014-01-01

    Determining the composition of a mixture of combustion gases at a given temperature is based on chemical equilibrium, when the equilibrium constants are calculated on the assumption of constant pressure and temperature. In this paper, an analysis of changes occurring when combustion takes place at constant volume is presented, deriving a specific formula of the equilibrium constant. The simple reaction of carbon combustion in pure oxygen in both cases (constant pressure and constant ...

  15. Use of dynamical coupling for improved quantum state transfer

    Science.gov (United States)

    Lyakhov, A. O.; Bruder, C.

    2006-12-01

    We propose a method to improve quantum state transfer in transmission lines. The idea is to localize the information on the last qubit of a transmission line by dynamically varying the coupling constants between the first and the last pair of qubits. The fidelity of state transfer is higher then in a chain with fixed coupling constants. The effect is stable against small fluctuations in the system parameters.

  16. Use of dynamical coupling for improved quantum state transfer

    OpenAIRE

    Lyakhov, A. O.; Bruder, C.

    2006-01-01

    We propose a method to improve quantum state transfer in transmission lines. The idea is to localize the information on the last qubit of a transmission line, by dynamically varying the coupling constants between the first and the last pair of qubits. The fidelity of state transfer is higher then in a chain with fixed coupling constants. The effect is stable against small fluctuations in the system parameters.

  17. Approximate solutions of range for constant altitude - constant high subsonic speed flight of transport aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Cavcar, A.; Cavcar, M. [Anadolu Univ., School of Civil Aviation, Eskisehir, (Turkey)

    2004-09-01

    Approximate cruise range solutions are introduced for the constant altitude constant high subsonic speed flight of turbojet/fan transport aircraft with cambered wing design. The variation of the specific fuel consumption with Mach number is also considered in derivation of the approximate solutions. The method aims at estimation of the cruise range of aircraft during conceptual or preliminary design phase. An application of the solutions is also presented. (author)

  18. Damped driven coupled oscillators: entanglement, decoherence and the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M [Grupo de Optica e Informacion Cuantica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: rdguerrerom@unal.edu.co, E-mail: rrreyg@unal.edu.co, E-mail: kmfonsecar@unal.edu.co

    2009-03-13

    We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model.

  19. CONSTANT LEVERAGE AND CONSTANT COST OF CAPITAL: A COMMON KNOWLEDGE HALF-TRUTH

    Directory of Open Access Journals (Sweden)

    IGNACIO VÉLEZ-PAREJA

    2008-01-01

    Full Text Available Un enfoque típico para valorar flujos de caja finitos es suponer que el endeudamiento es constante (generalmente como un endeudamiento objetivo o deseado y que por tanto, el costo del patrimonio, Ke y el costo promedio ponderado de capital CPPC, también son constantes. Para los flujos de caja perpetuos, y con el costo de la deuda, Kd como la tasa de descuento para el ahorro en impuestos o escudo fiscal, Ke y el CPPC aplicado al flujo de caja libre FCL son constantes si el endeudamiento es constante. Sin embargo esto no es verdad para los flujos de caja finitos. En este documento mostramos que para flujos de caja finitos, Ke y por lo tanto el CPPC dependen de la tasa de descuento que se utiliza para valorar el ahorro en impuestos, AI y según lo esperado, Ke y el CPPC no son constantes con Kd como la tasa de descuento para el ahorro en impuestos, aunque el endeudamiento sea constante. Ilustramos esta situación con un ejemplo simple. Analizamos cinco métodos: el flujo de caja descontado, FCD, usando APV, el FCD y la formulación tradicional y general del CPPC, el valor presente del flujo de caja del accionista, FCA más deuda y el flujo de caja de capital, FCC.

  20. Kundt spacetimes minimally coupled to scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic); Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic); Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic)

    2017-06-15

    We derive an exact solution belonging to the Kundt class of spacetimes both with and without a cosmological constant that are minimally coupled to a free massless scalar field. We show the algebraic type of these solutions and give interpretation of the results. Subsequently, we look for solutions additionally containing an electromagnetic field satisfying nonlinear field equations. (orig.)

  1. A many-universe theory of the cosmological constant or warm universe in the googolplexus

    Science.gov (United States)

    Cline, James M.

    1990-11-01

    We reexamine the discouraging conclusion of Fischler, Klebanov, Polchinski and Susskind that second quantization of the Wheeler-DeWitt equation leads to the production of only cold and empty universes with vanishing cosmological constant Λ. We argue that if gravity is coupled to a scalar field with a suitable inflationary potential, the number of created universes which have at least one warm, inhabitable region by late times is exponentially peaked at Λ = 0. This appears to be a viable solution to the cosmological constant problem, invoking the weak anthropic principle in a natural way.

  2. Rate constants, timescales, and free energy barriers

    Science.gov (United States)

    Salamon, Peter; Wales, David; Segall, Anca; Lai, Yi-An; Schön, J. Christian; Hoffmann, Karl Heinz; Andresen, Bjarne

    2016-01-01

    The traditional connection between rate constants and free energy landscapes is extended to define effective free energy landscapes relevant on any chosen timescale. Although the Eyring-Polanyi transition state theory specifies a fixed timescale of τ=h/kBT}, we introduce instead the timescale of interest for the system in question, e.g. the observation time. The utility of drawing such landscapes using a variety of timescales is illustrated by the example of Holliday junction resolution. The resulting free energy landscapes are easier to interpret, clearly reveal observation time dependent effects like coalescence of short-lived states, and reveal features of interest for the specific system more clearly.

  3. Radiation balances and the solar constant

    Science.gov (United States)

    Crommelynck, D.

    1981-01-01

    The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.

  4. TASI Lectures on the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael

    2007-08-30

    The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.

  5. Dynamical systems defining Jacobi's θ-constants

    Science.gov (United States)

    Brezhnev, Yurii V.; Lyakhovich, Simon L.; Sharapov, Alexey A.

    2011-11-01

    We propose a system of equations that defines Weierstrass-Jacobi's eta- and theta-constant series in a differentially closed way. This system is shown to have a direct relationship to a little-known dynamical system obtained by Jacobi. The classically known differential equations by Darboux-Halphen, Chazy, and Ramanujan are the differential consequences or reductions of these systems. The proposed system is shown to admit the Lagrangian, Hamiltonian, and Nambu formulations. We explicitly construct a pencil of nonlinear Poisson brackets and complete set of involutive conserved quantities. As byproducts of the theory, we exemplify conserved quantities for the Ramamani dynamical system and quadratic system of Halphen-Brioschi.

  6. Distributed Link Scheduling with Constant Overhead

    OpenAIRE

    Sanghavi, Sujay; Bui, Loc; Srikant, R.

    2006-01-01

    This paper proposes a new class of simple, distributed algorithms for scheduling in wireless networks. The algorithms generate new schedules in a distributed manner via simple local changes to existing schedules. The class is parameterized by integers $k\\geq 1$. We show that algorithm $k$ of our class achieves $k/(k+2)$ of the capacity region, for every $k\\geq 1$. The algorithms have small and constant worst-case overheads: in particular, algorithm $k$ generates a new schedule using {\\em (a)}...

  7. Can the cosmological constant undergo abrupt changes?

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Rosabal, A; Cabo, Alejandro; Garcia-Chung, Alejandro; Rosabal, Alejandro

    2005-01-01

    The existence of a simple spherically symmetric and static solution of the Einstein equations in the presence of a cosmological constant vanishing outside a definite value of the radial distance is investigated. A particular succession of field configurations, which are solutions of the Einstein equations in the presence of the considered cosmological term and auxiliary external sources, is constructed. Then, it is shown that the associated succession of external sources tend to zero in the sense of the generalized functions. The type of weak solution that is found becomes the deSitter homogeneous space-time for the interior region, and the Schwartzschild space in the outside zone.

  8. On inflation, cosmological constant, and SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Andrei [Department of Physics and SITP, Stanford University, Stanford, California 94305 (United States)

    2016-11-02

    We consider a broad class of inflationary models of two unconstrained chiral superfields, the stabilizer S and the inflaton Φ, which can describe inflationary models with nearly arbitrary potentials. These models include, in particular, the recently introduced theories of cosmological attractors, which provide an excellent fit to the latest Planck data. We show that by adding to the superpotential of the fields S and Φ a small term depending on a nilpotent chiral superfield P one can break SUSY and introduce a small cosmological constant without affecting main predictions of the original inflationary scenario.

  9. Superintegrable systems on spaces of constant curvature

    Energy Technology Data Exchange (ETDEWEB)

    Gonera, Cezary, E-mail: cgonera@uni.lodz.pl; Kaszubska, Magdalena

    2014-07-15

    Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.

  10. Positive Cosmological Constant and Quantum Theory

    Directory of Open Access Journals (Sweden)

    Felix M. Lev

    2010-11-01

    Full Text Available We argue that quantum theory should proceed not from a spacetime background but from a Lie algebra, which is treated as a symmetry algebra. Then the fact that the cosmological constant is positive means not that the spacetime background is curved but that the de Sitter (dS algebra as the symmetry algebra is more relevant than the Poincare or anti de Sitter ones. The physical interpretation of irreducible representations (IRs of the dS algebra is considerably different from that for the other two algebras. One IR of the dS algebra splits into independent IRs for a particle and its antiparticle only when Poincare approximation works with a high accuracy. Only in this case additive quantum numbers such as electric, baryon and lepton charges are conserved, while at early stages of the Universe they could not be conserved. Another property of IRs of the dS algebra is that only fermions can be elementary and there can be no neutral elementary particles. The cosmological repulsion is a simple kinematical consequence of dS symmetry on quantum level when quasiclassical approximation is valid. Therefore the cosmological constant problem does not exist and there is no need to involve dark energy or other fields for explaining this phenomenon (in agreement with a similar conclusion by Bianchi and Rovelli.

  11. Hyperscaling violation and the shear diffusion constant

    Directory of Open Access Journals (Sweden)

    Kedar S. Kolekar

    2016-09-01

    Full Text Available We consider holographic theories in bulk (d+1-dimensions with Lifshitz and hyperscaling violating exponents z,θ at finite temperature. By studying shear gravitational modes in the near-horizon region given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic exponents with d−z−θ>−1, we find that the diffusion constant has power law scaling with the temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents satisfy d−z−θ=−1, we find logarithmic behaviour. This relation is equivalent to z=2+deff where deff=di−θ is the effective boundary spatial dimension (and di=d−1 the actual spatial dimension. It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly boosted black branes, and we comment on the corresponding analysis in that context.

  12. Is cosmological constant needed in Higgs inflation?

    Directory of Open Access Journals (Sweden)

    Chao-Jun Feng

    2014-11-01

    Full Text Available The detection of B-mode shows a very powerful constraint to theoretical inflation models through the measurement of the tensor-to-scalar ratio r. Higgs boson is the most likely candidate of the inflaton field. But usually, Higgs inflation models predict a small value of r, which is not quite consistent with the recent results from BICEP2. In this paper, we explored whether a cosmological constant energy component is needed to improve the situation. And we found the answer is yes. For the so-called Higgs chaotic inflation model with a quadratic potential, it predicts r≈0.2, ns≈0.96 with e-folds number N≈56, which is large enough to overcome the problems such as the horizon problem in the Big Bang cosmology. The required energy scale of the cosmological constant is roughly Λ∼(1014 GeV2, which means a mechanism is still needed to solve the fine-tuning problem in the later time evolution of the universe, e.g. by introducing some dark energy component.

  13. Local Pain Dynamics during Constant Exhaustive Exercise.

    Directory of Open Access Journals (Sweden)

    Agne Slapsinskaite

    Full Text Available The purpose of this study was to delineate the topological dynamics of pain and discomfort during constant exercise performed until volitional exhaustion. Eleven physical education students were tested while cycling and running at a "hard" intensity level (e.g., corresponding to Borg's RPE (6-20 = 15. During the tests, participants reported their discomfort and pain on a body map every 15s. "Time on task" for each participant was divided into five equal non-overlapping temporal windows within which their ratings were considered for analysis. The analyses revealed that the number of body locations with perceived pain and discomfort increased throughout the five temporal windows until reaching the mean (± SE values of 4.2 ± 0.7 and 4.1 ± 0.6 in cycling and running, respectively. The dominant locations included the quadriceps and hamstrings during cycling and quadriceps and chest during running. In conclusion, pain seemed to spread throughout the body during constant cycling and running performed up to volitional exhaustion with differences between cycling and running in the upper body but not in the lower body dynamics.

  14. Lepton Collider Operation with Constant Currents

    CERN Document Server

    Wienands, Ulrich

    2005-01-01

    Traditionally, electron-positron colliders have been operating in a top-off-and-coast fashion with a cycle time depending on the beam life time, typically on the order of an hour. Each top-off involves ramping detector systems in addition to the actual filling time. The loss in accumulated luminosity is typically 20-50%. During the last year, both B-Factories have commissioned a continuous-injection mode of operation in which beam is injected without ramping the detector, thus raising luminosity integration by constant operation at peak luminosity. Constant beam currents reduce thermal drift and trips caused by change in beam loading. To achieve this level of operation, special efforts were made to reduce the injection losses and also to implement special gating procedures in the detectors, minimizing dead time. Bunch-injection control decides which bunch to inject into next while maintaining small charge variation between bunches. Beam collimation can reduce injection noise but also cause an increase in back...

  15. Measurement of jet production with the ATLAS detector and extraction of the strong coupling constant

    CERN Document Server

    Marceca, Gino; The ATLAS collaboration

    2017-01-01

    The inclusive-jet cross-section at 8 TeV and the inclusive-jet and dijet cross-sections at 13 TeV with the ATLAS detector are presented. NLO QCD calculations, and NNLO for the inclusive-jet measurement at 13 TeV, are compared to the measurements. The extraction of $\\alpha_{s}$ from the measurement of the transverse energy-energy correlation at 8 TeV with the ATLAS detector is also presented.

  16. Coupling constants and brane tensions from anomaly cancellation in M-theory

    DEFF Research Database (Denmark)

    Harmark, Troels

    1998-01-01

    quantization that the brane tensions only have their standard form in the "downstairs" units. We consider the gauge variation of the classical theory and find that it cannot be gauge invariant, contrary to a recent claim. Finally we consider anomaly cancellation in the "downstairs" and "upstairs" approaches...... and obtain the values of λ6/κ4 and the two-and five-brane tensions....

  17. The ϱ-ππ coupling constant in lattice gauge theory

    Science.gov (United States)

    Gottlieb, Steven; MacKenzie, Paul B.; Thacker, H. B.; Weingarten, Don

    1984-01-01

    We present a method for studying hadronic transitions in lattice gauge theory which requires computer time comparable to that required by recent hadron spectrum calculations. This method is applied to a calculation of the decay ϱ-->ππ. On leave from the Department of Physics, Indiana University, Bloomington, IN 47405, USA. Address after September 1, 1983: IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.

  18. Validating and analyzing EPR hyperfine coupling constants with density functional theory

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Kongsted, Jacob; Sauer, Stephan P. A.

    2013-01-01

    that there is a great difference in the relative magnitude of contributions from frontier orbitals and inner or outer-core orbitals. Further analysis reveals that contributing frontier orbitals can be both ligand or metal d-orbital based while the core orbitals are predominantly of metal 2s or 3s character. Complexes...

  19. Exact mean-energy expansion of Ginibre's gas for coupling constants Γ =2 ×(oddinteger)

    Science.gov (United States)

    Salazar, R.; Téllez, G.

    2017-12-01

    Using the approach of a Vandermonde determinant to the power Γ =Q2/kBT expansion on monomial functions, a way to find the excess energy Uexc of the two-dimensional one-component plasma (2DOCP) on hard and soft disks (or a Dyson gas) for odd values of Γ /2 is provided. At Γ =2 , the present study not only corroborates the result for the particle-particle energy contribution of the Dyson gas found by Shakirov [Shakirov, Phys. Lett. A 375, 984 (2011), 10.1016/j.physleta.2011.01.004] by using an alternative approach, but also provides the exact N -finite expansion of the excess energy of the 2DOCP on the hard disk. The excess energy is fitted to the ansatz of the form Uexc=K1N +K2√{N }+K3+K4/N +O (1 /N2) to study the finite-size correction, with Ki coefficients and N the number of particles. In particular, the bulk term of the excess energy is in agreement with the well known result of Jancovici for the hard disk in the thermodynamic limit [Jancovici, Phys. Rev. Lett. 46, 386 (1981), 10.1103/PhysRevLett.46.386]. Finally, an expression is found for the pair correlation function which still keeps a link with the random matrix theory via the kernel in the Ginibre ensemble [Ginibre, J. Math. Phys. 6, 440 (1965), 10.1063/1.1704292] for odd values of Γ /2 . A comparison between the analytical two-body density function and histograms obtained with Monte Carlo simulations for small systems and Γ =2 ,6 ,10 ,... shows that the approach described in this paper may be used to study analytically the crossover behavior from systems in the fluid phase to small crystals.

  20. Linear perturbations in spherically symmetric dust cosmologies including a cosmological constant

    Science.gov (United States)

    Meyer, Sven; Bartelmann, Matthias

    2017-12-01

    We study the dynamical behaviour of gauge-invariant linear perturbations in spherically symmetric dust cosmologies including a cosmological constant. In contrast to spatially homogeneous FLRW models, the reduced degree of spatial symmetry causes a non-trivial dynamical coupling of gauge-invariant quantities already at first order perturbation theory and the strength and influence of this coupling on the spacetime evolution is investigated here. We present results on the underlying dynamical equations augmented by a cosmological constant and integrate them numerically. We also present a method to derive cosmologically relevant initial variables for this setup. Estimates of angular power spectra for each metric variable are computed and evaluated on the central observer's past null cone. By comparing the full evolution to the freely evolved initial profiles, the coupling strength will be determined for a best fit radially inhomogeneous patch obtained in previous works (see [1]). We find that coupling effects are not noticeable within the cosmic variance limit and can therefore safely be neglected for a relevant cosmological scenario. On the contrary, we find very strong coupling effects in a best fit spherical void model matching the distance redshift relation of SNe which is in accordance with previous findings using parametric void models.

  1. Higgs mechanism and cosmological constant in N = 1 supergravity with inflaton in a vector multiplet

    Energy Technology Data Exchange (ETDEWEB)

    Aldabergenov, Yermek [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); Ketov, Sergei V. [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Chiba (Japan); Tomsk Polytechnic University, Institute of Physics and Technology, Tomsk (Russian Federation)

    2017-04-15

    The N = 1 supergravity models of cosmological inflation with an inflaton belonging to a massive vector multiplet and spontaneous SUSY breaking after inflation are reformulated as the supersymmetric U(1) gauge theories of a massless vector superfield interacting with the Higgs and Polonyi chiral superfields, all coupled to supergravity. The U(1) gauge sector is identified with the U(1) gauge fields of the super-GUT coupled to supergravity, whose gauge group has a U(1) factor. A positive cosmological constant (dark energy) is included. The scalar potential is calculated, and its de Sitter vacuum solution is found to be stable. (orig.)

  2. The polysiloxane cyclization equilibrium constant: a theoretical focus on small and intermediate size rings.

    Science.gov (United States)

    Madeleine-Perdrillat, Claire; Delor-Jestin, Florence; de Sainte Claire, Pascal

    2014-01-09

    The nonlinear dependence of polysiloxane cyclization constants (log(K(x))) with ring size (log(x)) is explained by a thermodynamic model that treats specific torsional modes of the macromolecular chains with a classical coupled hindered rotor model. Several parameters such as the dependence of the internal rotation kinetic energy matrix with geometry, the effect of potential energy hindrance, anharmonicity, and the couplings between internal rotors were investigated. This behavior arises from the competing effects of local molecular entropy that is mainly driven by the intrinsic transformation of vibrations in small cycles into hindered rotations in larger cycles and configurational entropy.

  3. Dynamical dark energy with a constant vacuum energy density

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, B. [Rudjer Boskovic Institute, PO Box 180, 10002 Zagreb (Croatia)]. E-mail: guberina@thphys.irb.hr; Horvat, R. [Rudjer Boskovic Institute, PO Box 180, 10002 Zagreb (Croatia)]. E-mail: horvat@lei3.irb.hr; Nikolic, H. [Rudjer Boskovic Institute, PO Box 180, 10002 Zagreb (Croatia)]. E-mail: hrvoje@thphys.irb.hr

    2006-05-04

    We present a holographic dark-energy model in which the Newton constant G{sub N} scales in such a way as to render the vacuum energy density a true constant. Nevertheless, the model acts as a dynamical dark-energy model since the scaling of G{sub N} goes at the expense of deviation of concentration of dark-matter particles from its canonical form and/or of promotion of their mass to a time-dependent quantity, thereby making the effective equation of state (EOS) variable and different from -1 at the present epoch. Thus the model has a potential to naturally underpin Dirac's suggestion for explaining the large-number hypothesis, which demands a dynamical G{sub N} along with the creation of matter in the universe. We show that with the aid of observational bounds on the variation of the gravitational coupling, the effective-field theory IR cutoff can be strongly restricted, being always closer to the future event horizon than to the Hubble distance. As for the observational side, the effective EOS restricted by observation can be made arbitrary close to -1, and therefore the present model can be considered as a 'minimal' dynamical dark-energy scenario. In addition, for nonzero but small curvature (vertical bar {omega}{sub k0} vertical bar -bar 0.003), the model easily accommodates a transition across the phantom line for redshifts z-bar 0.2, as mildly favored by the data. A thermodynamic aspect of the scenario is also discussed.

  4. Running vacuum in the Universe and the time variation of the fundamental constants of Nature

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Harald [Nanyang Technological University, Institute for Advanced Study, Singapore (Singapore); Universitaet Muenchen, Physik-Department, Munich (Germany); Sola, Joan [Nanyang Technological University, Institute for Advanced Study, Singapore (Singapore); Universitat de Barcelona, Departament de Fisica Quantica i Astrofisica, Barcelona, Catalonia (Spain); Universitat de Barcelona (ICCUB), Institute of Cosmos Sciences, Barcelona, Catalonia (Spain); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Dept. de Fisica, Juiz de Fora, MG (Brazil)

    2017-03-15

    We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine-structure constant and Newton's constant) within the context of the so-called running vacuum models (RVMs) of the cosmic evolution. Recently, compelling evidence has been provided that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance ΛCDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level >or similar 3σ. Here we use such remarkable status of the RVMs to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time evolution of the dark matter particle masses should be crucially involved in the total mass variation of our Universe. A positive measurement of this kind of effects could be interpreted as strong support to the ''micro-macro connection'' (viz. the dynamical feedback between the evolution of the cosmological parameters and the time variation of the fundamental constants of the microscopic world), previously proposed by two of us (HF and JS). (orig.)

  5. Running vacuum in the Universe and the time variation of the fundamental constants of Nature

    Science.gov (United States)

    Fritzsch, Harald; Solà, Joan; Nunes, Rafael C.

    2017-03-01

    We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine-structure constant and Newton's constant) within the context of the so-called running vacuum models (RVMs) of the cosmic evolution. Recently, compelling evidence has been provided that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance Λ CDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level ≳ 3σ . Here we use such remarkable status of the RVMs to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time evolution of the dark matter particle masses should be crucially involved in the total mass variation of our Universe. A positive measurement of this kind of effects could be interpreted as strong support to the "micro-macro connection" (viz. the dynamical feedback between the evolution of the cosmological parameters and the time variation of the fundamental constants of the microscopic world), previously proposed by two of us (HF and JS).

  6. GPCRDB: an information system for G protein-coupled receptors

    NARCIS (Netherlands)

    Isberg, V.; Vroling, B.; Kant, R.; Li, K.; Vriend, G.; Gloriam, D.

    2014-01-01

    For the past 20 years, the GPCRDB (G protein-coupled receptors database; http://www.gpcr.org/7tm/) has been a 'one-stop shop' for G protein-coupled receptor (GPCR)-related data. The GPCRDB contains experimental data on sequences, ligand-binding constants, mutations and oligomers, as well as many

  7. Defect Motifs for Constant Mean Curvature Surfaces

    Science.gov (United States)

    Kusumaatmaja, Halim; Wales, David J.

    2013-04-01

    The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.

  8. Fundamental constants and high-resolution spectroscopy

    Science.gov (United States)

    Bonifacio, P.; Rahmani, H.; Whitmore, J. B.; Wendt, M.; Centurion, M.; Molaro, P.; Srianand, R.; Murphy, M. T.; Petitjean, P.; Agafonova, I. I.; D'Odorico, S.; Evans, T. M.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Reimers, D.; Vladilo, G.

    2014-01-01

    Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution ({R ≈ 60 000}) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα/α is obtained for the absorber at z_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3± 2.4_stat ± 1.0_sys ppm if Al II λ 1670 Å and three Fe II transitions are used, and +1.1 ± 2.6_stat ppm in a slightly different analysis with only Fe II transitions used. This is one of the tightest bounds on α-variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2-5.4)±1.7 ppm depending on dipole model used and this constraint of Δα/α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_abs ≈ 2.4018 damped Lyα system

  9. Measuring the RC time constant with Arduino

    Science.gov (United States)

    Pereira, N. S. A.

    2016-11-01

    In this work we use the Arduino UNO R3 open source hardware platform to assemble an experimental apparatus for the measurement of the time constant of an RC circuit. With adequate programming, the Arduino is used as a signal generator, a data acquisition system and a basic signal visualisation tool. Theoretical calculations are compared with direct observations from an analogue oscilloscope. Data processing and curve fitting is performed on a spreadsheet. The results obtained for the six RC test circuits are within the expected interval of values defined by the tolerance of the components. The hardware and software prove to be adequate to the proposed measurements and therefore adaptable to a laboratorial teaching and learning context.

  10. Constant Leverage And Constant Cost Of Capital: A Common Knowledge Half-Truth

    Directory of Open Access Journals (Sweden)

    Ignacio Vélez–Pareja

    2008-04-01

    In this document we show that for finite cash flows, Ke and hence WACC depend on the discount rate that is used to value the tax shield, TS and as expected, Ke and WACC are not constant with Kd as the discount rate for the tax shield, even if the leverage is constant. We illustrate this situation with a simple example. We analyze five methods: DCF using APV, FCF and traditional and general formulation for WACC, present value of CFE plus debt and Capital Cash Flow, CCF.

  11. Effective cosmological constant induced by stochastic fluctuations of Newton's constant

    Energy Technology Data Exchange (ETDEWEB)

    Cesare, Marco de, E-mail: marco.de_cesare@kcl.ac.uk [Department of Physics, King' s College London, University of London, London (United Kingdom); Lizzi, Fedele, E-mail: fedele.lizzi@na.infn.it [Dipartimento di Fisica “E. Pancini”, Università di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona (Spain); Sakellariadou, Mairi, E-mail: mairi.sakellariadou@kcl.ac.uk [Department of Physics, King' s College London, University of London, London (United Kingdom)

    2016-09-10

    We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.

  12. Mechanism and Rate Constants of the Cdc42 GTPase Binding with Intrinsically Disordered Effectors

    OpenAIRE

    Pang, Xiaodong; Zhou, Huan-Xiang

    2016-01-01

    Intrinsically disordered proteins (IDPs) are often involved in signaling and regulatory functions, through binding to cellular targets. Many IDPs undergo disorder-to-order transitions upon binding. Both the binding mechanisms and the magnitudes of the binding rate constants can have functional importance. Previously we have found that the coupled binding and folding of any IDP generally follows a sequential mechanism that we term dock-and-coalesce, whereby one segment of the IDP first docks t...

  13. Competing bounds on the present-day time variation of fundamental constants

    Science.gov (United States)

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2009-04-01

    We compare the sensitivity of a recent bound on time variation of the fine structure constant from optical clocks with bounds on time-varying fundamental constants from atomic clocks sensitive to the electron-to-proton mass ratio, from radioactive decay rates in meteorites, and from the Oklo natural reactor. Tests of the weak equivalence principle also lead to comparable bounds on present variations of constants. The “winner in sensitivity” depends on what relations exist between the variations of different couplings in the standard model of particle physics, which may arise from the unification of gauge interactions. Weak equivalence principle tests are currently the most sensitive within unified scenarios. A detection of time variation in atomic clocks would favor dynamical dark energy and put strong constraints on the dynamics of a cosmological scalar field.

  14. Metamorphosis of the cosmological constant and 5D origin of the fiducial metric

    Science.gov (United States)

    Gabadadze, Gregory; Yu, Siqing

    2016-11-01

    In a recently proposed theory, the cosmological constant (CC) does not curve spacetime in our Universe, but instead gets absorbed into another universe endowed with its own dynamical metric, nonlocally coupled to ours. Thus, one achieves a long standing goal of removing entirely any cosmological constant from our Universe. Dark energy then cannot be due to a cosmological constant, but must be obtained via other mechanisms. Here we focus on the scenario in which dark energy is due to massive gravity and its extensions. We show how the metric of the other universe, that absorbs our CC, also gives rise to the fiducial metric known to be necessary for the diffeomorphism invariant formulation of massive gravity. This is achieved in a framework where the other universe is described by 5D AdS gravity, while our Universe lives on its boundary and is endowed with dynamical massive gravity. A nondynamical pullback of the bulk AdS metric acts as the fiducial metric for massive gravity on the boundary. This framework also removes a difficulty caused by the quantum strongly coupled behavior of massive gravity at the Λ3 scale: in the present approach, the massive gravity action does not receive any loop-induced counterterms, despite being strongly coupled.

  15. Articles translated from Journal Yadernye Konstanty (Nuclear Constants). Series Nuclear Constants, Issue No. 1, 2001

    CERN Document Server

    2002-01-01

    This report contains translations of eight papers published in the Nuclear Constants journal (Voprosy Atomnoj Nauki I Teknniki, seriya: Yadernye Konstanty (YK), vypusk 1, 2001). They are marked as 'Translated from Russian'. Six original papers published in YK in English are included with correction of found misprints and small format changes. As a result the report contains all papers presented in YK, 1 (2001).

  16. Analysis of the chemical equilibrium of combustion at constant volume

    Directory of Open Access Journals (Sweden)

    Marius BREBENEL

    2014-04-01

    Full Text Available Determining the composition of a mixture of combustion gases at a given temperature is based on chemical equilibrium, when the equilibrium constants are calculated on the assumption of constant pressure and temperature. In this paper, an analysis of changes occurring when combustion takes place at constant volume is presented, deriving a specific formula of the equilibrium constant. The simple reaction of carbon combustion in pure oxygen in both cases (constant pressure and constant volume is next considered as example of application, observing the changes occurring in the composition of the combustion gases depending on temperature.

  17. Constituent quark-light vector mesons effective couplings in a weak background magnetic field

    Science.gov (United States)

    Braghin, Fábio L.

    2018-01-01

    Effective couplings between light SU(2) vector and axial mesons and constituent quarks are calculated in the presence of a background electromagnetic field by considering a one dressed gluon exchange quark-quark interaction. The effective coupling constants, obtained from a large quark mass expansion, are expressed in terms of the Lagrangian parameters of the initial model and of components of the quark and nonperturbative gluon propagators. In spite of many possible couplings, only a few coupling constants emerge. As a second step, constituent quark-vector and axial mesons effective coupling constants are redefined to show explicit dependence on a weak background magnetic field. Ratios between the effective coupling constants are found in the limit of large quark effective mass and numerical estimates are presented.

  18. Tunnelling with a negative cosmological constant

    Science.gov (United States)

    Gibbons, G. W.

    1996-02-01

    The point of this paper is to see what light new results in hyperbolic geometry may throw on gravitational entropy and whether gravitational entropy is relevant for the quantum origin of the universe. We introduce some new gravitational instantons which mediate the birth from nothing of closed universes containing wormholes and suggest that they may contribute to the density matrix of the universe. We also discuss the connection between their gravitational action and the topological and volumetric entropies introduced in hyperbolic geometry. These coincide for hyperbolic 4-manifolds, and increase with increasing topological complexity of the 4-manifold. We raise the question of whether the action also increases with the topological complexity of the initial 3-geometry, measured either by its 3-volume or its Matveev complexity. We point out, in distinction to the non-supergravity case, that universes with domains of negative cosmological constant separated by supergravity domain walls cannot be born from nothing. Finally we point out that our wormholes provide examples of the type of Perpetual Motion machines envisaged by Frolov and Novikov.

  19. Protonation constants of hydroxybenzenes in hydrochloric acid

    Directory of Open Access Journals (Sweden)

    S. B. TOSIC

    1999-09-01

    Full Text Available The absorption spectra of monohydroxybenzene (Fen, 1,3-dihydroxybenzene (Rez, 1,4-dihydroxybenzene (Hi, 1,2,3-trihydroxybenzene (Pg and 1,3,5-trihydroxybenzene (Fg in aqueous solutions of hydrochloric acid with different values of the Hammett acidity function(H0 have two absorption bands in the region between 190-220 nm and 260-290 nm. This behavior is similar in another mineral acids (H2SO4, H3PO4, HClO4. The absorbance decreases with increasing of acidity (with decreasing of H0 values because of O-protonation. The absorption maxima shift to longer wavelengths, and the graphic dependence of the absorption of the second band as a function of H0 gives characteristic S-curves. These curves show the different effect of the acid on the form the protonation of the investigated hydroxybenzenes. The potonation constants of the hydroxybenzenes were calculated: pKFen=-1.95; pKRez=-2.40; pKHi= -1.93; pKPg=-2.95; pKFg=-1.83.

  20. More on lensing by a cosmological constant

    Science.gov (United States)

    Ishak, M.; Rindler, W.; Dossett, J.

    2010-04-01

    The question of whether or not the cosmological constant affects the bending of light around a concentrated mass has been the subject of some recent papers. We present here a simple, specific and transparent example where Λ bending clearly takes place, and where it is clearly neither a coordinate effect nor an aberration effect. We then show that in some recent works using perturbation theory the Λ contribution was missed because of initial too stringent smallness assumptions. Namely, our method has been to insert a Kottler (Schwarzschild with Λ) vacuole into a Friedmann universe, and to calculate the total bending within the vacuole. We assume that no more bending occurs outside. It is important to observe that while the mass contribution to the bending takes place mainly quite near the lens, the Λ bending continues throughout the vacuole. Thus, if one deliberately restricts one's search for Λ bending to the immediate neighbourhood of the lens, one will not find it. Lastly, we show that the Λ bending also follows from standard Weyl focusing, and so again, it cannot be a coordinate effect.

  1. An Alcohol Test for Drifting Constants

    Science.gov (United States)

    Jansen, P.; Bagdonaite, J.; Ubachs, W.; Bethlem, H. L.; Kleiner, I.; Xu, L.-H.

    2013-06-01

    The Standard Model of physics is built on the fundamental constants of nature, however without providing an explanation for their values, nor requiring their constancy over space and time. Molecular spectroscopy can address this issue. Recently, we found that microwave transitions in methanol are extremely sensitive to a variation of the proton-to-electron mass ratio μ, due to a fortuitous interplay between classically forbidden internal rotation and rotation of the molecule as a whole. In this talk, we will explain the origin of this effect and how the sensitivity coefficients in methanol are calculated. In addition, we set a limit on a possible cosmological variation of μ by comparing transitions in methanol observed in the early Universe with those measured in the laboratory. Based on radio-astronomical observations of PKS1830-211, we deduce a constraint of Δμ/μ=(0.0± 1.0)× 10^{-7} at redshift z = 0.89, corresponding to a look-back time of 7 billion years. While this limit is more constraining and systematically more robust than previous ones, the methanol method opens a new search territory for probing μ-variation on cosmological timescales. P. Jansen, L.-H. Xu, I. Kleiner, W. Ubachs, and H.L. Bethlem Phys. Rev. Lett. {106}(100801) 2011. J. Bagdonaite, P. Jansen, C. Henkel, H.L. Bethlem, K.M. Menten, and W. Ubachs Science {339}(46) 2013.

  2. Accurate lineshape spectroscopy and the Boltzmann constant.

    Science.gov (United States)

    Truong, G-W; Anstie, J D; May, E F; Stace, T M; Luiten, A N

    2015-10-14

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m.

  3. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  4. Uncertainties in constraining low-energy constants from {sup 3}H β decay

    Energy Technology Data Exchange (ETDEWEB)

    Klos, P.; Carbone, A.; Hebeler, K. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Menendez, J. [University of Tokyo, Department of Physics, Tokyo (Japan); Schwenk, A. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-08-15

    We discuss the uncertainties in constraining low-energy constants of chiral effective field theory from {sup 3}H β decay. The half-life is very precisely known, so that the Gamow-Teller matrix element has been used to fit the coupling c{sub D} of the axial-vector current to a short-range two-nucleon pair. Because the same coupling also describes the leading one-pion-exchange three-nucleon force, this in principle provides a very constraining fit, uncorrelated with the {sup 3}H binding energy fit used to constrain another low-energy coupling in three-nucleon forces. However, so far such {sup 3}H half-life fits have only been performed at a fixed cutoff value. We show that the cutoff dependence due to the regulators in the axial-vector two-body current can significantly affect the Gamow-Teller matrix elements and consequently also the extracted values for the c{sub D} coupling constant. The degree of the cutoff dependence is correlated with the softness of the employed NN interaction. As a result, present three-nucleon forces based on a fit to {sup 3}H β decay underestimate the uncertainty in c{sub D}. We explore a range of c{sub D} values that is compatible within cutoff variation with the experimental {sup 3}H half-life and estimate the resulting uncertainties for many-body systems by performing calculations of symmetric nuclear matter. (orig.)

  5. Variations of the fine-structure constant α in exotic singularity models

    Science.gov (United States)

    Dąbrowski, Mariusz P.; Denkiewicz, Tomasz; Martins, C. J. A. P.; Vielzeuf, P. E.

    2014-06-01

    Various classes of exotic singularity models have been studied as possible mimic models for the observed recent acceleration of the Universe. Here we further study one of these classes and, under the assumption that they are phenomenological toy models for the behavior of an underlying scalar field that also couples to the electromagnetic sector of the theory, obtain the corresponding behavior of the fine-structure constant α for particular choices of model parameters that have been previously shown to be in reasonable agreement with cosmological observations. We then compare this predicted behavior with available measurements of α, thus constraining this putative coupling to electromagnetism. We find that values of the coupling that would provide a good fit to spectroscopic measurements of α are in more than three-sigma tension with local atomic clock bounds. Future measurements by ESPRESSO and ELT-HIRES will provide a definitive test of these models.

  6. Constant Proportion Portfolio Insurance Strategy in Southeast European Markets

    National Research Council Canada - National Science Library

    Elma Agić-Šabeta

    2016-01-01

    .... A special attention is given to modelling non-risky assets of the portfolio. Monte Carlo simulations are used to test the buy-and-hold, the constant-mix, and the constant proportion portfolio insurance (CPPI...

  7. Wheatstone bridge fed from a bilateral constant current source.

    Science.gov (United States)

    Velayudhan, C; Oommen, D

    1980-03-01

    A simple inexpensive scheme of an electronic amplifier for Wheatstone bridge application is presented. The bridge is excited from a bilateral constant current square wave source. The advantage of constant current drive is presented.

  8. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  9. Two-dimensional quantum dilaton gravity and the quantized cosmological constant

    Science.gov (United States)

    Zonetti, Simone

    2012-09-01

    The cosmological constant problem is one of the long-standing issues of modern physics. While we can measure the value of the cosmological constant with great accuracy, we are not able to calculate it in a coherent theoretical framework. On the contrary the theoretical predictions in Quantum Field Theory are radically different from observations. This disagreement is a hint of the difficult conciliation of Quantum Mechanics and General Relativity in a theory of Quantum Gravity. Current approaches to the cosmological constant problem, in particular, do not account for the quantum nature of the gravitational interaction and rely on perturbative calculations. In this thesis we address the issue in the simplified framework of two-dimensional dilaton-Maxwell gravity, coupled to scalar matter fields. In this setting we are able to quantize our model non-perturbatively in Dirac's approach to constrained systems. We determine that the realization of the classical symmetries at the quantum level provides a mechanism that fixes the value of the cosmological constant once a specific quantum state of the Universe is selected. Furthermore Quantum Gravity introduces opposite contributions to the cosmological constant, admitting a range of values compatible with current observations.

  10. The specific gamma-ray constant and exposure rate constant of 182Ta.

    Science.gov (United States)

    Glasgow, G P; Dillman, L T

    1982-01-01

    Reported values of the specific gamma-ray constant gamma for 182Ta range from the original value of 6.1 to 7.692 R cm2h-1mCi-1, recommended in NCRP Report No. 41. The original calculation of gamma was based on inadequate nuclear spectroscopy and decay scheme data. The higher value of gamma occurs because of a computational error in the relative intensity of the 1.2575-MeV gamma ray. Using nuclear spectroscopy data from the most recent Evaluated Nuclear Data File (ENSDF), gamma is calculated to be 6.71 +/- 0.06 R cm2h-1mCi-1 and the exposure rate constant gamma gamma is 6.87 +/- 0.06 R cm2h-1mCi-1. These new calculations are presented and previously reported values of gamma and gamma gamma are reviewed.

  11. Deformed extra space and the smallness of the cosmological constant

    CERN Document Server

    Rubin, Sergey G

    2016-01-01

    The mechanism of different universes formation is elaborated. Each universe is characterized by a unique cosmological constant. It is shown that the set of cosmological constants has the cardinality of the continuum and contains zero cosmological constant. Those universes with cosmological constants near zero could be filled by complex structures. There is no necessity in a special mechanism of the fine tuning. The role of quantum fluctuations is studied.

  12. Articles translated from Journal Yadernye Konstanty (Nuclear Constants). Series Nuclear Constants, Issue No. 2, 2001

    CERN Document Server

    2002-01-01

    This report contains translations of three papers published in the Nuclear Constants journal (Voprosy Atomnoj Nauki I Teknniki, seriya: Yadernye Konstanty (YK), vypusk 2, 2001). They are marked as 'Translated from Russian'. Three original YK papers published in English and one sent by the are included with corrections of misprints and small format changes. As a result the report contains seven of nine papers presented in YK, 2 (2001).

  13. Constant DI pacing suppresses cardiac alternans formation in numerical cable models

    Science.gov (United States)

    Zlochiver, S.; Johnson, C.; Tolkacheva, E. G.

    2017-09-01

    Cardiac repolarization alternans describe the sequential alternation of the action potential duration (APD) and can develop during rapid pacing. In the ventricles, such alternans may rapidly turn into life risking arrhythmias under conditions of spatial heterogeneity. Thus, suppression of alternans by artificial pacing protocols, or alternans control, has been the subject of numerous theoretical, numerical, and experimental studies. Yet, previous attempts that were inspired by chaos control theories were successful only for a short spatial extent (<2 cm) from the pacing electrode. Previously, we demonstrated in a single cell model that pacing with a constant diastolic interval (DI) can suppress the formation of alternans at high rates of activation. We attributed this effect to the elimination of feedback between the pacing cycle length and the last APD, effectively preventing restitution-dependent alternans from developing. Here, we extend this idea into cable models to study the extent by which constant DI pacing can control alternans during wave propagation conditions. Constant DI pacing was applied to ventricular cable models of up to 5 cm, using human kinetics. Our results show that constant DI pacing significantly shifts the onset of both cardiac alternans and conduction blocks to higher pacing rates in comparison to pacing with constant cycle length. We also demonstrate that constant DI pacing reduces the propensity of spatially discordant alternans, a precursor of wavebreaks. We finally found that the protective effect of constant DI pacing is stronger for increased electrotonic coupling along the fiber in the sense that the onset of alternans is further shifted to higher activation rates. Overall, these results support the potential clinical applicability of such type of pacing in improving protocols of implanted pacemakers, in order to reduce the risk of life-threatening arrhythmias. Future research should be conducted in order to experimentally validate

  14. Systematic harmonic power laws inter-relating multiple fundamental constants

    Science.gov (United States)

    Chakeres, Donald; Buckhanan, Wayne; Andrianarijaona, Vola

    2017-01-01

    Power laws and harmonic systems are ubiquitous in physics. We hypothesize that 2, π, the electron, Bohr radius, Rydberg constant, neutron, fine structure constant, Higgs boson, top quark, kaons, pions, muon, Tau, W, and Z when scaled in a common single unit are all inter-related by systematic harmonic powers laws. This implies that if the power law is known it is possible to derive a fundamental constant's scale in the absence of any direct experimental data of that constant. This is true for the case of the hydrogen constants. We created a power law search engine computer program that randomly generated possible positive or negative powers searching when the product of logical groups of constants equals 1, confirming they are physically valid. For 2, π, and the hydrogen constants the search engine found Planck's constant, Coulomb's energy law, and the kinetic energy law. The product of ratios defined by two constants each was the standard general format. The search engine found systematic resonant power laws based on partial harmonic fraction powers of the neutron for all of the constants with products near 1, within their known experimental precision, when utilized with appropriate hydrogen constants. We conclude that multiple fundamental constants are inter-related within a harmonic power law system.

  15. Reliability concerns with logical constants in Xilinx FPGA designs

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Heather M [Los Alamos National Laboratory; Graham, Paul [Los Alamos National Laboratory; Morgan, Keith [Los Alamos National Laboratory; Ostler, Patrick [Los Alamos National Laboratory; Allen, Greg [JPL; Swift, Gary [XILINX; Tseng, Chen W [XILINX

    2009-01-01

    In Xilinx Field Programmable Gate Arrays logical constants, which ground unused inputs and provide constants for designs, are implemented in SEU-susceptible logic. In the past, these logical constants have been shown to cause the user circuit to output bad data and were not resetable through off-line rcconfiguration. In the more recent devices, logical constants are less problematic, though mitigation should still be considered for high reliability applications. In conclusion, we have presented a number of reliability concerns with logical constants in the Xilinx Virtex family. There are two main categories of logical constants: implicit and explicit logical constants. In all of the Virtex devices, the implicit logical constants are implemented using half latches, which in the most recent devices are several orders of magnitudes smaller than configuration bit cells. Explicit logical constants are implemented exclusively using constant LUTs in the Virtex-I and Virtex-II, and use a combination of constant LUTs and architectural posts to the ground plane in the Virtex-4. We have also presented mitigation methods and options for these devices. While SEUs in implicit and some types of explicit logical constants can cause data corrupt, the chance of failure from these components is now much smaller than it was in the Virtex-I device. Therefore, for many cases, mitigation might not be necessary, except under extremely high reliability situations.

  16. Determination and stability constants of Manganese (II) amino acid ...

    African Journals Online (AJOL)

    Determination and stability constants of Manganese (II) amino acid complexes. HN Aliyu, J Na'aliya. Abstract. The stepwise and the overall stability constants of the complexes formed by manganese (II) ion and twelve (12) amino acids have been determined. The dissociation constants, pKa, of the amino acids determined ...

  17. Determination of optical constants and nonlinear optical coefficients ...

    Indian Academy of Sciences (India)

    The optical properties of Violet 1-doped polyvinyl alcohol (PVA) have been investigated using Wemble and Didomenico (WD) method. The optical constants such as refractive index , the dispersion energy , the oscillation energy 0, the lattice dielectric constant ∞, light frequency dielectric constant 0 and the ratio of ...

  18. Male broiler performance and nocturnal feeding under constant 8-h ...

    African Journals Online (AJOL)

    When these data were pooled with previously reported data for female broilers, growth and feed conversion efficiency post 21 d and through to depletion for constant 8-h and birds transferred from 8 to 16 h at 20 d were significantly superior to constant 16-h birds. Constant 8-h birds ate about half their feed during the dark ...

  19. Beauty vector meson decay constants from QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Lucha, Wolfgang [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Melikhov, Dmitri [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, 119991, Moscow (Russian Federation); Simula, Silvano [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146, Roma (Italy)

    2016-01-22

    We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.

  20. Stability constant of the trisglycinto metal complexes | Na'aliya ...

    African Journals Online (AJOL)

    The stability constants of iron, manganese, cobalt, and nickel complexes of glycine have been determined in aqueous solution by potentiometric titration with standard sodium hydroxide solution. The values of the stepwise stability constants were obtained by ORIGIN '50' program. The overall stability constants of the ...

  1. Ground states of linearly coupled Schrodinger systems

    Directory of Open Access Journals (Sweden)

    Haidong Liu

    2017-01-01

    Full Text Available This article concerns the standing waves of a linearly coupled Schrodinger system which arises from nonlinear optics and condensed matter physics. The coefficients of the system are spatially dependent and have a mixed behavior: they are periodic in some directions and tend to positive constants in other directions. Under suitable assumptions, we prove that the system has a positive ground state. In addition, when the L-infinity-norm of the coupling coefficient tends to zero, the asymptotic behavior of the ground states is also obtained.

  2. Parametric amplification by coupled flux qubits

    Science.gov (United States)

    Rehák, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Hübner, U.; Il'ichev, E.; Meyer, H.-G.

    2014-04-01

    We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10-3) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

  3. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: Combining normal spring constant and classical beam theory

    DEFF Research Database (Denmark)

    Álvarez-Asencio, R.; Thormann, Esben; Rutland, M.W.

    2013-01-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power...

  4. NMR shielding and spin–rotation constants of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules

    Energy Technology Data Exchange (ETDEWEB)

    Demissie, Taye B. [Centre for Theoretical and Computational Chemistry Department of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø (Norway)

    2015-12-31

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  5. Produção de biomassa e teores de carbono, hidrogênio, nitrogênio e proteína em microalgas Production of biomass and carbon, hydrogen, nitrogen and protein contents in microalgae

    Directory of Open Access Journals (Sweden)

    Silvana Ohse

    2009-09-01

    Full Text Available O aumento da emissão de CO2 e de outros gases efeito estufa tem gerado debates em nível mundial sobre alterações climáticas e estimulado o desenvolvimento de estratégias mitigadoras. Trabalhos nessa área incluem sequestro de CO2 por meio da produção de microalgas aquáticas. Por essa razão, desenvolveu-se um estudo visando determinar os teores de carbono, hidrogênio, nitrogênio e proteína e a produção de biomassa seca de nove espécies de microalgas marinhas (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii Chaetoceros muelleri, Thalassiosira fluviatilis e Isochrysis sp. e uma de água doce (Chlorella vulgaris, em cultivo autotrófico estacionário com objetivo de identificar as mais produtivas e com maior capacidade de fixação de carbono. O experimento foi desenvolvido em sala de cultivo, na Universidade Federal de Santa Catarina, com iluminação contínua e radiação em torno de 150µmol m-2 s-1, temperatura de 25±2°C, suplementação de ar constante, sendo utilizados erlenmeyers com 800mL de meio de cultura. O delineamento experimental foi de blocos casualizados no tempo com três repetições. As espécies C. vulgaris e T. suecica são menos produtivas. Quando se visa à suplementação alimentar, as espécies C. vulgaris e T. Chuii são consideradas interessantes, uma vez que apresentam altos teores de C, N, H e proteína. As espécies N. Oculata, T. pseudonana e C. vulgaris apresentam altos teores de C, demonstrando alta capacidade de fixação de carbono.The increase of CO2 emission and other gases greenhouse effect, caused global debates about climatic alterations and stimulated the development of mitigative strategies. Researches in this area includes CO2 kidnapping through the aquatic microalgae production. For this reason, a study was developed aiming to determine the production of dry biomass, carbon content, hydrogen

  6. FOREWORD: International determination of the Avogadro constant International determination of the Avogadro constant

    Science.gov (United States)

    Massa, Enrico; Nicolaus, Arnold

    2011-04-01

    This issue of Metrologia collects papers about the results of an international research project aimed at the determination of the Avogadro constant, NA, by counting the atoms in a silicon crystal highly enriched with the isotope 28Si. Fifty years ago, Egidi [1] thought about realizing an atomic mass standard. In 1965, Bonse and Hart [2] operated the first x-ray interferometer, thus paving the way to the achievement of Egidi's dream, and soon Deslattes et al [3] completed the first counting of the atoms in a natural silicon crystal. The present project, outlined by Zosi [4] in 1983, began in 2004 by combining the experiences and capabilities of the BIPM, INRIM, IRMM, NIST, NPL, NMIA, NMIJ and PTB. The start signal, ratified by a memorandum of understanding, was a contract for the production of a silicon crystal highly enriched with 28Si. The enrichment process was undertaken by the Central Design Bureau of Machine Building in St Petersburg. Subsequently, a polycrystal was grown in the Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences in Nizhny Novgorod and a 28Si boule was grown and purified by the Leibniz-Institut für Kristallzüchtung in Berlin. Isotope enrichment made it possible to apply isotope dilution mass spectroscopy, to determine the Avogadro constant with unprecedented accuracy, and to fulfil Egidi's dream. To convey Egidi's 'fantasy' into practice, two 28Si kilogram prototypes shaped as quasi-perfect spheres were manufactured by the Australian Centre for Precision Optics; their isotopic composition, molar mass, mass, volume, density and lattice parameter were accurately determined and their surfaces were chemically and physically characterized at the atomic scale. The paper by Andreas et al reviews the work carried out; it collates all the findings and illustrates how Avogadro's constant was obtained. Impurity concentration and gradients in the enriched crystal were measured by infrared spectroscopy and taken into

  7. Thermodynamics and dynamics of a monoatomic glass former. Constant pressure and constant volume behavior.

    Science.gov (United States)

    Kapko, Vitaliy; Matyushov, Dmitry V; Angell, C Austen

    2008-04-14

    We report constant-volume and constant-pressure simulations of the thermodynamic and dynamic properties of the low-temperature liquid and crystalline phases of the modified Stillinger-Weber (SW) model. We have found an approximately linear temperature increase of the effective Gaussian width of the distribution of inherent structures. This effect comes from non-Gaussianity of the landscape and is consistent with the predictions of the Gaussian excitations model representing the thermodynamics of the configurational manifold as an ensemble of excitations, each carrying an excitation entropy. The SW model provides us with both the configurational and excess entropies, with the difference mostly attributed to vibrational anharmonicity. We therefore can address the distinction between the excess thermodynamic quantities, often used to interpret experiments, and configurational thermodynamics used to describe the dynamics in the Adam-Gibbs (AG) equation. However we are limited computationally to work at temperatures above the "crossover" temperature at which the breakdown in the Adam-Gibbs relation has been identified in laboratory studies. We find a new break in the slope of the constant pressure AG plot (in the same sense but at much higher temperature than with laboratory data) when the excess entropy is used in the AG equation. This break, which we associate with anharmonic vibrational effects, is not seen when the configurational entropy is used. The simulation diffusivity data are equally well fitted by the AG equation and by a new equation, derived within the Gaussian excitations model, that emphasizes enthalpy over entropy as the thermodynamic control variable for transport in viscous liquids. We show that the modified SW model has close links to the behavior observed for bulk metallic glasses, both in its diffusional and in its thermodynamic properties.

  8. Determinations of the Strong Coupling at HERA

    CERN Document Server

    Schoerner-Sadenius, Thomas

    2011-01-01

    The status of determinations of the QCD coupling constant, alphas, at HERA is reviewed. Since jet final states provide the most relevant input to the HERA determinations of alphas, the relevant methods used in and results from jet physics are also discussed. Furthermore, HERA and world averages of alphas values are presented. Finally, the HERA-PDF 1.6 proton parton distribution function set which also uses jet final-state data is introduced.

  9. Measurements of Newton's gravitational constant and the length of day

    Science.gov (United States)

    Anderson, J. D.; Schubert, G.; Trimble, V.; Feldman, M. R.

    2015-04-01

    About a dozen measurements of Newton's gravitational constant, G, since 1962 have yielded values that differ by far more than their reported random plus systematic errors. We find that these values for G are oscillatory in nature, with a period of P = 5.899 +/- 0.062 \\text{yr} , an amplitude of (1.619 +/- 0.103) × 10-14 \\text{m}3 \\text{kg}-1 \\text{s}-2 , and mean-value crossings in 1994 and 1997. However, we do not suggest that G is actually varying by this much, this quickly, but instead that something in the measurement process varies. Of other recently reported results, to the best of our knowledge, the only measurement with the same period and phase is the Length of Day (LOD —defined as a frequency measurement such that a positive increase in LOD values means slower Earth rotation rates and therefore longer days). The aforementioned period is also about half of a solar activity cycle, but the correlation is far less convincing. The 5.9 year periodic signal in LOD has previously been interpreted as due to fluid core motions and inner-core coupling. We report the G/LOD correlation, whose statistical significance is 0.99764 assuming no difference in phase, without claiming to have any satisfactory explanation for it. Least unlikely, perhaps, are currents in the Earth's fluid core that change both its moment of inertia (affecting LOD) and the circumstances in which the Earth-based experiments measure G. In this case, there might be correlations with terrestrial-magnetic-field measurements.

  10. Effects of constant voltage and constant current stress in PCBM:P3HT solar cells

    DEFF Research Database (Denmark)

    Cester, Andrea; Rizzo, Aldo; Bazzega, A.

    2015-01-01

    The aimof this work is the investigation of forward and reverse bias stress effects, cell self-heating and annealing in roll coated organic solar cells with PCBM:P3HT active layer. In reverse bias stress cells show a constant degradation over time. In forward current stress cells alternate...... mechanisms: the decrease of the net generation rate (due to formation of exciton quenching centres or the reduction of exciton separation rate); the formation of small leaky paths between anode and cathode, which reduces the total current extracted from the cell. The stress-induced damage can be recovered...

  11. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2Reaction.

    Science.gov (United States)

    Hickson, Kevin M; Suleimanov, Yury V

    2017-03-09

    In the present joint experimental and theoretical study, we report thermal rate constants for the O( 1 D) + H 2 reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O( 1 D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O( 1 D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1 1 A' and 1 1 A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1 1 A' ground state and that contribution of the 1 1 A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1 1 A' and 2 1 A' surfaces.

  12. Charged rotating black holes in Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant

    Science.gov (United States)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2017-03-01

    We consider rotating black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant and a generic value of the Chern-Simons coupling constant λ . Using both analytical and numerical techniques, we focus on cohomogeneity-1 configurations, with two equal-magnitude angular momenta, which approach at infinity a globally anti-de Sitter background. We find that the generic solutions share a number of basic properties with the known Cvetič, Lü, and Pope black holes which have λ =1 . New features occur as well; for example, when the Chern-Simons coupling constant exceeds a critical value, the solutions are no longer uniquely determined by their global charges. Moreover, the black holes possess radial excitations which can be labelled by the node number of the magnetic gauge potential function. Solutions with small values of λ possess other distinct features. For instance, the extremal black holes there form two disconnected branches, while not all near-horizon solutions are associated with global solutions.

  13. Charged rotating black holes in Einstein--Maxwell--Chern-Simons theory with negative cosmological constant

    CERN Document Server

    Blázquez-Salcedo, Jose Luis; Navarro-Lérida, Francisco; Radu, Eugen

    2016-01-01

    We consider rotating black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant and a generic value of the Chern-Simons coupling constant $\\lambda$. Using both analytical and numerical techniques, we focus on cohomogeneity-1 configurations, with two equal-magnitude angular momenta, which approach at infinity a globally AdS background. We find that the generic solutions share a number of basic properties with the known Cvetic, L\\"u and Pope black holes which have $\\lambda=1$. New features occur as well, for example, when the Chern-Simons coupling constant exceeds a critical value, the solutions are no longer uniquely determined by their global charges. Moreover, the black holes possess radial excitations which can be labelled by the node number of the magnetic gauge potential function. Solutions with small values of $\\lambda$ possess other distinct features. For instance, the extremal black holes there form two disconnected branches, while not all near-h...

  14. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling

    KAUST Repository

    Xu, Jun

    2016-01-12

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Specific gamma-ray constant and exposure rate constant of 192Ir.

    Science.gov (United States)

    Glasgow, G P; Dillman, L T

    1979-01-01

    Calculated values of the 192Ir specific gamma-ray constant, Gamma range from the low value of 3.948 R cm2h-1mCi-1 recommended in NCRP No. 41 to a high of 4.89 R cm2h-1mCi-1. Measured values of Gamma range only from 4.85 to 5.0 Rcm2h-1mCi-1. Discrepancies in reported calculated values exist because the isotope decay scheme and other nuclear spectroscopy data pertinent to these calculations were not well known. Using the 28 gamma rays and relative intensities from the most recent Evaluated Nuclear Structure Data File (ENSDF), Gamma is calculated to be 4.62 +/- 0.05 Rcm2h-1mCi-1 and the exposure rate constant Gamma delta is 4.69 +/- 0.05 Rcm2h-1mCi-1. These new calculations are presented and previously reported values of Gamma and Gamma delta are reviewed.

  16. Quintessential Nature of the Fine-Structure Constant

    OpenAIRE

    Sherbon, Michael

    2015-01-01

    7 pages; International audience; An introduction is given to the geometry and harmonics of the Golden Apex in the Great Pyramid, with the metaphysical and mathematical determination of the fine-structure constant of electromagnetic interactions. Newton's gravitational constant is also presented in harmonic form and other fundamental physical constants are then found related to the quintessential geometry of the Golden Apex in the Great Pyramid.

  17. A Constant Envelope OFDM Implementation on GNU Radio

    Science.gov (United States)

    2015-02-02

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--15-9575 A Constant Envelope OFDM Implementation on GNU Radio February 2, 2015...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT A Constant Envelope OFDM Implementation on GNU Radio Andrew Robertson, Amos Ajo, Sastry Kompella, Joe...time for non-linear amplification. These requirements are uniquely served by constant envelope OFDM . We describe the use-cases, theory, and

  18. The 400-Hertz constant-speed electrical generation systems

    Science.gov (United States)

    Mcclung, R.

    1982-01-01

    Materials illustrating a presentation on 400 Hz constant speed generation systems are presented. The system features are outlined, components and functioning described, and display graphics illustrated.

  19. Negative Dielectric Constant Material Based on Ion Conducting Materials

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2017-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  20. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, Andreas; Budini, Francesco; Tilp, Markus

    2017-08-01

    Static stretching induces acute structural changes of the muscle-tendon unit (MTU) that are related to the intensity or duration of stretching. It has been reported that stretching with a constant torque (CT) leads to greater joint range of motion changes than stretching with a constant angle (CA). Whether or not this difference is due to different structural changes of the MTUs of the lower leg and ankle plantar flexors is not known. Therefore, the purpose of this study was to compare the acute effects of single CA and CT stretching on various muscle and tendon mechanical properties. Seventeen young, healthy volunteers were tested on two separate days using either CT or CA stretching (4 × 30 s each). Before and after stretching, dorsiflexion range of motion (RoM), passive resistive torque (PRT), and maximum voluntary contraction (MVC) were measured with a dynamometer. Ultrasonography of the medial gastrocnemius (GM) muscle-tendon junction (MTJ) displacement allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate their stiffness. Maximum dorsiflexion increased while PRT, muscle-tendon stiffness, and muscle stiffness decreased following both CA and CT stretching. There was a greater increase in RoM following CT stretching compared to CA stretching. Moreover, the decline in PRT was greater during CT stretching compared to CA stretching. As expected, several functional adaptations (RoM, PRT) were different between CT and CA stretching due to the higher intensity of CT stretching. However, no structural differences in the adaptations to the stretching modalities could be detected. We suggest that the different functional adaptations between CA and CT stretching are the consequence of different adaptations in the perception of stretch and pain.

  1. Computing sextic centrifugal distortion constants by DFT: A benchmark analysis on halogenated compounds

    Science.gov (United States)

    Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi

    2017-05-01

    This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.

  2. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  3. Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant

    Science.gov (United States)

    Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.

    2017-11-01

    We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.

  4. Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita

    2011-01-01

    , and pK+ are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy–Chapman–Stern triple-layer model...... of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary...

  5. Dilatation symmetry in higher dimensions and the vanishing of the cosmological constant.

    Science.gov (United States)

    Wetterich, C

    2009-04-10

    A wide class of dilatation symmetric effective actions in higher dimensions leads to a vanishing four-dimensional cosmological constant. This requires no tuning of parameters and results from the absence of an allowed potential for the scalar dilaton field. The field equations admit many solutions with flat four-dimensional space and nonvanishing gauge couplings. In a more general setting, these are candidates for asymptotic states of cosmological runaway solutions, where dilatation symmetry is realized dynamically if a fixed point is approached as time goes to infinity. Dilatation anomalies during the runaway can lift the degeneracy of solutions and lead to an observable dynamical dark energy.

  6. Cosmological Constant in the Thermodynamic Models of Gravity

    OpenAIRE

    Gogberashvili, Merab; Chutkerashvili, Ucha

    2016-01-01

    Within thermodynamic models of gravity, where the universe is considered as a finite ensemble of quantum particles, cosmological constant in the Einstein's equations appears as a constant of integration. Then it can be bounded using Karolyhazy uncertainty relation applied for horizon distances, as the amount of information in principle accessible to an external observer.

  7. A five-dimensional model of varying fine structure constant

    Indian Academy of Sciences (India)

    A five-dimensional model of varying fine structure constant. J P MBELEK. Service d'Astrophysique, C.E. Saclay, F-91191 Gif-sur-Yvette Cedex, France. Abstract. The cosmological variation of the fine structure constant « is explored from an effective theory, under the form of an improved version of the 5D Kaluza-Klein theory.

  8. Avogadro constant measurements using enriched 28Si monocrystals

    Science.gov (United States)

    Fujii, K.; Massa, E.; Bettin, H.; Kuramoto, N.; Mana, G.

    2018-02-01

    Since 2011, the International Avogadro Coordination has been measuring the Avogadro constant by counting the atoms in enriched 28Si monocrystals. This communication provides guidance on how the recently published results should be used to update the values of the Avogadro constant measured so far.

  9. A Priori Probability Distribution of the Cosmological Constant

    OpenAIRE

    Weinberg, Steven

    2000-01-01

    In calculations of the probability distribution for the cosmological constant, it has been previously assumed that the a priori probability distribution is essentially constant in the very narrow range that is anthropically allowed. This assumption has recently been challenged. Here we identify large classes of theories in which this assumption is justified.

  10. Dielectric Constants of Irradiated and Carbonated Polymers | Okeke ...

    African Journals Online (AJOL)

    Using the LC resonance circuit, changes in dielectric constants of irradiated and carbonated polymers as a function of carbon concentration are investigated. Both low and high density polymers are used. Results predict a quadratic increase in the dielectric constant of specimen as the percentage concentration of carbon is ...

  11. Surfaces of Constant Curvature in the Pseudo-Galilean Space

    Directory of Open Access Journals (Sweden)

    Željka Milin Šipuš

    2012-01-01

    constant curvature, so-called the Tchebyshev coordinates, and show that the angle between parametric curves satisfies the Klein-Gordon partial differential equation. We determine the Tchebyshev coordinates for surfaces of revolution and construct a surface with constant curvature from a particular solution of the Klein-Gordon equation.

  12. Determination of stepwise stabilty constants and Gibb's free energy ...

    African Journals Online (AJOL)

    The overall stability constants of manganese (II), iron (II), cobalt (II), nickel (II), copper (II), and zinc (II) complexes with proline were determined by potentiometric titration of sodium prolinate with the corresponding salt of the divalent metal in aqueous media. The values of the constants (Logâ) were found to be 19.45, 19.23, ...

  13. Using Constant Time Delay to Teach Braille Word Recognition

    Science.gov (United States)

    Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah

    2014-01-01

    Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…

  14. An Introduction to Collision Theory Rate Constants via Distribution Functions.

    Science.gov (United States)

    McAlduff, E. J.

    1980-01-01

    Described is an introduction to the collision theory by arriving at the many degrees of freedom rote constant and showing that the (-Ea/RT) is a special case and corresponds to activation in 2 squared terms on the line of center rate constant, which is found through the use of distributed functions. (Author/DS)

  15. Lattice constant measurement from electron backscatter diffraction patterns

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2017-01-01

    Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about lattice constants of crystallographic samples that can be extracted via the Bragg equation. An advantage of lattice constant measurement from EBSPs over diffraction (XRD) is the ability to perform local ...

  16. THE STABILITY CONSTANTS OF NICKEL (II) COMPLEXES OF ...

    African Journals Online (AJOL)

    DR. AMINU

    2010-06-01

    Jun 1, 2010 ... THE STABILITY CONSTANTS OF NICKEL (II) COMPLEXES OF AMINO ACIDS. WITH POLAR UNCHARGED R – GROUPS. Na'aliya, J. Department of Pure and Industrial Chemistry, Bayero University Kano, P. M. B. 3011, Kano, Nigeria jnaaliya@yahoo.com. ABSTRACT. The dissociation constant,pKa of ...

  17. Pattern Recognition of Universal Mathematical Constants in Acheulean Biface Formats

    National Research Council Canada - National Science Library

    Alan Edward Cannell

    2015-01-01

    ...) and examine the presence of universal mathematical constants. A probabilistic analysis suggests that the repeated use of the numbers 2, Pi and Phi and the relationship between them could not have been produced by chance. These relationships appear to be constant over very long time periods and are still used today in modern gemstone design.    

  18. Measuring Boltzmann's Constant with Carbon Dioxide

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2013-01-01

    In this paper we present two experiments to measure Boltzmann's constant--one of the fundamental constants of modern-day physics, which lies at the base of statistical mechanics and thermodynamics. The experiments use very basic theory, simple equipment and cheap and safe materials yet provide very precise results. They are very easy and…

  19. Constant mean curvature surfaces via integrable dynamical system

    CERN Document Server

    Konopelchenko, B G

    1995-01-01

    It is shown that the equation which describes constant mean curvature surface via the generalized Weierstrass-Enneper inducing has Hamiltonian form. Its simplest finite-dimensional reduction has two degrees of freedom, integrable and its trajectories correspond to well-known Delaunay and do Carmo-Dajzcer surfaces (i.e., helicoidal constant mean curvature surfaces).

  20. Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source

    Science.gov (United States)

    Mohamadou, Youssoufa; In Oh, Tong; Wi, Hun; Sohal, Harsh; Farooq, Adnan; Woo, Eung Je; McEwan, Alistair Lee

    2012-10-01

    Current sources are widely used in bio-impedance spectroscopy (BIS) measurement systems to maximize current injection for increased signal to noise while keeping within medical safety specifications. High-performance current sources based on the Howland current pump with optimized impedance converters are able to minimize stray capacitance of the cables and setup. This approach is limited at high frequencies primarily due to the deteriorated output impedance of the constant current source when situated in a real measurement system. For this reason, voltage sources have been suggested, but they require a current sensing resistor, and the SNR reduces at low impedance loads due to the lower current required to maintain constant voltage. In this paper, we compare the performance of a current source-based BIS and a voltage source-based BIS, which use common components. The current source BIS is based on a Howland current pump and generalized impedance converters to maintain a high output impedance of more than 1 MΩ at 2 MHz. The voltage source BIS is based on voltage division between an internal current sensing resistor (Rs) and an external sample. To maintain high SNR, Rs is varied so that the source voltage is divided more or less equally. In order to calibrate the systems, we measured the transfer function of the BIS systems with several known resistor and capacitor loads. From this we may estimate the resistance and capacitance of biological tissues using the least-squares method to minimize error between the measured transimpedance excluding the system transfer function and that from an impedance model. When tested on realistic loads including discrete resistors and capacitors, and saline and agar phantoms, the voltage source-based BIS system had a wider bandwidth of 10 Hz to 2.2 MHz with less than 1% deviation from the expected spectra compared to more than 10% with the current source. The voltage source also showed an SNR of at least 60 dB up to 2.2 MHz in

  1. Local Inhomogeneities and the Value of the Cosmological Constant

    Science.gov (United States)

    Romano, Antonio Enea

    2013-12-01

    Supernovae observations strongly support the presence of a cosmological constant, but its value, which we will call apparent, is normally determined assuming that the Universe can be accurately described by a homogeneous model. Even in the presence of a cosmological constant we cannot exclude nevertheless the presence of a small local inho-mogeneity which could affect the apparent value of the cosmological constant. Neglecting the presence of the inhomogeneity can in fact introduce a systematic misinterpretation of cosmological data, leading to the distinction between an apparent and the true value of the cosmological constant. But is such a difference distinguishable? Recently we set out to model the local inhomogeneity with a ΛLTB solution and computed the relation between the apparent and the true value of the cosmological constant. In this essay we reproduce the essence of our model with the emphasis on its physical implications.

  2. Temperature dependence of the dielectric constant of acrylic dielectric elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Chang, Longfei [Xi' an Jiaotong University, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an (China); Xi' an Jiaotong University, School of Mechanical Engineering, Xi' an (China)

    2013-02-15

    The dielectric constant is an essential electrical parameter to the achievable voltage-induced deformation of the dielectric elastomer. This paper primarily focuses on the temperature dependence of the dielectric constant (within the range of 173 K to 373 K) for the most widely used acrylic dielectric elastomer (VHB 4910). First the dielectric constant was investigated experimentally with the broadband dielectric spectrometer (BDS). Results showed that the dielectric constant first increased with temperature up to a peak value and then dropped to a relative small value. Then by analyzing the fitted curves, the Cole-Cole dispersion equation was found better to characterize the rising process before the peak values than the Debye dispersion equation, while the decrease process afterward can be well described by the simple Debye model. Finally, a mathematical model of dielectric constant of VHB 4910 was obtained from the fitted results which can be used to further probe the electromechanical stability of the dielectric elastomers. (orig.)

  3. Temperature dependence of the dielectric constant of acrylic dielectric elastomer

    Science.gov (United States)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Chang, Longfei

    2013-02-01

    The dielectric constant is an essential electrical parameter to the achievable voltage-induced deformation of the dielectric elastomer. This paper primarily focuses on the temperature dependence of the dielectric constant (within the range of 173 K to 373 K) for the most widely used acrylic dielectric elastomer (VHB 4910). First the dielectric constant was investigated experimentally with the broadband dielectric spectrometer (BDS). Results showed that the dielectric constant first increased with temperature up to a peak value and then dropped to a relative small value. Then by analyzing the fitted curves, the Cole-Cole dispersion equation was found better to characterize the rising process before the peak values than the Debye dispersion equation, while the decrease process afterward can be well described by the simple Debye model. Finally, a mathematical model of dielectric constant of VHB 4910 was obtained from the fitted results which can be used to further probe the electromechanical stability of the dielectric elastomers.

  4. Fundamental Constants in Physics and their Time Dependence

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    In the Standard Model of Particle Physics we are dealing with 28 fundamental constants. In the experiments these constants can be measured, but theoretically they are not understood. I will discuss these constants, which are mostly mass parameters. Astrophysical measurements indicate that the finestructure constant is not a real constant, but depends on time. Grand unification then implies also a time variation of the QCD scale. Thus the masses of the atomic nuclei and the magnetic moments of the nuclei will depend on time. I proposed an experiment, which is currently done by Prof. Haensch in Munich and his group. The first results indicate a time dependence of the QCD scale. I will discuss the theoretical implications.

  5. Calculation of individual isotope equilibrium constants for geochemical reactions

    Science.gov (United States)

    Thorstenson, D.C.; Parkhurst, D.L.

    2004-01-01

    Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation

  6. International Migration of Couples

    OpenAIRE

    Junge, Martin; Munk, Martin D.; Nikolka, Till; Poutvaara, Panu

    2017-01-01

    We analyze emigration and return decisions of Danish couples. Our main questions are how emigration and return migration decisions depend on education, earnings, and the number and age of children. We use register data on full population from 1982 to 2006, focusing on opposite-gender couples in which the female is aged 23 to 37, and the male 25 to 39. We find that power couples in which both are highly educated are most likely to emigrate, but also most likely to return. Couples in which only...

  7. A Mathematical Framework for Online Constant Coefficient Multiplication

    Directory of Open Access Journals (Sweden)

    Georgina Binoy Joseph

    2017-06-01

    Full Text Available    Single and Multiple constant multiplications are key operations in several digital signal processing algorithms. This paper develops a mathematical framework for a novel adaptation of the parallel shift-and-add multiplication algorithm for online arithmetic. Based on this adaptation, online constant coefficient multipliers for single constant multiplication (SCM and multiple constant multiplications (MCM of streaming floating-point inputs are presented. A finite impulse response filter implementation on Xilinx Virtex 6 Field programmable gate array (FPGA is used as an example to illustrate the merits of these filters. The results of this implementation show that online multipliers reduce resource utilization, online delay and increase clock frequency in comparison to existing designs. Online multiple constant multipliers also show an average  reduction of 65% in the number of slice LUTs and 37%  in the number of slice registers required when compared to existing digit-serial multiple constant multipliers. Thus, the proposed online arithmetic operators appear to be good alternatives for constant coefficient multiplication

  8. Computing the Gromov hyperbolicity constant of a discrete metric space

    KAUST Repository

    Ismail, Anas

    2012-07-01

    Although it was invented by Mikhail Gromov, in 1987, to describe some family of groups[1], the notion of Gromov hyperbolicity has many applications and interpretations in different fields. It has applications in Biology, Networking, Graph Theory, and many other areas of research. The Gromov hyperbolicity constant of several families of graphs and geometric spaces has been determined. However, so far, the only known algorithm for calculating the Gromov hyperbolicity constant δ of a discrete metric space is the brute force algorithm with running time O (n4) using the four-point condition. In this thesis, we first introduce an approximation algorithm which calculates a O (log n)-approximation of the hyperbolicity constant δ, based on a layering approach, in time O(n2), where n is the number of points in the metric space. We also calculate the fixed base point hyperbolicity constant δr for a fixed point r using a (max, min)−matrix multiplication algorithm by Duan in time O(n2.688)[2]. We use this result to present a 2-approximation algorithm for calculating the hyper-bolicity constant in time O(n2.688). We also provide an exact algorithm to compute the hyperbolicity constant δ in time O(n3.688) for a discrete metric space. We then present some partial results we obtained for designing some approximation algorithms to compute the hyperbolicity constant δ.

  9. Constant-roll inflation in F(R) gravity

    Science.gov (United States)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2017-12-01

    In this paper, we study constant-roll inflation in F(R) gravity. We take two different approaches, one that relates F(R) gravity to well-known scalar models of constant-roll and a second that examines the constant-roll condition in F(R) gravity directly. With regard to the first approach, by using well-known techniques, we find the F(R) gravity that realizes a given constant-roll evolution in the scalar-tensor theory. We also perform a conformal transformation in the resulting F(R) gravity and find the Einstein frame counterpart theory. As we demonstrate, the resulting scalar potential is different in comparison to the original scalar constant-roll case, and the same applies for the corresponding observational indices. Moreover, we discuss how cosmological evolutions that can realize constant-roll to constant-roll era transitions in the scalar-tensor description can be realized by vacuum F(R) gravity. With regard to the second approach, we examine the effects of the constant-roll condition on the inflationary dynamics of vacuum F(R) gravity directly. We present in detail the formalism of constant-roll F(R) gravity inflationary dynamics and we discuss the inflationary indices for this case. We use two well-known F(R) gravities in order to illustrate our findings: the R 2 model and a power-law F(R) gravity in vacuum. As we demonstrate, in both cases the parameter space is enlarged in comparison to the slow-roll counterparts of the models and, in effect, the models can also be compatible with the observational data. Finally, we briefly address the graceful exit issue.

  10. Constant Current versus Constant Voltage Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease.

    Science.gov (United States)

    Ramirez de Noriega, Fernando; Eitan, Renana; Marmor, Odeya; Lavi, Adi; Linetzky, Eduard; Bergman, Hagai; Israel, Zvi

    2015-02-18

    Background: Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established therapy for advanced Parkinson's disease (PD). Motor efficacy and safety have been established for constant voltage (CV) devices and more recently for constant current (CC) devices. CC devices adjust output voltage to provide CC stimulation irrespective of impedance fluctuation, while the current applied by CV stimulation depends on the impedance that may change over time. No study has directly compared the clinical effects of these two stimulation modalities. Objective: To compare the safety and clinical impact of CC STN DBS to CV STN DBS in patients with advanced PD 2 years after surgery. Methods: Patients were eligible for inclusion if they had undergone STN DBS surgery for idiopathic PD, had been implanted with a Medtronic Activa PC and if their stimulation program and medication had been stable for at least 1 year. This single-center trial was designed as a double-blind, randomized, prospective study with crossover after 2 weeks. Motor equivalence of the 2 modalities was confirmed utilizing part III of the Unified Parkinson's Disease Rating Scale (UPDRS). PD diaries and multiple subjective and objective evaluations of quality of life, depression, cognition and emotional processing were evaluated on both CV and on CC stimulation. Analysis using the paired t test with Bonferroni correction for multiple comparisons was performed to identify any significant difference between the stimulation modalities. Results: 8 patients were recruited (6 men, 2 women); 1 patient did not complete the study. The average age at surgery was 56.7 years (range 47-63). Disease duration at the time of surgery was 7.5 years (range 3-12). Patients were recruited 23.8 months (range 22.5-24) after surgery. At the postoperative study baseline, this patient group showed an average motor improvement of 69% (range 51-97) as measured by the change in UPDRS part III with stimulation alone. Levodopa equivalent

  11. Time variation of fundamental constants in nonstandard cosmological models

    Science.gov (United States)

    Mosquera, M. E.; Civitarese, O.

    2017-10-01

    In this work we have studied the lithium problem in nonstandard cosmological models. In particular, by using the public code alterbbn, we have included in the computation of the primordial light nuclei abundances, the effects of the inclusion of dark energy and dark entropy, along with the variation of the fine structure constant and the Higgs vacuum expectation value. In order to set constrains on the variation of the fundamental constants we have compared our theoretical results with the available observational data. We have found that the lithium abundance is reduced for not-null variation at the 3 σ -level of both constants.

  12. Large numbers hypothesis. IV - The cosmological constant and quantum physics

    Science.gov (United States)

    Adams, P. J.

    1983-01-01

    In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.

  13. Procedures for determining MATMOD-4V material constants

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, T.C.

    1993-11-01

    The MATMOD-4V constitutive relations were developed from the original MATMOD model to extend the range of nonelastic deformation behaviors represented to include transient phenomena such as strain softening. Improvements in MATMOD-4V increased the number of independent material constants and the difficulty in determining their values. Though the constitutive relations are conceptually simple, their form and procedures for obtaining their constants can be complex. This paper reviews in detail the experiments, numerical procedures, and assumptions that have been used to determine a complete set of MATMOD-4V constants for high purity aluminum.

  14. Compilation of Henry's law constants, version 3.99

    Science.gov (United States)

    Sander, R.

    2014-11-01

    Many atmospheric chemicals occur in the gas phase as well as in liquid cloud droplets and aerosol particles. Therefore, it is necessary to understand the distribution between the phases. According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry's law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 14775 values of Henry's law constants for 3214 species, collected from 639 references. It is also available on the internet at law.org">http://www.henrys-law.org.

  15. Magnetic system for small betatron with constant guide field

    Energy Technology Data Exchange (ETDEWEB)

    Chakhlov, V.L.; Zvontsov, A.A.; Simukhin, N.F.

    1975-07-01

    It is known that the use of guide fields that are constant in time in cyclic accelerators leads to an increase of the average intensity, owing to the relative long time of injection of the particles into the acceleration regime. In the design of induction accelerators with time-constant control fields, preference is given to radial-sector magnetic systems, but for similar accelerators designed for low and medium energies it is also convenient to use a spiral-sector design. A model of a magnetic system for a betatron with constant field is described.

  16. PIV measurement of constant area mixing in subsonic air ejector

    Directory of Open Access Journals (Sweden)

    Dvořák Václav

    2012-04-01

    Full Text Available The article deals with experimental study of constant area mixing in subsonic axi-symmetric air ejector. The velocity fields inside the constant area mixing chamber were taken through the vitreous wall of the chamber, while the laser beam entered it from the opened outflow of the ejector. PIV measurements of four different mixing regimes, each with different ejection ratio were performed. Basic description of results are given and it is claimed that results are reliable. Obtained data will be later compared with constant temperature anemometry and with numerical calculations.

  17. Ionisation constants of inorganic acids and bases in aqueous solution

    CERN Document Server

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  18. Voltage affects the dissociation rate constant of the m2 muscarinic receptor.

    Directory of Open Access Journals (Sweden)

    Yair Ben Chaim

    Full Text Available G-protein coupled receptors (GPCRs comprise the largest protein family and mediate the vast majority of signal transduction processes in the body. Until recently GPCRs were not considered to be voltage dependent. Newly it was shown for several GPCRs that the first step in GPCR activation, the binding of agonist to the receptor, is voltage sensitive: Voltage shifts the receptor between two states that differ in their binding affinity. Here we show that this shift involves the rate constant of dissociation. We used the m2 muscarinic receptor (m2R a prototypical GPCR and measured directly the dissociation of [(3H]ACh from m2R expressed Xenopus oocytes. We show, for the first time, that the voltage dependent change in affinity is implemented by voltage shifting the receptor between two states that differ in their rate constant of dissociation. Furthermore, we provide evidence that suggest that the above shift is achieved by voltage regulating the coupling of the GPCR to its G protein.

  19. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    Science.gov (United States)

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (PLW), which was based on body weight (BW) according to the formula: PLW = 0.0053 BW - 0.48 and presented as KfcPLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p < 0.05 considered as significant. Perfusate flow remained constant in the Constant flow group, but was more than halved during hypothermia in the Constant PPA group concomitant with a more fold increase in PVR. In the Constant flow group, KfcPLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the

  20. Rate constant for the reaction SO + BrO yields SO2 + Br

    Science.gov (United States)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  1. Quantum deformation of quantum cosmology: A framework to discuss the cosmological constant problem

    Science.gov (United States)

    Jalalzadeh, S.; Capistrano, A. J. S.; Moniz, P. V.

    2017-12-01

    We endorse the context that the cosmological constant problem is a quantum cosmology issue. Therefore, in this paper we investigate the q-deformed Wheeler-DeWitt equation of a spatially closed homogeneous and isotropic Universe in the presence of a conformally coupled scalar field. Specifically, the quantum deformed Universe is a quantized minisuperspace model constructed from quantum Heisenberg-Weyl Uq(h4) and Uq(su(1 , 1)) groups. These intrinsic mathematical features allow to establish that (i) the scale factor, the scalar field and corresponding momenta are quantized and (ii) the phase space has a non-equidistance lattice structure. On the other hand, such quantum group structure provides us a new framework to discuss the cosmological constant problem. Subsequently, we show that a ultraviolet cutoff can be obtained at 10-3 eV, i.e., at a scale much larger than the expected Planck scale. In addition, an infrared cutoff, at the size of the observed Universe, emerges from within such quantum deformation of Universe. In other words, the spectrum of the scale factor is upper bounded. Moreover, we show that the emerged cosmological horizon is a quantum sphere Sq2 or, alternatively, a fuzzy sphere SF2 which explicitly exhibits features of the holographic principle. The corresponding number of fundamental cells equals the dimension of the Hilbert space and hence, the cosmological constant can be presented as a consequence of the quantum deformation of the FLRW minisuperspace.

  2. Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.

    Science.gov (United States)

    Donnini, Serena; Ullmann, R Thomas; Groenhof, Gerrit; Grubmüller, Helmut

    2016-03-08

    In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying markedly enhanced simulation and sampling efficiency.

  3. On a level-set method for ill-posed problems with piecewise non-constant coefficients

    OpenAIRE

    Cezaro, Adriano de

    2012-01-01

    We investigate a level-set type method for solving ill-posed problems, with the assumption that the solutions are piecewise, but not necessarily constant functions with unknown level sets and unknown level values. In order to get stable approximate solutions of the inverse problem we propose a Tikhonov-type regularization approach coupled with a level set framework. We prove the existence of generalized minimizers for the Tikhonov functional. Moreover, we prove convergence and stability of th...

  4. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  5. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    An exact solution is obtained for coupled dilaton and electromagnetic field in a cylindrically symmetric spacetime where an axial magnetic field as well as a radial electric field both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric field or to that ...

  6. Measurement of both the equilibrium constant and rate constant for electronic energy transfer by control of the limiting kinetic regimes.

    Science.gov (United States)

    Vagnini, Michael T; Rutledge, W Caleb; Wagenknecht, Paul S

    2010-02-01

    Electronic energy transfer can fall into two limiting cases. When the rate of the energy transfer back reaction is much faster than relaxation of the acceptor excited state, equilibrium between the donor and acceptor excited states is achieved and only the equilibrium constant for the energy transfer can be measured. When the rate of the back reaction is much slower than relaxation of the acceptor, the energy transfer is irreversible and only the forward rate constant can be measured. Herein, we demonstrate that with trans-[Cr(d(4)-cyclam)(CN)(2)](+) as the donor and either trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) or trans-[Cr(cyclam)(CN)(2)](+) as the acceptor, both limits can be obtained by control of the donor concentration. The equilibrium constant and rate constant for the case in which trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) is the acceptor are 0.66 and 1.7 x 10(7) M(-1) s(-1), respectively. The equilibrium constant is in good agreement with the value of 0.60 determined using the excited state energy gap between the donor and acceptor species. For the thermoneutral case in which trans-[Cr(cyclam)(CN)(2)](+) is the acceptor, an experimental equilibrium constant of 0.99 was reported previously, and the rate constant has now been measured as 4.0 x 10(7) M(-1) s(-1).

  7. VLT and E-ELT spectrographs & fundamental-constants

    Science.gov (United States)

    Molaro, Paolo

    2010-11-01

    The fundamental dimensionless physical constants cannot be predicted by theory but can only be measured experimentally. And so it is of their possible variation where there are several theoretical predictions but unfortunately with little theoretical guidance on the expected rate of change. The role of fundamental constants in the representation of nature as well as the implications of their variability for the Equivalence Principle and cosmology have been highlighted in many contributions at this conference (cfr K. Olive and J.P Uzan, these proceedings). Measuring the variability of the fine structure constant α or the electron-to-proton ratio μ by means of absorption lines implies the measurement of a tiny variation of the position of one or a few lines with regard to other lines which are taken as reference. For the fine structure constant the relation between its change and the doppler velocity shift is:

  8. [Grades evaluation of Scutellariae Radix slices based on quality constant].

    Science.gov (United States)

    Deng, Zhe; Zhang, Jun; Jiao, Meng-Jiao; Zhong, Wen; Cui, Wen-Jin; Cheng, Jin-Tang; Chen, Sha; Wang, Yue-Sheng; Liu, An

    2017-05-01

    By measuring the morphological indexes and the marker components content of 22 batches of Scutellariae Radix slices as well as calculating the quality constant, this research was aimed to establish a new method of evaluating the specifications and grades of Scutellariae Radix slices. The quality constants of these samples were in the range of 0.04-0.49, which can be divided into several grades based on the real requirement. If they were divided into three grades, the quality constant was ≥0.39 for the first grade, grade, and grade. This work indicated that the quality constants characterizing both apparent parameters and intrinsic quality can be used as a comprehensive evaluation index to classify the grades of traditional Chinese medicine quantitatively, clearly and objectively. The research results in this paper would provide new ideas and references for evaluating the specifications and grades of traditional Chinese medicines. Copyright© by the Chinese Pharmaceutical Association.

  9. The Length-Weight Relationship and Condition Factor (K constant ...

    African Journals Online (AJOL)

    The Length-Weight Relationship and Condition Factor (K constant) of the Sparidae (Dentex Marocannus, Valenciennes 1830) of Malindi, Kenya. Christopher Mulanda Aura, Rashid Oketch Anam, Safina Musa, Edward Ndirui Kimani ...

  10. MERRA DAS 2D Constants V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAC0NXASM or const_2d_asm_Nx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native resolution. MERRA, or the Modern Era...

  11. Determination of Biological Oxygen Demand Rate Constant and ...

    African Journals Online (AJOL)

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  12. Projectile Motion with Quadratic Damping in a Constant ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Projectile Motion with Quadratic Damping in a Constant Gravitational Field. Chandra Das Dhiranjan Roy. General Article Volume 19 Issue 5 May 2014 pp 446-465 ...

  13. Optical constant determination of thin polymer films in the infrared

    Science.gov (United States)

    Graf, R. T.; Koenig, J. L.; Ishida, H.

    1984-08-01

    Thin films of poly(vinyl chloride), poly(methyl methacrylate), and poly(styrene) were analyzed by Fourier transform infrared spectroscopy. The interference fringes present in the transmission spectra of these samples were used to determine thickness and average refractive index (in non-absorbing regions). Subsequent Kramers-Kronig analysis of these transmission spectra provided the the dispersion of the refractive index and the absorptive index across the entire mid-infrared region. The refractive index and the absorptive index, collectively known as the optical constants, are intrinsic properties of a material, and their spectra are invariant with respect to the geometry and/or thickness of a sample. The intrinsic nature of the derived optical constants was verified by the absence of interference fringes in the optical constant spectra, and by the good agreement obtained between our optical constant spectra and those of other authors.

  14. Rapid folding of DNA into nanoscale shapes at constant temperature

    National Research Council Canada - National Science Library

    Sobczak, Jean-Philippe J; Martin, Thomas G; Gerling, Thomas; Dietz, Hendrik

    2012-01-01

    .... Unfolding occurred in apparent equilibrium at higher temperatures than those for folding. Folding at optimized constant temperatures enabled the rapid production of three-dimensional DNA objects with yields that approached 100...

  15. Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols

    Science.gov (United States)

    Hodzic, A.; Aumont, B.; Knote, C.; Lee-Taylor, J.; Madronich, S.; Tyndall, G.

    2014-07-01

    The water solubility of oxidation intermediates of volatile organic compounds that can condense to form secondary organic aerosol (SOA) is largely unconstrained in current chemistry-climate models. We apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to calculate Henry's law constants for these intermediate species. Results show a strong negative correlation between Henry's law constants and saturation vapor pressures. Details depend on precursor species, extent of photochemical processing, and NOx levels. Henry's law constants as a function of volatility are made available over a wide range of vapor pressures for use in 3-D models. In an application using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) over the U.S. in summer, we find that dry (and wet) deposition of condensable organic vapors leads to major reductions in SOA, decreasing surface concentrations by ~50% (10%) for biogenic and ~40% (6%) for short chain anthropogenic precursors under the considered volatility conditions.

  16. One-group constant libraries for nuclear equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Akihiko; Sekimoto, Hiroshi [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    One-group constant libraries for the nuclear equilibrium state were generated for both liquid sodium cooled MOX fuel type fast reactor and PWR type thermal reactor with Equilibrium Cell Iterative Calculation System (ECICS) using JENDL-3.2, -3, -2 and ENDF/B-VI nuclear data libraries. ECICS produced one-group constant sets for 129 heavy metal nuclides and 1238 fission products. (author)

  17. Measuring the gravitational constant in a university laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Nikolai S; Shisharin, Alexandr V [N.I. Lobachevskii Nizhnii Novgorod State University, Nizhnii Novgorod (Russian Federation)

    2002-05-31

    A setup for measuring gravitational constant in a university laboratory is described. The setup includes a torsion pendulum which swings under the action of gravitational attraction from test masses whose positions are made to change periodically in phase with pendulum oscillations by a special device. The gravity constant is calculated from the amplitude of steady-state oscillations. The experimental and calculation procedure is described and measurement errors are estimated. (methodological notes)

  18. Equilibrium Constant as Solution to the Open Chemical Systems

    OpenAIRE

    Zilbergleyt, B.

    2008-01-01

    According to contemporary views, equilibrium constant is relevant only to true thermodynamic equilibria in isolated systems with one chemical reaction. The paper presents a novel formula that ties-up equilibrium constant and chemical system composition at any state, isolated or open as well. Extending the logarithmic logistic map of the Discrete Thermodynamics of Chemical Equilibria, this formula maps the system population at isolated equilibrium into the population at any open equilibrium at...

  19. Constant Entropy Properties for an Approximate Model of Equilibrium Air

    Science.gov (United States)

    Hansen, C. Frederick; Hodge, Marion E.

    1961-01-01

    Approximate analytic solutions for properties of equilibrium air up to 15,000 K have been programmed for machine computation. Temperature, compressibility, enthalpy, specific heats, and speed of sound are tabulated as constant entropy functions of temperature. The reciprocal of acoustic impedance and its integral with respect to pressure are also given for the purpose of evaluating the Riemann constants for one-dimensional, isentropic flow.

  20. Dynamic measurements of the elastic constants of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2005-01-01

    The sound wave in the air between the fibers of glass wool exerts an oscillatory viscous drag on the fibers and excites a mechanical wave in the fiber skeleton. Accurate calculations of sound attenuation in glass wool must take the mechanical wave in the fiber skeleton into account......, and this requires knowledge of the dynamic elastic constants of the fiber skeleton. The mechanical properties of glass wool are highly anisotropic. Previously only one of the elastic constants has been measured dynamically, but here all the elastic constants are reported. The measurement method is well known...... formula. The elastic constants were measured in the frequency range 20–160 Hz for glass wool of mass density 30 kg/m3. The elastic constant C11 depended on the frequency; at 20 Hz it was 1.5+0.01i MPa, and at 160 Hz it was 2.6+0.06i MPa. The constant C33=12+0.6i kPa did not depend on frequency. The shear...

  1. Planck intermediate results. XXIV. Constraints on variation of fundamental constants

    CERN Document Server

    Ade, P A R; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Burigana, C.; Butler, R.C.; Calabrese, E.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Couchot, F.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J.M.; Dole, H.; Dore, O.; Dupac, X.; Ensslin, T.A.; Eriksen, H.K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, A.H.; Jones, W.C.; Keihanen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.M.; Lasenby, A.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Mandolesi, N.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G.W.; Prunet, S.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L.D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Uzan, J.P.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-01-01

    Any variation of the fundamental physical constants, and more particularly of the fine structure constant, $\\alpha$, or of the mass of the electron, $m_e$, would affect the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift $z\\sim 10^3$ by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, $H_0$. In addition to $\\alpha$, we can set a constraint on the variation of the mass of the electron, $m_{\\rm e}$, and on the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structu...

  2. How does Planck’s constant influence the macroscopic world?

    Science.gov (United States)

    Yang, Pao-Keng

    2016-09-01

    In physics, Planck’s constant is a fundamental physical constant accounting for the energy-quantization phenomenon in the microscopic world. The value of Planck’s constant also determines in which length scale the quantum phenomenon will become conspicuous. Some students think that if Planck’s constant were to have a larger value than it has now, the quantum effect would only become observable in a world with a larger size, whereas the macroscopic world might remain almost unchanged. After reasoning from some basic physical principles and theories, we found that doubling Planck’s constant might result in a radical change on the geometric sizes and apparent colors of macroscopic objects, the solar spectrum and luminosity, the climate and gravity on Earth, as well as energy conversion between light and materials such as the efficiency of solar cells and light-emitting diodes. From the discussions in this paper, students can appreciate how Planck’s constant affects various aspects of the world in which we are living now.

  3. Adsorption of gaseous pollutants on activated carbon filters. Modelling of the coupled exchanges of heat and mass; Adsorption de polluants gazeux sur des filtres de charbon actif. Modelisation des echanges couples de matiere et de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Fiani, E.

    2000-01-27

    The aim of this work is to remove gasoline and odorous molecules vapors. Thermodynamics and kinetics studies have been carried out; they concern the fixation of representative gases on activated carbons. Hydrogen sulfide and n-butane are chosen to represent the odorous molecules. Different activated carbons are considered: only the adsorbent impregnated by KOH has satisfying performance. The adsorption of hydrocarbons on a granulated activated carbon is studied on four original devices specifically perfected for this work: gravimetry, calorimetry, thermal measurements and gaseous phase chromatography. The gravimetric measurements are coupled to thermal measurements inside the granulates. Strong temperature variations have then been observed inside a granulate during the adsorption. These experimental results have been taken into account to adapt the classical Langmuir kinetic model. This new model allows to predict all the curves: setting / internal temperature variation for the adsorption of the hydrocarbons alone. The competitive nature of the adsorption sites allows then to explain qualitatively the adsorption of binary mixtures of hydrocarbons. At last, the classical Langmuir model allows to explain correctly the thermodynamic results, for the hydrocarbons alone or in binary mixture. The proposed modelling allows then to treat both on a kinetic and thermodynamic way the case of a non isothermal adsorption at the scale of an activated carbon granulate and to predict the phenomena at the filter scale. (O.M.)

  4. Depression: The Differing Narratives of Couples in Couple Therapy

    Science.gov (United States)

    Rautiainen, Eija-Liisa; Aaltonen, Jukka

    2010-01-01

    How does the spouse of a person with depression take part in constructing narratives of depression in couple therapy? In this study we examined couples' ways of co-constructing narratives of depression in couple therapy. Three couple therapy processes were chosen for the study, one spouse in each couple having been referred to an outpatient clinic…

  5. High-Temperature Slow Crack Growth of Silicon Carbide Determined by Constant-Stress-Rate and Constant-Stress Testing

    Science.gov (United States)

    Choi, Sung H.; Salem, J. A.; Nemeth, N. N.

    1998-01-01

    High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.

  6. Effect of noradrenaline on tail arteries of SHR and WKY under perfusion at constant flow and constant pressure

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Tarasova, Olga S; Timin, Eugeny N

    1997-01-01

    Vasoconstrictor effects of noradrenaline were compared in 6- to 7-month-old spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats. A cylindrical segment was dissected from the proximal part of tail artery, cannulated at both ends and perfused alternately either at constant flow or constant...... pressure. Two series of experiments were performed. In the first series, vessels were perfused/superfused with Krebs-Henseleit solution. In the second one a modified salt solution was used, in which NaCl was totally replaced by an equimolar amount of KCI. Under constant flow conditions noradrenaline evoked...... a more prominent resistance increase in SHR compared with WKY independently of the composition of solution (normal or high-K+) used. At constant pressure perfusion with normal solution, the vasoconstrictor response to noradrenaline was more prominent in WKY. Under application of high-K+ solution...

  7. Mechanism and rate constants of the Cdc42 GTPase binding with intrinsically disordered effectors.

    Science.gov (United States)

    Pang, Xiaodong; Zhou, Huan-Xiang

    2016-05-01

    Intrinsically disordered proteins (IDPs) are often involved in signaling and regulatory functions, through binding to cellular targets. Many IDPs undergo disorder-to-order transitions upon binding. Both the binding mechanisms and the magnitudes of the binding rate constants can have functional importance. Previously we have found that the coupled binding and folding of any IDP generally follows a sequential mechanism that we term dock-and-coalesce, whereby one segment of the IDP first docks to its subsite on the target surface and the remaining segments subsequently coalesce around their respective subsites. Here we applied our TransComp method within the framework of the dock-and-coalesce mechanism to dissect the binding kinetics of two Rho-family GTPases, Cdc42 and TC10, with two intrinsically disordered effectors, WASP and Pak1. TransComp calculations identified the basic regions preceding the GTPase binding domains (GBDs) of the effectors as the docking segment. For Cdc42 binding with both WASP and Pak1, the calculated docking rate constants are close to the observed overall binding rate constants, suggesting that basic-region docking is the rate-limiting step and subsequent conformational coalescence of the GBDs on the Cdc42 surface is fast. The possibility that conformational coalescence of the WASP GBD on the TC10 surface is slow warrants further experimental investigation. The account for the differences in binding rate constants among the three GTPase-effector systems and mutational effects therein yields deep physical and mechanistic insight into the binding processes. Our approach may guide the selection of mutations that lead to redesigned binding pathways. © 2016 Wiley Periodicals, Inc.

  8. The Effects of Constant Darkness and Constant Light on the Pineal Gland and Thymus Morphology in the Rats

    OpenAIRE

    İÇTEN, Nihal

    1998-01-01

    It is known that periods of constant darkness and constant light cause stim-ulation and inhibition of melatonin secretion from the pineal gland. It is also suggested that neuroendocrine responses to environmental stimuli, such as light, can influence immune responses through the pineal gland. For these reasons, in this study the effects of the alterations in the photoperiod rhythm on the pineal gland and thymus morphology were experimentally investigated. 30 Swiss albino rats, aged...

  9. Numerical counting ratemeter with variable time constant and integrated circuits; Ictometre numerique a constante de temps variable a circuits integres

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J.; Fuan, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    We present here the prototype of a numerical counting ratemeter which is a special version of variable time-constant frequency meter (1). The originality of this work lies in the fact that the change in the time constant is carried out automatically. Since the criterion for this change is the accuracy in the annunciated result, the integration time is varied as a function of the frequency. For the prototype described in this report, the time constant varies from 1 sec to 1 millisec. for frequencies in the range 10 Hz to 10 MHz. This prototype is built entirely of MECL-type integrated circuits from Motorola and is thus contained in two relatively small boxes. (authors) [French] Nous presentons ici le prototype d'un ictometre numerique, celui-ci etant une version speciale d'un frequencemetre a constante de temps variable (1). Le nouvel interet de cette etude est le fait que le changement de la constante de temps se fait automatiquement. Le critere de ce changement etant la precision du resultat a afficher on change alors le temps d'integration en fonction de la frequence. Pour le prototype decrit dans ce rapport la constante de temps varie entre 1 s et 1 ms pour des frequences allant de 10 Hz a 10 MHz. Ce prototype est entierement realise en circuit integre type MECL de Motorola et se presente en consequence dans deux boitiers d'une taille relativement petite. (auteurs)

  10. Convective organization in the super-parameterized community atmosphere model with constant surface temperature

    Science.gov (United States)

    Kuang, Z.

    2015-12-01

    Organization in a moist convecting atmosphere is investigated using the super-parameterized community atmosphere model (SPCAM) in aquaplanet setting with constant surface temperature, with and without planetary rotation. Without radiative and surface feedbacks, convective organization is dominated by convectively coupled gravity waves without planetary rotation and convectively coupled equatorial waves when there is planetary rotation. This behavior is well captured when the cloud resolving model (CRM) in SPCAM is replaced by its linear response function, computed following Kuang (2010), for the state of radiative convective equilibrium (RCE). With radiative feedback, however, convection self-aggregates, and with planetary rotation, the tropical zonal wavenumber-frequency spectrum features a red noise background. These behaviors in the presence of the radiative feedback are not captured when the CRM is replaced by its linear response function around the RCE state with radiative feedback included in the construction. Implications to organization in a moist convecting atmosphere will be discussed. Kuang, Z., Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implication to the dynamics of convectively coupled waves, J. Atmos. Sci., 67, 941-962, (2010)

  11. Parametric amplification by coupled flux qubits

    Energy Technology Data Exchange (ETDEWEB)

    Rehák, M.; Neilinger, P.; Grajcar, M. [Department of Experimental Physics, Comenius University, SK-84248 Bratislava (Slovakia); Institute of Physics, Slovak Academy of Science, 845 11 Bratislava (Slovakia); Oelsner, G.; Hübner, U.; Meyer, H.-G. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Il' ichev, E. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Novosibirsk State Technical University, 20 K. Marx Ave., 630092 Novosibirsk (Russian Federation)

    2014-04-21

    We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10{sup −3}) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

  12. Thermal quench at finite 't Hooft coupling

    Directory of Open Access Journals (Sweden)

    H. Ebrahim

    2016-03-01

    Full Text Available Using holography we have studied thermal electric field quench for infinite and finite 't Hooft coupling constant. The set-up we consider here is D7-brane embedded in (α′ corrected AdS-black hole background. It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current will be produced and it will finally relax to its equilibrium value. We have studied the effect of different parameters of the system on equilibration time. As the most important results, for massless fundamental